
An Alternating Optimization Scheme
for Binary Sketches for Cosine Similarity

Search

Erik Thordsen(B) and Erich Schubert

TU Dortmund University, Otto-Hahn-Straße 14, 44227 Dortmund, Germany

erik.thordsen@tu-dortmund.de

Abstract. Searching for similar objects in intrinsically high-
dimensional data sets is a challenging task. Sketches have been proposed
for faster similarity search using linear scans. Binary sketches are one
such approach to find a good mapping from the original data space to
bit strings of a fixed length. These bit strings can be compared efficiently
using only few XOR and bit count operations, replacing costly similar-
ity computations with an inexpensive approximation. We propose a new
scheme to initialize and improve binary sketches for similarity search on
the unit sphere, i.e., for cosine similarity. Our optimization iteratively
improves the quality of the sketches with a form of orthogonalization.
We provide empirical evidence that the quality of the sketches has a
peak beyond which it is not correlated to neither bit independence nor
bit balance, which contradicts a previous hypothesis in the literature.
Regularization in the form of noise added to the training data can turn
the peak into a plateau and applying the optimization in a stochastic
fashion, i.e., training on smaller subsets of the data, allows for rapid
initialization.

1 Introduction

Similarity search in large and high-dimensional data sets poses two major prob-
lems. Firstly, due to the high intrinsic dimensionality, indexing approaches are
difficult and for too many dimensions degenerate to the case of a linear search in
the Euclidean case as per the Nearest Neighbor Indexing Theorem [17]. Secondly,
linear search is almost infeasible for many applications on very large data sets,
where many such searches are necessary. In dense Euclidean space, to further
complicate the issue, every distance or similarity computation is increasingly
costly as the number of representation dimensions grows. Yet, when allowing for
approximate results, i.e., not always returning correct neighbors, some of these
problems can be lessened. Locality-sensitive hashing (LSH) [5] and sketching are
two techniques for approximate search. LSH puts similar items into the same
“hash buckets” with high probability, allowing to filter out vast parts of the
data set based on comparably cheap hash functions. Alternatively, the bucket
assignments can be used as features in a thus dimensionally reduced data set.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
O. Pedreira and V. Estivill-Castro (Eds.): SISAP 2023, LNCS 14289, pp. 41–55, 2023.
https://doi.org/10.1007/978-3-031-46994-7_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-46994-7_4&domain=pdf
http://orcid.org/0000-0003-1639-3534
http://orcid.org/0000-0001-9143-4880
https://doi.org/10.1007/978-3-031-46994-7_4

42 E. Thordsen and E. Schubert

Sketching is a general technique for compressing data by mapping each sample
onto a smaller representation like bit strings while ideally approximating certain
properties by proxy, such as similarity or distance. These compressed represen-
tations can be used in a classical index or to reduce the linear search cost.

In this paper we consider similarity search using cosine similarity, although
the algorithm potentially extends to inner product similarity, and we propose
methods for binary sketching. Binary sketching can be seen as a special case
of both sketching and LSH where each “hash function” has only two buckets.
The resulting representation is a bit string for each sample. This representation
is interesting because distances of bit strings can be computed efficiently using
fast CPU instructions like popcount. To obtain such binary sketches, simple
geometric expressions have been used in the literature where a 1 is assigned if a
sample is inside a specific volume and a 0 otherwise (occasionally also −1 [1]).
The volumes used as these “hash functions” can be hyperballs, hypercubes, half-
spaces, or simple combinations (intersection or difference) thereof [11]. When
these volumes are scaled or located such that approximately half of the data
set is assigned a 1, the volumes and corresponding bits are called “balanced”,
otherwise “unbalanced”. Balanced bits have been assumed to produce bit strings
providing better recall values for approximate search whilst also leading to bit-
strings of higher intrinsical dimension [12]. In the literature, the typical approach
to balance bit assignments generated from half-spaces/hyperplanes is to add an
affine bias such that exactly half the samples are assigned a 1. Yet, in the context
of cosine similarity search, using half-spaces induced by non-affine hyperplanes
are a natural choice and we limit this paper on non-affine hyperplanes.

Segmenting the unit sphere into cells with non-affine hyperplanes has a long
history in the literature. Already in the 19th century, Schläfli derived the precise
number of cells on the unit sphere C(n, d) induced by n random hyperplanes
in d dimensions in general position, i.e., oriented such that every intersection k
hyperplanes is k-codimensional. The formula with proof and further details is
given in [15, p. 299] as

C(n, d) = 2
d−1∑

k=0

(
n − 1

k

)
(1)

Whenever d ≥ n the number of cells equals 2n and when 2d ≥ n then there are
at least 2n−1 cells. Since the number of cells only increases for larger n, we can
in any other case give a lower bound of 22d−1 cells. In any case, the number of
cells is likely much larger than the number of samples in high dimensional data
sets and with a number of hyperplanes proportional to d.

Accordingly, when intending to use non-affine hyperplane tessellation (occa-
sionally denoted as conical tessellation [15]) for binary sketching, we can expect
(almost) no identical bit vectors in practical settings. The goal, thus, is rather to
find hyperplanes, such that the Hamming distance on bit strings is correlated to
the distance on the hypersphere – at least for “small” distances as we are only
interested in finding the nearest neighbors. Entirely random hyperplanes – origi-
nally proposed for cosine similarity search by Charikar [3] – are (almost) optimal
if the data is uniformly distributed [13]. But on non-uniformly distributed, i.e.,

Alternating Optimization for Binary Sketches for Cosine Similarity 43

clustered or otherwise structured data, they can lead to a suboptimal distribution
of cells. The resulting high pairwise Pearson correlation of bits (bit correlation)
has been observed to lead to decreased filtering quality when selecting candidates
for nearest-neighbor search [11], where bit correlation, bit balance, etc., are eval-
uated on the columns of the |X| ×B matrix of bit strings of length B. Yet, only
little research has been done on how to find a good set of hyperplanes, such that
the bit correlation is minimal – at least for the case of cosine similarity search.
Balu et al. [1] propose the use of geometrically orthogonal hyperplanes for which
bits are greedily flipped to improve the correlation of samples with their “recon-
struction” (sum of normal vectors where bit is 1 minus sum of normal vectors
where bit is 0). This slightly accounts for the data distribution but is neither
a proper optimization, nor does it work when all bit strings are approximately
equal. It is also constrained to the bit string length equaling the data dimension.
Mic et al. [11] introduced an algorithm that oversamples the number of required
hyperplanes and discards all but a well-performing subset using a clique-based
approximation algorithm.

In this paper, we intend to fill this gap by providing a fast initialization algo-
rithm that iteratively adds the best hyperplane from a set of candidate hyper-
planes and an alternating optimization algorithm that iteratively minimizes the
maximum (or mean) pairwise bit similarity – a different yet similar measure
to bit correlation. The algorithm does not immediately enforce bit balance yet
empirically increases it. Not using an affine bias eliminates a degree of freedom
for the hyperplanes, whereby it suffices to rotate the hyperplanes around the ori-
gin. The iterative process allows for budgeted training, a dynamic data set, and
varying bit string lengths. The update step can be used in multiple “flavors”,
since either a single or multiple hyperplanes can be updated in each iteration
based on the most similar or all other hyperplanes. The sole drawback is that
by orthogonalizing all bits (in bit assignments, not geometrically), we increase
the intrinsic dimensionality of the representation, making them more difficult to
index, yet, the lower length necessary for a similar recall alleviates this.

In Sect. 2 we introduce the alternating optimization algorithm. Section 3 then
focuses on our initialization, which is optional to the algorithm but allows for
shorter training times. This section also includes a visual example of the initial-
ization and the optimization algorithm. In Sect. 4 we provide empirical results
based on a large real world data set. Lastly we close in Sect. 5 with a summary
of the paper and an outlook on potential expansions of this approach.

2 Alternating Optimization of Binary Sketches

The alternating optimization algorithm introduced here is called “Hyperplane-
based Iteratively Optimized Binarization” (HIOB). In each iteration, we update
one or multiple hyperplanes – represented by their normal vectors – by rotat-
ing them such that their bit similarity with other hyperplanes decreases. For
a pair of hyperplanes, we aim to equalize the number of samples assigned 00,
01, 10, and 11. By computing the number of samples having the same or oppo-
site bits, we obtain an approximation of the “sample density per radian” and

44 E. Thordsen and E. Schubert

can compute an ideal angle to rotate one of the two hyperplanes. For that, we
assume that the distribution in each of these four segments is approximately
uniform. Instead of immediately rotating one of the normal vectors, we compute
the tangent of the rotation angle, which yields an additive displacement vector
in the tangent hyperplane. Using displacement vectors in the tangent hyper-
plane allows to aggregate multiple updates in one step, i.e., to rotate a single
hyperplane towards or away from multiple other hyperplanes at once, similar to
the mean gradient in a gradient-descent algorithm. The idea of this process is
displayed in Fig. 1.

Fig. 1. An example to motivate the update step. On uniform data, each of the dif-
ferently colored areas is of approximately the same size. From the difference in area
(obtained from the angle between the normal vectors), we can derive the optimal angu-
lar change. By calculating the angular change as an additive vector in the tangent space,
as displayed in (a), we allow aggregating multiple changes in one step. Afterwards the
bit assignments corresponding to the hyperplanes are independent, i.e., equal in size,
as displayed in (b).

Let p and q be two normal vectors and let X ⊂ R
d be a set of samples with

|X| = N . We denote the number of samples assigned 1 by both hyperplanes as

11p,q := |{x ∈ X | 〈x, p〉 ≥ 0 ∧ 〈x, q〉 ≥ 0}| (2)

We similarly denote the numbers of samples for the other three possible assign-
ments with 01p,q,10p,q, and 00p,q. We obtain the fractions of samples with equal
and different bits for p and q with

fp=q :=
00p,q + 11p,q

N
and fp�=q := 1 − fp=q (3)

with which we can compute the angular change

αp,q :=
(fp�=q − fp=q)π

2
(4)

The displacement vector for p using q is then defined as

δp(q, s) := tan (s · αp,q)
q − p〈p, q〉

‖q − p〈p, q〉‖ (5)

Alternating Optimization for Binary Sketches for Cosine Similarity 45

where s ∈ (0, 1] is a scaling factor to control the speed of this process, resembling
a learning rate. On uniformly distributed infinite data, the definition of δp(q, 1)
is optimal, yet for non-uniformly distributed data, most of the samples may be
clustered in a narrow cone. Were we to use δp(q, 1), we would likely skip over
all samples in each update step and simply flip the bits on the assignments
for p. To accommodate for that case and help convergence, the scaling factor
can be reduced to a smaller value like 0.1. Choosing a smaller s monotonously
improves the optimization quality, i.e., pairwise bit independence, but increases
the computational cost, since the optimum is only achieved asymptotically. If
the hyperplane for p should be updated using m other hyperplanes, we advise
to change the scale to s/m and sum the displacement vectors, which results in
the average displacement for the set of hyperplanes.

Our optimization aims at decreasing the maximum and average bit similarity
which we define as

Sp,q := 2
∣∣fp=q − 1

2

∣∣ (6)

While fp=q is essentially the Simple Matching Coefficient [18], Sp,q is a sort of
maximum over fp=q and fp�=q. For equal and inverted bit strings, the bit similar-
ity is 1 and for independent balanced bit vectors it is 0. It is a fast approximation
of the absolute Pearson correlation that only requires a single Hamming distance
on the bit strings. The more balanced the bits are, the closer the two definitions
align and the target of having 50% equal bits in each pair of bit strings is intended
to push the bit strings towards balanced without forcing it.

The resulting algorithm is rather simple. In each iteration, we decide which
hyperplanes to update and what hyperplanes to use for the update. We then
compute all necessary displacement vectors, add them to the normal vectors
and normalize to unit length. We then have to recompute the bit assignments
for the updated vectors. To improve the run time, we propose to use a stochastic
approach by only considering a subsample of the full data set when comparing
bit strings and exchanging that subsample at fixed intervals similar to stochastic
gradient descent. We observed that the overall quality does not suffer from this
approach, and it makes the run time of the optimization algorithm indepen-
dent of the data set size. To create the random subsets, we used permutations
generated from multiple random chained modulo cycles on {0, . . . , 2n−1} with
cycle-walking [2]. In that way, all samples are used for training once before
reusing some. Additionally, storing the pairwise bit similarities in a matrix and
only updating values affected by an update further speeds up the algorithm.

In our experiments, two “modes of operation” proved to be very useful: The
first mode is to find the two most similar hyperplanes (the “worst offenders”) and
update one of them – chosen at random – using the other with a scale appropriate
for the dataset (0.1 turned out to be very useful in all cases, but lower values
should be used when the average bit similarity does not decrease). The random
choice between the two hyperplanes avoids oscillating between two states if they
are selected repeatedly. The second mode is to update all hyperplanes using all
other hyperplanes at once. This mode requires to compute two displacement
vectors for each pair of hyperplanes, which is why this method is rather costly.

46 E. Thordsen and E. Schubert

Yet, even a small number of iterations (<10) produced a good starting point
for further optimization even when initializing with uniformly random normal
vectors. This second mode of operation, however, struggles to converge on a
good final result, since at some point single bit assignments are changed. The
discrete steps tend to be comparatively large and affect other bit correlations
too much. We, hence, propose to use the first mode of operations until a desired
result is achieved. Due to the problems with discrete steps in the pairwise bit
similarity, other modes of operations investigated (e.g., always updating the
“worst” hyperplane using all other hyperplanes) performed worse than the first
mode. Pseudocodes for the two proposed modes are provided in Algorithm 1 and
Algorithm 2.

This optimization process iteratively but not necessarily monotonously
reduces pairwise bit similarity, bit correlation and balances most bit assignments,
i.e., results in approximately 50% samples assigned 1 for most hyperplanes. Yet,
the quality in terms of indexing as, e.g., measured by the k@n-recall using the
Hamming distance as a proxy for the cosine similarity, is only improved up
to some point, after which further iterations begin to reduce the recall again.
Empirical evidence for these claims are discussed in Sect. 4.

3 RANSAC-Style Initialization

As discussed in Sect. 1, hyperplanes generated from normal vectors sampled uni-
formly at random from the unit hypersphere do not account for the data distri-
bution. Whilst we could run our optimization algorithm starting with entirely

Alternating Optimization for Binary Sketches for Cosine Similarity 47

random normal vectors, that unnecessarily increases the number of iterations.
We instead propose an initialization that is inspired by the random sample con-
sensus, RANSAC [4]. We iteratively choose the next normal vector from a set of
P random pairs sampled uniformly at random from the data. For each of these
pairs we take the normalized difference as normal vector p and compute the
corresponding bit assignments. Afterwards we consider the bit similarity Sp,q to
all previously chosen normal vectors q. From the normal vectors corresponding
to all of these pairs, we choose the one with the smallest maximum bit similarity
to any previous hyperplane. To further speed up this process, we do not com-
pute the initialization on all samples but rather on a subsample of much smaller
size. A pseudocode of this algorithm is displayed in Algorithm 3. Even for large
data sets (|X| > 1M), parameters such as M = 2000 and P = 200 sufficed to
get decent initializations in our experiments, rendering the initialization mostly
invariant of data set size as well.

Figure 2 shows examples of the resulting hyperplanes of an entirely random
state, of the initialization proposed here, and of an optimized state. The planes
are represented by the projected great circles that are obtained by intersecting
the planes with the unit sphere. These great circles are the dividing line between
the subspaces assigned 0 and 1. The entirely random planes as proposed by
Charikar [3] do not consider the data distribution and, hence, do not focus
on splitting the clusters apart and often partition empty space. The initialized
planes clearly better divide each of the clusters, yet, e.g., also by chance have one
of the planes mimic an “equator” which is mostly meaningless. The optimized
state rotated this plane to help divide the lower left cluster and the division of
the clusters appears more homogeneous. To support this intuition, Fig. 2 shows
the distribution of cell sizes and also the mean cell size for each of these plane
sets. The optimized state has on average the smallest number of samples per cell
on the unit sphere which should lead to a better quality in terms of indexing.

48 E. Thordsen and E. Schubert

Fig. 2. Cells created by 16 (a) random, (b) RANSAC-style initialized, and (c) alter-
nating optimization trained hyperplanes for the displayed data set of 2000 samples on
the three-dimensional unit sphere projected with Natural Earth projection [7]. The
distribution of samples per cell is displayed in (d).

4 Evaluation

In our evaluation, we inspect how the optimization algorithm (HIOB) affects
the bit correlation/similarity, the bit balance, and the quality in terms of the
k@n-recall when using the Hamming distance on the bit strings as a stand-in
for the cosine similarity. For that, we implemented the algorithm in Rust and
added Python-bindings which can be accessed on GitHub.1 The implementation
uses arrays to store the pairwise bit similarity and current bit assignments, and
is otherwise a straightforward implementation of Algorithms 1, 2 and 3. Aside
from HIOB, we added functions to query objects from a data set using the bina-
rization and a brute-force approach. The general idea of the query functions is
to select a set of candidates using the nearest neighbors as per Hamming dis-
tance on the bit strings and refine the candidates to the number of required
neighbors by evaluating the cosine similarity on all candidates. We further eval-
uated how filtering the candidates with a different set of longer bit strings affects
the query time. We evaluated our implementation on subsets of the LAION5B
data set [16] provided by the SISAP 2023 LAION2B challenge [19].2 The data
sets contain normalized vectors with 768 dimensions – embeddings from a deep
neural network for images and texts – with varying sample sizes of 100K, 300K,
10M, 30M, and 100M together with a query set of 10K vectors with precomputed
100-nearest neighbors for validation.

1 https://github.com/eth42/hiob.
2 https://sisap-challenges.github.io/datasets/.

https://github.com/eth42/hiob
https://sisap-challenges.github.io/datasets/

Alternating Optimization for Binary Sketches for Cosine Similarity 49

Running HIOB with RANSAC-style initialization and scale s = 0.1 for up to
50K iterations of Algorithm 1 (our empirical optimum in terms of k@n-recall)
on a 32-core machine took less than 10 min even for the largest subset of 100M
vectors and bit string lengths of up to 2048. We used the stochastic approach
with 10K samples and 128 iterations per batch. These values were not tuned
and are not sensitive based on our experience.

Fig. 3. Bit similarity, correlation and balance over HIOB iterations starting from a
RANSAC-style initialization on the 10M subset and for 256 bit sketches.

Figure 3 displays how the bit similarity, bit correlation, and bit balance (rang-
ing from 0 for pure to 1 for half-0-half-1) change over the number of iterations.
As can be seen from the plot, HIOB decreased bit similarity and correlation
and increased bit balance up to some local optimum, at which small discrete
steps produce a bit of noise. The resulting increased independence of bits does
not only lead to more homogeneous cells on the hypersphere, w.r.t. the data
distribution, but should in theory also increase the intrinsic dimensionality of
the bit strings. We evaluated the local intrinsic dimensionality (LID) using the
ABID estimator [20,21] on the 200-nearest neighbor bit strings of the bit strings
generated from the query set. The resulting mean LID-estimates are displayed
in Fig. 4. It is unclear why the mean ABID estimates drop for the 10M subset,
yet the change in absolute value is miniscule compared to the increase on the
100K subset. We interpret these results as the indexability of bit strings on the
100K subset decreasing while remaining almost unchanged for the 10M subset,
perhaps due to an already high-LID initialization. Different tested indexes like
those implemented in Hnswlib [9] and FAISS [8] did not execute the queries
faster for comparable recall than brute-force on the bit strings, which would
suggest a large intrinsic dimensionality.

50 E. Thordsen and E. Schubert

Fig. 4. Development of the local intrinsic dimensionality around the bit strings corre-
sponding to the queries over iterations of HIOB. The low value of ≤ 6 compared to the
length of the bit strings is due to the sparsity of the space and the discrete distribution
of bit strings. It is an artefact of the estimator. The relative size of estimates should
be indicative of spatial complexity nonetheless.

Fig. 5. The 10@50-recall and the number of candidates required for a 10@n-recall of
90% over iterations of HIOB on the 10M subset. The best results are achieved around
50K iterations (approximately 30K for the 100K subset not visualized here), which
contradicts the hypothesis that better bit balance and bit independence correlate with
filtering quality of binary sketches.

Whilst the results so far were within the expected spectrum, we observed
that the k@n-recall decreases when running HIOB too long. As shown in Fig. 5,
the k@n-recall decreased beyond roughly 50K iterations (30K iterations for
100K subset, plot omitted) even though bit balance increases and bit correlation
decreases. This result contradicts the previous hypothesis in the literature, that
the achievable recall during indexing with binary sketches is positively affected
by larger bit balance and lower bit correlation [12]. We assume that the shape of
the cells on the hypersphere is an important and so far neglected factor, although
we do not have an efficient test to verify or contradict that hypothesis. In an
attempt to regularize HIOB on the shape of cells, we added normally distributed
random noise to each subsample drawn in the stochastic approach. We hoped
it would force the hyperplanes to be less coaligned and consequentially produce
more “compact” cells. Although the von Mises-Fisher distribution would be a
better choice for spherical data, the normal distribution with subsequent nor-
malization is isotropic on the sphere as well and much faster to compute. Adding
full-dimensional univariate normal noise with a varying standard deviation σ led
to the average angle between hyperplanes approaching π/2 for increased σ. In
principle this should provide more homogeneous cells, yet, the data distribution

Alternating Optimization for Binary Sketches for Cosine Similarity 51

is less well represented. Figure 6 displays how the added noise affects the recall on
the produced bit strings. For a small amount of noise, the recall is improved and
the peak in recall is “stabilized” such that it does not decrease after additional
iterations. Adding too much noise rapidly decreases the recall since the data dis-
tribution is not represented by the hyperplanes well enough. The optimal choice
of standard deviation in terms of recall depends on both the number of samples
and the number of hyperplanes as can be seen in Fig. 7. We could, however, not
find any tangible relation between the data and the optimal amount of noise,
yet. The optimal amount of noise must for now be evaluated experimentally.
Further insights in the topic or a better regularization are required.

Fig. 6. Change in recall over varying iterations and standard deviation of the noise
added to stochastic HIOB subsamples for 256 bits. A small amount of noise improves
the recall and stabilizes the peak in recall.

Fig. 7. Change in recall when using varying amounts of noise in the stochastic HIOB
approach. All values were computed after 300K iterations. The ideal noise depends on
both numbers of bits and samples.

Fig. 8. Dependence of the 10@56- and 10@447-recall over varying data set size. Above
10M samples, the recall is almost unaffected by additional data.

52 E. Thordsen and E. Schubert

We further explore the scalability of the approach. When considering dif-
ferent subsets of the LAION5B data set, the k@n-recall of optimized hyper-
planes changed quite little over varying data set sizes as displayed in Fig. 8. This
reinforces the claim that HIOB properly fits the hyperplanes to the data dis-
tribution. Aside from that, we evaluated how many candidates are necessary to
achieve a certain recall for k-neighbor search and observed, that the recall-over-n
curves approximately followed the model r(n) = a/

(
1 +

(
n
b

)c) with the inverse
n(r) = b c

√
a
r − 1. Using least-squares to fit the model to observed values from

a grid search over comparably small n values, good values of n can be extrapo-
lated. Figure 9 displays the extrapolation and the required n for a 10@n-recall of
90%. The approximation error of the recall over n curves were negligible (RMSE
below 10−3). The number of bits B affected the required number of candidates n
somewhere between n ∝ 1/ log(B) and n ∝ 1/B and the data set size did not
affect the required number of samples much beyond 10M samples. Even though
the k@n-recall values for a fixed number of candidates over varying data set
sizes were not too affected, not loosing any recall at all can nonetheless require
substantially larger candidate sets. The large values of n in the n-over-|X| plot
for 64 bits at |X| ∈ {10M, 30M} are likely due to errors in the extrapolation.
In terms of k@k-recall, HIOB significantly outperformed the baseline (and only
other entry) in the SISAP challenge [19] task B by Santoyo et al. [14], by achiev-
ing comparable recall while using only 192 bits where the baseline used 1024 bits.

The computational cost of the linear search on the bit strings is linear in
the size of the data set and can not compete with more involved indexes like
HNSW [9]. Figure 10 displays the queries per second over recall on the 100K,
300K, and 10M subsets of LAION5B. The HNSW implementation in Hnswlib [9]
requires – with default hyperparameters – only less than a second (Queries per

Fig. 9. Example of the extrapolated 10@n-recall over n for the 100M subset and plots
generated from the extrapolated values for n over number of bits and data set size such
that a constant 10@n-recall of 90% is achieved.

Alternating Optimization for Binary Sketches for Cosine Similarity 53

Fig. 10. Queries per second using brute-force search on the HIOB optimized bit strings
over 10@n-recall where n is the varied variable for each trace. 10 000 queries were
performed, so, e.g., 200 queries per second correspond to 50 s.

second >104) for a recall beyond 90%, which is at best comparable to the brute-
force performance on up to 100K samples. Yet, the build times of HNSW can be
in the hours and increase with data set size. Considering the results published by
the SISAP challenge [19], stochastic HIOB sketches can be optimized and up to
millions of linear search queries can be evaluated before the fastest approaches
(in terms of query time only) have been built. The linear search query time on
HIOB can further outperform some of the submitted indices, although that is
likely in part due to a better optimized implementation. If a decently fast index
during querying with a rapid build time and comparably low memory footprint
is desired, stochastic HIOB can be preferred.

5 Conclusion

In this paper we introduced an optimization algorithm to improve bit indepen-
dence and bit balance for binary sketches on the unit sphere. We gave empirical
evidence that the algorithm improves both of these values and that the algo-
rithm is able to improve the filtering quality of binary sketches in the context of
similarity search. Our experiments further highlight that bit independence and
balance are not entirely correlated to filtering quality, which diminishes if the
optimization iterates too long. Adding small amounts of noise allows to avoid
decreasing quality when training for longer, yet, the optimal parameterization
of the noise remains an open problem. This observation contradicts a previous
hypothesis in the literature [12]. Using a stochastic approach to the optimiza-
tion and a newly introduced initialization allows for a fast optimization of the
binary sketches, with running time invariant to data set size. Yet, brute-force
querying with these optimized sketches is not capable of outperforming state-
of-the-art approaches like HNSW [9] and the increased bit independence makes
the binarized data difficult to index.

54 E. Thordsen and E. Schubert

In regards to future work, further insight on how to regularize hyperplane
tessellation for similarity search is required and resulting regularizations could be
added to HIOB. Further, HIOB can most likely be sped-up by using a heuristic
to estimate whether or not bits can be flipped. The angle to each hyperplane
can be stored and decreased by the total change in angle after each update to
maintain bounds, similar to the heuristic developed by Hamerly for the k-Means
algorithm [6]. The optimization could automatically be stopped when a peak in
some quality measure, like those proposed by Mic et al. [10], is achieved. Lastly,
to extend the approach towards Euclidean distances, affine hyperplanes and an
appropriately modified update routine could be introduced like rotating around
the intersection point of hyperplanes in the plane spun by their normal vectors.

References

1. Balu, R., Furon, T., Jégou, H.: Beyond “project and sign” for cosine estimation
with binary codes. In: IEEE International Conference Acoustics, Speech and Signal
Processing, ICASSP, pp. 6884–6888 (2014). https://doi.org/10.1109/ICASSP.2014.
6854934

2. Black, J., Rogaway, P.: Ciphers with arbitrary finite domains. In: Topics in Cryp-
tology, CT-RSA, pp. 114–130 (2002). https://doi.org/10.1007/3-540-45760-7 9

3. Charikar, M.: Similarity estimation techniques from rounding algorithms. In:
Symposium Theory of Computing, pp. 380–388 (2002). https://doi.org/10.1145/
509907.509965

4. Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model
fitting with applications to image analysis and automated cartography. Commun.
ACM 24(6), 381–395 (1981). https://doi.org/10.1145/358669.358692

5. Gionis, A., Indyk, P., Motwani, R.: Similarity search in high dimensions via hash-
ing. In: Very Large Data Bases, VLDB, pp. 518–529 (1999). https://doi.org/10.
5555/645925.671516

6. Hamerly, G.: Making k-means even faster. In: Proceedings of SIAM Data Mining,
SDM, pp. 130–140 (2010). https://doi.org/10.1137/1.9781611972801.12

7. Jenny, B., Patterson, T., Hurni, L.: Flex projector-interactive software for designing
world map projections. Cartographic Perspect. 59, 12–27 (2008). https://doi.org/
10.14714/CP59.245

8. Johnson, J., Douze, M., Jégou, H.: Billion-scale similarity search with GPUs. IEEE
Trans. Big Data 7(3), 535–547 (2019). https://doi.org/10.1109/TBDATA.2019.
2921572

9. Malkov, Y.A., Yashunin, D.A.: Efficient and robust approximate nearest neigh-
bor search using hierarchical navigable small world graphs. IEEE Trans. Pattern
Anal. Mach. Intell. 42(4), 824–836 (2018). https://doi.org/10.1109/TPAMI.2018.
2889473

10. Mic, V., Novak, D., Vadicamo, L., Zezula, P.: Selecting sketches for similarity
search. In: Advance Databases and Information Systems, ADBIS, pp. 127–141
(2018). https://doi.org/10.1007/978-3-319-98398-1 9

11. Mic, V., Novak, D., Zezula, P.: Improving sketches for similarity search. In: Pro-
ceedings of MEMICS, pp. 130–140 (2015)

12. Mic, V., Novak, D., Zezula, P.: Sketches with unbalanced bits for similarity search.
In: Similarity Search and Applications, SISAP, pp. 53–63 (2017). https://doi.org/
10.1007/978-3-319-68474-1 4

https://doi.org/10.1109/ICASSP.2014.6854934
https://doi.org/10.1109/ICASSP.2014.6854934
https://doi.org/10.1007/3-540-45760-7_9
https://doi.org/10.1145/509907.509965
https://doi.org/10.1145/509907.509965
https://doi.org/10.1145/358669.358692
https://doi.org/10.5555/645925.671516
https://doi.org/10.5555/645925.671516
https://doi.org/10.1137/1.9781611972801.12
https://doi.org/10.14714/CP59.245
https://doi.org/10.14714/CP59.245
https://doi.org/10.1109/TBDATA.2019.2921572
https://doi.org/10.1109/TBDATA.2019.2921572
https://doi.org/10.1109/TPAMI.2018.2889473
https://doi.org/10.1109/TPAMI.2018.2889473
https://doi.org/10.1007/978-3-319-98398-1_9
https://doi.org/10.1007/978-3-319-68474-1_4
https://doi.org/10.1007/978-3-319-68474-1_4

Alternating Optimization for Binary Sketches for Cosine Similarity 55

13. Plan, Y., Vershynin, R.: Dimension reduction by random hyperplane tessellations.
Discret. Comput. Geom. 51(2), 438–461 (2014). https://doi.org/10.1007/s00454-
013-9561-6

14. Santoyo, F., Chávez, E., Tellez, E.S.: A compressed index for hamming distances.
In: Similarity Search and Applications, SISAP, pp. 113–126 (2014). https://doi.
org/10.1007/978-3-319-11988-5 11

15. Schneider, R., Weil, W.: Stochastic and integral geometry (2008). https://doi.org/
10.1007/978-3-540-78859-1

16. Schuhmann, C., et al.: LAION-5B: an open large-scale dataset for training next
generation image-text models. In: NeurIPS (2022)

17. Shaft, U., Ramakrishnan, R.: Theory of nearest neighbors indexability. ACM Trans.
Database Syst. 31(3), 814–838 (2006). https://doi.org/10.1145/1166074.1166077

18. Sokal, R.R., Michener, C.D.: A statiscal method for evaluating systematic relation-
ships. Univ. Kansas Sci. Bull. 38(22), 1409–1438 (1958)

19. Tellez, E.S., Aumüller, M., Chavez, E.: Overview of the SISAP 2023 indexing
challenges. In: Pedreira, O., Estivill-Castro, V. (eds.) SISAP 2023, LNCS, vol.
14289, pp. 255–264. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-
46994-7 21

20. Thordsen, E., Schubert, E.: ABID: angle based intrinsic dimensionality. In: Sim-
ilarity Search and Applications, SISAP, pp. 218–232 (2020). https://doi.org/10.
1007/978-3-030-60936-8 17

21. Thordsen, E., Schubert, E.: ABID: angle based intrinsic dimensionality - theory and
analysis. Inf. Syst. 108, 101989 (2022). https://doi.org/10.1016/j.is.2022.101989

https://doi.org/10.1007/s00454-013-9561-6
https://doi.org/10.1007/s00454-013-9561-6
https://doi.org/10.1007/978-3-319-11988-5_11
https://doi.org/10.1007/978-3-319-11988-5_11
https://doi.org/10.1007/978-3-540-78859-1
https://doi.org/10.1007/978-3-540-78859-1
https://doi.org/10.1145/1166074.1166077
https://doi.org/10.1007/978-3-031-46994-7_21
https://doi.org/10.1007/978-3-031-46994-7_21
https://doi.org/10.1007/978-3-030-60936-8_17
https://doi.org/10.1007/978-3-030-60936-8_17
https://doi.org/10.1016/j.is.2022.101989

	An Alternating Optimization Scheme for Binary Sketches for Cosine Similarity Search
	1 Introduction
	2 Alternating Optimization of Binary Sketches
	3 RANSAC-Style Initialization
	4 Evaluation
	5 Conclusion
	References

