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Abstract. The Half Space Proximal (HSP) graph is a low out-degree
monotonic graph with wide applications in various domains, including
combinatorial optimization in strings, enhancing kNN classification, sim-
plifying chemical networks, estimating local intrinsic dimensionality, and
generating uniform samples from skewed distributions, among others.
However, the linear complexity of finding HSP neighbors of a query limit
its scalability, except when sacrificing accuracy by restricting the test to a
small local neighborhood estimated through approximate indexing. This
compromise leads to the loss of crucial long-range connections, intro-
ducing false positives and excluding false negatives, compromising the
essential properties of the HSP. To overcome these limitations, we pro-
pose a fast and exact HSP Test showing sublinear complexity in extensive
experimentation. Our hierarchical approach leverages pivots and the tri-
angle inequality to enable efficient HSP search in general metric spaces.
A key component of our approach is the concept of the shifted gener-
alized hyperplane between two points, which allows for the invalidation
of entire point groups. Our approach ensures the desired properties of
the HSP Test with exactness even for datasets containing hundreds of
millions of points.
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1 Introduction

The antidote to complexity in search is organization. In similarity search in a
metric space, the local topology of a dataset element allows for efficient query
search. Traditional approaches to capturing this local topology in the form of a
graph have often focused on pairwise distances, such as the kNN graph, where
each element is connected to its k nearest neighbors. Proximity graphs such as
the Relative Neighborhood Graph (RNG), the Gabriel Graph, etc., use triplets
of elements at a time to determine the occupancy of a neighborhood region,
e.g., a lune defined by two elements, by a third element. While kNN graphs and
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Fig. 1. (a) A link between Q and x2 is disrupted by the presence of x1 in the RNG
lune between Q and x2. The region of x2 whose link with Q is invalidated is the
intersection of the region corresponding to Eq. 1(a) shown in (b) and the region region
corresponding to Eq. 1(b) shown in (c), with the intersection shown in (d). The RNG
and HSP Graph on a 2D dataset of uniformly distributed points with the RNG links
are shown in blue and the additional, directed HSP links are shown in red. (Color figure
online)

other pairwise-distance graphs can unevenly distribute neighbors, clustered in
one direction, the proximity graphs embed a sense of direction in their neighbor-
hood definition, albeit requiring additional cost. Similarly, the Yao graph [20]
and the Theta graph [4] construct a sense of direction by defining equal angle
cones around each point through which links can be made between two points,
but this is restricted to a Euclidean space.

The Half-Space Proximal (HSP) graph [6] aims to capture a sense of direc-
tion, but without the computational requirements of the RNG and without the
Yao/Theta graphs’ restrictions to a Euclidean space. Like an RNG, it connects
two elements if the lune between them is empty, but unlike the RNG which
checks occupancy by all other elements, HSP checks occupancy by those ele-
ments already established as HSP neighbors, Fig. 1(a).

This recursive definition requires a treatment of elements rank-ordered by
distance to the query. Consider a dataset S of elements {x1, x2, . . . , xN} and a
query point Q. The only element whose lune with Q is unconditionally empty
is the nearest neighbor, which is denoted as x1. Then, the set of elements x2

whose RNG lune between Q and x2 is occupied with x1 is the intersection of
two regions,

{
d(Q,x1) < d(Q,x2) (1a)
d(x1, x2) < d(Q,x2) (1b)

with the first inequality defining the outside-disc yellow area in Fig. 1(b) and
the second inequality defining the right half-space red area in Fig. 1(c), with
their intersection denoted by the orange region in Fig. 1(d). This test is effective
in discarding nearly half the space. The nearest neighbor among the surviving
elements (later called the active list) is now also an undisputed HSP neighbor
which in turn discards members in its own half-space, Fig. 2. The process is
repeated until all members are considered. It should be clear that the HSP is a
superset of the RNG, Fig. 1(e).
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Fig. 2. (a) A visualization of finding the HSP neighbors of Q among the points shown
on the left. Each of the nearest neighbors rules out a half-space (shaded area). (b)
A visualization of the proposed Hierarchical HSP algorithm, where pivots are used to
invalidate entire groups of points without having to calculate distances to query or
testing inequalities (Color figure online)

Fig. 3. A dataset of N = 200 2D points is used to compare the exact HSP Graph to
the approximate HSP Graph where the HSP neighbor candidates are restricted to the
k closest points. The top and bottom rows correspond to uniformly distributed and
clustered data, respectively (Color figure online)

Efficient Approaches to Computing the HSP: Despite the numerous ben-
efits and applications of the HSP graph (see below), there has been surprisingly
few attempts at reducing the O(N) complexity in finding HSP neighbors of
an element. All existing approaches restrict the HSP neighbors to a local area
around Q: in the original paper [6], the HSP Test is performed on the Unit Disc
Graph, thus constraining the test to a small radius around Q. More recently, an
approximate kNN search (k = 300) by HNSW [11] was used to provide a similar
constraint in the application of instance-based classification [19].

However, any method of restricting the HSP Test to some local area will
inevitably result in an approximation. Consider Fig. 2, where the fourth HSP
neighbor lies very far away from Q. These types of links, called shooters, are
often those occupied-lune neighbors that are a result of near-parallel generalized
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hyperplanes invalidating nearby points and thus preventing them from invali-
dating further ones. Figure 3 shows how approximate methods miss these long
range links which are significant as they preserve some of the essential qualities
of the HSP Graph, including its monotonic property described next.

HSP is a Monotonic Graph: This idea of a fully monotonic graph, namely
one where each pair of nodes (u, v) in the graph has a monotonic path between
them, i.e., a path u = u0, u1, u2, . . . , u�+1 = v where d(ui+1, v) ≤ d(ui, v) for
all i on the path, has been an elusive character in the history of similarity
search. The notion emerged in 1985 when Dearholt [9] proposed the Monotonic
Search Network (MSNET) as the ideal graph for Computer Vision databases
to enable “search without backtracking”, constructed by adding edges to the
RNG Graph. In 2002, Navarro [17] proposed the Spatial Approximation Tree
(SA-Tree) which constructs a monotonic path from the root node and to every
point in the dataset. The conditions used to construct these monotonic paths
in the SA-Tree are exactly the same as used for the HSP Test [6], which was
introduced just a few years later. Chavez et. al. [18] later proved the HSP Graph
to be a monotonic graph [18]. Although a monotonic graph does not guarantee
exact search for a query outside of the dataset, the conditions used to provide
monotonicity in the SA-Tree and the HSP are leveraged to provide diverse links
in state-of-the-art graph-based approximate nearest neighbor search [10,11].

Application of HSP: The initial application of the HSP graph was for routing
between nodes in ad-hoc networks where the challenge is using only local infor-
mation without central control. Another application is the challenging optimiza-
tion problems in strings [15], where the HSP is used for selecting a central string
from a set. Firstly the median string of a set is obtained and from the median
string, which with high probability will not be in the set, the HSP neighbors are
computed. The HSP test provides sufficient diversity within the members of the
subset while at the same time fulfilling the centrality criterion.

The HSP neighbor finding has been used to enhance the majority-rule neigh-
borhood classifiers where the kNN neighbors are replaced with the HSP neigh-
bors, eliminating the need to set the parameter k. The candidate neighbors come
from a probabilistic index such as the HNSW [11].

Another application of the HSP graph is in representing chemical networks [1,
2]. The typically used complete graph or an α-similarity graph are significantly
reduced in size by retaining only HSP neighbors, reducing quadratic memory
requirements to linear ones.

The HSP neighbors have also been used in local intrinsic dimensionality
estimation [14]. The connection between the maximum degree of the HSP graph
and the kissing or sphere packing number (the maximum number of mutually
touching spheres in a Euclidean space) is used to define the indexability of a set.

In [13], the authors define the hubness HSP (HubHSP) graph. The geometric
structure of the HSP neighbor definition remains intact, but instead of nearest
neighbors in each step they use the node with the highest measure of “hubness”,
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which they define. This tilts the process in favor of hubs, important to sampling
skewed distributions, for example.

Exact Computation of HSP is Significant: Finding exact neighbors is key
to local intrinsic dimension as well as local density estimation. Also, a standing
conjecture about the HSP is about it being t-spanner of finite stretch t. This has
a potential application as a distance oracle. Storing the entire distance matrix of
a metric database implies O(N2) space of precomputed distances, while storing
the HSP graph uses space proportional to O(N × δ(HSP (S)), with δ(.) the
degree of the graph. Using the monotonic property of the HSP the oracle can
be consulted in time proportional to the diameter of the graph. For the above
oracle to work, it is mandatory to compute the HSP exactly to obtain a proper
bound.

Hierarchies in Exact Metric-Space Similarity Search: Brute force exact
metric-space search is avoided by using indices which leverage pivots, select
points in the dataset, and the triangle inequality to bound the distance between
the query point and other members of the dataset, removing a large portion from
consideration. For example, the List of Clusters (LOC) [7] organizes the dataset
into an ordered list of pivots, where each pivot is responsible for a group of points
within a radius of that pivot. The query can traverse the list, only considering
the clusters that may contain the nearest neighbor. By the observation that an
increase an N also increases the number of points in each cluster, the Recursive
List of Clusters [12] brings greater efficiency by organizing each cluster into its
own LOC. In fact, this recursive organization of the dataset into smaller and
smaller groups is the basic concept of tree structures, which achieve logarith-
mic search complexity. Some metric-space tree structures of interest include the
M-Tree [8], the Cover Tree [3], and several others [5,16,21].

Overview: The proposed approach constructs a multilayer hierarchy of coarse-
scale pivots “owning” finer-scale pivots in their pivot domains defined by a
radius. The hierarchy is then used to (i) find the nearest neighbors to a query
without computing distance to each element by relying on conditions on piv-
ots and (ii) use pivot conditions to discard entire domains from being HSP
neighbors, preserve entire domains as active, or declare domains as indeter-
minant which require examination of its members. This results in significant
savings and leads to scalable HSP computation on large-scale, high-dimensional
datasets featuring clustered data. Our implementation is publicly available at
https://github.com/cole-foster/HHSP.git.

2 Finding the Exact, Hierarchical HSP Neighbors
(HHSP)

The main bottleneck in finding the HSP neighbors of a query is (i) the com-
putation of the distance to all dataset members, and (ii) to a lesser extent,

https://github.com/cole-foster/HHSP.git
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the validation of the inequalities in Eq. 1. The key intuition is to use a hierar-
chy where pivots representing a group of dataset points can be examined and
used to either discard or retain from consideration the entire elements in the
pivot domain, thus avoiding explicit computation of distances or validation of
inequalities.

Specifically, recall that in the HSP algorithm the distance between Q and all
dataset members are calculated to return x1 as the closest point to Q. Since x1

is the nearest neighbor of Q, it becomes the first HSP neighbor and is used to
discard a half-space from being HSP neighbors of Q by checking Eq. 1 on the
remaining dataset members, Fig. 2(a). Next, the closest point among the active
list A which is the set of surviving dataset members becomes the second HSP
neighbor and is used to check and discard the remainder of the active list that
satisfy Eq. 1. This process is repeated until all members are labeled either as
HSP neighbors or discarded, with overall complexity of O(N).

A first key savings can be achieved through the computation of the nearest
neighbor of Q by using pivots in a hierarchy. Consider, at first, a two-layer
hierarchy where the “bottom” layer is the dataset and the “top” layer is a select
group of elements of the dataset called pivots pi such that each data point xj is
in the domain of one, and only one, pi, namely, d(xj , pi) ≤ r, where r is a fixed
parameter of the hierarchy, Fig. 4(a). There are numerous ways to construct this
hierarchy. The approach used here is to randomly consider the dataset members
one by one and assign them to either belonging to an existing pivot or if no pivot
can be found, assign it as a pivot. The parameter r determines the size of the
pivot domain.

Fig. 4. (a) A two-layer hierarchy where the bottom layer contains all of S and the
top layer has a select few pivots where the distance of dataset elements to its pivot
parent is less than r. (b) Given an upper-bound distance dmin, a pivot p may contain
the nearest neighbor x1 if d(Q, p) ≤ dmin + r (Color figure online)

The pivot structure can be used to significantly reduce the computational
effort in finding the nearest neighbor of Q. Let dmin denote the minimum distance
of the query Q to the data elements already considered. Then, the distance from
Q to any other element x in the pivot domain of p satisfies the triangle inequality

d(Q, p) − r ≤ d(Q, p) − d(p, x) ≤ d(Q,x) ≤ d(Q, p) + d(p, x) ≤ d(Q, p) + r. (2)
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Thus, if for a pivot p, d(Q, p) > dmin + r,

dmin < d(Q, p) − r ≤ d(Q,x), (3)

and the pivot domain cannot contain the nearest element, see the blue pivot
domain in Fig. 4(b). On the other hand, if d(Q, p) ≤ dmin + r, the green pivot
domain in Fig. 4(b), the elements in the domain of p must be explicitly considered
and if one has a lower distance than dmin, it updates dmin. This prevents the
computation of distances to a vast majority of dataset elements. The process is
repeated until all pivots have been considered in this way. A better performance
can be achieved by using tighter bounds if each pivot would maintain the distance
to its most distant member, r∗.

A second key savings can be achieved through wholesale examination of Eq. 1
for all members of a pivot domain without calculating distance to query or vali-
dation of inequalities by examining d(Q, p). The following proposition prevents
member-wise validation of the second inequality in Eq. 1 if the pivot satisfies
certain conditions:

Proposition 1. Let Q be a query, x1 the furthest HSP neighbor of Q thus far,
and p2 a pivot with domain radius r satisfying the following:

{
d2(Q, p2) − d2(x1, p2) > 2r d(Q,x1) (4a)
d(Q, p2) ≥ r. (4b)

Then, all points x2 ∈ D(p2, r), i.e., where d(x2, p2) ≤ r, satisfy d(x1, x2) <
d(Q,x2).

Proof. By the triangle inequality and d(x2, p2) ≤ r,

d2(x1, x2) ≤ [d(x1, p2) + d(p2, x2)]
2 ≤ [d(x1, p2) + r]2 = d2(x1, p2) + 2r d(x1, p2) + r2.

(5)
Applying the given Eq. 4,

d2(x1, p2) + 2r d(x1, p2) + r2 < d2(Q, p2) − 2r d(Q,x1) + 2r d(x1, p2) + r2

= d2(Q, p2) − 2r [d(Q,x1) − d(x1, p2)] + r2

≤ d2(Q, p2) − 2r d(Q, p2) + r2

= [d(Q, p2) − r]2

≤ [d(Q,x2) + d(x2, p2) − r]2

≤ [d(Q,x2) + r − r]2

= d2(Q,x2).
(6)
�

It is intriguing that the region where p2 satisfies Eq. 4(a) is the half-space to
the right of a shifted generalized hyperplane in a Euclidean space, because the
quadratic terms involving coordinates of p2 cancel out leaving a linear equation
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which represents a hyperplane. Returning now the first inequality in Eq. 1, the
following proposition identifies the condition on a pivot so that the entire pivot
domain can be discarded.

Proposition 2. Let Q be a query and x1 the furthest HSP neighbor of Q thus
far, then a pivot p2 with radius r satisfying both of the following inequalities{

d2(Q, p2) − d2(x1, p2) > 2r d(Q,x1) (7a)
d(Q,x1) < d(Q, p2) − r, (7b)

invalidates all points x2 ∈ D(p2, r), i.e., d(p2, x2) ≤ r, as a HSP neighbors of Q.

Fig. 5. (a) The point x2 will satisfy Eq. 1(a) when its parent pivot p2 is outside of the
circle of radius d(Q, x1) + r centered at Q. (b) The point x2 satisfies Eq. 1(b) when p2

is to the right of the generalized hyperplane shifted by r. (c) The intersection of the
two regions (orange) which defines locations for p2 where its pivot domain members
cannot be an HSP neighbor of Q. (d) The point x2 does not satisfy both inequalities
of Eq. 1 when p2 falls into the purple region. (e) When p2 falls into the blue region, it
is undetermined if x2 satisfies both inequalities of Eq. 1 (Color figure online)

Proof. First, let’s show that d(Q,x1) < d(Q,x2):

d(Q,x1) < d(Q, p2) − r ≤ d(Q,x2) + d(x2, p2) − r ≤ d(Q,x2) + r − r = d(Q,x2).
(8)

Second, since 0 ≤ d(Q,x1), Eq. 7(b) shows that d(Q, p2) > r which together with
Eq. 7(a) satisfy Proposition 1 which states that d(x1, x2) < d(Q,x2), the second
inequality of Eq. 1 holds. �

The regions corresponding to Eqs. 7(b) and Eqs. 7(a) are shown in Fig. 5(a)
and 5(b), respectively, leading to their common intersection in Fig. 5(c).

In addition to determining which pivot domains are entirely ruled out, it is
also possible to determine which pivot domains cannot get ruled out in their
entirety because their members do not satisfy either the first or the second
inequalities in Eq. 1 and can therefore remain on the active list in their entirety.

Proposition 3. Let Q be a query, x1 be the furthest HSP neighbor of Q thus
far, and p2 a pivot satisfying either of the following:{

d2(x1, p2) − d2(Q, p2) ≥ 2r d(Q,x1) and d(x1, p2) ≥ r (9a)
d(Q, p2) ≤ d(Q,x1) − r. (9b)

Then, all points x2 ∈ D(p2, r), i.e., d(p2, x2) ≤ r, violate one of the inequalities
of Eq. 1, i.e., either d(Q,x1) ≥ d(Q,x2) or d(x1, x2) ≥ d(Q,x2).
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Proof. First, Eq. 9(b) implies that

d(Q,x2) ≤ d(Q, p2) + d(p2, x2) ≤ d(Q, p2) + r ≤ d(Q,x1). (10)

Second, by the triangle inequality, Eq. 9(a), and d(p2, x2) ≤ r, r ≥ 0,

d2(Q,x2) ≤ [d(Q, p2) + d(p2, x2)]
2 ≤ [d(Q, p2) + r]2

= d2(Q, p2) + 2r d(Q, p2) + r2

≤ d2(x1, p2) − 2r d(Q,x1) + 2r d(Q, p2) + r2

= d2(x1, p2) − 2r [d(x1, Q) − d(Q, p2)] + r2

≤ d2(x1, p2) − 2r d(x1, p2) + r2

= [d(x1, p2) − r]2

≤ [d(x1, x2) + d(x2, p2) − r]2

≤ d2(x1, x2).
(11)

�

Figure 5(d) visualizes the regions defined by the inequalities in Eqs. 9(a) and 9(b),
which is the union of the shifted half-space and a reduced radius disc. A pivot p2
in the purple region is retained in the active list without detailed examination
of its elements.

The pivots that are neither fully discarded (orange area) nor fully accepted as
surviving in their entirety (purple area) can potentially contain elements which
can be discarded and elements that survive (cyan area), Fig. 5(e). The elements
in these pivot domains must be individually tested with the inequalities of Eq. 1.
However, this determination can be delayed until the point where their elements
need to be examined. It is entirely possible that this entire pivot domain would
be discarded in the next steps.

The details of the procedure are in Algorithm 1. Basically, the hierarchy is
used to efficiently find the nearest neighbor, Proposition 2 and 3 are used to
discard entire pivot domains and retain an active pivot list A1 (purple area) of
pivots, and an indeterminant list I (cyan area). The procedure is then repeated
by finding the next nearest element by exploring pivots in A1

⋃ I. In the process,
some of the pivots in I may have to be explicitly examined. The pivots are
removed from I, and added to an active point list A2 of elements. The process
is repeated by finding the nearest element in A1

⋃ I ⋃ A2 until they are all
exhausted.

Multi-layer Hierarchies: This two-layer hierarchical approach achieves effi-
ciency by using pivots to avoid the consideration of a vast number of points.
As N increases, the number of pivots and the number of points in each pivot
domain must both increase. This motivates the use of additional layers, similar
to other hierarchical indices [3,5,8,16,21]. Just as pivots are able to discard or
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Algorithm 1: Hierarchical HSP Search on a 2-Layer Hierarchy
Input: Q as the query point, P as the set of top layer pivots in the 2-Layer Hierarchy

constructed on S with top layer radius r.
Output: HSP(Q) as the exact HSP neighbors of Q in S.

1 begin
2 Initialize HSP(Q) = ∅, A1 = P, I = ∅, A2 = ∅.
3

4 while |A1| > 0 or |I| > 0 or |A2| > 0 do
5

/* Finding the Next HSP Neighbor */
6 Find xi as the closest active point:
7 · Initialize dmin with the distance to the closest p ∈ A1 or x ∈ A2.
8 · Update dmin with d(Q, p) for p ∈ I if p does not satisfy Eq. 1 for any

xj ∈ HSP(Q).
9 · Iterate through p ∈ A1; search the domains of pivots where d(Q, p) ≤ dmin + r,

updating dmin.
10 · Iterate through p ∈ I; if p satisfies d(Q, p) ≤ dmin + r, then remove p from I

and validate each member of the pivot domain against Eq. 1 for all xj ∈ HSP(Q).
Those points that are retained are added to A2 and may update dmin.

11 · The closest active point xi becomes the next HSP neighbor, xi is added to
HSP(Q).

12

/* Validation of the Active Points */
13 For each p ∈ I:
14 1. If Prop. 2 satisfied for Q and xi, remove p from I.
15 2. Otherwise, continue.
16 For each p ∈ A1:
17 1. If Prop. 2 satisfied for Q and xi, remove p from A1.
18 2. If Prop. 3 satisfied for Q and xi, continue.
19 3. Otherwise, remove p from A1 and add p to I.
20 For each x ∈ A2:
21 1. If Eq. 1 satisfied for Q and xi, remove x from A2.
22 2. Otherwise, continue.

23 end

24 end

retain an entire pivot domain of elements, coarse-scale (large radius) pivots dis-
card or retain pivot domains of finer-scale pivots, e.g., Fig. 6. Additional layers
can achieve enhanced efficiency when N is increased further, Fig. 7.

3 Experiments

Exact HSP Complexity on Uniformly Distributed Data: The HHSP’s
complexity is examined on uniformly distributed data of varying dimension,
Fig. 7. Observe that the indexing construction time, number of distances for
search, and search time all depict an approximately linear profile against N
across dimension for varying numbers of layers in a log-log domain. A straight
line in log-log is log(y) = α log(N)+γ or y = βNα. While theoretical complexity
bounds have not yet been defined, the above experiments suggest an approach
to characterizing complexity of the HHSP, Table 1.

Comparison to Brute Force: The traditional concern in using exact query
search is the curse of dimensionality, where as the intrinsic dimension of the
dataset grows the index becomes less effective, eventually being no more effec-
tive than brute-force search. In such arguments, the size of the dataset is kept
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Fig. 6. (a) Depiction of a three-layer hierarchy. (b) The radius for a 2-layer hierarchy
may be chosen to minimize the average number of distance computations on search. (c)
Similarly, choosing radii for a three-layer hierarchy can be posed as a 2D optimization.

Table 1. The experimental complexity of the HHSP based on uniformly distributed
data is captured by the value α for the experimental complexity O(Nα) using a least-
squares fit of the function y = βNα.

Complexity 2D 4D 6D 8D 10D

Index Construction Distances 1.060 1.113 1.189 1.534 1.542

Index Construction Time 1.131 1.150 1.221 1.605 1.687

Index Memory Usage 0.960 0.966 0.968 0.970 0.983

Search Distances 0.108 0.203 0.311 0.447 0.553

Search Time 0.979 0.968 0.917 0.840 0.810

Fig. 7. Index construction time, number of distances, and search time for HHSP on 2D-
10D data using 2, 3, and multilayer indices. Observe that these plots are approximately
linear in the log-log domain
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constant as the “volume” over which the dataset elements are spread becomes
larger and thus density approaches zero. We posit that the key to determining
the effectiveness of an index is to keep “density” constant. Our analysis shows
that the index remains effective over a variety of dimensions and dataset sizes,
Fig. 8. For example, in datasets of N = 1, 638, 400 points, the HHSP achieves
time savings of 686.7x in 10D, enabling exact search on datasets of even 100
million points, Fig. 7.

Fig. 8. The savings of the HHSP over the brute force HSP algorithm in ratios of
(a) the average number of search distances per N , (b) the ratio of average distance
computations in comparison over those required for the brute force HSP test, and (c)
the ratio of the average search time and that required for brute force search. It is
evident that the index remains effective and its efficiency increases with N

HHSP Search on Clustered Data: Realistic datasets are typically not uni-
formly distributed. Rather, data points are often clustered, e.g., object cat-
egories. The performance of the HHSP is measured on a synthetic clustered
dataset created by initializing 100 uniformly distributed clustered centers from
[−1, 1]D and using Gaussians with variance=0.05 to create 1,000 perturbations
of each center, Fig. 9. Note that the rate of increase with D for the search time
and the number of distance computations is significantly lower.

Fig. 9. A comparison of HHSP performance on uniformly distributed data vs. clustered
data for N = 100, 000 shows a significantly reduced rate of increase.
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Real World Datasets: The performance of HHSP on real world datasets,
Table 2. (1) LA, a 2D dataset of the geographic locations in Los Angeles with
N = 1, 073, 827 points; (2) Forest, a 6D dataset of quantitative variables used
for classifying forest cover types; and (3) Corel, a N = 67, 840 collection of 32D
color histograms of images. The HHSP significantly outperforms the brute force
HSP Test in all cases, leading to 5,218x, 2,598x, and 8.64x savings over brute
force time for LA, Forest, and Corel, respectively.

Table 2. Comparing the HHSP to the original HSP Test on Real-World Datasets.

Dataset N Ave. HSP Neigh BF Time (ms) BF Distances Index Const. Time (s) HHSP Time (ms) HHSP Distances Ratio of Times

LA (2D) 1,073,727 3.32 55,315.248 2,757,279.67 2.744 10.627 1,124.15 5,205.16

Forest (6D) 580,812 5.34 10,913.616 1,630,106.17 4.498 4.207 3,194.70 2,594.16

Corel (32D) 67,840 9.71 67.669 192,751.53 7.161 7.832 64,420.57 8.64

Comparison to Approximate HSP Search: The only existing, scalable app-
roach at reducing the complexity of the HSP algorithm relies on performing an
approximate kNN search to retrieve a large neighborhood around the query, and
then apply the HSP Test on that neighborhood [19]. This approach leverages a
state-of-the-art graph-based approximate search index, the Hierarchical Naviga-
ble Small World (HNSW) Graph [11]. This approach to HSP Search involves an
inherent trade-off between search time and accuracy, requiring a large neighbor-
hood to obtain exactness at the cost of longer search time, Fig. 10.

Fig. 10. Comparing the approximate HSP Search by HNSW to the exact HSP search
by the HHSP Test. The point labels on the curves correspond to the size of the neigh-
borhood returned by HNSW for the approximate HSP.

The results show that, while there is no advantage to the HHSP on uniformly
distributed data, the approximate method saturates performance while HHSP is
able to reach 100% recall at a reasonable time. A similar result is shown for the
high-dimensional Forest data, but not for the low-dimensional LA data where
there is negligible difference.
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Improving Graph-Based Nearest Neighbor Search: Since the HNSW
achieves state-of-the-art results as an approximate monotonic graph, there
remains a question as to whether its performance may be improved by being
a fully, exact monotonic graph. To showcase the impact of the exact HSP neigh-
bors, we replace the HNSW links on each layer with the exact HSP links.
Figure 11 shows the comparison between the HNSW and the HNSW with HSP
links on a 6D uniform and clustered datasets with N = 1, 000, 000 points. The
construction of the full HSP Graphs by the HHSP took just over 10 h, while it
would take the brute force approach an estimated 200 d!

First, as guaranteed by the monotonic property of the HSP, Fig. 11(a,b)
shows the HSP Graph ensure exact search for any member of the dataset, which
is not the case for the original HNSW, especially in clustered data. Secondly,
Fig. 11(c,d) shows that the HSP links provide a slight, yet modest improvement
over the original HNSW links for queries that are not members of the dataset.

Fig. 11. Comparing the HNSW to HNSW with links are replaced with the exact HSP
links. (a,b) Recall for the nearest neighbor when dataset items are queried. The mono-
tonic property of the HSP graph guarantees a perfect recall, but this is not always the
case for the original HNSW. (c,d) Recall for the nearest neighbor when items not in the
dataset are queried. Although the monotonic property of the HSP does not guarantee
perfect recall in this case, we see it provides a modest improvement over the original
HNSW.

Conclusion: This hierarchical approach outlines a fast, efficient method of
finding the exact HSP neighbors of a query in a metric space: by the novel
definition of the shifted generalized hyperplanes between two points, pivots are
able to discard or retain entire groups of points as consideration for being an
HSP neighbors. While approximate methods to the HSP are able to achieve
good recall with fast search times, they miss the vital, long-range links essential
to the monotonic property of the HSP. By constructing the exact HSP Graph
on a dataset of one-million points, which is a feat in itself, we show that the
monotonic property can improve the performance of graph-based approximate
nearest neighbor search.
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