
Minwise-Independent Permutations
with Insertion and Deletion of Features

Rameshwar Pratap1(B) and Raghav Kulkarni2

1 IIT Hyderabad, Telangana, India
rameshwar@cse.iith.ac.in

2 Chennai Mathematical Institute, Chennai, Tamil Nadu, India

kulraghav@gmail.com

Abstract. The seminal work of Broder et al. [5] introduces the minHash
algorithm that computes a low-dimensional sketch of high-dimensional
binary data that closely approximates pairwise Jaccard similarity. Since
its invention, minHash has been commonly used by practitioners in vari-
ous big data applications. In many real-life scenarios, the data is dynamic
and their feature sets evolve over time. We consider the case when fea-
tures are dynamically inserted and deleted in the dataset. A naive solu-
tion to this problem is to repeatedly recompute minHash with respect to
the updated dimension. However, this is an expensive task as it requires
generating fresh random permutations. To the best of our knowledge,
no systematic study of minHash is recorded in the context of dynamic
insertion and deletion of features. In this work, we initiate this study
and suggest algorithms that make the minHash sketches adaptable to
the dynamic insertion and deletion of features. We show a rigorous the-
oretical analysis of our algorithms and complement it with supporting
experiments on several real-world datasets. Empirically we observe a
significant speed-up in the running time while simultaneously offering
comparable performance with respect to running minHash from scratch.
Our proposal is efficient, accurate, and easy to implement in practice.

Keywords: Sketching algorithms · Jaccard similarity estimation ·
Streaming algorithms · Locality sensitive hashing (LSH)

1 Introduction

Sets are one of the popular ways to embed data points, and their pairwise similar-
ities are captured using Jaccard similarity. For a pair of sets U, V ⊆ [d], their Jac-
card similarity is defined as |U ∩V |/|U ∪V |. The seminal work of Broder et al. [5]
suggests the minHash algorithm that computes a low-dimensional representation
(or sketch) of the high-dimensional binary data that closely approximates the
underlying pairwise Jaccard similarity. We discuss it as follows:1

1 We note that binary vectors and sets give two equivalent representations of the
same data object. Let the data elements be a subset of a fixed universe. In the
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Definition 1 (Minwise Independent Permutations [5]). Let Sd be the set of all
permutations on [d]. We say that F ⊆ Sd (the symmetric group) is min-wise
independent if for any set U ⊆ [d] and any u ∈ U , when π is chosen at random
in F , we have

Pr[min{π(U)} = π(u)] = 1/|U |. (1)

For a permutation π ∈ F chosen at random and a set U ⊆ [d], Broder et al. [5]
define minHash as follows minHashπ(U) = arg minu π(u) for u ∈ U . For a pair
of points, U, V ⊆ [d], and π is chosen at random in F , we have the following

Pr[minHashπ(U) = minHashπ(V )] = |U ∩ V |/|U ∪ V |. (2)

The above characteristic demonstrates the locality-sensitive nature
(LSH) [13] of minHash, and as a consequence, it can be effectively used for the
approximate nearest neighbour search problem. minHash is successfully applied
in several real-life applications such as computing document similarity [3], item-
set mining [2], faster de-duplication [4], all-pair similarity search [1], document
clustering [6], building recommendation engine [11], near-duplicate image detec-
tion [9], web-crawling [12,18].

This work considers the scenario where features are dynamically inserted
and/or deleted from the input. We emphasize that this natural setting may
arise in many applications. Consider the “Bag-of-Word” (BoW) representation
of text, where first, a dictionary is created using the important words present
in the corpus such that each word present in the dictionary corresponds to a
feature in the representation. Consequently, the embedding of each document
is generated using this dictionary based on the frequency of the words present.
Consider the downstream applications where the task is to compute pairwise Jac-
card similarities between these documents, and the dimensionality of the BoW
representation is high due to the large dictionary size. We can use minHash to
compute the low-dimensional sketch of input documents. It is natural to assume
that the dictionary is evolving; new words are inserted, and unused words are
deleted. One evident approach to handle such a dynamic scenario is to run the
minHash from scratch on the updated dictionary, which is expensive since it
involves generating fresh min-wise independent (random) permutations. Note
that during the insertion/deletion of features in the dataset, we consider insert-
ing/deleting the same features in all the data points. To clarify this further,
let D = {Xi}n

i=1 be our dataset, where Xi ∈ {0, 1}d. Considering the addi-
tion/removal of the j-th feature, the j-th feature gets inserted/deleted in the
point Xi. Similarly, the corresponding j-th feature is inserted/deleted in all the
remaining points in D. Note that we don’t consider the case when data points
are dynamically inserted or deleted in the dataset.

corresponding binary representation, we generate a vector whose dimension is the
size of the universe, where for each possible element of the universe, a feature position
is designated. To represent a set into a binary vector, we label each element’s location
with 1 if it is present in the set and 0 otherwise.
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Problem statement: minHash for dynamic insertion and deletion of fea-
tures: In this work, we focus on making minHash adaptable to dynamic feature
insertions and deletions of features. We note that the insertion/deletion of fea-
tures dynamically leads to the expansion/shrinkage of the data dimension.

We note that in practice a d dimensional permutation required for minHash
is generated via the universal hash function hd(i) = ((ai + b) mod p) mod d,
where p is a large prime number and a, b are randomly sampled from {0, 1, . . . p−
1}; typically ((ai + b) mod p) > d2. This hash function generates permutations
via mapping each index i ∈ [d] to another index [d] that can be used to compute
the minHash sketch. We note that in the case of dynamic insertions/deletion
of features, even using universal hash functions to compute the minHash sketch
doesn’t give an efficient solution. We illustrate it as follows. Suppose we have a
minHash sketch of data points using the hash function hd(.). Consider the case
of feature insertion, where the dimension d increases to d + 1, and therefore, we
require a hash function hd+1(.) to generate a (d + 1)-dimensional permutation.
Note that the permutation generated via hd+1(.) can potentially be different on
several values of i ∈ [d + 1]. Therefore, just computing hd+1(d + 1), taking the
corresponding input feature, and taking the minimum of this quantity with the
previous minHash would not suffice to compute minHash after feature insertion.
If implemented naively, this re-computation step takes O(d) in the worst case.
A similar argument also holds in the case of feature deletion.

1.1 Our Contribution

In this work, we consider the problem of making minHash adaptable to dynamic
insertions and deletions of features. We focus on cases where features are
inserted/deleted at randomly chosen positions from 1 to d. We argue that this
is a natural assumption that commonly occurs in practice. For example, in the
context of BoW, a word’s position in the dictionary is determined via a random
hash function that randomly maps it to a position from 1 to d. Therefore, when
a new word is added to the dictionary, its final position in the representation
appears as a random position (from 1 to d). A similar argument is also applicable
to feature deletion. We summarize our contributions as follows:

� Contribution 1: We present algorithms (Sect. 2) that makes minHash sketch
adaptable to single/multiple feature insertions. Our algorithm takes the current
permutation and the corresponding minHash sketch; values and positions of the
inserted features as input and outputs the minHash sketch corresponding to the
updated dimension.
� Contribution 2: We also suggest algorithms (deferred to the full version of
the paper [21] due to the space limit, discussed in Section 4 of [21] ) that makes
minHash sketch adaptable for single/multiple feature deletions. It takes the data
points, current sketch, and permutations used to generate the same; positions
of the deleted features and outputs the minHash sketch corresponding to the
updated dimension.
2 These hash functions are called universal hash functions (see Chapter 11 of [10].
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Our work leaves the possibility of some interesting open questions: to pro-
pose algorithms when features are inserted or deleted adversarially (rather than
uniformly at random from 1 to d, as considered in this work). We hope that our
techniques can be extended to handle this situation.

Our Techniques and Their Advantages: A major benefit of our results is that
they do not require generating fresh random permutations corresponding to the
updated dimension (after feature insertions/deletions) to compute the updated
sketch. We implicitly generate a new permutation (required to compute the
sketch after feature insertion/deletion) using the old d-dimensional permutation
and also show that it satisfies the min-wise independence property (Definition 1).
We further give simple and efficient update rules that take the value and posi-
tion of inserted/deleted features, and output the updated minHash sketch. To
show the correctness of our result, we prove that the sketch obtained via our
update rule is the same as obtained via computing minHash from scratch using
the implicitly generated permutation mentioned above. For both insertions and
deletion cases, our algorithms give significant speedups in dimensionality reduc-
tion time while offering almost comparable accuracy with respect to running
minHash from scratch. We validate this by running extensive experiments on
several real-world datasets (Sect. 3 and Table 3). We want to emphasize that our
algorithms can also be easily implemented when permutations are generated via
random hash functions.

Applicability of our Result in Other Sketching Algorithms for Jaccard Similarity:
We note that there are several improved variants of minHash are known such as
one-permutation hashing [15,22], b-bit minwise hashing [14,16], oddsketch [20]
that offer space/time efficient sketches. We would like to highlight that our
algorithms can be easily adapt to these improved variants of minHash, in case
of dynamic insertion and deletion of features. One permutation hashing divides
the permuted columns evenly into k bins. For each data point, the sketch is
computed by picking the smallest nonzero feature location in each bin. In the
case of dynamic settings, our algorithms can be applied in the bin where features
are getting inserted/deleted. Both b−bit minwise hashing [14] and oddsketch [20]
are two-step sketching algorithms. In their first step, the minHash sketch of the
data points is computed. In the second step of b-bit minwise hashing, the last
b-bits (in the binary representation) of each minHash signature is computed.
In contrast, in the second step of oddsketch, one bit of each minHash sketch
is computed using their proposed hashing algorithm. As both results compute
the minHash sketch in their first step, we can apply our algorithms to compute
the minHash sketch in case of feature insertion/deletion. This will make their
algorithms adaptable to dynamic feature insertions and deletions.

Recently, some hashing algorithms have been proposed that closely esti-
mate the pairwise Jaccard similarity [7,8,19] without computing their minHash
sketch. However, to the best of our knowledge, their dynamic versions (that can
handle dynamic insertions/deletions of features) are unknown. Several improve-
ments of the LSH algorithm [23] have been proposed that are adaptable to the
dynamic/streaming framework. However, a significant difference is in the under-
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lying problem statement. These results aim to handle dynamic insertion and
deletions of data points, whereas we focus on dynamic insertions and deletions
of the features (Table 1).

2 Algorithm for Feature Insertion

Table 1. Notations

Data dimension d Input data point {0, 1}d or input set X

Set {1, . . . , d} [d] Data point after feature insertion {0, 1}d+1 X′

Position of the inserted feature m Original d-dim. permutation (a1, . . . , ad) s.t.

ai ∈ [d]

π

Value of the inserted feature b Lifted (d+1)-dim. permutation (a′
1, . . . a′

d+1)

s.t. a′
i ∈ [d + 1]

π′
m

No. of 1′s in X |X| Set of non-zero indices of X, i.e., {i|xi = 1} J

Size of the set J |J| minHash of X with π, i.e., minHashπ(X) hold

We first give our algorithm for a single feature insertion.

2.1 One Feature Insertion at a Time – liftHash

The liftHash (Algorithm 2) is our main algorithm for updating the sketch of
data points consisting of binary features. It takes a d dimensional permutation
π and the corresponding minHash sketch hold π as input. In addition, it takes
an index m and a bit value b, corresponding to the position and the value of
the binary feature, to be inserted, respectively, and outputs updated hash value
hnew. We show that hnew corresponds to a minHash sketch of the updated feature
vector. To show this, we use liftPerm (Algorithm 1), which extends the original
permutation π to a (d+1) dimensional min-wise independent permutation. Note
that the liftPerm algorithm is used solely for the proof and not required in the
liftHash algorithm.

The main intuition of our algorithm is that we can (implicitly) generate a
new (d+1)-dimensional permutation by reusing the old d-dimensional permuta-
tion (Algorithm 1), and can update the corresponding minHash w.r.t. the new
(d + 1)-dimensional permutation via a simple update rule (Algorithm 2). Con-
sider a d dimensional input vector X = (x1, x2, . . . , xd). A permutation π of
{1, 2, . . . , d} can be thought of as imposing the following ordering on the indices
of X: π(1), π(2), . . . , π(d). After feature insertion, we want the (implicit) liftPerm
algorithm to generate a new permutation π′ of {1, 2, . . . , d + 1} that still main-
tains the ordering that was imposed by π. We show that such an extension is
achievable with high probability assuming (i) feature insertion is happening at
a random position and (ii) our binary feature vector is sparse. This helps us
guarantee (with high probability) that π′ is min-wise independent if π is min-
wise independent (see Theorem 2). Finally, we show that the sketch obtained by
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the liftHash algorithm is the same one produced by applying the minHash with
respect to the output π′ of the liftPerm algorithm (see Theorem 3).

Algorithm 1: liftPerm(π, r).

1 Input: d-dim permutation π, a number r.
2 Output: (d + 1)-dim. permutation π′.
3 for i ∈ {1, . . . , d + 1} do
4 if i ≤ r then
5 π′(i) = π(i)
6 else
7 π′(i) = π(i − 1)
8 end
9 end

10 for i ∈ {1, . . . , d + 1}/{r} do
11 if π′(i) ≥ π′(r) then
12 π′(i) = π′(i) + 1
13 end
14 end
15 return π′

Algorithm 2: liftHash(π,m, b, hold).

1 Input: hold := minHashπ(X), π, m ∈ [d], b ∈ {0, 1}.
2 Output: hnew := liftHash(π,m, b, hold).
3 Denote am = π(m).
/* m is the position of the inserted feature */

4 if hold < am then
5 hnew = hold

6 else
7 if b = 1 then
8 hnew = am

9 end
10 if b = 0 then
11 hnew = hold + 1
12 end
13 end
14 return hnew

We illustrate our algorithm with the following example and then state its
proof of correctness.

Example 1 We illustrate our Algorithms using the following example. We
assume that the index count starts with 1. Let X = [1, 0, 0, 1, 0, 1, 0] be the data
point, and π = [6, 3, 1, 7, 2, 5, 4] be the original permutation. Then minHashπ(X)
is 5. Further, let us assume that we insert the value b = 1 at the index m = 2.
Therefore am = π(m) = 3. The updated value X ′ = [1, 1, 0, 0, 1, 0, 1, 0] and due
to Algorithm 1 by setting r = m = 2, we obtain π′

m = [7, 3, 4, 1, 8, 2, 6, 5]. We
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calculate the value of hnew outputted by Algorithm 2: as hold = 5 > am = 3
and b = 1, then we have hnew = liftHash(π,m, b, hold) = am = 3. Further,
minHashπ′

m
(X ′) = 3. Therefore, we have hnew = minHashπ′

m
(X ′).

3The following theorem gives proof of the correctness of Algorithm 1, and
shows that the permutation π′ outputted by the algorithms satisfies the minwise
independent property (Definition 1), with high probability. At a high-level proof
of Theorem 2 relies on showing the bijection between the ordering on the indices
of X by the original d-dimensional permutation π, and (d + 1)-dimensional per-
mutation π′. We show that this bijection holds with probability 1 when inserted
feature value b = 0, and holds with a high probability when b = 1.

Theorem 2 Let π = (a1 . . . , ad) be a minwise independent permutation, where
ai ∈ [d], and r be a random number from [d]. Let π and r be the input to
Algorithm 1. Then for any X ∈ {0, 1}d with |X| ≤ k, the permutation π′ =
(a′

1 . . . , a′
d+1), where a′

i ∈ [d+1], obtained from Algorithm 1 satisfies the condition
stated in Equation (1) of Definition 1, with probability at least 1 − O(k/d).

Theorem 3 gives proof of the correctness of Algorithm 2. We show that the
sketch outputted by Algorithm 2 is the same as obtained by running minHash
using the (d + 1)-dimensional permutation obtained by Algorithm 1 on the
updated data point after one feature insertion.

Theorem 3 Let π′
m be the (d + 1)-dimensional permutation outputted by Algo-

rithm 1 by setting r = m. Then, the sketch obtained from Algorithm 2 is
exactly the same as the sketch obtained with the permutation π′

m on X ′, that
is, hnew := liftHash(π,m, b, hold) = minHashπ′

m
(X ′).

Remark 1 We remark that in order to compute the minHash sketch of X ′,
Algorithm 2 requires only hold, b,m, the value of π(m). Whereas vanilla minHash
requires a fresh (d + 1) dimensional permutation to compute the same.

Remark 2 We can extend our results for multiple feature insertion by repeat-
edly applying Theorem 2, and Theorem 3 along with the probability union
bound. However, the time complexity of the algorithm obtained by sequentially
inserting n features will grow linearly in n as observed in the empirical results
(Fig. 1, Sect. 3). In the next subsection, we present an algorithm that performs
multiple insertions in parallel, which helps us achieve much better speedups.

2.2 Algorithm for Multiple Feature Insertions – multipleLiftHash

Results presented in this subsection are extensions to that of Subsect. 2.1. The
intuition of our proposal is that we can (implicitly) generate a new (d + n)-
dimensional permutation (n is the number of inserted features), using the old

3 We defer the proofs of Theorems 2, 3, 5, 6, to the full version of this paper [21] due
to space limit.
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Table 2. Notations

No. of inserted features n Position of inserted features {mi}n
i=1, mi ∈

[d + 1]

M

X after n features insertion {0, 1}d+n X′ Set of inserted bits {b1, . . . , bn} with bi ∈
{0, 1}

B

multipleLiftHash(M, π, B, hold) hnew Lifted (d + n)-dim. permutation π′
M

d-dimensional permutation. By exploiting the sparsity of input and the fact
that inserted bits are random positions, we show that the updated permuta-
tion satisfies the min-wise independent property with high probability. Further,
we suggest a simple update rule aggregating the existing minHash sketch and
the minHash restricted to inserted position and outputs the updated sketch.

Algorithm 3: partialMinHash(π,M,B)

1 Input: Permutation π, a sorted set of indices M = {m1, ...mn}, and set
of inserted bits B = {b1, . . . , bn}

2 Output: The min value of π (with appropriate shift) restricted to only
those indices mi of M that correspond to non-zero bi.

3 πM,B = {π(mi) | i ∈ {1, . . . , n} and bi = 1}
4 return min{πM,B(k) + 1}

Algorithm 4: multipleLiftPerm(π,R).

1 Input: Permutation π; R with |R| = n.
2 Output: (d + n)-dim. permutation π′.
3 R ← sorted(R) /* sorting array R in ascending order */
4 for i ∈ {1, 2, . . . n} do
5 R[i] = R[i] + i − 1
6 end
7 π′ = π /* Initialization */
8 for i ∈ {1, . . . n} do
9 π′ = liftPerm(π′, R[i]) /* Calling Algorithm 1 with π = π′ and

r = R[i] */

10 end
11 return π′

Algorithm 5: multipleLiftHash(M,π,B, hold).

1 Input: hold := minHashπ(X), permutation π, M and B.
2 Output: hnew := multipleLiftHash(M,π,B, hold).
3 Let πM := {π(m) : m ∈ M}.
4 aM = partialMinHash(π,M,B)
5 hnew = min (hold + |{x | x ∈ πM and x ≤ hold}|, aM ) /* Picking the

minimum between partialMinHash and shifted value of hold.
*/

6 return hnew
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Algorithm 5 takes hold, M,B, and π as input, and outputs the updated sketch
hnew. Algorithm 5 uses Algorithm 3 to obtain the value of partialMinHash –
minimum π value restricted to the inserted indices only with inserted bit value
1, from which it obtains multipleLiftHash for the updated input. Algorithm 4
is implicit and is used to prove the correctness of Algorithm 5. Algorithm 4
takes the permutation π and M as input, and outputs a (d + n)-dimensional
permutation π′

M which satisfies the condition stated in Equation (1) for X,
with |X| ≤ k. We show this in Theorem 5. Then in Theorem 6, we show that
hnew = minHashπ′

M
(X ′). As π′

M satisfies, the condition stated in Equation (1)
for sparse X, then due to Equation (2) and [5] the sketch of data points obtained
from Algorithm 5 approximates the Jaccard similarity.

Example 4 Suppose X = [1, 0, 0, 1, 0, 1, 0] and π = [6, 3, 1, 7, 2, 5, 4] are input
point and original permutation, respectively. Then the value of hold is 5. Let
M = [2, 4] and B = [0, 1]. Thus, in this case π′

M = [7, 3, 4, 1, 8, 9, 2, 6, 5] and
X ′ = [1, 0, 0, 0, 1, 1, 0, 1, 0]. Consequently we have, partialMinHash(π,M,B) =
2 < hold+|{x | x ∈ πM and x ≤ hold}| = 5+1 = 6. Therefore, minHashπ′

M
(X ′) =

2.

We have the following theorems for the correctness of the algorithms pre-
sented in this subsection. A proof of the Theorem 5 follows similarly to the
proof of Theorem 2 along with the probability union bound, and the proof of
Theorem 6 is a generalization of proof of Theorem 3.

Theorem 5 Let π be a minwise independent permutation. Let M =
{m1, . . . ,mn} such that mi is chosen uniformly at random from {1, . . . , d}. Then
for any X ∈ {0, 1}d with |X| ≤ k, the permutation π′

M obtained from Algorithm 4
satisfies the condition stated in Equation (1) of Definition 1, with probability
1 − O(kn/d).

Theorem 6 Let π′
M be the (d + n)-dimensional permutation outputted by Algo-

rithm 4, if we set R = M . Then, the sketch obtained from Algorithm 5 is
exactly the same as the sketch obtained with the permutation π′

M on X ′, that
is, multipleLiftHash(π,M,B, hold) = minHashπ′

M
(X ′).

Along similar lines, we give algorithms for single and multiple-feature dele-
tions. Due to space limit, we defer it to Section 4 of the full version of this
paper [21].

3 Experiments

Hardware Description: CPU model name: Intel(R) Xeon(R) CPU @ 2.20
GHz; RAM:12.72 GB; Model name: Google Colab.

Datasets and Baselines: We perform our experiments on “Bag-of-Words”
representations of text documents [17]. We use the following datasets: NYTimes
news articles (number of points = 300000, dimension = 102660), Enron emails
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(number of points = 39861, dimension= 28102), and KOS blog entries (number
of points = 3430, dimension = 6960).

We consider the binary version of the data, where we focus on the pres-
ence/absence of a word in the document. For our experiments, we considered a
random sample of 500 points from the NYTimes and 2000 points for Enron and
KOS.

We compare the performance of our algorithms multipleLiftHash and
multipleDropHash with respect to running minHash from scratch on the updated
dimension, and we refer to it as vanilla minHash. We also note the performance
of sequential versions of single feature insertion/deletion algorithms – liftHash
and dropHash, respectively. We give implementation details of the baseline algo-
rithms as the following link https://tinyurl.com/y98yh6k3.

Table 3. Speedup of our algorithms w.r.t their vanilla minHash version

Experiment Method NYTimes Enron KOS

Max. Avg. Max. Avg. Max. Avg.

Feature multipleLiftHash 54.91× 51.96× 9.61× 9.17× 24.4× 23.11×
Insertions liftHash 91.23× 87.38× 13.96× 12.66× 35.00× 35.50×
Feature multipleDropHash 109.5× 105.31× 18.6× 17.01× 46.02× 43.94×
Deletions dropHash 78.34× 72.79× 15.95× 14.89× 38.24× 35.71×

Fig. 1. Comparison among liftHash, multipleLiftHash, and vanilla minHash on the
task of feature insertions. Vanilla minHash corresponds to computing minHash on the
updated dimension. We iteratively run liftHash n times, where n is the number of
inserted features

https://tinyurl.com/y98yh6k3
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Fig. 2. Comparison among dropHash, multipleDropHash, and vanilla minHash on fea-
ture deletions. We iteratively run dropHash n times, where n is the number of deleted
features

3.1 Experiments for Feature Insertions

We use two metrics for evaluation: a) RMSE: to examine the quality of the sketch,
and b) running time: to measure the efficiency. We first create a 500 dimensional
minHash sketch for each dataset using 500 independently generated permuta-
tions. Consider that we have a set of n random indices representing the locations
where features need to be inserted. For each position, we insert the bit 1 with
probability 0.1 and 0 with probability 0.9. We then run the liftHash algorithm
(Algorithm 2) after each feature insertion; we repeat this step until n feature
insertions are done. This gives a minHash sketch corresponding to the liftHash
algorithm. We again run our multipleLiftHash algorithm (Algorithm 5) on the
initial 500 dimensional sketch with the parameter n. We compare our methods
with vanilla minHash by generating a 500 dimensional sketch corresponding to
the updated datasets after feature insertions.

For computing the RMSE, our ground truth is the pairwise Jaccard similarity
on the original full-dimensional data. We measure it by computing the square
root of the mean (over all pairs of sketches) of the square of the difference between
the pairwise ground truth similarity and the corresponding similarity estimated
from the sketch. A lower RMSE is an indication of better performance. We
compare the RMSE of our methods with that of vanilla minHash by generating
a fresh 500 dimensional sketch. We summarise our results in Fig. 1.

Insights: Both of our algorithms offer comparable performance (under RMSE)
with respect to running minHash from scratch on the updated dimension. That
is, our estimate of the Jaccard similarity is as accurate as the one obtained by
computing minHash from scratch on the updated dimension. Simultaneously, we
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obtain significant speedups in running time compared to running minHash from
scratch. In particular, the speedup for multipleLiftHash is noteworthy (Table 3).

3.2 Experiments for Feature Deletion

We use the same metric as feature insertion experiments – RMSE and running
time. We first create a 500 dimensional minHash sketch for each dataset using
minHash. Suppose we have a list of n indices that denote the position where
features need to be deleted. After each feature deletion, we run the dropHash
algorithm (discussed in Section 4.1 of [21] - full version of this paper). We repeat
this step n times. This gives a minHash sketch corresponding to the dropHash
algorithm. We again run our multipleDropHash algorithm (discussed in Section
4.2 of [21] - full version of this paper) on the initial 500 dimensional sketch with
the parameter n. We compare our results with vanilla minHash by generating a
fresh 500 dimensional sketch on the updated dataset. We note the RMSE and
running time as above. We summarise our results in Fig. 2.

Insights: Again, both our algorithms offer comparable performance (under
RMSE) with respect to running minHash from scratch. Similar to the previ-
ous case, we obtained a significant speedup in running time w.r.t. computing
minHash from scratch. In particular, the speedup obtained in multipleDropHash
is quite prominent. We summarise a numerical speedup in Table 3.

Remark 3 Our current implementation of multipleLiftHash makes multiple
passes over indices to be inserted, whereas multipleDropHash makes only one
pass over the deleted indices. This is reflected in higher speedup values for
multipleDropHash in Table 3. We believe an optimized implementation for
multipleLiftHash would further improve the speedup.

4 Conclusion and Open Questions

We present algorithms that make minHash adaptable to dynamic feature inser-
tions and deletions of features. Our proposals’ advantage is that they do not
require generating fresh permutations to compute the updated sketch. Our
algorithms take the current permutation (or its representation using universal
hash function [10]), minHash sketch, position, and the corresponding values of
inserted/deleted features and output updated sketch. The running time of our
algorithms remains linear in the number of inserted/deleted features. We com-
prehensively analyse our proposals and complement them with supporting exper-
iments on several real-world datasets. Our algorithms are simple, efficient, and
accurately estimate the underlying pairwise Jaccard similarity. Our work leaves
the possibility of several interesting open questions: (i) extending our results for
dense datasets in the case of feature insertions; (ii) extending our algorithms for
the case when features are inserted/deleted adversely; (iii) improving our algo-
rithms when we have prior information about the distribution of features; for
example, features distribution follows Zipf’s law etc.; (iv) improving theoretical
guarantees and obtaining further speedups by optimizing our algorithms.
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