
Class Representatives Selection
in Non-metric Spaces for Nearest

Prototype Classification

Jaroslav Hlaváč1,2(B) , Martin Kopp1 , Jan Kohout1,3, and Tomá Skopal2

1 TD&R Data Science, Cisco Systems, Prague, Czech Republic
hlavac.jaroslav@gmail.com

2 Faculty of Mathematics and Physics, Charles University, Prague, Czech Republic
3 TruU, Prague, Czech Republic

Abstract. The nearest prototype classification is a less computation-
ally intensive replacement for the k-NN method, especially when large
datasets are considered. Centroids are often used as prototypes to rep-
resent whole classes in metric spaces. Selection of class prototypes in
non-metric spaces is more challenging as the idea of computing centroids
is not directly applicable. Instead, a set of representative objects can be
used as the class prototype.

In this paper, we present CRS, a novel memory and computation-
ally efficient method that finds a small yet representative set of objects
from each class to be used as prototype. CRS leverages the similarity
graph representation of each class created by the NN-Descent algorithm
to pick a low number of representatives that ensure sufficient class cov-
erage. Thanks to the graph-based approach, CRS can be applied to any
space where at least a pairwise similarity can be defined. In the exper-
imental evaluation, we demonstrate that our method outperforms the
state-of-the-art techniques on multiple datasets from different domains.

Keywords: Class Representation · Nearest Prototype Classification ·
Prototype Selection

1 Introduction

The k-NN classifiers are often used in many application domains due to their
simplicity and ability to trace the classification decision to a specific set of sam-
ples. However, their adoption is limited by high computational complexity and
memory requirements. Because contemporary datasets are often huge, contain-
ing hundreds of thousands or even millions of samples, computing similarity
between the classified sample and the entire dataset may be computationally
intractable.

In order to decrease computational and memory requirements, the nearest
prototype classification (NPC) method is commonly used, c.f. [1–3]. In NPC,
each class is represented by a prototype, that represents typical characteristics of
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
O. Pedreira and V. Estivill-Castro (Eds.): SISAP 2023, LNCS 14289, pp. 111–124, 2023.
https://doi.org/10.1007/978-3-031-46994-7_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-46994-7_10&domain=pdf
http://orcid.org/0009-0007-9653-1058
http://orcid.org/0000-0003-1832-2908
http://orcid.org/0000-0002-6591-0879
https://doi.org/10.1007/978-3-031-46994-7_10

112 J. Hlaváč et al.

the class. The classified sample is then compared just to the prototypes instead
of calculating similarity to the entire dataset. Therefore, the goal of prototype
selection is to find a memory-efficient representation of classes such that classi-
fication accuracy is preserved while the number of comparisons is significantly
reduced.

An intuitive prototype in a metric space can be a centriod. But even in
metric spaces a centroid is often not an optimal solution because a single point
does not represent the whole class well. Sometimes the centroid does not make
sense and in non-metric spaces (also called distance spaces [4]) it is not defined.
Such is the case in many application domains, where objects exist in space
where only a pairwise (dis)similarity is defined, e.g., bioinformatics [5], biometric
identification [6], or pattern recognition [7].

Our focus on non-metric spaces comes from the problem of behavioural clus-
tering of network hosts [8], where we need to quickly assign a network host to
a group of other hosts. A newly appearing network host in a computer network
needs to be quickly assigned to a correct host group (or a new group must be
created). The space we operate in is defined by the domains and IP addresses
that the whole network has communicated with in the previous sliding time win-
dow (e.g. day). The similarity we use is expensive to compute (see [8] for details)
as the dimension of the space is high and changes quickly.

Nevertheless, the problem of selecting a minimal number of representative
samples is of more general interest. Only a few methods have been developed
for non-metric scenarios, and to the best of our knowledge the only general (not
domain-specific) approach is selection of small subset of objects to represent
the whole class. The method is referred to as representative selection and the
representatives (selected objects), are used as a prototype. Several recent meth-
ods capable of solving representatives selection on non-metric spaces exist (i.e.
DS3 [9], δ-medoids [10]).

In this paper, we present a novel method to solve the problem of repre-
sentative selection – Class Representatives Selection (CRS). CRS is a general
method capable of selecting small yet representative subset of objects from a
class to serve as its prototype. Its core idea is fast construction of an approxi-
mate reverse k-NN graph and then solving minimal vertex cover problem on that
graph. Only a pairwise similarity is required to build the reverse k-NN graph,
therefore application of CRS is not limited to metric spaces.

To show that CRS is general and domain-independent, we present an exper-
imental evaluation on datasets from image recognition, document classification
and network host classification, with appealing results when compared to the
current state of the art. The code for CRS can be found at https://github.com/
jaroslavh/ceres.

The paper is organized as follows. The related work is briefly reviewed in the
next section. Section 3 formalises the representative selection as an optimization
problem. The proposed method is described in detail in Sect. 4. The experimental
evaluation is summarized in Sect. 5 followed by the conclusion.

https://github.com/jaroslavh/ceres
https://github.com/jaroslavh/ceres

Class Representatives Selection 113

2 Related Work

During the past years, significant effort has been made to represent classes in
the most condensed way. The approaches could be categorized into two main
groups.

The first group gathers all prototype generation methods [11], which create
artificial samples to represent original classes, e.g. [12,13]. The second group
contains the prototype selection methods. As the name suggests, a subset of
samples from the given class is selected to represent it. Prototype selection is a
well-explored field with many approaches, see, e.g. [14].

However, most of the current algorithms exploit the properties of the metric
space, e.g., structured sparsity [15], l1-norm induced selection [16] or identifica-
tion of borderline objects [17].

When we leave the luxury of the metric space and focus on situations where
only a pairwise similarity exists or where averaging of existing samples may
create an object without meaning, there is not much previous work.

The δ-medoids [10] algorithm uses the idea of k-medoids to semi-greedily
cover the space with δ-neighbourhoods, in which it then looks for an optimal
medoid to represent a given neighbourhood. The main issue of this method is
the selection of δ: this hyperparameter has to be fine-tuned based on the domain.

The DS3 [9] algorithm calculates the full similarity matrix and then selects
representatives by a row-sparsity regularized trace minimization program which
tries to minimize the rows needed to encode the whole matrix. The overall com-
putational complexity is the most significant disadvantage of this algorithm,
despite some proposed approximate estimation of the similarity matrix using
only a subset of the data.

The proposed method for Class Representatives Selection (CRS) approxi-
mates the topological structure of the data by creating a reverse k-NN graph.
CRS then iteratively selects nodes with the biggest reverse neighbourhoods as
representatives of the data. This approach systematically minimizes the number
of pairwise comparisons to reduce computational complexity while accurately
representing the data.

3 Problem Formulation

In this section, we define the problem of prototype-based representation of classes
and the nearest prototype classification (NPC). As we already stated in Intro-
duction, we study the prototypes selection in general cases, including non-metric
spaces. Therefore, we further assume that a class prototype is always specified
as (possibly small) subset of its members.

Class Prototypes. Let T be an arbitrary space of objects for which a pairwise
similarity function s : T×T → R is defined and let X ⊆ T be a set of (training)
samples. Let C = {C1, ..., Cm} be a set of classes of X such that Ci∩Cj = ∅,∀i �=
j and

⋃
Ci = X. Let Ci = {x1, x2, ..., xn} be a class of size n. For x ∈ Ci, let

114 J. Hlaváč et al.

us denote Uk
x the k closest samples to x, i.e., the set of k samples that have the

highest similarity to x in the rest of the class Ci \ {x}. Then the goal of the
prototype selection is to find a prototype of class Ci, Ri ⊆ Ci for each class such
that:

∀x ∈ Ci ∃ r ∈ Ri : x ∈ Uk
r (1)

In order to minimize computational requirements of NPC, we search for a
minimal set of class representatives R∗

i for each class, which satisfies the coverage
requirement (1):

R∗
i = arg min

|Ri|

{

r :
⋃

r∈Ri

Uk
r = Ci

}

(2)

Note that several sets might satisfy this coverage requirement.

Relaxed Prototypes. Finding class prototypes that fully meet the coverage
requirement (1) might pose a computational burden and produce unnecessar-
ily big prototypes. In most cases, covering the majority of the class objects
while leaving out a few outliers leads to a smaller prototype that still captures
the essential characteristics of a class. Motivated by this observation, we intro-
duce a relaxed requirement for class prototypes. We say that a set Ri ⊆ Ci is a
representative prototype of class Ci if the following condition is met:

∣
∣
∣
∣
∣

⋃

r∈Ri

Uk
r ∩ Ci

∣
∣
∣
∣
∣
≥ ε |Ci|, (3)

for a preset parameter ε ∈ (0, 1].
In further work, we replace the requirement (1) with its relaxed version (3)

with ε = 0.95. In case of need, the full coverage can be enforced by simply setting
ε = 1. Even in the relaxed version, we seek a prototype with minimal cardinality
which satisfies (3).

Nearest Prototype Classification. Having the prototypes for all classes R =
{R1, ..., Rm}, an unseen sample x is classified to the class with the most similar
prototype R∗ ∈ R. R∗ is the prototype containing representative r with the
highest similarity to x.

r∗ = arg max
r∈⋃

Ri

s(x, r).

Note that in our research we take into account only the closest representative
r∗. This choice comes from previous research [8] where 1-NN was yielded the best
results.

4 Class Representatives Selection

In this section, we describe our method CRS for building the class prototypes.
The entire method is composed of two steps:

Class Representatives Selection 115

1. Given a class C and a similarity measure s, a reverse k-NN graph G is con-
structed from objects C using the pairwise similarity s.

2. Graph G is used to select the representatives that satisfy the coverage require-
ment while minimizing the size of the class prototype.

The simplified scheme of the whole process is depicted in Fig. 1.

Fig. 1. Illustration of the steps of CRS algorithm. (a) Visualization of a toy 2D class.
(b) 2-NN graph created from the class. (c) Reverse graph created from the graph
depicted in (b). Node C’s reverse neighbourhood covers A, B, D, E and thus would be
a good first choice for a representative. Depending on the coverage parameter ε, the
node F could be considered an outlier or also added to the representation

4.1 Building the Prototype

For the purpose of building the prototype for a class C a weighted reverse k-NN
graph G−1

C is used. It is defined as G−1
C = (V,E,w), where V is the set of all

objects in the class C, E is a set of edges and w is a weight vector. An edge
between two nodes vi, vj ∈ Vi�=j exists if vi ∈ Uk

vj
, while the edge weight wij is

given by the similarity s between the connected nodes, wij = s(vi, vj).
The effective construction of such graph is enabled by employing the NN-

Descent [18] algorithm, a fast converging approximate method for the k-NN
graph construction. It exploits the idea that “a neighbour of a neighbour is
also likely to be a neighbour” to locally explore neighbouring nodes for better
solutions. NN-Descent produces a k-NN graph GC . The reverse k-NN graph G−1

C

is then obtained from GC by simply reversing directions of the edges in GC .
Omitting all edges with weight lower than τ from the reverse k-NN graph G−1

C

ensures that very dissimilar objects do not appear in the reverse neighborhoods:

(∀y ∈ Ux : s(x, y) ≥ τ)

The selection of representatives is treated as a minimum vertex cover problem
on G−1

C with omitted low similarity edges. We use a greedy algorithm which

116 J. Hlaváč et al.

Algorithm 1: Pseudocode for Class Representatives Selection
Data: class C = {c1, ..., cn}, similarity s, coverage threshold ε, size of

neighbourhood k, weight threshold τ
Result: set of selected representatives R ⊆ C

1 GC = NN-Descent(C, s, k)

2 G−1
C = ReverseGraph(GC , τ)

3 Z = C //set of uncovered objects
4 R = {} //set of representatives

5 while |C|−|Z|
|C| < ε do

6 r = arg max
c

(|Uc|, c ∈ Uc)

7 Z = Z \ Ur

8 R = R ∪ {r}
9 end

10 return R

iteratively selects objects with maximal |U | as representatives and marks them
and their neighbourhood as covered. The algorithm stops when the coverage
requirement (3) is met.

The whole algorithm is summarized in Algorithm 1.

4.2 Parameter Analysis

This subsection summarizes the parameters of the CRS method.

– k: number of neighbours for the k-NN graph creation. When k is high, each
object covers more neighbours, but on the other hand it also increases the
number of pairwise similarity calculations. This trade-off is illustrated for
different values of k in Fig. 2. Due to the large impact of this parameter on
properties of the produced representations and computational requirements,
we further study its behaviour in more detail in a dedicated experiment in
Sect. 5.

– ε: coverage parameter for the relaxed coverage requirement as introduced in
Sect. 3. In this work, we set it to 0.95 which is a common threshold in outlier
detection. It ensures that the vast majority of each class is still covered but
outliers do not influence the prototypes.

– τ : threshold on weights, edges with lower weights (similarities) are pruned
from the reverse neighbourhood graph G−1

C (see Sect. 4.1). By default it is
automatically set to approximate homogeneity h(C) of the class C defined
as:

h(C) =
1

|C|
∑

xi,xj∈C,i �=j

s(xi, xj) (4)

Additionally, the NN-Descent algorithm, used within the CRS method, has
two more parameters that specify its behaviour during the k-NN graph creation.
First, the δnn parameter which is used for early termination of the NN-Descent

Class Representatives Selection 117

Fig. 2. In CRS the number of selected representatives and the quality of representation
are both determined by k. For low ks the NN-Descent subsamples dense areas of the
class too much and the information about neighbours is not propagated (CRS-5). As
each object explores a bigger neighbourhood for higher k, the number of other objects
it represents grows, therefore the number of representatives decreases. On the other
hand, with less representatives, some information about the structure is lost, as in the
case of k = 30

algorithm when the number of changes in the constructed graph is minimal. We
set it to 0.001, as suggested by the authors of the original work [18]. Second, the
sample rate ρ controls the number of reverse neighbours to be explored in each
iteration of NN-Descent. Again, we set it to 0.5 to speed up the k-NN creation
while not diverging too far from the optimal solution.

5 Experiments

This section presents experimental evaluation of the CRS algorithm on multiple
datasets from very different domains that cover computer networks, text docu-
ments processing and image classification. First, we compare the CRS method
to the state of the art techniques DS3 [9] and δ-medoids [10] on the nearest
prototype classification task on different datasets. Then, we study the influence
of the parameter k (which determines the number of nearest neighbours used for
building the underlying k-NN graph).

We set δ in the δ-Medoids algorithm as approximate homogeneity h (see
Eq. 4) calculated from random 5% of the class. Setting δ is a difficult problem
not explained well in the original paper. From our experiments, homogeneity is
a good estimate. The best results for DS3 we obtained with p = inf and α = 3,
while creating the full similarity matrix for the entire class. We tried α = 0.5
which was suggested by the authors, but the algorithm always selected only one
representative with much worse results. Finally, for CRS we set ε = 0.95, τ = h
(to be fair in comparison with δ-medoids). By far the most impactrul parameter
is k. Section 5.4 looks at the selection in depth. A good initial choice for classes
with 1000 or more samples is k = 20 and k = 10 works well for smaller classes.

118 J. Hlaváč et al.

5.1 Datasets

In this section we briefly describe the three datasets used in the following sub-
sections for experimental comparison of individual methods.

MNIST Fashion. The MNIST Fashion [19] is a well established dataset for
image recognition consisting of 60000 black and white images of fashion items
belonging to 10 classes. It replaced the overused handwritten digits datasets in
many benchmarks. Each image is represented by a 784 dimensional vector. In
case of this dataset, the cosine similarity was used as the similarity function s.

20Newsgroup. 20Newsgroup dataset is a benchmark dataset for text docu-
ments processing. It is composed of nearly 20 thousand newspaper documents
from 20 different classes (topics). The dataset was preprocessed such that each
document is represented by a TF-IDF frequency vector of dimension 130,107.
We used the cosine similarity which is a common choice in the domain of text
documents processing as a similarity function s.

Private Network Dataset. Network dataset is the main motivation for our
research. It was collected on a corporate computer network, originally for the
purpose of network host clustering based on their behaviour [8]. The work defines
a specific pair-wise similarity measure for network devices based on visited net-
work hosts which we adopt for this paper. The dataset consists of all network
communication collected on more than 5000 network hosts for one day (288 5-
minute windows). This dataset resides in the space of all possible hostname and
port number combinations. The dimension of this space is theoretically infinite,
hence we work with a similarity that treats this space as non-metric.

For the purposes of the evaluation, classes smaller than 10 members were not
considered, since such small classes can be easily represented by any method.
The sizes and homogeneities of the classes can be found in Table 2. In contrast
to the previous datasets, the sizes and values of homogeneity of classes in the
Network dataset differ significantly, as can be seen in Table 2.

5.2 Evaluation of Results

In this section we present the results for each dataset in detail. The main results
are summarized in Table 1. For a more complete picture we also included results
for selecting a random 5% and all 100% of the class as a prototype. When
evaluating the experiments, we take into account both precision/recall of nearest
prototype classification and the percentage of samples selected as prototypes.
Each method was run 10 times over a 80%/20% train/test split of each dataset.
The results were averaged and the standard deviations of precisions and recalls
were smaller than 0.005 for all methods, which shows stability of all algorithms.
The only exception was δ-medoids on Network dataset where the precisions
fluctuated up to 0.015.

Class Representatives Selection 119

Table 1. Average precision/recall values for each method used on each dataset. The
table also shows the percentage of the class that was selected as a prototype. CRS
outperforms both DS3 and δ-medoids on all datasets. In the network dataset CRS-k10
outperforms event the full-100% baseline as CRS does not try to cover outliers (in this
case network hosts being very different from the rest of the class)

Method MNIST Fashion 20Newsgroup Network

δ-medoids 0.765/0.737 (10.45%) 0.362/0.3 (7.57%) 0.992/0.952 (7.01%)

DS3 0.727/0.715 (0.19%) 0.291/0.291 (0.57%) 0.853/0.956 (3.04%)

random-5% 0.780/0.767 (5.0%) 0.33/0.435 (5.0%) 0.94/0.959 (5.0%)

full-100% 0.849/0.846 (100.0%) 0.56/0.548 (100.0%) 0.987/0.963 (100.0%)

CRS-k10 0.823/0.817 (11.94%) 0.45/0.391 (11.28%) 0.992/0.973 (6.53%)

CRS-k20 0.813/0.806 (8.56%) 0.377/0.329 (6.58%) 0.972/0.976 (3.21%)

CRS-k30 0.806/0.798 (6.1%) 0.344/0.295 (4.83%) 0.983/0.968 (2.38%)

Table 2. Sizes and homogeneity for each class from network dataset. Classes with size
lower than 10 were removed from the dataset

Class A B C D E F G H I J K L M N

Size 1079 2407 75 2219 346 59 248 49 52 108 218 44 42 32

Homogeneity 0.58 0.14 0.84 0.64 0.60 0.92 0.34 0.84 0.69 0.35 0.78 0.35 0.79 1.0

As we have shown in the experiment in Sect. 5.4, CRS can be tuned by the
parameter k to significantly reduce the number of representatives and maintain a
high precision/recall values. The DS3 method selects a significantly lower number
of representatives than any other method. However, it is at the cost of lower
precision and recall values.

MNIST Fashion. The average homogeneity of a class in the MNIST Fashion
dataset is 0.76. This corresponds with a slower decline of the precision and recall
values as the number of representatives decreases. In Fig. 3 are the confusion
matrices for the methods.

20Newsgroup. The 20Newsgroup dataset has the lowest average homogene-
ity h = 0.0858 from all the datasets. The samples are less similar on average,
therefore the lower precision and recall values. Still CRS-k10 with only 11% of
representatives performs quite well, compared with the other methods. Confu-
sion matrices for one class form each subgroup are in Fig. 4.

Network Dataset. The results for data collected in real network further prove
that lowering K does not lead a great decrease in performance. Again Fig. 5
shows confusion matrices for main 3 algorithms. Particularly interesting are the
biggest classes A, B and D which were most difficult to cover for all algorithms.

120 J. Hlaváč et al.

Fig. 3. Confusion matrices for each class in the MNIST Fashion dataset show the
performance all 3 methods compared. The Sandal class was the hardest to represent
for all methods

Fig. 4. Confusion matrices for each class in the 20Newsgroup dataset show the perfor-
mance all 3 methods compared

For sizes of all classes see Table 2. Moreover, lower homogeneity for B is also
clearly seen in the confusion matrix.

5.3 Time Efficiency

When considering the speed of the algorithms, we particularly focus on cases
where the slow and expensive computation of the pairwise similarity overshadows
the rest, e.g. in the case of the Network dataset. Therefore, we compare the
algorithms by the relative number of similarity computations S defined as:

S =
Sactual

Sfull
, (5)

where Sactual stands for the number of comparisons made and Sfull is the number
of comparisons needed for computing the full similarity matrix.

Class Representatives Selection 121

Fig. 5. Confusion matrices for each class in the Network dataset. Particularly inter-
esting are the biggest classes A, B and D which were most difficult to cover for all
algorithms. Moreover, lower homogeneity for B is also clearly seen in the confusion
matrix

Table 3. The average number of similarity calculations relative to computing full
similarity matrix in classes that have more than 1000 samples. For the DS3 algorithm,
we always calculate the full similarity matrix; therefore, it is not included in the table

dataset δ-Medoids CRS-k10 CRS-k20

mean std mean std mean std

MNIST Fashion 0.132 0.031 0.074 0.008 0.218 0.013

Network Dataset 0.467 0.266 0.178 0.058 0.507 0.16

We measured S for classes bigger than 1000 samples to see how the algorithms
perform on big classes. In smaller classes the total differences in comparisons are
not great as the full similarity matrices are smaller. Also the smaller the class,
the closer are all algorithms to S = 1 (for CRS it can be seen in Fig. 6h). The
results for big classes are in Table 3. We use DS3 with the full similarity matrix
to get most accurate results, therefore SDS3 = 1.

For CRS the number of comparisons is influenced by k, sample rate ρ, and
homogeneity of each class and its size. However, we use very high ρ in the NN-
Descent part of CRS, which significantly increases the number of comparisons.
The impact of k is discussed in detail in Sect. 5.4 and experimenting with ρ is
up for further research. For δ-Medoids the number of similarity computations
performed is determined by the difficulty of the class and the δ parameter. In
CRS, the parameters can be set according to the similarity computations we
have available to achieve the best prototypes given the time. This does not hold
neither for δ-medoids nor for DS3.

5.4 Impact of k

When building class prototypes by the CRS method, the number of nearest
neighbours (specified by the parameter k) considered for building the k-NN

122 J. Hlaváč et al.

graph plays crucial role. With small ks, each object neighbours only few objects
that are most similar to it. This also propagates into reverse neighbourhood
graphs, especially for sparse datasets. Therefore, small ks increase the number
of representatives needed to sufficiently cover the class. Using higher values of k
produce smaller prototypes as each representative is able to cover more objects.
The cost of this improvement is increased computational burden because the
cost of k-NN creation increases rapidly with higher ks.

Fig. 6. Illustration of how the selection of k influences the number of representatives
and number of similarity computations. The number of representatives is in relative
numbers to the size of the class. For different classes as k increases the relative number
of comparisons also increases. However, the size of prototype selected decreases steeply
while the precision decreases slowly (Color figure online)

Figure 6 shows trends of precision, sizes of created prototypes and numbers
of similarity function evaluations depending on k for several classes that differ
in their homogeneity and sizes. We can see the trade-off between computational
requirements (blue line) and memory requirements (red line) as the k increases.
From some point (e.g. where red line crosses the blue line), the classification
precision decreases slowly. The cost limitations of building the prototype or the
classification can be used to set the parameter k. If k is low, CRS selects proto-
types faster, but the number of selected representatives is higher and therefore

Class Representatives Selection 123

the classification cost is also higher. If the classification cost (number of sim-
ilarity computations to classify an object) is more important than prototype
selection, parameter k can be higher.

6 Conclusion

This paper proposes CRS, a novel method for building representations of classes,
class prototypes, which are small subsets of the original classes. CRS leverages
nearest neighbour graphs to map each structure of each class and identify rep-
resentatives that will form the class prototype. This approach allows CRS to be
applied in any space where at least pairwise similarity is defined.

The proposed method was compared to the prior art in a nearest prototype
classification setup on multiple datasets from different domains. The experimen-
tal results show that the CRS method achieves superior classification quality
while producing comparably compact representations of classes.

References

1. Seo, S., Bode, M., Obermayer, K.: Soft nearest prototype classification. IEEE
Trans. Neural Netw. 14(2), 390–398 (2003)

2. Schleif, F.-M., Villmann, T., Hammer, B.: Local metric adaptation for soft nearest
prototype classification to classify proteomic data. In: Bloch, I., Petrosino, A.,
Tettamanzi, A.G.B. (eds.) WILF 2005. LNCS (LNAI), vol. 3849, pp. 290–296.
Springer, Heidelberg (2006). https://doi.org/10.1007/11676935 36

3. Cervantes, A., Galván, I., Isasi, P.: An adaptive michigan approach PSO for nearest
prototype classification. In: Mira, J., Álvarez, J.R. (eds.) IWINAC 2007. LNCS,
vol. 4528, pp. 287–296. Springer, Heidelberg (2007). https://doi.org/10.1007/978-
3-540-73055-2 31

4. Anthony, M., Ratsaby, J.: Large width nearest prototype classification on general
distance spaces. Theoret. Comput. Sci. 738, 65–79 (2018)

5. Martino, A., Giuliani, A., Rizzi, A.: Granular computing techniques for bioinfor-
matics pattern recognition problems in non-metric spaces. In: Pedrycz, W., Chen,
S.-M. (eds.) Computational Intelligence for Pattern Recognition. SCI, vol. 777, pp.
53–81. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-89629-8 3

6. Becker, G.C.: Methods and apparatus for clustering templates in non-metric sim-
ilarity spaces, October 12, US Patent 7,813,531 (2010)

7. Scheirer, W.J., Wilber, M.J., Eckmann, M., Boult, T.E.: Good recognition is non-
metric. Pattern Recogn. 47(8), 2721–2731 (2014)

8. Kopp, M., Grill, M., Kohout, J.: Community-based anomaly detection. In: 2018
IEEE International Workshop on Information Forensics and Security (WIFS), pp.
1–6. IEEE (20180

9. Elhamifar, E., Sapiro, G., Sastry. S.S.: Dissimilarity-based sparse subset selection.
IEEE Trans. Pattern Anal. Mach. Intell. 38(11), 2182–2197 (2015)

10. Liebman, E., Chor, B., Stone, P.: Representative selection in nonmetric datasets.
Appl. Artif. Intell. 29(8), 807–838 (2015)

11. Triguero, I., Derrac, J., Garcia, S., Herrera, F.: A taxonomy and experimental study
on prototype generation for nearest neighbor classification. IEEE Trans. Syst. Man
Cybern. Part C (Appli. Rev.) 42(1), 86–100 (2011)

https://doi.org/10.1007/11676935_36
https://doi.org/10.1007/978-3-540-73055-2_31
https://doi.org/10.1007/978-3-540-73055-2_31
https://doi.org/10.1007/978-3-319-89629-8_3

124 J. Hlaváč et al.

12. Geva, S., Sitte, J.: Adaptive nearest neighbor pattern classification. IEEE Trans.
on Neural Networks 2, 2 (1991)

13. Xie, Q., Laszlo, C.A., Ward, R.K.: Vector quantization technique for nonparametric
classifier design. IEEE Trans. Pattern Anal. Mach. Intell. 15(12), 1326–1330 (1993)

14. Garcia, S., Derrac, J., Cano, J., Herrera, F.: Prototype selection for nearest neigh-
bor classification: taxonomy and empirical study. IEEE Trans. Pattern Anal. Mach.
Intell. 34(3), 417–435 (2012)

15. Wang, H., Kawahara, Y., Weng, C., Yuan, J.: Representative selection with struc-
tured sparsity. Pattern Recogn. 63, 268–278 (2017)

16. Zhang, X., Zhu, Z., Zhao, Y., Chang, D., Liu, J.: Seeing all from a few: l1-norm-
induced discriminative prototype selection. IEEE Trans. Neural Netw. Learn. Syst.
30(7), 1954–1966 (2018)

17. Olvera-López, J.A., Carrasco-Ochoa, J.A., Mart́ınez-Trinidad, J.: Accurate and
fast prototype selection based on the notion of relevant and border prototypes. J.
Intell. Fuzzy Syst. 34(5), 2923–2934 (2018)

18. Dong, W., Moses, C., Li, K.: Efficient k-nearest neighbor graph construction for
generic similarity measures. In: Proceedings of the 20th International Conference
on World Wide Web, pp. 577–586 (2011)

19. Xiao, H., Rasul, K., Vollgraf, R.: Fashion-mnist: a novel image dataset for bench-
marking machine learning algorithms (2017)

	Class Representatives Selection in Non-metric Spaces for Nearest Prototype Classification
	1 Introduction
	2 Related Work
	3 Problem Formulation
	4 Class Representatives Selection
	4.1 Building the Prototype
	4.2 Parameter Analysis

	5 Experiments
	5.1 Datasets
	5.2 Evaluation of Results
	5.3 Time Efficiency
	5.4 Impact of k

	6 Conclusion
	References

