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Abstract. In this paper, we delve into the Mutual k-Nearest Neighbor
Graph (mkNNG) and its significance in clustering and outlier detection.
We present a rigorous mathematical framework elucidating its applica-
tion and highlight its role in the success of various clustering algorithms.
Building on Brito et al.’s findings, which link the connected components
of the mkNNG to clusters under specific density bounds, we explore its
relevance in the context of a wide range of density functions.
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1 Introduction

Clustering demands a nuanced understanding of data and a varied toolset tai-
lored to each unique problem. Successfully clustering hinges on formalizing intu-
itions into clear theorems. We aim to develop a robust mathematical framework
for mkNNG clustering use and explain the success of algorithms that use this
principle.

Our literature review underscores the recurring emphasis on the mkNN con-
cept, and our study provides insights into its application in clustering.

This paper bridges intuition and mathematics, advancing clustering tech-
niques. We offer a robust exploration of the Mutual k-Nearest Neighbor Graph,
laying groundwork for improved clustering and outlier detection. The formaliza-
tion is covered in Sect. 3.

2 The mkNN Graph in Clustering

Gowda and Krishna were, to our knowledge, the first to propose using the mkNN
relationship for agglomerative clustering in [8]. Starting with k = 1, fine-grained
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clusters are created and merged with increasing k values until only one clus-
ter remains. This was later refined with probabilistic arguments in [5] under a
density hypothesis; a detailed discussion on this is deferred to Sect. 3.

The approach in [11] offers a unique mkNN relationship, where each point
connects to exactly k-neighbors, proceeding from closest to farther pairs. Once a
point connects to its allotted neighbors, it’s excluded from further links. Unlike
other mkNN methods, distant points could form a mutual kNN relationship. Due
to the necessity of computing, storing, and sorting distance pairs, this method
is super-quadratic in memory and storage. The clustering approach identifies
dense clusters first, claiming to detect clusters of varying densities.

In [2], the authors introduce CMUNE, emphasizing linkage based on mkNN.
Dense areas are identified by measuring common points in their k-nearest neigh-
bor neighborhoods. Seed points from these dense regions then connect unclus-
tered points, excluding those in sparse areas. Further refinements are discussed
in [1].

In [9], a regressor based on the mkNN relationship is introduced. For a given
query x and value of K, it outputs the expected value of values linked to the
Mutual K-nearest neighbors of x. If the mkNN result for x is empty, indicating
an outlier, the regressor doesn’t produce a value.

[17] details the construction of an mkNN graph, drawing parallels with ear-
lier works [5,8]. The aim is cluster detection via the graph’s connected compo-
nents. Spurious connections, possibly arising from noise or outliers, are pruned
by weighting the graph’s edges based on an affinity measure. Edges below a set
affinity threshold are discarded, and clusters are recognized from the graph’s
residual components.

In [14], a survey on using mkNN for cluster detection is presented. The
authors’ proposed algorithm hinges on two concepts: extending the mkNN rela-
tion to point groups and incorporating density considerations.

[1] unveils DenMune, a clustering algorithm leveraging mkNN to discern
centrality and density, as required in the Density Peak-like algorithm [13]. Points
are categorized into strong, weak, and noise points based on their reverse kNN
count (Rk

X(x)). The DenMune algorithm operates through a voting framework
where points garner votes via their membership in the kNN of other points. High-
vote recipients are tagged as dense or seed points, while noise points are excluded.
Post noise-point removal, the points segregate into dense (seeds) and low-density
(non-seeds). Clusters primarily form around seed points, with the low-density
points accommodated subsequently. Remaining weak points are then aligned to
the most suitable cluster. Remarkably, the authors use mkNN consistently for
both density estimation and membership assessment.

A salient feature of the literature review is the dual application of the mkNN

test: determining cluster membership and performing three-tier density estima-
tion (dense, weakly-dense, sparse) as illustrated in [1]. While some algorithms
appear intricate, they yield compelling experimental results. Our goal is to
present a theoretically sound understanding of these heuristics, introducing a
streamlined tool for clustering tasks.
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3 Data Model

We consider a N-sized D-dimensional dataset X = {x1, · · · , xN} from domain
Ω ⊆ RD. From the perspective of the continuous domain Ω, a statistical gen-
erative model defines the dataset X as a N-sized i.i.d sample of a probability
density function (pdf) fX : Ω → R+ with respect to the Lebesgue measure on
Ω. {xi}

N
i=1 is then one realization of a set of N independent random variables

{Xi}
N
i=1 identically distributed according to this pdf (Xi ∼ fX, i ∈ [[N]])
Let Ξ ⊆ Ω be the support of fX defined as the closure of the set where

fX is non-zero (Ξ = supp(fX) = {x ∈ Ω || fX(x) �= 0}). The fact that Ξ is not
connected indicates the presence of localized structures in the domain Ω such as
(continuous) clusters. (Continuous) clustering is therefore defined as the labeling
of connected components of the set Ξ. By (discrete) extension, given X as a
sample of Ξ, clustering is the decision for every pair (xi, xj) ∈ X × X whether
both data belong to the same connected component of Ξ or not (see Definition 3).

Assuming now that (Ω, d) is a metric space equipped with distance function
d : Ω × Ω → R, then neighborhood systems may be defined over X.

Definition 1 (Mutual k-nearest neighbor relationship). If xj ∈ Vk
X(xi)

and xi ∈ Vk
X(xj) then xi and xj are said to be mutual k-nearest neighbors.

Based on the mutual k-nearest neighbor relationship, one can then build the
non-directed mutual k-nearest neighbor (mkNN) graph Gk = (X,Ek) where data
X serves as nodes and an edge (xi, xj) ∈ Ek exists if xi and xj are mutual k-
nearest neighbors. In this paper, we wish to argue for the interest in exploiting
the mkNN graph and use data clustering as a natural application domain where
using the mkNN is beneficial.

Here, we are particularly interested in the connectivity of Gk given dataset
X.

Definition 2 (kD,N). Given a dataset X ⊂ Ω, kD,N is the smallest integer k

such Gk is connected.

Authors in [5] provide us with Theorem 1 bridging the continuous and discrete
domains.

Theorem 1 (rephrased from [5], Thm 2.1).
Let the i.i.d sample X = {x1, · · · , xN} ⊂ Ω ⊆ RD come from a distribution

P with support Ξ ⊆ Ω and density fX. Assume that Ξ is connected and grid
compatible, and that for constants a1 and a2, we have, on Ξ, 0 < a1 � fX(x) �
a2. Then, there exists a constant c such that, almost surely, kD,N � c log N, for
large enough N.

The proof of the theorem is detailed in [5]. Constants 0 < a1 � a2 make sure
that values of fX have finite non-zero extremes. Similarly, the grid compatibility
criterion makes sure that Ξ contains a (dominated) connected cover of cubes of
finite side length, each with a sufficient intersection with Ξ. Theorem 1 relates
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the connectivity of the mutual kNN graph (via kD,N) and the continuity (via
grid compatibility) of the local density (via constants a1 and a2 and “large
enough N”). According to this theorem, the mutual kNN graph is connected in
parts where the density of the dataset allows to estimate a support that is grid
compatible and where this density is bounded away from 0 and Infinity.

That is, the size k � kD,N to consider for Gk to be connected (and therefore
this discrete structure to represent faithfully the connected continuous domain)
is bounded by a sub-linear function of N. As the local density at xi may be
estimated by f̂X(xi) = k

vol(Vk
X)

, Theorem 1 states formally that as long as this
local estimated density is large enough, Gk remains connected. We will exploit
that interpretation to use the mkNN graph to perform data clustering. Since we
rely on the formal model given by Theorem 1, we give data clustering a formal
and simple definition.

Definition 3 (Data cluster). Given dataset X, data clusters are defined as
connected components of the mutual nearest neighbor graph Gk built on S, as
the result of the data filtering operation

Theorem 1 provides guarantees that data clusters defined as above asymptot-
ically represent the connected subsets of the support of the continuous density
fX. However, since no parametric model is used for fX, this definition accommo-
dates arbitrary distributions, i.e arbitrary clusters shapes and arrangements.

4 Data Analysis with the Mutual k-Nearest Neighbor
Graph

Theorem 1 formally relates the local estimated density of X to the mkNN graph
connectivity. This creates a natural link to clustering operations. Reversing the
argument, we state that parts of low estimated density represent potential fords
thru which spurious (weak) connections in the mkNN graph may appear. Hence
we propose to remove these spurious low-density parts matching the “bounded
away from 0 and Infinity” continuous counterpart argument. By construction, the
resulting data subset guarantees a minimal local density, which by Theorem 1
guarantees mkNN graph connectivity. Starting from dataset X, we propose a
generic clustering algorithm below.

Algorithm 1. Data clustering based on mkNN graph
1: procedure DataAnalysis(X, k)
2: Remove low density parts of the dataset X → subset S � Data filtering
3: Build Gk as mkNN graph over S � Structure analysis
4: Connected components of Gk represent the pieces of connected support for fX
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Data Filtering. Filtering low-density regions is a staple in the denoizing
domain. In many contexts, sparse regions within datasets are interpreted as low-
likelihood samples, which are typically smoothed over by MSE-based regression
models. However, in this study, our primary concern revolves around the density
fX, especially under the parameters delineated in Theorem 1 and subsequent
discussions.

From this perspective, the objective becomes highlighting areas where the
estimated density not only reaches a minimal threshold (a1) but also stands
as statistically reliable, backed by adequate local samples. Notably, due to the
intrinsic property

∫
Ω fX = 1, identifying “low-density” zones becomes a com-

parative exercise, relative to the entire dataset’s distribution. Such an approach
closely aligns with the objective of outlier detection; an outlier’s definition invari-
ably hinges on its relation to the surrounding data [4,10].

Given this, our preliminary strategy entails employing outlier detection for
data filtration, sidestepping traditional methods like KDE [15] which tends to
falter in sparsely populated datasets. It’s worth noting that contemporary den-
sity estimation techniques, such as generative normalizing flows [12], might find
applicability in this scenario.

From the input dataset X, the filtration process yields S. This step intrigu-
ingly presents a dual relationship with its successor. Even though filtering fre-
quently mandates a predefined k value, techniques spanning outlier detection to
density estimation can potentially help pinpoint an optimal k.

Complexity: The construction of a compressed cover tree to solve the kNN
exhibits a time complexity of O(cm(X)8c((X)2N log(N)), where cm and c rep-
resent expansion constants pertinent to the dataset. When tasked with deriving
the k nearest neighbor table for a novel point, q, the time complexity is set
at O(c(X ∪ q)2 log(k)[cm(X)10 log N + c(X ∪ q)k]). This infers that formulating
the k nearest neighbor table remains a sub-quadratic challenge. The detailed
analysis can be found in the recent PhD thesis [6]. With the N × k k-nearest
neighbor table established, the determination of whether the k-nearest neighbor
relationship is mutual or otherwise is achievable through a single table traversal,
bearing a complexity of O(Nk2). Hence, the derivation of the mutual k-nearest
neighbor graph retains a subquadratic nature.

5 Illustrative Experiments

5.1 k-Means Convex Model

To illustrate visually the ability of our toolset to naturally handle clusters of
arbitrary shapes, we visualize the process with the 2D “Two Moons” dataset
generated by sklearn (N = 10 ′000, σnoise = 0.1). Due to its convex Gaussian
model, k-means cannot separate this data into 2 clusters (Fig. 1[top left]) whereas
our procedure (e.g with k = 10 and τLOF = 1.1, Fig. 1 [others]) robustly splits
the dataset.
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One can easily picture the underlying dendrogram from the evolution of the
partition. At k = 1000, connectivity overrules low density regions and the mkNN
then shows a unique connected component, leading to a high FP rate.

Fig. 1. Two Moons partitions. [top left] k-means partition. [others] our procedure fixing
τLOF = 1.1 and evolving k ∈ {1, 4, 5, 6, 7, 10, 1000} in reading order

Figure 2 pinpoints the fact that this behavior is prevented by the initial filter-
ing. If we remove this step, a large connected component appears in the mkNN
graph from k = 4.

Fig. 2. Two Moons partitions without prior filtering and evolving k ∈ {1, 2, 4, 5} in
reading order

5.2 Density-Based Clustering Model

Now, one strong bias brought by the sklearn “Two Moons” dataset is that
the two clusters are of approximate equal densities. When modifying the gen-
eration to obtain contrasted densities, one falls in a setup known to be adverse
to the density-based clustering algorithms, of which DBSCAN [7] is a major
representative.

As shown in Fig. 3, k-means fails again to identify proper clusters due to its
convex model. DBSCAN appears very difficult to tune for such data since the
high density pushes towards a small Eps radius which creates an empty ball, not
passing the MinPts threshold in low density regions. In contrast, such a setup
is accepted by our mkNN procedure with the same parameters as before.
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Fig. 3. Adapted Two Moons dataset with varying densities. [left] k-means partition.
[center] DBSCAN partition. [right] mkNN-based partition

Discussion: The filtering step, to be useful, should retain most data from the
original dataset. Finding the proper filtering value is a problem in itself, it should
be related to fords detection, as discussed earlier. There are many hidden param-
eters in the clustering procedure we outline in Algorithm4, derived from the
theorems. This dependency goes also to the bounds of density function and the
α value in the grid-compatibility constant in Theorem1. Rather than giving a
clustering algorithm, we have discussed the grounding of successful clustering
strategies, proposing tools to build a dedicated connectivity-based clustering
algorithm for datasets adhering to precise hypothesis.

We were able to replicate clustering experiments, as reported in [1] with a
simpler procedure more amenable to analysis. Also following the conclusions
of the cited research, the proposed tools are useful in low-dimensional datasets.
They propose to use non-linear embeddings to two dimensions, using for example
t-SNE [16]. As analyzed in [3], handling high dimensional datasets is riddle
with problems derived from the phenomenon of concentration of measure which
generates the so-called curse of dimensionality, one of its many forms is the
phenomenon of hubness and the increase of the in-degree in metric graphs, with
consequences in the connectivity of the mkNNG.

Further and maybe most importantly, no vector computation is required.
Hence, this toolset may operate in metric spaces that are not necessarily vector
spaces and where the data is given by similarity, known to respect the metric
conditions. Again, this is to be contrasted with the popular k-means algorithm
operating in vector spaces, as illustrated in Fig. 1.
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