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Abstract. Sparse Data Observers (SDO) is an unsupervised learning
approach developed to cover the need for fast, highly interpretable and
intuitively parameterizable anomaly detection. We present SDOclust, an
extension that performs clustering while preserving the simplicity and
applicability of the original approach. In a nutshell, SDOclust consid-
ers observers as graph nodes and applies local thresholding to divide
the obtained graph into clusters; later on, observers’ labels are propa-
gated to data points following the observation principle. We tested SDO-
clust with multiple datasets for clustering evaluation by using no input
parameters (default or self-tuned) and nevertheless obtaining outstand-
ing performances. SDOclust is a powerful option when statistical esti-
mates are representative and feature spaces conform distance-based analy-
sis. Its main characteristics are: lightweight, intuitive, self-adjusted, noise-
resistant, able to extract non-convex clusters, and built on robust param-
eters and interpretable models. Feasibility and rapid integration into real-
world applications are the core goals behind the design of SDOclust.

Keywords: clustering - graphs - unsupervised learning - anomalies

1 Introduction

Sparse Data Observers (SDO) is a recent algorithm for anomaly detection [15].
Although it is general purpose, it was originally conceived for network traffic
analysis, a field that demands the fast processing of high data volumes. Beyond
complexity requirements, core goals in SDO are: (a) robust and intuitive param-
eterization, (b) the use of explainable models, and (c) the capability to effec-
tively identify “novelties” as anomalies, even when they are dense and collective.
SDOstream [12] is an extension of SDO for data streams. Since its publication
in 2018, SDO has been used in diverse applications; e.g., advanced multi-fault
diagnosis of batteries [25], anomaly detection in sensor networks [5].

In this work we propose SDOclust, which is the extension of SDO for cluster-
ing, therefore covering the two main branches of unsupervised learning. In the
related literature we find an extensive collection of methods for clustering, each
of them showing pros and cons, and being suitable for specific environments.
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Suffice it to mention the survey by Xu and Tian, in which up to 71 algorithms
are recalled and compared [29]. It is well accepted in the field that there is no
“best” algorithm, that they must be evaluated based on application and goals,
and that finding better evaluation procedures is even more pressing [18]. How-
ever, regardless of the algorithm used, experts still run into concerns related to
whether the resulting clustering is reliable and reflects the real structure of the
data, or whether the parameters used in the configuration are adequate [26]. Fur-
ther discussing practical common disadvantages, Bohm et al. state that “they all
[clustering algorithms] suffer from one or more of the following drawbacks: they
focus on spherical or Gaussian clusters, and/or they are sensitive to outliers,
and/or they need user-defined thresholds and parameters” [2].

To a large extent, SDOclust overcomes these common issues, fact that under-
lines its relevance among well-established methods. In another popular survey
about clustering [30], Xu and Wunsch emphasize nine characteristics that are
desirable in new generation algorithms. We analyze SDOclust in this light:

1. Arbitrary shapes. SDOclust is not confined to particular shapes and is able
to capture non-convex and even nested clusters.

2. Large volumes and high-dimensionality. Based on statistical sampling, SDO-
clust benefits the larger the data volume both in terms of accuracy and
complexity. On the other hand, SDOclust is a distance-based method that
operates directly on the input feature space, so it is affected by the curse of
dimensionality similarly to equivalent approaches. That said, empirical tests
show excellent results up to 1024 dimensions (Sect. 4).

3. Outlier/noise detection and removal. SDOclust nests SDO, therefore inher-
ently generating outlierness scores. On the other hand, clustering formation
is rarely affected by outliers/noise in SDOclust. Finally, SDOclust does not
remove or set outliers in a binary way, leaving the “oulier thresholding” task
to be externally tackled according to application requirements.

4. Low dependency on parameters. SDOclust solves most scenarios with default
parameters, which are also robust, intuitive, and self-adjustable. Challenging
cases might require fine parameterization.

5. Upgradeable models. SDOclust can process data in chunks, meaning that it
updates models with new data without retraining from scratch.

6. Immune to data-order. For SDOclust it makes no difference whether patterns
are entered sequentially or jumbled.

7. Guessing the number of clusters. SDOclust does not require the number of
expected clusters as a parameter externally imputed.

8. Enriched outputs. In addition to cluster labels, SDOclust outputs outlierness
scores and cluster memberships per point, which can be easily converted into
purity estimations'. Additionally, SDOclust generates low-density models of
the data shape by means of observers, which are representatives that preserve
data geometry and relative density. Overall, outputs in SDOclust provide
comprehensive information for visualization, description and post-analysis.

! We term a data point as #mpure when it lies in unclear zones between clusters.
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9. Mized data types. SDOclust is a numerical method and does not natively work
on categorical data. In the current implementation, mixed data types require
being adapted during preprocessing.

Note that SDOclust adjusts itself under the assumption that data statisti-
cal estimates are representative. Also clusters that are overlapping or show very
strong differences in density might be difficult to solve and require fine param-
eterization. For the evaluation, we test SDOclust on a large number of datasets
with a wide variety of shapes and challenges. Experiments are divided into: two-
dimensional data, to provide a visual assessment, and multi-dimensional data, to
cover more practical clustering application environments. In both cases internal
and external validation metrics are shown. As competitors we use HDBSCAN (3]
and k-means-- [4]. HDBSCAN is one of the most notable general-purpose clus-
tering algorithm, as it also meets the three key requirements: (a) operating with
default parameters in a wide assortment of cases, (b) detecting outliers, and (c)
capturing non-convex patterns. k-means-- is selected as it is a most traditional
clustering approach in its implementation with outlier detection.

The rest of the paper is organized as follows: Sect.2 delves into
SDO/SDOclust algorithms and parameters. In Sect. 3 we present evaluation data
and metrics. Results are shown and discussed in Sect. 4, and two real application
examples are explored in Sect. 5. We conclude with main remarks in Sect. 6.

2 Clustering Based on Sparse Data Observers

SDOclust is based on SDO. In this section we briefly explain the basic principles
of SDO and then expand in more detail on SDOclust. Configurable parameters
are highlighted in bold to be later explained in Sect. 2.3, where we discuss default
values, automatic adjustment and the implications of their variation.

2.1 SDO

SDO [15] consists of two phases, here referred to as LEARNING and PREDICTION.
During the LEARNING phase, the algorithm performs the following steps:

L1 Sampling. S being a set of m input data points, O is a subset of kg random
data points from S (kg < m). Elements in O are called observers.

L2 Observation. With D as the distance? matrix between each pair of data
points of S and O, an observation matrix I is derived by storing the x-closest
observers to each data point in S. Intuitively, each data point is “observed”
only by its x-closest observers.

L3 Removal of idle observers. From the observation matrix I, we can com-
pute P, an array that contains the occurrences of each observer in I, or, in
other words, the number of data points that each observer “observes”. If an

2 With distance—or the d(.) function—we refer to Euclidean distance, but the method
is not restricted to it.
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Fig. 1. Description of LEARNING and PREDICTION. L1 samples input data to create
the observers set (red ‘x’s). Observers “observe” input samples in L2 (shadow size
represents observations). Idle observers are removed in L3. Remaining observers are
connected in clusters in L4 by considering cut-off thresholds. In L5 isolated observers
are removed. Observers’ labels are propagated to data points in P1. Outlierness, mem-
bership and purity estimations are bound to data points in P2 (impure data points
cast a shadow). The last plot (right-bottom) shows the derived crisp clustering with
outlier detection (outliers in gray color). (Color figure online)

observer does not observe at least g data points, it is considered idle and
removed from O. This minimizes the chance of selecting outliers as observers.
Thus, the final O is a low-density model of S formed by k active observers
(k‘ < ko)

During the PREDICTION phase:

P1 Observation. Data points in S, or new objects from a consistent dataset (we
keep calling them S for consistency), are evaluated by O. This generates new
D and I matrices (but note that now O only contains active observers).

P2 Outlierness estimation. For each data point s; in S, an outlier score y; is
calculated as the average distance from s; to its x-closest observers.

2.2 SDOclust

SDOclust also implements LEARNING and PREDICTION (Fig.1). Additionally,
it includes an UPDATE phase that is only called in batch mode, i.e., SDOclust
processes new data while keeping and updating an already trained model.

The LEARNING phase of SDOclust follows these steps:

L1, L2, L3 Sampling, Observation and Removal of idle observers are exactly the
same as in SDO (Sect. 2.1).

L4 Thresholding for graph-edge cutting. Here, observers in O are seen as

nodes of an undirected graph to be clustered. We need to create and

adjacency matrix A that will ultimately group or separate observers.
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For this, instead of using a unique external cutoff threshold, each
observer estimates its own locally. Therefore, the cutoff threshold h;
of a given observer o; is:

]’Li = d(Oi, 0i<—x) (1)

i.e., the distance to its xth-closest observer. Thus, the element a; ;
of A is:

(2)

. 1 ifd(Oi,Oj) < hiandd(oi,oj) < hj

g 0 otherwise
meaning that observers o; and o; will be connected if the distance
between them is below h; and h;. The purpose of using per-node (or
local) cutoff thresholds is to allow solutions with clusters of different
densities. On the other hand, this is prone to connect clusters lying
very close to each other and create clusters in noise. To compensate
this, a ¢ coefficient weights the local contribution of h; with a global
contribution h obtained as the average of {hy, ha, ..., hi }. Therefore,
the final h remains:

hi = Chi+ (1= {)h 3)

and A is constructed with {h], hj, ..., h}.} instead. From each isolated
subgraph of connected observers in A we extract an unique label ¢;
(any given observer is at least connected to itself), generating the
set of unique labels C = {¢1,ca,...,c. }. Since connected observers
share the same label of C, this results in the array of labels L =
{l1,12, ..., 15}, where [; € C.

L5 Removal of isolated observers: L4 might generate clusters with iso-
lated observers (commonly located in noisy areas). To obtain clean
clusters, observers forming subgraphs of less than e nodes are
removed (from O, P and L).

During the PREDICTION phase:

P1 Propagation. This step runs an Observation phase and additionally propa-
gates observers’ labels to data points. Therefore, each data point in S, or new
data points from a consistent dataset (we continue calling them S), inher-
its the labels of its a-closests observers in addition to the outlierness score.
Unlike with the outlierness score, which is computed as an average distance,
observers’ labels are categories, making that each data point in S can be
multi-labeled. Therefore, if we imagine a space where discovered observers’
clusters are orthogonal coordinates ¢i, ¢o, ..., ¢,, a data point s; will obtain
a vector label l_: = (l;1,l,2,....0; »), where [; ; is the sum of the x-closest
observers to s; that belong to cluster c;.
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P2 Enrichment. This phase acknowledges that any point s; obtains an outlier-
—
ness score y; and a label vector [;. The label vector can be turned into a

- —
crisp label: l1-|_6¥iSp marking the dominant coordinate® of I;, into a member-

li2
Lillh?

. li1 i~ : . e f o
ship vector: l;|memb = (HliHl’ m ey ||l1-||1)’ or into a purity estimation:

N
li|pur = ||li‘memb||oo-

Finally, in the UPDATING phase both LEARNING and PREDICTION are
repeated with minor variations. The new subset of data points is sampled for
observers while keeping the proportion of one observer per m/k data points in
the batch (minimum 1). New observers are added to O, new observations are
added to P and, finally, the less-active observers are removed to keep k invariant.

2.3 Parameters: Interpretation, Default Values and Self-tuning

ko,  and q (or p)?* are intrinsic to SDO and widely discussed in the original
paper [15]. We comment on them briefly. If not given externally, the initial
number of observers—here termed ko—is set based on statistical sampling of
finite populations. For this estimation, the most variant dimension of the input
data after PCA (Principal Component Analysis) is used (Eq.4):

mZ20? (@)
(m—1)e? + Z202

with ¢ as the variance and CI=95% (Z=1.96), error € = 0.10. This ensures
good scalability regardless of the number of data points and dimensions of
the input data. For instance, in a n-dimensional dataset S with one thou-
sand data points generated at random with normal distributions (@ = o = 1),
SDO/SDOclust (x = 5, p = 0.3) estimates k ~ 191; whereas for the same
dataset with one million data points k ~ 266. On the other hand, & expresses
neighborhood similarly to k£ in the k-nearest neighbor algorithm, but without
being sensitive to density [31]. Empirical tests confirm the robustness of  and
p, with £ =5 and p = 0.3 as suitable default values.

Parameters exclusive of SDOclust are:

ko =

— x defines the xth-closest observer of any given observer. It is used to establish
the local threshold for cutting-off graph edges (Eq. 1). Small x is appropriate
when solutions with many clusters are expected, whereas high x should be
used when only few clusters are foreseen.

— ( sets a trade-off between locality and globality in thresholds for cutting-off
graph edges, ¢ = 1 for purely local and ¢ = 0 for purely global (Eq. 3). Local
thresholding allows clusters of considerable density difference; however, it
tends to merge nearby clusters and form clusters in noise. Global thresholding
avoids such merger, but might divide legit clusters.

3 i.e., the coordinate with the highest value. In the absence of a dominant coordinate,

the algorithm forces it randomly among the highest candidates.
4 g is commonly obtained as ¢ = Q(p, P), where Q(.) is the quantile function.
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— e sets the minimum number of observers that a cluster can have. This param-
eter commonly takes small values and is used to avoid clustering noise.

Empirical tests show that the previous parameters tolerate variations around
default values: x = min(8, %), ¢ = 0.6 and e = 3. The reason why such param-
eters work properly in most data scenarios is because, regardless of the number
of samples and dimensions, SDOclust summarizes data in a model composed by
a number of observers that falls always in a similar order of magnitude.

Finally, since the selection of observers is natively performed at random,
SDOclust is not free from stochastic problems (more noticeable in small
datasets).

2.4 Complexity

The increase in complexity of SDOclust with respect to SDO is not significant,
since the additional operations carried out by SDOclust happen on the observer
set which, as seen in Sect. 2.3, if not imposed as an external parameter, converges
asymptotically as a function of m. Therefore, the added algorithmic load of
SDOclust happens in the thresholding and clustering of the graph during the
LEARNING phase. SDOclust works at all times with matrices of size m x k, k x k,
k x x, and does not involve iterative processes. Therefore, as in [15], in Big-O
notation the complexity of SDOclust is described as O(mk)|m—oo = O(m).

3 Evaluation

Implementations of SDOclust, experimental tests and sensitivity analysis for
main parameters are freely available in our repository®, and through a stable
DOl-citable version for Reproducible Research in [16]. Datasets can be down-
loaded from their original sources or—in case that they are further processed or
generated by tools—they are also included in our repository. In all experiments,
HDBSCAN (as provided in [20]) and SDOclust run with no parameters (default
or self-tuned)®, whereas k-means— is always imputed with the right number of
clusters and outliers to discover’, extracted from the ground truth (GT).

5 https://github.com/CN-TU /pysdoclust.

S HDBSCAN  parameters: min_cluster_size=5,  cluster_selection_epsilon = 0.0,
approx_min_span_tree = True,  allow_single_cluster =False, = min_samples = None,
algorithm = ‘best’, p=None, alpha=1.0, metric="euclidean’, leaf size =40,
memory = Memory (location = None), cluster_selection_method = ‘eom’, gen._
min_span_tree = False, core_dist_-n_jobs =4, prediction_data =False, match. ref-
erence_implementation = False;

SDOclust parameters: z =25, qu =0.3, zeta = 0.6, chi_min =8, chi_prop =0.05, e =3,
chi =None, zc = None, k = None, ¢ = None.

7 k-means— is tuned with mazimum_iterations = 1000 and tol =0.0001, where tol is
the convergence criterion for centroid displacement.
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3.1 Datasets

Evaluation experiments are in two sets: (a) 15 two-dimensional datasets to visu-
ally assess performances; (b) 138 multi-dimensional datasets. Dataset collections
are taken from different sources: (i) The Clustering Basic Benchmark of the Uni-
versity of Eastern Finland [10], which is one of the most known data collections
for clustering evaluation®. This includes two-dimensional datasets: s1 [8], r15
[27], aggregation [11], skewed [22]; also the low-to-high dimensional set termed
d, which combines two collections [9,17] and shows datasets from 3 to 1024
dimensions. (ii) Datasets generated or processed with the sklearn.datasets
package’, due to its popularity and widespread use [21], including the two-
dimensional datasets named: rings and moons. Later on, iris (Iris Flower),
mallcust (Mall Customers Segmentation) and pima (Pima Indians Diabetes)
are popular real datasets here projected into two-dimensional spaces by using t-
distributed stochastic neighbor embedding (tSNE) [19]. (iii) Datasets generated
with MDCgen [14], a tool to create multi-dimensional data for testing, evalu-
ating, and benchmarking unsupervised classification algorithms. It includes the
two-dimensional datasets: close, separated, complex, high-noise and low-noise;
and 6 groups of multi-dimensional datasets, each group addressing a different
data challenge, namely: ¢ (close clusters, reduced space), p (separated clusters,
large space), n (between 5% and 15% noise aprox.), h (between 15% and 30%
noise aprox.), f (clusters with high density differences), and z (complex setups
by combining previous challenges).

3.2 Metrics

Experiments are validated externally and internally. For external validation we
use the Adjusted Rand Index (ARI) [13], which approaches ‘1’ the better the
discovered partition matches the GT, and gives *-0.5’ for completely discordant
partitions. For internal validation we use the Silhouette index (Sil) [23], which
scores ‘1’ when intra-cluster cohesion and inter-cluster separation are maximized.
To make Sil consistent, we first remove the top ‘n’ outliers, where ‘n’ is given by
the GT. We also show the difference between the number of clusters discovered
by the algorithm by excess (+) or deficiency (—) compared with the GT.

4 Results and Discussion

Table 1 shows two-dimensional experiments results. SDOclust guesses the num-
ber of clusters considerably better than HDBSCAN, which tends to cluster noise
and divide bigger structures into micro-clusters. SDOclust average performances
are 0.594+0.22 (Sil) and 0.86 +£0.10 (ARI), vs 0.53+0.27 (Sil) and 0.814+0.19
(ARI) in HDBSCAN and 0.57 £0.10 (Sil) and 0.67+0.23 (ARI) in k-means--.

8 https://cs.joensuu.fi/sipu/datasets/.
9 https:/ /scikit-learn.org/stable/datasets.html.


https://cs.joensuu.fi/sipu/datasets/
https://scikit-learn.org/stable/datasets.html

SDOclust: Clustering with Sparse Data Observers 193

close. s1 separated iris mallcust

pma s aggregation scewea asymmetric
L3
nigh-noise ownoise rings complex moons
e O u
0

Fig. 2. Clustering of SDOclust on two-dimensional data. Clustered data points take
colors based on their cluster, whereas outliers are in gray color (Color figure online)

Table 1. Results of tests with two-dimensional datasets

dataset inlier samples | dimensions [ outliers [ clusters GT | clusters HDBSCAN | clusters k-means- | clusters SDOclust [ Sil HDBSCAN [ Sil k-means- |Sil SDOclust [ ARI HDBSCAN [ ARI k-means- | ART SDOclust
close 2000 2 0 11 1 = 2 0.63 0.58 0.65 0.87 051 0.87
sl 5000 2 0 15 +38 = = 0.24 0.58 0.71 0.54 0.83 1.00
separated | 2000 2 0 7 = = = 0.91 0.58 0.91 1.00 0.72 1.00
iris 150 2 0 3 1 = = 0.89 0.72 0.72 0.57 0.90 0.90
malleust | 200 2 0 1 = = +1 057 0.62 052 0.96 0.89 0.85
pima 768 2 0 3 = = +1 0.60 0.61 0.40 1.00 0.72 0.82
115 600 2 0 15 = = 1 0.72 0.67 0.70 0.94 0.90 0.92
aggregation | 788 2 0 7 -2 = -1 037 0.44 0.46 0.81 0.63 0.91
skewed 1000 2 0 6 +5 = -1 0.25 0.44 0.37 0.89 0.60 0.81
asymmetric | 1000 2 0 5 -2 = = 0.68 0.53 064 047 0.70 0.98
high-noise | 2000 2 35 [6 +10 = +1 0.74 0.72 0.90 0.92 0.83 0.83
low-noise | 2000 2 [TTE -1 = -1 0.82 0.68 0.85 0.70 0.61 0.67
rings 3000 2 200 |2 +4 = = 0.08 0.38 0.12 0.97 0.07 0.88
complex | 2000 2 155 |6 +17 = 1 0.38 051 0.56 0.61 0.62 0.65
moons 3000 2 200 |2 +8 = = 0.13 0.49 034 0.96 0.29 0.88

Both internal and external validation highlights SDOclust over its competi-
tors. Figure2 shows SDOclust clustering. Most noticeable inaccuracies are the
tendency of SDOclust to merge very close clusters, more so if they show some
overlap or are bridged by intermediate data points. There are different strategies
to alleviate this, e.g., reducing ¢ and x while increasing p, but such modifications
might cause arbitrary divisions in some cases.

Table 2 shows main properties of multi-dimensional dataset collections, while
Table 3 provides clustering performances. Again, HDBSCAN and SDOclust run
with default parameters, whereas k-means-- is imputed with the expected num-
ber of clusters and outliers. Summarizing results, we observe that discrepancies in
the number of clusters between GT and SDOclust partitions is minimal, while it
is larger for HDBSCAN, prone to overclustering in the presence of outliers. Even
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Table 2. Description of multi-dimensional data groups

group abbrev. | datasets | inlier samples | dimensions | outliers clusters in GT
close [ 20 5000 3 to 23 0 10 to 14
separated P 20 5000 5 to 22 0 3to7
low-to-high dim. | d 18 1024 to 10126 |3 to 1024 |0 9 to 16
density diff. f 20 5000 3 to 22 0 3to7
medium noise n 20 5000 3 to 22 252 to 748 |3 to 7

high noise h 20 5000 3 to 23 858 to 1981 |4 to 7
complex X 20 5000 3 to 22 272 to 747 |3to 7

Table 3. Results of tests with multi-dimensional data. “NCA-error” stands for the
“accumulated error in the number of clusters due to over- or underclustering”

group | NCA-error HDBSCAN | NCA-error k-means- | NCA-error SDOclust | Sil HDBSCAN | Sil k-means- | Sil SDOclust | ART HDBSCAN | ARI k-means- | ARI SDOclust
c 1 35 2 0.83 = 0.05 |0.53 £ 0.10 | 0.83 + 0.04 | 1.00 + 0.00 0.66 & 0.39 1.00 £ 0.00
P 0 0 0 0.95 + 0.01 |0.70 + 0.19 |0.95 + 0.01 | 1.00 + 0.00 0.82 £ 0.16 1.00 + 0.00
d o0 0 0 0.94 + 0.03 0.64 £ 0.17 | 0.94 £+ 0.03 | 1.00 + 0.00 0.77 £ 0.14 1.00 + 0.00
f 8 0 9 0.70 £ 0.18 0.64 £ 0.14 |0.71 £+ 0.12 | 0.95 + 0.09 0.89 &+ 0.11 0.97 + 0.03
n 67 11 0 0.85 + 0.04 0.81 £ 0.30 | 0.97 + 0.01 | 0.83 + 0.06 0.85 4 0.29 1.00 + 0.00
h 203 5 0 0.64 £ 0.09 0.81 £ 0.22 | 0.99 £ 0.00 | 0.48 £ 0.11 0.80 £ 0.18 1.00 + 0.00
X 43 0 2 0.74 £ 0.06 0.73 £ 0.16 | 0.84 + 0.09 | 0.82 + 0.07 0.84 + 0.17 0.98 + 0.02

k-means-- shows higher drifts due to global failures when analyzing some scenar-
ios. As for validation indices, SDOclust scores 0.89 +0.11 (Sil) and 0.99 + 0.02
(ARI) in average, vs 0.80£0.14 (Sil) and 0.87+£0.19 (ARI) in HDBSCAN and
0.70 £0.22 (Sil) and 0.81 £0.21 (ARI) in k-means--.

In Fig.3 we show critical difference diagrams from Wilcoxon signed-rank
tests over all 153 experiments [7]. The diagrams confirm the statistical differences
when comparing results, SDOclust standing out with the best performance.

CD graph for Silhouette scores CD graph for ARI scores
2 2

3 1 3 1
L L 1 L ] L 1 1 1 ]

k-means--”m4, I—”WSDOcIust k-means»-lu““;l @@Dodust
HDBSCAN?2622 HDBSCAN?1232

Fig. 3. Critical difference diagrams comparing algorithm results with Wilcoxon signed-
rank tests [7]. Best methods are placed on the right side

The reason behind SDOclust ability to self-tune and obtain suitable cluster-
ing lies in leveraging statistical estimations to create simplified models—always
with a number of elements (i.e., observers) in a similar order of magnitude—that
capture shapes and relative densities independently of the number of input data
points and dimensions. This makes possible to calculate and establish neighbor-
hoods, coefficients and thresholds that satisfy a large number of cases.

5 Examples with Real Data

We show two examples of SDOclust for discovering clusters and patterns in
real applications. We have selected cases with recent public data and where
clustering makes practical sense beyond algorithm testing. We use HDBSCAN
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as benchmark. As before, both algorithms apply default parameters and are not
imputed with the number of clusters to discover. SDOclust establishes outliers
per cluster as any data point with an outlierness score beyond the mean plus
the Median Absolute Deviation (MAD) over the standard deviation [1].

5.1 Clustering Network Traffic

Communication network traffic is hard to analyze: data spaces are noisy, classes
heterogeneous and multiform, and features commonly show non-normal distri-
butions and collinearity. We explore a traffic capture (pcap) from the MAWI
samplepoint-F for July 31, 2022'°. The MAWI Working Group daily publishes
15 min of backbone traffic publicly for research purposes [6]. We extract bidi-
rectional flows between IP addresses (srcIP, dstIP) that exchange information
for a maximal duration of 60s. Since modern network traffic nowadays is mostly
encrypted, we select features that are available regardless of encryption'!: the
flow duration (dur) and statistics related the number of packets sent (pkt), the
length of packets (len) and the inter-arrival time between packets (iat), both
forward (F) and backward (B). The final vector that expresses a sample is:
T:srcIP:dstIP — dur, pktF, Md(lenF), Mn(iatF), pktB, Md(lenB), Mn(iatB)
where T is the timestamp and, together with the srcIP and dstIP, forms a
unique ID to identify flows. Md() and Mn() stand for the statistical Mode and
Mean. The capture contains about 9 million flows in the given format, of which
we randomly sample a thousandth part (8630 flows) for our exploration and nor-
malize them with quantile normalization (the most consistent based on feature
distributions). Domain knowledge suggests that higher layer protocols, yet het-
erogeneously, may influence traffic shapes. We use this information as a tentative
benchmark for external validation (i.e., ARI). Analyzed flows account for: 82.5%
TCP, 15.1% UDP, 2.1% ICMP, and 0.3% of others protocols.

Results reveal very different performances in terms of the number of clusters
between HDBSCAN and SDOclust, although similar in validation scores:

HDBSCAN: 117 clusters, 322 outliers, Sil = 0.89, Sil(inliers) = 0.96, ARI = 0.32
SDOclust: 8 clusters, 53 outliers, Sil = 0.89, Sil(inliers) = 0.89, ARI = 0.31

In Fig. 4 we use tSNE to visualize solutions given by HDBSCAN, SDOclust
and protocol distribution. tSNE has proven excellent at capturing the structure
of high dimensional data, it performs projections based on local similarity that
are consistent with cluster shapes. From this perspective, SDOclust appears to
align more naturally with tSNE and the protocol labeling and number of clusters
than HDBSCAN. Nevertheless, by removing outliers and due to the high number
of clusters found, HDBSCAN shows a remarkable improvement in the internal
validation, this indicating its ability to find micro-clusters of high purity.

19 https://mawi.wide.ad.jp/mawi/samplepoint-F /2022/202207311400.html.
" Extracted with Go-flows [28].
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Fig. 4. tSNE proj. (colors are protocol), HDBSCAN and SDOclust clustering. (Color
figure online)

5.2 Energy Building Profiles

This second example applies clustering to reveal characteristic profiles in build-
ing energy performance. We use real electricity consumption data of the “CN
Rectorat” of the Polytechnic University of Catalonia (UPC) during 2022. This
data is openly published by the Sirena Project [24]'2. We rearrange hourly con-
sumption data to process 365 vectors (days) of 24 features (hours). Note that
each vector is a time series, i.e., a daily energy consumption curve. Since raw
data is magnitude consistent and in order not to break dependencies between
features, we do not apply any normalization. Euclidean distances estimate simi-
larity as usual since we want to group samples considering both curve shape and
volume of electricity. SDOclust and HDBSCAN obtain the following results:

HDBSCAN: 8 clusters, 77 outliers, Sil = 0.28, Sil(inliers) = 0.48
SDOclust: 7 clusters, 16 outliers, Sil = 0.43, Sil(inliers) = 0.48

Again, differences in validation between SDOclust and HDBSCAN are small,
this time also with regard to discovered clusters (both in number and shapes,
Fig.5). The similarity between both clusterings is ARI = 0.76. The deterioration
of HDBSCAN in the complete internal assessment (inliers and outliers) is due to
its tendency to find many outliers (21% in this case). As for the application, it
is tempting to think that discovered profiles correspond to the days of the week;
however, the close analysis reveals that they rather show a seasonal character.
Taking SDOclust clusters as a reference: (a) P2 is dominant throughout the
year; (b) P3 (winter-spring) and P6 (summer-autumn) are almost exclusively
for Mondays; (¢) P4 occurs mainly in winter and early spring; (d) P1 mostly
in April; (e) P5 mainly from late spring to autumn, but excluding the summer
holiday period; (f) and PO mainly during summer.

2 https://upcsirena.app.dexma.com/.
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Fig. 5. Clustered profiles disclosed by HDBSCAN (top) and SDOclust (bottom)

These two examples with real data show how HDBSCAN is a method that
prioritizes cluster purity (then with a marked risk of overclustering), while SDO-
clust prioritizes generalization (therefore with a risk of underclustering).

6 Conclusions

In this paper we have presented SDOclust, a clustering algorithm based on the
unsupervised analysis approach pioneered by its predecessor SDO. We have
tested SDOclust with default parameters on 155 datasets comprising a wide
variety of sizes, dimensions and specific data challenges, yet obtaining excellent
results and outperforming the popular HDBSCAN and k-means-- algorithms.
Considering default settings, compared to HDBSCAN, which is arguably the
most efficient and autonomous alternative, SDOclust tends to find the main
top-level spatial partitions and, therefore, is significantly less prone to gener-
ate micro-clusters. Key features of SDOclust are: linear complexity, scalability,
parameters that are robust, intuitive and self-tuned, resistance to outliers and
noise, ability to discover non-convex clusters, use of simple and updateable mod-
els, and the generation of rich outputs for detailed post-analysis. Next planned
steps mainly involve an incremental version of SDOclust for streaming data.
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