
Is Quantized ANN Search Cursed? Case
Study of Quantifying Search and Index

Quality

Gylfi Þór Guðmundsson(B) and Björn Þór Jónsson

Reykjavik University, Menntavegur 1, 102 Reykjavik, Iceland
{gylfig,bjorn}@ru.is

Abstract. Traditional evaluation of an approximate high-dimensional
index typically consists of running a benchmark with known ground
truth, analyzing the performance in terms of traditional result quality
and latency measures, and then comparing those measures to compet-
ing index structures. Such analysis can give an overall indication of the
suitability of the index for the application that the benchmark repre-
sents. When the index inevitably fails to return the sought items for
some queries, however, this methodology does not help to explain why
the index fails in those cases. Furthermore, when considering many dif-
ferent parameter settings, the process of repeatedly indexing the entire
collection is prohibitively time-consuming. In this paper, we define three
causes for failures in hierarchical quantized search. We show that the
two failure cases that relate to the index can be evaluated and quantified
using only the index structure and ground-truth data. In our evalua-
tion, we use eCP, a lightweight algorithm that builds the index hierarchy
top-down a priori without any costly segmentation of the dataset, and
show that significant insight can be gained into the quality of the index
structure, or lack thereof.

Keywords: High-dimensionsional indexing · Hierarchical vectorial
quantization · Evaluation methodology

1 Introduction

Approximate near-neighbour search techniques (ANN) are used to accomplish
efficient similarity search over a large volume of high-dimensional data. To eval-
uate such a search engine, we need data and queries where we know the “correct
answers,” also known as the ground-truth. The evaluation process can then be
best described as “proof by doing” as we first instantiate the search engine by
indexing the evaluation data and then use the queries in the ground-truth to
run ANN search and calculate metrics such as precision, recall and mAP. This
“full-scale” approach is not only time consuming but also inadequate, as when
the search fails those metrics neither explain why nor quantify by how much.

Today’s state-of-the-art large scale ANN algorithms are based on proxim-
ity graph algorithms [7], which are very costly to construct. Compression-based
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
O. Pedreira and V. Estivill-Castro (Eds.): SISAP 2023, LNCS 14289, pp. 163–170, 2023.
https://doi.org/10.1007/978-3-031-46994-7_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-46994-7_14&domain=pdf
http://orcid.org/0000-0003-0846-6617
http://orcid.org/0000-0003-0889-3491
https://doi.org/10.1007/978-3-031-46994-7_14


164 G. Þ. Guðmundsson and B. Þ. Jónsson

techniques [6] are also popular, but they struggle with billions of features. In
comparison, older tree-like hierarchical vectorial quantizers (HVQ) can be con-
structed quickly, have a lower memory footprint, and have been used at Web-
Scale, but they give lower quality results. It is therefore of interest to study
where HVQ approaches fail, to understand whether they can be improved to be
more competitive.

The goal of the quantizer is to partition the data collection C into small
segments. Let us define r as the representative for each such segment and R as
the set of all representatives. At indexing time, segmentation is based on finding
the most similar r ∈ R for each vector v in the dataset. Then, at search time,
one (or a few) most similar r ∈ R are identified and only those segments make
up the search result. Let us define the truly most similar representative r ∈ R
as rt and a ranked list result as LR. Finding rt requires a scan over R, but as R
is often large, an ANN search using a tree-like hierarchy is used instead. Let us
denote the most similar representative found via the index as ri and a ranked
list result as Li.

For a query q, let us define Nq as the set of its true neighbours. Nq can be
said to form a neighbourhood and the density of data in this region, e.g. whether
the near-neighbour relation is reciprocated or not, is a good indicator of how
difficult it is to match q with its Nq. A “good” neighbourhood is when q and its
Nq are dense and well represented, i.e., Nq falls into one (or a few) segment(s)
similar to q. A “bad” neighbourhood is either a dense grouping that has no good
representation, or a neighbourhood so sparse that some of Nq fall into segments
that are far down the list of representatives most similar to q.

We can now identify three possible causes for HVQ search failures:

1. Representation Failure (RF) occurs when no representative r ∈ R is a
clear best option for a given neighbourhood, i.e., for both q and its Nq. In such
a case, the vectors are likely to be fragmented over many segments, causing
the ANN search to fail despite correctly indexing the vectors, i.e., for each
n ∈ Nq, rtq �= rtn.

2. Index Hierarchy Failure (IHF) occurs when the index is not assigning
vectors correctly. That is, for a given vector v the most similar segment iden-
tified by the index, riv, does not match the most similar representative rtv
found by scanning all segment representatives R. Note that IHF can occur
both when indexing the data and when using the index to identify what
segment(s) should be used in the ANN search.

3. Segment Search Failure (SSF) occurs when the ANN search fails to find
q’s most similar v ∈ C despite looking in the right segment. This can happen
in systems that compress, aggregate, or otherwise approximate the search
process inside segments.

Evaluating RF is all about looking at the neighbourhood. Using the ground
truth for query q we obtain the ranked list of most similar segment representa-
tives for q, denoted by LR

q . For each neighbour n in Nq, from the ground truth,
we then get the most similar segment rtn. We can now quantify RF by examining
how far down the list LR

q we find rtn. Note that getting the truly most similar



Is Quantized ANN Search Cursed? 165

segments is costly as it requires a full scan of all index segments r ∈ R. To eval-
uate IHF, we need to know a) the index-assigned segment riv and b) the ranked
list of most similar segments LR

v for the vector v. Quantifying IHF is then based
on how far down the list LR

v we find riv. If neither RF nor IHF occurred, but the
ground truth indicates that the result is not correct, then SSF has occurred.

In this paper, we report on a case study of the eCP algorithm, a cluster-
based HVQ. Since eCP reads whole clusters, SSF does not occur. Our results
indicate that RF is much more prevalent with eCP than IHF. Furthermore, we
demonstrate that while enhancing the representation with k-Means clustering
can be done 50x faster by using only the index, the impact on RF is minimal.

The remainder of this paper is structured as follows. In Sect. 2 we explain
our evaluation methods and metrics. Section 3 then present the results of our
experiments, and finally we conclude the paper in Sect. 4.

2 Evaluating Indexed ANN Search Failures

Our aim is to understand and quantify how and why the ANN search, using
HVQ, fails. The algorithm we choose to evaluate in this initial case study is called
Extended Cluster Pruning (eCP) [2]. eCP is a simple yet versatile HVQ, which
was initially developed for content-based image retrieval using SIFT features [4]
and has been extensively evaluated at large scale [3]. The index construction
is very efficient as the index is built a priori in a single top-down pass using
randomly sampled vectors from the dataset. This is a great advantage as that
means we can evaluate the performance of eCP using just the index and a ground-
truth benchmark, without doing any of the costly segmenting. To be clear, eCP
makes no effort to improve on the randomly chosen segment representatives. To
compensate for potentially poor representation, however, it does support search-
expansion both inside the index hierarchy as well as for the number of segments
to retrieve and scan. In this case study, we consider search expansion at query
time, processing SE clusters to find near neighbours. We now explain how we
evaluate and quantify the possible causes for HVQ search failures. Since eCP is
not susceptible to SSF, we can also estimate recall using only the index structure.

2.1 Evaluating Representation Failure (RF)

To evaluate the RF we need a neighbourhood (q and Nq, both obtained from
the ground truth) and eCP’s set of representatives R. By scanning R we derive
LR
q , the ranked list of q’s most similar representatives, as well as the optimal

assignment rtn for each n ∈ Nq. If rtn is at the top of LR
q , we know that q and n

are in the same segment. How far down the list we find each rtn tells us how far
the ANN search will need to expand such that it finds that neighbour. Remember
that q has many neighbours, so we choose to average this rank, creating a metric
we call Average Rank (AR). Furthermore, we also add a second metric that is
based on counting how many neighbours have a rank lower than some value X.
We call his metric Optimal Recall (OR) as if we set X equal to the SE parameter
used, it tells us exactly what portion of Nq we can hope to find in an ANN search.



166 G. Þ. Guðmundsson and B. Þ. Jónsson

2.2 Evaluating Index Hierarchy Failure (IHF)

To evaluate and quantify IHF, we consider a set of vectors v and, as before, we
scan R to derive LR

v . Then, using the index structure, we derive the assigned
representative riv, for a given SE setting. The metrics we use to quantify IHF is
based on looking at where in the ranked list LR

v we find the index-assigned riv.
If riv = rtv, where rtv is the segment at the top of LR

v , then the index assignment
is optimal. Otherwise, we can use the rank of riv in LR

v to measure how far off
the index assignment is. In our experiments, we report a) how many optimal
assignments we have and b) how many are within SE of the optimal. This gives
a clear indication of how well the index is doing.

2.3 Evaluating Recall in Absence of Segment Search Failure (SSF)

eCP is not susceptible to SSF, as the ANN search identifies and then scans whole
segment(s) to create the final k-NN result. This allows us to calculate what the
recall of eCP’s ANN search would be using only the index and ground-truth
data. For each query q, we obtain Li

q, the ranked list of the SE most similar
representatives for segments that should be scanned. By looking up each n ∈ Nq

from the ground truth to get rin, we can compute recall by counting how many
of the rin assignments are anywhere in Li

q.

3 Evaluation

3.1 Setup

Dataset and Ground-Truth: We use BIGANN [1] in our evaluation. The full
set has 1B 128-dimensional SIFT features, but we use the 100M subset as this is
sufficient to build a large eCP index. The original ground-truth consists of 10k
queries with 1k NNs for each, but to make the computational load manageable
we use a subset that consists of the first 50 queries along with all of their 1k near
neighbours, for 50k vectors in total. We should note that BIGANN is a difficult
dataset. The baseline recall given for track 1 of the BigANN benchmark using
the BIGANN data is 63.5% recall and the best competitors got 71.4% [7].

Indices and Search Settings: Guidelines exist regarding picking the “right”
number of clusters to build an eCP index. As we do not intend to build the full
search engine, however, we build four different 3-level deep indices using R= 40k,
80k, 160k and 320k vectors to study the impact of index size. The R vectors are
randomly sampled from the 100M SIFT subset. In all experiments we perform
search expansion, with maximum SE = 20, but in the analysis we consider the
impact of varying the SE parameter from 1 to 20..

Hardware and Software: Experiments are all run on a single machine with an
Intel i9-7900X CPU, 64 GiB of RAM, and a 1 TB Samsung 960 Pro SSD disk.
The OS is Ubuntu 18_04 and we use Spark 2.4.5 with Java–openJDK version
11.0.17 and Scala version 2.11.12. Note that the original SIFT features are 128
dimensions of unsigned 8 bits (0–255), but since Java does not support unsigned
data, we scale the values to be Byte (-128 to 127).



Is Quantized ANN Search Cursed? 167

Table 1. Evaluation of Representation Failure (RF). Average Rank (AR) is the average
location of rtn in LR

q across all 50k queries. Optimal Recall (OR) counts how many of
the 1k neighbours have a rank lower than SE = 20, averaged across 50 queries

Index AR OR

40k 55.76 602.54
80k 88.78 547.42
160k 132.12 489.96
320k 222.35 408.82

3.2 Experiment 1: Representation Failure (RF)

In this experiment we use the 50 queries, each having 1k NNs, and evaluate on
all 4 index sizes. In Sect. 2.1 we defined the two metrics, AR and OR, that we
report. The results are presented in Table 1.

Here, AR is the average rank of the Nq=1k vectors, averaged over all 50
queries. The 40k index has AR of ∼56 while 320k has AR of ∼222. This implies
that adding more clusters seems to give the “bad” neighbourhoods more options,
spreading the NNs even further, making it even harder to match q with its Nq.

The OR metric is even more interesting as it essentially indicates the best-
case recall for a given search expansion. Here, we average the OR metric over
the 50 queries, using SE = 20. The 40k index scores ∼603 out of 1k queries,
while the 320k scores ∼409, which can be read as “optimal recall” of 60.3% and
40.9% respectively.

While interesting in itself, the true value of the OR is that it allows us to put
the ANN search results of later experiments into context. The main conclusion
we can draw from this experiment, however, is that the RF is significant.

3.3 Experiment 2: Index Hierarchy Failure (IHF)

Here we focus on evaluating whether the index is able to assign vectors correctly.
From the index, we retrieve for each v of the 50k NN vectors riv and we also scan
R to get LR

v , each vector’s ranked list of most similar representatives. The results
are presented in Fig. 1.

The x-axis indicates the search expansions used, while the y-axis shows the
average across the 50k queries. As was stated in Sect. 2.2 we report two metrics.
The first counts how many of the index assignments are optimal, i.e., riv = rtv,
which is shown with the solid lines. The second metric, reported with the dotted
lines, counts how many index assignments are within SE of the optimal

Our first observation is that the results are almost identical despite the largest
index (320k) having 8 times more segments than the smallest (40k). Second,
we observe that without any search expansion (SE = 1), the indices are only
correctly assigning about 25–30% of vectors. As we expand the search, this ratio
grows and at SE = 5, the indices already retrieve over 50%. The reason why the



168 G. Þ. Guðmundsson and B. Þ. Jónsson

Fig. 1. Evaluation of Index Hierarchy Failures (IHF). The x-axis shows the expansion
setting, SE, while the y-axis shows the correctly assigned NNs. Solid lines indicate
when riv = rtv while the dotted lines indicate that riv is in the top SE clusters of Li

q

top item of the ranked list improves, is that the search expansion is applied at
all levels of the index, reducing the branching errors at the upper levels.

Turning to the dotted lines, which show the neighbours correctly located in
the top SE clusters of the ranked list, we observe that they grow even faster. For
SE = 1, they are identical, but at SE = 5 more than 90% of assignments are
found. This means that at SE = 5, 50% of the neighbours are correctly assigned
and another 40% is within 5 of optimal assignment. What remains to be seen is
whether this is good enough for the ANN search.

Fig. 2. Evaluation of Recall. The x-axis shows the search expansion, SE, while the
y-axis shows the recall, averaged across the 50 queries

3.4 Experiment 3: Estimating Recall

Having investigated RF, producing a baseline for optimal recall, and investigated
IHF, we can now check how well the eCP indices actually do in an ANN search.



Is Quantized ANN Search Cursed? 169

As said in Sect. 2, this is done by searching for both q and Nq and checking
whether the n ∈ Nq assigned representative rin is in the ranked list of similar
representatives for the original query, Li

q, using search expansion parameter SE.
The results are plotted in Fig. 2.

We observe that, as expected, the recall degrades with index size and at first
glance the results are not impressive. The 40k index peaks at only 555 matches
(∼56% recall) and the 320k at 382 (∼38%). That is well below the 63.5% baseline
from [7]. But if consider the OR metric from the previous experiment (at our
maximum expansion), we observe that 40k index is in fact scoring ∼56% out
of a maximum of ∼60% and the 320k index at ∼38% out of a maximum of
∼40.9%. From this we can assert that despite eCP’s indexing hierarchy being
very simplistic, it is only responsible for a small fraction of the search failures.

Table 2. Evaluation of whether k-Means can improve RF and ANN recall. Results
shown are AR, OR, time the k-Means took and search results for 40k indices after the
given number of steps of k-Means

Steps AR OR Running time ANN Recall

KM0 (original) 55.76 602.54 n/a 555.26
KM1 (full) 50.30 657.76 ∼50h 606.82
KM1 (index) 53.04 648.32 48m 602.20
KM2 (index) 51.14 654.26 ∼2h 614.34
KM10 (index) 45.91 677.00 ∼10h 606.80

3.5 Experiment 4: Can K-Means Fix RF?

A maximum recall of 60% for the 40k index cannot be called a great result. A
common proposal to addressing representation is to run k-Means clustering. In
this section, we evaluate the impact of this using AR and OR. The results are
presented in Table 2.

The first line of the table repeats the data from previous experiments for ref-
erence, showing values for the original eCP index. The two following lines, with
KM1, represent one iteration of k-Means, assigning the entire 100m dataset using
the representatives only or using the index. Comparing to all representatives is
more precise but requires more than 4 trillion distance calculations, which took
about 50 h. In comparison, using the index to speed up the k-Means assignments
is more then 10x faster, taking only about 50min. We observe that while con-
sidering all representatives yields better results, a multi-step clustering process
is infeasible with that approach even at this moderate scale.

The final two lines show the results from running 2 and 10 steps of the k-
Means process, respectively. We observe that while both AR and OR improve
slightly, recall eventually decreases, meaning that the positive impact of k-Means
is moderate and RF remains a major issue of the eCP index.



170 G. Þ. Guðmundsson and B. Þ. Jónsson

4 Conclusions

In this paper we have investigated ANN search using a hierarchical vectorial
quantizer. We have shown that we can evaluate the quality of a) the segment
representatives, b) the index hierarchy and c) the ANN search for both successful
(recall) and failed queries. This we can do using only the index structure and
the evaluation ground-truth data. Using algorithms such as eCP, that build their
index without any actual segmenting/clustering of the full dataset, means we
can perform index evaluation with minimal effort.

When we observe poor ANN search results, such as 58% recall, the inclination
is to blame the indexing hierarchy, especially when it is as simple and naive as
that of the eCP algorithm. By measuring the representation failure, however, we
could put the index assignments into perspective. As it turns out, the eCP index
itself is only responsible for a fraction of the failed queries.

We also evaluated whether k-Means clustering could alleviate the represen-
tation issues but the results show that clustering at large scale a) is prohibitively
expensive, even when using the index to speed it up 10-fold, and b) only of a
marginal benefit.

What makes multi-layer similarity graph algorithms, such as HNSW [5],
obtain such high-quality results is that they address the representation prob-
lem by being highly selective when picking representatives at each layer in their
indexing/graph structure and by not limiting the possible search/scan to a fixed
region once hierarchy is traversed. However, they pay for this ability with the
added complexity, footprint, and high construction time.

References

1. Amsaleg, L., Jégou, H.: BIGANN: abillion-sized evaluation dataset, corpus-
texmex.irisa.fr. Accessed 2 June 2023

2. Gudmundsson, G.Þ., Jónsson, B.Þ., Amsaleg, L.: A large-scale performance study of
cluster-based high-dimensional indexing. In: Proceedings of the international work-
shop on Very-Large-Scale Multimedia Corpus, Mining and Retrieval (VLS-MCMR),
pp. 31–36 (2010)

3. Gudmundsson, G.Þ, Jónsson, B.Þ, Amsaleg, L., Franklin, M.J.: Prototyping a web-
scale multimedia retrieval service using spark. ACM Trans. Multimed. Comput.
Commun. Appl. (TOMM) 14(3s), 1–24 (2018)

4. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Com-
put. Vision (IJCV) 60, 91–110 (2004)

5. Malkov, Y., Ponomarenko, A., Logvinov, A., Krylov, V.: Approximate nearest neigh-
bor algorithm based on navigable small world graphs. Inf. Syst. 45, 61–68 (2014)

6. Matsui, Y., Uchida, Y., Jégou, H., Satoh, S.: A survey of product quantization. ITE
Trans. Media Technol. Appl. (MTA) 6(1), 2–10 (2018)

7. Simhadri, H.V., et al.: Results of the NeurIPS 2021 challenge on billion-scale approx-
imate nearest neighbor search. In: NeurIPS 2021 Competitions and Demonstrations
Track, pp. 177–189. PMLR (2022)


	Is Quantized ANN Search Cursed? Case Study of Quantifying Search and Index Quality
	1 Introduction
	2 Evaluating Indexed ANN Search Failures
	2.1 Evaluating Representation Failure (RF)
	2.2 Evaluating Index Hierarchy Failure (IHF)
	2.3 Evaluating Recall in Absence of Segment Search Failure (SSF)

	3 Evaluation
	3.1 Setup
	3.2 Experiment 1: Representation Failure (RF)
	3.3 Experiment 2: Index Hierarchy Failure (IHF)
	3.4 Experiment 3: Estimating Recall
	3.5 Experiment 4: Can K-Means Fix RF?

	4 Conclusions
	References


