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Spain

conrado@cs.upc.edu, jun.wang@estudiantat.upc.edu
2 Instituto de Computación, Universidad de la República, Montevideo, Uruguay

viola@fing.edu.uy

Abstract. Computing a similarity measure (or a distance) between two
complex objects is a fundamental building block for a huge number of
applications in a wide variety of domains. Since many tasks involve com-
puting such similarities among many pairs of objects, many algorithmic
techniques and data structures have been devised in the past to reduce
the number of similarity computations and to reduce the complexity of
computing the similarity (e.g., dimension-reduction techniques). In this
paper, we focus on computing the similarity of two sets and show that
computing the similarity of two random samples drawn from the respec-
tive sets leads to an (asymptotically) unbiased estimator of the true
similarity, with relative standard error going to zero as the size of the
involved sets grows, and of course at a much lower computational cost
as we compute the similarity of the significantly smaller samples. While
this result has been known for a long time since Broder’s seminal paper
(Broder, 1997) for the Jaccard similarity index, we show here that the
result also holds for many other similarity measures, such as the well-
known cosine similarity, Sørensen-Dice, the first and second Kulczynski
coefficients, etc.

1 Introduction

There are numerous applications where we need to evaluate the similarity (or the
distance) among many pairs of complex objects, for example to locate the best
matches to some target or to group a collection of objects into clusters of similar
objects. In order to reduce the complexity of such tasks, several approaches have
been proposed in the literature, and we can classify them, roughly speaking, in
two families: 1) one is trying to reduce the total number of similarity/distance
evaluations exploiting properties of the metric space (most notably the triangle
inequality) and organizing the information into a suitable data structure, such as
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vantage-point trees, Burkhard-Keller trees, GHTs or GNATs (see for instance [2,
3,9]); 2) a second approach is to use a different similarity or distance measure,
one that is much simpler to evaluate while approximating the real similarity well
enough, effectively reducing the dimensionality of the search space; this is, for
example, the approach in the paper by Broder [1] and the approach taken here.
There are many more techniques for dimensionality reduction and even those
which combine both approaches, like Locality-Sensitive Hashing (LSH) (see for
example [8,9]).

In this work, we focus on the problem of estimating the similarity σ(A,B)
of two sets A and B. It is often the case that we will need to sort the two sets
and scan them once sorted to compute their intersection, their union or their
symmetric difference in order to compute their similarity σ(A,B). Moreover, this
has often to be repeated many times between different pairs of sets (the sorting
step can be done just once for each set). In this scenario, when the similarity
of some set A with many others has to be computed, it makes sense instead to
preprocess A in linear time to extract a sample SA of significantly smaller size
(|SA| � |A|) which will be used to do the similarity evaluation. This is also the
idea behind minhashing (see [8] and references therein), which guarantees that
the probability that two sets have the same minhash is equal to their Jaccard
similarity. In our case, we propose computing σ(SA,SB)1, and we provide a
formal proof that σ(SA,SB) is an unbiased estimator of σ(A,B), for several
different similarity measures σ, including Jaccard and the cosine similarity, but
many others as well.

Suppose we have two random samples SA and SB of A and B, respectively.
Our goal is to prove that σ(SA,SB) is an unbiased estimator or otherwise show
how to correct the bias. Moreover, the accuracy (as measured by the standard
relative error

√
V {X}/E {X}) of the estimation will depend on the size of the

samples, and our goal is to quantify it in precise terms. A detailed knowledge of
how the accuracy depends on the size of the samples is henceforth fundamental to
obtain the desired compromise between accuracy and computational efficiency.

We will consider in this work many different similarity measures, presented in
Table 1. For more detailed information about these measures, see for instance [4].

Table 1. Several similarity measures between two sets A and B

Jaccard J(A,B) =
|A∩B|
|A∪B| Cosine cos(A,B) =

|A∩B|√|A|·|B|
Sørensen-Dice SD(A,B) = 2

|A∩B|
|A|+|B| Correlation corr(A,B) = cos2(A,B) =

|A∩B|2
|A|·|B|

Kulczynski 1 K1(A,B) =
|A∩B|
|A�B| Kulczynski 2 K2(A,B) = 1

2

( |A∩B|
|A| +

|A∩B|
|B|

)

Simpson Simpson(A,B) =
|A∩B|

min(|A|,|B|) Braun-Blanquet BB(A,B) =
|A∩B|

max(|A|,|B|)
Containment c(A,B) =

|A∩B|
|A|

1 The random samples SA and SB need a final “filtering” phase before they can be
used to compute the similarity σ(SA, SB).
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The main results of this paper can be summarized as follows: 1) For all the
similarity measures in Table 1, the similarity of the random samples (after some
appropriate “filtering”) is an asymptotically unbiased estimator of the similarity
of the corresponding sets. We have extended the results of [1] by giving general
tools which help to establish the same result for many measures, eventually they
could be used for some not considered here; 2) The standard relative error of
the estimations goes to 0 as the size of the sets grows; something that cannot
happen unless the size of the samples grows with the size of the sets. While the
result is far from surprising, no previous work in the literature addressed the
quantification of the standard error of the estimations, in particular, this hadn’t
been studied when the size of the samples is a function of the size of the sets.

Structure of the Paper. In Sect. 2 we will briefly review Affirmative Sampling,
the random sampling algorithm which we assume will be used to draw random
samples from the sets; it is our choice because the size of the returned samples
grows with the (unknown) size of the set from which we sample, without prior
knowledge of the set. This is useful in contexts in which we are presented the
sets in an on-line fashion or when we have actually multi-sets (for example, text
documents) and we measure their similarity in terms of the underlying sets of
distinct elements (in the example, the vocabularies of the text documents).

In Sect. 3 we present the main results of this paper, namely, that the similarity
of samples is an unbiased estimator of the similarity of the sets, for each one
of the similarity measures shown in Table 1. The formal proofs of our results
appear in the full version [7], not here, due to space constraints.

After that, we present in a short section (Sect. 4) the results of a small empir-
ical study that we have conducted, showing significant accordance with the theo-
retical results of the previous section. We close in Sect. 5 with some final remarks
and a discussion about future developments of this line of research.

2 Sampling

Let A ⊆ U be a finite subset of the domain U (also finite, but potentially
extremely large). Assume that to every element x ∈ U we have assigned a ran-
dom number h(x) ∈ [0, 1], the outcome of an independent draw from a uniformly
distributed random variable in [0, 1]. Then for any τ , 0 < τ < 1, the subset
A≥τ = {x ∈ A |h(x) ≥ τ} ⊆ A is a random sample of A. Any of the n elements
of A has exactly the same probability of belonging to A≥τ as any other element
in A. Likewise, if we consider the subset Ak of A with the k elements of A with
larger (smaller) value of h then Ak is also a random sample. In particular, if
τ = min{h(x) |x ∈ Ak} is the minimum h value in Ak then Ak = A≥τ .

In practice, to obtain such random samples we can use a hash value h(x) for
each element, as presented in [1]; under pragmatic assumptions we can safely
neglect the probability of collisions. Looking at the hash values as real numbers
in [0, 1], for any x ∈ U and any value z ∈ [0, 1] we assume that Pr {h(x) ≤ z} =
z, for a reasonably well-chosen hash function h; that is, the hash values are
uniformly distributed.
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If the size n of the set A from which we want to draw a sample is known
beforehand, then we can take k = k(n) and draw a sample of size k as described
above. But even if the size of the set A were not known in advance (and we do
not want to incur the costs in time and space to compute it) we can still draw
random samples of variable size, growing with the (unknown) size n of the set.
This can be accomplished thanks to Affirmative Sampling (AS) [6], an easy and
practical alternative to just keeping the k elements with largest (smallest) hash
values in A. AS also uses a fixed parameter k but produces samples of size ≥ k
(unless n < k). The expected size S = |S| of the random sample S produced by
AS is E {S} = k ln(n/k) + l.o.t. with n = |A|. Easy variants of AS will produce
random samples of size Θ(nα) for a fixed given α, 0 < α < 1 (see [6]).

Whether we use fixed-size samples or variable-size samples, as long as they
are random we can make inferences about the “population” (the set A) from
the sample S, for instance, about the proportion of elements in A that satisfy a
certain property P . Let nP = |AP |, with AP the subset of elements satisfying P ,
and n the number of elements in A. Denote ϑP := nP

n the fraction of elements
that satisfy P . Let us assume in the computations below and for the remaining
of the paper that n ≥ S ≥ k ≥ 2, that is, that the sampling algorithm will
return at least k ≥ 2 elements. Otherwise, if the set contains less than k distinct
elements, the sample contains all elements in A and their relevant statistics, and
we can answer queries exactly.

If we have a random sample S of A of size S and SP = S ∩ AP then it is
well known that the proportion ϑ̂P = SP /S is an unbiased estimator of ϑP , even
when S is a random variable and not a fixed value (see, for example, [6] and
references therein). Quite intuitively, the accuracy of the estimator will depend
on the size of the sample. The result giving its variance can be found in many
places, however the size S of the sample is assumed fixed there. The more general
statement given here, when S is a random variable, can be found, together with
its proof, in [6].

Lemma 1. The random variable ϑ̂P := SP /S, where S is the size of the random
sample S and SP is the number of elements in S that satisfy P , is an unbiased
estimator of ϑP := nP /n, that is, E

{
ϑ̂P

}
= ϑP , assuming that n ≥ S > 0.

Moreover,

V

{
ϑ̂P

}
=

nP (n − nP )
n(n − 1)

·
(

E

{
1
S

}
− 1

n

)
.

If the behavior of the random variable S = |S| is smooth enough2 and E {S} →
∞ when n → ∞ then the accuracy of the estimator ϑ̂P will improve, as the
variance will decrease and tend to 0 as n → ∞.

2 One can prove that in many random sampling schemes, in particular for AS, we have

E {1/S} = O(1/E {S}).
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3 Estimating Similarity

Consider now two sets A and B and two random samples SA and SB , respectively,
such that SA = A≥τSA and SB = B≥τSB . Looking at Table 1 we quickly notice
that many of the measures are of the form |CP |/|C|, for some set C built from A
and B, and some subset CP of C of elements that satisfy a certain property P . For
example, for the Jaccard similarity we have C = A∪B and the property P is “x
belongs to both A and B” (CP = A∩B). To apply Lemma 1 we need to figure out
how to obtain a random sample SC of C out of the given random samples SA and
SB , and how to find the elements in SC which satisfy P . Our random sampling
scheme guarantees that SA = {x ∈ A |h(x) ≥ τSA

} and SB = {x ∈ B |h(x) ≥
τSB

}. Given two sets X and Y , let τ∗(X,Y ) := max{τX\Y , τX∩Y , τY \X}; we will
take the convention that τ∅ = 0. Let τ = τ∗(SA,SB). Then we can show that

S≥τ
A ∪ S≥τ

B = (SA ∪ SB)≥τ = (A≥τ ∪ B≥τ ) = (A ∪ B)≥τ ,

that is: “filtering” SA and SB according to the largest threshold τ = τ∗(SA,SB)
and taking the union of these filtered samples we get a random sample of A∪B.
The filtering trick can also be used to produce a random sample of A + B from
random samples SA and SB , for A × B, etc. This allows us to prove our first
main result (its proof appears in the full version [7] of this paper).

Theorem 1. Let σ be any of the similarity measures: Jaccard, Sørensen-Dice,
containment coefficient, Kulczynski 2 (second Kulczynski coefficient) or correla-
tion coefficient. Let SA and SB be random samples of A and B such that SA =
A≥τSA and SB = B≥τSB , and let τ = τ∗(SA,SB) = max(τSA\SB

, τSB\SA
, τSA∩SB

).
Then σ̂ = σ(S≥τ

A ,S≥τ
B ) is an unbiased estimator of σ(A,B), that is,

E

{
σ(S≥τ

A ,S≥τ
B )

}
= σ(A,B).

Moreover,

V

{
σ(S≥τ

A ,S≥τ
B )

}
∼ σ(A,B) · (1 − σ(A,B)) · O

(

E

{
1

min(|SA|, |SB |)
})

,

which implies that V {σ̂} → 0 if Affirmative Sampling is used to draw the sam-
ples, since then E {1/min(|SA|, |SB |)} → 0, if |A|, |B| → ∞.

The same result holds for Simpson and Braun-Blanquet measures, provided
that we know which of |A| and |B| is smaller (larger). If the sizes of A and B are
unknown, we cannot assume that |SA| and |SB | have the same relation since these
sizes are, in general, random variables. If we put min(|SA|, |SB |) (max(|SA|, |SB |),
resp.) in the denominator of the Simpson estimator (Braun-Blanquet, resp.), we
will have a bias, albeit the experiments suggest it is not very significant (see
Sect. 4). The formal result, as well as a detailed discussion about the bias that
we get when not knowing the sizes of A and B, can be found in the full version
of the paper [7].
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Last, but not least, neither the cosine similarity nor Kulczynksi 1 fit into
the framework of Theorem 1. However, both can be written as functions of
other similarity measures for which we have unbiased estimators. Namely, for
the cosine similarity, we have cos(A,B) =

√
corr(A,B). For Kulczynksi 1 we

can write

K1(A,B) =
|A ∩ B|
|A�B| =

1
|A∪B|
|A∩B| − 1

=
J(A,B)

1 − J(A,B)
.

That is, these measures σ′ are such that σ′(A,B) = f(σ( A,B)) for a similar-
ity measure which can be estimated without bias: E

{
σ(S≥τ

A ,S≥τ
B )

}
= σ(A,B).

In general, given a random variable X, E {f(X)} = f(E {X}). However, if f is
a smooth function in (0, 1), that is, f ∈ C∞(0, 1), and the size of the samples
grows with the size of the sets then we will have3

E

{
σ′(S≥τ

A ,S≥τ
B )

}
= E

{
f(σ(S≥τ

A ,S≥τ
B )

}
∼f

(
E

{
σ(S≥τ

A ,S≥τ
B )

})

= f (σ(A,B)) = σ′(A,B).

We can therefore obtain asymptotically unbiased estimators for cosine and
Kulczynski 1 (first Kulczynski coefficient) using f(x) =

√
x and σ = corr for the

former, and f(x) = x/(1 − x) and σ = Jaccard for the latter. The proof that
E {f(X)} ∼ f(E {X}) under the appropriate hypotheses is given in [7].

The estimator for these similarity measures is only asymptotically unbiased,
and that’s because all the central moments of order r ≥ 2 of σ(A,B) tend to 0
as the size of the sets grows; however f or any of its derivatives might be very
large, in particular when σ(A,B) → 0 or σ(A,B) → 1, and then the bias can be
significant when the asymptotic regime hasn’t been reached yet.

The variance of σ′(S≥τ
A , fsB) = f(σ(S≥τ

A ,S≥τ
B )) can also be found using the

same technique that we have used to establish that the estimator is asymptot-
ically unbiased, by considering the Taylor series expansion of f2. It is easy to
show then that we have

V

{
σ′(S≥τ

A ,S≥τ
B )

}
=

1
2

d2

dx2
f2(x)

∣∣
∣∣
x=σ(A,B)

· V
{

σ(S≥τ
A ,S≥τ

B )
}

+ l.o.t.,

and since V

{
σ(S≥τ

A ,S≥τ
B )

}
→ 0 when min(|A|, |B|) → ∞, we know that the

variance V

{
σ′(S≥τ

A ,S≥τ
B )

}
→ 0 too (and at which rate). However, (f2(x))′′

might be very large (actually tend to ∞) for σ(A,B) → 1 or σ(A,B) → 0,
and then the variance of σ′(S≥τ

A ,S≥τ
B ) will be non-negligible in practical settings

when the similarity of the two sets is very close to 0 or to 1. For example,
for the cosine similarity we have f(x) =

√
x and (f2)′′ = 0 which entails a

very low variance of the estimator cos(S≥τ
A ,S≥τ

B ) even if the similarity of the
two sets is close to 0 or to 1. However, for the first Kulczynski coefficient, we
have f(x) = x/(1 − x) giving (f2)′′ = (4x + 2)/(1 − x)4. Hence, when the
3 an ∼ bn means that limn→∞ an/bn = 1.
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similarity J(A,B) of the two sets is very close to 1 we have K1(A,B) → ∞
and V

{
K1(S

≥τ
A ,S≥τ

B )
}

∼ 3
(1−J(A,B))3 ·O (1/ (k ln((|A| ∪ |B|)/k))), which will be

quite large unless |A| ∪ |B| is really huge. This phenomenon shows clearly in the
plot Fig. 1f given in next section.

4 Experimental Results

We have conducted a small experimental study with the aim to show repre-
sentative examples of the good match between our theoretical findings and the
estimates obtained in practice.

Due to the lack of space, we will report here only one experiment in which
we work with two fixed sets A = {1, . . . , m} and B = {r, . . . , r+n−1}, for some
r ≤ m + 1. Changing the value of r the intersection |A ∩ B| will run from 0 (if
r = m+1) to min(m,n) (if r = 1). In particular, we have chosen |A| = m = 1000
and |B| = n = 1500. We apply the sampling algorithm T = 10 times on each
set, with a different randomly chosen hash function each time, thus effectively
producing T different estimates of the similarity σ(A,B). The plots in Fig. 1
show the true similarity (σ(A,B), red line), the estimates (blue dots) and the
standard deviation in the T observations (length of the blue bars), as the size
of the intersection varies from 0 to min(m,n) = 1000 for some of the similarity
measures studied in this paper.

The second experiment, reported in [7], studies how the quality of the esti-
mates impact the application using them, in particular, we have studied how the
clusterings produced by k-means change when we use estimates of the similarities
instead of the real similarities.

Fig. 1. Empirical estimates of several similarity measures
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5 Final Remarks

We show in this paper that many similarity measures between sets can be accu-
rately estimated, going further beyond Broder’s results [1] on the Jaccard and
containment indices. One fundamental ingredient for (asymptotically) unbiased
estimation with a high degree of accuracy is the use of variable-size sampling.
Using Affirmative Sampling, the (expected) size of the samples increases with
the size of the sets, and the standard relative error in the estimations goes to
0 [6].

Another line of research that we are already working on is the estimation
of similarity measures between objects other than sets. For example, multi-
sets, sequences, . . . . A notable example is partitions (clusterings). For instance,
instead of examining all the

(
N
2

)
pair of objects to compute the Rand index

(a measure of similarity, see for instance, [5]) of two clusterings of a set of N
objects, we can draw two random samples S and S′, both containing � N ele-
ments, form all ordered pairs combining distinct elements from S and S′, and
estimate the Rand index from those. It is straightforward to show that this is
an unbiased estimate of the true Rand index using our techniques, and we think
that they can be used to show the same for many other similarity measures
between clusterings.
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