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Preface

This volume contains the papers presented at the 16th International Conference on Sim-
ilarity Search and Applications (SISAP 2023), held in A Coruña from October 9–11,
2023. The Universidade da Coruña hosted the SISAP 2023 conference, continuing the
tradition of offering an annual forum for researchers and application developers in the
area of similarity data management.

More extensive and more diverse collections of information are assembled digitally,
and only some allow formulation of a retrieval query with exact information. Moreover,
one naturally also wants to explore nearby, and thus similar, items. Simultaneously,
many methods in machine learning use massive data sets and require efficient data
management during the training process. We are always in search of even faster, more
effective approaches to similarity search. SISAPcontinues to be the internationalmeeting
point for scholars and practitioners whose research aims at continuous improvement and
whose applications pose challenges to the state of the art. While there is vast literature
and technological progress, the increased size of datasets, the new modes of data and
the emergent applications continue to motivate the community for further advances.

Therefore, this edition of the conference invited participation in a technical challenge.
This new activity represents a milestone in the evolution of the technology and the
dispersion across the community of best methods and practices. It offers a benchmark
and a point of reflection for reproducible results out of a common open data set. These
proceedings include the description of the challenge by its organisers as well as the
reports of participating teams. The program had a special session held on the first day
of the conference for the presentation by the challenge organisers and the exposition of
their approach and result by each team.

The conference also brought three invited keynote speakers, creating a wide view
of theoretical, practical and applied insights by remarkable speakers. Each day of the
conference started with a keynote presentation, and an abstract is included in this volume
for the lectures delivered by Michael Houle, Yury Malkov and Julio Gonzalo.

For this edition of the SISAP conference, we received 33 submissions from authors
from 20 different countries. The ProgramCommittee (PC)was composed of 50members
from 17 countries. Each submission received three single-blind reviews, and the chairs
and PCmembers thoroughly discussed the papers and reviews. Based on the reviews and
discussions, the PC chairs accepted 20 papers, 16 of which were accepted as full papers
and four as short/demo papers, resulting in an acceptance rate of 48% for the full articles
and a cumulative acceptance rate of 60% for full and short essays. SISAP 2023 also
called for papers for the Doctoral Symposium. However, all submissions in this edition
were considered too preliminary for publication. Nevertheless, those PhD students were
given the opportunity to present orally and receive feedback from discussion with the
Doctoral Symposium chair and committee.

Springer has published the proceedings of SISAP 2023 in this volume in the Lecture
Notes in Computer Science (LNCS) series. We also acknowledge their support and
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generous contribution to theBest Student PaperAward.Wealso awarded, as is traditional,
a Best Paper Award (as judged by the PC chairs and the Steering Committee). Moreover,
the authors of selected excellent papers (based on reviews and presentations)were invited
to submit detailed, updated and extended versions for publication in a special issue of
the Information Systems (Elsevier) journal.

We are extremely thankful to all members of the Program Committee for their com-
prehensive and timely reviews, which ensured the rigorous scientific and academic stan-
dard of the papers, as well as constructive suggestions that have assisted authors in
polishing their final version and improving even further the quality of these proceedings.

October 2023 Oscar Pedreira
Vladimir Estivill-Castro
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From Intrinsic Dimensionality to Chaos and Control:
Towards a Unified Theoretical View

Michael Houle

New Jersey Institute of Technology, Newark, NJ 07102, USA
michael.houle@njit.edu

Abstract. Researchers have long considered the analysis of similarity
applications in terms of the intrinsic dimensionality (ID) of the data.
Although traditionally ID has been viewed as a characterization of the
complexity of discrete datasets, more recently a local model of intrinsic
dimensionality (LID) has been extended to the case of smooth growth
functions in general, and distance distributions in particular, from its first
principles in terms of similarity, features, and probability. Since then,
LID has found applications—practical as well as theoretical—in such
areas as similarity search, data mining, and deep learning. LID has also
been shown to be equivalent under transformation to the well-established
statistical framework of extreme value theory (EVT). In this presenta-
tion, we will survey some of the wider connections between ID and other
forms of complexity analysis, including EVT, power-law distributions,
chaos theory, and control theory, and show how LID can serve as a uni-
fying framework for the understanding of these theories. Finally, we will
reinterpret recent empirical findings in the area of deep learning in light
of these connections.

https://orcid.org/0000-0001-8486-8015


The Rise of HNSW: Understanding Key Factors Driving
the Adoption of Search Libraries in Machine Learning

Yury Malkov

yurymalkov@mail.ru

Abstract.As representation learning and large languagemodels continue
to evolve, the need for efficient similarity search techniques has grown
exponentially in the last few years. HNSWhas emerged as a leading algo-
rithm for nearest neighbor search, finding applications in a diverse range
of products such asWeavite, Qdrant, Vespa,Milvus, Zilliz, Faiss, Elastic-
search, Redis and others. In this talk, we will explore the core principles
anddevelopment ofHNSW,aswell as the keydesigndecisions and factors
that have contributed to its widespread adoption beyond its high perfor-
mance. Through these insights, we aim to guide developers in creating
innovative libraries and solutions to address the ever-increasing demand
for efficient search libraries and machine learning tools in general.

https://orcid.org/0000-0003-4324-6433


Towards a Universal Similarity Function:
The Information Contrast Model and Its Application
as Evaluation Metric in Artificial Intelligence Tasks

Julio Gonzalo

Universidad Nacional de Educación a Distancia
julio@lsi.uned.es

Abstract.Computing similarity implies, at least, two aspects: how to rep-
resent items, and how to compare item representations (similarity func-
tions). Item representation is a task-dependent problem, but what about
similarity functions? Is it possible to study the design of optimal similar-
ity functions from a universal, application-free perspective? In the talk,
we start by proposing a set of formal constraints on the space of permissi-
ble similarity functions for Information Access problems and comparing
it with other related axiomatic formulations of similarity in other fields
(cognitive science and algebra). Then, we propose a new parameterized
similarity function, ICM, which satisfies all constraints for a given range
of values of its parameters. We discuss the usefulness of ICM in two very
different application domains: first, to compute textual similarity under
different application scenarios and representation paradigms, which was
the original task for which ICM was designed. But ICM can be success-
fully applied outside its intended original scope: in the talk, we show
how it can be used as an evaluation measure in Artificial Intelligence that
computes the similarity between system outputs and gold standards, and
how it may bring formal and empirical advantages in this area.

https://orcid.org/0000-0002-5341-9337
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Finding HSP Neighbors via an Exact,
Hierarchical Approach

Cole Foster1(B), Edgar Chávez2, and Benjamin Kimia1

1 Brown University, Providence, RI 02912, USA
{cole foster,benjamin kimia}@brown.edu

2 Centro de Investigación Cient́ıfica y de Educación Superior de Ensenada,
Ensenada, Mexico

elchavez@cicese.edu.mx

Abstract. The Half Space Proximal (HSP) graph is a low out-degree
monotonic graph with wide applications in various domains, including
combinatorial optimization in strings, enhancing kNN classification, sim-
plifying chemical networks, estimating local intrinsic dimensionality, and
generating uniform samples from skewed distributions, among others.
However, the linear complexity of finding HSP neighbors of a query limit
its scalability, except when sacrificing accuracy by restricting the test to a
small local neighborhood estimated through approximate indexing. This
compromise leads to the loss of crucial long-range connections, intro-
ducing false positives and excluding false negatives, compromising the
essential properties of the HSP. To overcome these limitations, we pro-
pose a fast and exact HSP Test showing sublinear complexity in extensive
experimentation. Our hierarchical approach leverages pivots and the tri-
angle inequality to enable efficient HSP search in general metric spaces.
A key component of our approach is the concept of the shifted gener-
alized hyperplane between two points, which allows for the invalidation
of entire point groups. Our approach ensures the desired properties of
the HSP Test with exactness even for datasets containing hundreds of
millions of points.

Keywords: Similarity Search · Half-Space Proximal · Exact

1 Introduction

The antidote to complexity in search is organization. In similarity search in a
metric space, the local topology of a dataset element allows for efficient query
search. Traditional approaches to capturing this local topology in the form of a
graph have often focused on pairwise distances, such as the kNN graph, where
each element is connected to its k nearest neighbors. Proximity graphs such as
the Relative Neighborhood Graph (RNG), the Gabriel Graph, etc., use triplets
of elements at a time to determine the occupancy of a neighborhood region,
e.g., a lune defined by two elements, by a third element. While kNN graphs and

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
O. Pedreira and V. Estivill-Castro (Eds.): SISAP 2023, LNCS 14289, pp. 3–18, 2023.
https://doi.org/10.1007/978-3-031-46994-7_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-46994-7_1&domain=pdf
https://doi.org/10.1007/978-3-031-46994-7_1
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Fig. 1. (a) A link between Q and x2 is disrupted by the presence of x1 in the RNG
lune between Q and x2. The region of x2 whose link with Q is invalidated is the
intersection of the region corresponding to Eq. 1(a) shown in (b) and the region region
corresponding to Eq. 1(b) shown in (c), with the intersection shown in (d). The RNG
and HSP Graph on a 2D dataset of uniformly distributed points with the RNG links
are shown in blue and the additional, directed HSP links are shown in red. (Color figure
online)

other pairwise-distance graphs can unevenly distribute neighbors, clustered in
one direction, the proximity graphs embed a sense of direction in their neighbor-
hood definition, albeit requiring additional cost. Similarly, the Yao graph [20]
and the Theta graph [4] construct a sense of direction by defining equal angle
cones around each point through which links can be made between two points,
but this is restricted to a Euclidean space.

The Half-Space Proximal (HSP) graph [6] aims to capture a sense of direc-
tion, but without the computational requirements of the RNG and without the
Yao/Theta graphs’ restrictions to a Euclidean space. Like an RNG, it connects
two elements if the lune between them is empty, but unlike the RNG which
checks occupancy by all other elements, HSP checks occupancy by those ele-
ments already established as HSP neighbors, Fig. 1(a).

This recursive definition requires a treatment of elements rank-ordered by
distance to the query. Consider a dataset S of elements {x1, x2, . . . , xN} and a
query point Q. The only element whose lune with Q is unconditionally empty
is the nearest neighbor, which is denoted as x1. Then, the set of elements x2

whose RNG lune between Q and x2 is occupied with x1 is the intersection of
two regions,

{
d(Q,x1) < d(Q,x2) (1a)
d(x1, x2) < d(Q,x2) (1b)

with the first inequality defining the outside-disc yellow area in Fig. 1(b) and
the second inequality defining the right half-space red area in Fig. 1(c), with
their intersection denoted by the orange region in Fig. 1(d). This test is effective
in discarding nearly half the space. The nearest neighbor among the surviving
elements (later called the active list) is now also an undisputed HSP neighbor
which in turn discards members in its own half-space, Fig. 2. The process is
repeated until all members are considered. It should be clear that the HSP is a
superset of the RNG, Fig. 1(e).
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Fig. 2. (a) A visualization of finding the HSP neighbors of Q among the points shown
on the left. Each of the nearest neighbors rules out a half-space (shaded area). (b)
A visualization of the proposed Hierarchical HSP algorithm, where pivots are used to
invalidate entire groups of points without having to calculate distances to query or
testing inequalities (Color figure online)

Fig. 3. A dataset of N = 200 2D points is used to compare the exact HSP Graph to
the approximate HSP Graph where the HSP neighbor candidates are restricted to the
k closest points. The top and bottom rows correspond to uniformly distributed and
clustered data, respectively (Color figure online)

Efficient Approaches to Computing the HSP: Despite the numerous ben-
efits and applications of the HSP graph (see below), there has been surprisingly
few attempts at reducing the O(N) complexity in finding HSP neighbors of
an element. All existing approaches restrict the HSP neighbors to a local area
around Q: in the original paper [6], the HSP Test is performed on the Unit Disc
Graph, thus constraining the test to a small radius around Q. More recently, an
approximate kNN search (k = 300) by HNSW [11] was used to provide a similar
constraint in the application of instance-based classification [19].

However, any method of restricting the HSP Test to some local area will
inevitably result in an approximation. Consider Fig. 2, where the fourth HSP
neighbor lies very far away from Q. These types of links, called shooters, are
often those occupied-lune neighbors that are a result of near-parallel generalized
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hyperplanes invalidating nearby points and thus preventing them from invali-
dating further ones. Figure 3 shows how approximate methods miss these long
range links which are significant as they preserve some of the essential qualities
of the HSP Graph, including its monotonic property described next.

HSP is a Monotonic Graph: This idea of a fully monotonic graph, namely
one where each pair of nodes (u, v) in the graph has a monotonic path between
them, i.e., a path u = u0, u1, u2, . . . , u�+1 = v where d(ui+1, v) ≤ d(ui, v) for
all i on the path, has been an elusive character in the history of similarity
search. The notion emerged in 1985 when Dearholt [9] proposed the Monotonic
Search Network (MSNET) as the ideal graph for Computer Vision databases
to enable “search without backtracking”, constructed by adding edges to the
RNG Graph. In 2002, Navarro [17] proposed the Spatial Approximation Tree
(SA-Tree) which constructs a monotonic path from the root node and to every
point in the dataset. The conditions used to construct these monotonic paths
in the SA-Tree are exactly the same as used for the HSP Test [6], which was
introduced just a few years later. Chavez et. al. [18] later proved the HSP Graph
to be a monotonic graph [18]. Although a monotonic graph does not guarantee
exact search for a query outside of the dataset, the conditions used to provide
monotonicity in the SA-Tree and the HSP are leveraged to provide diverse links
in state-of-the-art graph-based approximate nearest neighbor search [10,11].

Application of HSP: The initial application of the HSP graph was for routing
between nodes in ad-hoc networks where the challenge is using only local infor-
mation without central control. Another application is the challenging optimiza-
tion problems in strings [15], where the HSP is used for selecting a central string
from a set. Firstly the median string of a set is obtained and from the median
string, which with high probability will not be in the set, the HSP neighbors are
computed. The HSP test provides sufficient diversity within the members of the
subset while at the same time fulfilling the centrality criterion.

The HSP neighbor finding has been used to enhance the majority-rule neigh-
borhood classifiers where the kNN neighbors are replaced with the HSP neigh-
bors, eliminating the need to set the parameter k. The candidate neighbors come
from a probabilistic index such as the HNSW [11].

Another application of the HSP graph is in representing chemical networks [1,
2]. The typically used complete graph or an α-similarity graph are significantly
reduced in size by retaining only HSP neighbors, reducing quadratic memory
requirements to linear ones.

The HSP neighbors have also been used in local intrinsic dimensionality
estimation [14]. The connection between the maximum degree of the HSP graph
and the kissing or sphere packing number (the maximum number of mutually
touching spheres in a Euclidean space) is used to define the indexability of a set.

In [13], the authors define the hubness HSP (HubHSP) graph. The geometric
structure of the HSP neighbor definition remains intact, but instead of nearest
neighbors in each step they use the node with the highest measure of “hubness”,
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which they define. This tilts the process in favor of hubs, important to sampling
skewed distributions, for example.

Exact Computation of HSP is Significant: Finding exact neighbors is key
to local intrinsic dimension as well as local density estimation. Also, a standing
conjecture about the HSP is about it being t-spanner of finite stretch t. This has
a potential application as a distance oracle. Storing the entire distance matrix of
a metric database implies O(N2) space of precomputed distances, while storing
the HSP graph uses space proportional to O(N × δ(HSP (S)), with δ(.) the
degree of the graph. Using the monotonic property of the HSP the oracle can
be consulted in time proportional to the diameter of the graph. For the above
oracle to work, it is mandatory to compute the HSP exactly to obtain a proper
bound.

Hierarchies in Exact Metric-Space Similarity Search: Brute force exact
metric-space search is avoided by using indices which leverage pivots, select
points in the dataset, and the triangle inequality to bound the distance between
the query point and other members of the dataset, removing a large portion from
consideration. For example, the List of Clusters (LOC) [7] organizes the dataset
into an ordered list of pivots, where each pivot is responsible for a group of points
within a radius of that pivot. The query can traverse the list, only considering
the clusters that may contain the nearest neighbor. By the observation that an
increase an N also increases the number of points in each cluster, the Recursive
List of Clusters [12] brings greater efficiency by organizing each cluster into its
own LOC. In fact, this recursive organization of the dataset into smaller and
smaller groups is the basic concept of tree structures, which achieve logarith-
mic search complexity. Some metric-space tree structures of interest include the
M-Tree [8], the Cover Tree [3], and several others [5,16,21].

Overview: The proposed approach constructs a multilayer hierarchy of coarse-
scale pivots “owning” finer-scale pivots in their pivot domains defined by a
radius. The hierarchy is then used to (i) find the nearest neighbors to a query
without computing distance to each element by relying on conditions on piv-
ots and (ii) use pivot conditions to discard entire domains from being HSP
neighbors, preserve entire domains as active, or declare domains as indeter-
minant which require examination of its members. This results in significant
savings and leads to scalable HSP computation on large-scale, high-dimensional
datasets featuring clustered data. Our implementation is publicly available at
https://github.com/cole-foster/HHSP.git.

2 Finding the Exact, Hierarchical HSP Neighbors
(HHSP)

The main bottleneck in finding the HSP neighbors of a query is (i) the com-
putation of the distance to all dataset members, and (ii) to a lesser extent,

https://github.com/cole-foster/HHSP.git
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the validation of the inequalities in Eq. 1. The key intuition is to use a hierar-
chy where pivots representing a group of dataset points can be examined and
used to either discard or retain from consideration the entire elements in the
pivot domain, thus avoiding explicit computation of distances or validation of
inequalities.

Specifically, recall that in the HSP algorithm the distance between Q and all
dataset members are calculated to return x1 as the closest point to Q. Since x1

is the nearest neighbor of Q, it becomes the first HSP neighbor and is used to
discard a half-space from being HSP neighbors of Q by checking Eq. 1 on the
remaining dataset members, Fig. 2(a). Next, the closest point among the active
list A which is the set of surviving dataset members becomes the second HSP
neighbor and is used to check and discard the remainder of the active list that
satisfy Eq. 1. This process is repeated until all members are labeled either as
HSP neighbors or discarded, with overall complexity of O(N).

A first key savings can be achieved through the computation of the nearest
neighbor of Q by using pivots in a hierarchy. Consider, at first, a two-layer
hierarchy where the “bottom” layer is the dataset and the “top” layer is a select
group of elements of the dataset called pivots pi such that each data point xj is
in the domain of one, and only one, pi, namely, d(xj , pi) ≤ r, where r is a fixed
parameter of the hierarchy, Fig. 4(a). There are numerous ways to construct this
hierarchy. The approach used here is to randomly consider the dataset members
one by one and assign them to either belonging to an existing pivot or if no pivot
can be found, assign it as a pivot. The parameter r determines the size of the
pivot domain.

Fig. 4. (a) A two-layer hierarchy where the bottom layer contains all of S and the
top layer has a select few pivots where the distance of dataset elements to its pivot
parent is less than r. (b) Given an upper-bound distance dmin, a pivot p may contain
the nearest neighbor x1 if d(Q, p) ≤ dmin + r (Color figure online)

The pivot structure can be used to significantly reduce the computational
effort in finding the nearest neighbor of Q. Let dmin denote the minimum distance
of the query Q to the data elements already considered. Then, the distance from
Q to any other element x in the pivot domain of p satisfies the triangle inequality

d(Q, p) − r ≤ d(Q, p) − d(p, x) ≤ d(Q,x) ≤ d(Q, p) + d(p, x) ≤ d(Q, p) + r. (2)
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Thus, if for a pivot p, d(Q, p) > dmin + r,

dmin < d(Q, p) − r ≤ d(Q,x), (3)

and the pivot domain cannot contain the nearest element, see the blue pivot
domain in Fig. 4(b). On the other hand, if d(Q, p) ≤ dmin + r, the green pivot
domain in Fig. 4(b), the elements in the domain of p must be explicitly considered
and if one has a lower distance than dmin, it updates dmin. This prevents the
computation of distances to a vast majority of dataset elements. The process is
repeated until all pivots have been considered in this way. A better performance
can be achieved by using tighter bounds if each pivot would maintain the distance
to its most distant member, r∗.

A second key savings can be achieved through wholesale examination of Eq. 1
for all members of a pivot domain without calculating distance to query or vali-
dation of inequalities by examining d(Q, p). The following proposition prevents
member-wise validation of the second inequality in Eq. 1 if the pivot satisfies
certain conditions:

Proposition 1. Let Q be a query, x1 the furthest HSP neighbor of Q thus far,
and p2 a pivot with domain radius r satisfying the following:

{
d2(Q, p2) − d2(x1, p2) > 2r d(Q,x1) (4a)
d(Q, p2) ≥ r. (4b)

Then, all points x2 ∈ D(p2, r), i.e., where d(x2, p2) ≤ r, satisfy d(x1, x2) <
d(Q,x2).

Proof. By the triangle inequality and d(x2, p2) ≤ r,

d2(x1, x2) ≤ [d(x1, p2) + d(p2, x2)]
2 ≤ [d(x1, p2) + r]2 = d2(x1, p2) + 2r d(x1, p2) + r2.

(5)
Applying the given Eq. 4,

d2(x1, p2) + 2r d(x1, p2) + r2 < d2(Q, p2) − 2r d(Q,x1) + 2r d(x1, p2) + r2

= d2(Q, p2) − 2r [d(Q,x1) − d(x1, p2)] + r2

≤ d2(Q, p2) − 2r d(Q, p2) + r2

= [d(Q, p2) − r]2

≤ [d(Q,x2) + d(x2, p2) − r]2

≤ [d(Q,x2) + r − r]2

= d2(Q,x2).
(6)
�

It is intriguing that the region where p2 satisfies Eq. 4(a) is the half-space to
the right of a shifted generalized hyperplane in a Euclidean space, because the
quadratic terms involving coordinates of p2 cancel out leaving a linear equation
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which represents a hyperplane. Returning now the first inequality in Eq. 1, the
following proposition identifies the condition on a pivot so that the entire pivot
domain can be discarded.

Proposition 2. Let Q be a query and x1 the furthest HSP neighbor of Q thus
far, then a pivot p2 with radius r satisfying both of the following inequalities{

d2(Q, p2) − d2(x1, p2) > 2r d(Q,x1) (7a)
d(Q,x1) < d(Q, p2) − r, (7b)

invalidates all points x2 ∈ D(p2, r), i.e., d(p2, x2) ≤ r, as a HSP neighbors of Q.

Fig. 5. (a) The point x2 will satisfy Eq. 1(a) when its parent pivot p2 is outside of the
circle of radius d(Q, x1) + r centered at Q. (b) The point x2 satisfies Eq. 1(b) when p2

is to the right of the generalized hyperplane shifted by r. (c) The intersection of the
two regions (orange) which defines locations for p2 where its pivot domain members
cannot be an HSP neighbor of Q. (d) The point x2 does not satisfy both inequalities
of Eq. 1 when p2 falls into the purple region. (e) When p2 falls into the blue region, it
is undetermined if x2 satisfies both inequalities of Eq. 1 (Color figure online)

Proof. First, let’s show that d(Q,x1) < d(Q,x2):

d(Q,x1) < d(Q, p2) − r ≤ d(Q,x2) + d(x2, p2) − r ≤ d(Q,x2) + r − r = d(Q,x2).
(8)

Second, since 0 ≤ d(Q,x1), Eq. 7(b) shows that d(Q, p2) > r which together with
Eq. 7(a) satisfy Proposition 1 which states that d(x1, x2) < d(Q,x2), the second
inequality of Eq. 1 holds. �

The regions corresponding to Eqs. 7(b) and Eqs. 7(a) are shown in Fig. 5(a)
and 5(b), respectively, leading to their common intersection in Fig. 5(c).

In addition to determining which pivot domains are entirely ruled out, it is
also possible to determine which pivot domains cannot get ruled out in their
entirety because their members do not satisfy either the first or the second
inequalities in Eq. 1 and can therefore remain on the active list in their entirety.

Proposition 3. Let Q be a query, x1 be the furthest HSP neighbor of Q thus
far, and p2 a pivot satisfying either of the following:{

d2(x1, p2) − d2(Q, p2) ≥ 2r d(Q,x1) and d(x1, p2) ≥ r (9a)
d(Q, p2) ≤ d(Q,x1) − r. (9b)

Then, all points x2 ∈ D(p2, r), i.e., d(p2, x2) ≤ r, violate one of the inequalities
of Eq. 1, i.e., either d(Q,x1) ≥ d(Q,x2) or d(x1, x2) ≥ d(Q,x2).
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Proof. First, Eq. 9(b) implies that

d(Q,x2) ≤ d(Q, p2) + d(p2, x2) ≤ d(Q, p2) + r ≤ d(Q,x1). (10)

Second, by the triangle inequality, Eq. 9(a), and d(p2, x2) ≤ r, r ≥ 0,

d2(Q,x2) ≤ [d(Q, p2) + d(p2, x2)]
2 ≤ [d(Q, p2) + r]2

= d2(Q, p2) + 2r d(Q, p2) + r2

≤ d2(x1, p2) − 2r d(Q,x1) + 2r d(Q, p2) + r2

= d2(x1, p2) − 2r [d(x1, Q) − d(Q, p2)] + r2

≤ d2(x1, p2) − 2r d(x1, p2) + r2

= [d(x1, p2) − r]2

≤ [d(x1, x2) + d(x2, p2) − r]2

≤ d2(x1, x2).
(11)

�

Figure 5(d) visualizes the regions defined by the inequalities in Eqs. 9(a) and 9(b),
which is the union of the shifted half-space and a reduced radius disc. A pivot p2
in the purple region is retained in the active list without detailed examination
of its elements.

The pivots that are neither fully discarded (orange area) nor fully accepted as
surviving in their entirety (purple area) can potentially contain elements which
can be discarded and elements that survive (cyan area), Fig. 5(e). The elements
in these pivot domains must be individually tested with the inequalities of Eq. 1.
However, this determination can be delayed until the point where their elements
need to be examined. It is entirely possible that this entire pivot domain would
be discarded in the next steps.

The details of the procedure are in Algorithm 1. Basically, the hierarchy is
used to efficiently find the nearest neighbor, Proposition 2 and 3 are used to
discard entire pivot domains and retain an active pivot list A1 (purple area) of
pivots, and an indeterminant list I (cyan area). The procedure is then repeated
by finding the next nearest element by exploring pivots in A1

⋃ I. In the process,
some of the pivots in I may have to be explicitly examined. The pivots are
removed from I, and added to an active point list A2 of elements. The process
is repeated by finding the nearest element in A1

⋃ I ⋃ A2 until they are all
exhausted.

Multi-layer Hierarchies: This two-layer hierarchical approach achieves effi-
ciency by using pivots to avoid the consideration of a vast number of points.
As N increases, the number of pivots and the number of points in each pivot
domain must both increase. This motivates the use of additional layers, similar
to other hierarchical indices [3,5,8,16,21]. Just as pivots are able to discard or
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Algorithm 1: Hierarchical HSP Search on a 2-Layer Hierarchy
Input: Q as the query point, P as the set of top layer pivots in the 2-Layer Hierarchy

constructed on S with top layer radius r.
Output: HSP(Q) as the exact HSP neighbors of Q in S.

1 begin
2 Initialize HSP(Q) = ∅, A1 = P, I = ∅, A2 = ∅.
3

4 while |A1| > 0 or |I| > 0 or |A2| > 0 do
5

/* Finding the Next HSP Neighbor */
6 Find xi as the closest active point:
7 · Initialize dmin with the distance to the closest p ∈ A1 or x ∈ A2.
8 · Update dmin with d(Q, p) for p ∈ I if p does not satisfy Eq. 1 for any

xj ∈ HSP(Q).
9 · Iterate through p ∈ A1; search the domains of pivots where d(Q, p) ≤ dmin + r,

updating dmin.
10 · Iterate through p ∈ I; if p satisfies d(Q, p) ≤ dmin + r, then remove p from I

and validate each member of the pivot domain against Eq. 1 for all xj ∈ HSP(Q).
Those points that are retained are added to A2 and may update dmin.

11 · The closest active point xi becomes the next HSP neighbor, xi is added to
HSP(Q).

12

/* Validation of the Active Points */
13 For each p ∈ I:
14 1. If Prop. 2 satisfied for Q and xi, remove p from I.
15 2. Otherwise, continue.
16 For each p ∈ A1:
17 1. If Prop. 2 satisfied for Q and xi, remove p from A1.
18 2. If Prop. 3 satisfied for Q and xi, continue.
19 3. Otherwise, remove p from A1 and add p to I.
20 For each x ∈ A2:
21 1. If Eq. 1 satisfied for Q and xi, remove x from A2.
22 2. Otherwise, continue.

23 end

24 end

retain an entire pivot domain of elements, coarse-scale (large radius) pivots dis-
card or retain pivot domains of finer-scale pivots, e.g., Fig. 6. Additional layers
can achieve enhanced efficiency when N is increased further, Fig. 7.

3 Experiments

Exact HSP Complexity on Uniformly Distributed Data: The HHSP’s
complexity is examined on uniformly distributed data of varying dimension,
Fig. 7. Observe that the indexing construction time, number of distances for
search, and search time all depict an approximately linear profile against N
across dimension for varying numbers of layers in a log-log domain. A straight
line in log-log is log(y) = α log(N)+γ or y = βNα. While theoretical complexity
bounds have not yet been defined, the above experiments suggest an approach
to characterizing complexity of the HHSP, Table 1.

Comparison to Brute Force: The traditional concern in using exact query
search is the curse of dimensionality, where as the intrinsic dimension of the
dataset grows the index becomes less effective, eventually being no more effec-
tive than brute-force search. In such arguments, the size of the dataset is kept
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Fig. 6. (a) Depiction of a three-layer hierarchy. (b) The radius for a 2-layer hierarchy
may be chosen to minimize the average number of distance computations on search. (c)
Similarly, choosing radii for a three-layer hierarchy can be posed as a 2D optimization.

Table 1. The experimental complexity of the HHSP based on uniformly distributed
data is captured by the value α for the experimental complexity O(Nα) using a least-
squares fit of the function y = βNα.

Complexity 2D 4D 6D 8D 10D

Index Construction Distances 1.060 1.113 1.189 1.534 1.542

Index Construction Time 1.131 1.150 1.221 1.605 1.687

Index Memory Usage 0.960 0.966 0.968 0.970 0.983

Search Distances 0.108 0.203 0.311 0.447 0.553

Search Time 0.979 0.968 0.917 0.840 0.810

Fig. 7. Index construction time, number of distances, and search time for HHSP on 2D-
10D data using 2, 3, and multilayer indices. Observe that these plots are approximately
linear in the log-log domain
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constant as the “volume” over which the dataset elements are spread becomes
larger and thus density approaches zero. We posit that the key to determining
the effectiveness of an index is to keep “density” constant. Our analysis shows
that the index remains effective over a variety of dimensions and dataset sizes,
Fig. 8. For example, in datasets of N = 1, 638, 400 points, the HHSP achieves
time savings of 686.7x in 10D, enabling exact search on datasets of even 100
million points, Fig. 7.

Fig. 8. The savings of the HHSP over the brute force HSP algorithm in ratios of
(a) the average number of search distances per N , (b) the ratio of average distance
computations in comparison over those required for the brute force HSP test, and (c)
the ratio of the average search time and that required for brute force search. It is
evident that the index remains effective and its efficiency increases with N

HHSP Search on Clustered Data: Realistic datasets are typically not uni-
formly distributed. Rather, data points are often clustered, e.g., object cat-
egories. The performance of the HHSP is measured on a synthetic clustered
dataset created by initializing 100 uniformly distributed clustered centers from
[−1, 1]D and using Gaussians with variance=0.05 to create 1,000 perturbations
of each center, Fig. 9. Note that the rate of increase with D for the search time
and the number of distance computations is significantly lower.

Fig. 9. A comparison of HHSP performance on uniformly distributed data vs. clustered
data for N = 100, 000 shows a significantly reduced rate of increase.
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Real World Datasets: The performance of HHSP on real world datasets,
Table 2. (1) LA, a 2D dataset of the geographic locations in Los Angeles with
N = 1, 073, 827 points; (2) Forest, a 6D dataset of quantitative variables used
for classifying forest cover types; and (3) Corel, a N = 67, 840 collection of 32D
color histograms of images. The HHSP significantly outperforms the brute force
HSP Test in all cases, leading to 5,218x, 2,598x, and 8.64x savings over brute
force time for LA, Forest, and Corel, respectively.

Table 2. Comparing the HHSP to the original HSP Test on Real-World Datasets.

Dataset N Ave. HSP Neigh BF Time (ms) BF Distances Index Const. Time (s) HHSP Time (ms) HHSP Distances Ratio of Times

LA (2D) 1,073,727 3.32 55,315.248 2,757,279.67 2.744 10.627 1,124.15 5,205.16

Forest (6D) 580,812 5.34 10,913.616 1,630,106.17 4.498 4.207 3,194.70 2,594.16

Corel (32D) 67,840 9.71 67.669 192,751.53 7.161 7.832 64,420.57 8.64

Comparison to Approximate HSP Search: The only existing, scalable app-
roach at reducing the complexity of the HSP algorithm relies on performing an
approximate kNN search to retrieve a large neighborhood around the query, and
then apply the HSP Test on that neighborhood [19]. This approach leverages a
state-of-the-art graph-based approximate search index, the Hierarchical Naviga-
ble Small World (HNSW) Graph [11]. This approach to HSP Search involves an
inherent trade-off between search time and accuracy, requiring a large neighbor-
hood to obtain exactness at the cost of longer search time, Fig. 10.

Fig. 10. Comparing the approximate HSP Search by HNSW to the exact HSP search
by the HHSP Test. The point labels on the curves correspond to the size of the neigh-
borhood returned by HNSW for the approximate HSP.

The results show that, while there is no advantage to the HHSP on uniformly
distributed data, the approximate method saturates performance while HHSP is
able to reach 100% recall at a reasonable time. A similar result is shown for the
high-dimensional Forest data, but not for the low-dimensional LA data where
there is negligible difference.
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Improving Graph-Based Nearest Neighbor Search: Since the HNSW
achieves state-of-the-art results as an approximate monotonic graph, there
remains a question as to whether its performance may be improved by being
a fully, exact monotonic graph. To showcase the impact of the exact HSP neigh-
bors, we replace the HNSW links on each layer with the exact HSP links.
Figure 11 shows the comparison between the HNSW and the HNSW with HSP
links on a 6D uniform and clustered datasets with N = 1, 000, 000 points. The
construction of the full HSP Graphs by the HHSP took just over 10 h, while it
would take the brute force approach an estimated 200 d!

First, as guaranteed by the monotonic property of the HSP, Fig. 11(a,b)
shows the HSP Graph ensure exact search for any member of the dataset, which
is not the case for the original HNSW, especially in clustered data. Secondly,
Fig. 11(c,d) shows that the HSP links provide a slight, yet modest improvement
over the original HNSW links for queries that are not members of the dataset.

Fig. 11. Comparing the HNSW to HNSW with links are replaced with the exact HSP
links. (a,b) Recall for the nearest neighbor when dataset items are queried. The mono-
tonic property of the HSP graph guarantees a perfect recall, but this is not always the
case for the original HNSW. (c,d) Recall for the nearest neighbor when items not in the
dataset are queried. Although the monotonic property of the HSP does not guarantee
perfect recall in this case, we see it provides a modest improvement over the original
HNSW.

Conclusion: This hierarchical approach outlines a fast, efficient method of
finding the exact HSP neighbors of a query in a metric space: by the novel
definition of the shifted generalized hyperplanes between two points, pivots are
able to discard or retain entire groups of points as consideration for being an
HSP neighbors. While approximate methods to the HSP are able to achieve
good recall with fast search times, they miss the vital, long-range links essential
to the monotonic property of the HSP. By constructing the exact HSP Graph
on a dataset of one-million points, which is a feat in itself, we show that the
monotonic property can improve the performance of graph-based approximate
nearest neighbor search.
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18. Ruiz, G., Chávez, E.: Proximal navigation graphs and t-spanners. arXiv preprint
arXiv:1404.1646 (2014)

19. Talamantes, A., Chavez, E.: Instance-based learning using the half-space proximal
graph. Pattern Recogn. Lett. 156, 88–95 (2022)

20. Yao, A.C.C.: On constructing minimum spanning trees in k-dimensional spaces
and related problems. SIAM J. Comput. 11(4), 721–736 (1982)

21. Yianilos, P.N.: Data structures and algorithms for nearest neighbor. In: Proceed-
ings of the ACM-SIAM Symposium on Discrete Algorithms, vol. 66, p. 311 (1993)

http://arxiv.org/abs/1404.1646


Approximate Similarity Search for Time
Series Data Enhanced by Section

Min-Hash

Ryota Tomoda(B) and Hisashi Koga

University of Electro-Communications, Tokyo 182-8585, Japan
{tomoda,koga}@sd.is.uec.ac.jp

Abstract. Dynamic Time Warping (DTW) is a well-known similarity
measure between time series data. Although DTW can calculate the
similarity between time series with different lengths, it is computation-
ally expensive. Therefore, fast algorithms that approximate the DTW
have been desired. SSH (Sketch, Shingle & Hash) is a representative
hash-based approximation algorithm. It extracts a set of quantized sub-
sequences from a given time series and finds similar time series by means
of Min-Hash, a hash-based set similarity search. However, Min-Hash does
not care about the location of set elements (i.e., quantized subsequences)
in the time series, so that hash collisions have a rather weak correlation
with DTW. In this paper, to strengthen the correlation between hash col-
lisions and DTW, we propose a new method termed Section Min-Hash
that also allows position shifts required by DTW. After quantizing subse-
quences in a time series based on Euclidean distance, Section Min-Hash
explicitly specifies multiple sections within the time series and generates
the hash values from all the sections.

Keywords: Time series · Similarity search · Dynamic Time Warping

1 Introduction

In recent years, time series data have been utilized in various fields. As a result,
similarity search for time series data has attracted much attention. As for the
similarity measure, the standard Euclidean distance cannot compare two time
series of different lengths. By contrast, Dynamic Time Warping (DTW) [1] can
measure the similarity between two time series Q and X, even if they have
different lengths.

However, DTW suffers from its huge time complexity of O(|Q||X|), where
|Q| presents the length of Q. Thus, efficient time-series similarity search based
on DTW has been an important challenge: First, Kim et al. [2] and Keogh et al.
[3] proposed some branch-and-bound techniques. Then, Rakthanmanon et al. [4]
devised a UCR suite algorithm that combines various known branch-and-bound
techniques. Choi et al. [5] devised another pruning-based acceleration method.
Although these pruning-based solutions exactly find the most similar time series
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whose DTW distance to the query becomes the smallest, they are known to work
poorly for long time series, which slows down the execution speed.

Therefore, fast algorithms that approximate the DTW has been desired.
Locality-Sensitive Hashing (LSH) is a known framework to realize fast approx-
imate similarity search. However, only a few practical LSHs currently exist for
time series such as [6,7]. Thus, this research theme still has much room to evolve.
Specifically, Luo et al. [8] proposed a method called Sketch, Shingle & Hash
(SSH) that approximates time series similarity search based on DTW. SSH relies
on hashing and surely makes the execution time shorter than the exact UCR
suite algorithm [4]. SSH extracts a set of quantized subsequences from a given
time series and then searches similar time series by means of hash-based set
similarity search called Min-Hash [9].

However, Min-Hash does not care about the location of set elements (i.e.,
quantized subsequences) in the time series, so that hash collisions have a rather
weak correlation with DTW. In this paper, to strengthen the correlation between
hash collisions and DTW, we propose a new method named Section Min-Hash
(SMH) that also allows position shifts required by DTW. SMH selects multiple
sections within the time series and generates the hash values from all the sections.
In this way, SMH can recognize for which part of the time series a hash value is
computed.

2 DTW

DTW is a distance between two time series. Let X = (x1, x2, ..., xm) and
Y = (y1, y2, ..., yn) be two time series of length m and n. Here, xi is an
arithmetic value and corresponds to the i-th element of X. The DTW dis-
tance between X and Y is defined as the minimum cost when aligning X and
Y under three constraints that are explained later. Unlike the Euclidean dis-
tance, DTW allows matching between time series with positional shifts. An
alignment that satisfies the three constraints is referred to as a warping path
P (X,Y ) = ((i1, j1), (i2, j2), ..., (iK , jK)) which is a collection of index pairs. K
is the length of P (X,Y ). Here, for 1 ≤ k ≤ K, ik and jk are the indices of
time series data X and Y . The warping path must satisfy the following three
conditions:

Boundary Condition: The first and last points of X and Y must be aligned
to each other. In other words, P1 = (1, 1), and PK = (m,n).

Monotonicity Condition: The alignment between points should be monoton-
ically non-decreasing. That is, ik−1 ≤ ik and jk−1 ≤ jk for 2 ≤ k ≤ K.

Continuity condition: The alignment cannot skip points. That is, ik−1 ≤ ik ≤
ik−1 + 1 and jk−1 ≤ jk ≤ jk−1 + 1.

The cost V (P ) of the warping path P is defined as the sum of distances between

the matched points, i.e., V (P ) =
√∑K

k=1 d(xik , yjk)2.
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Formally, DTW is defined as the cost of the minimum-cost warping path.
Let A(X,Y ) be the set of all warping paths between time series X and Y . The
DTW between time series X and Y can be expressed as follows:

DTW (X,Y ) = min
P∈A(X,Y )

V (P ). (1)

The minimum-cost warping path can be computed using dynamic programming.
The time complexity of DTW is O(mn), since the distances between xi (1 ≤ i ≤
m) in X and yj (1 ≤ j ≤ n) in Y need be exhaustively calculated beforehand in
order to quantitate V (P ).

For real applications, warping constraints are often used to restrict the
range of warping and to prevent excessive stretching or compression in the align-
ment. The Sakoe-Chiba band is a famous warping constraint. The Sakoe-Chiba
band demands any index pair (ik, jk) in the warping path to satisfy |ik −jk| ≤ b,
where b is a positive parameter. Under the Sakoe-Chiba band, the time com-
plexity of DTW reduces to O(max{m,n}×b) that equals the number of possible
index pairs, However, the longer the data, the longer the computation time.

3 SSH (Sketch, Shingle & Hash) [8]

To overcome the large time-complexity of DTW, Luo et al. [8] proposed an
algorithm called SSH (Sketch, Shingle & Hash) that approximates the nearest
neighbor search based on the DTW distance. Given a query time series Q, the
goal is to search similar time series with small DTW distances to Q from the
time series database D. SSH makes use of hashing to narrow down promising
candidates in D and reduces the number of DTW calculations by computing the
DTW distance only for the candidates.

For a time series X ∈ D, SSH first gathers quantized subsequences from X
and represents X as a histogram SX of quantized subsequences. Then, a hash
value for X is derived by applying Min-Hash [9] to SX . Below, we explain these
two procedures in details.

3.1 Construction of a Histogram SX of Quantized Subsequences

Let X = (x1, x2, ..., xm) be a time series of length m.
First, SSH segments subsequences of length w from X by sliding a window of

length w along X and by setting the stride to δ. Here, the stride is a parameter
that controls how far the window advances at one step. As a result, SSH acquires
(m−w+1)

δ subsequences. To simplify the exposition, we denote (m−w+1)
δ by N

and expresses a set of extracted subsequences as {X
(1)
S ,X

(2)
S , · · · ,X

(N)
S }. For

example, the i-th subsequences X
(i)
S consists of w elements in X for 1 ≤ i ≤ N

as follows.

X
(i)
S = (x(i−1)∗δ+1, x(i−1)∗δ+2, ..., x(i−1)∗δ+w). (2)
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Next, SSH creates an N -bit sequence by mapping each subsequence to 0 or 1.
Concretely, it computes an inner product between X

(i)
S and a randomized filter

vector r and determines the sign B
(i)
X of the inner product. That is, B

(i)
X = 1

if r · X
(i)
S ≥ 0 and B

(i)
X = 0 if r · X

(i)
S < 0. Here, the filter vector r is created

by concatenating w random values chosen from a one-dimensional normal dis-
tribution with mean 0 and variance σ2. Thus, r becomes a w-dimensional vector
r = (r1, r2, ..., rw). This mapping of X

(i)
S to a binary value is the equivalent with

the LSH for the cosine similarity [10]. Therefore, for two time series X and Y ,

it holds that P [B(i)
X = B

(i)
Y ] = 1 − θ(X

(i)
S ,Y

(i)
S )

π , where θ(X(i)
S , Y

(i)
S ) represents the

angle between X
(i)
S and Y

(i)
S .

So far, we have obtained the N -bit sequence BX = (B(1)
X , B

(2)
X , ..., B

(N)
X ). By

extracting n consecutive bits from BX , we can generate an n-gram. In total,
the N -bit sequence BX contains N − n + 1 n-grams. Obviously, an n-gram
corresponds to a feature for n time-series subsequences in X. In other words,
the n-gram quantizes the n subsequences in X.

Finally, SSH constructs a histogram SX for these N − n + 1 n-grams. SX

holds 2n bins that is equal to the number of possible bit patterns for n-digit
binary sequences. After all, the histogram SX represents a time series X as a
multiset that contains n time series subsequences.

3.2 Hash Value for the Histogram of SX of n-Grams

Because the histogram SX forms a multiset of n-grams, SSH computes the
hash value for SX by applying the weighted Min-Hash. The weighted Min-Hash
assures theoretically that the probability of hash collision between two multisets
equals their weighted Jaccard similarity. SSH adopts the well-known Consistent
Weighted Sampling [11] as a hash function for the weighted Min-Hash.

3.3 Approximate k-NN Search

This subsection describes how SSH realizes approximate k-NN search based on
the DTW distance for a query time series Q. As a preprocessing, SSH prepares l
hash functions mh1,mh2, · · · ,mhl and l hash tables T1, T2, · · · , Tl. Then, for all
the time series Xi in the database D = {Xi|1 ≤ i ≤ |D|}, SSH computes l hash
values mh1(Xi), ...,mhl(Xi) and register Xi into the l hash tables according
to the hash values. When the query Q arrives, SSH computes l hash values
mh1(Q), ...,mhl(Q) and examines the l hash buckets over the l tables. SSH
treats the group of time series in the l buckets as promising candidates in D.
SSH actually computes the DTW distance only for the promising candidates and
selects the top-k time series of them that have the least DTW distance to Q.
These top-k time series constitute the approximate result. To decide the top-k
time series from the promising candidates, SSH relies on the pruning-based UCR
suite algorithm [4].



Similar Time Series Search Enhanced by Section Min-Hash 23

Fig. 1. Relation between distance between subsequences and their bit values

4 Drawbacks of SSH

This section states two drawbacks of SSH that motivate our research: (1) The
n-grams have a weak correlation with DTW and (2) the hash values discard the
temporal information of time series subsequences completely.

Let us begin with the first problem. For a pair of time series X and Y , suppose
that their n-grams become the identical. Namely, B

(i)
X , B

(i+1)
X , ..., B

(i+n−1)
X =

B
(j)
Y , B

(j+1)
Y , ..., B

(j+n−1)
Y . From this premise, we have B

(i+k)
X = B

(j+k)
Y for 1 ≤

k ≤ n. However, the fact B
(i+k)
X = B

(j+k)
Y reveals that the subsequences X

(i+k)
S

in X and the subsequences Y
(j+k)
S in Y have similar vector orientations, but

does not assure that X
(i+k)
S and Y

(j+k)
S are located closely in the w-dimensional

vector space. By contrast, even if B
(i+k)
X �= B

(j+k)
Y , it can happen that X

(i+k)
S and

Y
(j+k)
S are closely located. See Fig. 1 for example: q is a time series subsequences

in Q. The diagonal line represents a boundary plane decided by the filter vector
r. This plane has a normal vector r. In the figure, even if q and c are time
subsequences closely located in the vector space, their bit values are different.
On the contrary, even if q and b are very distant, their bit values grow the same.
Since DTW accumulates element-wise Euclidean distances after all, the angle
between two vectors used in SSH is less related to DTW than their Euclidean
distance.

Furthermore, the n-grams in SSH are not adaptive to the data distribution,
because the random filter vector r is chosen independently of the database D. As
a result, there is a risk that the signs of r · X(i)

S will be extremely biased toward
either 0 or 1. In such cases, every time series in D is going to have a skewed
histogram of n-grams, that obstructs the diversity of hash values. So that, the
hash function will fail to narrow down promising candidates properly.

Let us advance to the second problem that the hash values completely discard
the temporal information of time series subsequences. Due to this nature, the
hash collision mh(Q) = mh(X) can match two subsequences that are temporally
far away and that break the specified warping constraint like the Sakoe-Chiba
band. Furthermore, when multiple hash functions collide between Q and X,
they might not conform to the DTW as illustrated in Fig. 2. In Fig. 2, the hash
collisions between Q and X happen twice for the two hash functions mh1 and
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mh2. However, the two matched subsequence pairs intersect with each other and
break the monotonicity condition for DTW. Thus, they can never appear in the
same warping path simultaneously. Thus, SSH loses fidelity to DTW.

Fig. 2. Two hash collisions that break monotonicity condition

5 Proposed Solution

SSH has two drawbacks: (1) The quantization of subsequences, that is, n-grams,
neither has a strong correlation with DTW nor is adaptive to the database
D and (2) because hash values discard the temporal information of time series
subsequences, hash collisions can match two time subsequence which are unlikely
to appear in the optimal alignment corresponding to the DTW distance.

Our research aims to correct the two drawbacks in SSH. Particularly, we
proposes a new method named BSecH (Bag-of-sketch Section Hash). In order to
increase the correlation with DTW, BSecH quantizes time series subsequences
based on the Euclidean distance rather than the vector direction. In addition,
we also develop a novel Section Min-Hash (SMH). Section Min-Hash explicitly
specifies multiple sections in a given time series and computes a hash value for
each section, so that the hash values may link to the temporal locations in the
time series. In the subsequence, Sect. 5.1 explains the quantization of time series
subsequences based on the Euclidean distance. Section 5.2 discusses Section Min-
Hash.

5.1 Quantization of Subsequences Based on Euclidean Distance

To quantize time series subsequences, BSecH brings the Bag-of-Visual Words
(BoVW) designed for image processing into time-series analysis. The original
BoVW gathers all the local features, e.g. SIFT [12] in all the images in the
image database and convert them into quantized local features termed Visual
Words. Thus, the BoVW represents an image as a histogram of visual words.
Before us, Reference [13] has already made use of the BoVW for time series
processing. This previous work tried hard to imitate the original BoVW a much
as possible. In order to obtain local features, it calculates the gradient between
near points in the given time series, whereas the original BoVW computes the
gradient between neighbor pixels. Unlike [13], BSecH gives the highest priority
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to be consistent with DTW and quantizes raw time series subsequences without
caring about the gradient between near points.

Given a time series X = (x1, x2, ..., xm) of length m, BSecH first uti-
lizes the sliding window to segment N subsequences of length w, i.e.,
{X

(1)
S ,X

(2)
S , · · · ,X

(N)
S } completely in the same way as SSH, where N =

(m−w+1)
δ .
Next, by extracting time series subsequences from all the time series in D

in this way, BSecH constructs a pool P of time series subsequences of length w.
Then, BSecH treats a time series subsequence of length w as a w-dimensional
vector and clusters all the subsequences in P with the k-means algorithm. Let
C1, C2, · · · , Cnc be the derived clusters, where the number of clusters is denoted
by nc. Through the clustering, a time series subsequence is quantized to the
cluster ID that it belongs to. After the clustering, a time series X that holds
N subsequences is associated with the N cluster IDs C

(1)
X , C

(2)
X , ..., C

(N)
X where

C
(i)
X symbolizes a cluster that X

(i)
S belongs to. Finally, BSecH represents X as

a histogram SX of cluster IDs. Note that SSH bundles n consecutive time series
subsequences and quantizes them once to an n-gram, whereas BSecH quantizes
a single subsequence to a cluster ID.

The quantization process in BSecH have two merits as follows. (1) Thanks to
the k-means, the quantization is adaptive to the data distribution in D. Thus,
the histogram SX also becomes adaptive to the data distribution. (2) Supported
by the k-means, two time-series subsequences quantized into the same cluster ID
are expected to take a short Euclidean distance in the w-dimensional space. We
consider that this property is crucial to approximate of DTW, because the DTW
between two time series Q and X usually consists of multiple Euclidean distances
between time-series subsequences(in low-dimensional subspaces) as illustrated in
Fig. 3, especially if Q is similar to X under some warping constraint.

Fig. 3. DTW alignment includes Euclidean distance between subsequences

5.2 Section Min-Hash (SMH)

Section Min-Hash (SMH) aims to link the hash values of a time series X to
the temporal locations in X to prevent the hash collisions from matching tem-
porarily distant time series subsequences that are apparently not included in the
alignment corresponding to the DTW distance. Roughly speaking, SMH selects
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t sections of length d in the temporal space, where t(> 1) is a number of sections,
and outputs t hash values which are derived from the t sections. d, the width of
sections, and t, the number of sections are parameters that should be configured
by users.

First, we explain how to select of t sections. Like the Sakoe-Chiba band, SMH
assumes that every time series has roughly the equal length. Let Nmax be the
maximum number of subsequences obtained from a single time series in D.

1. We divide a finite integer interval [1, Nmax] into t segments of equal length.
The length of a segment grows Nmax

t .
2. For 1 ≤ i ≤ t, we select the i-th start time ui from the i-th segment randomly

and decides the i-th temporal section [ui, ui + d − 1]. Though ui is chosen
randomly, ui may not depend on a specific time series. Namely, ui must be
common for all the time-series data.

For a time series X, SMH outputs t hash values in the next way. After
quantizing the subsequences, X is represented as an ordered sequence of cluster
IDs {C

(1)
X , C

(2)
X , ..., C

(N)
X }. For 1 ≤ i ≤ t, the i-th hash value of X denoted by

mhi(X) is computed by applying mh, the hash function for Min-Hash, to the
set of cluster IDs {C

(ui)
X , C

(ui+1)
X , ..., C

(ui+d−1)
X } that X holds in the temporal

section [ui, ui + d − 1].
Figure 4 illustrates the above procedure. First, the interval [1, Nmax] is

divided into t pieces separated by the vertical black lines. Next, the i-th temporal
section [ui, ui + d − 1] shown as a dotted red rectangle is determined from the
i-th segment. Finally, the hash value mhi(X) is computed for the sets of cluster
IDs that emerge in the dotted red rectangle.

Very significantly, SMH guarantees that, when mhi(Q) = mhi(X), the time
gap between the matched subsequences never exceeds dδ. Though BSecH makes
t times as many hash values as SSH, BSecH is not inferior to SSH in terms of
the execution time experimentally. This is because the hash collisions are harder
to occur in BSecH than in SSH: In BSecH, not only the hash value but also the
section index i must coincide before a hash collision takes place.

Fig. 4. Section Min-Hash

5.3 Approximate k-NN Search

BSecH makes l hash functions mh1,mh2, · · · ,mhl in the same way as SSH. Each
hash function manages different t sections, since BSecH randomly chooses their
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starting times. For 1 ≤ j ≤ l, a hash function mhj outputs t hash values for a
single time series X. In total, BSecH creates t × l = tl hash values for X. Let
mhi

j(X) be the i-th hash value for X computed by the function mhj .
BSecH constructs l hash tables T1, T2, · · · , Tl. Then, for any X in D, we

compute the tl hash values and register X to the l hash tables. X is to be inserted
to the table Tj t times, as mhj generates t hash values for X. To distinguish the
t sections, we implement a bucket in Tj as t lists. For example, if mhi

j(X) = v,
X will be added to the i-th list that spans from the bucket b(v) in Tj .

When a query time series Q arrives, BSecH computes the tl hash values for Q
in the same way. Then, by scanning the corresponding tl lists over the l tables,
BSecH identifies a group R of promising candidates in D. If a time series X
belongs to R, X satisfies mhi

j(Q) = mhi
j(X) for some pair of i and j.

Finally, by using the pruning-based UCR suite, BSecH derives the top-k times
series in R that has the smallest DTW distance to Q and returns them as the
approximate result. For the UCR suite, we prioritize time series that experienced
more hash collisions with Q in calculating the DTW distance. Here, the frequency
of hash collisions for X is defined as the number of index pairs (i, j) satisfying
mhi

j(Q) = mhi
j(X). Since such time series are expected to have small DTW

distances to Q, this strategy rapidly decreases the lower bound of DTW distance
for the pruning and improves the pruning efficiency. We would emphasize that
SSH does not rank the time series stored in the promising candidates as BSecH.
Thus, BSecH tries to bring out the potential of UCR suite more actively than
SSH.

5.4 Related Works

Here, we review the attempt to utilize LSH to search similar time series. While
we process uni-variate time series, Yu et al. [6] devised an LSH to approximate
the DTW for multi-variate time series. PSEUDo [14] modifies [6], so that the
LSH hash function may be updated based on the relevance feedback from the
users. ChainLink [15] extends SSH to search subsequences similar to the query
time series from the database of time series. Though ChainLink accelerates the
generation of hash values by means of distributed processing, it only considers the
Euclidean distance. Astefanoaei et al. [7] developed an LSH for 2D trajectories.

Other than hash-based methods, PQDTW [16] computes approximate DTW
distances based on Product Quantization. PQDTW is similar to BSecH in quan-
tizing time series subsequences with the k-means-like clustering. Like BSecH,
STS3 [17] represents a time series as a set. However, by neglecting time series
subsequences, STS3 loses the high frequency component in time series.

6 Experiments

We compared SSH and BSecH experimentally. The experimental platform is a
PC with an Intel(R) Core(TM) i7-10700 CPU @2.9 GHz × 8 and 16 GB RAM.
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All algorithms were implemented in C++. As for SSH, we used the C++ program
provided by the inventor of SSH [18].

We used the real dataset ECG that was also used to evaluate SSH in the
original SSH paper [8]. The ECG dataset consists of 20,140,000 ECG data points.
After applying z-score normalization, we divide the ECG data into sequences of
length 1024. 4000 time series were chosen from these sequences to form the time
series database D. As for the query time series, we selected multiple time series
of length 1024 other than the database D.

6.1 Performance Comparison with SSH

We examine the quality of 20-NN (Nearest Neighbor) search. Given a query time
series Q, we evaluate an approximate result returned by either of SSH or BSecH
with the recall rate. The recall rate is defined as the ratio of the exact top-20 time
series with the smallest DTW distances to Q covered by the approximate result.
We report the average value taken over 20 different queries. In this subsection.
the Sakoe-Chiba band is set to b = 10.

For SSH, we used the same parameters as recommended in [8] for the ECG
dataset: w = 80, δ = 3, and n = 15. For BSecH, we set the parameters regarding
the histogram construction as w = 80, δ = 1, nc = 1024. With respect to Section
Min-Hash, t = 10 and d = 20.

To examine how much correlated the hash collisions are with DTW distances,
we investigated the relation between the recall and the number of DTW calcu-
lations. Recall that, both BSecH and SSH calculate the DTW distance only for
the promising candidates in D which experiences at least one hash collision with
Q. In Fig. 5(a), the X-axis presents the number of DTW calculations and the Y-
axis shows the recall. If a higher recall is obtained without computing the DTW
many times, the hash values are judged as more faithful to the DTW. In addition
to BSecH and SSH, Fig. 5(a) displays also the results for the two versions (i) the
one that couples the quantization based on the filter vector in SSH with Section
Min-Hash and (ii) the combination of BoVW in BSecH with the conventional
Min-Hash adopted in SSH. The legend for the version (i) is “SMH” and that for
the version (ii) is”BoVW”. To align the value range of DTW calculations, the
number l of hash functions, is set to 20 for BSecH and SMH and 60 for BoVW
and SSH.

BSecH achieved by far a higher recall than SSH. For instance, when DTW
is calculated 500 times, the recall for BSecH is about three times as large as
SSH. In addition, both BoVW and SMH consistently achieved higher recall rates
than SSH. Therefore, both the quantization of subsequences based on Euclidean
distance and Section Min-Hash are useful by themselves.

Next, Fig. 5(b) plots the execution time and the corresponding recall for the
20 different queries. Here, l = 10 for BSecH and l = 20 for SSH. The setting
l = 20 is recommended by the original SSH paper. The X-axis represents the
execution time, and the Y-axis shows the recall rates. Two vertical lines represent
the average execution times of SSH and BSecH, while the surrounding dashed
lines indicate the standard deviations. Remarkably, BSecH makes the execution
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Fig. 5. Comparison between BSecH and SSH

times shorter than SSH while achieving higher recall rates. The average execution
time becomes 21.99 ms for BSecH and grows to 47.86 ms for SSH. Thus, BSecH
halves the execution time as compared with SSH and improves the recall rates
simultaneously.

In addition, the variance of execution times becomes smaller for BSecH than
for SSH. SSH has a risk of increasing the variance, as it relies on a random
filter vector: The random filter vector maps n time series subsequences into n-
grams, while ignoring the data distribution. As a result, it can happen that
most of the time series subsequences are assigned to only a few kinds of n-
grams. This situation causes too many hash collisions that accompany too many
DTW computations and lengthens the execution time of SSH. The rightmost red
points in Fig 5(b) are instances of such cases. By contrast, the k-means method in
BSecH to quantize time series subsequences tends to generate clusters of similar
sizes and stabilizes the execution time.

Overall, BSecH outperforms SSH in terms of shorter execution times and
higher recall rates, while reducing the variance of execution times.

6.2 Effect of Parameters in BSecH

We report how the section width d and the window size w affect the search
performance in BSecH.

Effect of Section Width d in SMH: While fixing the Sakoe-Chiba band b
to 10, we vary d from 10 to 40 in the interval of 10. Figure 6 shows how d affects
the recall. The recall grows the highest when d = 20. It decreases gradually, as
d moves away from 20.

Next, we increase b to 20. Figure 7(a) shows that the recall becomes the
highest for d = 30 and decreases gradually as d moves away from 30. Then,
we increases b further to 50, where d is chosen from 50, 60, 70, and 100. See
Fig. 7(b). Similarly, the recall gets the highest for d = 60 and decreases gradually
as d moves away from 60.
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Fig. 6. Recall Rate for Various d Values when the Sakoe-Chiba band b = 10

These results suggest that the optimal value of d depends on the Sakoe-Chiba
band b. In particular, we recommend to set d to b + 10.

Fig. 7. Recall Rate for Various d Values

Effect of Window Size w: For two values of Sakoe-Chiba band b = 10 and
b = 50, we vary the window size w from 40 to 100 in the interval of 20. Figure 8
shows how w affects the recall. For both b values, the recall betters as w increases
and grows the highest for w = 80 and w = 100. These results show that the
optimal window size does not depend on b.

w controls the length of time series subsequences. In BSecH, the hash collision
occurs when two time series Q and X share time series subsequences that have
a small Euclidean distance. BSecH considers that Q and X grow more similar if
their hash values collide more often. Thus, Fig. 8 tells that, there surely exists
the optimal length of time series subsequences for the strategy to approximate
the DTW with the sum of Euclidean distances between matched time series
subsequences.
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Fig. 8. Recall Rate for various w Values

7 Conclusions

We propose an algorithm BSecH for approximate time-series similarity search
based on DTW. BSecH overcomes the two drawbacks of the previous hash-
based method SSH: (1) The quantization of time series subsequences does not
has a strong correlation with DTW, since it reflects their vector orientations that
are ignored by DTW. (2) Since the hash values discard the temporal locations
of subsequences, a hash collision can match two time series subsequences that
are temporally far apart and unlikely to emerge in the optimal alignment for
DTW. BSecH solves the first problem by clustering subsequences based on their
Euclidean distances and settles down the second problem by devising a new
Section Min-Hash (SMH). SMH explicitly specifies multiple temporal sections
in time series and computes a hash value for each of the sections, so that the hash
values may link to the temporal locations in the time series. Our experimental
results demonstrate that BSecH outperforms SSH in terms of search accuracy
and execution time both. We also show that the optimal section width for SMH
is affected strongly by the Sakoe-Chiba band warping constraint. One future
work is to evaluate BSecH on another dataset except for the ECG dataset.
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Abstract. In this paper, we delve into the Mutual k-Nearest Neighbor
Graph (mkNNG) and its significance in clustering and outlier detection.
We present a rigorous mathematical framework elucidating its applica-
tion and highlight its role in the success of various clustering algorithms.
Building on Brito et al.’s findings, which link the connected components
of the mkNNG to clusters under specific density bounds, we explore its
relevance in the context of a wide range of density functions.

Keywords: Mutual k-nearest neighbor · Neighborhood graph ·
Cluster analysis · Connectivity

1 Introduction

Clustering demands a nuanced understanding of data and a varied toolset tai-
lored to each unique problem. Successfully clustering hinges on formalizing intu-
itions into clear theorems. We aim to develop a robust mathematical framework
for mkNNG clustering use and explain the success of algorithms that use this
principle.

Our literature review underscores the recurring emphasis on the mkNN con-
cept, and our study provides insights into its application in clustering.

This paper bridges intuition and mathematics, advancing clustering tech-
niques. We offer a robust exploration of the Mutual k-Nearest Neighbor Graph,
laying groundwork for improved clustering and outlier detection. The formaliza-
tion is covered in Sect. 3.

2 The mkNN Graph in Clustering

Gowda and Krishna were, to our knowledge, the first to propose using the mkNN
relationship for agglomerative clustering in [8]. Starting with k = 1, fine-grained
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clusters are created and merged with increasing k values until only one clus-
ter remains. This was later refined with probabilistic arguments in [5] under a
density hypothesis; a detailed discussion on this is deferred to Sect. 3.

The approach in [11] offers a unique mkNN relationship, where each point
connects to exactly k-neighbors, proceeding from closest to farther pairs. Once a
point connects to its allotted neighbors, it’s excluded from further links. Unlike
other mkNN methods, distant points could form a mutual kNN relationship. Due
to the necessity of computing, storing, and sorting distance pairs, this method
is super-quadratic in memory and storage. The clustering approach identifies
dense clusters first, claiming to detect clusters of varying densities.

In [2], the authors introduce CMUNE, emphasizing linkage based on mkNN.
Dense areas are identified by measuring common points in their k-nearest neigh-
bor neighborhoods. Seed points from these dense regions then connect unclus-
tered points, excluding those in sparse areas. Further refinements are discussed
in [1].

In [9], a regressor based on the mkNN relationship is introduced. For a given
query x and value of K, it outputs the expected value of values linked to the
Mutual K-nearest neighbors of x. If the mkNN result for x is empty, indicating
an outlier, the regressor doesn’t produce a value.

[17] details the construction of an mkNN graph, drawing parallels with ear-
lier works [5,8]. The aim is cluster detection via the graph’s connected compo-
nents. Spurious connections, possibly arising from noise or outliers, are pruned
by weighting the graph’s edges based on an affinity measure. Edges below a set
affinity threshold are discarded, and clusters are recognized from the graph’s
residual components.

In [14], a survey on using mkNN for cluster detection is presented. The
authors’ proposed algorithm hinges on two concepts: extending the mkNN rela-
tion to point groups and incorporating density considerations.

[1] unveils DenMune, a clustering algorithm leveraging mkNN to discern
centrality and density, as required in the Density Peak-like algorithm [13]. Points
are categorized into strong, weak, and noise points based on their reverse kNN
count (Rk

X(x)). The DenMune algorithm operates through a voting framework
where points garner votes via their membership in the kNN of other points. High-
vote recipients are tagged as dense or seed points, while noise points are excluded.
Post noise-point removal, the points segregate into dense (seeds) and low-density
(non-seeds). Clusters primarily form around seed points, with the low-density
points accommodated subsequently. Remaining weak points are then aligned to
the most suitable cluster. Remarkably, the authors use mkNN consistently for
both density estimation and membership assessment.

A salient feature of the literature review is the dual application of the mkNN

test: determining cluster membership and performing three-tier density estima-
tion (dense, weakly-dense, sparse) as illustrated in [1]. While some algorithms
appear intricate, they yield compelling experimental results. Our goal is to
present a theoretically sound understanding of these heuristics, introducing a
streamlined tool for clustering tasks.
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3 Data Model

We consider a N-sized D-dimensional dataset X = {x1, · · · , xN} from domain
Ω ⊆ RD. From the perspective of the continuous domain Ω, a statistical gen-
erative model defines the dataset X as a N-sized i.i.d sample of a probability
density function (pdf) fX : Ω → R+ with respect to the Lebesgue measure on
Ω. {xi}

N
i=1 is then one realization of a set of N independent random variables

{Xi}
N
i=1 identically distributed according to this pdf (Xi ∼ fX, i ∈ [[N]])
Let Ξ ⊆ Ω be the support of fX defined as the closure of the set where

fX is non-zero (Ξ = supp(fX) = {x ∈ Ω || fX(x) �= 0}). The fact that Ξ is not
connected indicates the presence of localized structures in the domain Ω such as
(continuous) clusters. (Continuous) clustering is therefore defined as the labeling
of connected components of the set Ξ. By (discrete) extension, given X as a
sample of Ξ, clustering is the decision for every pair (xi, xj) ∈ X × X whether
both data belong to the same connected component of Ξ or not (see Definition 3).

Assuming now that (Ω, d) is a metric space equipped with distance function
d : Ω × Ω → R, then neighborhood systems may be defined over X.

Definition 1 (Mutual k-nearest neighbor relationship). If xj ∈ Vk
X(xi)

and xi ∈ Vk
X(xj) then xi and xj are said to be mutual k-nearest neighbors.

Based on the mutual k-nearest neighbor relationship, one can then build the
non-directed mutual k-nearest neighbor (mkNN) graph Gk = (X,Ek) where data
X serves as nodes and an edge (xi, xj) ∈ Ek exists if xi and xj are mutual k-
nearest neighbors. In this paper, we wish to argue for the interest in exploiting
the mkNN graph and use data clustering as a natural application domain where
using the mkNN is beneficial.

Here, we are particularly interested in the connectivity of Gk given dataset
X.

Definition 2 (kD,N). Given a dataset X ⊂ Ω, kD,N is the smallest integer k

such Gk is connected.

Authors in [5] provide us with Theorem 1 bridging the continuous and discrete
domains.

Theorem 1 (rephrased from [5], Thm 2.1).
Let the i.i.d sample X = {x1, · · · , xN} ⊂ Ω ⊆ RD come from a distribution

P with support Ξ ⊆ Ω and density fX. Assume that Ξ is connected and grid
compatible, and that for constants a1 and a2, we have, on Ξ, 0 < a1 � fX(x) �
a2. Then, there exists a constant c such that, almost surely, kD,N � c log N, for
large enough N.

The proof of the theorem is detailed in [5]. Constants 0 < a1 � a2 make sure
that values of fX have finite non-zero extremes. Similarly, the grid compatibility
criterion makes sure that Ξ contains a (dominated) connected cover of cubes of
finite side length, each with a sufficient intersection with Ξ. Theorem 1 relates
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the connectivity of the mutual kNN graph (via kD,N) and the continuity (via
grid compatibility) of the local density (via constants a1 and a2 and “large
enough N”). According to this theorem, the mutual kNN graph is connected in
parts where the density of the dataset allows to estimate a support that is grid
compatible and where this density is bounded away from 0 and Infinity.

That is, the size k � kD,N to consider for Gk to be connected (and therefore
this discrete structure to represent faithfully the connected continuous domain)
is bounded by a sub-linear function of N. As the local density at xi may be
estimated by f̂X(xi) = k

vol(Vk
X)

, Theorem 1 states formally that as long as this
local estimated density is large enough, Gk remains connected. We will exploit
that interpretation to use the mkNN graph to perform data clustering. Since we
rely on the formal model given by Theorem 1, we give data clustering a formal
and simple definition.

Definition 3 (Data cluster). Given dataset X, data clusters are defined as
connected components of the mutual nearest neighbor graph Gk built on S, as
the result of the data filtering operation

Theorem 1 provides guarantees that data clusters defined as above asymptot-
ically represent the connected subsets of the support of the continuous density
fX. However, since no parametric model is used for fX, this definition accommo-
dates arbitrary distributions, i.e arbitrary clusters shapes and arrangements.

4 Data Analysis with the Mutual k-Nearest Neighbor
Graph

Theorem 1 formally relates the local estimated density of X to the mkNN graph
connectivity. This creates a natural link to clustering operations. Reversing the
argument, we state that parts of low estimated density represent potential fords
thru which spurious (weak) connections in the mkNN graph may appear. Hence
we propose to remove these spurious low-density parts matching the “bounded
away from 0 and Infinity” continuous counterpart argument. By construction, the
resulting data subset guarantees a minimal local density, which by Theorem 1
guarantees mkNN graph connectivity. Starting from dataset X, we propose a
generic clustering algorithm below.

Algorithm 1. Data clustering based on mkNN graph
1: procedure DataAnalysis(X, k)
2: Remove low density parts of the dataset X → subset S � Data filtering
3: Build Gk as mkNN graph over S � Structure analysis
4: Connected components of Gk represent the pieces of connected support for fX
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Data Filtering. Filtering low-density regions is a staple in the denoizing
domain. In many contexts, sparse regions within datasets are interpreted as low-
likelihood samples, which are typically smoothed over by MSE-based regression
models. However, in this study, our primary concern revolves around the density
fX, especially under the parameters delineated in Theorem 1 and subsequent
discussions.

From this perspective, the objective becomes highlighting areas where the
estimated density not only reaches a minimal threshold (a1) but also stands
as statistically reliable, backed by adequate local samples. Notably, due to the
intrinsic property

∫
Ω fX = 1, identifying “low-density” zones becomes a com-

parative exercise, relative to the entire dataset’s distribution. Such an approach
closely aligns with the objective of outlier detection; an outlier’s definition invari-
ably hinges on its relation to the surrounding data [4,10].

Given this, our preliminary strategy entails employing outlier detection for
data filtration, sidestepping traditional methods like KDE [15] which tends to
falter in sparsely populated datasets. It’s worth noting that contemporary den-
sity estimation techniques, such as generative normalizing flows [12], might find
applicability in this scenario.

From the input dataset X, the filtration process yields S. This step intrigu-
ingly presents a dual relationship with its successor. Even though filtering fre-
quently mandates a predefined k value, techniques spanning outlier detection to
density estimation can potentially help pinpoint an optimal k.

Complexity: The construction of a compressed cover tree to solve the kNN
exhibits a time complexity of O(cm(X)8c((X)2N log(N)), where cm and c rep-
resent expansion constants pertinent to the dataset. When tasked with deriving
the k nearest neighbor table for a novel point, q, the time complexity is set
at O(c(X ∪ q)2 log(k)[cm(X)10 log N + c(X ∪ q)k]). This infers that formulating
the k nearest neighbor table remains a sub-quadratic challenge. The detailed
analysis can be found in the recent PhD thesis [6]. With the N × k k-nearest
neighbor table established, the determination of whether the k-nearest neighbor
relationship is mutual or otherwise is achievable through a single table traversal,
bearing a complexity of O(Nk2). Hence, the derivation of the mutual k-nearest
neighbor graph retains a subquadratic nature.

5 Illustrative Experiments

5.1 k-Means Convex Model

To illustrate visually the ability of our toolset to naturally handle clusters of
arbitrary shapes, we visualize the process with the 2D “Two Moons” dataset
generated by sklearn (N = 10 ′000, σnoise = 0.1). Due to its convex Gaussian
model, k-means cannot separate this data into 2 clusters (Fig. 1[top left]) whereas
our procedure (e.g with k = 10 and τLOF = 1.1, Fig. 1 [others]) robustly splits
the dataset.
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One can easily picture the underlying dendrogram from the evolution of the
partition. At k = 1000, connectivity overrules low density regions and the mkNN
then shows a unique connected component, leading to a high FP rate.

Fig. 1. Two Moons partitions. [top left] k-means partition. [others] our procedure fixing
τLOF = 1.1 and evolving k ∈ {1, 4, 5, 6, 7, 10, 1000} in reading order

Figure 2 pinpoints the fact that this behavior is prevented by the initial filter-
ing. If we remove this step, a large connected component appears in the mkNN
graph from k = 4.

Fig. 2. Two Moons partitions without prior filtering and evolving k ∈ {1, 2, 4, 5} in
reading order

5.2 Density-Based Clustering Model

Now, one strong bias brought by the sklearn “Two Moons” dataset is that
the two clusters are of approximate equal densities. When modifying the gen-
eration to obtain contrasted densities, one falls in a setup known to be adverse
to the density-based clustering algorithms, of which DBSCAN [7] is a major
representative.

As shown in Fig. 3, k-means fails again to identify proper clusters due to its
convex model. DBSCAN appears very difficult to tune for such data since the
high density pushes towards a small Eps radius which creates an empty ball, not
passing the MinPts threshold in low density regions. In contrast, such a setup
is accepted by our mkNN procedure with the same parameters as before.
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Fig. 3. Adapted Two Moons dataset with varying densities. [left] k-means partition.
[center] DBSCAN partition. [right] mkNN-based partition

Discussion: The filtering step, to be useful, should retain most data from the
original dataset. Finding the proper filtering value is a problem in itself, it should
be related to fords detection, as discussed earlier. There are many hidden param-
eters in the clustering procedure we outline in Algorithm4, derived from the
theorems. This dependency goes also to the bounds of density function and the
α value in the grid-compatibility constant in Theorem1. Rather than giving a
clustering algorithm, we have discussed the grounding of successful clustering
strategies, proposing tools to build a dedicated connectivity-based clustering
algorithm for datasets adhering to precise hypothesis.

We were able to replicate clustering experiments, as reported in [1] with a
simpler procedure more amenable to analysis. Also following the conclusions
of the cited research, the proposed tools are useful in low-dimensional datasets.
They propose to use non-linear embeddings to two dimensions, using for example
t-SNE [16]. As analyzed in [3], handling high dimensional datasets is riddle
with problems derived from the phenomenon of concentration of measure which
generates the so-called curse of dimensionality, one of its many forms is the
phenomenon of hubness and the increase of the in-degree in metric graphs, with
consequences in the connectivity of the mkNNG.

Further and maybe most importantly, no vector computation is required.
Hence, this toolset may operate in metric spaces that are not necessarily vector
spaces and where the data is given by similarity, known to respect the metric
conditions. Again, this is to be contrasted with the popular k-means algorithm
operating in vector spaces, as illustrated in Fig. 1.

Acknowledgments. This work is partly funded by the Swiss National Science Foun-
dation under grant number 207509 “Structural Intrinsic Dimensionality”.
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Abstract. Searching for similar objects in intrinsically high-
dimensional data sets is a challenging task. Sketches have been proposed
for faster similarity search using linear scans. Binary sketches are one
such approach to find a good mapping from the original data space to
bit strings of a fixed length. These bit strings can be compared efficiently
using only few XOR and bit count operations, replacing costly similar-
ity computations with an inexpensive approximation. We propose a new
scheme to initialize and improve binary sketches for similarity search on
the unit sphere, i.e., for cosine similarity. Our optimization iteratively
improves the quality of the sketches with a form of orthogonalization.
We provide empirical evidence that the quality of the sketches has a
peak beyond which it is not correlated to neither bit independence nor
bit balance, which contradicts a previous hypothesis in the literature.
Regularization in the form of noise added to the training data can turn
the peak into a plateau and applying the optimization in a stochastic
fashion, i.e., training on smaller subsets of the data, allows for rapid
initialization.

1 Introduction

Similarity search in large and high-dimensional data sets poses two major prob-
lems. Firstly, due to the high intrinsic dimensionality, indexing approaches are
difficult and for too many dimensions degenerate to the case of a linear search in
the Euclidean case as per the Nearest Neighbor Indexing Theorem [17]. Secondly,
linear search is almost infeasible for many applications on very large data sets,
where many such searches are necessary. In dense Euclidean space, to further
complicate the issue, every distance or similarity computation is increasingly
costly as the number of representation dimensions grows. Yet, when allowing for
approximate results, i.e., not always returning correct neighbors, some of these
problems can be lessened. Locality-sensitive hashing (LSH) [5] and sketching are
two techniques for approximate search. LSH puts similar items into the same
“hash buckets” with high probability, allowing to filter out vast parts of the
data set based on comparably cheap hash functions. Alternatively, the bucket
assignments can be used as features in a thus dimensionally reduced data set.
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Sketching is a general technique for compressing data by mapping each sample
onto a smaller representation like bit strings while ideally approximating certain
properties by proxy, such as similarity or distance. These compressed represen-
tations can be used in a classical index or to reduce the linear search cost.

In this paper we consider similarity search using cosine similarity, although
the algorithm potentially extends to inner product similarity, and we propose
methods for binary sketching. Binary sketching can be seen as a special case
of both sketching and LSH where each “hash function” has only two buckets.
The resulting representation is a bit string for each sample. This representation
is interesting because distances of bit strings can be computed efficiently using
fast CPU instructions like popcount. To obtain such binary sketches, simple
geometric expressions have been used in the literature where a 1 is assigned if a
sample is inside a specific volume and a 0 otherwise (occasionally also −1 [1]).
The volumes used as these “hash functions” can be hyperballs, hypercubes, half-
spaces, or simple combinations (intersection or difference) thereof [11]. When
these volumes are scaled or located such that approximately half of the data
set is assigned a 1, the volumes and corresponding bits are called “balanced”,
otherwise “unbalanced”. Balanced bits have been assumed to produce bit strings
providing better recall values for approximate search whilst also leading to bit-
strings of higher intrinsical dimension [12]. In the literature, the typical approach
to balance bit assignments generated from half-spaces/hyperplanes is to add an
affine bias such that exactly half the samples are assigned a 1. Yet, in the context
of cosine similarity search, using half-spaces induced by non-affine hyperplanes
are a natural choice and we limit this paper on non-affine hyperplanes.

Segmenting the unit sphere into cells with non-affine hyperplanes has a long
history in the literature. Already in the 19th century, Schläfli derived the precise
number of cells on the unit sphere C(n, d) induced by n random hyperplanes
in d dimensions in general position, i.e., oriented such that every intersection k
hyperplanes is k-codimensional. The formula with proof and further details is
given in [15, p. 299] as

C(n, d) = 2
d−1∑

k=0

(
n − 1

k

)
(1)

Whenever d ≥ n the number of cells equals 2n and when 2d ≥ n then there are
at least 2n−1 cells. Since the number of cells only increases for larger n, we can
in any other case give a lower bound of 22d−1 cells. In any case, the number of
cells is likely much larger than the number of samples in high dimensional data
sets and with a number of hyperplanes proportional to d.

Accordingly, when intending to use non-affine hyperplane tessellation (occa-
sionally denoted as conical tessellation [15]) for binary sketching, we can expect
(almost) no identical bit vectors in practical settings. The goal, thus, is rather to
find hyperplanes, such that the Hamming distance on bit strings is correlated to
the distance on the hypersphere – at least for “small” distances as we are only
interested in finding the nearest neighbors. Entirely random hyperplanes – origi-
nally proposed for cosine similarity search by Charikar [3] – are (almost) optimal
if the data is uniformly distributed [13]. But on non-uniformly distributed, i.e.,
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clustered or otherwise structured data, they can lead to a suboptimal distribution
of cells. The resulting high pairwise Pearson correlation of bits (bit correlation)
has been observed to lead to decreased filtering quality when selecting candidates
for nearest-neighbor search [11], where bit correlation, bit balance, etc., are eval-
uated on the columns of the |X| ×B matrix of bit strings of length B. Yet, only
little research has been done on how to find a good set of hyperplanes, such that
the bit correlation is minimal – at least for the case of cosine similarity search.
Balu et al. [1] propose the use of geometrically orthogonal hyperplanes for which
bits are greedily flipped to improve the correlation of samples with their “recon-
struction” (sum of normal vectors where bit is 1 minus sum of normal vectors
where bit is 0). This slightly accounts for the data distribution but is neither
a proper optimization, nor does it work when all bit strings are approximately
equal. It is also constrained to the bit string length equaling the data dimension.
Mic et al. [11] introduced an algorithm that oversamples the number of required
hyperplanes and discards all but a well-performing subset using a clique-based
approximation algorithm.

In this paper, we intend to fill this gap by providing a fast initialization algo-
rithm that iteratively adds the best hyperplane from a set of candidate hyper-
planes and an alternating optimization algorithm that iteratively minimizes the
maximum (or mean) pairwise bit similarity – a different yet similar measure
to bit correlation. The algorithm does not immediately enforce bit balance yet
empirically increases it. Not using an affine bias eliminates a degree of freedom
for the hyperplanes, whereby it suffices to rotate the hyperplanes around the ori-
gin. The iterative process allows for budgeted training, a dynamic data set, and
varying bit string lengths. The update step can be used in multiple “flavors”,
since either a single or multiple hyperplanes can be updated in each iteration
based on the most similar or all other hyperplanes. The sole drawback is that
by orthogonalizing all bits (in bit assignments, not geometrically), we increase
the intrinsic dimensionality of the representation, making them more difficult to
index, yet, the lower length necessary for a similar recall alleviates this.

In Sect. 2 we introduce the alternating optimization algorithm. Section 3 then
focuses on our initialization, which is optional to the algorithm but allows for
shorter training times. This section also includes a visual example of the initial-
ization and the optimization algorithm. In Sect. 4 we provide empirical results
based on a large real world data set. Lastly we close in Sect. 5 with a summary
of the paper and an outlook on potential expansions of this approach.

2 Alternating Optimization of Binary Sketches

The alternating optimization algorithm introduced here is called “Hyperplane-
based Iteratively Optimized Binarization” (HIOB). In each iteration, we update
one or multiple hyperplanes – represented by their normal vectors – by rotat-
ing them such that their bit similarity with other hyperplanes decreases. For
a pair of hyperplanes, we aim to equalize the number of samples assigned 00,
01, 10, and 11. By computing the number of samples having the same or oppo-
site bits, we obtain an approximation of the “sample density per radian” and
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can compute an ideal angle to rotate one of the two hyperplanes. For that, we
assume that the distribution in each of these four segments is approximately
uniform. Instead of immediately rotating one of the normal vectors, we compute
the tangent of the rotation angle, which yields an additive displacement vector
in the tangent hyperplane. Using displacement vectors in the tangent hyper-
plane allows to aggregate multiple updates in one step, i.e., to rotate a single
hyperplane towards or away from multiple other hyperplanes at once, similar to
the mean gradient in a gradient-descent algorithm. The idea of this process is
displayed in Fig. 1.

Fig. 1. An example to motivate the update step. On uniform data, each of the dif-
ferently colored areas is of approximately the same size. From the difference in area
(obtained from the angle between the normal vectors), we can derive the optimal angu-
lar change. By calculating the angular change as an additive vector in the tangent space,
as displayed in (a), we allow aggregating multiple changes in one step. Afterwards the
bit assignments corresponding to the hyperplanes are independent, i.e., equal in size,
as displayed in (b).

Let p and q be two normal vectors and let X ⊂ R
d be a set of samples with

|X| = N . We denote the number of samples assigned 1 by both hyperplanes as

11p,q := |{x ∈ X | 〈x, p〉 ≥ 0 ∧ 〈x, q〉 ≥ 0}| (2)

We similarly denote the numbers of samples for the other three possible assign-
ments with 01p,q,10p,q, and 00p,q. We obtain the fractions of samples with equal
and different bits for p and q with

fp=q :=
00p,q + 11p,q

N
and fp�=q := 1 − fp=q (3)

with which we can compute the angular change

αp,q :=
(fp�=q − fp=q)π

2
(4)

The displacement vector for p using q is then defined as

δp(q, s) := tan (s · αp,q)
q − p〈p, q〉

‖q − p〈p, q〉‖ (5)
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where s ∈ (0, 1] is a scaling factor to control the speed of this process, resembling
a learning rate. On uniformly distributed infinite data, the definition of δp(q, 1)
is optimal, yet for non-uniformly distributed data, most of the samples may be
clustered in a narrow cone. Were we to use δp(q, 1), we would likely skip over
all samples in each update step and simply flip the bits on the assignments
for p. To accommodate for that case and help convergence, the scaling factor
can be reduced to a smaller value like 0.1. Choosing a smaller s monotonously
improves the optimization quality, i.e., pairwise bit independence, but increases
the computational cost, since the optimum is only achieved asymptotically. If
the hyperplane for p should be updated using m other hyperplanes, we advise
to change the scale to s/m and sum the displacement vectors, which results in
the average displacement for the set of hyperplanes.

Our optimization aims at decreasing the maximum and average bit similarity
which we define as

Sp,q := 2
∣∣fp=q − 1

2

∣∣ (6)

While fp=q is essentially the Simple Matching Coefficient [18], Sp,q is a sort of
maximum over fp=q and fp�=q. For equal and inverted bit strings, the bit similar-
ity is 1 and for independent balanced bit vectors it is 0. It is a fast approximation
of the absolute Pearson correlation that only requires a single Hamming distance
on the bit strings. The more balanced the bits are, the closer the two definitions
align and the target of having 50% equal bits in each pair of bit strings is intended
to push the bit strings towards balanced without forcing it.

The resulting algorithm is rather simple. In each iteration, we decide which
hyperplanes to update and what hyperplanes to use for the update. We then
compute all necessary displacement vectors, add them to the normal vectors
and normalize to unit length. We then have to recompute the bit assignments
for the updated vectors. To improve the run time, we propose to use a stochastic
approach by only considering a subsample of the full data set when comparing
bit strings and exchanging that subsample at fixed intervals similar to stochastic
gradient descent. We observed that the overall quality does not suffer from this
approach, and it makes the run time of the optimization algorithm indepen-
dent of the data set size. To create the random subsets, we used permutations
generated from multiple random chained modulo cycles on {0, . . . , 2n−1} with
cycle-walking [2]. In that way, all samples are used for training once before
reusing some. Additionally, storing the pairwise bit similarities in a matrix and
only updating values affected by an update further speeds up the algorithm.

In our experiments, two “modes of operation” proved to be very useful: The
first mode is to find the two most similar hyperplanes (the “worst offenders”) and
update one of them – chosen at random – using the other with a scale appropriate
for the dataset (0.1 turned out to be very useful in all cases, but lower values
should be used when the average bit similarity does not decrease). The random
choice between the two hyperplanes avoids oscillating between two states if they
are selected repeatedly. The second mode is to update all hyperplanes using all
other hyperplanes at once. This mode requires to compute two displacement
vectors for each pair of hyperplanes, which is why this method is rather costly.
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Yet, even a small number of iterations (<10) produced a good starting point
for further optimization even when initializing with uniformly random normal
vectors. This second mode of operation, however, struggles to converge on a
good final result, since at some point single bit assignments are changed. The
discrete steps tend to be comparatively large and affect other bit correlations
too much. We, hence, propose to use the first mode of operations until a desired
result is achieved. Due to the problems with discrete steps in the pairwise bit
similarity, other modes of operations investigated (e.g., always updating the
“worst” hyperplane using all other hyperplanes) performed worse than the first
mode. Pseudocodes for the two proposed modes are provided in Algorithm 1 and
Algorithm 2.

This optimization process iteratively but not necessarily monotonously
reduces pairwise bit similarity, bit correlation and balances most bit assignments,
i.e., results in approximately 50% samples assigned 1 for most hyperplanes. Yet,
the quality in terms of indexing as, e.g., measured by the k@n-recall using the
Hamming distance as a proxy for the cosine similarity, is only improved up
to some point, after which further iterations begin to reduce the recall again.
Empirical evidence for these claims are discussed in Sect. 4.

3 RANSAC-Style Initialization

As discussed in Sect. 1, hyperplanes generated from normal vectors sampled uni-
formly at random from the unit hypersphere do not account for the data distri-
bution. Whilst we could run our optimization algorithm starting with entirely



Alternating Optimization for Binary Sketches for Cosine Similarity 47

random normal vectors, that unnecessarily increases the number of iterations.
We instead propose an initialization that is inspired by the random sample con-
sensus, RANSAC [4]. We iteratively choose the next normal vector from a set of
P random pairs sampled uniformly at random from the data. For each of these
pairs we take the normalized difference as normal vector p and compute the
corresponding bit assignments. Afterwards we consider the bit similarity Sp,q to
all previously chosen normal vectors q. From the normal vectors corresponding
to all of these pairs, we choose the one with the smallest maximum bit similarity
to any previous hyperplane. To further speed up this process, we do not com-
pute the initialization on all samples but rather on a subsample of much smaller
size. A pseudocode of this algorithm is displayed in Algorithm 3. Even for large
data sets (|X| > 1M), parameters such as M = 2000 and P = 200 sufficed to
get decent initializations in our experiments, rendering the initialization mostly
invariant of data set size as well.

Figure 2 shows examples of the resulting hyperplanes of an entirely random
state, of the initialization proposed here, and of an optimized state. The planes
are represented by the projected great circles that are obtained by intersecting
the planes with the unit sphere. These great circles are the dividing line between
the subspaces assigned 0 and 1. The entirely random planes as proposed by
Charikar [3] do not consider the data distribution and, hence, do not focus
on splitting the clusters apart and often partition empty space. The initialized
planes clearly better divide each of the clusters, yet, e.g., also by chance have one
of the planes mimic an “equator” which is mostly meaningless. The optimized
state rotated this plane to help divide the lower left cluster and the division of
the clusters appears more homogeneous. To support this intuition, Fig. 2 shows
the distribution of cell sizes and also the mean cell size for each of these plane
sets. The optimized state has on average the smallest number of samples per cell
on the unit sphere which should lead to a better quality in terms of indexing.
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Fig. 2. Cells created by 16 (a) random, (b) RANSAC-style initialized, and (c) alter-
nating optimization trained hyperplanes for the displayed data set of 2000 samples on
the three-dimensional unit sphere projected with Natural Earth projection [7]. The
distribution of samples per cell is displayed in (d).

4 Evaluation

In our evaluation, we inspect how the optimization algorithm (HIOB) affects
the bit correlation/similarity, the bit balance, and the quality in terms of the
k@n-recall when using the Hamming distance on the bit strings as a stand-in
for the cosine similarity. For that, we implemented the algorithm in Rust and
added Python-bindings which can be accessed on GitHub.1 The implementation
uses arrays to store the pairwise bit similarity and current bit assignments, and
is otherwise a straightforward implementation of Algorithms 1, 2 and 3. Aside
from HIOB, we added functions to query objects from a data set using the bina-
rization and a brute-force approach. The general idea of the query functions is
to select a set of candidates using the nearest neighbors as per Hamming dis-
tance on the bit strings and refine the candidates to the number of required
neighbors by evaluating the cosine similarity on all candidates. We further eval-
uated how filtering the candidates with a different set of longer bit strings affects
the query time. We evaluated our implementation on subsets of the LAION5B
data set [16] provided by the SISAP 2023 LAION2B challenge [19].2 The data
sets contain normalized vectors with 768 dimensions – embeddings from a deep
neural network for images and texts – with varying sample sizes of 100K, 300K,
10M, 30M, and 100M together with a query set of 10K vectors with precomputed
100-nearest neighbors for validation.

1 https://github.com/eth42/hiob.
2 https://sisap-challenges.github.io/datasets/.

https://github.com/eth42/hiob
https://sisap-challenges.github.io/datasets/
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Running HIOB with RANSAC-style initialization and scale s = 0.1 for up to
50K iterations of Algorithm 1 (our empirical optimum in terms of k@n-recall)
on a 32-core machine took less than 10 min even for the largest subset of 100M
vectors and bit string lengths of up to 2048. We used the stochastic approach
with 10K samples and 128 iterations per batch. These values were not tuned
and are not sensitive based on our experience.

Fig. 3. Bit similarity, correlation and balance over HIOB iterations starting from a
RANSAC-style initialization on the 10M subset and for 256 bit sketches.

Figure 3 displays how the bit similarity, bit correlation, and bit balance (rang-
ing from 0 for pure to 1 for half-0-half-1) change over the number of iterations.
As can be seen from the plot, HIOB decreased bit similarity and correlation
and increased bit balance up to some local optimum, at which small discrete
steps produce a bit of noise. The resulting increased independence of bits does
not only lead to more homogeneous cells on the hypersphere, w.r.t. the data
distribution, but should in theory also increase the intrinsic dimensionality of
the bit strings. We evaluated the local intrinsic dimensionality (LID) using the
ABID estimator [20,21] on the 200-nearest neighbor bit strings of the bit strings
generated from the query set. The resulting mean LID-estimates are displayed
in Fig. 4. It is unclear why the mean ABID estimates drop for the 10M subset,
yet the change in absolute value is miniscule compared to the increase on the
100K subset. We interpret these results as the indexability of bit strings on the
100K subset decreasing while remaining almost unchanged for the 10M subset,
perhaps due to an already high-LID initialization. Different tested indexes like
those implemented in Hnswlib [9] and FAISS [8] did not execute the queries
faster for comparable recall than brute-force on the bit strings, which would
suggest a large intrinsic dimensionality.
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Fig. 4. Development of the local intrinsic dimensionality around the bit strings corre-
sponding to the queries over iterations of HIOB. The low value of ≤ 6 compared to the
length of the bit strings is due to the sparsity of the space and the discrete distribution
of bit strings. It is an artefact of the estimator. The relative size of estimates should
be indicative of spatial complexity nonetheless.

Fig. 5. The 10@50-recall and the number of candidates required for a 10@n-recall of
90% over iterations of HIOB on the 10M subset. The best results are achieved around
50K iterations (approximately 30K for the 100K subset not visualized here), which
contradicts the hypothesis that better bit balance and bit independence correlate with
filtering quality of binary sketches.

Whilst the results so far were within the expected spectrum, we observed
that the k@n-recall decreases when running HIOB too long. As shown in Fig. 5,
the k@n-recall decreased beyond roughly 50K iterations (30K iterations for
100K subset, plot omitted) even though bit balance increases and bit correlation
decreases. This result contradicts the previous hypothesis in the literature, that
the achievable recall during indexing with binary sketches is positively affected
by larger bit balance and lower bit correlation [12]. We assume that the shape of
the cells on the hypersphere is an important and so far neglected factor, although
we do not have an efficient test to verify or contradict that hypothesis. In an
attempt to regularize HIOB on the shape of cells, we added normally distributed
random noise to each subsample drawn in the stochastic approach. We hoped
it would force the hyperplanes to be less coaligned and consequentially produce
more “compact” cells. Although the von Mises-Fisher distribution would be a
better choice for spherical data, the normal distribution with subsequent nor-
malization is isotropic on the sphere as well and much faster to compute. Adding
full-dimensional univariate normal noise with a varying standard deviation σ led
to the average angle between hyperplanes approaching π/2 for increased σ. In
principle this should provide more homogeneous cells, yet, the data distribution
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is less well represented. Figure 6 displays how the added noise affects the recall on
the produced bit strings. For a small amount of noise, the recall is improved and
the peak in recall is “stabilized” such that it does not decrease after additional
iterations. Adding too much noise rapidly decreases the recall since the data dis-
tribution is not represented by the hyperplanes well enough. The optimal choice
of standard deviation in terms of recall depends on both the number of samples
and the number of hyperplanes as can be seen in Fig. 7. We could, however, not
find any tangible relation between the data and the optimal amount of noise,
yet. The optimal amount of noise must for now be evaluated experimentally.
Further insights in the topic or a better regularization are required.

Fig. 6. Change in recall over varying iterations and standard deviation of the noise
added to stochastic HIOB subsamples for 256 bits. A small amount of noise improves
the recall and stabilizes the peak in recall.

Fig. 7. Change in recall when using varying amounts of noise in the stochastic HIOB
approach. All values were computed after 300K iterations. The ideal noise depends on
both numbers of bits and samples.

Fig. 8. Dependence of the 10@56- and 10@447-recall over varying data set size. Above
10M samples, the recall is almost unaffected by additional data.
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We further explore the scalability of the approach. When considering dif-
ferent subsets of the LAION5B data set, the k@n-recall of optimized hyper-
planes changed quite little over varying data set sizes as displayed in Fig. 8. This
reinforces the claim that HIOB properly fits the hyperplanes to the data dis-
tribution. Aside from that, we evaluated how many candidates are necessary to
achieve a certain recall for k-neighbor search and observed, that the recall-over-n
curves approximately followed the model r(n) = a/

(
1 +

(
n
b

)c) with the inverse
n(r) = b c

√
a
r − 1. Using least-squares to fit the model to observed values from

a grid search over comparably small n values, good values of n can be extrapo-
lated. Figure 9 displays the extrapolation and the required n for a 10@n-recall of
90%. The approximation error of the recall over n curves were negligible (RMSE
below 10−3). The number of bits B affected the required number of candidates n
somewhere between n ∝ 1/ log(B) and n ∝ 1/B and the data set size did not
affect the required number of samples much beyond 10M samples. Even though
the k@n-recall values for a fixed number of candidates over varying data set
sizes were not too affected, not loosing any recall at all can nonetheless require
substantially larger candidate sets. The large values of n in the n-over-|X| plot
for 64 bits at |X| ∈ {10M, 30M} are likely due to errors in the extrapolation.
In terms of k@k-recall, HIOB significantly outperformed the baseline (and only
other entry) in the SISAP challenge [19] task B by Santoyo et al. [14], by achiev-
ing comparable recall while using only 192 bits where the baseline used 1024 bits.

The computational cost of the linear search on the bit strings is linear in
the size of the data set and can not compete with more involved indexes like
HNSW [9]. Figure 10 displays the queries per second over recall on the 100K,
300K, and 10M subsets of LAION5B. The HNSW implementation in Hnswlib [9]
requires – with default hyperparameters – only less than a second (Queries per

Fig. 9. Example of the extrapolated 10@n-recall over n for the 100M subset and plots
generated from the extrapolated values for n over number of bits and data set size such
that a constant 10@n-recall of 90% is achieved.
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Fig. 10. Queries per second using brute-force search on the HIOB optimized bit strings
over 10@n-recall where n is the varied variable for each trace. 10 000 queries were
performed, so, e.g., 200 queries per second correspond to 50 s.

second >104) for a recall beyond 90%, which is at best comparable to the brute-
force performance on up to 100K samples. Yet, the build times of HNSW can be
in the hours and increase with data set size. Considering the results published by
the SISAP challenge [19], stochastic HIOB sketches can be optimized and up to
millions of linear search queries can be evaluated before the fastest approaches
(in terms of query time only) have been built. The linear search query time on
HIOB can further outperform some of the submitted indices, although that is
likely in part due to a better optimized implementation. If a decently fast index
during querying with a rapid build time and comparably low memory footprint
is desired, stochastic HIOB can be preferred.

5 Conclusion

In this paper we introduced an optimization algorithm to improve bit indepen-
dence and bit balance for binary sketches on the unit sphere. We gave empirical
evidence that the algorithm improves both of these values and that the algo-
rithm is able to improve the filtering quality of binary sketches in the context of
similarity search. Our experiments further highlight that bit independence and
balance are not entirely correlated to filtering quality, which diminishes if the
optimization iterates too long. Adding small amounts of noise allows to avoid
decreasing quality when training for longer, yet, the optimal parameterization
of the noise remains an open problem. This observation contradicts a previous
hypothesis in the literature [12]. Using a stochastic approach to the optimiza-
tion and a newly introduced initialization allows for a fast optimization of the
binary sketches, with running time invariant to data set size. Yet, brute-force
querying with these optimized sketches is not capable of outperforming state-
of-the-art approaches like HNSW [9] and the increased bit independence makes
the binarized data difficult to index.
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In regards to future work, further insight on how to regularize hyperplane
tessellation for similarity search is required and resulting regularizations could be
added to HIOB. Further, HIOB can most likely be sped-up by using a heuristic
to estimate whether or not bits can be flipped. The angle to each hyperplane
can be stored and decreased by the total change in angle after each update to
maintain bounds, similar to the heuristic developed by Hamerly for the k-Means
algorithm [6]. The optimization could automatically be stopped when a peak in
some quality measure, like those proposed by Mic et al. [10], is achieved. Lastly,
to extend the approach towards Euclidean distances, affine hyperplanes and an
appropriately modified update routine could be introduced like rotating around
the intersection point of hyperplanes in the plane spun by their normal vectors.
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Abstract. Computing a similarity measure (or a distance) between two
complex objects is a fundamental building block for a huge number of
applications in a wide variety of domains. Since many tasks involve com-
puting such similarities among many pairs of objects, many algorithmic
techniques and data structures have been devised in the past to reduce
the number of similarity computations and to reduce the complexity of
computing the similarity (e.g., dimension-reduction techniques). In this
paper, we focus on computing the similarity of two sets and show that
computing the similarity of two random samples drawn from the respec-
tive sets leads to an (asymptotically) unbiased estimator of the true
similarity, with relative standard error going to zero as the size of the
involved sets grows, and of course at a much lower computational cost
as we compute the similarity of the significantly smaller samples. While
this result has been known for a long time since Broder’s seminal paper
(Broder, 1997) for the Jaccard similarity index, we show here that the
result also holds for many other similarity measures, such as the well-
known cosine similarity, Sørensen-Dice, the first and second Kulczynski
coefficients, etc.

1 Introduction

There are numerous applications where we need to evaluate the similarity (or the
distance) among many pairs of complex objects, for example to locate the best
matches to some target or to group a collection of objects into clusters of similar
objects. In order to reduce the complexity of such tasks, several approaches have
been proposed in the literature, and we can classify them, roughly speaking, in
two families: 1) one is trying to reduce the total number of similarity/distance
evaluations exploiting properties of the metric space (most notably the triangle
inequality) and organizing the information into a suitable data structure, such as
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vantage-point trees, Burkhard-Keller trees, GHTs or GNATs (see for instance [2,
3,9]); 2) a second approach is to use a different similarity or distance measure,
one that is much simpler to evaluate while approximating the real similarity well
enough, effectively reducing the dimensionality of the search space; this is, for
example, the approach in the paper by Broder [1] and the approach taken here.
There are many more techniques for dimensionality reduction and even those
which combine both approaches, like Locality-Sensitive Hashing (LSH) (see for
example [8,9]).

In this work, we focus on the problem of estimating the similarity σ(A,B)
of two sets A and B. It is often the case that we will need to sort the two sets
and scan them once sorted to compute their intersection, their union or their
symmetric difference in order to compute their similarity σ(A,B). Moreover, this
has often to be repeated many times between different pairs of sets (the sorting
step can be done just once for each set). In this scenario, when the similarity
of some set A with many others has to be computed, it makes sense instead to
preprocess A in linear time to extract a sample SA of significantly smaller size
(|SA| � |A|) which will be used to do the similarity evaluation. This is also the
idea behind minhashing (see [8] and references therein), which guarantees that
the probability that two sets have the same minhash is equal to their Jaccard
similarity. In our case, we propose computing σ(SA,SB)1, and we provide a
formal proof that σ(SA,SB) is an unbiased estimator of σ(A,B), for several
different similarity measures σ, including Jaccard and the cosine similarity, but
many others as well.

Suppose we have two random samples SA and SB of A and B, respectively.
Our goal is to prove that σ(SA,SB) is an unbiased estimator or otherwise show
how to correct the bias. Moreover, the accuracy (as measured by the standard
relative error

√
V {X}/E {X}) of the estimation will depend on the size of the

samples, and our goal is to quantify it in precise terms. A detailed knowledge of
how the accuracy depends on the size of the samples is henceforth fundamental to
obtain the desired compromise between accuracy and computational efficiency.

We will consider in this work many different similarity measures, presented in
Table 1. For more detailed information about these measures, see for instance [4].

Table 1. Several similarity measures between two sets A and B

Jaccard J(A,B) =
|A∩B|
|A∪B| Cosine cos(A,B) =

|A∩B|√|A|·|B|
Sørensen-Dice SD(A,B) = 2

|A∩B|
|A|+|B| Correlation corr(A,B) = cos2(A,B) =

|A∩B|2
|A|·|B|

Kulczynski 1 K1(A,B) =
|A∩B|
|A�B| Kulczynski 2 K2(A,B) = 1

2

( |A∩B|
|A| +

|A∩B|
|B|

)

Simpson Simpson(A,B) =
|A∩B|

min(|A|,|B|) Braun-Blanquet BB(A,B) =
|A∩B|

max(|A|,|B|)
Containment c(A,B) =

|A∩B|
|A|

1 The random samples SA and SB need a final “filtering” phase before they can be
used to compute the similarity σ(SA, SB).
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The main results of this paper can be summarized as follows: 1) For all the
similarity measures in Table 1, the similarity of the random samples (after some
appropriate “filtering”) is an asymptotically unbiased estimator of the similarity
of the corresponding sets. We have extended the results of [1] by giving general
tools which help to establish the same result for many measures, eventually they
could be used for some not considered here; 2) The standard relative error of
the estimations goes to 0 as the size of the sets grows; something that cannot
happen unless the size of the samples grows with the size of the sets. While the
result is far from surprising, no previous work in the literature addressed the
quantification of the standard error of the estimations, in particular, this hadn’t
been studied when the size of the samples is a function of the size of the sets.

Structure of the Paper. In Sect. 2 we will briefly review Affirmative Sampling,
the random sampling algorithm which we assume will be used to draw random
samples from the sets; it is our choice because the size of the returned samples
grows with the (unknown) size of the set from which we sample, without prior
knowledge of the set. This is useful in contexts in which we are presented the
sets in an on-line fashion or when we have actually multi-sets (for example, text
documents) and we measure their similarity in terms of the underlying sets of
distinct elements (in the example, the vocabularies of the text documents).

In Sect. 3 we present the main results of this paper, namely, that the similarity
of samples is an unbiased estimator of the similarity of the sets, for each one
of the similarity measures shown in Table 1. The formal proofs of our results
appear in the full version [7], not here, due to space constraints.

After that, we present in a short section (Sect. 4) the results of a small empir-
ical study that we have conducted, showing significant accordance with the theo-
retical results of the previous section. We close in Sect. 5 with some final remarks
and a discussion about future developments of this line of research.

2 Sampling

Let A ⊆ U be a finite subset of the domain U (also finite, but potentially
extremely large). Assume that to every element x ∈ U we have assigned a ran-
dom number h(x) ∈ [0, 1], the outcome of an independent draw from a uniformly
distributed random variable in [0, 1]. Then for any τ , 0 < τ < 1, the subset
A≥τ = {x ∈ A |h(x) ≥ τ} ⊆ A is a random sample of A. Any of the n elements
of A has exactly the same probability of belonging to A≥τ as any other element
in A. Likewise, if we consider the subset Ak of A with the k elements of A with
larger (smaller) value of h then Ak is also a random sample. In particular, if
τ = min{h(x) |x ∈ Ak} is the minimum h value in Ak then Ak = A≥τ .

In practice, to obtain such random samples we can use a hash value h(x) for
each element, as presented in [1]; under pragmatic assumptions we can safely
neglect the probability of collisions. Looking at the hash values as real numbers
in [0, 1], for any x ∈ U and any value z ∈ [0, 1] we assume that Pr {h(x) ≤ z} =
z, for a reasonably well-chosen hash function h; that is, the hash values are
uniformly distributed.
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If the size n of the set A from which we want to draw a sample is known
beforehand, then we can take k = k(n) and draw a sample of size k as described
above. But even if the size of the set A were not known in advance (and we do
not want to incur the costs in time and space to compute it) we can still draw
random samples of variable size, growing with the (unknown) size n of the set.
This can be accomplished thanks to Affirmative Sampling (AS) [6], an easy and
practical alternative to just keeping the k elements with largest (smallest) hash
values in A. AS also uses a fixed parameter k but produces samples of size ≥ k
(unless n < k). The expected size S = |S| of the random sample S produced by
AS is E {S} = k ln(n/k) + l.o.t. with n = |A|. Easy variants of AS will produce
random samples of size Θ(nα) for a fixed given α, 0 < α < 1 (see [6]).

Whether we use fixed-size samples or variable-size samples, as long as they
are random we can make inferences about the “population” (the set A) from
the sample S, for instance, about the proportion of elements in A that satisfy a
certain property P . Let nP = |AP |, with AP the subset of elements satisfying P ,
and n the number of elements in A. Denote ϑP := nP

n the fraction of elements
that satisfy P . Let us assume in the computations below and for the remaining
of the paper that n ≥ S ≥ k ≥ 2, that is, that the sampling algorithm will
return at least k ≥ 2 elements. Otherwise, if the set contains less than k distinct
elements, the sample contains all elements in A and their relevant statistics, and
we can answer queries exactly.

If we have a random sample S of A of size S and SP = S ∩ AP then it is
well known that the proportion ϑ̂P = SP /S is an unbiased estimator of ϑP , even
when S is a random variable and not a fixed value (see, for example, [6] and
references therein). Quite intuitively, the accuracy of the estimator will depend
on the size of the sample. The result giving its variance can be found in many
places, however the size S of the sample is assumed fixed there. The more general
statement given here, when S is a random variable, can be found, together with
its proof, in [6].

Lemma 1. The random variable ϑ̂P := SP /S, where S is the size of the random
sample S and SP is the number of elements in S that satisfy P , is an unbiased
estimator of ϑP := nP /n, that is, E

{
ϑ̂P

}
= ϑP , assuming that n ≥ S > 0.

Moreover,

V

{
ϑ̂P

}
=

nP (n − nP )
n(n − 1)

·
(

E

{
1
S

}
− 1

n

)
.

If the behavior of the random variable S = |S| is smooth enough2 and E {S} →
∞ when n → ∞ then the accuracy of the estimator ϑ̂P will improve, as the
variance will decrease and tend to 0 as n → ∞.

2 One can prove that in many random sampling schemes, in particular for AS, we have

E {1/S} = O(1/E {S}).
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3 Estimating Similarity

Consider now two sets A and B and two random samples SA and SB , respectively,
such that SA = A≥τSA and SB = B≥τSB . Looking at Table 1 we quickly notice
that many of the measures are of the form |CP |/|C|, for some set C built from A
and B, and some subset CP of C of elements that satisfy a certain property P . For
example, for the Jaccard similarity we have C = A∪B and the property P is “x
belongs to both A and B” (CP = A∩B). To apply Lemma 1 we need to figure out
how to obtain a random sample SC of C out of the given random samples SA and
SB , and how to find the elements in SC which satisfy P . Our random sampling
scheme guarantees that SA = {x ∈ A |h(x) ≥ τSA

} and SB = {x ∈ B |h(x) ≥
τSB

}. Given two sets X and Y , let τ∗(X,Y ) := max{τX\Y , τX∩Y , τY \X}; we will
take the convention that τ∅ = 0. Let τ = τ∗(SA,SB). Then we can show that

S≥τ
A ∪ S≥τ

B = (SA ∪ SB)≥τ = (A≥τ ∪ B≥τ ) = (A ∪ B)≥τ ,

that is: “filtering” SA and SB according to the largest threshold τ = τ∗(SA,SB)
and taking the union of these filtered samples we get a random sample of A∪B.
The filtering trick can also be used to produce a random sample of A + B from
random samples SA and SB , for A × B, etc. This allows us to prove our first
main result (its proof appears in the full version [7] of this paper).

Theorem 1. Let σ be any of the similarity measures: Jaccard, Sørensen-Dice,
containment coefficient, Kulczynski 2 (second Kulczynski coefficient) or correla-
tion coefficient. Let SA and SB be random samples of A and B such that SA =
A≥τSA and SB = B≥τSB , and let τ = τ∗(SA,SB) = max(τSA\SB

, τSB\SA
, τSA∩SB

).
Then σ̂ = σ(S≥τ

A ,S≥τ
B ) is an unbiased estimator of σ(A,B), that is,

E

{
σ(S≥τ

A ,S≥τ
B )

}
= σ(A,B).

Moreover,

V

{
σ(S≥τ

A ,S≥τ
B )

}
∼ σ(A,B) · (1 − σ(A,B)) · O

(

E

{
1

min(|SA|, |SB |)
})

,

which implies that V {σ̂} → 0 if Affirmative Sampling is used to draw the sam-
ples, since then E {1/min(|SA|, |SB |)} → 0, if |A|, |B| → ∞.

The same result holds for Simpson and Braun-Blanquet measures, provided
that we know which of |A| and |B| is smaller (larger). If the sizes of A and B are
unknown, we cannot assume that |SA| and |SB | have the same relation since these
sizes are, in general, random variables. If we put min(|SA|, |SB |) (max(|SA|, |SB |),
resp.) in the denominator of the Simpson estimator (Braun-Blanquet, resp.), we
will have a bias, albeit the experiments suggest it is not very significant (see
Sect. 4). The formal result, as well as a detailed discussion about the bias that
we get when not knowing the sizes of A and B, can be found in the full version
of the paper [7].
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Last, but not least, neither the cosine similarity nor Kulczynksi 1 fit into
the framework of Theorem 1. However, both can be written as functions of
other similarity measures for which we have unbiased estimators. Namely, for
the cosine similarity, we have cos(A,B) =

√
corr(A,B). For Kulczynksi 1 we

can write

K1(A,B) =
|A ∩ B|
|A�B| =

1
|A∪B|
|A∩B| − 1

=
J(A,B)

1 − J(A,B)
.

That is, these measures σ′ are such that σ′(A,B) = f(σ( A,B)) for a similar-
ity measure which can be estimated without bias: E

{
σ(S≥τ

A ,S≥τ
B )

}
= σ(A,B).

In general, given a random variable X, E {f(X)} = f(E {X}). However, if f is
a smooth function in (0, 1), that is, f ∈ C∞(0, 1), and the size of the samples
grows with the size of the sets then we will have3

E

{
σ′(S≥τ

A ,S≥τ
B )

}
= E

{
f(σ(S≥τ

A ,S≥τ
B )

}
∼f

(
E

{
σ(S≥τ

A ,S≥τ
B )

})

= f (σ(A,B)) = σ′(A,B).

We can therefore obtain asymptotically unbiased estimators for cosine and
Kulczynski 1 (first Kulczynski coefficient) using f(x) =

√
x and σ = corr for the

former, and f(x) = x/(1 − x) and σ = Jaccard for the latter. The proof that
E {f(X)} ∼ f(E {X}) under the appropriate hypotheses is given in [7].

The estimator for these similarity measures is only asymptotically unbiased,
and that’s because all the central moments of order r ≥ 2 of σ(A,B) tend to 0
as the size of the sets grows; however f or any of its derivatives might be very
large, in particular when σ(A,B) → 0 or σ(A,B) → 1, and then the bias can be
significant when the asymptotic regime hasn’t been reached yet.

The variance of σ′(S≥τ
A , fsB) = f(σ(S≥τ

A ,S≥τ
B )) can also be found using the

same technique that we have used to establish that the estimator is asymptot-
ically unbiased, by considering the Taylor series expansion of f2. It is easy to
show then that we have

V

{
σ′(S≥τ

A ,S≥τ
B )

}
=

1
2

d2

dx2
f2(x)

∣∣
∣∣
x=σ(A,B)

· V
{

σ(S≥τ
A ,S≥τ

B )
}

+ l.o.t.,

and since V

{
σ(S≥τ

A ,S≥τ
B )

}
→ 0 when min(|A|, |B|) → ∞, we know that the

variance V

{
σ′(S≥τ

A ,S≥τ
B )

}
→ 0 too (and at which rate). However, (f2(x))′′

might be very large (actually tend to ∞) for σ(A,B) → 1 or σ(A,B) → 0,
and then the variance of σ′(S≥τ

A ,S≥τ
B ) will be non-negligible in practical settings

when the similarity of the two sets is very close to 0 or to 1. For example,
for the cosine similarity we have f(x) =

√
x and (f2)′′ = 0 which entails a

very low variance of the estimator cos(S≥τ
A ,S≥τ

B ) even if the similarity of the
two sets is close to 0 or to 1. However, for the first Kulczynski coefficient, we
have f(x) = x/(1 − x) giving (f2)′′ = (4x + 2)/(1 − x)4. Hence, when the
3 an ∼ bn means that limn→∞ an/bn = 1.
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similarity J(A,B) of the two sets is very close to 1 we have K1(A,B) → ∞
and V

{
K1(S

≥τ
A ,S≥τ

B )
}

∼ 3
(1−J(A,B))3 ·O (1/ (k ln((|A| ∪ |B|)/k))), which will be

quite large unless |A| ∪ |B| is really huge. This phenomenon shows clearly in the
plot Fig. 1f given in next section.

4 Experimental Results

We have conducted a small experimental study with the aim to show repre-
sentative examples of the good match between our theoretical findings and the
estimates obtained in practice.

Due to the lack of space, we will report here only one experiment in which
we work with two fixed sets A = {1, . . . , m} and B = {r, . . . , r+n−1}, for some
r ≤ m + 1. Changing the value of r the intersection |A ∩ B| will run from 0 (if
r = m+1) to min(m,n) (if r = 1). In particular, we have chosen |A| = m = 1000
and |B| = n = 1500. We apply the sampling algorithm T = 10 times on each
set, with a different randomly chosen hash function each time, thus effectively
producing T different estimates of the similarity σ(A,B). The plots in Fig. 1
show the true similarity (σ(A,B), red line), the estimates (blue dots) and the
standard deviation in the T observations (length of the blue bars), as the size
of the intersection varies from 0 to min(m,n) = 1000 for some of the similarity
measures studied in this paper.

The second experiment, reported in [7], studies how the quality of the esti-
mates impact the application using them, in particular, we have studied how the
clusterings produced by k-means change when we use estimates of the similarities
instead of the real similarities.

Fig. 1. Empirical estimates of several similarity measures
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5 Final Remarks

We show in this paper that many similarity measures between sets can be accu-
rately estimated, going further beyond Broder’s results [1] on the Jaccard and
containment indices. One fundamental ingredient for (asymptotically) unbiased
estimation with a high degree of accuracy is the use of variable-size sampling.
Using Affirmative Sampling, the (expected) size of the samples increases with
the size of the sets, and the standard relative error in the estimations goes to
0 [6].

Another line of research that we are already working on is the estimation
of similarity measures between objects other than sets. For example, multi-
sets, sequences, . . . . A notable example is partitions (clusterings). For instance,
instead of examining all the

(
N
2

)
pair of objects to compute the Rand index

(a measure of similarity, see for instance, [5]) of two clusterings of a set of N
objects, we can draw two random samples S and S′, both containing � N ele-
ments, form all ordered pairs combining distinct elements from S and S′, and
estimate the Rand index from those. It is straightforward to show that this is
an unbiased estimate of the true Rand index using our techniques, and we think
that they can be used to show the same for many other similarity measures
between clusterings.
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Abstract. An arduous biomedical task involves condensing evidence
derived from multiple interrelated studies, given a context as input,
to generate reviews or provide answers autonomously. We named this
task context-aware multi-document summarization (CA-MDS). Existing
state-of-the-art (SOTA) solutions require truncation of the input due to
the high memory demands, resulting in the loss of meaningful content. To
address this issue effectively, we propose a novel approach called Ram-
ses, which employs a retrieve-and-rank technique for end-to-end summa-
rization. The model acquires the ability to (i) index each document by
modeling its semantic features, (ii) retrieve the most relevant ones, and
(iii) generate a summary via token probability marginalization. To facil-
itate the evaluation, we introduce a new dataset, FAQsumC19, which
includes the synthesizing of multiple supporting papers to answer ques-
tions related to Covid-19. Our experimental findings demonstrate that
Ramses achieves notably superior ROUGE scores compared to state-
of-the-art methodologies, including the establishment of a new SOTA
for the generation of systematic literature reviews using Ms2. Quality
observation through human evaluation indicates that our model produces
more informative responses than previous leading approaches.

Keywords: Biomedical Multi-Document Summarization · Neural
Semantic Representation · End-to-End Neural Retriever

1 Introduction

Given the paramount societal role of biomedicine and related natural language
processing (NLP) tasks [11–15,38], aggregating information from multiple topic-
related biomedical papers to help search, synthesize, and answer questions is
of great interest [7]. Real-world applications require indexing, combining, and
summarizing evidence from clinical trials on a research background to produce
systematic literature reviews (SLRs) or answer medical inquiries. Consequently,
we define such activities as context-aware multi-document summarization (CA-
MDS) due to the presence of an input context (i.e., background or question) that
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
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Fig. 1. The overview of biomedical CA-MDS. In our experiments, we use the input
contexts (i.e., the background or question) to retrieve the salient studies and aggregate
them to generate the target (Input → Output). For example, given a set of topic-
related scientific papers, the goal is to select the ones more correlated to a user’s input
question to produce a single answer. (Color figure online)

conditions the downstream summarization task (Fig. 1). In real life, biomedical
articles usually contain several thousands of words that compose lingo and com-
plicated expressions, making understanding them a time- and labor-consuming
process even for professionals. Thus, automation support for biomedical activi-
ties is practical and beneficial in facilitating knowledge acquisition.

CA-MDS solutions for biomedical applications should process all inputs with-
out ignoring any details, reducing the risk of model hallucination, namely gen-
erating unfaithful outputs due to training on targets having facts unfounded
by the source. Therefore, state-of-the-art (SOTA) models rely on sparse trans-
formers [2], Fusion-in-Decoder strategies [18], and marginalization-based decod-
ing [34]. However, such methods either (i) need high memory requirements that
force input truncation for organizations operating in low-resource regimes [29–
31,33,35], or (ii) lack end-to-end learning, reducing the potential of cooperating
neural modules.

In this paper, we introduce Ramses,1 a retrieve-and-rank summarization
approach trained via end-to-end learning to retrieve salient biomedical docu-
ments by their semantic meaning and synthesize them given an input context.
Ramses comprises a biomedical bi-encoder and a generative aggregator. The
bi-encoder reads all the documents, represents their semantics via embeddings,
and retrieves and scores salient documents related to an input context. Then,
the aggregator is conditioned by the context along with these latent documents
to decode the summary by marginalizing the token probability distribution
weighted by their relevance score.

We evaluated Ramses in two biomedical CA-MDS tasks: (i) producing SLRs
on the Ms2 dataset [7] and (ii) answering frequently asked questions (FAQs)
about Covid-19 in our proposed dataset FAQsumC19. In detail, we collected
514 Covid-19 FAQs with high-quality abstractive answers written by experts.
Then we augmented each instance with 30 supporting scientific papers contain-
ing the information needed to answer the question, producing 15,420 articles.
1 https://disi-unibo-nlp.github.io/projects/ramses/.

https://disi-unibo-nlp.github.io/projects/ramses/
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Fig. 2. The overview of Ramses. The input is a biomedical context and multiple studies
that are encoded by two different BioBert models. Then, we compute the relevance
score of each document conditioned by the context. Finally, the top-k most salient
documents are concatenated with the context and given to Bart that marginalizes
their token probability distribution, weighted by the relevance scores, at decoding time.

In particular, FAQsumC19 has two essential features: (i) includes abstractive
answers authored by experts, unlike other related datasets that use extractive
targets [41]; (ii) is the first CA-MDS dataset for Covid-19, becoming a crucial
benchmark for producing multi-document summaries to answer questions on
Covid-19 with the support of updated related biomedical papers.

We perform extensive experiments, showing that Ramses achieves new
SOTA performance in the Ms2 dataset and outperforms previous solutions in
FAQsumC19, whose inferred answers are also rated as of more quality by human
experts.

2 Related Work

Semantic Neural Retriever Applications. The semantic representation skill
exhibited by neural networks has catalyzed the emergence of groundbreaking
neural methodologies in information retrieval [10] First, the algorithm Bm25
has been exceeded by dense passage retrieval (Dpr) [21], a remarkable neural
application that has since evolved into a fundamental element within numerous
neural-driven retrieval solutions [42,43]. These neural retrievers have been fused
with a language model to enrich and improve input [23], generating superior
models characterized by increased efficiency and improved performance [3,12].
Despite their promising results, the end-to-end application of these solutions in
MDS remains unexplored.

NLP for Biomedical Documents. Much recent work in NLP has concentrated on
the biomedical domain [28], including CA-MDS [7], which can decrease the bur-
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den on medical workers by highlighting and aggregating key points while reduc-
ing the amount of information to read. Previous contributions focused on the
automatic generation of SLRs. In detail, cutting-edge solutions rely on three dif-
ferent neural architectures: (i) transformer-based models with linear complexity
in the input size thanks to sparse attention [2], which concatenate the input con-
text along with all documents in the cluster producing a single source sequence;
(ii) quadratic transformers with Fusion-in-Decoder [18], which join the hidden
states of documents after encoding them individually; (iii) marginalization-based
decoding augmented by frozen retrievers [34], which first pinpoints salient docu-
ments w.r.t. a query and produces a single summary by summing the probability
distribution of the inferred token for each document.

MDS Solutions in Other Domains. Flat approaches with MDS-specific pre-
training [49] concatenate the sources in a single text, treating MDS as a single-
input task. Hierarchical approaches merge document relations to obtain semanti-
cally rich representations by leveraging graph-based methods [1] and multi-head
pooling and interparagraph attention [19]. Marginalization-based approaches [17]
apply marginalization to the token probability distribution at the decoding time
to produce a single output from many inputs. The two-stage approaches [25]
adopt different strategies to rank sources before producing the summary. Unlike
previous work, Ramses is trained in end-to-end learning to retrieve relevant
text from biomedical articles and marginalize the probability distribution of the
latent extracted information at decoding time.

Covid-19 Datasets. With the appearance of Covid-19, thousands of articles have
been published quickly. To aid experts in accessing this knowledge, large organi-
zations collected corpora such as Cord-19 [47] and LitCovid [6], encouraging
the proposal of task-specific datasets. Covid-QA [27] study question-answering
using annotated pairs extracted from 147 papers. Covid-Q [48] collects 16,690
questions about Covid-19, classifying them into 15 categories. [40] scrapped over
40 trusted websites for Covid-19 FAQs, creating a collection of 2100 questions.
[45,52] proposed two datasets for the retrieval of FAQs, where user queries are
semantically paired with existing FAQs. FAQsumC19 fills this gap, introducing
the first CA-MDS dataset to answer Covid-19 FAQs by summarizing multiple
related studies.

Fine-grained comparisons with previous work are in Sect. 6.1.

3 Preliminary

We provide details for context-aware multi-document summarization (CA-
MDS).

Definition. CA-MDS aims to compile a summary from a cluster of related arti-
cles given an input context, analogous to the query in query-focused summa-
rization [46]. Yet, unlike answering FAQs, SLR generation does not consider
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questions. Thus, we define the task we face as CA-MDS. The biomedical tasks
we address in this work, such as SLR generation and FAQ answering, are CA-
MDS tasks because they both have an input context (i.e., the research issue in
SLRs and the human question in FAQs) and many topic-related documents from
which produce the output.

Problem Formulation. In the CA-MDS setting, we have (c,D, y), where c is the
input context, D is the cluster of topic-related documents, and y is the target
generated from D given c. Formally, we want to predict y from {c, d1, ..., dn|d ∈
D}.

4 Method

The end-to-end learning of Ramses allows the cooperating modules to jointly
retrieve and aggregate key information from multiple sources in one output
(Fig. 2).

Given the context c and the documents D, our method first generates rele-
vance scores on D with a biomedical solution based on Dpr [20]:

pβ,θ(d ∈ D|c) = (Encβ(d) ⊕ Encθ(c)) (1)

where Encβ and Encθ are two different BioBert-base models trained to produce
a dense representation of documents and the context [39], respectively, ⊕ is the
inner product between them, and p(d|c) is the relevance score associated to
the document d given c. Thus, our solution finds the most top-k relevant texts
according to c. Then, given c and each d ∈ top-k, a Bart-base model [22] draws
a distribution for each next output token for each d, before marginalizing:

p(y|c,D) =
N∏

z

∑

d∈top-k

pθ(d|c)pγ(yz|d′
, y1:z−1) (2)

where d
′
= [c, tok, d] is the concatenation of c and d ∈ top-k with a special text

separator token (<doc-sep>) to make the model aware of the textual boundary,
N is the target length, and pγ(yz|d′

, y1:z−1) is the probability of generating the
target token yz given d′ and the previously generated tokens y1:z−1.

We train our Ramses model by minimizing the negative marginal log-
likelihood of each target with the following loss function:

L = −
∑

i

log p(yi|ci,Di) (3)

End-to-End Learning. The model (Eq. 2) allows the gradient to backpropagate
to all modules. For clarity, we rewrite the formula as a continuous function, as
follows:
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Ramses(D, c) =
∑

(dj ,sj)

Bγ([c, tok, dj ]) · sj (4)

top-k(D, c) = [(d1, s1), . . . , (dk, sk)] (5)
sj = Encβ(dj) ⊕ Encθ(c) (6)

where (dj , sj) ∈ top-k and Bγ is Bart.
The presence of sj in Eq. 4 allows the gradient, computed by minimizing the

objective function, to reach Encβ and Encθ. For this reason, the documents and
context embeddings are adjusted during the training to improve the generated
summary, making all modules of our solution learn jointly in an end-to-end
fashion.

Table 1. The question-cluster pairs’ quality. Best values are bolded.

ROUGE BERTScore

Avg Max Min Avg Max Min

Random 12.34 23.21 0.17 11.30 24.71 2.80

Bm25 16.70 29.68 0.37 16.17 35.20 1.13

Sublimer 20.44 33.31 2.32 21.11 36.79 5.75

5 FAQsumC19 Dataset

We introduce a new dataset, FAQsumC19, containing 514 Covid-19-related
FAQs with abstractive answers written by experts, each supported by 30
abstracts of scientific articles, for a total of 15,420 documents. We obtained
from the Covid-19 FAQ section on WHO2 all available question-answer pairs.
We then augmented each instance with 30 Covid-19 scientific articles strictly
related to the question from the updated version of the Cord-19 dataset [47].
Specifically, we experimented with the selection of supporting articles with dif-
ferent information retrieval methods, such as a random baseline, Bm25 [44], and
Sublimer [38]. We used the concatenation between the question and the answer
to retrieve the first 30 ranked documents regarding semantic similarity, creating
a knowledge base to support the answer generation. We finally split the dataset
into 464 instances for training (≈ 90%) and 50 for the test (≈ 10%).

To assess the quality of question-cluster pairs in our dataset, we computed
the content coverage with ROUGE-1 precision [24] and BERTScore [51] of the
question-answer concatenation w.r.t. each document in the cluster, and calculate
the average score. We evaluate the syntactic and semantic overlap between the
question and answer and the texts. Table 1 reveals that Sublimer achieves the
best scores, as expected.
2 https://www.who.int/emergencies/diseases/novel-coronavirus-2019/question-and-

answers-hub.

https://www.who.int/emergencies/diseases/novel-coronavirus-2019/question-and-answers-hub
https://www.who.int/emergencies/diseases/novel-coronavirus-2019/question-and-answers-hub
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6 Experiments

6.1 Experimental Setup

Datasets. Table 2 reports the statistics of the datasets used to test Ramses in
different biomedical tasks: Ms2 [7] consists of 15,597 instances derived from
the scientific literature. Each sample is composed of (i) the background state-
ment, which describes the context research issue, (ii) the target statement, which
is the summary to generate; and (iii) the studies, which are the abstracts of
biomedical documents that contain the needed information for the research issue.
FAQsumC19 is our proposed dataset that comprises 514 Covid-19 FAQs with
abstractive answers written by experts, each supported by 30 abstracts of scien-
tific papers.

Table 2. The datasets used for evaluation (FAQsumC19 is ours). Statistics include
dataset size and the average (i) number of source (S) documents per instance, (ii)
number of total words in S and target (T) texts, and (iii) S-T compression ratio of
words [16].

Dataset Samples S T S → T

Docs Words Words Comp

Ms2 15,597 23.30 9563.95 70.81 135.06

FAQsumC19 514 30 5635.50 139.06 40.53

Baselines. We compare Ramses with SOTA solutions: Bart-FiD [7], which
is Bart with the Fusion-in-Decoder strategy [18], encodes all sources individ-
ually and combines their hidden states before decoding. Led-Gaq [7], which
is Led [2] with global attention on the input query, concatenates all texts in
a single input of up to 16,384 tokens. Damen [34], a retrieval-enhanced solu-
tion with marginalization-based decoding, discriminates important fragments of
the cluster with a frozen Bert-base model and marginalizes their probability
distribution during decoding. Primera [49], which is Led pre-trained with a
multi-document summarization-specific objective, concatenates the texts with a
special separator token up to 4096 tokens in size.

Evaluation Metrics. We use ROUGE-1/2/L [24] to assess fluency and infor-
mativeness. We also adopt R [32] as an aggregated judgment that considers the
variance of the ROUGE scores. Finally, we perform qualitative analysis to bridge
the superficiality of automatic evaluation measures.

Implementation. We fine-tune the models using PyTorch and the HuggingFace
library, setting the seed to 42 for reproducibility. Ramses is trained on an
NVIDIA RTX 3090 GPU of 24 GB memory from an internal cluster for 1 epoch
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with a learning rate of 3e-5 on Ms2 and for 3 epochs with a learning rate of 1e-5
on FAQsumC19. For decoding, we use the beam search with 4 beams and the
following min-max target size: 32–256 for Ms2 and 100-256 for FAQsumC19.

Table 3. Performance of models on the evaluation datasets. The best scores are in
bold.

Model Ms2 FAQsumC19

R-1f1 R-2f1 R-Lf1 R R-1f1 R-2f1 R-Lf1 R
Baselines

Led-Gaq 26.89 8.91 20.32 18.60 25.55 4.42 13.77 14.47

Bart-FiD 27.56 9.49 20.80 19.18 20.26 5.59 14.84 13.51

Damen 28.95 9.72 21.83 20.04 23.81 3.50 13.03 13.35

Primera 30.07 9.85 22.16 20.55 25.04 3.64 13.00 13.79

Our

Ramses 31.83 10.44 22.19 21.32 30.18 7.31 15.67 17.56

Table 4. ROUGE F1 scores (R-1, R-2, R-L) on Ms2 on evaluating Ramses with
different generator checkpoints (B and L stand for base and large, respectively) and k
documents retrieved at training time. Oom means “GPU out of memory exception.”
The best results are bolded.

k Ms2

Bart-B Bart-L Pegasus-L

3 31.14/9.78/21.43 31.93/10.40/21.96 27.83/7.27/18.93

6 31.12/9.88/21.68 31.97/10.58/22.15 28.71/8.26/19.39

9 31.81/10.30/22.13 31.00/10.17/21.76 28.61/8.32/19.35

12 31.15/10.14/21.58 31.10/10.09/6.52 27.58/7.30/18.51

15 30.94/9.82/21.39 31.72/10.53/21.90 Oom

18 31.36/10.20/21.75 31.81/10.43/21.87 Oom

6.2 Results

Table 3 reports the performance of the models in the two evaluation datasets.
Ramses yields better scores, suggesting that the retrieve-and-rank end-to-end
learning is more effective than prior SOTA approaches in both biomedical CA-
MDS tasks.
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The Impact of k. As our method relies on learning to select the best top-k
relevant documents from the cluster, the value of k is crucial for model perfor-
mance and GPU memory occupation. Therefore, we analyze the impact of k on
model performance by experimenting with a different number of documents to
retrieve: 3, 6, 9, 12, 15, 18. Table 4 reports a slight performance improvement as
k increases until a threshold is reached (e.g., k = 9 for Bart-base), indicating
that the marginalization approach with more documents helps produce better
ROUGE scores. However, a high k (i.e., k ≥ 12) can also increase information
redundancy and contradiction, lowering the final performance. Table 4 also lists
the results of different models on single text summarization as the aggregator’s
checkpoint, such as Bart and Pegasus [50]. We notice that Bart-large achieves
better ROUGE scores, although Pegasus is the largest model. However, as
Bart-base achieved a slightly lower result despite the noticeably fewer trainable
parameters, we chose to use it for all experiments. Therefore, we tested the best
checkpoint of Bart-base trained with k = 9 with a different k at the inference
time in Ms2. Table 5 reports that the best performance has been achieved with
k = 12. Furthermore, Table 5 also shows the results on FAQsumC19 with a
different k at training time, revealing a trend similar to Ms2.

Memory Requirements. Figure 3 shows the memory complexity at the training
time of Ramses for each k. We notice that the memory occupation is linear
w.r.t. k, indicating that our solution is not computationally expensive, even for
large clusters.

6.3 Ablation Studies

Table 6 reports the ablation studies on Ms2 using Ramses with Bart-base and
k = 9 with the same hyperparameter settings for all experiments.

Table 5. The results of Ramses on Ms2 by varying k at inference time and on FAQ-
sumC19 by varying k at training time. The best scores are bolded.

k Ms2 FAQsumC19

R-1f1 R-2f1 R-Lf1 R-1f1 R-2f1 R-Lf1

3 30.98 9.75 21.48 29.32 7.05 15.71

6 31.49 10.14 21.94 28.69 6.51 15.20

9 31.81 10.30 22.13 28.74 6.83 15.44

12 31.83 10.44 22.19 30.18 7.31 15.67

15 31.73 10.36 22.10 29.14 6.65 15.26

18 31.72 10.39 22.04 29.06 6.89 15.31
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Excluding the input context from the input concatenation to give to the
generative aggregator (w/o context) leads to the most significant decrease in
performance. Indeed, the context is the research question shared by all docu-
ments in the cluster, so it contains important information for the final summary.

Training a single model to encode both the context and documents (w/o
bi-encoder), namely using a shared BioBert model, decreases performance.
Indeed, since the context and the documents have two different purposes (i.e., we
need the context to select context-related documents), two models are needed to
specialize and differentiate the text representation. Despite the similarity of the
two tasks, they differ for two main reasons: (i) the context is relatively shorter
than the documents in the cluster, and (ii) the concept expressiveness is denser
in the context than in the more verbose documents.

Removing the token separator <doc-sep> between the context and docu-
ment (w/o token-sep) decreases performance. Indeed, this token is needed to
make the model aware of the textual boundary between the context and the
documents.

Using cosine similarity instead of the inner product (w/o inner-product)
to score the documents against the input context achieves the worst results.

Freezing Encβ (w/o trained-retrieval) decreases performance, highlight-
ing the usefulness of end-to-end learning to allow the model to select more infor-
mative documents.

Fig. 3. The Ramses’s GPU memory requirements by varying k at training time.

Table 6. The ablation studies on Ms2. We gradually remove each module of Ramses
to show the performance drop. The best scores are in bold.

Ms2

R-1f1 R-2f1 R-Lf1 R
Ramses 31.83 10.44 22.19 21.32

w/o context-first 31.57 10.26 21.89 21.08

w/o trained-retrieval 31.24 10.03 21.77 20.86

w/o inner-product 31.12 10.10 21.82 20.86

w/o token-sep 31.03 10.12 21.77 20.82

w/o bi-encoder 31.47 9.88 21.52 20.79

w/o context 25.26 5.33 17.37 15.88
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Switching the context with the documents in the input concatenation (w/o
context-first) decreases performance, indicating that the leading context in
the input helps the generative aggregator to focus better on how to join context-
related information.

6.4 Human Evaluation

Considering the drawbacks of automatic metrics such as ROUGE [9], which is
still the standard for evaluating text generation, we qualitatively evaluated the
answers inferred from the FAQs of the entire FAQsumC19 test set with three
domain experts with master’s degrees in medical and biological areas.

Instructions. We gave evaluators a table, with each row containing the question
and three possible answers in random order: (i) the “gold” from WHO, (ii)
the prediction of Ramses, and (iii) the prediction of Led-Gaq (the second-
best model in FAQsumC19 according to R). Each expert was asked to order
the answers according to how thoroughly they answered the question, focusing
primarily on the factuality. For fairness, we did not inform the evaluators about
the answers’ origins and the test’s goal. Overall, experts completed the task in
two days, reporting no difficulty ordering the 50 answers.

Results. Evaluation results, reported in Table 7, show that our method produces
better informative abstractive answers to a given open question than a linear
transformer with sparse attention. To be precise, the experts rated 76% of the
answers of our solution as better than those of Led, with 46% agreement between
the annotators (which means that 46% of the time, the three evaluators agree).
Furthermore, the evaluators also found that 7.33% of the answers inferred by
Ramses are more informative than “gold” from WHO. Nevertheless, model gen-
erations are still far from being as informative as gold answers, indicating the
limitations of current neural language models in FAQsumC19.

Table 7. The human evaluation on FAQsumC19 with inter-annotator agreement
(IAA) using WHO ground-truth answers and the inferred ones by Ramses and Led-
Gaq. A>B means how many times the generated answer from A was scored higher than
B.

Human Evaluation

Ramses>Led Ramses>WHO Led>WHO

Eval 1 84% 0% 0%

Eval 2 72% 20% 14%

Eval 3 72% 2% 0%

AVG 76% 7.3% 4.7%

IAA 46% 80% 86%
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7 Conclusion

In this paper, we introduced Ramses, a retrieve-and-rank end-to-end learning
solution for CA-MDS of biomedical studies. Ramses is designed to simultane-
ously acquire indexing capabilities and retrieve pertinent documents to gener-
ate comprehensive summaries. Through multiple experiments on two biomedi-
cal datasets (including our proposed FAQsumC19 to answer Covid-19 FAQs),
we found that Ramses outperforms SOTA models. This finding suggests that
the integrated retrieval mechanism significantly benefits the CA-MDS task. Yet,
human assessments indicate that there is still notable room for improvement,
motivating further research in pursuit of novel retrieval applications within the
realm of biomedical multi-document summarization.

Future works can investigate and include multimodal [36,37], cross-
domain [8], and knowledge propagation [4,5,26] approaches.3
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Abstract. The number of Android apps is constantly on the rise. Exist-
ing stores allow selecting apps from general named categories. To pre-
vent miscategorization and facilitate user selection of the appropriate
app, a closer examination of the categories’ content is required to dis-
cover hidden subcategories of apps. Recent work focuses on exploring the
granularity of the categories, but a validation of the categories’ content
against miscategorized apps is missing. In this research, we apply seman-
tic similarity to apps’ descriptions to uncover similarity and hierarchical
clustering to search for misclassified apps. Furthermore, we apply Latent
Dirichlet Allocation (LDA) algorithm to explore the existence of possible
subcategories and to classify apps. Our empirical research is conducted
using two data sets: 9,265 apps from Google Play Store, and 300 apps
from App Store. Results confirm the existence of misclassified apps on
markets and suggest the existence of multiple fine-grained categories.
Our experiments outperform other LDA-based classification approaches
achieving 0.61 precision. Moreover, the analysis hints the presence of
misclassified apps might decrease the performance of existing classifiers.

Keywords: Semantic Similarity · Hierarchical Clustering · Latent
Dirichlet Allocation · Mobile Applications

1 Introduction

The ongoing evolution of mobile devices in recent years has significantly
impacted our lives. Developers of mobile apps share their products in the rapidly
expanding markets of Google Play Store (GPS) [2] for Android and App Store
(AS) [1] for iOS. On these platforms, developers must select a relevant cate-
gory to help users find suitable apps easily. However, with thousands of apps in
each category, finding apps that match consumer interests can be challenging.
Moreover, some may be misclassified, making their discovery even more difficult.
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Existing work is focused to find subcategories of apps which are hidden in the
main markets’ categories. Supervised and Unsupervised Machine Learning clas-
sification techniques combined with Natural Language Processing (NLP) tech-
niques were applied to solve this challenging task. However, few of researchers
mention misclassified apps on the markets [11].

We focus on validating categories’ content and automating the process of
identification of misclassified apps for prevention, and finding possible subcate-
gories of apps on the markets to facilitate appropriate user app selection. We
apply semantic similarity [10] and hierarchical clustering [15] to determine mis-
classifications, and Latent Dirichlet Allocation (LDA) [6] to find apps subcat-
egories. A text-to-text semantic similarity metric is applied, as it outperforms
traditional text similarity metrics [10]. Hierarchical clustering is applied for its
capacity to represent data and to identify clusters that deviate significantly from
the rest of the data. Lastly, LDA is applied to find mobile apps subcategories
for its capacity to resume content, and to find relevant groups of words (called
topics) which can provide insights of the main data categories. Specifically, we
aim to:

– Propose an automated method for detection of miscategorized apps based
on apps description using semantic similarity, hierarchical clustering, and
markets classification recommendations [18,19];

– Discover hidden subcategories of apps by applying LDA on a well-defined and
processed data set containing apps descriptions;

– Apply LDA to classify apps in proposed subcategories;

2 Literature Survey

This section explores existing methods of mobile apps classification based on
their description corpus and reviews applied NLP techniques.

Several works are focused on exploiting the content of existing categories to
extend current classification on the markets. For instance, [16,20] exploited the
capacity of LDA and discovered multiple topics as an extension to the initial clas-
sification. Al-Subaihin et al. [3], extracted features from apps descriptions using
the algorithm proposed in [12]. Then, a greedy hierarchical clustering algorithm
was applied and the clusters, interpreted by humans, denoted that the initial
categories can be extended. Ebrahimi et. al [11] encoded apps descriptions using
different word embeddings and achieved the best classification results with GloVe
and Support Vector Machines. Apps from Education and Health&Medical cate-
gories were manually labeled by researchers to find subcategories of apps.

The researchers applied NLP techniques to encode the descriptions: stop
words removal and tokenization [11,13,20], part of speech tagging (identification
of nouns, verbs, etc.) and stemming [13] or lemmatization [3,11], and adding n-
grams [3]. All of these can help in boosting the performance of the classification
techniques if they are combined in a proper manner.

Compared to the preceding works, our initial aim is to validate the con-
tent of the categories based on the similarity between the apps descriptions and
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the markets recommendations. For data processing, we combine various NLP
techniques compared to previous researchers (Sect. 3.2). Then, we apply the
method proposed by [10] to compute semantic similarity between apps’ descrip-
tions and fed the similarity distance matrix into hierarchical clustering algorithm
[15]. Based on the distribution of the apps into clusters, we propose a new method
to establish if a category presents misclassified apps and we search for subcat-
egories of apps. Due to its promising results [20], we apply LDA to determine
subcategories of apps in each category. We analyse the granularity of the cate-
gories and perform human interpretation [9] of the generated topics to validate
our findings.

3 Methodology

The work discussed in Sect. 2 was adapted by combining more NLP techniques
to reduce the noise of the data and to strengthen its semantic quality (Sect.
3.2). We searched for misclassified apps using semantic similarity measures and
hierarchical clustering and we used LDA to find subcategories of apps included in
each main category. Moreover, contrary our predecessors, we validate the content
of the categories before investigating the fine-grained categories.

Data Set Gathering (Sect. 3.1) and Data Set Processing (Sect. 3.2)
are the first two phases in our research. In the third phase we propose our
method for Categories’ Content Validation (Sect. 3.3). In the fourth phase
we apply LDA in Mining the Categories’ Content (Sect. 3.4) to discover the
fine-grained categorization of the initial categories. The Evaluation (Sect. 3.5)
phase describes the steps applied to validate our approach.

3.1 Data Set Gathering

We use a set of 9,265 Android apps to analyse fine-grained categories of GPS. It
consists in English descriptions of apps from GPS between 2019-2023. They are
classified in 32 categories based on the short outlines provided by the market [19].
We excluded the Game category as it already encompasses numerous fine-grained
subcategories. The apps’ descriptions were processed and LDA was applied to
determine topics for subcategories (Sect. 4). To evaluate the performance of LDA
in topics identification we used the data set proposed in [11]. It consists in apps
crawled from AS. We selected educational apps and compared the ground-truths
set by prior work (Sect. 4) with our finding.

3.2 Data Set Processing

We applied various NLP techniques to process the descriptions of the apps. We
prepared the data to minimize the noise and to enable the algorithms to uncover
latent relationships between words. We applied the following steps: uppercase
characters were lowered; special characters, stop words, words with less than
three characters, URLs, emojis, and numerical values were removed. Thus, we
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kept the most appropriate words and reduced the computational time. Then, we
applied tokenization and each obtained term was labeled corresponding to its
part of speech (e.g., noun, verb) to compute semantic similarity scores (Sect.
3.3). For subcategories discovering phase (Sect. 3.3), the remaining terms were
converted to their lemma equivalent to maintain the inherent nature of words
and we improved the description corpus with co-occurring word pairs of length
2, called bi-grams [14], as they were proven to bring improvements in topics
discovering [7]. Finally, we filtered out words occurring in less than 10% and
in more than 50% of the description corpus to allow LDA to build stronger
relationships between the most relevant words.

3.3 Categories’ Content Validation

This section proposes a method to validate the content of the categories by
applying semantic similarity measures and hierarchical clustering algorithm.

Semantic Similarity Measure. To preserve the semantic similarity relations
between the words, we applied the method for text similarity proposed in [10] on
the apps descriptions level. The algorithm was applied to each pair of descrip-
tions from the same category: for each part of speech from one description,
we identified the one with the highest similarity (max sim) to the other. For
nouns and verbs the similarity is computed based on Wu and Palmer similarity
[21], as it computes the degree of similarity between word senses and where the
rings of synonyms occur relative to each other. As we removed cardinals (Sect.
3.2), we computed lexical similarity only for adjectives and adverbs. Therefore, a
directional similarity score is given by: sim(D1, D2)D1 =

∑
wiεD1

max sim(wi,D2)×idf(wi)
∑

wiεD1
idf(wi)

,

where D1,D2 are descriptions, wi is the ith word in a description, and idf(wi) is
the Inverse Document Frequency [17]. Both directional scores can be combined
into a bidirectional similarity function: sim(D1, D2) =

sim(D1,D2)D1
+sim(D1,D2)D2
2 . As

its value ranges from 0 to 1, it allows the conversion into a normalized distance
function: dist sem(D1, D2) = 1 − sim(D1, D2) [5].

Hierarchical Clustering. We used hierarchical clustering [15] to investigate
the granularity levels from the categories of mobile apps. Using the similar-
ity distance function (dist sem), we computed the semantic similarity distance
matrix. The shape of the matrix is given by the number of apps from a cate-
gory. Let E(Di,Dj) the value of a matrix entry, where (Di,Dj) is a pair of apps
descriptions, and i, j general notations for line and column indices in the matrix.
If i = j, we set E(Di,Dj) = 0, else E(Di,Dj) = dist sem(Di,Dj). We fed the
similarity distance matrix obtained into the complete linkage clustering [15] to
determine the clusters based on the maximum distance between the data points.

Possible Outliers Identification. We define an outlier as a misclassified app
and analyse the distribution of the apps in the formed clusters to discover possi-
ble outliers. We consider the first two formed clusters to establish the existence
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of possible outliers. If they are highly unbalanced (e.g., a cluster contains only
one or two descriptions), we compute the semantic similarity between the pos-
sible outlier app’s description and each one of the categories recommendations
proposed by the market source [18,19]. If the maximum similarity is obtained for
its main category, then it is not an outlier. The identified outliers were removed.

3.4 Mining the Categories’ Content with LDA

The process continues with the discovery of different subcategories of apps within
a category. We chose LDA [6], as it uses statistical models to infer topics in text
data [4]. The main objective of LDA is to discover the document topics, within
a text document. This produces a topic-keyword matrix. In our research, LDA
is applied to the description corpus of the Android apps and the resulting topics
are assumed to represent mixtures of a basic set of keywords that may describe
a subcategory of apps. The number of the LDA topics, was determined based
on the highest coherence score, as it measures the interpretability and semantic
coherence of the generated topics.

3.5 Evaluation Framework

For evaluation we used topic labeling with human interpretation [9]. In the case
of the second data set, we measured the performance of LDA to group mobile
apps in the same category. Given the ground truth labels, we evaluated the per-
formance of LDA by: F2Score =

(β2+1)×P recision×Recall

β2×P recision+Recall
(β = 2), Precision = T P

T P+F P , and

Recall = T P
T P+F N . We define: TP (true positive) as the number of the apps whose

label of the assigned topic matches the initial category label; TN (true negative)
as the number of apps correctly classified as not belonging to inappropriate top-
ics; FP (false positive) as the number of apps incorrectly assigned; FN (false
negative) as the number of apps incorrectly excluded from appropriate topics.

4 Experiments and Results

In this section we analyse the results of outlier identification (Sect. 4.1), and the
fine-grained categorization resulted using LDA (Sects. 4.2 and 4.3).

4.1 Outliers Identification Analysis

We investigated the feasibility of our approach to identify misclassified apps
among the GPS data set (Sect. 3.3) and discovered two categories with out-
liers: Medical and Weather. Hierarchical clustering was applied for two clusters,
grouping 370 samples in cluster 1 and leaving 1 sample in cluster 2 for Medical
category. For Weather category, it grouped 293 in the first cluster, and left 1 in
the second one. We noticed that the outlier of the Medical category could better
fit in the Education category. Moreover, the maximum semantic similarity score
(Sect. 3.3) between the Medical outlier and the categorization recommended by
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GPS [19] was 0.40 for Education. For the Weather category outlier, we analysed
the app and decided that it should be classified as a Game. We did not applied
the same validation as in case of the other outlier, as GPS market only provides
a list of games subcategories.

4.2 Google Play Store-Fine-Grained Categorization

To obtain consistent categories, we first searched for and removed possible out-
liers. We then applied LDA to explore the fine-grained categorization of mobile
apps. For an optimal number of topics we investigated the behavior of coherence
scores in relation to changes in granularity within clustering apps, which proved
beneficial in practice [9]. We provided LDA with granularity levels ranging from
2 topics per category to the maximum based on apps count. We evaluated the
coherence scores for each category cluster, selecting the topic count that max-
imized coherence scores, as topic words might define a subcategory. Given the
GPS data set, the number of obtained topics sums up to 236 and hints the
existence of more than 200 possible subcategories (Sect. 4.3). The subcategories
coherence scores range from 0.37 (Libraries & Demo) to 0.58 (Video Players &
Editors), and their average is 0.48. As the score typically ranges from 0 to 1
(Sect. 3.4), these can be promising results. The number of determined topics,
might correspond to the number of existing subcategories. It ranges from 2 to
20 and does not depend on the number of the apps in each category, but on
the logical relations among the keywords that exhibit higher probabilities (Sect.
3.4).

4.3 App Store Fine-Grained Categorization

To assess the ability of LDA to generate fine-grained app categories, we used the
data set from [11]. We considered the 300 educational apps, which were manually
labeled with specific subcategories. We took into consideration this category as
it contains misfit apps. The researchers [11] labeled them into: Skill-based apps,
Content-based apps, Function-based apps, Games, and Misfits.

We evaluated LDA on: classification into all five types of apps (Scenario
1); classification into Skill-based, Content-based, Function-based, and Games -
to analyse the effect of removing misclassified apps (Scenario 2). Furthermore,
we analyse the semantic similarity between the misfits and Education category
content recommendations and analyse their inclusion in this category. We pro-
cessed the apps descriptions (Sect. 3.2) and used LDA to generate a number of
topics equal to the number of subcategories. To compare our results to those
obtained in [11], we labeled the topics based on contained words (Table 1) and
through human interpretation: 1 - Skill-based, 2 - Function-based, 3 - Content-
based, 4 - Games. We assigned topics to each description and applied evaluation
metrics (Sect. 3.5). Scenario 1 achieved the lowest performance: 0.36 precision,
0.38 recall and f2-measure; compared to Scenario 2: 0.614 precision, 0.582 recall,
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and 0.588 for f2-measure. However, Scenario 1 overachieved in terms of preci-
sion several classification algorithms applied in [11] on LDA vectorized descrip-
tions (Näıve Bayes - 0.27, SVM - 0.35, Logistic Regression - 0.35). Our results
show that removing misclassified apps from the categories can increase the per-
formance of a classifier by approximately 25%. Therefore, we obtained better
results compared to [11] after Misfits removal. We overachieved results from [11]
when description was encoded using VSM (Näıve Bayes, AdaBoost, Decision
Trees) and BM25 (Näıve Bayes, AdaBoost, Random Forest, KNN, SVM, etc.).
For Misfits we applied the bidirectional semantic similarity measure (Sect. 3.3)
between each app description and AS categories recommendations [8] to discover
their most suitable main categories. E.g., we found out that: A&A Days is more
suitable for Productivity, Vuga Conf should correspond to Social Networking,
Weather Saying to Weather, AR Paintings to Graphics & Design, etc.

Table 1. Word topics used to establish subcategories for the markets

ID Google Play’s Education Topics App Store’s Education Topics

1 study, help, course, solution, prac-
tice, function, math, problem, data,
skill

math, test, question, learn, practice,
help, number, skill, exam, lesson,

2 question, test, student, class, exam,
school, information, quiz, book,
homework

school, feature, student, parent,
information, work, access, mobile,
course, service,

3 language, lesson, vocabulary, word,
speak, pronunciation, course, sen-
tence, conversation, grammar

book, study, view, available, share,
version, story, record, search, expe-
rience,

4 word, feature, use, dictionary,
search, time, photo, easy, share,
translation, text

word, learn, game, kid, vocabulary,
letter, color, picture, animal, sound,

5. video, child, plant, world, book,
play, song, educational, design, par-
ent

–

5 Conclusion and Future Work

This paper proposed the identification of misclassified mobile apps in the markets
and evaluated the performance of LDA in discovering subcategories of apps based
on their descriptions. The process was done by applying NLP techniques (Sect.
3.2) and the experimental setup was based on averaged semantic similarity and
hierarchical clustering to determine misclassified apps on GPS. Apps proposed
in [11] were used to evaluate LDA in finding topics. We labeled the identified
topics corresponding to [11] through human interpretation and evaluated LDA
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in classification based on the labeled descriptions. Our method for identifying
misclassified apps is promising, as it found misclassified apps in the Weather and
Medical categories. Moreover, our LDA based approach determined 236 possible
subcategories of apps on GPS for a total of 9,265 apps. Our proposed LDA
classifier out-performed LDA based classifiers applied in existing works (Sect.
4.3). Moreover, removing misclassified apps from the proposed data set, LDA
can substantially improve classification process achieving a precision of 0.614.

For future work, a closer examination of the formed LDA topics is necessary
to observe the fine-grained categorization of apps published on the markets.
This could suggest appropriate subcategories of apps, and markets can use this
to improve existing classification recommendations to avoid misclassification.
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Abstract. A side-sharing tandem is a rectangular array that is com-
posed of two adjacent non-overlapping occurrences of the same rectangu-
lar block. Furthering our understanding of side-sharing tandems should
facilitate the development of more efficient 2d pattern matching tech-
niques and should lead to improvements in multi-dimensional compres-
sion schemes. Existing algorithms for finding side-sharing tandems are
far from optimal on 2d arrays that contain relatively few side-sharing
tandems. In this paper, we introduce the idea of a run of side-sharing
tandems, as a maximally extended chain of 2d side-sharing tandems. We
demonstrate tight upper bounds on the number of runs of side-sharing
tandems that can occur in a rectangular array. We develop an algorithm
that locates all τ runs of side-sharing tandems in an n × n input array
in O((n2 + τ) log n/ log log n) time.

1 Introduction

In one dimension, a tandem, or square, is a string which consists of precisely two
consecutive occurrences of a primitive substring. For example, aa and abcabc are
squares. Squares are well-investigated objects in combinatorics of strings [1] and
form the basis of space-efficient string-matching algorithms [13] since squares are
the building blocks of larger repetitions. A 2d side-sharing tandem is a general-
ization of the 1d tandem to two-dimensions. A 2d side-sharing tandem consists of
two adjacent non-overlapping occurrences of the same rectangular block, called
the root. This structure is depicted in Fig. 1.

Apostolico and Brimkov defined the 2d side-sharing tandem and demon-
strated that an n × n array M can contain Θ(n3 log n) primitively-rooted side-
sharing tandems [4]. They also presented an algorithm that locates side-sharing
tandems in time proportional to these upper bounds, i.e., O(n3 log n) time [5].
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Fig. 1. Two possible configurations of a 2d side-sharing tandem

Charalampopoulos et al. [8] demonstrated Θ(n3) bounds for the number of dis-
tinct primitively-rooted side-sharing tandems in an n × n array and also con-
tributed an algorithm that runs in time proportional to these upper bounds,
i.e., Θ(n3) time. Gawrychowski et al. [15] construct an infinite family of n × n
2d arrays over the binary alphabet with Ω(n3) distinct primitively-rooted side-
sharing tandems. Both algorithms for finding side-sharing tandems [5,8] are far
from optimal on a 2d array that is sparsely populated with side-sharing tandems.
Thus, the goal in this work is to locate the side-sharing tandems in close to linear
time, with respect to both the size of the input array M and the number of runs
of side-sharing tandems occurring in M .

A range of applications motivate the investigation of 2d tandems. A wide
variety of efficient 1d string matching techniques have not yet been extended to
methods for 2d settings. As Crochemore et al. [11] noted, the essential obsta-
cle to doing so is the unexplored different and more complex structures of 2d
repetitions. Thus, it is our expectation that by furthering the understanding
of 2d tandems we will precipitate the development of more efficient 2d pat-
tern matching techniques. Just as properties of 1d tandems have enabled the
speeding up of one-dimensional pattern searching algorithms and are relied on
by space-efficient 1d pattern matching algorithms, discovering properties of two-
dimensional tandems should open new avenues for speeding up 2d pattern match-
ing algorithms and should enable us to design algorithms that use less working
space in memory. In 1d, algorithms that compute maximal repetitions in a text
have application to data compression. Likewise, the exploration of 2d runs of
tandems should lead to improved compression schemes for graphics and videos.

Repetition within strings constitutes one of the most fundamental areas
of string combinatorics. Repetitions are exploited in the design of efficient
algorithms for string matching, data compression, and analysis of biological
sequences. A maximal repetition in a string S is a substring of S that is periodic
and cannot be extended at all to the right or left, e.g., ababa is a maximal rep-
etition in the string abaababac. Maximal repetitions are important structures,
as they encode all of the repetitions in a concise way. Once the set of maximal
repetitions is known, repetitions of any other type (such as squares and cubes)
can be extracted from it [12].



90 S. Marcus et al.

In a string, the maximal repetitions, or runs, can overlap, be embedded one
within another, or begin at the same position as one another. For example, the
run aaabaaaba contains two copies of the run aaa. Thus, it was remarkable when
Kolpakov and Kucherov proved that a string of length n can contain only O(n)
runs [16]. More recently, Bannai et al. proved that the number of runs is strictly
less than n [7].

The concept of maximal two-dimensional repetitions has recently been intro-
duced and investigated, from the combinatorial perspective and from the algo-
rithmic perspective [3]. A maximal 2d repetition is a rectangular subarray that
can be decomposed into repeating non-overlapping occurrences of the same sub-
block horizontally and vertically that is maximally extended in all directions.
Amir et el. [3] demonstrated an upper bound of O(n3) occurrences in an n × n
array and introduced an algorithm that locates the maximal 2d repetitions in an
n×n array M in O(n2 log n+ρ) time, where ρ is the number of maximal 2d repe-
titions in M . Charalampopoulos et al. [8] tightened the bound and demonstrated
that the number of maximal 2d repetitions in an n × n array is O(n2 log2 n).
This bound proves an O(n2 log2 n) run-time for the algorithm of Amir et al. [3]
to locate all maximal 2d repetitions in an n × n array. Gawrychowski et al. [15]
construct an infinite family of n × n arrays with Ω(n2 log n) maximal 2d repeti-
tions.

In 1d, once the locations of all the maximal repetitions are known, the
tandems can easily be listed. In 2d, tandems contain two copies of the primitive
root only horizontally or vertically, while repetitions have at least two copies of
the primitive root horizontally and vertically [4]. Thus, the set of maximal 2d
repetitions does not directly enable us to list the side-sharing tandems.

Amir at al. [2] demonstrate that all corner-sharing tandems in an n × n
array can be located in O(n3 log n) time. Although there can be O(n4) corner-
sharing tandems in an n × n array, their algorithm represents the output with
the set of maximal corner-sharing runs, which they demonstrate to be of size
O(n3 log n). They also describe an efficient algorithm for locating the approxi-
mate k-mismatch corner-sharing tandems in a 2d array.

In this paper we develop an efficient algorithm for locating side-sharing
tandems in a rectangular array. For efficiency, we locate runs of tandems instead
of individual tandems. In Sect. 2 we introduce the notion of a horizontal run (h-
run), and a vertical run (v-run), to succinctly represent a maximally extended
chain of adjacent side-sharing tandems. We prove tight upper bounds on the
number of h-runs and v-runs that can possibly occur in a rectangular array. In
Sect. 3 we develop an algorithm that locates all τ runs of side-sharing tandems
in an n × n input array in O((n2 + τ) log n/ log log n) time.

2 Runs of Side-Sharing Tandems

In this section we define runs of side-sharing tandems. Then we prove bounds
on the maximum number of runs of side-sharing tandems that can occur in an
n × n array.
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Definition 1. [4] A rectangular array M is primitive if it cannot be partitioned
into non-overlapping complete occurrences of some block W .

Furthermore, X is horizontally primitive or h-primitive (resp., vertically
primitive or v-primitive) if it cannot be represented in the form M =

W · · · W (resp.,
W
· · ·
W

)for some blockW �= M. (1)

In a 1d repetition of the form unu′ where u′ is a prefix of u, u is called the
period and n + |u′|

|u| is the exponent [17]. We say that U is a horizontal prefix
(resp. suffix) in rectangular array M if U is an initial (resp. ending) sequence
of contiguous columns in M . A horizontal border of rectangular array M is a
proper horizontal prefix that is also a horizontal suffix of M . We say that B is
the longest horizontal border of M if it is the horizontal border of M that spans
the largest number of columns among the horizontal borders of M .

Definition 2. The horizontal period, or h-period, of an m×n array M is n−b
where b is the number of columns contained in the longest horizontal border of
M .

Definition 3. [10,19] An m × n array M with h-period p is horizontally peri-
odic, or h-periodic, if p ≤ �n

2 �.
The vertical period of an m × n array and vertical periodicity are defined anal-
ogously.

For example, consider the following arrays.

M1 =
[
a b c d
e f g h

]
M2 =

⎡
⎣a b c d a b c d a

e f g h e f g h e
a b c d a b c d a

⎤
⎦ M3 =

⎡
⎢⎢⎣

a b c d a b
e f g h e f
a b c d a b
e f g h e f

⎤
⎥⎥⎦

M1 is primitive since it is both h-primitive and v-primitive. Although M2 is h-
periodic, it is also primitive, since it is both h-primitive and v-primitive. M3 is
h-primitive but not v-primitive.

Definition 4. In an m × n array M , a 2d horizontal run, or h-run, is an h-
periodic subarray M ′ with h-period p in which extension by one subcolumn to the
right or to the left yields an array with h-period h′ such that h′ > h.

A 2d vertical run, or v-run, is defined analogously.
The h-period of an h-run is h-primitive. For 2d tandems of the configura-

tion of Fig. 1(a), an h-run maximally extends the 2d tandem to the left and to
the right. Similarly, for 2d tandems of the configuration of Fig. 1(b), a v-run
maximally extends the 2d tandem upwards and downwards.

Lemma 1. An n × n array M can contain Θ(n3) h-runs.
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Proof. The proof is a variation of the proof in [4] for the number of side-sharing
2D tandems in a matrix. Due to space limits, the full details will be included in
the journal version of this paper.

Corollary 1. An n × n array M can contain Θ(n3) v-runs.

3 Algorithm

In this section we develop an efficient algorithm for locating h-runs in an n × n
array M . The algorithm is easily adapted for identifying v-runs. Our algorithm
achieves O((n2 + τ) log n/ log log n) run-time, where τ is the size of the output
set. In the extreme case, τ = Θ(n3), by Lemma 1.

A straightforward O(n3) time algorithm considers all O(n2) subarrays of
width n, of varying heights and start rows. Within each subarray, we view the
columns as metacharacters and name identical columns with the same name.
Then we use a 1D linear-time algorithm (e.g., [6,16]) to find the h-runs within
each subarray in O(n) time.

Our more efficient algorithm iteratively identifies the h-runs of each height
1 ≤ k ≤ n. First we find the h-runs of height 1 by running a 1D linear-time
algorithm on each row of M . Then we iteratively identify the h-runs of each
height 2 ≤ k ≤ n. We link h-runs of smaller heights to obtain h-runs of larger
heights, when h-runs occur in overlapping columns on adjacent rows in which
the overlap is sufficiently wide to maintain h-periodicity.

We outline the steps of our algorithm for finding all h-runs in n×n array M :

1. Identify all h-runs of height 1, by locating the 1d runs on each row.
2. Find all h-runs of height 2, by linking runs on adjacent rows.
3. Go through each height 3 ≤ k ≤ n (in increasing order), and for each start

row 1 ≤ i ≤ n− k +1, identify h-runs of height k by linking h-runs of smaller
heights on adjacent rows.

3.1 Interval Queries

In this subsection we show how to preprocess a set of ψ intervals V so that
we can efficiently answer the following kind of query. We preprocess ∀v ∈ V ,
v = [a, b] such that 1 ≤ a < n, 1 < b ≤ n, a < b. This is an independent result
that is itself an interesting contribution.

Definition 5. Interval x -Intersection Query: Given an integer x > 0 and
an interval u = [p, q] with integer endpoints such that 1 ≤ p < n, 1 < q ≤ n, p <
q, list all intervals in V that intersect u by at least x units.

Figure 2 demonstrates an example for the Interval x-Intersection Query.
Suppose the response to an Interval x-Intersection Query query contains ω

intersecting intervals in the output list. Interval trees [20] can be used to solve
this problem in O(ω + log ψ) time. We use dynamic RMQ to solve this problem
in O(ω log ψ/ log log ψ) time, with O(ψ log ψ/ log log ψ) preprocessing time.
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We maintain the set V in a dynamic way so that we can remove intervals
from V and reinsert the intervals that were removed from V in the course of
answering a query. The set V is static in the sense that only intervals that
previously existed in V will be added later on.

We construct the following two arrays corresponding to V :

1. Endpt[t], 1 ≤ t ≤ n, such that Endpt[t] contains the furthest (rightmost)
endpoint of all intervals v ∈ V that begin at location t. Endpt[t] = largest q
for all [t, q] ∈ V .

2. Length[t], 1 ≤ t ≤ n, such that Length[t] contains the length of the longest
interval v ∈ V beginning at location t.

After we create the two arrays, we preprocess Endpt and Length for dynamic
Range-Maximum Queries.

Now we show how to use these arrays to answer the query of interest. We
begin with an empty set I. We identify an intersecting interval ∈ V and if the
intersection with u = [p, q] is at least x we add it to I. We continue this process
until the returned intersecting interval does not have sufficient intersection with
[p, q].

There are 3 ways in which an interval [p′, q′] ∈ V can intersect [p, q]:

I. p′ < p i.e., [p′, q′] begins before [p, q].
II. q′ > q i.e., [p′, q′] ends after [p, q].

III. p < p′ < q′ < q i.e., [p′, q′] is fully contained within [p, q].

These three kinds of interval intersection are depicted in Fig. 2 and each type of
intersection is shown in a different color.

To find the longest intersection of Type I., we can use range-max in the Endpt
array. For Type III., we do not know how to get the longest intersecting interval.
However, if we take the range-max in the Length array for the range p . . . q − x,
we will get an overlapping interval with length ≥ x if one exists. This suffices
for answering our query, and finds intersections of both Type II. and Type III.
In summary, given an interval [p, q], a sufficiently long intersecting interval is
obtained by taking the maximum of the following 2 results:

1. RangeMaximum(Endpt[1 . . . p − 1] ) −p
2. RangeMaximum(Length[p . . . q − x])

Once we have identified an interval that intersects u by at least x, we add
it to the set I and we remove the corresponding entry in the Endpt or Length
arrays so that other intersecting intervals can be identified. We repeatedly take
the maximum of the 2 values above until the maximum intersection is less than
x. At that point we are ready to return the set I as the answer to the query and
we reinsert all intervals in I to the RMQ structures for future queries on V .

Lemma 2. We use O(ψ log ψ/ log log ψ) time to preprocess a set of ψ intervals
for Interval x-Intersection Queries.
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Fig. 2. Many intervals that intersect u = [p, q]. All intervals in the set that intersect
u = [p, q] by at least x = 5 are shown as solid lines, while the intersecting intervals that
are not reported as output to the Interval x-Intersection Query are shown as dashed
lines. The intersecting intervals of Type I. are red; the intersecting intervals of Type
II. are yellow; the intersecting intervals of Type III. are green (Color figure online)

Proof. We preprocess the Endpt and Length arrays for dynamic RMQ. We
update the Endpt and Length arrays when an interval is removed from V . We
remove intervals from longest to shortest so we can store a linked list of possibili-
ties for each array entry, sorted by decreasing interval length that they represent.
These arrays remain O(ψ) in size since we only insert the intervals that have
been removed in the process of answering a query.

Preprocessing arrays of size ψ for dynamic RMQ requires O(ψ log ψ/
log log ψ) time, from the lower bounds proven for dynamic RMQ in [14]. �

Lemma 3. We can answer an Interval x-Intersection Query in O(ω log ψ/
log log ψ) time, where ω is the number of intersecting intervals in the output
list.

Proof. For a query with ω results, O(ω log ψ/ log log ψ) time suffices for O(ω)
range-minimum and range-maximum queries, as well as O(ω) removals and inser-
tions of intervals in the RMQ structures. �

3.2 Preprocessing

In addition to the preprocessing mentioned in Sect. 3.1, we precompute the least
common multiple (LCM) of pairs of numbers (i, j), 1 ≤ i, j ≤ n

2 , and store them
in an n

2 × n
2 array.

Lemma 4. The LCM table is constructed in O(n2 log n) time.

Proof. Each entry in the LCM table is computed in O(log n) time [9]. Thus, the
O(n2) LCM table is constructed in O(n2 log n) time. �
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3.3 Main Algorithm

Our algorithm begins by identifying the 1d runs in each row of the input array.
Each run identified is output as an h-run of height 1. For each row i, 1 ≤ i ≤ n,
in the n × n input array M , we use a linear-time algorithm (e.g., [6,16]) to
locate all runs in row i, which we call Ri. We represent each run as an interval,
corresponding to the columns that it spans. We augment each interval with the
period size of the run it represents.

Once we have identified the h-runs of height 1, we link together h-runs on
adjacent rows that form h-runs of height 2. That is, we link runs that occur
in overlapping columns in which the overlap is sufficiently wide with respect to
the period sizes to maintain h-periodicity. In the following set of examples we
demonstrate the different possibilities of how runs in adjacent rows may link to
form a run of height 2.

Example 1. In some instances, entire runs on adjacent rows link to form a
single h-run of height 2. Consider the strings cabcabcabcab and babababababa.
These strings are both runs of length 12; the first has period size 3 and the
second has period size 2. If these two runs occur directly above / below one
another in a 2d array, they link in their entirety to form an h-run of height 2
with length 12 and h-period of size 6:

cabcabcabcab
babababababa

Example 2. In other settings, part of one run can align with part of another
run or with another entire run. Consider the string cabcabcabca aligned directly
above bababaaaaaa, in the same columns. cabcabcabca consists of a single run
with period cab and length 11 while bababaaaaaa contains a run of length 6 with
period ba as well as an overlapping run of length 6 with period a. The longer
run above links with the second run below to form a single h-run of height 2
with length 6 and h-period of size 3:

cabcabcabca
bababaaaaaa

Example 3. It is possible for runs in adjacent rows to align in the same
columns, yet they will not form any h-runs of height 2 since the overlap is not
sufficiently long to be h-periodic. Consider the run abaababaab with period
abaab and the run ababababab with period ab. Even if these runs occur directly
above below one another in a 2d array, they do not form an h-run of height 2.
abaababaab
ababababab

Example 4. Suppose one row contains the substring abaabaaba (a run with
period aba, which contains two runs with period a within it) and directly below
it we find the substring bbabbbabb (a run with period bbab, which contains three
runs with period b within it). Although each of these strings contains more than
one run, their alignment in the array does not admit even one h-run of height 2.
abaabaaba
bbabbbabb
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Example 5. One run α of width � can link to several runs above (or below)
it, yielding several h-runs of height 2 and widths ≤ �, each with possibly different
h-periods. Consider the string ababababab, which is a single run with period 2,
and the string aaaaacbbbb, which contains two smaller runs (aaaaa and bbbb).
When these two strings align on adjacent rows, their runs link to form 2 h-runs
of height 2.

That is,
ababababab
aaaaacbbbb

contains
ababa babab
aaaaa cbbbb

and
ababababab
aaaaacbbbb

Example 6. Consider the strings aaaaaaaaaaaa and ababaaababaa. The
string aaaaaaaaaaaa is a single run with period a. However, ababaaababaa
contains five runs, two with period ab, two with period a, and another with
period ababaa. When these two strings align on adjacent rows and their runs
are linked together,

aaaaaaaaaaaa
ababaaababaa

contains the following five h-runs of height 2, shown in red:
aaaa aaaaaaaa
abab aaababaa

aaaaaaaaaaaa
ababaaababaa

aaaaaaaaaa aa
ababaaababaa

aaaaaaaaaaaa
ababaaababaa

Now we explain how to readily link two specific runs on adjacent rows if they
connect to form an h-run of height 2 (in the Run Linking Problem). Then we
explain how to efficiently link all the runs that can be linked on two adjacent
rows to obtain all the h-runs of height 2 that span those two rows (in the Row
Run Linking Problem).

Definition 6. Run Linking Problem: Let α ∈ Ri have period pα and expo-
nent eα and let β ∈ Ri+1 have period pβ and exponent eβ.1 Identify the h-run
of height 2 that is formed by linking α and β together, if they can link to form
an h-run of height 2.

In Example 1, α is the run cabcabcabcab with period pα = cab and exponent
eα = 4, while β is the run babababababa with period pβ =ba and exponent
eβ = 6 .

Observation 1 specifies a necessary (but not sufficient) condition for runs in
adjacent rows to link to form an h-run of height 2; Observation 2 specifies a
necessary and sufficient condition.

Observation 1. Suppose α and β overlap by o columns. Let ρ = max(pα, pβ).
It is only possible for α and β to link together to form an h-run of height 2 when
o ≥ 2ρ.

Observation 2. Suppose α and β overlap by o columns. Then, α and β link to
form an h-run of height 2 iff o is at least twice LCM(pα, pβ).

1 Throughout the remainder of this section, α represents a run on row i with period
pα and exponent eα and β represents a run on row i+1 with period pβ and exponent
eβ .
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To determine if α and β link to form an h-run of height 2, we first compute o,
the number of columns in which they overlap. Then we see if o ≥ 2 LCM(pα, pβ),
the necessary and sufficient condition for the overlap to be h-periodic (stated in
Observation 2).

Lemma 5. The Run Linking Problem is solved in O(1) time.

Proof. O(1) time suffices to compute o, the number of overlapping columns in
α and β, by comparing their start and end columns. Then we determine if the
condition specified in Observation 2 occurs, i.e., that o ≥ 2 · LCM(pα, pβ). This
is done in constant time by referring to the precomputed LCM table. �

Now we generalize to the problem of linking all the runs on two adjacent
rows to obtain all the h-runs of height 2 that span those rows.

Definition 7. Row Run Linking Problem
Input: Runs on adjacent rows, Ri and Ri+1, 1 ≤ i < n.
Output: Set of τi,2 h-runs of height 2 that span rows i and i + 1.

We determine in O(1) time if a pair of runs on adjacent rows link to form
an h-run. Yet we do not want to try all O(n2) possible pairs. Thus, we devise
a more efficient solution to the Row Run Linking Problem. The sizes of Ri and
Ri+1 are both smaller than n since there are fewer than n runs in a string of
length n [7]. In each subarray of M that has width n and height 2, we can view
the subcolumns as metacharacters. From this perspective, the size of the output
set τi,2 is also smaller than n.

We split the set of τi,2 h-runs of height 2 spanning rows i and i + 1 into two
disjoint subsets, S1 and S2, and search separately for h-runs in each subset. S1

consists of h-runs in which pα ≥ pβ , i.e., either the run on row i either has a
larger period than the run on row i+1 or the runs on adjacent rows have periods
that are equal in size. S2 consists of h-runs in which pα < pβ , i.e., the run on
row i has a smaller period than the run on row i + 1. Example 1 ∈ S1. The first
three h-runs in Example 6 belong to S2 since the smaller period is above the
larger period, while the last two h-runs shown in Example 6 belong to S1 since
the periods on both rows are the same size of 1.

We use a bidirectional search to solve the Row Run Linking Problem and
search separately for h-runs in each subset. We identify the h-runs ∈ S1 by
downward extensions of runs in row i and we identify the h-runs ∈ S2 by upward
extensions of runs in row i + 1. In the remainder of this paper, we focus on the
downward extension phase since the upward extension phase of the algorithm
is analogous. To extend a run α in row i downward to the h-runs of height 2
that it forms, we want to find all runs β in row i + 1 that overlap α by ≥ 2pα

columns, which is the necessary condition of Observation 1. In Lemma 6 we
consider a substring of a run α on row i which contains exactly two adjacent
copies of pα, and show that there can be at most one run β below it with a
period that is shorter than pα or of the same size as pα. By Lemma 6 and
Corollary 3, from the perspective of the run with larger period in an h-run of
height 2, there are a limited number of runs on the adjacent row to possibly
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connect to. Thus, we always begin with the run with larger period and search
either downwards or upwards for the limited number of runs on the adjacent row
to consider connecting to. This is depicted in Fig. 3.

Lemma 6. Consider a substring s of α of length 2pα that begins in column cs

and ends in column ce. There exists at most one run β ∈ Ri+1 with period size
pβ ≤ pα and length ≥ 2pα beginning in a column ≤ cs and ending in a column
≥ ce.

Proof. It is important to keep in mind that there is one string below α on row
i + 1. A known fact of periodicity is that two overlapping runs within one string
can overlap by at most one character less than the larger period [18]. The run β
on row i + 1 has period size pβ ≤ pα and length ≥ 2pα. Thus, there are at least
two copies of pβ directly below s and this substring is periodic in pβ and cannot
be periodic in anything else. �

Corollary 2. Suppose β ∈ Ri+1 with period pβ ≤ pα and overlaps α by ≥ 2pα

columns. Another run β′ ∈ Ri+1 with period p′
β ≤ pα and length ≥ 2pα can

overlap β by at most pα − 1 columns.

Corollary 3. Fewer than eα runs β in row i+1 can overlap α by ≥ 2pα columns,
with period size pβ ≤ pα.

Fig. 3. A run α on row i with two overlapping runs below it on row i+1, β and β′, that
overlap by the maximum pα − 1 characters. The overlap between β and β′ is shown in
bold blue font. pα = 5, pβ = 5, pβ′(Colorfigureonline) = 1

We sort the runs for each row, Ri, 1 ≤ i ≤ n, by their period sizes, in
descending order. We follow this sorted order to extend one run at a time, in
order of decreasing period size. This facilitates the search for runs on the next
row that have periods no longer than the periods in the runs above, as we are
only looking for h-runs ∈ S1. For each Ri, we construct and maintain the Endpt
and Length arrays so that Interval x-Intersection Queries can be asked. We
preprocess the arrays for dynamic RMQ, as described in Sect. 3.1. We maintain
two sets of double linked lists of possible entries for each element of the Endpt
and Length arrays. In one set of linked lists, possibilities are sorted by decreasing
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interval length (as explained in Sect. 3.1, to enable Interval x-Intersection Queries
to return multiple results) and in the other we sort by decreasing period size.
This way, we can remove a run from the set Ri and update the corresponding
Endpt and Length arrays in O(log n/ log log n) time. Once we have completed
the downward extension of runs in a row, we reinsert the runs that have been
removed in time proportional to the number of runs that are reinserted, with an
O(log n/ log log n) slowdown to update the dynamic RMQ data structures.

Definition 8. Two-Period Overlap Query: Given a run α ∈ Ri, 1 ≤ i < n,
with period pα and a set of runs Ri+1 that occur on the row below α, identify the
runs in the set Ri+1 that each overlap the columns of α by at least 2pα columns.

We solve the Two-Period Overlap Query as an Interval x-Intersection Query
over the intervals of Ri+1, with parameters x = 2pα and u =the interval of
columns that α spans.

Lemma 7. We can answer a Two-Period Overlap Query in O(eα log n/ log
log n) time.

Proof. From Corollary 3 we know there are fewer than eα runs returned by the
query. The time complexity is derived from this fact combined with Lemma 3,
the time complexity of answering an Interval x-Intersection Query that returns
up to eα results, over a set of up to n intervals. �

In the downward extension phase, we iterate through each of the runs α ∈ Ri

in decreasing order of period size. As we extend downwards each run α ∈ Ri

with period pα, we first remove any runs in Ri+1 with period larger than pα,
which is straightforward as it follows the sorted order. Whenever we remove a
run from Ri+1, we update the Endpt and Length arrays. (We note that in the
downward extensions of all the runs in Ri, we can remove each of the runs in
Ri+1 only once.) Then we ask a Two-Period Overlap Query on α and Ri+1 to
identify the set of runs I ⊆ Ri+1 such that each run β ∈ I overlaps α by at least
2pα columns and has period pβ ≤ pα. The set I consists of the runs on row i+1
that can possibly link with α to yield an h-run in S1 (by Observation 1). For
each run β ∈ I returned by the Two-Period Overlap Query, we solve the Run
Linking Problem and determine if α and β overlap sufficiently to form an h-run,
and if so, we announce an h-run of height 2 as output.

Lemma 8. In O(eα log n/ log log n) time we can extend α ∈ Ri to all h-runs of
height 2 ∈ S1 that α extends to.

Proof. This follows from Corollary 3 and Lemmas 5 and 7 since the downward
extensions of α are obtained by a Two-Period Overlap Query (answered in
O(eα log n/ log log n) time), and then up to eα instances of the Run Linking
Problem (each of which is answered in O(1) time) on the results returned by the
Two-Period Overlap Query. �

Lemma 9. We can solve the Row Run Linking Problem in O(n log n/ log log n)
time.
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Proof. We sort Ri and Ri+1 in linear O(n) time. We construct the Endpt and
Length arrays and preprocess the arrays for dynamic RMQ so that Interval x-
Intersection Queries can be asked in O(n log n/ log log n) time (as described in
Sect. 3.1).

The sum of the exponents of all runs in a string of length n is O(n) [16].
Thus, there are a total of O(n) extensions of runs in row i to row i + 1. With
this fact in mind, the time complexity follows naturally from Lemma 8. �

Corollary 4. All h-runs of height 2 are identified in O(n2 log n/ log log n) time.

Observation 3. For integer 3 ≤ k ≤ n and 1 ≤ i ≤ n − k, an h-run of height k
begins on row i spanning columns cs through ce, 1 ≤ s < n, 1 < e ≤ n, s < e, iff
an h-run u of height k − 1 begins on row i and a run � begins on row i + k − 1,
both u and � span columns cs through ce, and ce − cs + 1 >= twice the LCM of
the periods of u and �.

Now that we have shown how to efficiently solve the Row Run Linking Prob-
lem to identify h-runs of height 2, we show how the approach generalizes for
identifying all h-runs in the input array. Once we have identified the h-runs of
height 2, we iteratively locate the h-runs of each height k, 3 ≤ k ≤ n, beginning
in each row i of the array. We link h-runs of smaller heights beginning on row
i with h-runs occurring directly below them, to obtain h-runs of larger heights.
For instance, to identify the h-runs of height k beginning on row i, we can link
the h-runs of height k − 1 that begin on row i with the runs on row i+k − 1. By
Observation 3, this is sufficient. We store each set of h-runs of different heights
beginning on different rows separately from one another. We sort the h-runs
in each set by their period sizes, in descending order. Then, for each set, we
construct the Endpt and Length arrays and preprocess the arrays for dynamic
RMQ.

Considering Corollary 4 and the O(n) different heights of h-runs indicates
that our algorithm identifies all h-runs in the input array in O(n3 log n/ log log n)
time. However, a more careful analysis reduces the time complexity of our algo-
rithm.

Let σα denote the sum of the exponents of h-runs of height 2 that are exten-
sions of α and are ∈ S1. We note that h-runs can only get narrower and not
wider as we extend them downwards.

Lemma 10. Suppose α ∈ Ri has exponent eα, β ∈ Ri+1 has exponent eβ, and
pα ≥ pβ. If α and β link to form an h-run of height 2 with period pαβ and
exponent eαβ, then eαβ ≤ eα and eαβ ≤ eβ.

Proof. From Observation 2 we see that pαβ is a multiple of pα. Thus, pαβ ≥ pα.
This implies that eαβ ≤ eα. Similarly, eαβ ≤ eβ . �

Lemma 11. Suppose τα,2 h-runs of height 2 are extensions of α and are ∈ S1.
Let σα denote the sum of the exponents of these τα,2 h-runs of height 2. Then
σα ≤ eα + τα,2.
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Proof. From Corollary 2, we see that the intervals returned by a Two-Period
Overlap Query cannot overlap one another by more than pα − 1 columns. Con-
sider the extreme case in which each result overlaps another by pα characters
at each end, and we have the maximum number of results returned, which is
strictly less than eα (by Corollary 3). Even in this case, σα ≤ eα + τα,2. �

Lemma 12. Let τα denote the set of h-runs of any height that are in S1 and
are extensions of α. In O((eα + τα) log n/ log log n) time, we extend run α with
exponent eα down to all h-runs that it extends to.

Proof. By Lemma 6 and Corollary 3, a Two-Period Overlap Query on α returns
fewer than eα results. For each result, we either have new output or the exponent
shrinks. When we obtain new output, we charge the O(1) work to the output
generated. In the case that the exponent shrinks, there are at least pα columns
of α that do not extend to an h-run of height 2. This is derived from Corollary 2,
which indicates that the runs ∈ Ri+1 returned by a Two-Period Overlap Query
on α are at a distance of at least pα columns from one another.

It is possible to simultaneously have the effect of both obtaining output and
the exponent shrinking when certain regions of α split and extend to two h-runs
and other regions do not extend at all. We can charge the splitting of regions
into several h-runs to the new output generated and we can charge the rejections
to the overall shrinking exponent. �

Theorem 1. All τ h-runs in the n × n input array are identified in O((n2 +
τ) log n/ log log n) time.

Proof. For any row i, 1 ≤ i ≤ n, the sum of the exponents of all runs on the
row is O(n) [16]. Thus, over all extensions downwards from Ri, we can charge
the rejection of results from Two-Period Overlap Queries to the combination
of the sum of exponents of Ri and the number of h-runs (of all heights) that
extend from Ri. Thus, the theorem generalizes Lemma 12 from the perspective
of extending a single run to the perspective of extending all runs that occur on
rows of the input array. �
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Abstract. This paper introduces Turbo Scan (TS), a novel k-nearest
neighbor search solution tailored for high-dimensional data and specific
workloads where indexing can’t be efficiently amortized over time. There
exist situations where the overhead of index construction isn’t warranted
given the few queries executed on the dataset.

Rooted in the Johnson-Lindenstrauss (JL) lemma, our approach
sidesteps the need for random rotations. To validate TS’s superiority,
we offer in-depth algorithmic and experimental evaluations. Our findings
highlight TS’s unique attributes and confirm its performance, surpassing
sequential scans by 1.7x at perfect recall and a remarkable 2.5x at 97%
recall.

Keywords: Approximate nearest neighbor search · Online knn
search · Johnson-Lindenstrauss lemma

1 Introduction

Indexing is the standard approach for addressing the challenges of high-
dimensional vector search. An index is a data structure that organizes vectors
to enable efficient retrieval based on their similarity or distance metric. The
index typically employs techniques such as space partitioning, hashing, or tree
structures to group vectors with similar properties together, reducing the search
space and speeding up the search process. The use case for indexing is when the
database is static, and many queries will be performed over time, amortizing the
index construction cost. In the above scenario, it is also worthwhile to have an
overhead in memory usage; the most efficient indexes need to store additional
information about distances between objects, quantized vectors, or links between
objects.

Typical indexing methods assume that the cost of building an index to search
a database can be ignored as the heavy workload of queries will eventually make
up for it. However, we acknowledge situations where the number of queries is
relatively small, and the cost of creating an index cannot be recovered. For exam-
ple, searching for data in archives can be useful, but there may be few queries.
On the other hand, the nearest-neighbor graph is a critical tool for visualizing
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high-dimensional data. The datasets that need to be visualized are usually small,
high-dimensional, and tend to change quickly over time. As a result, the costs
of index construction and maintenance may outweigh the benefits of improved
search efficiency. In such cases, the only available option is to use brute-force or
linear search.

We are unaware of other approaches in the literature for online nearest neigh-
bor searches. In [2], the authors propose a technique that utilizes the Johnson-
Lindenstrauss (JL) theorem [3] for mapping in each distance computation. This
mapping has a complexity logarithmic to the dimension. The proposed method
is intended for refining a small dataset of candidates at the output of a standard
index.

Another interesting approach, discussed in [8], involves using a lower bound
of the distance instead of the full distance. The authors survey various methods
in this context and propose a novel method to compute a hierarchy of approxima-
tions of increasing complexity. It’s worth noting that these lower-bound methods
require a preprocessing step to filter out queries, which typically incurs a linear
cost based on the database size.

In time series analysis, Dynamic Time Warping (DTW) can facilitate online
searches through specific heuristics as detailed in [6]. This research employs
defined bounds and early termination to efficiently identify similar sequences
under DTW. However, it is vital to distinguish that time series differ from vector
databases, as the former represents a singular sequence while the latter encom-
passes complete vectors without overlap. Additionally, determining the lower
bound of distance to the nearest neighbor in similarity searches is as challenging
as identifying the nearest neighbors themselves.

2 Our Proposal

The Johnson-Lindenstrauss (JL) theorem is a mathematical result related to
dimensionality reduction in high-dimensional data. It was introduced by William
B. Johnson and Joram Lindenstrauss in 1984. The theorem states that given a
set of high-dimensional points in Euclidean space, there exists a linear trans-
formation that can approximately embed these points into a lower-dimensional
space while preserving their pairwise distances up to a certain factor. In other
words, the theorem guarantees that reducing the dimensionality of a set of points
is possible without losing too much information about their pairwise distances.

More formally, let’s say you have a set of n points in a high-dimensional
space with dimensionality d. The Johnson-Lindenstrauss theorem states that for
any ε > 0 and any positive integer k, there exists a linear transformation (or
projection) that maps the n points from d-dimensional space to k-dimensional
space, where k is much smaller than d, such that the pairwise distances between
the points are preserved up to a factor of (1 ± ε). This means that the distances
between points in the lower-dimensional space are approximately the same as
those between the original points in the higher-dimensional space, up to a small
error factor ε. The JL theorem provides a theoretical basis for dimensionality
reduction techniques, such as random projections.
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The Johnson-Lindenstrauss lemma states that a set of n points in a high-
dimensional space can be projected onto a lower-dimensional space while preserv-
ing their pairwise distances up to a factor of (1+ ε) with high probability, where
ε is a small constant and the dimension of the projected space is O(log n/ε2).
However, there are recall issues when using random projections for indexing. The
recall is the fraction of relevant items retrieved by a search. Because random pro-
jections can introduce noise and distortion, the recall of the search results may
be reduced.

2.1 Turbo Scan: A Fast Filtering-Based Approximate Similarity
Search Algorithm

Our first observation is about the squared Euclidean distance1. Please note that
we can compute this sum in any order and partially. While we advance, the
computation will be approximately better in precise order. The same is true for
the inner product. Then, we can compute the partial distances from the query
to all the vectors in the database using only a few coordinates, i.e., following the
JL lemma, h = O(log n) at each iteration, and take decisions with the partial
information that yields to reduce the final computing cost.

Therefore, instead of using the JL lemma to compute a projection, we use a
linear memory approach and evaluate partial distances that solve an approximate
nearest neighbor query in O(n logα n) average arithmetic operations where n is
the number of vectors in the dataset and α related to the required quality. We
call this procedure Turbo Scan (TS).

The Algorithm in Brief. Let us explore an initial idea for enhancing the effi-
ciency of our nearest neighbor search. Our approach involves computing partial
distances between the query and the entire database but with a limited number
of coordinates. We then divide the database into two halves and retain the clos-
est half to the query based on these partial distances. We repeat this procedure,
gradually increasing the number of coordinates in our partial list and selecting
the top half of the database at each step. Finally, in the last stage of this pro-
cess, we calculate full vector distances for only a tiny fraction of the remaining
database. By employing this method, we aim to improve our search algorithm’s
overall speed and efficiency, thereby enhancing our system’s performance.

When implementing the initial idea, it is important to consider two parame-
ters carefully. Firstly, determining the number of coordinates to be considered in
partial distance computation is crucial for computational speed and recall rate.
We’ll explore alternatives using a fixed database to establish a more concrete
approach. Below is a detailed framework to formalize the initial idea.

1 Instead of computing
√∑

i |ui − vi|2 we calculate
∑

i |ui − vi|2, which produces the
same ordering of the results.
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A More Detailed Description. Let Xd×n and Qd×m be our d-dimension
data and query set, respectively, in a matrix representation of n and m vectors
respectively. We need some notation to access vectors and slices. The ith column
vector is accessed as X1..d,i and an slice of length h as Xj..j+h−1,i. Our method
computes

∑
i |ui − vi|2 (or

∑
i ui · vi) incrementally, for X and Q, discarding

distant candidates at each iteration.
Algorithm 1 shows the Turbo Scan pseudo-code. It receives the dataset X

and query q, along with hyperparameters 1 ≤ h ≤ d and 1 < α ≤ n. Our
algorithm takes a small slice of vectors (of length h) and computes the distance
partially, filtering out many objects in the result set (P and D at lines 10–
11). The procedure is repeated iteratively using different slices (lines 3–12). The
candidate set is reduced by a factor or 1/α (lines 4–8).

Algorithm 1. Turbo Scan algorithm with fixed h-sized slices and α candidate
reduction parameter.
Inputs:
- Xd×n the input dataset.
- q a d-dimensional vector query.
- k the number of neighbors to retrieve.
- 1 ≤ h ≤ d the vector slice size, typical values are factors of log n.
- 1 < α ≤ n the candidate reduction value, typical values are small integers.

Pseudo-code:

1: Let P1×n and D1×n be two coupled arrays containing identifiers and partial distances. Initialize
P as an identity permutation and D as an array of zeros.

2: j ← 1
3: while j + h − 1 ≤ d do
4: while i ∈ P do
5: Let Xj..j+h−1,i be named as u.
6: Let qj..j+h−1 be named as q′.
7: D

P
−1
i

← D
P

−1
i

+
∑

� |u� − q′
�|2

8: end while
9: Partially sort D and P to keep top max{k, �|D|/α�} candidates
10: Truncate both arrays to hold only these top max{k, �|D|/α�} candidates
11: j ← j + h
12: end while

Note 1: P and D arrays can be cached by thread and reused to avoid memory allocation between
queries.
Note 2: P −1

i retrieves the rank of i in P .
Note 3: Partial inner product can be used modifying line 7.

Figure 1 presents an illustration of the algorithm. The dataset matrix is
accessed in slices. In the first iteration, we calculate all the partial distances
for the first slice. In the second iteration, there are fewer elements as many are
discarded based on the α parameter; the number of iterations required can be
determined by logα n. The optimal value of α depends on the dataset. The num-
ber of arithmetic operations per query reduces to O(nd/ logα n), which is smaller
than the standard O(dn) sequential scan.

Similarly, the number of iterations can also be determined by h, specifically
�d/h�. Still, determining the factor by which elements are discarded is more
challenging.
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Fig. 1. Turbo Scan in brief. In each iteration we compute a more precise distance over
a smaller fraction of the database

Both parameters are interrelated, but we choose to retain both since Alg. 1
and Fig. 1 demonstrate that adjusting the slices or α values can be done easily.
It is worth investigating since dynamic parameters can offer certain advantages.
We will experimentally examine both fixed and varying hyperparameters in the
next section.

3 Experimental Results

This section presents the experimental results that characterize our approach
and demonstrate its effectiveness. To conduct these experiments, we utilized the
LAION-300K dataset, a subset of the 768-dimensional CLIP embeddings from
the LAION2B database [7]. The LAION-300K dataset was obtained from the
SISAP’2023 challenge site.2

We conducted two sets of experiments. In the first set, we utilized the official
ten thousand queries provided by the SISAP challenge. The second set of exper-
iments involved computing the knn graph for the LAION-300K dataset, which
means computing the knn sets for the entire 300K vectors in the dataset. For
both sets of experiments, we set the value of k = 16, which is a typical magni-
tude for multimedia information retrieval and non-linear dimensional reduction
techniques.

Our benchmarks were performed on a workstation with two Intel(R) Xeon(R)
Silver 4216 CPUs running at 2.10 GHz (32 cores) and equipped with 256 GB
of RAM. The workstation operated on CentOS 8.5. We have provided an MIT-
licensed package that includes an experimental implementation of our approach
using the Julia programming language.3 This implementation incorporates mul-
tithreading search functionality as well as various slicing and splitting strategies.
The results we obtained represent the real-time duration in seconds required to
solve queries in parallel.

2 Available at: https://sisap-challenges.github.io/datasets/.
3 Available at: https://github.com/sadit/SlicedSearch.jl.

https://sisap-challenges.github.io/datasets/
https://github.com/sadit/SlicedSearch.jl
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3.1 Determining the Discrimination Ratio 1/α

Table 1. Required percentage distance evaluation to obtain a given recall for different
slices for the LAION-300K database and 10k queries. The accumulated computing cost
for the 10k queries is also shown

slice searchtime dataset review (%) for recall r

width (seconds) r=0.25 r=0.5 r=0.75 r=0.9 r=0.95 r=0.99 r=1.0

4 23.48 6.690 17.974 37.276 58.433 70.462 87.723 99.895

8 25.96 3.302 10.767 26.521 47.233 60.636 81.814 99.993

16 28.81 1.054 4.546 14.593 32.217 45.849 71.203 99.973

32 26.42 0.154 0.977 4.783 14.808 25.189 50.920 99.067

64 28.06 0.024 0.157 1.053 4.872 10.411 29.969 98.400

128 31.23 0.006 0.026 0.141 0.739 1.995 10.064 81.557

Table 1 shows the percentage required to be reviewed to achieve a given recall
using a single iteration of our algorithm. We can estimate the expected quality
using this table for a given α, i.e., each value is 100/α since we present per-
centages for readability. For instance, supposing that we can expect the same
properties from each iteration, i.e., the filtering power can be seen as an inde-
pendently randomly distributed variable, in the first iteration, for h = 64, we
can obtain a recall of 0.99 using 1

α = 0.29969 (e.g., α ≈ 3.33). Note that we can
solve in log3.33 n ≈ 10 iterations with an expected recall of 0.9, i.e., 0.9910. For
an expected recall of 0.96, fixing h = 128, we obtain α = 50 using 3 iterations.

Fig. 2. Search time and recall of the 10k knn queries on the LAION-300K dataset
(k = 16). Brute force performance is marked with the black star
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3.2 Performance of the Full Turbo Scan Algorithm

Figure 2 shows the performance of solving knn queries of our Turbo Scan on
the LAION-300K dataset, finishing all iterations and using h = 10Δ. Each row
corresponds to fixed and dynamic slicing policies (e.g., iterating with fixed-size
or dynamically-sized sub-vectors). The first column shows the performance of
the dynamic splitting policy. The second one fixes the split’s α parameter.

Curves correspond to a single slicing Δ value, varying on split α value. The
star marker corresponds to the brute-force solution of the queries. Top-left figure
(DD quadrant) shows how small values of Δ give a poor performance; hence
larger Δ values are better. This can be counter-intuitive but can be explained
by the fast SIMD instructions available in modern hardware. This favors the
splitting capabilities instead of the splicing ones. Note how the bottom-left figure
(FD) decreases the search time on fixed slicing while treads quality as compared
with DD; note that large fixed slicing (Δ = 10) and dynamic split (α = 4) (DF
quadrant) performs better.

Regarding the fixed splitting policy, we can see higher search times due to
the lack of adaptability of the policy. The top-right figure shows several high
recall setups, except for the extreme hyper-parameters α = 2 and Δ = 4. The
rest of the parameters yield acceptable-quality performances. The bottom-right
figure (FF) describes the relatively good performance, especially for Δ = 10 and
8, that achieve high recalls and are still faster than the brute force solution.
Nonetheless, the DD and FD perform better in our benchmark.

Table 2. Performance of computing the all knn graph on the LAION-300K dataset
(k = 16)

name slice Δ split α recall searchtime

BF 1.0 1431.0 s

TS F 8 F 3 0.8692 1333.1 s

TS D 16 F 3 0.9992 1699.5 s

TS F 8 D 12 0.6182 749.4 s

TS D 16 D 12 0.9728 1074.4 s

3.3 Computing the k Nearest Neighbor Graph

Our next experiment computes the dataset’s k nearest neighbor graph. This is
the input of many statistic and data science procedures, like non-linear dimen-
sional reduction techniques like t-SNE, ISOMAP [1], or UMAP [4]; also, the
spectral clustering algorithm, as described by Ng et al. [5]. In these application
domains, high-quality results are required, and most users are not willing to tune
and store a metric index.

Table 2 shows the performance comparison of our TS with the brute force
solution. We can observe how split-F has higher search times and recall values.
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The best configuration is the DD which shows high-recall and faster solution
times. We avoid a large ablation study in this experiment due to the extensive
computing times involved and limit ourselves to a pair of good hyper-parameters,
as found in our previous experiment, see Fig. 2, showing the practical capabilities
of our TS.

4 Conclusions

This paper presents Turbo Scan (TS), a JL-filtering based algorithm, tailored
for approximate nearest neighbor searches in high-dimensional spaces. TS is
optimized for memory, demanding a linear memory footprint per thread and
executes queries with O(n logα n) operations, where n denotes dataset vector
count and α indicates result quality.

TS calculates distances in partial slices, discarding elements iteratively
according to partial findings. We detail the method, focusing on slice width and
the α parameter, which defines the algorithm’s discarding intensity (represented
by the 1/α discarding factor).

Using the LAION-300K dataset, we tested TS with both static and dynamic
Δ and α values over 10k queries to construct the k nearest neighbor graph. Our
findings reveal a 2–3x speedup and recall scores exceeding 0.9 compared to con-
ventional brute force methods, signifying superior result quality and efficiency.

References

1. Anowar, F., Sadaoui, S., Selim, B.: Conceptual and empirical comparison of dimen-
sionality reduction algorithms (PCA, KPCA, LDA, MDS, SVD, LLE, ISOMAP,
LE, ICA, t-SNE). Comput. Sci. Rev. 40, 100378 (2021)

2. Gao, J., Long, C.: High-dimensional approximate nearest neighbor search: with reli-
able and efficient distance comparison operations. arXiv preprint arXiv:2303.09855
(2023)

3. Johnson, W.B., Lindenstrauss, J.: Extensions of Lipschitz mappings into a Hilbert
space. Contemp. Math. 26, 189–206 (1984)

4. McInnes, L., Healy, J., Melville, J.: UMAP: uniform manifold approximation and
projection for dimension reduction. arXiv preprint arXiv:1802.03426 (2020)

5. Ng, A., Jordan, M., Weiss, Y.: On spectral clustering: analysis and an algorithm.
In: Advances in Neural Information Processing Systems 14 (2001)

6. Rakthanmanon, T., et al.: Addressing big data time series: mining trillions of time
series subsequences under dynamic time warping. ACM Trans. Knowl. Discov. Data
(TKDD) 7(3), 1–31 (2013)

7. Schuhmann, C., et al.: LAION-5B: an open large-scale dataset for training next
generation image-text models (2022)

8. Zhang, H., Dong, Y., Xu, D.: Accelerating exact nearest neighbor search in high
dimensional Euclidean space via block vectors. Int. J. Intell. Syst. 37(2), 1697–1722
(2022)

http://arxiv.org/abs/2303.09855
http://arxiv.org/abs/1802.03426


Class Representatives Selection
in Non-metric Spaces for Nearest

Prototype Classification
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Abstract. The nearest prototype classification is a less computation-
ally intensive replacement for the k-NN method, especially when large
datasets are considered. Centroids are often used as prototypes to rep-
resent whole classes in metric spaces. Selection of class prototypes in
non-metric spaces is more challenging as the idea of computing centroids
is not directly applicable. Instead, a set of representative objects can be
used as the class prototype.

In this paper, we present CRS, a novel memory and computation-
ally efficient method that finds a small yet representative set of objects
from each class to be used as prototype. CRS leverages the similarity
graph representation of each class created by the NN-Descent algorithm
to pick a low number of representatives that ensure sufficient class cov-
erage. Thanks to the graph-based approach, CRS can be applied to any
space where at least a pairwise similarity can be defined. In the exper-
imental evaluation, we demonstrate that our method outperforms the
state-of-the-art techniques on multiple datasets from different domains.

Keywords: Class Representation · Nearest Prototype Classification ·
Prototype Selection

1 Introduction

The k-NN classifiers are often used in many application domains due to their
simplicity and ability to trace the classification decision to a specific set of sam-
ples. However, their adoption is limited by high computational complexity and
memory requirements. Because contemporary datasets are often huge, contain-
ing hundreds of thousands or even millions of samples, computing similarity
between the classified sample and the entire dataset may be computationally
intractable.

In order to decrease computational and memory requirements, the nearest
prototype classification (NPC) method is commonly used, c.f. [1–3]. In NPC,
each class is represented by a prototype, that represents typical characteristics of
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
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the class. The classified sample is then compared just to the prototypes instead
of calculating similarity to the entire dataset. Therefore, the goal of prototype
selection is to find a memory-efficient representation of classes such that classi-
fication accuracy is preserved while the number of comparisons is significantly
reduced.

An intuitive prototype in a metric space can be a centriod. But even in
metric spaces a centroid is often not an optimal solution because a single point
does not represent the whole class well. Sometimes the centroid does not make
sense and in non-metric spaces (also called distance spaces [4]) it is not defined.
Such is the case in many application domains, where objects exist in space
where only a pairwise (dis)similarity is defined, e.g., bioinformatics [5], biometric
identification [6], or pattern recognition [7].

Our focus on non-metric spaces comes from the problem of behavioural clus-
tering of network hosts [8], where we need to quickly assign a network host to
a group of other hosts. A newly appearing network host in a computer network
needs to be quickly assigned to a correct host group (or a new group must be
created). The space we operate in is defined by the domains and IP addresses
that the whole network has communicated with in the previous sliding time win-
dow (e.g. day). The similarity we use is expensive to compute (see [8] for details)
as the dimension of the space is high and changes quickly.

Nevertheless, the problem of selecting a minimal number of representative
samples is of more general interest. Only a few methods have been developed
for non-metric scenarios, and to the best of our knowledge the only general (not
domain-specific) approach is selection of small subset of objects to represent
the whole class. The method is referred to as representative selection and the
representatives (selected objects), are used as a prototype. Several recent meth-
ods capable of solving representatives selection on non-metric spaces exist (i.e.
DS3 [9], δ-medoids [10]).

In this paper, we present a novel method to solve the problem of repre-
sentative selection – Class Representatives Selection (CRS). CRS is a general
method capable of selecting small yet representative subset of objects from a
class to serve as its prototype. Its core idea is fast construction of an approxi-
mate reverse k-NN graph and then solving minimal vertex cover problem on that
graph. Only a pairwise similarity is required to build the reverse k-NN graph,
therefore application of CRS is not limited to metric spaces.

To show that CRS is general and domain-independent, we present an exper-
imental evaluation on datasets from image recognition, document classification
and network host classification, with appealing results when compared to the
current state of the art. The code for CRS can be found at https://github.com/
jaroslavh/ceres.

The paper is organized as follows. The related work is briefly reviewed in the
next section. Section 3 formalises the representative selection as an optimization
problem. The proposed method is described in detail in Sect. 4. The experimental
evaluation is summarized in Sect. 5 followed by the conclusion.

https://github.com/jaroslavh/ceres
https://github.com/jaroslavh/ceres
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2 Related Work

During the past years, significant effort has been made to represent classes in
the most condensed way. The approaches could be categorized into two main
groups.

The first group gathers all prototype generation methods [11], which create
artificial samples to represent original classes, e.g. [12,13]. The second group
contains the prototype selection methods. As the name suggests, a subset of
samples from the given class is selected to represent it. Prototype selection is a
well-explored field with many approaches, see, e.g. [14].

However, most of the current algorithms exploit the properties of the metric
space, e.g., structured sparsity [15], l1-norm induced selection [16] or identifica-
tion of borderline objects [17].

When we leave the luxury of the metric space and focus on situations where
only a pairwise similarity exists or where averaging of existing samples may
create an object without meaning, there is not much previous work.

The δ-medoids [10] algorithm uses the idea of k-medoids to semi-greedily
cover the space with δ-neighbourhoods, in which it then looks for an optimal
medoid to represent a given neighbourhood. The main issue of this method is
the selection of δ: this hyperparameter has to be fine-tuned based on the domain.

The DS3 [9] algorithm calculates the full similarity matrix and then selects
representatives by a row-sparsity regularized trace minimization program which
tries to minimize the rows needed to encode the whole matrix. The overall com-
putational complexity is the most significant disadvantage of this algorithm,
despite some proposed approximate estimation of the similarity matrix using
only a subset of the data.

The proposed method for Class Representatives Selection (CRS) approxi-
mates the topological structure of the data by creating a reverse k-NN graph.
CRS then iteratively selects nodes with the biggest reverse neighbourhoods as
representatives of the data. This approach systematically minimizes the number
of pairwise comparisons to reduce computational complexity while accurately
representing the data.

3 Problem Formulation

In this section, we define the problem of prototype-based representation of classes
and the nearest prototype classification (NPC). As we already stated in Intro-
duction, we study the prototypes selection in general cases, including non-metric
spaces. Therefore, we further assume that a class prototype is always specified
as (possibly small) subset of its members.

Class Prototypes. Let T be an arbitrary space of objects for which a pairwise
similarity function s : T×T → R is defined and let X ⊆ T be a set of (training)
samples. Let C = {C1, ..., Cm} be a set of classes of X such that Ci∩Cj = ∅,∀i �=
j and

⋃
Ci = X. Let Ci = {x1, x2, ..., xn} be a class of size n. For x ∈ Ci, let



114 J. Hlaváč et al.

us denote Uk
x the k closest samples to x, i.e., the set of k samples that have the

highest similarity to x in the rest of the class Ci \ {x}. Then the goal of the
prototype selection is to find a prototype of class Ci, Ri ⊆ Ci for each class such
that:

∀x ∈ Ci ∃ r ∈ Ri : x ∈ Uk
r (1)

In order to minimize computational requirements of NPC, we search for a
minimal set of class representatives R∗

i for each class, which satisfies the coverage
requirement (1):

R∗
i = arg min

|Ri|

{

r :
⋃

r∈Ri

Uk
r = Ci

}

(2)

Note that several sets might satisfy this coverage requirement.

Relaxed Prototypes. Finding class prototypes that fully meet the coverage
requirement (1) might pose a computational burden and produce unnecessar-
ily big prototypes. In most cases, covering the majority of the class objects
while leaving out a few outliers leads to a smaller prototype that still captures
the essential characteristics of a class. Motivated by this observation, we intro-
duce a relaxed requirement for class prototypes. We say that a set Ri ⊆ Ci is a
representative prototype of class Ci if the following condition is met:

∣
∣
∣
∣
∣

⋃

r∈Ri

Uk
r ∩ Ci

∣
∣
∣
∣
∣
≥ ε |Ci|, (3)

for a preset parameter ε ∈ (0, 1].
In further work, we replace the requirement (1) with its relaxed version (3)

with ε = 0.95. In case of need, the full coverage can be enforced by simply setting
ε = 1. Even in the relaxed version, we seek a prototype with minimal cardinality
which satisfies (3).

Nearest Prototype Classification. Having the prototypes for all classes R =
{R1, ..., Rm}, an unseen sample x is classified to the class with the most similar
prototype R∗ ∈ R. R∗ is the prototype containing representative r with the
highest similarity to x.

r∗ = arg max
r∈⋃

Ri

s(x, r).

Note that in our research we take into account only the closest representative
r∗. This choice comes from previous research [8] where 1-NN was yielded the best
results.

4 Class Representatives Selection

In this section, we describe our method CRS for building the class prototypes.
The entire method is composed of two steps:
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1. Given a class C and a similarity measure s, a reverse k-NN graph G is con-
structed from objects C using the pairwise similarity s.

2. Graph G is used to select the representatives that satisfy the coverage require-
ment while minimizing the size of the class prototype.

The simplified scheme of the whole process is depicted in Fig. 1.

Fig. 1. Illustration of the steps of CRS algorithm. (a) Visualization of a toy 2D class.
(b) 2-NN graph created from the class. (c) Reverse graph created from the graph
depicted in (b). Node C’s reverse neighbourhood covers A, B, D, E and thus would be
a good first choice for a representative. Depending on the coverage parameter ε, the
node F could be considered an outlier or also added to the representation

4.1 Building the Prototype

For the purpose of building the prototype for a class C a weighted reverse k-NN
graph G−1

C is used. It is defined as G−1
C = (V,E,w), where V is the set of all

objects in the class C, E is a set of edges and w is a weight vector. An edge
between two nodes vi, vj ∈ Vi�=j exists if vi ∈ Uk

vj
, while the edge weight wij is

given by the similarity s between the connected nodes, wij = s(vi, vj).
The effective construction of such graph is enabled by employing the NN-

Descent [18] algorithm, a fast converging approximate method for the k-NN
graph construction. It exploits the idea that “a neighbour of a neighbour is
also likely to be a neighbour” to locally explore neighbouring nodes for better
solutions. NN-Descent produces a k-NN graph GC . The reverse k-NN graph G−1

C

is then obtained from GC by simply reversing directions of the edges in GC .
Omitting all edges with weight lower than τ from the reverse k-NN graph G−1

C

ensures that very dissimilar objects do not appear in the reverse neighborhoods:

(∀y ∈ Ux : s(x, y) ≥ τ)

The selection of representatives is treated as a minimum vertex cover problem
on G−1

C with omitted low similarity edges. We use a greedy algorithm which



116 J. Hlaváč et al.

Algorithm 1: Pseudocode for Class Representatives Selection
Data: class C = {c1, ..., cn}, similarity s, coverage threshold ε, size of

neighbourhood k, weight threshold τ
Result: set of selected representatives R ⊆ C

1 GC = NN-Descent(C, s, k)

2 G−1
C = ReverseGraph(GC , τ)

3 Z = C //set of uncovered objects
4 R = {} //set of representatives

5 while |C|−|Z|
|C| < ε do

6 r = arg max
c

(|Uc|, c ∈ Uc)

7 Z = Z \ Ur

8 R = R ∪ {r}
9 end

10 return R

iteratively selects objects with maximal |U | as representatives and marks them
and their neighbourhood as covered. The algorithm stops when the coverage
requirement (3) is met.

The whole algorithm is summarized in Algorithm 1.

4.2 Parameter Analysis

This subsection summarizes the parameters of the CRS method.

– k: number of neighbours for the k-NN graph creation. When k is high, each
object covers more neighbours, but on the other hand it also increases the
number of pairwise similarity calculations. This trade-off is illustrated for
different values of k in Fig. 2. Due to the large impact of this parameter on
properties of the produced representations and computational requirements,
we further study its behaviour in more detail in a dedicated experiment in
Sect. 5.

– ε: coverage parameter for the relaxed coverage requirement as introduced in
Sect. 3. In this work, we set it to 0.95 which is a common threshold in outlier
detection. It ensures that the vast majority of each class is still covered but
outliers do not influence the prototypes.

– τ : threshold on weights, edges with lower weights (similarities) are pruned
from the reverse neighbourhood graph G−1

C (see Sect. 4.1). By default it is
automatically set to approximate homogeneity h(C) of the class C defined
as:

h(C) =
1

|C|
∑

xi,xj∈C,i �=j

s(xi, xj) (4)

Additionally, the NN-Descent algorithm, used within the CRS method, has
two more parameters that specify its behaviour during the k-NN graph creation.
First, the δnn parameter which is used for early termination of the NN-Descent
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Fig. 2. In CRS the number of selected representatives and the quality of representation
are both determined by k. For low ks the NN-Descent subsamples dense areas of the
class too much and the information about neighbours is not propagated (CRS-5). As
each object explores a bigger neighbourhood for higher k, the number of other objects
it represents grows, therefore the number of representatives decreases. On the other
hand, with less representatives, some information about the structure is lost, as in the
case of k = 30

algorithm when the number of changes in the constructed graph is minimal. We
set it to 0.001, as suggested by the authors of the original work [18]. Second, the
sample rate ρ controls the number of reverse neighbours to be explored in each
iteration of NN-Descent. Again, we set it to 0.5 to speed up the k-NN creation
while not diverging too far from the optimal solution.

5 Experiments

This section presents experimental evaluation of the CRS algorithm on multiple
datasets from very different domains that cover computer networks, text docu-
ments processing and image classification. First, we compare the CRS method
to the state of the art techniques DS3 [9] and δ-medoids [10] on the nearest
prototype classification task on different datasets. Then, we study the influence
of the parameter k (which determines the number of nearest neighbours used for
building the underlying k-NN graph).

We set δ in the δ-Medoids algorithm as approximate homogeneity h (see
Eq. 4) calculated from random 5% of the class. Setting δ is a difficult problem
not explained well in the original paper. From our experiments, homogeneity is
a good estimate. The best results for DS3 we obtained with p = inf and α = 3,
while creating the full similarity matrix for the entire class. We tried α = 0.5
which was suggested by the authors, but the algorithm always selected only one
representative with much worse results. Finally, for CRS we set ε = 0.95, τ = h
(to be fair in comparison with δ-medoids). By far the most impactrul parameter
is k. Section 5.4 looks at the selection in depth. A good initial choice for classes
with 1000 or more samples is k = 20 and k = 10 works well for smaller classes.
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5.1 Datasets

In this section we briefly describe the three datasets used in the following sub-
sections for experimental comparison of individual methods.

MNIST Fashion. The MNIST Fashion [19] is a well established dataset for
image recognition consisting of 60000 black and white images of fashion items
belonging to 10 classes. It replaced the overused handwritten digits datasets in
many benchmarks. Each image is represented by a 784 dimensional vector. In
case of this dataset, the cosine similarity was used as the similarity function s.

20Newsgroup. 20Newsgroup dataset is a benchmark dataset for text docu-
ments processing. It is composed of nearly 20 thousand newspaper documents
from 20 different classes (topics). The dataset was preprocessed such that each
document is represented by a TF-IDF frequency vector of dimension 130,107.
We used the cosine similarity which is a common choice in the domain of text
documents processing as a similarity function s.

Private Network Dataset. Network dataset is the main motivation for our
research. It was collected on a corporate computer network, originally for the
purpose of network host clustering based on their behaviour [8]. The work defines
a specific pair-wise similarity measure for network devices based on visited net-
work hosts which we adopt for this paper. The dataset consists of all network
communication collected on more than 5000 network hosts for one day (288 5-
minute windows). This dataset resides in the space of all possible hostname and
port number combinations. The dimension of this space is theoretically infinite,
hence we work with a similarity that treats this space as non-metric.

For the purposes of the evaluation, classes smaller than 10 members were not
considered, since such small classes can be easily represented by any method.
The sizes and homogeneities of the classes can be found in Table 2. In contrast
to the previous datasets, the sizes and values of homogeneity of classes in the
Network dataset differ significantly, as can be seen in Table 2.

5.2 Evaluation of Results

In this section we present the results for each dataset in detail. The main results
are summarized in Table 1. For a more complete picture we also included results
for selecting a random 5% and all 100% of the class as a prototype. When
evaluating the experiments, we take into account both precision/recall of nearest
prototype classification and the percentage of samples selected as prototypes.
Each method was run 10 times over a 80%/20% train/test split of each dataset.
The results were averaged and the standard deviations of precisions and recalls
were smaller than 0.005 for all methods, which shows stability of all algorithms.
The only exception was δ-medoids on Network dataset where the precisions
fluctuated up to 0.015.
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Table 1. Average precision/recall values for each method used on each dataset. The
table also shows the percentage of the class that was selected as a prototype. CRS
outperforms both DS3 and δ-medoids on all datasets. In the network dataset CRS-k10
outperforms event the full-100% baseline as CRS does not try to cover outliers (in this
case network hosts being very different from the rest of the class)

Method MNIST Fashion 20Newsgroup Network

δ-medoids 0.765/0.737 (10.45%) 0.362/0.3 (7.57%) 0.992/0.952 (7.01%)

DS3 0.727/0.715 (0.19%) 0.291/0.291 (0.57%) 0.853/0.956 (3.04%)

random-5% 0.780/0.767 (5.0%) 0.33/0.435 (5.0%) 0.94/0.959 (5.0%)

full-100% 0.849/0.846 (100.0%) 0.56/0.548 (100.0%) 0.987/0.963 (100.0%)

CRS-k10 0.823/0.817 (11.94%) 0.45/0.391 (11.28%) 0.992/0.973 (6.53%)

CRS-k20 0.813/0.806 (8.56%) 0.377/0.329 (6.58%) 0.972/0.976 (3.21%)

CRS-k30 0.806/0.798 (6.1%) 0.344/0.295 (4.83%) 0.983/0.968 (2.38%)

Table 2. Sizes and homogeneity for each class from network dataset. Classes with size
lower than 10 were removed from the dataset

Class A B C D E F G H I J K L M N

Size 1079 2407 75 2219 346 59 248 49 52 108 218 44 42 32

Homogeneity 0.58 0.14 0.84 0.64 0.60 0.92 0.34 0.84 0.69 0.35 0.78 0.35 0.79 1.0

As we have shown in the experiment in Sect. 5.4, CRS can be tuned by the
parameter k to significantly reduce the number of representatives and maintain a
high precision/recall values. The DS3 method selects a significantly lower number
of representatives than any other method. However, it is at the cost of lower
precision and recall values.

MNIST Fashion. The average homogeneity of a class in the MNIST Fashion
dataset is 0.76. This corresponds with a slower decline of the precision and recall
values as the number of representatives decreases. In Fig. 3 are the confusion
matrices for the methods.

20Newsgroup. The 20Newsgroup dataset has the lowest average homogene-
ity h = 0.0858 from all the datasets. The samples are less similar on average,
therefore the lower precision and recall values. Still CRS-k10 with only 11% of
representatives performs quite well, compared with the other methods. Confu-
sion matrices for one class form each subgroup are in Fig. 4.

Network Dataset. The results for data collected in real network further prove
that lowering K does not lead a great decrease in performance. Again Fig. 5
shows confusion matrices for main 3 algorithms. Particularly interesting are the
biggest classes A, B and D which were most difficult to cover for all algorithms.
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Fig. 3. Confusion matrices for each class in the MNIST Fashion dataset show the
performance all 3 methods compared. The Sandal class was the hardest to represent
for all methods

Fig. 4. Confusion matrices for each class in the 20Newsgroup dataset show the perfor-
mance all 3 methods compared

For sizes of all classes see Table 2. Moreover, lower homogeneity for B is also
clearly seen in the confusion matrix.

5.3 Time Efficiency

When considering the speed of the algorithms, we particularly focus on cases
where the slow and expensive computation of the pairwise similarity overshadows
the rest, e.g. in the case of the Network dataset. Therefore, we compare the
algorithms by the relative number of similarity computations S defined as:

S =
Sactual

Sfull
, (5)

where Sactual stands for the number of comparisons made and Sfull is the number
of comparisons needed for computing the full similarity matrix.
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Fig. 5. Confusion matrices for each class in the Network dataset. Particularly inter-
esting are the biggest classes A, B and D which were most difficult to cover for all
algorithms. Moreover, lower homogeneity for B is also clearly seen in the confusion
matrix

Table 3. The average number of similarity calculations relative to computing full
similarity matrix in classes that have more than 1000 samples. For the DS3 algorithm,
we always calculate the full similarity matrix; therefore, it is not included in the table

dataset δ-Medoids CRS-k10 CRS-k20

mean std mean std mean std

MNIST Fashion 0.132 0.031 0.074 0.008 0.218 0.013

Network Dataset 0.467 0.266 0.178 0.058 0.507 0.16

We measured S for classes bigger than 1000 samples to see how the algorithms
perform on big classes. In smaller classes the total differences in comparisons are
not great as the full similarity matrices are smaller. Also the smaller the class,
the closer are all algorithms to S = 1 (for CRS it can be seen in Fig. 6h). The
results for big classes are in Table 3. We use DS3 with the full similarity matrix
to get most accurate results, therefore SDS3 = 1.

For CRS the number of comparisons is influenced by k, sample rate ρ, and
homogeneity of each class and its size. However, we use very high ρ in the NN-
Descent part of CRS, which significantly increases the number of comparisons.
The impact of k is discussed in detail in Sect. 5.4 and experimenting with ρ is
up for further research. For δ-Medoids the number of similarity computations
performed is determined by the difficulty of the class and the δ parameter. In
CRS, the parameters can be set according to the similarity computations we
have available to achieve the best prototypes given the time. This does not hold
neither for δ-medoids nor for DS3.

5.4 Impact of k

When building class prototypes by the CRS method, the number of nearest
neighbours (specified by the parameter k) considered for building the k-NN
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graph plays crucial role. With small ks, each object neighbours only few objects
that are most similar to it. This also propagates into reverse neighbourhood
graphs, especially for sparse datasets. Therefore, small ks increase the number
of representatives needed to sufficiently cover the class. Using higher values of k
produce smaller prototypes as each representative is able to cover more objects.
The cost of this improvement is increased computational burden because the
cost of k-NN creation increases rapidly with higher ks.

Fig. 6. Illustration of how the selection of k influences the number of representatives
and number of similarity computations. The number of representatives is in relative
numbers to the size of the class. For different classes as k increases the relative number
of comparisons also increases. However, the size of prototype selected decreases steeply
while the precision decreases slowly (Color figure online)

Figure 6 shows trends of precision, sizes of created prototypes and numbers
of similarity function evaluations depending on k for several classes that differ
in their homogeneity and sizes. We can see the trade-off between computational
requirements (blue line) and memory requirements (red line) as the k increases.
From some point (e.g. where red line crosses the blue line), the classification
precision decreases slowly. The cost limitations of building the prototype or the
classification can be used to set the parameter k. If k is low, CRS selects proto-
types faster, but the number of selected representatives is higher and therefore
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the classification cost is also higher. If the classification cost (number of sim-
ilarity computations to classify an object) is more important than prototype
selection, parameter k can be higher.

6 Conclusion

This paper proposes CRS, a novel method for building representations of classes,
class prototypes, which are small subsets of the original classes. CRS leverages
nearest neighbour graphs to map each structure of each class and identify rep-
resentatives that will form the class prototype. This approach allows CRS to be
applied in any space where at least pairwise similarity is defined.

The proposed method was compared to the prior art in a nearest prototype
classification setup on multiple datasets from different domains. The experimen-
tal results show that the CRS method achieves superior classification quality
while producing comparably compact representations of classes.
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Abstract. Most papers on similarity retrieval present experiments exe-
cuted on an assortion of complex datasets. However, no work focuses on
analyzing the selection of datasets to evaluate the techniques proposed
in the related literature. Ideally, the datasets chosen for experimental
analysis should cover a variety of properties to ensure a proper evalu-
ation; however, this is not always the case. This paper introduces the
dataset-similarity-based approach, a new conceptual view of datasets
that explores how they vary according to their characteristics. The app-
roach is based on extracting a set of features from the datasets to rep-
resent them in a similarity space and analyze their distribution in this
space. We present an instantiation of our approach using datasets gath-
ered by surveying the dataset usage in papers published in relevant
conferences on similarity retrieval and sample analyses. Our analyses
show that datasets often used together in experiments are more similar
than they seem to be at first glance, reducing the variability. The pro-
posed representation of datasets in a similarity space allows future works
to improve the choice of datasets for running experiments in similarity
retrieval.

Keywords: Similarity Retrieval · Datasets · Experimental Analysis ·
Similarity Space of Datasets

1 Introduction

Similarity search enables retrieving similar elements from a database given one
or more reference elements according to their features. An important aspect to
consider when developing new methods for similarity searching is the choice of
datasets to evaluate the proposed methods. There are several datasets in the
field of similarity search for the most varied applications [3,9,12]. However, in
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most works in similarity searching, the selection of datasets for evaluating the
proposals is solely based on experience, without a deeper variability analysis.

In the literature, there are several papers describing the underlying character-
istics of datasets that make them more or less difficult for similarity search pur-
poses. Particularly, dataset properties that might affect the performance of sim-
ilarity search methods include intrinsic dimensionality [2], relative contrast [7],
fractal correlation [4], and the concentration of distances [6]. However, works
in the field rely on properties like these to select the datasets for experimen-
tation without analyzing the interconnection between properties that affect the
dataset variability. To the best of our knowledge, no previous research covers
a wide range of these datasets, focusing on jointly analyzing their underlying
characteristics for similarity search purposes.

In this paper, our goal is to survey and analyze the properties of datasets
employed by researchers in the field of similarity search in order to provide a
better understanding of the diversity of datasets studied. We accomplish that
by gathering several datasets used in the literature and extracting an assortion
of their features. The relevance of this contribution relies on considering joint
properties to represent the datasets using a new conceptual view, called the
dataset-similarity-based approach. Employing meaningful features allows us to
create a similarity space of datasets, which can be used to analyze the diversity
of datasets for many purposes, including selecting datasets to conduct experi-
ments on similarity retrieval methods. We present an instantiation of proposed
conceptual view based on a survey on dataset usage in works in the field over the
last decade and analyses illustrating the potential of the approach. The methods
used to extract such features and the surveyed datasets are publicly available.

This paper is organized as follows. Section 2 presents the background to
understand the paper and related work. Section 3 describes the proposed app-
roach, including how we define the dataset similarity space and the methodology
we employed to survey the dataset usage in papers on similarity retrieval in the
last decade to instantiate our approach. Section 4 presents sample analyses using
our proposed dataset-similarity-space view, and in Sect. 5 we conclude.

2 Background and Related Work

The most intuitive strategy to evaluate searching algorithms is to compare their
performances across datasets with different characteristics, such as cardinality
and dimensionality. However, the choice of the datasets employed in the evalua-
tion is fundamentally based on experience, which can create a bias in the choice,
such as selecting a dataset only based on popularity.

Several metrics can be extracted from datasets to measure the complexity
of a similarity search problem [2,10]. Existing metrics include the Relative Con-
trast [7], intrinsic dimensionality [2], fractal correlation [4], and the concentra-
tion of distances [6]. These metrics can characterize datasets providing valuable
insights for choosing similarity search algorithms and their parameters.

For instance, Aumller and Ceccarello [2] describe an application of the local
intrinsic dimensionality to measure the complexity of a dataset. The authors
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show that the so-called curse of dimensionality is not the leading cause to
degrade the performance of similarity queries and that the intrinsic dimensional-
ity of a dataset can be used to obtain better insights. On the other hand, in [14],
we proposed a learned approach to map the combination of dataset metrics to
the performance of proximity graph algorithms. This way, it becomes possible to
predict the performance of different algorithms for a given dataset and to choose
the best algorithm for a given dataset without having to run a greedy search to
find a suitable algorithm configuration [16].

Understanding the complexity of datasets is also a relevant subject in other
fields. In [15], Šikonja presents a study comparing complex datasets to determine
if datasets and subsets are similar enough to be used together in a data mining
task. The proposal consists of a methodology to compare the statistical prop-
erties of the attributes and the similarity between clusters of elements. In the
machine learning field, [11] presents a study on the properties of datasets aiming
at understanding the impact of these properties on the performance of classifica-
tion algorithms. These properties include generic properties (e.g., dimensionality
and cardinality), classification properties (e.g., class imbalance and number of
classes), and neighborhood properties (e.g., number of clusters and hub score).
In a similar direction, a new research field called dataset discovery has recently
emerged in the literature [5]. The problem consists of finding datasets that are
relevant to a given query. However, most works in this field are keyword-based [8],
metadata-based [13], or context-based [1].

Therefore, to the best of our knowledge, there is no survey in the litera-
ture with an analysis of the datasets used by researchers in similarity search
and no approach that considers the similarity between datasets as we propose
in this work. Defining a dataset similarity space is challenging as it requires
gathering a comprehensive amount of datasets and identifying a set of features
to extract from them concerning a variety of aspects. This is a laborious task
as datasets commonly used come from different sources scattered over several
repositories, most poorly structured and often storing inconsistent versions of
the same dataset. Moreover, defining a suitable set of features to extract from
the datasets still demands investigation.

3 A Dataset-similarity-Based Proposal to Support
Experimental Analysis

In this work, we introduce a novel view of datasets employed for experimental
analysis in similarity retrieval. The choice of a set of datasets to evaluate a new
method is challenging, both to cover a variety of properties of the underlying
problem and to discuss the results.

Our proposal is to define a similarity space of datasets and observe how they
are spread across this space to gain an understanding of their variability. We
call the dataset-similarity-based approach such a conceptual view, which has
the potential to provide a broader knowledge of datasets based on their intrin-
sic properties. Our proposal is based on the fact that datasets vary according
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to a multitude of properties that may contribute to the selection criterion for
experimentation and to interpret the results. Using an assortion of features to
represent datasets in a similarity space provides a joint view of how the datasets
are distributed according to their properties.

3.1 Definition of the Dataset Similarity Space

This section details how we define the datasets’ similarity space. We employed
features comprising three categories.

1. Statistical and information-theoretical measures on the dataset attributes.
2. Measures commonly used in similarity retrieval analysis, such as the dataset

cardinality and embedding dimensionality.
3. Measures of the hardness of similarity searching, including local intrinsic

dimensionality, relative variance, and features derived from these complex-
ity metrics (e.g., histograms of local intrinsic dimensionality).

For the complete list of features, refer to the implementation we developed to
extract dataset features, available online1. We highlight that the most important
point is the dataset-similarity-based conceptual view we propose. The instanti-
ation we present herein considers a wide number of features to describe the
datasets, but it is not intended to be exhaustive. Certainly, there is room for
improvement following our conceptual view.

3.2 Survey of Dataset Usage in Similarity Retrieval Evaluation

To instantiate our proposal, we surveyed the datasets used by papers related to
similarity search and gathered those publicly available in a centralized repository.
We limited the survey scope to papers published in the International Conference
on Similarity Search and Applications (SISAP), which is the principal forum
on similarity search, and in the two most prestigious conferences on databases,
namely the International Conference on Management of Data (SIGMOD) and
the International Conference on Very Large Data Bases (VLDB). We justify such
a limitation due to the need to survey the datasets used in the papers, which
multiplies the effort.

The analysis covered more than one decade, comprising the years between
2008, which was the first edition of SISAP, and 2020. Every article published
in any of the three conferences in the period was manually checked to verify if
the main contribution is on similarity searching (e.g., an index method, a search
algorithm, etc.), adding up to 146 articles. Other topics related to similarity were
kept out of our scope.

Then, we searched for the dataset information presented in the papers, col-
lecting features like the dataset’s common name, the raw data type (e.g., image,
text, etc.), the feature vector extracted (e.g., for images, color histogram, tex-
ture features, SIFT, etc.), the cardinality, the dimensionality, and others. We
1 https://github.com/raseidi/annmf.

https://github.com/raseidi/annmf
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identified 461 dataset mentions in the papers, comprising 237 distinct dataset
instances. We performed a manual data integration of the instances, grouping
datasets we understand as the same dataset by the context provided in the
paper. Finally, we imputed missing dataset features with information about the
datasets from external sources, being the original source whenever available.

From the datasets surveyed, we found 49 available for download. We gen-
erated several subsets of many of these datasets through random sampling to
explore the impact of cardinality in the dataset properties, as this is a key perfor-
mance factor for searching. In total, the repository built in this work is composed
of 198 datasets. Then, we extracted features for all datasets in the repository.

4 Analyses in the Dataset Similarity Space

This section presents sample analyses to illustrate what can be done using our
dataset-similarity-based conceptual view. We performed a Principal Component
Analysis (PCA) on the features of all datasets in the built repository and gen-
erated visualizations using the two first principal components to show how they
relate to each other in the similarity space.

Fig. 1. Datasets and sub-datasets spreaded out in the similarity space

Figure 1 shows on the left the distribution of the 46 original (complete)
datasets, and on the right, the distribution of all datasets (including the sub-
sets). In this paper’s figures, subsets of the same dataset have the same color.
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It is clear that subsets promoted a significant variability in most datasets, high-
lighting the significance of cardinality for dataset characterization. The fact that
most datasets got clustered parallel to the PC2 axis in the visualization does not
indicate that they are redundant but that the PCA is highly impacted by the
“outliers” movieLensUser and lastfmUser datasets.

Figure 2 shows the dataset distribution classified by ranges of cardinality,
embedding dimensionality, and intrinsic dimensionality. As shown, datasets with
small cardinality tend to cluster on the lower area, datasets with average and high
cardinality in the middle, and datasets with very high cardinality are mainly on
the upper part of the graph. Regarding dimensionality, it is clear that intrin-
sic dimensionality is more relevant for dataset distribution than embedding
dimensionality, since intrinsic dimensionality more clearly spreads datasets. The
datasets out of the main cluster are challenging datasets, such glove (Global Vec-
tors for Word Representation) and deep1m (features derived from convolution
neural networks), with high to very high cardinality and intrinsic dimensionality.

Fig. 2. Dataset distribution according to ranges of cardinality, embedding dimension-
ality and intrinsic dimensionality

An example of feature analysis that helps complementary dataset selection
considers the MNIST dataset. Figure 3(a) shows all datasets used with MNIST
in at least one paper surveyed. From this figure, it is possible to see the vari-
ance of datasets used with MNIST. With this analysis, a work could gather a
diverse number of datasets by making a choice that maximizes the feature space
of this representation. A viable choice would be the datasets CoPhIR or pok-
erHands, since the feature space would be relatively large. On the other hand,
FashionMNIST would result in a less diverse dataset selection.

Another use case for the tools made available by this work is the ability
to create experiments with any other datasets that other studies may use. To
illustrate this usage, a comparison was made between datasets and sub-datasets
created by the SIFT and Dense SIFT extractors when applied to an image
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dataset. While the SIFT extractor picks central points in an image and generates
feature vectors based on these points, Dense SIFT leverages points over the
whole image. Both extractors were applied to two datasets of fairly distinct
image types: images from lung medical exams and random images from Flickr.
Figure 3(b) shows the distribution of the datasets and sub-datasets created. It is
clear that the most significant difference is between extractors and not between
the image types, clustering the datasets by the feature regardless of the image
type.

We showed sample analyses that could be done using our similarity-based
conceptual view of datasets. It allows for gaining a broader knowledge of the
distribution and variability of datasets employed for evaluating similarity search
methods according to the datasets’ intrinsic features. Potential applications of
this approach include the selection of datasets for experimentation based on a
varied number of properties, enhancing the variability among the chosen ones,
and taking advantage of dataset similarities to guide decisions, such as parameter
recommendation for indexing structures, as we did in a previous work [14].

5 Conclusion

In this work, we introduced the new dataset-similarity-based approach to han-
dle datasets for different purposes. Our approach considers joint properties to
represent the datasets as a similarity space composed of extracted features. We
presented an instantiation of the approach based on a survey on how similarity
search researchers have used datasets and showed analyses highlighting that it is
possible to enhance data set choices when feature variance is a relevant selection
criterion.

Fig. 3. MNIST and datasets used at least once with MNIST (no sub-datasets) and
features SIFT and Dense SIFT extracted from different image types



132 M. A. L. Matiazzo et al.

Future work includes advancing the approach, for instance, by adding more
features to describe the datasets and expanding the repository since the more
datasets are included in the feature space, the richer the data set choice for other
studies becomes. We also plan to employ the dataset-similarity-based conceptual
view to support decisions or applications demanding dataset analysis.
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Abstract. User relevance feedback (URF) is emerging as an important
component of the multimedia analytics toolbox. State-of-the-art URF
systems employ high-dimensional vectors of semantic features and train
linear-SVM classifiers in each round of interaction. In a round, they
present the user with the most confident media items, which lie furthest
from the SVM plane. Due to the scale of current media collections, URF
systems must be supported by a high-dimensional index. Usually, these
indexes are designed for nearest-neighbour point queries, and it is not
known how well they support the URF process. In this paper, we study
the performance of four state-of-the-art high-dimensional indexes in the
URF context. We analyse the quality of query results, compared to a
sequential analysis of the collection, over a range of classifiers, showing
that result quality depends (i) heavily on the quality of the SVM classi-
fier and (ii) the index structure itself. We also consider a search-oriented
workload, where the goal is to find the first relevant item for a task. The
results show that the indexes perform similarly overall, despite differ-
ences in their paths to the solution. Interestingly, worse recall can lead
to better application-specific performance.

Keywords: High-Dimensional Indexing · Interactive Learning · User
Relevance Feedback · Multimedia Retrieval

1 Introduction

In user relevance feedback (URF), the goal is to train interactive classifiers to
satisfy specific information needs based on direct feedback from the user. When
interacting with a multimedia collection, the user is presented in each interaction
round with a set of items from the collection and asked to judge some items as
relevant and some items as non-relevant for a specific task. At the start of the
URF process, the items are typically randomly sampled from the collection or
retrieved using a query, but once the initial classifier has been trained the items
are usually selected from the top items returned by the current version of the
classifier. This interactive process continues until the user’s information need is
satisfied or they determine that the collection holds no items of interest. As URF
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allows users to express and refine fuzzy information needs, it is an important
component of the multimedia analytics toolbox.

A state-of-the-art multimedia URF system, such as [12], is implemented as
follows. First, the multimedia items are described by semantic labels, which are
produced by advanced deep-learning models and compressed using an index-
based compression technique. Second, such a system builds linear-SVM classi-
fiers, which are known to work well with few examples, and presents users in
each interaction round with the multimedia items that (a) are furthest away
from the resulting hyperplane, and (b) have not been seen before in the process.
And third, a high-dimensional index is used to speed up the retrieval and ensure
a stable response time. While the state-of-the-art has shown URF to work at
scale using these elements, such furthest neighbour queries from an SVM-based
hyperplane have not been studied much in the literature. In particular, to the
best of our knowledge these evaluations have not been carried out in the context
of URF. This paper therefore opens an investigation into the suitable choice of
such a high-dimensional index for URF over multimedia collections.

Indexing high-dimensional data to support similarity queries such as finding
(approximate) nearest or furthest neighbors suffer the curse of dimensionality. In
general, this means that there are no sublinear time algorithms that solve these
tasks exactly on arbitrary data, and a linear scan through the dataset is the best
one can hope for. However, if a small loss in accuracy can be accommodated
or if the data is “favorable”, a large collection of scalable solutions for finding
nearest neighbors is available. A solution is either provided with strong theoret-
ical guarantees, such as hashing-based approaches [9] with their theoretical time
guarantees, or with strong empirical evidence on the quality of the query result,
such as cluster-based [11], graph-based [10,14], or tree-based [5] approaches. The
ANN benchmarking effort [1] summarizes these approaches and demonstrates
that, in practice, nearest neighbor search tasks on million-scale datasets can be
solved several orders of magnitude faster than a linear scan with little loss in
accuracy.

1.1 Problem Definition

We formulate the SVM-based hyperplane setting used in URF as follows. First,
the distance between a point p ∈ R

d and a hyperplane q ∈ R
d+1 is

dP2H(p, q) =
qd+1 +

∑d
i=1 piqi

√∑d
i=1 q2i

Second, the problem of finding furthest points from a given hyperplane in the
positive direction is equivalent to finding the points in the dataset with largest
(positive) distance to the hyperplane. To avoid an exhaustive scan through the
dataset, the task is to build an index data structure over the point set S ⊆ Rd

that supports these furthest point queries.
Point-to-Hyperplane queries are challenging because dP2H is not a distance

measure in the strict sense. However, we can reduce the problem to an inner
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product space as follows: Append a 1 to each point in the dataset, so that
both points and hyperplanes have d + 1 dimensions, and notice that—since the
hyperplane is fixed at query time—finding the furthest neighbors according to
dP2H is equivalent to finding vector p that maximizes the inner product (MIPS)
d′(p, q) =

∑d+1
i=1 piqi. Solving maximum inner product search has seen significant

progress in the research community and arises in particular in recommender sys-
tems [2]. The standard approach involves asymmetric transformations of data
and query points [2,20]. After such a transformation, finding points that max-
imize the inner product becomes equivalent to finding nearest neighbors in the
transformed space, which is usually Euclidean distance. However, these transfor-
mations usually lower the contrast between points. For example, Huang et al. [8]
consider transformations for hashing-based closest point to hyperplane queries
and experimentally show that finding furthest neighbors instead of nearest neigh-
bors (under slightly different transformations) provides empirical speed-ups. In
the context of graphs, Morozov and Babenko [16] show that the transformed
vectors produce worse graph indexes than using the inner product directly.

1.2 Contributions

The current state-of-the-art large-scale URF approach, Exquisitor [12], uses the
high-dimensional ANN index eCP (extended Cluster Pruning) [15]. The stated
reasons for this choice are its comprehensibility, time guarantees, and ability
to work with hyperplane queries using MIPS. Based on practical advances in
nearest neighbor search, we evaluate the suitability of state-of-the-art high-
dimensional indexing approaches for URF over multimedia collections. In partic-
ular, we inspect three diverse approaches—Annoy (Approximate Nearest Neigh-
bor Oh Yeah) [5], IVF (Inverted File Index on k-means clustering) [11], and
HNSW (Hierarchical Navigable Small World) [14]—that perform well on million-
scale nearest neighbor search with regards to supporting maximum inner product
queries. We evaluate these indexes along with the eCP index using an automated
evaluation protocol, based on the Lifelog Search Challenge 2019 dataset [7], to
simulate URF sessions with the goal of finding one relevant item. All source code
for the URF evaluation is made available on GitHub1 to provide the research
community with an experimental pipeline to compare different high-dimensional
indexes for URF. In the process, we make the following contributions:

• All evaluated indexes show adequate quality towards hyperplane queries in
terms of recall, with HNSW achieving the best overall performance.

• Indexes that introduce variety, due to build quality or search approach, are
better at solving URF tasks (eCP and Annoy). Thus, high recall does not
directly translate to being the best at solving the actual URF tasks. This
relates to hyperplane queries being refined throughout a URF session, so the
quality of initial queries may not be well defined for the task.

1 https://github.com/Ok2610/urf-indexing-eval.

https://github.com/Ok2610/urf-indexing-eval
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• Finally, we analyze the effects of the approximation of each index. We find
that eCP and IVF have a more comprehensible parameter for this than HNSW
and Annoy, and eCP’s setting has the least variability leading to better time
estimates.

2 User Relevance Feedback

Analytical tasks for multimedia focus on discovering knowledge from the media
items that reside within the ever growing multimedia collections of today. To
truly uncover this knowledge it is essential to explore and search through the
contents of such collections in real time. While long-running machine tasks may
be capable of categorising and summarising parts of the collection for a task,
typically as new knowledge is discovered the goal of the task can shift. In such
situations, user relevance feedback is preferred as it allows the user to shift the
classifier based on the new knowledge [22].

The most common approach to URF is to present a suggestion set S to the
user, using the current classifier C. From S the user labels p items as positives
and n items as negatives, which are then used to update C. There are multiple
ways to determine which items to include in S. In URF the most confident items
of C are presented. This is beneficial when the intention is not solely on creating
a strong classifier, as the information need may not be entirely clear and may be
susceptible to change throughout the session. With URF, the user may explore
the collection or be more search-oriented, depending on how much refinement is
put towards the classifier.

URF for content-based retrieval has been around for several decades [4,17,18,
23], but as multimedia collections started to rapidly expand, it became cumber-
some at such scale due to the response time. Even prior to the scale issues, it was
difficult to have explainable classifiers due to the feature representations of the
multimedia items. Comprehension is important for the user to better understand
the effects of their actions on the classifier. With improvements in deep learning,
machines have become much better at discovering semantic features in multime-
dia contents [3,6], making it a preferred choice of feature for URF applications.
Semantic features extracted through deep nets result in sparse high-dimensional
vectors. The current state of the art large-scale URF approach, Exquisitor, uses
the high-dimensional feature vectors in a compressed representation together
with the clustering-based ANN index eCP. The compressed representation selects
the top f features and stores them in a space-efficient representation. Note that
the compressed representation does not transform the feature space to ensure it
remains comprehensible. The eCP index has been modified such that it works
with this compressed representation. Furthermore, the index handles hyperplane
queries from Exquisitor’s Linear-SVM classifier [12]. In addition to the basic
URF scheme, Exquisitor also employs incremental retrieval, which continues a
search within the index, in case not enough items are found to be returned.
This is linked to the search expansion parameter b in the eCP index, which is
the number of clusters it needs to retrieve. Exquisitor has been shown capable of
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working with YFCC100M, a multimedia collection with nearly 100 million items,
achieving subsecond response time with modest computing resources [12].

3 High-Dimensional Indexing

There exists a plethora of different approaches for solving nearest neighbor search
queries. The most successful approaches can be categorized into clustering-based,
graph-based, hashing-based, and tree-based approaches. For our practical evalu-
ation, we pick approaches from each category which have not been considered
for URF. We exclude locality-sensitive hashing based approaches because they
were part of an earlier evaluation [12] and were shown to be inferior to using the
eCP index. We review the considered approaches next.
Cluster-based approaches (IVF [11], eCP [15]). Given a dataset S ⊆ R

d and
two parameters k and �, run a clustering algorithm such as k-means to find k
centroids. By associating each point with its closest centroid, the space is parti-
tioned into k parts. The data structure that stores the centroids and the associ-
ated lists is referred to as an inverted file index (IVF). To find nearest neighbors
to a query q ∈ R

d, inspect the points associated to the � closest centroids to q,
possibly indexing the centroids for large k. The eCP index uses the same app-
roach but uses the k initial random points as centroids to find a balanced space
partition. Furthermore, eCP builds a hierarchy using the centroids.
Graph-based approaches (HNSW [14]). Given a dataset S ⊆ R

d and parameters
k, �, the goal is to build a graph G = (V,E), where each point is represented
by a vertex and edges exist between a point and a “diverse” set of at most k
close points. Let us assume that such a graph G is given. To find the nearest
neighbors of a query point q, HNSW uses a hierarchy of graphs to find a good
entry point into the bottom-layer graph that indexes all points. Given such a
start point, carry out a greedy hill climbing. In each round, consider the currently
closest point to the query not considered before. Inspect the neighborhood and
compute the distances to the query point. After each round, trim the list of
current closest points (inspected and non-inspected) to �, which is usually called
the beam width. Terminate if all � points have been considered. (Note that this
is not a bound on the number of distance computations, since considered points
might be trimmed.) To build the graph, order all the points and insert them
one-by-one using the search algorithm, often with a smaller �′ than used for
the queries. From the points inspected in this search, a pruned set of k points
is chosen as neighbors of the inserted point (pruning might be necessary for its
neighbors if the degree bound k is not met). There exist many other graph-based
indexes that change details of this construction [10,21].
Tree-based approaches (Annoy [5]). Annoy builds a collection of trees based on
random projections. Given a set of points S and two parameters k, �, the data
structure works as follows. First, a node in a tree is described by a hyperplane
a that splits up a point set S′ ⊆ S. For example, one can find the median inner
product of the data points with a and split S′ into two balanced subsets based
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on that. At the root, the whole dataset is taken into consideration, and a leaf is
created as soon as the number of points at a node is below a certain threshold.
Instead of a single tree, k trees are created to boost the quality of the results.
Given a query point and a collection of k trees, carry out root-to-leaf-traversals
in each tree for the query. Traverse the trees upwards until � (unique) points are
found and return the closest among these points as the result of the search.

4 Evaluation

Evaluating user relevance feedback approaches is best done through real user
tests. As we are attempting to gauge the performance of hyperplane queries
on different indexes in a preliminary URF setup, however, we do not need real
users at this stage. Instead we employ an automated evaluation protocol, based
on real-life applications [13]. The evaluation protocol consists of tasks where
the objective is to find the first relevant item within the tasks relevant item
set, Rt. Typically, in an automated URF session, a set number of positives
and negatives are considered from the suggestion set S in each round. Based
on the labelling policy used in the protocol, positives and negatives are added
or replaced from their respective global sets to train the linear-SVM classifier.
Positives and negatives are labelled by comparing the distances between the
combined maximum feature vector of Rt and the feature vector of items in S.

Based on [13], we design the evaluation protocol with the following parameter
choices; rd number of rounds in each URF session, k number of items to retrieve,
s the number of suggestions to consider, p the number of positives to label and
n the number of negatives to label, P and N the positive and negative sets
used to train the linear SVM. rd is set to 50 to simulate a long-running session.
s is set to 25, which typically would also be the value for k. Items seen in
previous rounds of a URF session should not be presented to the user again,
however, and in situations where all k items are seen the session ends. When the
underlying URF approach is able to remove previously seen items internally to
avoid returning them again, then we would set k = s. Since this is not the case
for the tested indexes, however, the indexes are asked to return a higher number
k = 1000 of items, from which the previously seen items are then pruned. The
labelling policy of the evaluation protocol is AccRep, where in each round p
positives and n negatives are added to P and N . If better items exists in the
remaining suggestions for either P or N , they replace the weakest items in the
sets [13]. In our evaluation p = 5 and n = 15 leading to 5–250 positives and
15–750 negatives for each session, with each session presenting a total of 1250
(s · rd) items.

Dataset. The dataset used in the evaluation is from the Lifelog Search Challenge
2019. Lifelogging is the principal of recording your daily life with as much data as
possible, i.e. logging biometric data, taking images throughout the day, food logs,
and more. Pure lifeloggers often walk around with a miniature camera on their
person that takes an image at a set interval, and thus they accumulate a large
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Table 1. Build and search parameters for each index

Index Build Parameters Search Parameter

eCP L: 3, cSize: 100 b: 64

Annoy ntrees: 100 searchk: 10000

HNSW M : 48, efC : 500 efS : max(10, k)

IVF nlist: 417 nprobe: 64

multimedia collection. The Lifelog Search Challenge (LSC) is a live interactive
retrieval challenge, where tasks are defined over a snippet of the extremely large
collection. The LSC 2019 dataset represents one lifelogger’s daily life across
1 month, consisting of 41,666 images. There are 24 retrieval tasks defined over
this collection [7]. Semantic feature labels have been extracted using a deep net,
with the top 7 features being used and the rest set to zero. At LSC multiple
multimedia retrieval systems attempt to solve the tasks one by one within a
time limit. A task consists of a text query, but unlike regular search challenges
where the entire text is given at once, in LSC the text query is presented in
parts. Every 30 s new information is added to the presented text of the current
task. In the evaluation protocol this aspect is reflected when filters are used, but
as our focus here is on hyperplane queries, this aspect is ignored.

Index Parameters. We use Annoy v1.17.2, HNSW from hnswlib v0.7.0 and IVF
from Faiss v1.7.4. The build parameters for each index used in the experi-
ments can be seen in Table 1. The choice of the build parameters for Annoy
and HNSW are based on their settings for datasets of relevant sizes from ANN-
benchmarks [1]. The eCP index it has two build parameters; L the level of its
hierarchy and cSize the number of items in each cluster. Note that the latter is
a soft enforcement, so there is still a chance of clusters being larger or smaller.
We aim to have clusters with 100 items in a 3-level hierarchy where Ll has√

Ll+1 clusters, with L = 3 having all clusters. The IVF index has a single build
parameter nlist which specifies the number of clusters to divide the items into.
We select this to be similar to eCP’s clusters at L = 3. Each index has a run-
time approximation parameter that is set according to their recommendations.
The effects of this parameter is crucial to understand in terms of distance com-
putations performed, as it indicates whether an index is able to provide stable
response time guarantees. All indexes were built using Euclidean distance.

4.1 Experiment 1: Hyperplane Queries

In the first experiment we investigate the recall of each index when encountering
hyperplane queries. The hyperplane queries for this experiment are generated by
running the evaluation protocol on the LSC dataset, leading to 1200 hyperplane
queries in total (24 tasks with URF sessions of 50 rounds). The groundtruth
for this experiment are the top 1000 items for each hyperplane under maximum
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Fig. 1. Recall distribution @1000(a,c) and @25(b,d) for hyperplane queries and average
recall per round. Annoy (blue), eCP (orange), HNSW (red), IVF (teal) (Color figure
online)

inner product similarity obtained by an exact linear scan. Here, recall is the
fraction of the k items returned by the implementation that belong to the true
top k items (groundtruth) with largest inner product for a given hyperplane.
The results from this experiment are depicted in Fig. 1. Figure 1a shows the
recall distribution for the top 1000 items. The best-performing index is HNSW
with a consistent distribution above 75% recall. The IVF index is close but
has a slightly lower recall overall. eCP fares worse than IVF, which shows the
extra effort in constructing the clusters is beneficial for recall, but not by much.
Annoy has a similar distribution to eCP, but generally 10% lower recall on
average. Figure 1b shows the recall distribution for the top 25 items, or the
items that would actually be presented to the user. Here we see an increase in
recall overall for all the indexes. HNSW remains at top, achieving seemingly
100% apart from some outliers. IVF is slightly worse with eCP following. Annoy
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has a much wider distribution, but a high median above 90% recall. Thus, the
items the user sees are high-recall items for the hyperplane queries regardless of
the index.2 Figures 1c and 1d depict the average recall across all tasks per round
in the URF session. As more rounds pass in a session, the hyperplane queries
should become more descriptive. For the top 1000 items all indexes follow a
similar pattern of starting with a high recall that falls during the initial rounds,
and then settles at a lower average recall. For the top 25 items the pattern starts
similarly with a drop off, but as the hyperplane queries become more refined the
recall for all indexes increase. Given that the top 25 items are the ones the user
sees, this behavior is desired.3

4.2 Experiment 2: User Relevance Feedback

From the previous experiment, it is clear that HNSW performs best in the case
of recall for hyperplane queries while Annoy performs worst. When it comes to
URF tasks, however, the theoretical top items for a query may not necessarily
be items of interest, especially in early rounds when the hyperplane still needs
to be refined. We consider two scenarios. In Scenario 1, the indexes are provided
with the hyperplanes from using an exact linear scan in the evaluation protocol.
In Scenario 2, the linear-SVM is trained from the individual results of an index.

Table 2 shows the round where each index managed to find the first relevant
item in the top 25 in Scenario 1, where Scan represents the results from the
linear scan. Scan solves the most tasks (14 out of 24), while the indexes solve 10
tasks each except for Annoy which solves 11. With Annoy solving 1 more task it
shows that high recall for majority of hyperplane queries in a URF session is not
always necessary. Looking at the solved tasks, none of the indexes complete a
task that is not also solved by Scan, and they either solve it in the same round or
1 round after it. Notable exceptions, are tasks 11, 20 and 23 where Scan solves
them 5–11 rounds earlier, and task 14 where eCP and HNSW solve the task
7 rounds prior to Scan. From these results we see how the restriction on the
indexes require more rounds to solve a task, while task 14 shows that having the
entire collection available can also introduce noise.

We now turn to Scenario 2. As the indexes employ a structure and approxi-
mations on the collection, a suggestion set from the same hyperplane can differ,
and from that point they have different hyperplane queries throughout the ses-
sion. This is depicted in Table 3 where each index has run the evaluation protocol
using hyperplane queries generated from their own suggestions. By using queries
defined through their own sessions they solve more and different tasks, and for
the tasks they solve in common there are larger gaps between the rounds. Here,
Annoy solves 15 tasks and the others solve 14. It is also worth noting that Annoy,

2 This experiment was also conducted using Annoy, HNSW, and IVF built using inner
product instead of Euclidean distance. In all cases, average recall @1000 was lower,
while for HNSW recall @25 was improved.

3 Similar results are observed when (roughly) targeting a certain number of distance
computations across all indexes.
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Table 2. First round in the
URF session where a relevant
item for the task was found using
the hyperplanes generated for the
entire dataset D

Task Scan Annoy eCP HNSW IVF

0 33 34 34 34 34

1 – – – – –

2 – – – – –

3 – – – – –

4 – – – – –

5 – – – – –

6 12 12 12 12 12

7 – – – – –

8 23 24 24 24 23

9 2 2 2 2 2

10 – – – – –

11 25 32 32 32 32

12 19 20 19 20 19

13 32 – – – –

14 11 11 4 4 12

15 10 10 10 10 10

16 36 37 36 37 37

17 – – – – –

18 3 – – – –

19 23 – – – –

20 20 25 – – –

21 – – – – –

22 – – – – –

23 4 15 15 15 15

Solved 14 11 10 10 10

Best 12 2 5 3 4

Table 3. First round in the URF
session where a relevant item for
the task is found using the hyper-
planes generated from each index

Task Annoy eCP HNSW IVF

0 – – 33 47

1 25 – – –

2 – – – –

3 – 35 – –

4 33 - – 43

5 – – – –

6 20 6 22 12

7 – – – –

8 9 17 18 7

9 2 2 2 2

10 – – – –

11 20 40 32 43

12 39 – 17 20

13 33 27 24 –

14 18 15 11 17

15 6 8 7 10

16 29 11 37 9

17 – – – –

18 12 5 8 3

19 9 18 23 30

20 16 18 17 15

21 – – – –

22 – 32 – –

23 17 8 4 14

Solved 15 14 14 14

Best 6 4 6 5

eCP and IVF solve some tasks that Scan could not, which again indicates the
larger scope of the full scan encountering noise. We further test the assumption of
hyperplanes from an index’ own session being best, by running the hyperplanes
from one index with another index. These results show that while they solve the
same tasks, the rounds for many of the tasks differ, ranging from a few rounds
to 20+. HNSW with IVF’s hyperplanes show the most similar performance. We
have omitted the table for these results to not exceed the article length.
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Table 4. Results from
similar search scope
(∼6400)

Task Annoy eCP HNSW IVF

0 – – – 47

1 33 – – –

2 – – – –

3 – 35 – –

4 – – – 43

5 – – – –

6 26 6 16 12

7 – – – –

8 11 17 – 7

9 2 2 2 2

10 – – 47 –

11 23 40 27 43

12 31 – 15 20

13 31 27 34 –

14 18 15 11 17

15 6 8 7 10

16 – 11 46 9

17 – – – –

18 12 5 8 3

19 7 18 12 30

20 15 18 17 15

21 – – – –

22 – 32 – –

23 – 8 34 14

Solved 12 14 13 14

Best 6 6 4 7

Table 5. Results from
reduced search scope
(∼3200)

Task Annoy eCP HNSW IVF

0 20 – – 31

1 29 4 – –

2 – – – –

3 – – – 37

4 42 33 – –

5 45 – – –

6 17 8 48 15

7 – – – –

8 20 7 36 7

9 2 2 2 2

10 – 41 – –

11 27 15 26 –

12 22 11 30 23

13 27 33 26 -

14 22 15 11 17

15 7 8 6 10

16 7 – – 9

17 – – – –

18 7 8 7 3

19 10 22 8 23

20 16 24 22 20

21 – – – –

22 – 38 44 –

23 30 5 8 5

Solved 17 16 13 13

Best 4 10 5 4

Table 6. Results from
reduced search scope
(∼1600)

Task Annoy eCP HNSW IVF

0 – – – –

1 – 46 – 31

2 – 47 – –

3 – – – –

4 18 31 – –

5 – – – –

6 40 15 25 14

7 – – – –

8 – 38 – 10

9 2 2 2 2

10 – – 41 –

11 22 33 10 42

12 21 32 45 20

13 31 31 – –

14 14 10 11 15

15 6 6 10 10

16 29 16 13 32

17 – – – –

18 8 8 7 3

19 10 27 8 16

20 18 28 16 23

21 – – – –

22 35 30 43 –

23 16 7 8 5

Solved 14 17 13 13

Best 6 4 6 7

Overall, from these results we have shown that all indexes, with their rec-
ommended settings, are capable of dealing with URF tasks. There is no clear
indication for which index is best; while Annoy solves the most tasks, there are
still tasks that are solved faster with the other indexes. A point of interest now
is the approximation parameter for each index which determines the number
of items each index considers or the number of distance computations taking
place. With the recommended settings Annoy has the lowest number of average
distance computations with ∼4300, while HNSW has the highest with ∼9400.
The approximation parameter is what introduces the quality/time trade-off and
is often set based on the specific use case. The transparency of this parameter
is better for some indexes than others. For IVF and eCP it is the b and nprobe

parameter, which is how many clusters to consider during the search. In eCP b is
used for each level in its hierarchy. Annoy uses the searchk parameter, which is
the number of binary trees it will search. HNSW uses the efS parameter, which
is the number of candidates to consider while retrieving the top k items.

In Table 4 we compare the performance using settings for each index that
result in around 6400 distance computations. For this HNSW’s efS = 700 and for
Annoy’s searchk = 14000, while IVF and eCP remain the same (b/nprobe = 64),
so the only changes worth noting in the table are for Annoy and HNSW. With
these settings they both solve fewer tasks, 2 for Annoy and 1 for HNSW, and
some tasks where they were the best require more round, leading to other indexes
solving them faster or in the same round. For Annoy and HNSW to have the



144 O. S. Khan et al.

same distance computations, we had to increase Annoy’s search parameter while
reducing HNSW’s. To investigate the effects of a lower scope further, we run the
evaluation protocol again with distance computations roughly around 3200 and
1600 for all indexes, depicted on Tables 5 and 6 respectively. When reducing the
scope eCP solves more tasks and is seemingly faster than with the higher scope.
Annoy improves in terms of tasks solved with 17 at scope 3200, but at 1600 it
solves 14. HNSW solves the same number of tasks for both reduced scopes, but
not always the same tasks, which hints that certain tasks are better with a lower
scope for HNSW and some are better with a larger one. IVF has similar behavior
as HNSW when reducing scope. It should also be noted that the lowest scope
runs for IVF and HNSW also lead to tasks finishing before the 50 rounds as all
items returned had been seen in previous rounds. Fortunately, the relevant item
was found in a previous round for those tasks, but in case this occurs earlier,
some notion of incremental retrieval that can expand the search within the index
is needed. This feature exists in eCP when used with Exquisitor.

5 Discussion

In this section we discuss the insights gained from the experiments and the role
of approximation parameters for each index. In Fig. 2 the distribution of distance
computations is depicted for each index, where the average distance computa-
tion was around 6400. Annoy with searchk = 14000 has the highest variability,
fluctuating between 4000 and 8000 distance computations. eCP, HNSW and IVF
are more consistent4 and closer to the average target.

Fig. 2. Distribution of distance computations for the indexes, when the approximation
was aimed to be ∼6400

4 The 0-valued outliers for HNSW stem from URF sessions stopping early, as every-
thing returned has already been seen, while the actual minimum was around 4700.
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Our experiments highlight that each index is able to solve URF tasks on
the small LSC dataset, with eCP and Annoy being better than HNSW and IVF.
The LSC dataset contains many near-duplicate images, as the dataset depicts the
daily life of one person. To get a better picture with a more general dataset and
similar tasks, we conducted an experiment on the dataset from Video Browser
Showdown 2020 [19] (VBS) consisting of 1 million images. Solving tasks is more
difficult in VBS as there are more scenarios to cover, and typically filters are
applied to help with the task. With pure URF both Annoy and eCP manage to
solve 2–3 tasks out of the 12, while HNSW and IVF solve 1. Similarly to the LSC
collection, eCP and Annoy performed best with a lower scope (∼3200). However,
given that Annoy still fluctuates between 1000 and 8000 distance computations,
eCP remains the better overall choice. HNSW and IVF at similar scope did
not manage to solve any task, and HNSW even had multiple sessions stopping
early due to all returned items being seen. This is the danger of a small search
scope, and is why having an easy to comprehend and reliable approximation
parameter is extremely beneficial. With eCP and IVF one can reliably ask for
additional b/nprobe clusters, knowing the computation time will be roughly the
same. However, for Annoy and HNSW this is more difficult.

6 Conclusion

In this paper we investigated the performance of multiple state-of-the-art ANN
indexes in user relevance feedback (URF) settings dealing with hyperplane
queries. We evaluated 4 indexes, the tree-based approach Annoy, the graph-
based approach HNSW, and the cluster-based approaches IVF and eCP. Each of
these high-dimensional indexes use some form of approximation that introduces
a quality/time trade-off. In interactive URF sessions, fast and reliable response
time is crucial. Through our experiments using an automated evaluation proto-
col simulating URF sessions, we find that each index is able to solve such tasks.
We also discovered that a lower setting for the approximation parameter, which
reduce the search space, can improve results. However, if it is set too low, the
index may not find any new items to present the user. Out of the four, eCP and
Annoy perform best overall. We further analyze the approximation parameters
of the indexes and find eCP’s parameter to be more comprehensible and reliable.
The other indexes are still viable for URF on a small scale collection, but it is
harder to predict their performance when used at scale. Following up with real
user tests and conducting experiments on even larger collections is warranted,
to better verify these findings.
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Abstract. The k-means clustering algorithm is a popular algorithm
that partitions data into k clusters. There are many improvements to
accelerate the standard algorithm. Most current research employs upper
and lower bounds on point-to-cluster distances and the triangle inequal-
ity to reduce the number of distance computations, with only arrays as
underlying data structures. These approaches cannot exploit that nearby
points are likely assigned to the same cluster. We propose a new k-means
algorithm based on the cover tree index, that has relatively low overhead
and performs well, for a wider parameter range, than previous approaches
based on the k-d tree. By combining this with upper and lower bounds,
as in state-of-the-art approaches, we obtain a hybrid algorithm that com-
bines the benefits of tree aggregation and bounds-based filtering.

1 Introduction

One of the most popular clustering algorithms is k-means, often with the stan-
dard algorithm taught in textbooks (commonly attributed to Lloyd [11], but
described before by, e.g., Steinhaus [23]). In k-means, the data is approximated
using k centers, which are the arithmetic mean of the partitions, and the goal
is to minimize the sum of squared deviations of all samples and their nearest
centroids. Finding the true optimum is NP-hard [12], and hence we need heuris-
tics such as the standard algorithm. The popularity of k-means and an ever-
increasing amount of data led to many improvements to the standard algorithm.
Most common improvements replicate the convergence of the standard heuristic
exactly, and are hence sometimes called “exact” k-means. The major part of its
runtime is the distance calculations between samples and cluster centers in each
iteration. One way to accelerate k-means is to approximate the data, e.g., by sam-
pling [4] or aggregation, which is used in mini-batch k-means [22], BICO [6], and
BETULA [10], among others. The expected values of the results are very similar
to the standard algorithm, which is not surprising because the means used in
k-means are statistical summaries, too. For “exact” k-means, without lossy data
aggregation, approaches primarily fall into two categories: (1) k-d trees have been
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used to accelerate k-means [8,14] by assigning subsets of the data to clusters at
once, using the distances of the centers to the bounding boxes of the tree nodes,
and (2) a large family of approaches which use the triangle inequality to omit
unnecessary distance computations, exploiting that many points do not change
their cluster after the first few iterations. Philips [15] used the pairwise distances
of the centers to identify unnecessary computations, and Elkan [5] additionally
uses upper and lower bounds for the distances between points and cluster cen-
ters. Hamerly [7] merged the lower bounds to the far cluster centers into a single
bound to conserve memory, at the cost of additional distance computations due
to looser bounds. State-of-the-art k-means algorithms, like Exponion [13] and
Shallot [3], additionally use (hyper-)balls around the closest centers to further
reduce computations. None of these methods is always best, but it depends on
data dimensionality, data size, the number of clusters, initialization, and the data
distribution. As all of these methods compute all distances between points and
initial centers in the first round (to obtain the initial bounds), the first iteration
is at least as expensive as in the standard algorithm, but it is in the later iter-
ations where these improvements help. Recent proposals, for example, also take
the distances to the previous center locations into account [24], or transfer such
acceleration techniques to spherical k-means [20] for text clustering by using a
similar triangle inequality for cosine similarity [17].

In this paper, we combine the ideas from both of these research directions:
we will use an exact data index (a trivial extension of the cover tree [2]), com-
bined with a pruning strategy that uses the triangle inequality, to accelerate the
standard k-means algorithm by assigning entire subsets of the data at once. We
then use our approach to calculate the upper and lower bounds that are used
in Hamerly’s [7] algorithm and its derivatives. Which allows us to switch strate-
gies in later iterations when the clusters have become stable and these bounds
become effective. We choose the cover tree as it aggregates the data into a hier-
archy of ball covers, which allows the direct use of the triangle inequality. This
differs from previous approaches using the k-d tree, which used the minimum
distance to the bounding boxes [14], respectively hyperplanes implied by these
bounding boxes [8]; both of these methods need bounding boxes not used by
the original k-d tree. We argue that the ball covers of the cover tree produce
more suitable bounds than the bounding boxes used in the k-d tree approaches,
and that metric pruning should be superior to the geometric pruning of existing
approaches. Furthermore, we hope to achieve improved performance by the way
the cover tree controls the data expansion rate (and hence the radius of the
nodes). It allows a wider fan-out, whereas the k-d tree is a strict binary tree
that will have a higher depth, and more nodes. Last, but not least, a node in
the (extended) cover tree is a more compact data structure than the bounding
boxes used by the k-d tree approaches by approximately a factor of two: a ball
is represented by a center and a radius, whereas the bounding boxes are repre-
sented by the midpoint and width in each axis (or alternatively, by a minimum
and maximum, but the former is more suitable for k-means). Hence, we expect
the new approach to need less memory.
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2 Foundations

In this section, we explain the foundations of the cover tree and k-means, using
a notation inspired by previous work [13] suitable for both.

2.1 Standard k-Means Algorithm

The standard k-means algorithm is a heuristic to partition the points s ∈ X into
k clusters {C1, ..., Ck}. We start with the initial cluster centers c1, ..., ck (e.g.,
sampled from the data) and alternate the following two optimization steps: first,
all samples s are assigned to their nearest cluster center by Eq. (1), where a(s)
denotes the cluster index, and then the cluster centers ci are updated by Eq. (2):

a(s) ← arg mini∈1,..,k d(s, ci), s ∈ X (1)

ci ←
∑

s|a(s)=i s

|{s | a(s) = i}| i ∈ 1, ..., k. (2)

When no cluster assignment changes, the algorithm stops.1 While this heuristic
does frequently not find the global optimum, this scheme converges to a local
fix point when no assignment changes. The selection of the initial cluster centers
not only influences the run time of the algorithm but also the quality of the final
clustering. Here, the k-means++ [1] initialization has become the most popular
choice, as it already provides a (probabilistic) quality guarantee, based on sam-
pling centers from the data proportionally to their expected contribution to the
reduction of variance. In this article, we will not further study initialization.

2.2 Triangle Inequality in k-Means

Many accelerated k-means algorithms use the triangle inequality to reduce the
number of distance calculations, in particular in Eq. (1) instead of computing
the distances between all points and all clusters, as introduced by Phillips [15].
Given sample s and cluster center ci for which the distance d(s, ci) is known,
and some other cj with an unknown distance, we can use the triangle inequality

d(ci, cj) ≤ d(s, ci) + d(s, cj) (3)
⇒ d(s, cj) ≥ d(ci, cj) − d(s, ci) (4)

to get a lower bound on the distance d(s, cj), and therefore may be able to avoid
computing d(s, cj). In particular, Eq. (4) yields the implication [15]:

d(ci, cj) ≥ 2d(s, ci) ⇒ d(s, cj) ≥ d(s, ci) . (5)

We can exclude centers from consideration that are far away from the current
closest center with this inexpensive filter. By computing all d(ci, cj) once at the
beginning of each iteration, this is relatively cheap as long as k is not too big.
1 It is also possible to stop early centers’ movement is below some threshold.
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Another application for the triangle inequality in k-means are per-sample
upper bounds on the distance to the assigned cluster and lower bounds on the
distances to the other cluster means:

us ≥ d(s, ca(s)) and ls ≤ d(s, cj) ∀j �= a(s).

Then us ≤ ls implies that a(s) is still the closest cluster by d(s, ca(s)) ≤ us ≤
ls ≤ d(s, cj). These bounds were introduced by Elkan [5] and later simplified by
Hamerly [7] to use only a single lower bound for all other clusters. We increase
the upper bound and decrease the lower bound based on the movement of the
centers to guarantee their correctness. This becomes more effective once the
cluster centers move only very slightly: while cluster centers still move much,
we may see us > ls often, and then have to compute the true distances often.
For Hamerly’s version, a single cluster that moves substantially is enough to
require many recomputations, Elkan’s version computes fewer distances, but has
to update N · k bounds each iteration. The current state-of-the-art algorithms
Exponion [13] and Shallot [3] also use the same bounds as Hamerly.

When the distances of a sample s to all cluster means ci are calculated, the
upper bound us is set to the distance to the assigned cluster a(s) and the lower
bound ls to the minimum distance to any of the other clusters cj for j �= a(s):

us ← d(s, ca(s)) ls ← min
j �=a(s)

d(s, cj).

In each iteration, when updating the means, we also have to update the bounds.
For each mean ci, we compute how far it moved from its previous location c′

i. To
retain correct bounds, we have to add the distance moved by the nearest mean
to the upper bound, and subtract the maximum distance moved by any other
cluster mean from the lower bound:

us ← us + d(c′
a(s), ca(s)) ls ← ls − max

j �=a(s)
d(c′

j , cj).

The various algorithm variants proposed often include additional pruning
rules using the triangle inequality, but a thorough discussion is beyond the scope
of this paper, see [3,13] for an overview of recent algorithms.

2.3 Cover Tree

The cover tree [2] is a tree-based index structure with linear memory designed to
accelerate nearest neighbor and radius search. The key idea of the cover tree is
to cover the data with balls of a radius that decreases as we move down the tree;
in its theoretical formulation it has an infinite number of levels with radius 2i;
but in practice, there exists a top level where all data is in a single ball and a
bottom level where all distinct points have been separated. Levels in-between
can be omitted if no changes to the tree structure happen. If the dataset has a
finite expansion rate (i.e., the amount of data grows by at most a constant if
we double the radius), this index can provide interesting theoretical guarantees
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for nearest neighbor search. In practice, the cover tree often performs quite well
because of its small overhead and as it is inexpensive to build. The ball covers of
the cover tree are restricted by the maximum radius in each level, and the tree
structure: a sample s that was contained in a node x must remain in a child of x
in the next level, and must not move to another ball even if that were closer.

All cover trees obey invariants for their covers Ni at each level i ∈ Z:

1. (nesting) Ni ⊂ Ni−1

2. (cover) ∀q ∈ Ni−1∃p ∈ Ni d(p, q) ≤ 2i and exactly one p is the parent of q
3. (separation) ∀p, q ∈ Ni, d(p, q) ≥ 2i.

The p ∈ Ni function as routing objects for searching the tree, and at each level
balls of radius 2i around these objects cover the entire dataset. Instead of storing
the Ni at infinitely many levels, we only store levels that differ from the previous.
To make the tree navigable from the root, we store for every p ∈ Ni all q ∈ Ni−1

for which p is the parent, and their distance d(p, q); except p itself which always
is its own child at distance 0. An interesting side effect of optimization is that
since p then is also a routing object in the next level, we can reuse any distance
to p that we already computed in all subsequent levels. Two routing objects
at the same level have at least the distance d(p, q) > 2i, while descendants are
within the radius d(p, q) ≤ 2i to the routing object. While the factor 2i was
used for theoretical results, smaller scaling factors of 1.2–1.3 are typically faster
in practice. The scaling factor allows controlling the trade-off between fan-out
(width) and depth of the tree. We use the scaling factor of 1.2 in our experiments.

The construction of the cover tree follows the original greedy approach of
Beygelzimer et al. [2]. We extend it with a simple bottom-up aggregation after-
ward to store the sum Sx =

∑
p∈x p and the number of samples wx in each

node x. While this increases the memory consumption of the cover tree notice-
ably (previously, it would store only object references and the distances to the
parent), we still have to store only one vector for each node. Not two vectors for
the bounding box as in the earlier k-d tree approaches. Because of the higher
fan-out, we also have fewer nodes than the k-d tree. Furthermore, we can define
a minimum node size, at which we stop building the tree and instead store all
remaining points directly with a cover radius of 0. For efficiency, we store all
such singleton nodes (|x| = 1) more compactly, and omit storing the trivial
aggregated values Sx = x and wx = 1, and the radius r = 0.

2.4 Bounds Within a Cover Tree

To assign an entire cover tree node that represents a subset of the dataset x ⊆ X
to a cluster, all samples qx ∈ x have to be closest to the same center. We can
bound distances using the node radius rx = maxqx∈x d(px, qx):

d(px, ci) − rx ≤ d(qx, ci) ≤ d(px, ci) + rx . (6)

The triangle inequality also yields bounds on the distance of the routing object
py to a cluster center ci, given the distance from the parent node to the cluster:

d(px, ci) − d(px, py) ≤ d(py, ci) ≤ d(px, ci) + d(px, py) . (7)
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Combining these yields upper and lower bounds for all samples in a child node,
which we can use to prune candidate centers in k-means when ∀qy ∈ y:

d(px, cj) − d(px, py) − ry ≤ d(qy, cj) ≤ d(px, cj) + d(px, py) + ry . (8)

3 Cover Tree k-Means

We present a novel algorithm that uses a variation of the cover tree index to
filter candidate centers. Using the triangle inequality we calculate bounds, see
Section 2.4, to rule out cluster centers and hence reduce the number of distance
computations in the assignment phase (i.e., in Eq. (1)) of k-means, using a
similar idea as the k-d tree-based approaches [8,14]. However, the new approach
uses fewer and smaller nodes for the tree, and as routing objects are reused
in the cover tree, needs fewer distance computations. Tree nodes (representing
subsets of the data) can be assigned at once, which is particularly beneficial
with near-duplicate points. We then further combine this approach with current
state-of-the-art stored-bounds k-means algorithms.

3.1 Calculating Distances

During initialization, or when reassigning points, we need the distance from some
routing object px of cover tree node x to the centers ci, cj of a set of candidate
clusters Ci, Cj ∈ Ax. For this, we adapt the common lower bound in Eq. (5).
But unlike existing algorithms that handle only single samples, we need to ensure
that the bounds are true for every sample qx ∈ x represented by the node. To
avoid computing all distances and to benefit from the tree structure, we use
Eq. (6) and the maximum distance rx of points in the cover tree node. This
allows deciding whether we have to calculate the distance d(qx, cj) based on the
already calculated distance d(qx, ci) and the inter-cluster distances d(ci, cj):

d(ci, cj) ≥ 2d(px, ci) + 2rx ≥ 2d(qx, ci) (9)
⇒ d(qx, cj) ≥ d(qx, ci) ⇒ Ci /∈ Ax .

The inter-cluster distances are computed and stored at the beginning of each
k-means iteration, and used many times, as in previous work.

3.2 Assigning Nodes

With all relevant bounds for the routing object px computed, node x can be
assigned to a cluster a(x) = C1 if ∀qx ∈ x, the distance to the nearest cluster
center c1 is smaller than the distance to the second-nearest cluster c2. To decide
this, we use the triangle inequality applied to a node, see Eq. (6):

d(qx, c1) ≤ d(px, c1) + rx ≤ d(px, c2) − rx ≤ d(qx, c2). (10)
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Especially for the higher levels of the tree, this inequality often does not hold
because nodes have a large radius rx. Nevertheless, we may be able to eliminate
candidates Ci ∈ Ax for subsequent levels. To rule out that a cluster Ci is the
nearest to any sample qx ∈ x, the distance from its centroid ci to the routing
object px ∈ x has to be larger than the upper bound on the distance to its
nearest cluster center, which is a generalization of Eq. (10):

d(qx, c1) ≤ d(px, c1) + rx ≤ d(px, ci) − rx ≤ d(qx, ci). (11)

As we narrow down the set of candidate cluster centers Ax, eventually only a
single center remains, and the entire subtree can be assigned to the same cluster.

If we reassign the node and all its contained points to another cluster, we
remove Sy and wy for all previously assigned nodes y ⊆ x from their old clusters
and add Sx and wx to the new cluster instead. By using the aggregates stored in
the tree, this reassignment becomes more efficient. If we cannot assign a node,
we process all child nodes recursively.

3.3 Recursion into Child Nodes

When moving to a child node y ⊂ x in the tree, we can exploit that we store the
distances to the parent in the cover tree, and that we know the radius of y. The
inequality Eq. (8) combines the known distances to the parent routing object
d(px, ci), the distance between parent and child routing objects d(px, py), and
the reduced radius of the child ry. We now can assign the entire child to the
parents’ nearest cluster C1 if ∀qy ∈ y:

d(qy, c1) ≤ d(px, c1)+d(px, py)+ry ≤ d(px, c2)−d(px, py)−ry ≤ d(qy, c2). (12)

Observe that for px = py we obtain Eq. (10) with the reduced radius of the next
level, but this bound is only tighter if d(px, py) ≤ rx − ry. Since d(px, py) > ry
for px �= py and the radius ry typically only reduces by the chosen factor 1.2, it
frequently will not be sufficient. But as the tree can skip some levels, it occasion-
ally holds and allows skipping some computations. If the above inequality does
not hold, we have to recompute at least some distances to assign y. The distance
d(py, c1) to the nearest cluster center c1 of the parent node is most beneficial
because it can be used to tighten the inequality in Eq. (12) by eliminating the
distance to the parent node on the left-hand side of the equation and allows us
to assign y to C1 if ∀qy ∈ y:

d(qy, c1) ≤ d(py, c1) + ry ≤ d(px, c2) − d(px, py) − ry ≤ d(qy, c2). (13)

The same tightening is applied to Eq. (11) to prune candidate clusters before
also recomputing the distances d(qy, ci) when moving to the child node. Clusters
that do not satisfy the following inequality can be excluded:

d(qy, c1) ≤ d(py, c1) + ry ≤ d(px, ci) − d(px, py) − ry ≤ d(qy, ci). (14)

After pruning cluster centers with Eq. (14), the same bounds and calculations
are applied recursively to each of the child nodes not yet assigned a cluster.
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3.4 Hybrid Cover Tree k-Means

When analyzing the number of distance computations performed per iteration
by current state-of-the-art algorithms, like Exponion [13] and Shallot [3], we
observe that they correlate with how much the cluster centers move, for the rea-
son explained before. They decrease drastically over the first few iterations as
the centers stabilize. Our approach, on the other hand, is only slightly influenced
by how far means move, and can already avoid distance computations in the first
iteration by reducing the number of candidate cluster centers when traversing
the tree. Using the stored aggregates in the tree, we can assign entire subtrees
to the same cluster, but the pure tree-based approach benefits little from centers
becoming stable after a few iterations. To utilize the best of both worlds, we pro-
pose a hybrid algorithm that uses the cover tree only for the first few iterations
and then switches to the state-of-the-art Shallot k-means algorithm [3]. Any
other algorithm based on Hamerly’s [7] bounds could be used instead, as we can
efficiently obtain upper and lower bounds from our cover tree, which gives these
algorithms an efficient start. Obtaining all k · N bounds for Elkan’s algorithm
would be more effort. Our approach is not equivalent to initializing with cluster
centers obtained with the cover tree, but we prune distance computations when
computing the bounds using the tree by filtering candidate means.

For single points, this is trivial (but we still save, as we may have a reduced
set of candidates for the second-nearest center). If we assign an entire node x to
a cluster C1, we do not know the exact distance to the nearest two clusters, but
we obtain upper and lower bounds by our inequalities above:

uq∈x = d(px, c1) + rx (15)
lq∈x = d(px, c2) − rx. (16)

When assigning a subtree, we can also obtain bounds for child nodes y ⊂ x
without additional distance computations:

uq∈y = d(px, c1) + d(px, py) + ry (17)
lq∈y = d(px, c2) − d(px, py) − ry. (18)

While computing d(py, c1) for each child node y would yield tighter bounds, we
can simply leave this to the next iteration of the subsequent k-means algorithm.
Depeding on the center movements, these will need to be refined anyway, and
do not need to be tight. For initializing the Shallot algorithm, we also need to
give it the identity of the second-nearest cluster; more precisely, the cluster for
which the lower bound was obtained. While it is not guaranteed that the second-
nearest cluster to the routing object in the tree is the second-nearest cluster for
all points in the node, the Shallot algorithm only requires the bounds to hold.
In the regular Shallot algorithm, it can happen that the assumed second-nearest
cluster changes unnoticed, this does not affect the correctness of the algorithm.

In summary, when we transition to a stored-bounds algorithm, we can use
the bounds used by the Cover-means algorithm to initialize the stored-bounds.
These bounds will be less tight, but also much less expensive to compute, as
computing the initial bounds is a bottleneck of all stored-bounds approaches.



156 A. Lang and E. Schubert

Table 1. Overview of the datasets used in the experiments

Name N D domain

ALOI 110250 27, 64 color histograms

MNIST 70000 10, ..., 50 autoencoder

CovType 581012 54 remote sensing

Istanbul 346463 2 tweet locations

Traffic 6.2M 2 accident locations

KDD04 145751 74 biology

4 Evaluation

Algorithms: In our experiments, we compare our new cover-tree-based
approaches to the Standard k-means algorithm, as well as state-of-the-art
improvements. The k-d tree filtering variant of Kanungo et al. [8] represents
current tree-based methods. From the stored-bounds family, we include the pop-
ular and easy-to-understand Hamerly’s [7] and Elkan’s [5] k-means algorithm,
and the state-of-the-art algorithms Exponion [13] and Shallot [3]. We include two
new approaches in our evaluation. First, the base variant, Cover-means, uses the
cover tree for accelerating k-means. Second, a hybrid of our cover tree variant
with Shallot (as explained in Sect. 3.4) denoted as Hybrid.

Parameterization: The cover tree brings some additional hyperparameters for
the algorithms. We decided not to tune these parameters for specific datasets,
but instead we identified a set of default values that will usually work well, and
do not vary them in the experiments. Much of these are set to keep the cover
tree small, as to not introduce overhead for constructing the tree. The cover tree
is built with a scaling factor of 1.2; while larger values may further accelerate
clustering, the increased fan-out comes with an increased construction time, in
particular for uniform data regions. To further keep the tree small, we stop
splitting at a minimum node size of 100 samples. Smaller leaf nodes would allow
more pruning, but also increase the construction time. For the hybrid approach,
we switch strategies after 7 iterations. This value has likely the most potential for
further turning for particular datasets; in particular, for easy synthetic datasets,
it may be beneficial to switch later. On the other hand, on too easy datasets
or with lucky initialization, k-means may already have converged before. We
include the construction time of the cover tree, except for the experiment listing
time per iteration and the parameter sweep experiment. We evaluated the same
10 random initializations generated by k-means++ [1] for each algorithm, and
usually study medium to large k = 10 . . . 1000.

Implementation: To make the benchmarks more reliable, we keep implementation
differences to a minimum and implement all algorithms in a shared codebase,
as recommended by Kriegel et al. [9]. We implemented the algorithms in Java
using the ELKI framework [18] because it already contains optimized and tested
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versions of the comparison algorithms. All algorithms are run single-core on an
exclusively used AMD EPYC 7302 CPU to reduce the confounding factors.

Datasets: Because the performance of the k-means algorithms strongly depends
on the dataset, we evaluate our approach on various real-world datasets, Table 1.
For the MNIST dataset which we reduced in dimensionality with an autoen-
coder, we chose 10, 20, 30, 40 and 50 dimensions. The ALOI data is available
in multiple dimensionalities [21], of which we selected 27 and 64 dimensions.
The Istanbul and Traffic datasets contain the coordinates of Tweets respectively
traffic accidents, and hence are low-dimensional.

Fig. 1. Commulative evaluation in relation to the Standard algorithm vs. iterations on
the ALOI 64D dataset for k = 400

Experimental Results: In Fig. 1, we study the cumulative number of distance
computations and the cumulative time on the ALOI 64D dataset for k=400 over
the iterations (i.e., convergence) of the algorithms. The construction of the tree
is not included here. Both measurements are normalized by the full Standard
algorithm to improve readability, and can be interpreted as relative savings.

For the number of distance calculations in Fig. 1a, the algorithms can be cat-
egorized into three groups: The Standard algorithm obviously does not skip any
distance calculations. The tree-based algorithm of Kanungo and the cover tree,
only need a fixed fraction of that (5%-10% on this data). When the cluster centers
move only a little after the first few iterations, they exhibit a constant perfor-
mance. The third group are the stored-bound-based algorithms, which exhibit a
decreasing number of distance computations. The performance of Elkan’s algo-
rithm is noticeably better than the others on this metric, Hamerly’s performs
worst, while Exponion and Shallot improve over Hamerly’s as expected. Our
new Hybrid method combines the early savings of the tree methods with the
good late performance of Shallot (here, switching to Shallot later would likely
be better).
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Figure 1b shows the related run time. The Standard algorithm is again the
baseline, and we have similar groups of behavior, but some interesting differ-
ences. The most significant difference is that Elkan’s algorithm now is consid-
erably worse. While Elkan’s can save many distance computations, it has to
maintain many more bounds, which introduces a constant overhead per itera-
tion. Exponion and Shallot can save distance computations at little constant
overhead, and hence improve over Hamerly’s significantly. The pure tree-based
approaches do not benefit from convergence much, and also show a constant cost
per iteration on the right part. Since the Hybrid version switches to the success-
ful Shallot approach after reaping the benefits of the tree, it uses the least time
overall.

Fig. 2. Runtime in relation to the Standard algorithm vs. k respectively d on the
MNIST dataset

Next, we look at the MNIST dataset in Fig. 2 to examine how the differ-
ent algorithms scale with the dimensionality d and the number of clusters k.
Figure 2a shows the runtime in relation to the runtime of the Standard algo-
rithm over multiple different dimensionalities. Most algorithms except Elkan
scale about the same as the Standard algorithm. Kanungo’s algorithm only has
a slight advantage over the standard algorithm and is not really well-suited
for high dimensional data. In high-dimensional data, the cost of distance com-
putations increases, and hence the benefits here of Elkan’s algorithm over the
alternatives become more pronounced, as also observed in other studies.

In Fig. 2b, we can observe that the scaling behavior with k is slightly more
interesting. For very low k the benefit of all acceleration techniques is rather low,
especially for the tree accelerations, and Kanungo’s algorithm does not improve
for higher k. Over all k, we can see that Hamerly’s algorithm scales worse than
the standard algorithm. Exponion and Shallot also show slightly worse scaling
properties than Elkan and Cover-means. Here the improvement for our Hybrid
approach increases, and switching strategies later could bring further advantages.

In Table 2 we extend our view to the other datasets, and give the number of
distance calculations relative to the Standard algorithm. For the stored-bound
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algorithms, Hamerly always uses the most distance calculations, followed by
Exponion and Shallot. Elkan’s algorithm has the least of all, as is expected,
except for the traffic dataset that has a very high number of samples and is
very beneficial for the tree-based methods that can assign many points at once.
Our Hybrid approach is usually slightly better than the Shallot algorithm but
does not come near Elkan’s k-means, while the Cover-means based approach is
usually worse than Exponion. We can observe that the performance of the tree-
based approaches (Kanungo’s algorithm more so than the cover tree) appears
to depend more on the dataset. In particular, the low-dimensional Istanbul and
traffic datasets are beneficial for the tree-based approaches, whereas Kanungo’s
algorithm struggles with the complex KDD04 dataset and uses even more dis-
tance calculations than the Standard algorithm.

Table 2. Relative number of distance calculations compared to the Standard algorithm
for k = 100

CovType Istanbul KDD04 Traffic MNIST10 MNIST30 ALOI27 ALOI64

Kanungo 0.006 0.002 1.450 0.000 0.149 0.370 0.036 0.048

Elkan 0.004 0.002 0.025 0.001 0.007 0.009 0.005 0.006

Hamerly 0.099 0.078 0.364 0.090 0.198 0.213 0.229 0.253

Exponion 0.016 0.010 0.341 0.009 0.075 0.130 0.060 0.075

Shallot 0.012 0.006 0.311 0.006 0.034 0.061 0.030 0.043

Cover-means 0.012 0.003 0.807 0.001 0.097 0.180 0.044 0.063

Hybrid 0.005 0.003 0.310 0.003 0.031 0.057 0.027 0.038

Table 3. Relative run time compared to the Standard algorithm for k = 100

CovType Istanbul KDD04 Traffic MNIST10 MNIST30 ALOI27 ALOI64

Kanungo 0.068 0.123 4.035 0.182 0.470 0.798 0.133 0.130

Elkan 0.114 0.520 0.193 0.652 0.454 0.226 0.180 0.104

Hamerly 0.139 0.171 0.383 0.173 0.262 0.238 0.262 0.278

Exponion 0.064 0.132 0.369 0.142 0.150 0.161 0.107 0.109

Shallot 0.062 0.134 0.346 0.145 0.120 0.098 0.084 0.080

Cover-means 0.072 0.092 1.121 0.135 0.352 0.313 0.138 0.123

Hybrid 0.051 0.084 0.457 0.130 0.133 0.102 0.082 0.076

As seen before, there may be overheads in the computations overlooked when
counting only distance computations, in particular for Elkan’s algorithm. Table 3
shows the total run time of all algorithms, including the construction of the trees.
The KDD04 dataset shows that for high dimensional data, Elkan’s algorithm
often is the fastest because saving distance computations is the most beneficial
then. While the additional bounds help for larger k (as they are updated individ-
ually), the memory overhead becomes an issue quickly. On the other datasets,
the Shallot algorithm is usually the fastest state-of-the-art algorithm. Our cover
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tree approach is most of the time faster than Kanungo’s, Hamerly’s and Elkan’s
algorithms, but it cannot compete with Exponion or Shallot. Combining the
cover tree with Shallot in our Hybrid approach leads to the overall best results.
The results likely could be further improved by tuning the hyperparameters,
e.g., changing from the Cover-means to the Shallot algorithm at some “optimal”
point, or increasing the leaf size for the larger data sets, but we have not yet
developed a heuristic for this and do not want to overfit to this benchmark.

Lastly, Table 4 shows the relative runtime for a complete parameter sweep
for the individual datasets, as one would often need to do in practice when the
“true” number of clusters k is not known. Here, we measure the time it takes
to run the algorithms for 10 different initializations (restarts, because k-means
may converge to different local fix points) and 16 different values for k (to find
the best number of clusters). Then, the “best” clustering can be chosen by a
heuristic such as the “Elbow” method, or any of the better alternatives [19]. In
this scenario, the dataset is used multiple times, and we can reuse the cover-tree
we built to amortize the construction cost. In this task, we see Elkan again be
the fastest on difficult high dimensional data like the KDD04 dataset, but not
being able to handle the complete traffic dataset because of memory overhead
for storing all bounds. On all other datasets, our Hybrid approach is the fastest
except for the 10D MNIST dataset, where the Shallot algorithm is faster.

Table 4. Relative runtime compared to the Standard algorithm with multiple restarts
(parameter sweep to choose k)

CovType Istanbul KDD04 Traffic MNIST10 MNIST30 ALOI27 ALOI64

Kanungo 0.040 0.112 5.090 0.162 0.409 0.903 0.114 0.116

Elkan 0.093 0.609 0.171 - 0.351 0.187 0.121 0.065

Hamerly 0.211 0.208 0.453 0.238 0.338 0.347 0.284 0.304

Exponion 0.040 0.145 0.492 0.162 0.154 0.172 0.077 0.077

Shallot 0.037 0.145 0.414 0.154 0.121 0.100 0.059 0.050

Cover-means 0.028 0.059 1.015 0.093 0.272 0.248 0.086 0.077

Hybrid 0.020 0.056 0.463 0.089 0.122 0.095 0.055 0.047

5 Conclusion

We show that tree-based k-means algorithms can be beneficial, in particular for
huge datasets because they can assign many points at once. Our new Cover-
means approach outperforms the earlier approaches based on the k-d tree on
most datasets. The use of the triangle inequality in cover tree k-means for prun-
ing the set of candidate clusters makes it easier to combine this with the other
approaches than the bounding box-based approach of the k-d tree methods. The
cover tree also uses less memory, as storing the ball needs fewer parameters than
storing a bounding box, but also because the cover tree has a higher fan-out
and lower depth than the k-d tree. Our new method is in particular well-suited
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for clustering with a large number of clusters k, where scalability becomes more
important. For small k, it will often be sufficient to cluster a subsample of the
data [4] on a single CPU, and we will usually find a sufficiently good result
because of the stability properties of k-means [16], if a stable result exists.

We also show how a hybrid of index-tree-based and stored-bound-based
approaches combines the benefits of both worlds and improves over the per-
formance of state-of-the-art approaches for many scenarios. While our hybrid
approach that combines the cover tree with the Shallot algorithm is very basic,
there are new challenges when fully integrating both approaches in future work:
when the current hybrid switches to the Shallot strategy after a fixed number of
iterations, it no longer exploits redundancy in the dataset, but also uses individ-
ual bounds for each point. The results on the large Traffic dataset suggest that
we may want to be able to stick longer to tree-based aggregation for performance
for huge datasets, and we have not yet developed a heuristic for this.

The source code of this algorithm will be made available in the ELKI clus-
tering toolkit [18], and we hope that it lays the ground for future research on
further accelerating k-means by combining the strength of tree-based and stored-
bounds-based algorithms.
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Abstract. Traditional evaluation of an approximate high-dimensional
index typically consists of running a benchmark with known ground
truth, analyzing the performance in terms of traditional result quality
and latency measures, and then comparing those measures to compet-
ing index structures. Such analysis can give an overall indication of the
suitability of the index for the application that the benchmark repre-
sents. When the index inevitably fails to return the sought items for
some queries, however, this methodology does not help to explain why
the index fails in those cases. Furthermore, when considering many dif-
ferent parameter settings, the process of repeatedly indexing the entire
collection is prohibitively time-consuming. In this paper, we define three
causes for failures in hierarchical quantized search. We show that the
two failure cases that relate to the index can be evaluated and quantified
using only the index structure and ground-truth data. In our evalua-
tion, we use eCP, a lightweight algorithm that builds the index hierarchy
top-down a priori without any costly segmentation of the dataset, and
show that significant insight can be gained into the quality of the index
structure, or lack thereof.

Keywords: High-dimensionsional indexing · Hierarchical vectorial
quantization · Evaluation methodology

1 Introduction

Approximate near-neighbour search techniques (ANN) are used to accomplish
efficient similarity search over a large volume of high-dimensional data. To eval-
uate such a search engine, we need data and queries where we know the “correct
answers,” also known as the ground-truth. The evaluation process can then be
best described as “proof by doing” as we first instantiate the search engine by
indexing the evaluation data and then use the queries in the ground-truth to
run ANN search and calculate metrics such as precision, recall and mAP. This
“full-scale” approach is not only time consuming but also inadequate, as when
the search fails those metrics neither explain why nor quantify by how much.

Today’s state-of-the-art large scale ANN algorithms are based on proxim-
ity graph algorithms [7], which are very costly to construct. Compression-based
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
O. Pedreira and V. Estivill-Castro (Eds.): SISAP 2023, LNCS 14289, pp. 163–170, 2023.
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techniques [6] are also popular, but they struggle with billions of features. In
comparison, older tree-like hierarchical vectorial quantizers (HVQ) can be con-
structed quickly, have a lower memory footprint, and have been used at Web-
Scale, but they give lower quality results. It is therefore of interest to study
where HVQ approaches fail, to understand whether they can be improved to be
more competitive.

The goal of the quantizer is to partition the data collection C into small
segments. Let us define r as the representative for each such segment and R as
the set of all representatives. At indexing time, segmentation is based on finding
the most similar r ∈ R for each vector v in the dataset. Then, at search time,
one (or a few) most similar r ∈ R are identified and only those segments make
up the search result. Let us define the truly most similar representative r ∈ R
as rt and a ranked list result as LR. Finding rt requires a scan over R, but as R
is often large, an ANN search using a tree-like hierarchy is used instead. Let us
denote the most similar representative found via the index as ri and a ranked
list result as Li.

For a query q, let us define Nq as the set of its true neighbours. Nq can be
said to form a neighbourhood and the density of data in this region, e.g. whether
the near-neighbour relation is reciprocated or not, is a good indicator of how
difficult it is to match q with its Nq. A “good” neighbourhood is when q and its
Nq are dense and well represented, i.e., Nq falls into one (or a few) segment(s)
similar to q. A “bad” neighbourhood is either a dense grouping that has no good
representation, or a neighbourhood so sparse that some of Nq fall into segments
that are far down the list of representatives most similar to q.

We can now identify three possible causes for HVQ search failures:

1. Representation Failure (RF) occurs when no representative r ∈ R is a
clear best option for a given neighbourhood, i.e., for both q and its Nq. In such
a case, the vectors are likely to be fragmented over many segments, causing
the ANN search to fail despite correctly indexing the vectors, i.e., for each
n ∈ Nq, rtq �= rtn.

2. Index Hierarchy Failure (IHF) occurs when the index is not assigning
vectors correctly. That is, for a given vector v the most similar segment iden-
tified by the index, riv, does not match the most similar representative rtv
found by scanning all segment representatives R. Note that IHF can occur
both when indexing the data and when using the index to identify what
segment(s) should be used in the ANN search.

3. Segment Search Failure (SSF) occurs when the ANN search fails to find
q’s most similar v ∈ C despite looking in the right segment. This can happen
in systems that compress, aggregate, or otherwise approximate the search
process inside segments.

Evaluating RF is all about looking at the neighbourhood. Using the ground
truth for query q we obtain the ranked list of most similar segment representa-
tives for q, denoted by LR

q . For each neighbour n in Nq, from the ground truth,
we then get the most similar segment rtn. We can now quantify RF by examining
how far down the list LR

q we find rtn. Note that getting the truly most similar
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segments is costly as it requires a full scan of all index segments r ∈ R. To eval-
uate IHF, we need to know a) the index-assigned segment riv and b) the ranked
list of most similar segments LR

v for the vector v. Quantifying IHF is then based
on how far down the list LR

v we find riv. If neither RF nor IHF occurred, but the
ground truth indicates that the result is not correct, then SSF has occurred.

In this paper, we report on a case study of the eCP algorithm, a cluster-
based HVQ. Since eCP reads whole clusters, SSF does not occur. Our results
indicate that RF is much more prevalent with eCP than IHF. Furthermore, we
demonstrate that while enhancing the representation with k-Means clustering
can be done 50x faster by using only the index, the impact on RF is minimal.

The remainder of this paper is structured as follows. In Sect. 2 we explain
our evaluation methods and metrics. Section 3 then present the results of our
experiments, and finally we conclude the paper in Sect. 4.

2 Evaluating Indexed ANN Search Failures

Our aim is to understand and quantify how and why the ANN search, using
HVQ, fails. The algorithm we choose to evaluate in this initial case study is called
Extended Cluster Pruning (eCP) [2]. eCP is a simple yet versatile HVQ, which
was initially developed for content-based image retrieval using SIFT features [4]
and has been extensively evaluated at large scale [3]. The index construction
is very efficient as the index is built a priori in a single top-down pass using
randomly sampled vectors from the dataset. This is a great advantage as that
means we can evaluate the performance of eCP using just the index and a ground-
truth benchmark, without doing any of the costly segmenting. To be clear, eCP
makes no effort to improve on the randomly chosen segment representatives. To
compensate for potentially poor representation, however, it does support search-
expansion both inside the index hierarchy as well as for the number of segments
to retrieve and scan. In this case study, we consider search expansion at query
time, processing SE clusters to find near neighbours. We now explain how we
evaluate and quantify the possible causes for HVQ search failures. Since eCP is
not susceptible to SSF, we can also estimate recall using only the index structure.

2.1 Evaluating Representation Failure (RF)

To evaluate the RF we need a neighbourhood (q and Nq, both obtained from
the ground truth) and eCP’s set of representatives R. By scanning R we derive
LR
q , the ranked list of q’s most similar representatives, as well as the optimal

assignment rtn for each n ∈ Nq. If rtn is at the top of LR
q , we know that q and n

are in the same segment. How far down the list we find each rtn tells us how far
the ANN search will need to expand such that it finds that neighbour. Remember
that q has many neighbours, so we choose to average this rank, creating a metric
we call Average Rank (AR). Furthermore, we also add a second metric that is
based on counting how many neighbours have a rank lower than some value X.
We call his metric Optimal Recall (OR) as if we set X equal to the SE parameter
used, it tells us exactly what portion of Nq we can hope to find in an ANN search.
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2.2 Evaluating Index Hierarchy Failure (IHF)

To evaluate and quantify IHF, we consider a set of vectors v and, as before, we
scan R to derive LR

v . Then, using the index structure, we derive the assigned
representative riv, for a given SE setting. The metrics we use to quantify IHF is
based on looking at where in the ranked list LR

v we find the index-assigned riv.
If riv = rtv, where rtv is the segment at the top of LR

v , then the index assignment
is optimal. Otherwise, we can use the rank of riv in LR

v to measure how far off
the index assignment is. In our experiments, we report a) how many optimal
assignments we have and b) how many are within SE of the optimal. This gives
a clear indication of how well the index is doing.

2.3 Evaluating Recall in Absence of Segment Search Failure (SSF)

eCP is not susceptible to SSF, as the ANN search identifies and then scans whole
segment(s) to create the final k-NN result. This allows us to calculate what the
recall of eCP’s ANN search would be using only the index and ground-truth
data. For each query q, we obtain Li

q, the ranked list of the SE most similar
representatives for segments that should be scanned. By looking up each n ∈ Nq

from the ground truth to get rin, we can compute recall by counting how many
of the rin assignments are anywhere in Li

q.

3 Evaluation

3.1 Setup

Dataset and Ground-Truth: We use BIGANN [1] in our evaluation. The full
set has 1B 128-dimensional SIFT features, but we use the 100M subset as this is
sufficient to build a large eCP index. The original ground-truth consists of 10k
queries with 1k NNs for each, but to make the computational load manageable
we use a subset that consists of the first 50 queries along with all of their 1k near
neighbours, for 50k vectors in total. We should note that BIGANN is a difficult
dataset. The baseline recall given for track 1 of the BigANN benchmark using
the BIGANN data is 63.5% recall and the best competitors got 71.4% [7].

Indices and Search Settings: Guidelines exist regarding picking the “right”
number of clusters to build an eCP index. As we do not intend to build the full
search engine, however, we build four different 3-level deep indices using R= 40k,
80k, 160k and 320k vectors to study the impact of index size. The R vectors are
randomly sampled from the 100M SIFT subset. In all experiments we perform
search expansion, with maximum SE = 20, but in the analysis we consider the
impact of varying the SE parameter from 1 to 20..

Hardware and Software: Experiments are all run on a single machine with an
Intel i9-7900X CPU, 64 GiB of RAM, and a 1 TB Samsung 960 Pro SSD disk.
The OS is Ubuntu 18_04 and we use Spark 2.4.5 with Java–openJDK version
11.0.17 and Scala version 2.11.12. Note that the original SIFT features are 128
dimensions of unsigned 8 bits (0–255), but since Java does not support unsigned
data, we scale the values to be Byte (-128 to 127).



Is Quantized ANN Search Cursed? 167

Table 1. Evaluation of Representation Failure (RF). Average Rank (AR) is the average
location of rtn in LR

q across all 50k queries. Optimal Recall (OR) counts how many of
the 1k neighbours have a rank lower than SE = 20, averaged across 50 queries

Index AR OR

40k 55.76 602.54
80k 88.78 547.42
160k 132.12 489.96
320k 222.35 408.82

3.2 Experiment 1: Representation Failure (RF)

In this experiment we use the 50 queries, each having 1k NNs, and evaluate on
all 4 index sizes. In Sect. 2.1 we defined the two metrics, AR and OR, that we
report. The results are presented in Table 1.

Here, AR is the average rank of the Nq=1k vectors, averaged over all 50
queries. The 40k index has AR of ∼56 while 320k has AR of ∼222. This implies
that adding more clusters seems to give the “bad” neighbourhoods more options,
spreading the NNs even further, making it even harder to match q with its Nq.

The OR metric is even more interesting as it essentially indicates the best-
case recall for a given search expansion. Here, we average the OR metric over
the 50 queries, using SE = 20. The 40k index scores ∼603 out of 1k queries,
while the 320k scores ∼409, which can be read as “optimal recall” of 60.3% and
40.9% respectively.

While interesting in itself, the true value of the OR is that it allows us to put
the ANN search results of later experiments into context. The main conclusion
we can draw from this experiment, however, is that the RF is significant.

3.3 Experiment 2: Index Hierarchy Failure (IHF)

Here we focus on evaluating whether the index is able to assign vectors correctly.
From the index, we retrieve for each v of the 50k NN vectors riv and we also scan
R to get LR

v , each vector’s ranked list of most similar representatives. The results
are presented in Fig. 1.

The x-axis indicates the search expansions used, while the y-axis shows the
average across the 50k queries. As was stated in Sect. 2.2 we report two metrics.
The first counts how many of the index assignments are optimal, i.e., riv = rtv,
which is shown with the solid lines. The second metric, reported with the dotted
lines, counts how many index assignments are within SE of the optimal

Our first observation is that the results are almost identical despite the largest
index (320k) having 8 times more segments than the smallest (40k). Second,
we observe that without any search expansion (SE = 1), the indices are only
correctly assigning about 25–30% of vectors. As we expand the search, this ratio
grows and at SE = 5, the indices already retrieve over 50%. The reason why the
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Fig. 1. Evaluation of Index Hierarchy Failures (IHF). The x-axis shows the expansion
setting, SE, while the y-axis shows the correctly assigned NNs. Solid lines indicate
when riv = rtv while the dotted lines indicate that riv is in the top SE clusters of Li

q

top item of the ranked list improves, is that the search expansion is applied at
all levels of the index, reducing the branching errors at the upper levels.

Turning to the dotted lines, which show the neighbours correctly located in
the top SE clusters of the ranked list, we observe that they grow even faster. For
SE = 1, they are identical, but at SE = 5 more than 90% of assignments are
found. This means that at SE = 5, 50% of the neighbours are correctly assigned
and another 40% is within 5 of optimal assignment. What remains to be seen is
whether this is good enough for the ANN search.

Fig. 2. Evaluation of Recall. The x-axis shows the search expansion, SE, while the
y-axis shows the recall, averaged across the 50 queries

3.4 Experiment 3: Estimating Recall

Having investigated RF, producing a baseline for optimal recall, and investigated
IHF, we can now check how well the eCP indices actually do in an ANN search.
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As said in Sect. 2, this is done by searching for both q and Nq and checking
whether the n ∈ Nq assigned representative rin is in the ranked list of similar
representatives for the original query, Li

q, using search expansion parameter SE.
The results are plotted in Fig. 2.

We observe that, as expected, the recall degrades with index size and at first
glance the results are not impressive. The 40k index peaks at only 555 matches
(∼56% recall) and the 320k at 382 (∼38%). That is well below the 63.5% baseline
from [7]. But if consider the OR metric from the previous experiment (at our
maximum expansion), we observe that 40k index is in fact scoring ∼56% out
of a maximum of ∼60% and the 320k index at ∼38% out of a maximum of
∼40.9%. From this we can assert that despite eCP’s indexing hierarchy being
very simplistic, it is only responsible for a small fraction of the search failures.

Table 2. Evaluation of whether k-Means can improve RF and ANN recall. Results
shown are AR, OR, time the k-Means took and search results for 40k indices after the
given number of steps of k-Means

Steps AR OR Running time ANN Recall

KM0 (original) 55.76 602.54 n/a 555.26
KM1 (full) 50.30 657.76 ∼50h 606.82
KM1 (index) 53.04 648.32 48m 602.20
KM2 (index) 51.14 654.26 ∼2h 614.34
KM10 (index) 45.91 677.00 ∼10h 606.80

3.5 Experiment 4: Can K-Means Fix RF?

A maximum recall of 60% for the 40k index cannot be called a great result. A
common proposal to addressing representation is to run k-Means clustering. In
this section, we evaluate the impact of this using AR and OR. The results are
presented in Table 2.

The first line of the table repeats the data from previous experiments for ref-
erence, showing values for the original eCP index. The two following lines, with
KM1, represent one iteration of k-Means, assigning the entire 100m dataset using
the representatives only or using the index. Comparing to all representatives is
more precise but requires more than 4 trillion distance calculations, which took
about 50 h. In comparison, using the index to speed up the k-Means assignments
is more then 10x faster, taking only about 50min. We observe that while con-
sidering all representatives yields better results, a multi-step clustering process
is infeasible with that approach even at this moderate scale.

The final two lines show the results from running 2 and 10 steps of the k-
Means process, respectively. We observe that while both AR and OR improve
slightly, recall eventually decreases, meaning that the positive impact of k-Means
is moderate and RF remains a major issue of the eCP index.
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4 Conclusions

In this paper we have investigated ANN search using a hierarchical vectorial
quantizer. We have shown that we can evaluate the quality of a) the segment
representatives, b) the index hierarchy and c) the ANN search for both successful
(recall) and failed queries. This we can do using only the index structure and
the evaluation ground-truth data. Using algorithms such as eCP, that build their
index without any actual segmenting/clustering of the full dataset, means we
can perform index evaluation with minimal effort.

When we observe poor ANN search results, such as 58% recall, the inclination
is to blame the indexing hierarchy, especially when it is as simple and naive as
that of the eCP algorithm. By measuring the representation failure, however, we
could put the index assignments into perspective. As it turns out, the eCP index
itself is only responsible for a fraction of the failed queries.

We also evaluated whether k-Means clustering could alleviate the represen-
tation issues but the results show that clustering at large scale a) is prohibitively
expensive, even when using the index to speed it up 10-fold, and b) only of a
marginal benefit.

What makes multi-layer similarity graph algorithms, such as HNSW [5],
obtain such high-quality results is that they address the representation prob-
lem by being highly selective when picking representatives at each layer in their
indexing/graph structure and by not limiting the possible search/scan to a fixed
region once hierarchy is traversed. However, they pay for this ability with the
added complexity, footprint, and high construction time.
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Abstract. The seminal work of Broder et al. [5] introduces the minHash
algorithm that computes a low-dimensional sketch of high-dimensional
binary data that closely approximates pairwise Jaccard similarity. Since
its invention, minHash has been commonly used by practitioners in vari-
ous big data applications. In many real-life scenarios, the data is dynamic
and their feature sets evolve over time. We consider the case when fea-
tures are dynamically inserted and deleted in the dataset. A naive solu-
tion to this problem is to repeatedly recompute minHash with respect to
the updated dimension. However, this is an expensive task as it requires
generating fresh random permutations. To the best of our knowledge,
no systematic study of minHash is recorded in the context of dynamic
insertion and deletion of features. In this work, we initiate this study
and suggest algorithms that make the minHash sketches adaptable to
the dynamic insertion and deletion of features. We show a rigorous the-
oretical analysis of our algorithms and complement it with supporting
experiments on several real-world datasets. Empirically we observe a
significant speed-up in the running time while simultaneously offering
comparable performance with respect to running minHash from scratch.
Our proposal is efficient, accurate, and easy to implement in practice.

Keywords: Sketching algorithms · Jaccard similarity estimation ·
Streaming algorithms · Locality sensitive hashing (LSH)

1 Introduction

Sets are one of the popular ways to embed data points, and their pairwise similar-
ities are captured using Jaccard similarity. For a pair of sets U, V ⊆ [d], their Jac-
card similarity is defined as |U ∩V |/|U ∪V |. The seminal work of Broder et al. [5]
suggests the minHash algorithm that computes a low-dimensional representation
(or sketch) of the high-dimensional binary data that closely approximates the
underlying pairwise Jaccard similarity. We discuss it as follows:1

1 We note that binary vectors and sets give two equivalent representations of the
same data object. Let the data elements be a subset of a fixed universe. In the
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Definition 1 (Minwise Independent Permutations [5]). Let Sd be the set of all
permutations on [d]. We say that F ⊆ Sd (the symmetric group) is min-wise
independent if for any set U ⊆ [d] and any u ∈ U , when π is chosen at random
in F , we have

Pr[min{π(U)} = π(u)] = 1/|U |. (1)

For a permutation π ∈ F chosen at random and a set U ⊆ [d], Broder et al. [5]
define minHash as follows minHashπ(U) = arg minu π(u) for u ∈ U . For a pair
of points, U, V ⊆ [d], and π is chosen at random in F , we have the following

Pr[minHashπ(U) = minHashπ(V )] = |U ∩ V |/|U ∪ V |. (2)

The above characteristic demonstrates the locality-sensitive nature
(LSH) [13] of minHash, and as a consequence, it can be effectively used for the
approximate nearest neighbour search problem. minHash is successfully applied
in several real-life applications such as computing document similarity [3], item-
set mining [2], faster de-duplication [4], all-pair similarity search [1], document
clustering [6], building recommendation engine [11], near-duplicate image detec-
tion [9], web-crawling [12,18].

This work considers the scenario where features are dynamically inserted
and/or deleted from the input. We emphasize that this natural setting may
arise in many applications. Consider the “Bag-of-Word” (BoW) representation
of text, where first, a dictionary is created using the important words present
in the corpus such that each word present in the dictionary corresponds to a
feature in the representation. Consequently, the embedding of each document
is generated using this dictionary based on the frequency of the words present.
Consider the downstream applications where the task is to compute pairwise Jac-
card similarities between these documents, and the dimensionality of the BoW
representation is high due to the large dictionary size. We can use minHash to
compute the low-dimensional sketch of input documents. It is natural to assume
that the dictionary is evolving; new words are inserted, and unused words are
deleted. One evident approach to handle such a dynamic scenario is to run the
minHash from scratch on the updated dictionary, which is expensive since it
involves generating fresh min-wise independent (random) permutations. Note
that during the insertion/deletion of features in the dataset, we consider insert-
ing/deleting the same features in all the data points. To clarify this further,
let D = {Xi}n

i=1 be our dataset, where Xi ∈ {0, 1}d. Considering the addi-
tion/removal of the j-th feature, the j-th feature gets inserted/deleted in the
point Xi. Similarly, the corresponding j-th feature is inserted/deleted in all the
remaining points in D. Note that we don’t consider the case when data points
are dynamically inserted or deleted in the dataset.

corresponding binary representation, we generate a vector whose dimension is the
size of the universe, where for each possible element of the universe, a feature position
is designated. To represent a set into a binary vector, we label each element’s location
with 1 if it is present in the set and 0 otherwise.
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Problem statement: minHash for dynamic insertion and deletion of fea-
tures: In this work, we focus on making minHash adaptable to dynamic feature
insertions and deletions of features. We note that the insertion/deletion of fea-
tures dynamically leads to the expansion/shrinkage of the data dimension.

We note that in practice a d dimensional permutation required for minHash
is generated via the universal hash function hd(i) = ((ai + b) mod p) mod d,
where p is a large prime number and a, b are randomly sampled from {0, 1, . . . p−
1}; typically ((ai + b) mod p) > d2. This hash function generates permutations
via mapping each index i ∈ [d] to another index [d] that can be used to compute
the minHash sketch. We note that in the case of dynamic insertions/deletion
of features, even using universal hash functions to compute the minHash sketch
doesn’t give an efficient solution. We illustrate it as follows. Suppose we have a
minHash sketch of data points using the hash function hd(.). Consider the case
of feature insertion, where the dimension d increases to d + 1, and therefore, we
require a hash function hd+1(.) to generate a (d + 1)-dimensional permutation.
Note that the permutation generated via hd+1(.) can potentially be different on
several values of i ∈ [d + 1]. Therefore, just computing hd+1(d + 1), taking the
corresponding input feature, and taking the minimum of this quantity with the
previous minHash would not suffice to compute minHash after feature insertion.
If implemented naively, this re-computation step takes O(d) in the worst case.
A similar argument also holds in the case of feature deletion.

1.1 Our Contribution

In this work, we consider the problem of making minHash adaptable to dynamic
insertions and deletions of features. We focus on cases where features are
inserted/deleted at randomly chosen positions from 1 to d. We argue that this
is a natural assumption that commonly occurs in practice. For example, in the
context of BoW, a word’s position in the dictionary is determined via a random
hash function that randomly maps it to a position from 1 to d. Therefore, when
a new word is added to the dictionary, its final position in the representation
appears as a random position (from 1 to d). A similar argument is also applicable
to feature deletion. We summarize our contributions as follows:

� Contribution 1: We present algorithms (Sect. 2) that makes minHash sketch
adaptable to single/multiple feature insertions. Our algorithm takes the current
permutation and the corresponding minHash sketch; values and positions of the
inserted features as input and outputs the minHash sketch corresponding to the
updated dimension.
� Contribution 2: We also suggest algorithms (deferred to the full version of
the paper [21] due to the space limit, discussed in Section 4 of [21] ) that makes
minHash sketch adaptable for single/multiple feature deletions. It takes the data
points, current sketch, and permutations used to generate the same; positions
of the deleted features and outputs the minHash sketch corresponding to the
updated dimension.
2 These hash functions are called universal hash functions (see Chapter 11 of [10].
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Our work leaves the possibility of some interesting open questions: to pro-
pose algorithms when features are inserted or deleted adversarially (rather than
uniformly at random from 1 to d, as considered in this work). We hope that our
techniques can be extended to handle this situation.

Our Techniques and Their Advantages: A major benefit of our results is that
they do not require generating fresh random permutations corresponding to the
updated dimension (after feature insertions/deletions) to compute the updated
sketch. We implicitly generate a new permutation (required to compute the
sketch after feature insertion/deletion) using the old d-dimensional permutation
and also show that it satisfies the min-wise independence property (Definition 1).
We further give simple and efficient update rules that take the value and posi-
tion of inserted/deleted features, and output the updated minHash sketch. To
show the correctness of our result, we prove that the sketch obtained via our
update rule is the same as obtained via computing minHash from scratch using
the implicitly generated permutation mentioned above. For both insertions and
deletion cases, our algorithms give significant speedups in dimensionality reduc-
tion time while offering almost comparable accuracy with respect to running
minHash from scratch. We validate this by running extensive experiments on
several real-world datasets (Sect. 3 and Table 3). We want to emphasize that our
algorithms can also be easily implemented when permutations are generated via
random hash functions.

Applicability of our Result in Other Sketching Algorithms for Jaccard Similarity:
We note that there are several improved variants of minHash are known such as
one-permutation hashing [15,22], b-bit minwise hashing [14,16], oddsketch [20]
that offer space/time efficient sketches. We would like to highlight that our
algorithms can be easily adapt to these improved variants of minHash, in case
of dynamic insertion and deletion of features. One permutation hashing divides
the permuted columns evenly into k bins. For each data point, the sketch is
computed by picking the smallest nonzero feature location in each bin. In the
case of dynamic settings, our algorithms can be applied in the bin where features
are getting inserted/deleted. Both b−bit minwise hashing [14] and oddsketch [20]
are two-step sketching algorithms. In their first step, the minHash sketch of the
data points is computed. In the second step of b-bit minwise hashing, the last
b-bits (in the binary representation) of each minHash signature is computed.
In contrast, in the second step of oddsketch, one bit of each minHash sketch
is computed using their proposed hashing algorithm. As both results compute
the minHash sketch in their first step, we can apply our algorithms to compute
the minHash sketch in case of feature insertion/deletion. This will make their
algorithms adaptable to dynamic feature insertions and deletions.

Recently, some hashing algorithms have been proposed that closely esti-
mate the pairwise Jaccard similarity [7,8,19] without computing their minHash
sketch. However, to the best of our knowledge, their dynamic versions (that can
handle dynamic insertions/deletions of features) are unknown. Several improve-
ments of the LSH algorithm [23] have been proposed that are adaptable to the
dynamic/streaming framework. However, a significant difference is in the under-
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lying problem statement. These results aim to handle dynamic insertion and
deletions of data points, whereas we focus on dynamic insertions and deletions
of the features (Table 1).

2 Algorithm for Feature Insertion

Table 1. Notations

Data dimension d Input data point {0, 1}d or input set X

Set {1, . . . , d} [d] Data point after feature insertion {0, 1}d+1 X′

Position of the inserted feature m Original d-dim. permutation (a1, . . . , ad) s.t.

ai ∈ [d]

π

Value of the inserted feature b Lifted (d+1)-dim. permutation (a′
1, . . . a′

d+1)

s.t. a′
i ∈ [d + 1]

π′
m

No. of 1′s in X |X| Set of non-zero indices of X, i.e., {i|xi = 1} J

Size of the set J |J| minHash of X with π, i.e., minHashπ(X) hold

We first give our algorithm for a single feature insertion.

2.1 One Feature Insertion at a Time – liftHash

The liftHash (Algorithm 2) is our main algorithm for updating the sketch of
data points consisting of binary features. It takes a d dimensional permutation
π and the corresponding minHash sketch hold π as input. In addition, it takes
an index m and a bit value b, corresponding to the position and the value of
the binary feature, to be inserted, respectively, and outputs updated hash value
hnew. We show that hnew corresponds to a minHash sketch of the updated feature
vector. To show this, we use liftPerm (Algorithm 1), which extends the original
permutation π to a (d+1) dimensional min-wise independent permutation. Note
that the liftPerm algorithm is used solely for the proof and not required in the
liftHash algorithm.

The main intuition of our algorithm is that we can (implicitly) generate a
new (d+1)-dimensional permutation by reusing the old d-dimensional permuta-
tion (Algorithm 1), and can update the corresponding minHash w.r.t. the new
(d + 1)-dimensional permutation via a simple update rule (Algorithm 2). Con-
sider a d dimensional input vector X = (x1, x2, . . . , xd). A permutation π of
{1, 2, . . . , d} can be thought of as imposing the following ordering on the indices
of X: π(1), π(2), . . . , π(d). After feature insertion, we want the (implicit) liftPerm
algorithm to generate a new permutation π′ of {1, 2, . . . , d + 1} that still main-
tains the ordering that was imposed by π. We show that such an extension is
achievable with high probability assuming (i) feature insertion is happening at
a random position and (ii) our binary feature vector is sparse. This helps us
guarantee (with high probability) that π′ is min-wise independent if π is min-
wise independent (see Theorem 2). Finally, we show that the sketch obtained by
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the liftHash algorithm is the same one produced by applying the minHash with
respect to the output π′ of the liftPerm algorithm (see Theorem 3).

Algorithm 1: liftPerm(π, r).

1 Input: d-dim permutation π, a number r.
2 Output: (d + 1)-dim. permutation π′.
3 for i ∈ {1, . . . , d + 1} do
4 if i ≤ r then
5 π′(i) = π(i)
6 else
7 π′(i) = π(i − 1)
8 end
9 end

10 for i ∈ {1, . . . , d + 1}/{r} do
11 if π′(i) ≥ π′(r) then
12 π′(i) = π′(i) + 1
13 end
14 end
15 return π′

Algorithm 2: liftHash(π,m, b, hold).

1 Input: hold := minHashπ(X), π, m ∈ [d], b ∈ {0, 1}.
2 Output: hnew := liftHash(π,m, b, hold).
3 Denote am = π(m).
/* m is the position of the inserted feature */

4 if hold < am then
5 hnew = hold

6 else
7 if b = 1 then
8 hnew = am

9 end
10 if b = 0 then
11 hnew = hold + 1
12 end
13 end
14 return hnew

We illustrate our algorithm with the following example and then state its
proof of correctness.

Example 1 We illustrate our Algorithms using the following example. We
assume that the index count starts with 1. Let X = [1, 0, 0, 1, 0, 1, 0] be the data
point, and π = [6, 3, 1, 7, 2, 5, 4] be the original permutation. Then minHashπ(X)
is 5. Further, let us assume that we insert the value b = 1 at the index m = 2.
Therefore am = π(m) = 3. The updated value X ′ = [1, 1, 0, 0, 1, 0, 1, 0] and due
to Algorithm 1 by setting r = m = 2, we obtain π′

m = [7, 3, 4, 1, 8, 2, 6, 5]. We
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calculate the value of hnew outputted by Algorithm 2: as hold = 5 > am = 3
and b = 1, then we have hnew = liftHash(π,m, b, hold) = am = 3. Further,
minHashπ′

m
(X ′) = 3. Therefore, we have hnew = minHashπ′

m
(X ′).

3The following theorem gives proof of the correctness of Algorithm 1, and
shows that the permutation π′ outputted by the algorithms satisfies the minwise
independent property (Definition 1), with high probability. At a high-level proof
of Theorem 2 relies on showing the bijection between the ordering on the indices
of X by the original d-dimensional permutation π, and (d + 1)-dimensional per-
mutation π′. We show that this bijection holds with probability 1 when inserted
feature value b = 0, and holds with a high probability when b = 1.

Theorem 2 Let π = (a1 . . . , ad) be a minwise independent permutation, where
ai ∈ [d], and r be a random number from [d]. Let π and r be the input to
Algorithm 1. Then for any X ∈ {0, 1}d with |X| ≤ k, the permutation π′ =
(a′

1 . . . , a′
d+1), where a′

i ∈ [d+1], obtained from Algorithm 1 satisfies the condition
stated in Equation (1) of Definition 1, with probability at least 1 − O(k/d).

Theorem 3 gives proof of the correctness of Algorithm 2. We show that the
sketch outputted by Algorithm 2 is the same as obtained by running minHash
using the (d + 1)-dimensional permutation obtained by Algorithm 1 on the
updated data point after one feature insertion.

Theorem 3 Let π′
m be the (d + 1)-dimensional permutation outputted by Algo-

rithm 1 by setting r = m. Then, the sketch obtained from Algorithm 2 is
exactly the same as the sketch obtained with the permutation π′

m on X ′, that
is, hnew := liftHash(π,m, b, hold) = minHashπ′

m
(X ′).

Remark 1 We remark that in order to compute the minHash sketch of X ′,
Algorithm 2 requires only hold, b,m, the value of π(m). Whereas vanilla minHash
requires a fresh (d + 1) dimensional permutation to compute the same.

Remark 2 We can extend our results for multiple feature insertion by repeat-
edly applying Theorem 2, and Theorem 3 along with the probability union
bound. However, the time complexity of the algorithm obtained by sequentially
inserting n features will grow linearly in n as observed in the empirical results
(Fig. 1, Sect. 3). In the next subsection, we present an algorithm that performs
multiple insertions in parallel, which helps us achieve much better speedups.

2.2 Algorithm for Multiple Feature Insertions – multipleLiftHash

Results presented in this subsection are extensions to that of Subsect. 2.1. The
intuition of our proposal is that we can (implicitly) generate a new (d + n)-
dimensional permutation (n is the number of inserted features), using the old

3 We defer the proofs of Theorems 2, 3, 5, 6, to the full version of this paper [21] due
to space limit.
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Table 2. Notations

No. of inserted features n Position of inserted features {mi}n
i=1, mi ∈

[d + 1]

M

X after n features insertion {0, 1}d+n X′ Set of inserted bits {b1, . . . , bn} with bi ∈
{0, 1}

B

multipleLiftHash(M, π, B, hold) hnew Lifted (d + n)-dim. permutation π′
M

d-dimensional permutation. By exploiting the sparsity of input and the fact
that inserted bits are random positions, we show that the updated permuta-
tion satisfies the min-wise independent property with high probability. Further,
we suggest a simple update rule aggregating the existing minHash sketch and
the minHash restricted to inserted position and outputs the updated sketch.

Algorithm 3: partialMinHash(π,M,B)

1 Input: Permutation π, a sorted set of indices M = {m1, ...mn}, and set
of inserted bits B = {b1, . . . , bn}

2 Output: The min value of π (with appropriate shift) restricted to only
those indices mi of M that correspond to non-zero bi.

3 πM,B = {π(mi) | i ∈ {1, . . . , n} and bi = 1}
4 return min{πM,B(k) + 1}

Algorithm 4: multipleLiftPerm(π,R).

1 Input: Permutation π; R with |R| = n.
2 Output: (d + n)-dim. permutation π′.
3 R ← sorted(R) /* sorting array R in ascending order */
4 for i ∈ {1, 2, . . . n} do
5 R[i] = R[i] + i − 1
6 end
7 π′ = π /* Initialization */
8 for i ∈ {1, . . . n} do
9 π′ = liftPerm(π′, R[i]) /* Calling Algorithm 1 with π = π′ and

r = R[i] */

10 end
11 return π′

Algorithm 5: multipleLiftHash(M,π,B, hold).

1 Input: hold := minHashπ(X), permutation π, M and B.
2 Output: hnew := multipleLiftHash(M,π,B, hold).
3 Let πM := {π(m) : m ∈ M}.
4 aM = partialMinHash(π,M,B)
5 hnew = min (hold + |{x | x ∈ πM and x ≤ hold}|, aM ) /* Picking the

minimum between partialMinHash and shifted value of hold.
*/

6 return hnew
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Algorithm 5 takes hold, M,B, and π as input, and outputs the updated sketch
hnew. Algorithm 5 uses Algorithm 3 to obtain the value of partialMinHash –
minimum π value restricted to the inserted indices only with inserted bit value
1, from which it obtains multipleLiftHash for the updated input. Algorithm 4
is implicit and is used to prove the correctness of Algorithm 5. Algorithm 4
takes the permutation π and M as input, and outputs a (d + n)-dimensional
permutation π′

M which satisfies the condition stated in Equation (1) for X,
with |X| ≤ k. We show this in Theorem 5. Then in Theorem 6, we show that
hnew = minHashπ′

M
(X ′). As π′

M satisfies, the condition stated in Equation (1)
for sparse X, then due to Equation (2) and [5] the sketch of data points obtained
from Algorithm 5 approximates the Jaccard similarity.

Example 4 Suppose X = [1, 0, 0, 1, 0, 1, 0] and π = [6, 3, 1, 7, 2, 5, 4] are input
point and original permutation, respectively. Then the value of hold is 5. Let
M = [2, 4] and B = [0, 1]. Thus, in this case π′

M = [7, 3, 4, 1, 8, 9, 2, 6, 5] and
X ′ = [1, 0, 0, 0, 1, 1, 0, 1, 0]. Consequently we have, partialMinHash(π,M,B) =
2 < hold+|{x | x ∈ πM and x ≤ hold}| = 5+1 = 6. Therefore, minHashπ′

M
(X ′) =

2.

We have the following theorems for the correctness of the algorithms pre-
sented in this subsection. A proof of the Theorem 5 follows similarly to the
proof of Theorem 2 along with the probability union bound, and the proof of
Theorem 6 is a generalization of proof of Theorem 3.

Theorem 5 Let π be a minwise independent permutation. Let M =
{m1, . . . ,mn} such that mi is chosen uniformly at random from {1, . . . , d}. Then
for any X ∈ {0, 1}d with |X| ≤ k, the permutation π′

M obtained from Algorithm 4
satisfies the condition stated in Equation (1) of Definition 1, with probability
1 − O(kn/d).

Theorem 6 Let π′
M be the (d + n)-dimensional permutation outputted by Algo-

rithm 4, if we set R = M . Then, the sketch obtained from Algorithm 5 is
exactly the same as the sketch obtained with the permutation π′

M on X ′, that
is, multipleLiftHash(π,M,B, hold) = minHashπ′

M
(X ′).

Along similar lines, we give algorithms for single and multiple-feature dele-
tions. Due to space limit, we defer it to Section 4 of the full version of this
paper [21].

3 Experiments

Hardware Description: CPU model name: Intel(R) Xeon(R) CPU @ 2.20
GHz; RAM:12.72 GB; Model name: Google Colab.

Datasets and Baselines: We perform our experiments on “Bag-of-Words”
representations of text documents [17]. We use the following datasets: NYTimes
news articles (number of points = 300000, dimension = 102660), Enron emails
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(number of points = 39861, dimension= 28102), and KOS blog entries (number
of points = 3430, dimension = 6960).

We consider the binary version of the data, where we focus on the pres-
ence/absence of a word in the document. For our experiments, we considered a
random sample of 500 points from the NYTimes and 2000 points for Enron and
KOS.

We compare the performance of our algorithms multipleLiftHash and
multipleDropHash with respect to running minHash from scratch on the updated
dimension, and we refer to it as vanilla minHash. We also note the performance
of sequential versions of single feature insertion/deletion algorithms – liftHash
and dropHash, respectively. We give implementation details of the baseline algo-
rithms as the following link https://tinyurl.com/y98yh6k3.

Table 3. Speedup of our algorithms w.r.t their vanilla minHash version

Experiment Method NYTimes Enron KOS

Max. Avg. Max. Avg. Max. Avg.

Feature multipleLiftHash 54.91× 51.96× 9.61× 9.17× 24.4× 23.11×
Insertions liftHash 91.23× 87.38× 13.96× 12.66× 35.00× 35.50×
Feature multipleDropHash 109.5× 105.31× 18.6× 17.01× 46.02× 43.94×
Deletions dropHash 78.34× 72.79× 15.95× 14.89× 38.24× 35.71×

Fig. 1. Comparison among liftHash, multipleLiftHash, and vanilla minHash on the
task of feature insertions. Vanilla minHash corresponds to computing minHash on the
updated dimension. We iteratively run liftHash n times, where n is the number of
inserted features

https://tinyurl.com/y98yh6k3
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Fig. 2. Comparison among dropHash, multipleDropHash, and vanilla minHash on fea-
ture deletions. We iteratively run dropHash n times, where n is the number of deleted
features

3.1 Experiments for Feature Insertions

We use two metrics for evaluation: a) RMSE: to examine the quality of the sketch,
and b) running time: to measure the efficiency. We first create a 500 dimensional
minHash sketch for each dataset using 500 independently generated permuta-
tions. Consider that we have a set of n random indices representing the locations
where features need to be inserted. For each position, we insert the bit 1 with
probability 0.1 and 0 with probability 0.9. We then run the liftHash algorithm
(Algorithm 2) after each feature insertion; we repeat this step until n feature
insertions are done. This gives a minHash sketch corresponding to the liftHash
algorithm. We again run our multipleLiftHash algorithm (Algorithm 5) on the
initial 500 dimensional sketch with the parameter n. We compare our methods
with vanilla minHash by generating a 500 dimensional sketch corresponding to
the updated datasets after feature insertions.

For computing the RMSE, our ground truth is the pairwise Jaccard similarity
on the original full-dimensional data. We measure it by computing the square
root of the mean (over all pairs of sketches) of the square of the difference between
the pairwise ground truth similarity and the corresponding similarity estimated
from the sketch. A lower RMSE is an indication of better performance. We
compare the RMSE of our methods with that of vanilla minHash by generating
a fresh 500 dimensional sketch. We summarise our results in Fig. 1.

Insights: Both of our algorithms offer comparable performance (under RMSE)
with respect to running minHash from scratch on the updated dimension. That
is, our estimate of the Jaccard similarity is as accurate as the one obtained by
computing minHash from scratch on the updated dimension. Simultaneously, we
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obtain significant speedups in running time compared to running minHash from
scratch. In particular, the speedup for multipleLiftHash is noteworthy (Table 3).

3.2 Experiments for Feature Deletion

We use the same metric as feature insertion experiments – RMSE and running
time. We first create a 500 dimensional minHash sketch for each dataset using
minHash. Suppose we have a list of n indices that denote the position where
features need to be deleted. After each feature deletion, we run the dropHash
algorithm (discussed in Section 4.1 of [21] - full version of this paper). We repeat
this step n times. This gives a minHash sketch corresponding to the dropHash
algorithm. We again run our multipleDropHash algorithm (discussed in Section
4.2 of [21] - full version of this paper) on the initial 500 dimensional sketch with
the parameter n. We compare our results with vanilla minHash by generating a
fresh 500 dimensional sketch on the updated dataset. We note the RMSE and
running time as above. We summarise our results in Fig. 2.

Insights: Again, both our algorithms offer comparable performance (under
RMSE) with respect to running minHash from scratch. Similar to the previ-
ous case, we obtained a significant speedup in running time w.r.t. computing
minHash from scratch. In particular, the speedup obtained in multipleDropHash
is quite prominent. We summarise a numerical speedup in Table 3.

Remark 3 Our current implementation of multipleLiftHash makes multiple
passes over indices to be inserted, whereas multipleDropHash makes only one
pass over the deleted indices. This is reflected in higher speedup values for
multipleDropHash in Table 3. We believe an optimized implementation for
multipleLiftHash would further improve the speedup.

4 Conclusion and Open Questions

We present algorithms that make minHash adaptable to dynamic feature inser-
tions and deletions of features. Our proposals’ advantage is that they do not
require generating fresh permutations to compute the updated sketch. Our
algorithms take the current permutation (or its representation using universal
hash function [10]), minHash sketch, position, and the corresponding values of
inserted/deleted features and output updated sketch. The running time of our
algorithms remains linear in the number of inserted/deleted features. We com-
prehensively analyse our proposals and complement them with supporting exper-
iments on several real-world datasets. Our algorithms are simple, efficient, and
accurately estimate the underlying pairwise Jaccard similarity. Our work leaves
the possibility of several interesting open questions: (i) extending our results for
dense datasets in the case of feature insertions; (ii) extending our algorithms for
the case when features are inserted/deleted adversely; (iii) improving our algo-
rithms when we have prior information about the distribution of features; for
example, features distribution follows Zipf’s law etc.; (iv) improving theoretical
guarantees and obtaining further speedups by optimizing our algorithms.
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Abstract. Sparse Data Observers (SDO) is an unsupervised learning
approach developed to cover the need for fast, highly interpretable and
intuitively parameterizable anomaly detection. We present SDOclust, an
extension that performs clustering while preserving the simplicity and
applicability of the original approach. In a nutshell, SDOclust consid-
ers observers as graph nodes and applies local thresholding to divide
the obtained graph into clusters; later on, observers’ labels are propa-
gated to data points following the observation principle. We tested SDO-
clust with multiple datasets for clustering evaluation by using no input
parameters (default or self-tuned) and nevertheless obtaining outstand-
ing performances. SDOclust is a powerful option when statistical esti-
mates are representative and feature spaces conform distance-based analy-
sis. Its main characteristics are: lightweight, intuitive, self-adjusted, noise-
resistant, able to extract non-convex clusters, and built on robust param-
eters and interpretable models. Feasibility and rapid integration into real-
world applications are the core goals behind the design of SDOclust.

Keywords: clustering · graphs · unsupervised learning · anomalies

1 Introduction

Sparse Data Observers (SDO) is a recent algorithm for anomaly detection [15].
Although it is general purpose, it was originally conceived for network traffic
analysis, a field that demands the fast processing of high data volumes. Beyond
complexity requirements, core goals in SDO are: (a) robust and intuitive param-
eterization, (b) the use of explainable models, and (c) the capability to effec-
tively identify “novelties” as anomalies, even when they are dense and collective.
SDOstream [12] is an extension of SDO for data streams. Since its publication
in 2018, SDO has been used in diverse applications; e.g., advanced multi-fault
diagnosis of batteries [25], anomaly detection in sensor networks [5].

In this work we propose SDOclust, which is the extension of SDO for cluster-
ing, therefore covering the two main branches of unsupervised learning. In the
related literature we find an extensive collection of methods for clustering, each
of them showing pros and cons, and being suitable for specific environments.
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Suffice it to mention the survey by Xu and Tian, in which up to 71 algorithms
are recalled and compared [29]. It is well accepted in the field that there is no
“best” algorithm, that they must be evaluated based on application and goals,
and that finding better evaluation procedures is even more pressing [18]. How-
ever, regardless of the algorithm used, experts still run into concerns related to
whether the resulting clustering is reliable and reflects the real structure of the
data, or whether the parameters used in the configuration are adequate [26]. Fur-
ther discussing practical common disadvantages, Böhm et al. state that “they all
[clustering algorithms] suffer from one or more of the following drawbacks: they
focus on spherical or Gaussian clusters, and/or they are sensitive to outliers,
and/or they need user-defined thresholds and parameters” [2].

To a large extent, SDOclust overcomes these common issues, fact that under-
lines its relevance among well-established methods. In another popular survey
about clustering [30], Xu and Wunsch emphasize nine characteristics that are
desirable in new generation algorithms. We analyze SDOclust in this light:

1. Arbitrary shapes. SDOclust is not confined to particular shapes and is able
to capture non-convex and even nested clusters.

2. Large volumes and high-dimensionality. Based on statistical sampling, SDO-
clust benefits the larger the data volume both in terms of accuracy and
complexity. On the other hand, SDOclust is a distance-based method that
operates directly on the input feature space, so it is affected by the curse of
dimensionality similarly to equivalent approaches. That said, empirical tests
show excellent results up to 1024 dimensions (Sect. 4).

3. Outlier/noise detection and removal. SDOclust nests SDO, therefore inher-
ently generating outlierness scores. On the other hand, clustering formation
is rarely affected by outliers/noise in SDOclust. Finally, SDOclust does not
remove or set outliers in a binary way, leaving the “oulier thresholding” task
to be externally tackled according to application requirements.

4. Low dependency on parameters. SDOclust solves most scenarios with default
parameters, which are also robust, intuitive, and self-adjustable. Challenging
cases might require fine parameterization.

5. Upgradeable models. SDOclust can process data in chunks, meaning that it
updates models with new data without retraining from scratch.

6. Immune to data-order. For SDOclust it makes no difference whether patterns
are entered sequentially or jumbled.

7. Guessing the number of clusters. SDOclust does not require the number of
expected clusters as a parameter externally imputed.

8. Enriched outputs. In addition to cluster labels, SDOclust outputs outlierness
scores and cluster memberships per point, which can be easily converted into
purity estimations1. Additionally, SDOclust generates low-density models of
the data shape by means of observers, which are representatives that preserve
data geometry and relative density. Overall, outputs in SDOclust provide
comprehensive information for visualization, description and post-analysis.

1 We term a data point as impure when it lies in unclear zones between clusters.
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9. Mixed data types. SDOclust is a numerical method and does not natively work
on categorical data. In the current implementation, mixed data types require
being adapted during preprocessing.

Note that SDOclust adjusts itself under the assumption that data statisti-
cal estimates are representative. Also clusters that are overlapping or show very
strong differences in density might be difficult to solve and require fine param-
eterization. For the evaluation, we test SDOclust on a large number of datasets
with a wide variety of shapes and challenges. Experiments are divided into: two-
dimensional data, to provide a visual assessment, and multi-dimensional data, to
cover more practical clustering application environments. In both cases internal
and external validation metrics are shown. As competitors we use HDBSCAN [3]
and k-means-- [4]. HDBSCAN is one of the most notable general-purpose clus-
tering algorithm, as it also meets the three key requirements: (a) operating with
default parameters in a wide assortment of cases, (b) detecting outliers, and (c)
capturing non-convex patterns. k-means-- is selected as it is a most traditional
clustering approach in its implementation with outlier detection.

The rest of the paper is organized as follows: Sect. 2 delves into
SDO/SDOclust algorithms and parameters. In Sect. 3 we present evaluation data
and metrics. Results are shown and discussed in Sect. 4, and two real application
examples are explored in Sect. 5. We conclude with main remarks in Sect. 6.

2 Clustering Based on Sparse Data Observers

SDOclust is based on SDO. In this section we briefly explain the basic principles
of SDO and then expand in more detail on SDOclust. Configurable parameters
are highlighted in bold to be later explained in Sect. 2.3, where we discuss default
values, automatic adjustment and the implications of their variation.

2.1 SDO

SDO [15] consists of two phases, here referred to as Learning and Prediction.
During the Learning phase, the algorithm performs the following steps:

L1 Sampling. S being a set of m input data points, O is a subset of k0 random
data points from S (k0 � m). Elements in O are called observers.

L2 Observation. With D as the distance2 matrix between each pair of data
points of S and O, an observation matrix I is derived by storing the x-closest
observers to each data point in S. Intuitively, each data point is “observed”
only by its x-closest observers.

L3 Removal of idle observers. From the observation matrix I, we can com-
pute P , an array that contains the occurrences of each observer in I, or, in
other words, the number of data points that each observer “observes”. If an

2 With distance—or the d(.) function—we refer to Euclidean distance, but the method
is not restricted to it.
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Fig. 1. Description of Learning and Prediction. L1 samples input data to create
the observers set (red ‘x’s). Observers “observe” input samples in L2 (shadow size
represents observations). Idle observers are removed in L3. Remaining observers are
connected in clusters in L4 by considering cut-off thresholds. In L5 isolated observers
are removed. Observers’ labels are propagated to data points in P1. Outlierness, mem-
bership and purity estimations are bound to data points in P2 (impure data points
cast a shadow). The last plot (right-bottom) shows the derived crisp clustering with
outlier detection (outliers in gray color). (Color figure online)

observer does not observe at least q data points, it is considered idle and
removed from O. This minimizes the chance of selecting outliers as observers.
Thus, the final O is a low-density model of S formed by k active observers
(k < k0).

During the Prediction phase:

P1 Observation. Data points in S, or new objects from a consistent dataset (we
keep calling them S for consistency), are evaluated by O. This generates new
D and I matrices (but note that now O only contains active observers).

P2 Outlierness estimation. For each data point si in S, an outlier score yi is
calculated as the average distance from si to its x-closest observers.

2.2 SDOclust

SDOclust also implements Learning and Prediction (Fig. 1). Additionally,
it includes an Update phase that is only called in batch mode, i.e., SDOclust
processes new data while keeping and updating an already trained model.

The Learning phase of SDOclust follows these steps:

L1, L2, L3 Sampling, Observation and Removal of idle observers are exactly the
same as in SDO (Sect. 2.1).

L4 Thresholding for graph-edge cutting. Here, observers in O are seen as
nodes of an undirected graph to be clustered. We need to create and
adjacency matrix A that will ultimately group or separate observers.
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For this, instead of using a unique external cutoff threshold, each
observer estimates its own locally. Therefore, the cutoff threshold hi

of a given observer oi is:

hi = d(oi, oi←χ) (1)

i.e., the distance to its χth-closest observer. Thus, the element ai,j

of A is:

ai,j =

{
1 if d(oi, oj) < hi and d(oi, oj) < hj

0 otherwise
(2)

meaning that observers oi and oj will be connected if the distance
between them is below hi and hj . The purpose of using per-node (or
local) cutoff thresholds is to allow solutions with clusters of different
densities. On the other hand, this is prone to connect clusters lying
very close to each other and create clusters in noise. To compensate
this, a ζ coefficient weights the local contribution of hi with a global
contribution h obtained as the average of {h1, h2, ..., hk}. Therefore,
the final h′

i remains:

h′
i = ζhi + (1 − ζ)h (3)

and A is constructed with {h′
1, h

′
2, ..., h

′
k} instead. From each isolated

subgraph of connected observers in A we extract an unique label ci
(any given observer is at least connected to itself), generating the
set of unique labels C = {c1, c2, ..., cz}. Since connected observers
share the same label of C, this results in the array of labels L =
{l1, l2, ..., lk}, where li ∈ C.

L5 Removal of isolated observers: L4 might generate clusters with iso-
lated observers (commonly located in noisy areas). To obtain clean
clusters, observers forming subgraphs of less than e nodes are
removed (from O, P and L).

During the Prediction phase:

P1 Propagation. This step runs an Observation phase and additionally propa-
gates observers’ labels to data points. Therefore, each data point in S, or new
data points from a consistent dataset (we continue calling them S), inher-
its the labels of its x-closests observers in addition to the outlierness score.
Unlike with the outlierness score, which is computed as an average distance,
observers’ labels are categories, making that each data point in S can be
multi-labeled. Therefore, if we imagine a space where discovered observers’
clusters are orthogonal coordinates ĉ1, ĉ2, ..., ĉz, a data point si will obtain
a vector label

−→
li = (li,1, li,2, ..., li,z), where li,j is the sum of the x-closest

observers to si that belong to cluster cj .
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P2 Enrichment. This phase acknowledges that any point si obtains an outlier-
ness score yi and a label vector

−→
li . The label vector can be turned into a

crisp label: li|crisp marking the dominant coordinate3 of
−→
li , into a member-

ship vector:
−→
li|memb = ( li,1

||li||1 ,
li,2

||li||1 , ...,
li,z

||li||1 ), or into a purity estimation:

li|pur = ||−→li|memb||∞.

Finally, in the Updating phase both Learning and Prediction are
repeated with minor variations. The new subset of data points is sampled for
observers while keeping the proportion of one observer per m/k data points in
the batch (minimum 1). New observers are added to O, new observations are
added to P and, finally, the less-active observers are removed to keep k invariant.

2.3 Parameters: Interpretation, Default Values and Self-tuning

k0, x and q (or ρ)4 are intrinsic to SDO and widely discussed in the original
paper [15]. We comment on them briefly. If not given externally, the initial
number of observers—here termed k0—is set based on statistical sampling of
finite populations. For this estimation, the most variant dimension of the input
data after PCA (Principal Component Analysis) is used (Eq. 4):

k0 =
mZ2σ2

(m − 1)ε2 + Z2σ2
(4)

with σ as the variance and CI = 95% (Z = 1.96), error ε = 0.1σ. This ensures
good scalability regardless of the number of data points and dimensions of
the input data. For instance, in a n-dimensional dataset S with one thou-
sand data points generated at random with normal distributions (μ = σ = 1),
SDO/SDOclust (x = 5, ρ = 0.3) estimates k � 191; whereas for the same
dataset with one million data points k � 266. On the other hand, x expresses
neighborhood similarly to k in the k-nearest neighbor algorithm, but without
being sensitive to density [31]. Empirical tests confirm the robustness of x and
ρ, with x = 5 and ρ = 0.3 as suitable default values.

Parameters exclusive of SDOclust are:

– χ defines the χth-closest observer of any given observer. It is used to establish
the local threshold for cutting-off graph edges (Eq. 1). Small χ is appropriate
when solutions with many clusters are expected, whereas high χ should be
used when only few clusters are foreseen.

– ζ sets a trade-off between locality and globality in thresholds for cutting-off
graph edges, ζ = 1 for purely local and ζ = 0 for purely global (Eq. 3). Local
thresholding allows clusters of considerable density difference; however, it
tends to merge nearby clusters and form clusters in noise. Global thresholding
avoids such merger, but might divide legit clusters.

3 i.e., the coordinate with the highest value. In the absence of a dominant coordinate,
the algorithm forces it randomly among the highest candidates.

4 q is commonly obtained as q = Q(ρ, P ), where Q(.) is the quantile function.
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– e sets the minimum number of observers that a cluster can have. This param-
eter commonly takes small values and is used to avoid clustering noise.

Empirical tests show that the previous parameters tolerate variations around
default values: χ = min(8, k

20 ), ζ = 0.6 and e = 3. The reason why such param-
eters work properly in most data scenarios is because, regardless of the number
of samples and dimensions, SDOclust summarizes data in a model composed by
a number of observers that falls always in a similar order of magnitude.

Finally, since the selection of observers is natively performed at random,
SDOclust is not free from stochastic problems (more noticeable in small
datasets).

2.4 Complexity

The increase in complexity of SDOclust with respect to SDO is not significant,
since the additional operations carried out by SDOclust happen on the observer
set which, as seen in Sect. 2.3, if not imposed as an external parameter, converges
asymptotically as a function of m. Therefore, the added algorithmic load of
SDOclust happens in the thresholding and clustering of the graph during the
Learning phase. SDOclust works at all times with matrices of size m×k, k×k,
k × x, and does not involve iterative processes. Therefore, as in [15], in Big-O
notation the complexity of SDOclust is described as O(mk)|m→∞ = O(m).

3 Evaluation

Implementations of SDOclust, experimental tests and sensitivity analysis for
main parameters are freely available in our repository5, and through a stable
DOI-citable version for Reproducible Research in [16]. Datasets can be down-
loaded from their original sources or—in case that they are further processed or
generated by tools—they are also included in our repository. In all experiments,
HDBSCAN (as provided in [20]) and SDOclust run with no parameters (default
or self-tuned)6, whereas k-means-- is always imputed with the right number of
clusters and outliers to discover7, extracted from the ground truth (GT).

5 https://github.com/CN-TU/pysdoclust.
6 HDBSCAN parameters: min cluster size = 5, cluster selection epsilon = 0.0,
approx min span tree = True, allow single cluster = False, min samples = None,
algorithm = ‘best’, p = None, alpha = 1.0, metric = ‘euclidean’, leaf size = 40,
memory = Memory(location = None), cluster selection method = ‘eom’, gen
min span tree = False, core dist n jobs = 4, prediction data = False, match ref-
erence implementation = False;
SDOclust parameters: x = 5, qv = 0.3, zeta = 0.6, chi min = 8, chi prop = 0.05, e = 3,
chi = None, xc = None, k = None, q = None.

7 k-means-- is tuned with maximum iterations = 1000 and tol = 0.0001, where tol is
the convergence criterion for centroid displacement.

https://github.com/CN-TU/pysdoclust
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3.1 Datasets

Evaluation experiments are in two sets: (a) 15 two-dimensional datasets to visu-
ally assess performances; (b) 138 multi-dimensional datasets. Dataset collections
are taken from different sources: (i) The Clustering Basic Benchmark of the Uni-
versity of Eastern Finland [10], which is one of the most known data collections
for clustering evaluation8. This includes two-dimensional datasets: s1 [8], r15
[27], aggregation [11], skewed [22]; also the low-to-high dimensional set termed
d, which combines two collections [9,17] and shows datasets from 3 to 1024
dimensions. (ii) Datasets generated or processed with the sklearn.datasets
package9, due to its popularity and widespread use [21], including the two-
dimensional datasets named: rings and moons. Later on, iris (Iris Flower),
mallcust (Mall Customers Segmentation) and pima (Pima Indians Diabetes)
are popular real datasets here projected into two-dimensional spaces by using t-
distributed stochastic neighbor embedding (tSNE) [19]. (iii) Datasets generated
with MDCgen [14], a tool to create multi-dimensional data for testing, evalu-
ating, and benchmarking unsupervised classification algorithms. It includes the
two-dimensional datasets: close, separated, complex, high-noise and low-noise;
and 6 groups of multi-dimensional datasets, each group addressing a different
data challenge, namely: c (close clusters, reduced space), p (separated clusters,
large space), n (between 5% and 15% noise aprox.), h (between 15% and 30%
noise aprox.), f (clusters with high density differences), and x (complex setups
by combining previous challenges).

3.2 Metrics

Experiments are validated externally and internally. For external validation we
use the Adjusted Rand Index (ARI) [13], which approaches ‘1’ the better the
discovered partition matches the GT, and gives ‘-0.5’ for completely discordant
partitions. For internal validation we use the Silhouette index (Sil) [23], which
scores ‘1’ when intra-cluster cohesion and inter-cluster separation are maximized.
To make Sil consistent, we first remove the top ‘n’ outliers, where ‘n’ is given by
the GT. We also show the difference between the number of clusters discovered
by the algorithm by excess (+) or deficiency (−) compared with the GT.

4 Results and Discussion

Table 1 shows two-dimensional experiments results. SDOclust guesses the num-
ber of clusters considerably better than HDBSCAN, which tends to cluster noise
and divide bigger structures into micro-clusters. SDOclust average performances
are 0.59 ± 0.22 (Sil) and 0.86± 0.10 (ARI), vs 0.53 ± 0.27 (Sil) and 0.81± 0.19
(ARI) in HDBSCAN and 0.57 ± 0.10 (Sil) and 0.67± 0.23 (ARI) in k-means--.

8 https://cs.joensuu.fi/sipu/datasets/.
9 https://scikit-learn.org/stable/datasets.html.

https://cs.joensuu.fi/sipu/datasets/
https://scikit-learn.org/stable/datasets.html
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Fig. 2. Clustering of SDOclust on two-dimensional data. Clustered data points take
colors based on their cluster, whereas outliers are in gray color (Color figure online)

Table 1. Results of tests with two-dimensional datasets

dataset inlier samples dimensions outliers clusters GT clusters HDBSCAN clusters k-means- clusters SDOclust Sil HDBSCAN Sil k-means- Sil SDOclust ARI HDBSCAN ARI k-means- ARI SDOclust

close 2000 2 0 11 –1 = –2 0.63 0.58 0.65 0.87 0.81 0.87

s1 5000 2 0 15 +38 = = 0.24 0.58 0.71 0.54 0.83 1.00

separated 2000 2 0 7 = = = 0.91 0.58 0.91 1.00 0.72 1.00

iris 150 2 0 3 –1 = = 0.89 0.72 0.72 0.57 0.90 0.90

mallcust 200 2 0 4 = = +1 0.57 0.62 0.52 0.96 0.89 0.85

pima 768 2 0 3 = = +1 0.60 0.61 0.40 1.00 0.72 0.82

r15 600 2 0 15 = = –1 0.72 0.67 0.70 0.94 0.90 0.92

aggregation 788 2 0 7 –2 = –1 0.37 0.44 0.46 0.81 0.63 0.91

skewed 1000 2 0 6 +5 = –1 0.25 0.44 0.37 0.89 0.60 0.81

asymmetric 1000 2 0 5 –2 = = 0.68 0.53 0.64 0.47 0.70 0.98

high-noise 2000 2 345 6 +10 = +1 0.74 0.72 0.90 0.92 0.83 0.83

low-noise 2000 2 111 5 –1 = –1 0.82 0.68 0.85 0.70 0.61 0.67

rings 3000 2 200 2 +4 = = 0.08 0.38 0.12 0.97 0.07 0.88

complex 2000 2 155 6 +17 = –1 0.38 0.51 0.56 0.61 0.62 0.65

moons 3000 2 200 2 +8 = = 0.13 0.49 0.34 0.96 0.29 0.88

Both internal and external validation highlights SDOclust over its competi-
tors. Figure 2 shows SDOclust clustering. Most noticeable inaccuracies are the
tendency of SDOclust to merge very close clusters, more so if they show some
overlap or are bridged by intermediate data points. There are different strategies
to alleviate this, e.g., reducing ζ and χ while increasing ρ, but such modifications
might cause arbitrary divisions in some cases.

Table 2 shows main properties of multi-dimensional dataset collections, while
Table 3 provides clustering performances. Again, HDBSCAN and SDOclust run
with default parameters, whereas k-means-- is imputed with the expected num-
ber of clusters and outliers. Summarizing results, we observe that discrepancies in
the number of clusters between GT and SDOclust partitions is minimal, while it
is larger for HDBSCAN, prone to overclustering in the presence of outliers. Even
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Table 2. Description of multi-dimensional data groups

group abbrev. datasets inlier samples dimensions outliers clusters in GT

close c 20 5000 3 to 23 0 10 to 14

separated p 20 5000 5 to 22 0 3 to 7

low-to-high dim. d 18 1024 to 10126 3 to 1024 0 9 to 16

density diff. f 20 5000 3 to 22 0 3 to 7

medium noise n 20 5000 3 to 22 252 to 748 3 to 7

high noise h 20 5000 3 to 23 858 to 1981 4 to 7

complex x 20 5000 3 to 22 272 to 747 3 to 7

Table 3. Results of tests with multi-dimensional data. “NCA-error” stands for the
“accumulated error in the number of clusters due to over- or underclustering”

group NCA-error HDBSCAN NCA-error k-means- NCA-error SDOclust Sil HDBSCAN Sil k-means- Sil SDOclust ARI HDBSCAN ARI k-means- ARI SDOclust

c 1 35 2 0.83 ± 0.05 0.53 ± 0.10 0.83 ± 0.04 1.00 ± 0.00 0.66 ± 0.39 1.00 ± 0.00

p 0 0 0 0.95 ± 0.01 0.70 ± 0.19 0.95 ± 0.01 1.00 ± 0.00 0.82 ± 0.16 1.00 ± 0.00

d 0 0 0 0.94 ± 0.03 0.64 ± 0.17 0.94 ± 0.03 1.00 ± 0.00 0.77 ± 0.14 1.00 ± 0.00

f 8 0 9 0.70 ± 0.18 0.64 ± 0.14 0.71 ± 0.12 0.95 ± 0.09 0.89 ± 0.11 0.97 ± 0.03

n 67 11 0 0.85 ± 0.04 0.81 ± 0.30 0.97 ± 0.01 0.83 ± 0.06 0.85 ± 0.29 1.00 ± 0.00

h 203 5 0 0.64 ± 0.09 0.81 ± 0.22 0.99 ± 0.00 0.48 ± 0.11 0.80 ± 0.18 1.00 ± 0.00

x 43 0 2 0.74 ± 0.06 0.73 ± 0.16 0.84 ± 0.09 0.82 ± 0.07 0.84 ± 0.17 0.98 ± 0.02

k-means-- shows higher drifts due to global failures when analyzing some scenar-
ios. As for validation indices, SDOclust scores 0.89 ± 0.11 (Sil) and 0.99± 0.02
(ARI) in average, vs 0.80 ± 0.14 (Sil) and 0.87± 0.19 (ARI) in HDBSCAN and
0.70 ± 0.22 (Sil) and 0.81± 0.21 (ARI) in k-means--.

In Fig. 3 we show critical difference diagrams from Wilcoxon signed-rank
tests over all 153 experiments [7]. The diagrams confirm the statistical differences
when comparing results, SDOclust standing out with the best performance.

Fig. 3. Critical difference diagrams comparing algorithm results with Wilcoxon signed-
rank tests [7]. Best methods are placed on the right side

The reason behind SDOclust ability to self-tune and obtain suitable cluster-
ing lies in leveraging statistical estimations to create simplified models—always
with a number of elements (i.e., observers) in a similar order of magnitude—that
capture shapes and relative densities independently of the number of input data
points and dimensions. This makes possible to calculate and establish neighbor-
hoods, coefficients and thresholds that satisfy a large number of cases.

5 Examples with Real Data

We show two examples of SDOclust for discovering clusters and patterns in
real applications. We have selected cases with recent public data and where
clustering makes practical sense beyond algorithm testing. We use HDBSCAN
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as benchmark. As before, both algorithms apply default parameters and are not
imputed with the number of clusters to discover. SDOclust establishes outliers
per cluster as any data point with an outlierness score beyond the mean plus
the Median Absolute Deviation (MAD) over the standard deviation [1].

5.1 Clustering Network Traffic

Communication network traffic is hard to analyze: data spaces are noisy, classes
heterogeneous and multiform, and features commonly show non-normal distri-
butions and collinearity. We explore a traffic capture (pcap) from the MAWI
samplepoint-F for July 31, 202210. The MAWI Working Group daily publishes
15 min of backbone traffic publicly for research purposes [6]. We extract bidi-
rectional flows between IP addresses (srcIP, dstIP) that exchange information
for a maximal duration of 60 s. Since modern network traffic nowadays is mostly
encrypted, we select features that are available regardless of encryption11: the
flow duration (dur) and statistics related the number of packets sent (pkt), the
length of packets (len) and the inter-arrival time between packets (iat), both
forward (F) and backward (B). The final vector that expresses a sample is:
T:srcIP:dstIP → dur, pktF, Md(lenF), Mn(iatF), pktB, Md(lenB), Mn(iatB)

where T is the timestamp and, together with the srcIP and dstIP, forms a
unique ID to identify flows. Md() and Mn() stand for the statistical Mode and
Mean. The capture contains about 9 million flows in the given format, of which
we randomly sample a thousandth part (8630 flows) for our exploration and nor-
malize them with quantile normalization (the most consistent based on feature
distributions). Domain knowledge suggests that higher layer protocols, yet het-
erogeneously, may influence traffic shapes. We use this information as a tentative
benchmark for external validation (i.e., ARI). Analyzed flows account for: 82.5%
TCP, 15.1% UDP, 2.1% ICMP, and 0.3% of others protocols.

Results reveal very different performances in terms of the number of clusters
between HDBSCAN and SDOclust, although similar in validation scores:

HDBSCAN: 117 clusters, 322 outliers, Sil = 0.89, Sil(inliers) = 0.96, ARI = 0.32

SDOclust: 8 clusters, 53 outliers, Sil = 0.89, Sil(inliers) = 0.89, ARI = 0.31

In Fig. 4 we use tSNE to visualize solutions given by HDBSCAN, SDOclust
and protocol distribution. tSNE has proven excellent at capturing the structure
of high dimensional data, it performs projections based on local similarity that
are consistent with cluster shapes. From this perspective, SDOclust appears to
align more naturally with tSNE and the protocol labeling and number of clusters
than HDBSCAN. Nevertheless, by removing outliers and due to the high number
of clusters found, HDBSCAN shows a remarkable improvement in the internal
validation, this indicating its ability to find micro-clusters of high purity.
10 https://mawi.wide.ad.jp/mawi/samplepoint-F/2022/202207311400.html.
11 Extracted with Go-flows [28].

https://mawi.wide.ad.jp/mawi/samplepoint-F/2022/202207311400.html
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Fig. 4. tSNE proj. (colors are protocol), HDBSCAN and SDOclust clustering. (Color
figure online)

5.2 Energy Building Profiles

This second example applies clustering to reveal characteristic profiles in build-
ing energy performance. We use real electricity consumption data of the “CN
Rectorat” of the Polytechnic University of Catalonia (UPC) during 2022. This
data is openly published by the Sirena Project [24]12. We rearrange hourly con-
sumption data to process 365 vectors (days) of 24 features (hours). Note that
each vector is a time series, i.e., a daily energy consumption curve. Since raw
data is magnitude consistent and in order not to break dependencies between
features, we do not apply any normalization. Euclidean distances estimate simi-
larity as usual since we want to group samples considering both curve shape and
volume of electricity. SDOclust and HDBSCAN obtain the following results:

HDBSCAN: 8 clusters, 77 outliers, Sil = 0.28, Sil(inliers) = 0.48

SDOclust: 7 clusters, 16 outliers, Sil = 0.43, Sil(inliers) = 0.48

Again, differences in validation between SDOclust and HDBSCAN are small,
this time also with regard to discovered clusters (both in number and shapes,
Fig. 5). The similarity between both clusterings is ARI = 0.76. The deterioration
of HDBSCAN in the complete internal assessment (inliers and outliers) is due to
its tendency to find many outliers (21% in this case). As for the application, it
is tempting to think that discovered profiles correspond to the days of the week;
however, the close analysis reveals that they rather show a seasonal character.
Taking SDOclust clusters as a reference: (a) P2 is dominant throughout the
year; (b) P3 (winter-spring) and P6 (summer-autumn) are almost exclusively
for Mondays; (c) P4 occurs mainly in winter and early spring; (d) P1 mostly
in April; (e) P5 mainly from late spring to autumn, but excluding the summer
holiday period; (f) and P0 mainly during summer.

12 https://upcsirena.app.dexma.com/.

https://upcsirena.app.dexma.com/
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Fig. 5. Clustered profiles disclosed by HDBSCAN (top) and SDOclust (bottom)

These two examples with real data show how HDBSCAN is a method that
prioritizes cluster purity (then with a marked risk of overclustering), while SDO-
clust prioritizes generalization (therefore with a risk of underclustering).

6 Conclusions

In this paper we have presented SDOclust, a clustering algorithm based on the
unsupervised analysis approach pioneered by its predecessor SDO. We have
tested SDOclust with default parameters on 155 datasets comprising a wide
variety of sizes, dimensions and specific data challenges, yet obtaining excellent
results and outperforming the popular HDBSCAN and k-means-- algorithms.
Considering default settings, compared to HDBSCAN, which is arguably the
most efficient and autonomous alternative, SDOclust tends to find the main
top-level spatial partitions and, therefore, is significantly less prone to gener-
ate micro-clusters. Key features of SDOclust are: linear complexity, scalability,
parameters that are robust, intuitive and self-tuned, resistance to outliers and
noise, ability to discover non-convex clusters, use of simple and updateable mod-
els, and the generation of rich outputs for detailed post-analysis. Next planned
steps mainly involve an incremental version of SDOclust for streaming data.
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2. Böhm, C., Faloutsos, C., Pan, J.Y., Plant, C.: Robust information-theoretic clus-
tering. In: 12th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, KDD 2006, pp. 65–75. Association or Computer Machine, New
York (2006)

3. Campello, R.J.G.B., Moulavi, D., Zimek, A., Sander, J.: Hierarchical density esti-
mates for data clustering, visualization, and outlier detection. ACM Trans. Knowl.
Discov. Data 10(1), 5:1–5:51 (2015)

4. Chawla, S., Gionis, A.: k-means-: a unified approach to clustering and outlier detec-
tion. In: 2013 SIAM International Conference on Data Mining, pp. 189–197. SIAM
(2013)



198 F. Iglesias et al.

5. Chen, L., Xu, L., Li, G.: Anomaly detection using spatio-temporal correlation and
information entropy in wireless sensor networks. In: IEEE Congress on Cybermat-
ics: iThings, GreenCom, CPSCom, SmartData, pp. 121–128 (2020)

6. Cho, K., Mitsuya, K., Kato, A.: Traffic data repository at the wide project. In:
Proceedings of the Annual Conference on USENIX Annual Technical Conference,
ATEC 2000, p. 51. USENIX Association, USA (2000)
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17. Kärkkäinen, I., Fränti, P.: Gradual model generator for single-pass clustering. Pat-
tern Recogn. 40(3), 784–795 (2007)

18. von Luxburg, U., Williamson, R.C., Guyon, I.: Clustering: science or art? In: Pro-
ceedings of ICML Workshop on Unsupervised and Transfer Learning, vol. 27, pp.
65–79. PMLR (2012)

19. Van der Maaten, L., Hinton, G.: Visualizing high-dimensional data using t-sne. J.
Mach. Learn. Res. 9(2579–2605), 9 (2008)

20. McInnes, L., Healy, J., Astels, S.: hdbscan: Hierarchical density based clustering.
J. Open Source Softw. 2 (2017). https://hdbscan.readthedocs.io/en/latest/

21. Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn.
Res. 12, 2825–2830 (2011)
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Abstract. We investigate the k-closest pair problem in high dimensions,
that is finding the k ≥ 1 closest pairs of points in a set S ⊆ X in a
metric space (X , dist). This is a fundamental problem in computational
geometry with a wide variety of applications, including network science,
data mining, databases, and recommender systems. We propose an exact
algorithm with a controllable failure probability, thus allowing the user
to specify the desired recall. Our algorithm has expected subquadratic
running time under mild assumption on the distance distribution, relying
only on the existence of a Locality Sensitive Hash family for the metric
at hand. We complement our theoretical analysis with an experimental
evaluation, showing that our approach can provide solutions orders of
magnitude faster than current state-of-the-art data structures designed
for specific metrics.

1 Introduction

In this paper we study the k-closest pair problem: Given a set S ⊆ X from a
metric space (X ,dist), the task is to identify k pairs of distinct points in S × S
that are closest to each other. Solving this problem has numerous applications,
for example in network science [29], data mining [22], and databases [21].

A naüve solution is to employ an all-to-all comparison between the points in
S. This will result in O(|S|2) distance comparisons; if S has n elements, the run-
ning time will thus become quadratic. For metrics such as Manhattan distance or
Euclidean distance, there exist approaches for solving the closest pair problem
in d dimensions in time 2O(d)n logO(d) n [8,13], which lead to subquadratic run-
ning times if the dimensionality d is small. However, these data structures suffer
from the well-known curse of dimensionality because they have an exponential
dependence on d.

To design scalable closest pair algorithms with subquadratic running time
guarantees, research settled on allowing the results to be approximate. In a
strong theoretical sense, this means that if the closest pair is at distance r,
then an algorithm guarantees to return a pair at distance at most cr for some
approximation factor c > 1 (with some small failure probability). As we will
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discuss in the related work section, many industry-strength solutions use the
word more loosely to refer to the inexactness of results. The generally accepted
measure of the quality of such approaches is their recall, i.e., the fraction of cor-
rect pairs identified by the algorithm. These solutions usually do not give strong
guarantees on this quality measure. In this work, we propose a Locality-Sensitive
Hashing [18] (LSH) based solution with theoretical guarantees on the expected
achieved recall. In practice, this means that users only set two parameters: The
amount of memory available for the index, and the recall guarantee.

In this work, we propose an extension of the LSH-forest approach by Bawa
et al. [5] in the variant described by Aumüller et al. in [4]. In the latter work, the
authors describe a query algorithm that carries out a bottom-up traversal of the
LSH tries employed by the LSH forest with an adaptive stopping criterion. In
Sect. 3, we will describe a traversal approach to solve the k-closest pairs problem.
Intuitively, we first build build an LSH forest, which consists of L tries indexing
the dataset vectors according to their LSH hash codes. The closest pairs are
found by merging nodes in a bottom-up traversal of the trie, keeping track of
the best candidate pairs found so far. We prove that our algorithms adapt well
to the data distribution: Theorem 2 shows that up to some small additional cost
factors, the running time of the proposed algorithm is asymptotically equivalent
to an LSH-based clairvoyant algorithm that queries the part of the LSH forest
that minimizes the expected work by knowing the exact distance distribution.

In Sect. 4 we describe implementation choices surrounding the proposed app-
roach. For example, we store the trie as a flat array sorted by hash code to
support efficient merging of subtrees in the trie, make use of sketches to save the
expensive evaluation of distance computations, and discuss details of the par-
allelization strategy both for index building and the bottom-up traversal. The
experimental evaluation is presented in Sect. 5 and compares our approach to
several industry-standard baselines such as Meta Research’ popular FAISS [19]
library. We show the competitiveness of our approach to these approaches, in
particular under the light that we compare the results to an intensive grid search
for best parameters for the other approaches, whereas our approach just takes
the available space and a recall guarantee as parameters.

Related Work

LSH Approaches. Locality-sensitive hashing [18] is the de-facto standard for pro-
viding theoretically sound algorithms for the approximate near neighbor prob-
lem. Popular LSH functions include E2LSH [12] for Euclidean space, SimHash [9]
and Crosspolytope LSH [2] for inner product similarity (or cosine similarity) on
the unit sphere, and MinHash [6] and 1-bit MinHash [20] for set similarity under
Jaccard similarity. Traditionally, the LSH framework aims to solve the (c, r)-
near neighbor problem that requires to return a point at distance at most cr to
a query point if there exists a point at distance at most r (with some constant
probability). The k-NN problem can either be solved using a reduction to differ-
ent (c, r)-near neighbor problem instances [16], or via direct approaches such as
the LSH forest [5] and its variant [4] that we base our work on. In the database
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community, other directions to LSH-based indexing became very popular. These
approaches use locality-sensitive hash functions to project the data points to a
lower-dimensional space and index them using I/O-efficient tree data structures.
For example, LSBTree [24] projects the points to a lower dimension using LSH,
employs the Z-order to map points to a single value and indexes these values
using B-Trees. A more recent approach called PM-LSH [28] indexes the projected
points directly using the PM-Tree [23] without applying the Z-order.

Closest Pair Algorithms. One of the seminal papers on efficient solutions to the
closest pair problem in high-dimensional data is by Xiao et al. [26]. It mainly
focuses on Jaccard similarity but also discusses Cosine, Dice, and Overlap sim-
ilarity. At a high level, it maintains the input sets in a priority queue ordered
by an upper bound on the similarity it can attain with any other set, based on
prefix filtering. Sets are extracted in decreasing order of such an upper bound
and their similarity with other sets is computed by means of an inverted index
on the tokens. Several optimizations to this approach were introduced in the
recent paper [25]. Further improvements for sets under the overlap similarity
are discussed in [27]. In particular, they propose a variant of [26] that evaluates
more than one token for each point that is popped from the priority queue. While
this approach improves the performance in the case of the overlap similarity, the
authors discuss that for the Jaccard similarity it provides little benefit over [26].

For high-dimensional data using Euclidean distance, closest pairs can be
found both by the LSBTree [24] and by the more recent PM-LSH [28]. In par-
ticular, LSBTree maintains a guess on the smallest k-th distance, and generates
candidate pairs from the points whose difference of Z-values is below a threshold
derived from the current guess. Another approach for the Euclidean distance was
presented in [7]. Using random projections, points are mapped on the real line,
where candidate pairs are generated from intervals of consecutive projections.

In general metric spaces, [15] provides a solution used on the count M-tree
index, a variant of the classical M-tree data structure [11].

2 Preliminaries

Consider a metric space (X ,dist), and let k > 0 be an input parameter. Let
S2 := {(s, s′) ∈ S × S | s �= s′} be the set of distinct pairs in S.

Definition 1. The k-closest pairs in a set S ⊆ X are a sequence of distinct
pairs (r1, s1), . . . , (rk, sk) ∈ S2 such that: For all other pairs (r, s) ∈ S2 and for
all i ∈ {1, . . . , k}, dist(ri, si) ≤ dist(r, s).

Informally, the task is to find a set of k closest pairs of points in S. For k = 1,
this problem is called the closest pair problem.

Naüvely, the problem can be solved by enumerating all pairs of points in S2,
leading to O(|S|2) distance comparisons.
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In this paper we present randomized algorithms with probabilistic guar-
antees. This means that our algorithm receives two input parameters k and
δ ∈ (0, 1). If a pair (r, s) ∈ S2 is a k-closest pair, then it is output by the algo-
rithm with probability at least 1 − δ. If the quality of the solution is measured
using recall, the fraction of correct pairs reported by the algorithm, we expect a
recall of 1 − δ.

Definition 2 (Locality-Sensitive Hashing [18]). Let (X ,dist) be a metric
space, let T be a set, and let H be a family of functions h : X → T . For positive
reals r1, r2, q1, q2, with q1 > q2, H is (r1, r2, q1, q2)-sensitive if for x, y ∈ X and
h sampled uniformly at random from H we have that:

– dist(x, y) ≤ r1 ⇒ Pr[h(x) = h(y)] ≥ q1
– dist(x, y) ≥ r2 ⇒ Pr[h(x) = h(y)] ≤ q2

As a technical detail, we assume that the LSH family is monotonic, i.e.,
its collision probability function is decreasing with the distance. Moreover, we
assume that we can evaluate the probability of collision at a certain distance.1

We denote the collision probability function with p : R → [0, 1] and for ease of
notation use p(x, y) := p(dist(x, y)) for x, y ∈ X . Most popular LSH families
have this property, such as Euclidean LSH [12] for Euclidean space, random
hyperplane hashing [9] and Cross-Polytope hashing [2] for the d-dimensional unit
sphere under inner product similarity (or cosine similarity), or 1-bit MinHash
described by Li and König in [20] for set similarity under the Jaccard similarity.
Since we use LSH functions as a black-box, our results hold for all LSH families
that have this property and are not restricted to special cases.

In [4], Aumüller et al. introduced PUFFINN, a highly-optimized implementa-
tion of an LSH-based k-nearest neighbor search algorithm. Their work builds
upon the LSH forest data structure of Bawa et al. [5] and the adaptive search
mechanism described by Dong et al. in [14]. Since our work extends their data
structure, we provide a recap of how their data structure works next. See [4] for
more details.

Given a set S ⊆ X , two parameters L,K ≥ 1, and access to an LSH family
H, the data structure consists of a collection of L LSH tries of max depth K.
The LSH tries are indexed by j = 1, . . . , L. The jth LSH trie is built from the
set of strings

{(h1,j(x), . . . , hK,j(x)) | x ∈ S}. (1)

where hi,j ∼ H. The trie is constructed by recursively splitting S on the next
(ith) character until |S| ≤ i or i = K + 1 at which point we create a leaf node
in the trie that stores references to the points in S.

Example 1. Figure 1 gives an example with a small set of points in the
Euclidean plane, reporting the solution of a top-5 global join. The right hand
side of the figure gives an example for an LSH forest with L tries initialized

1 It will be evident from the analysis of the algorithms that an estimate on the collision
probability function will be sufficient in practice.
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with the dataset. Each trie has depth K. Paths from the root to the leaves are
labelled with the hash values of the corresponding points. For instance, in the
first trie point d has hash value (0, 1), while point f has hash value (2, 2).

Fig. 1. Left: A set of 12 points in the plane with ellipses marking the 5 closest pairs.
Right: L LSH tries of depth K with example distribution of points

Given a query point q ∈ X and a failure probability δ, PUFFINN traverses each
trie j to find the leaf corresponding to the string (h1,j(q), . . . , hK,j(q)). Starting
from that, it traverses the tries in a bottom-up fashion and keeps track of the
current kth closest point x′

k. Let p be the probability of a collision under random
choice of the LSH of two points at distance dist(q, x′

k). If the current depth in
the tries is i, and ln(1/δ)/pi is smaller than the current index of the trie that
is inspected, the algorithm terminates and returns the closest k points as the
answer to the query. [4, Lemma 3] shows that the stopping criterion guarantees
that each point of the k nearest neighbors of q is found with probability at
least 1 − δ. Their Lemma 4 states that the algorithm asymptotically inspects
O(OPT) candidate points in expectation, where OPT is the expected number of
candidate points of a “clairvoyant” LSH-based algorithm that knows the distance
distribution.

3 Algorithm, Analysis, and Problem Difficulty

In the following, we describe our algorithm to compute k closest pairs, extend-
ing the single query algorithm proposed in [4]. We first introduce some general
concepts.

The algorithm makes use of a priority queue to keep track of the current k
closest candidate pairs. This priority queue is implemented as a MaxHeap which
associates a pair of points (x, y) ∈ X 2 with their distance dist(x, y). The number
of elements in each priority queue will be at most k, i.e., if the priority queue
has k elements and we insert an element, the element with maximum priority is
removed. To make this assumption explicit, we call it a k-priority queue. Each
operation in such a priority queue can be implemented to run in time O(log k),
for example using a binary heap.

Fix a set S ⊆ X and two parameters L,K ≥ 1. First we build L LSH tries of
depth at most K as discussed in the previous section. For x, y ∈ S, let x ∼i,j y
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Algorithm 1: closest-pairs(k, δ)
1 PQ ← empty k-priority queue of unique (pair of points, dist)
2 for i ← K, K − 1, . . . , 0 do
3 for j ← 1, 2, . . . , L do
4 foreach F ∈ Si,j do
5 foreach unchecked (x, y) ∈ F do
6 if PQ.max() ≥ dist(x, y) then
7 PQ.insert((x, y), dist(x, y))

8 if i == 0 ∨ (PQ.size() == k ∧ j ≥ ln(1/δ)/p(PQ.max())i) then
9 return PQ

if (h1,j(x), . . . , hi,j(x)) ∈ T i equals (h1,j(y), . . . , hi,j(y)) ∈ T i, i.e., x and y have
the same length-i prefix in the jth LSH trie. Let Si,j denote the partition of
points in S under the equivalence relation ∼i,j . Since a trie can be built in linear
time in the concatenated length of the input strings, cf. (1), we summarize the
properties of building the trie data structure as follows.2

Fact 1. Given K and L, building an LSH trie for n keys carries out O(nKL)
hash function evaluations to build the input strings, and takes time O(nKL) and
uses O(nL) words of space to build the L tries representing these strings.

Algorithm 1 describes the k-closest pair algorithm on a set S ⊆ X carried
out on an LSH trie data structure with parameters K,L ≥ 1. Given k ≥ 1 and
δ ∈ (0, 1), the algorithm initializes an empty k-priority queue. Using this data
structure, the algorithm keeps track of the k closest pairs of points so far. We
assume that S admits a total order (e.g., the indices of the keys in the set) and
identify two points x, y ∈ X as the pair (x, y) with x < y.

For i ← K, the algorithm carries out all-to-all comparisons in each of the
leaves, over all L tries. Next, the trie is traversed in a bottom-up fashion. For
each node n on level i in trie j, i.e., the node that represents one set F in Si,j ,
we carry out an all-to-all comparison between those (x, y) ∈ F that have not
been in the same subset in Si+1,j . After trie j has been explored, we check the
stopping criterion.

Example 2. Restricting Fig. 1 to the first trie presented there, the algorithm
carries out 3 + 3 + 1 + 1 = 8 distance computation in the leaves of that trie.
On the level higher up, it carries out 3 + 3 + 6 + 2 = 14 distance comparisons.
We observe that S2,0 (the first trie at largest depth) has points {a, b, c} and {e}
as part of the partition, while S1,0 has the set {a, b, c, e} and S0,0 contains all
twelve points in a single set.

2 Note here that the keys are the hash codes of the points in S. In many cases, a
hash function can be evaluated in time O(d), but many other scenarios exist. For
example for set similarity, the MinHash value can be computed independently of the
universe size in the size of the set at hand.



206 M. Aumüller and M. Ceccarello

To implement Algorithm 1, the leaves, i.e., all sets in SK,j , are stored as
sets using hashing. When traversing the trie, all-to-all comparisons are carried
out between all pairs of child nodes and the sets are merged together. In this
way, each distance computation gives rise to two potential priority queue oper-
ations taking O(log k) time. We charge the cost of merging the child nodes to
these all-to-all comparisons. Over all iterations of the nested loop, checking the
termination criterion takes time O(KL). We summarize this discussion in the
following corollary. We separate the potential expensive distance computations
from all other operations to make the statements more precise.

Corollary 1. Let S ⊆ X with |S| = n, and let K,L, k ≥ 1. Let C be the
number of pairs (x, y) for which a distance is computed in Line 6 of Algorithm 1
in an LSH forest of depth K with L tries. The algorithm can be implemented
to carry out O(C) distance computations and all other operations run in time
O(C log k + KL).

3.1 Analysis

For a dataset S ⊆ X , identify by the sequence OPT = ((x1, y1), . . . , (xk, yk)) a
sequence of k closest pairs, and denote the best candidates found by Algorithm 1
as OUT = ((x′

1, y
′
1), . . . , (x

′
k, y′

k)).

Theorem 1. Given S ⊆ X , k ≥ 1, and δ > 0. Then

Pr[(x, y) ∈ OUT ] ≥ 1 − δ ∀(x, y) ∈ OPT.

Proof. Fix a pair (x, y) that is part of the output. There are two ways that the
algorithm can return in Line 9. First, it can reach level 0, which means that it
carried out a linear scan of all pairs of points. Second, it can return because it
inspected the jth trie on level i and j ≥ ln(1/δ)/p(x′

k, y′
k)i. By the monotonicity

of the LSH, p(x′
k, y′

k) ≤ p(x, y), because dist(x′
k, y′

k) ≥ dist(x, y). The probability
that y did not collide with x in all j tries is

(
1 − p(x, y)i

)j ≤ (
1 − p(x, y)i

)ln(1/δ)/p(x′
k,y′

k)
i

≤ exp
(− ln(1/δ) · p(x, y)i/p(x′

k, y′
k)i

)

≤ exp(− ln(1/δ)) ≤ δ,

where the second-last inequality follows by the monotonicity of the LSH function,
and we also used the inequality 1 − z ≤ exp(−z) for z ≥ 0.

While Corollary 1 tells us that the running time of the algorithm is asymp-
totically equivalent to the number of pairs that are compared to each other, it
is not clear how many such pairs will be inspected. To this end, let us define the
work of an optimal, clairvoyant LSH-based closest pair algorithm that knows the
distance distribution between all pairs of points. Let (xk, yk) be a k closest pair
of points of maximum distance. We define

OPT(L, K, k, δ) = min

{
ln(1/δ)

p(xk, yk)i

⎛
⎝i +

∑
x,y∈S

p(x, y)i

⎞
⎠

∣∣∣∣∣ 0 ≤ i ≤ K,
ln(1/δ)

p(xk, yk)i
≤ L

}
(2)
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as the expected cost of the LSH-based algorithm that knows the exact distance
distribution. The cost on level i includes that each pair of points in the top-k set
is found with probability at least 1− δ if we inspect j ≥ ln(1/δ)/p(xk, yk)i tries.
The expected cost of searching one LSH trie at depth i is i +

∑
x,y∈S p(x, y)i. In

our expression for the expected query time we use a unit cost model that counts
distance computations. As shown in Corollary 1, counting distance computations
is asymptotically equivalent to the running time of the algorithm.

The following theorem relates the running time of Algorithm 1 to the running
time of the optimal algorithm that knows the full distance distribution.

Theorem 2. Given a dataset S and parameters L,K, build the LSH trie data
structure for S. Given k and δ such that ln(k/δ) ≤ L, with probability at least
1 − δ, Algorithm 1 computes the k closest pairs in S in expected time

O (OPT(L,K, k, δ/k) + L(k + K) + nKL) .

Before proceeding with the proof, we remark that the analysis compares the
expected time to the clairvoyant variant in the case that we set the failure
probability so low that the result is exact (with probability at least 1 − δ).
Proof. From Fact 1, building the trie takes time O(nKL). Setting the failure
probability to δ/k, Algorithm 1 returns the exact k closest pairs with probability
at least 1 − δ using a union bound. Conditioning on this event, the algorithm
will stop at the largest i such that ln(k/δ)

p(xk,yk)i
≤ L. Denote this level with i′, and

let i∗ be the level used to minimize the work in (2). The expected running time
of Algorithm 1 can be bounded by the term

ln(k/δ)

p(xk, yk)i′

(
i′ +

∑
x,y∈S

p(x, y)i
′
)

+

(
L − ln(k/δ)

p(xk, yk)i′

) (
i′ + 1 +

∑
x,y∈S

p(x, y)i
′+1

)
,

(3)
where the first term bounds the work done on level i′, and the second term

bounds the work done on level i′ + 1 on the tries not inspected on the level
above. Let T contain all pairs in S2 that are not k closest pairs. We start by
bounding the first term of the summation and continue as follows:

ln(k/δ)
p(xk, yk)i′

⎛

⎝i′ +
∑

x,y∈S

p(x, y)i′

⎞

⎠ ≤ L(k + K) +
ln(k/δ)

p(xk, yk)i′

∑

(x,y)∈T

p(x, y)i′

(i)
≤L(k + K) +

ln(k/δ)
p(xk, yk)i∗

∑

(x,y)∈T

p(x, y)i∗

≤ L(k + K) + OPT(L,K, k, δ/k),

where (i) follows from the monotonicity of the LSH collision probability function.
The theorem follows by observing that the second summand in (3) is at most a
factor of 1/p(xk, yk) = O(1) larger than the first term.

We remark that the running time of Theorem 1 can be as high as O(n2) in
the worst case. This is true because of the general nature of the problem (for
example, by setting k =

(
n
2

)
), or because of the hardness of the data distribution.
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3.2 Measuring the Difficulty of Closest Pairs

Ahle et al. [1] defined the expansion around the query as a difficulty measure to
bound the running time of an LSH-based adaptive query algorithm. Aumüller
and Ceccarello gave empirical evidence in [3] that the expansion predicts the
indexing difficulty of datasets well in general. For the closest pair problem, we
consider the following definition:

Definition 3. Given S ⊆ X and k, k′ ≥ 1 with k < k′, let ((xi, yi))(xi,yi)∈S2 be
a sequence of pairs (x, y) ∈ S2 ordered by their distance. Then contrastk|k′(S) :=
dist(xk′ ,yk′ )
dist(xk,yk)

is the contrast of the kth to the k′th closest pair.

We use this definition of contrast to bound the running time of the optimal,
clairvoyant algorithm. By Theorem 1, this also provides a bound on the expected
running time of Algorithm 1.

Lemma 1. Given S ⊆ X with |S| = n, an LSH family H, integers K,L, k ≥ 1,
and δ > 0, let c∗ = contrastk|2k(S). Let p1, p2 be the collision probability of the
k and 2k closest pair, respectively, for H. Let ρ = ρ(c∗) = log(1/p1)

log(1/p2)
and assume

that L = Ω
(
n2ρ/kρ

)
. Then OPT(K,L, k, δ) = O

(
n2ρk1−ρ ln(1/δ)

)
.

Proof. Let S′ be the set of all pairs that are not among the 2k closest pairs. As
discussed before, the expected cost on level i of the clairvoyant algorithm is

ln(1/δ)
pi
1

⎛

⎝i +
∑

x,y∈S

p(x, y)i

⎞

⎠ ≤ ln(1/δ)
pi
1

⎛

⎝i + 2k +
∑

(x,y)∈S′
p(x, y)i

⎞

⎠

≤ ln(1/δ)
pi
1

(
i + 2k +

(
n

2

)
pi
2

)
.

Setting i = log(n2/k)
log(1/p2)

,
(
n
2

)
pi
2 ≤ k and 1/pi

1 = (n2/k)
log 1/p1
log 1/p2 = n2ρ/kρ.

For Euclidean space, ρ(c) = 1/c2, so their exists a level for the clairvoyant
algorithm with subquadratic expected running time O(n2/c2k1−1/c2 ln(1/δ)). As
shown in Theorem 2, Algorithm 1 has the same asymptotic running time up to
logarithmic factors. Note that c ≥ √

2 yields sublinear running time, because the
build time of the trie data structure is disregarded. The expected running time
of Algorithm 1 is at least Õ(nKL) for building the trie.

If the contrast is small, the space requirement on L in Lemma 1 is large.
Let c∗ be the smallest value of c such that L ≥ n2ρ(c∗)/kρ(c∗), and let d∗ be the
distance of a k-th closest pair. We can carry out the same analysis as in the proof
of Lemma 1. In each trie, we have expected cost k for the k closest pairs, and we
expect to see no more than

(
n
2

)
p(c∗d∗)i ≤ k pairs at distance larger than c∗d∗ for

the choice i = log(L)/ log(1/p1)�. Each pair with a distance in [d∗, c∗d∗] collides
with probability at most pi

1, so overall all tries we expect to see each pair once.
Thus, the expected number of pairs inspected is O ((Lk + Nc∗,d∗(S)) ln(1/δ)) =
O

((
n2ρ(c∗)k1−ρ(c∗) + Nc∗,d∗(S)

)
ln(1/δ)

)
, where Nc∗,d∗(S) is the number of pairs

with distance in [d∗, c∗d∗].
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4 Implementation Choices

Our algorithms are implemented in the framework provided by PUFFINN [4].

Trie Data Structure. We focus on supporting the Cosine and the Jaccard simi-
larity. For these two similarity functions we choose as hash functions 1-bit Min-
Hash [20] and SimHash [9], respectively. Both these hash functions output single
bits: it is thus very natural to represent the strings of hash values described
in Sect. 2 as bitstrings, packing the bits into machine words. We also support
more complex hash functions such as Crosspolytope-LSH [2]. For this LSH fam-
ily, we view the output hash code (which is an integer {0, . . . , 2d − 1}) as a
length-�log d + 1� bitstring and concatenate a small number of hash functions.
For intermediate positions in the trie, i.e., those where we use only part of the
output of a single LSH, we estimate the collision probabilities by sampling. Since
evaluating O(nKL) hash values is time-demanding, PUFFINN supports the ten-
soring and pooling approach described by Christiani in [10].

By viewing the output of the LSH as a bitstring, we can optimize the trie
implementation. Rather than using a pointer-based implementation, we store
point indices, paired with the corresponding bitstring hash values, in a flat array.
The array is then sorted lexicographically by hash value, leading to a more com-
pact and cache efficient data structure. Furthermore, to speed up index construc-
tion we rely on radix-sorting, given that the bitstring hash values can be also
interpreted as integers. In this implementation of the trie, the nodes in the same
subtrie at a given depth i are all the consecutive entries of the array sharing the
same length-i prefix.

Sketching. Finally, to further prune similarity computations we use sketching
with a similar setup as the original PUFFINN paper [4]. Each point is associated
with a different 64-bit sketch in each repetition, computed using either 1-bit
MinHash or SimHash, depending on the similarity function. Consider now two
colliding points x and y, and let sk be the highest distance of any pair currently
in the k-heap to be possibly updated, if d(x, y) < sk. Let τ be the expected
number of different bits in the sketches of points at distance sk. Before evaluating
the similarity of x and y, we first check the number of different bits in the
corresponding sketches: if such difference is larger than τ , the similarity between
x and y is not computed at all. This has the effect of reducing the number of
similarities being evaluated, at the cost of slightly reducing the recall of the
algorithm.

In the following, we refer to the implementation of our algorithms as
PUFFINN-join.



210 M. Aumüller and M. Ceccarello

Table 1. Datasets used in the experimental evaluation. The last two columns report
the relative contrast at 100 pairs and 10 000 pairs [17]

dataset n dimensions RC @ 100 RC @ 10 000

DeepImage 10 000 000 96 7 615.56 2 343.25

Glove 1 193 514 200 38.04 5.15

DBLP 2 773 660 4 405 478 22.52 7.83

Orkut 2 732 271 8 730 857 20.97 2.99

5 Evaluation

This section reports on the results of our experiments, which are tailored to
answer the following questions: (Q1) How does our approach compare with the
state of the art? (Q2) How does the amount of available memory influence the
performance of our algorithm? (Q3) What is the relationship between intrinsic
dimensionality measures and the performance of the algorithm?

Experimental Setup. Experiments were run on 2× 14-core Intel Xeon E5-2690v4
(2.60 GHz) with 512 GB RAM using Ubuntu 16.10 (kernel 4.4.0). The code is
available at https://github.com/Cecca/puffinn, along with all the scripts to suit-
ably preprocess the datasets.

We focus our evaluation on two metrics: the running time and the recall.

Datasets. Information about the datasets used in this evaluation is reported in
Table 1. In particular, we consider two datasets with cosine similarity (Glove
and DeepImage) and two datasets under Jaccard similarity (DBLP and Orkut).

In particular, for all datasets we report a summary of the Relative Con-
trast [17]—i.e. the ratio between the average distance and the k-th dis-
tance—which will be useful in interpreting the results [3]. In particular, we expect
DeepImage to be easier than Glove, and both to be easier than the two Jaccard
datasets. Furthermore, the relative contrast of DeepImage is extremely high.
This means that the top pairs of globally closest points are much closer than
the average pair, meaning that this dataset is expected to be considerably easier
than the others for the global top-k problem.

Baselines. Under the Jaccard similarity we compare with XiaoEtAl [26], whereas
for the cosine similarity3 we consider the LSB-Tree approach [24, Algorithm CP3]
Furthermore, for cosine similarity we consider a baseline that uses the HNSW
implementation provided by FAISS [19], querying the k-nearest neighbors of each
point and then selecting the k closest among the resulting pairs.

3 We omit PM-LSH [28] as its closest-pair implementation is unavailable and as
we were unsuccessful in both implementing it ourselves and in reaching out to the
authors.

https://github.com/Cecca/puffinn
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Parameter Choices. For our approach we set the memory given to the index in
the range 256MB to 32GB, by powers of two, corresponding to up to L ≈ 2000,
depending on the dataset, for fixed K = 24. As for the target recall, we set it to
0.8, 0.9, and 0.99. For HNSW we test M ∈ [32, 48], efConstruction ∈ [100, 500],
efSearch ∈ [k8, k16] for a top-k join. For LSB-Tree we test m up to 8, whereas
XiaoEtAl takes no parameters. We remark that this is one of the most relevant
differences between our approach and the state of the art: while we can specify
a desired target recall, all other approaches require to experiment with several
combinations of parameters before finding a configuration suitable for the desired
quality level.

Table 2. Running times. Missing values are for runs that timed out after 8 h. The
last column reports the time for the index construction (not applicable to XiaoEtAl),
which is also included in the total time reported in the other columns

dataset algorithm Total time (s) for different k indexing (s)

1 10 100 1 000 10 000

Glove faiss-HNSW 68.1 132.8 551.7 – – 63.8

LSBTree 18.2 136.7 2028.4 2127.4 959.3 3.1

PUFFINN 5.0 5.0 5.0 5.1 6.3 4.7

DeepImage faiss-HNSW 299.7 533.8 2632.9 – – 255.4

LSBTree 112.0 93.4 114.6 176.2 368.6 13.6

PUFFINN 37.2 37.5 37.1 37.4 37.4 18.9

DBLP XiaoEtAl 9.3 14.0 9.8 12.1 58.3 0.0

PUFFINN 4.9 4.9 4.9 4.9 5.0 4.2

Orkut XiaoEtAl 118.0 122.0 142.3 1170.3 – 0.0

PUFFINN 24.7 24.8 24.7 24.5 73.3 23.9

Comparison with Baselines. In the first set of experiments we measure the run-
ning time required by different algorithms to achieve recall at least 0.9. The
results are reported in Table 2. On all datasets, PUFFINN-join runs faster than
the baselines. Furthermore, observe that for k ≤ 1000 the running time of our
algorithm remains basically unaffected by the number of pairs returned. This is
because all of the runtime, in this setup, is spent building the index, which is
independent of the value of k. Finally, observe that compared to LSBTree, our
approach is orders of magnitude faster.

Space/Time Tradeoffs. In Fig. 2 we report the space/time tradeoff of our algo-
rithm, at recall 0.9 and k ∈ {100, 10 000} . In particular, we report on the total
time (Fig. 2a), which is comprised of the time to build the index (Fig. 2b), and
the time to run the join (Fig. 2c). The top row of plots reports the results for
k = 100, the bottom row for k = 10 000.
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Fig. 2. Space/time tradeoff of our algorithm at guaranteed recall 0.9 and k ∈
{100, 10 000}, for the global top-k problem

Observe that the indexing time (Fig. 2b) increases with the space given to the
index, as expected. Furthermore, we have the Jaccard-similarity datasets being
processed more slowly than the cosine-similarity datasets: this is a consequence
of the longer time required to compute MinHash compared to SimHash.

For k = 100, on all datasets, the best performance is attained by the configu-
rations using the least space. The reason is in the high relative contrast values of
the 100th top pair (see Table 1), which imply that in the few repetitions required
to confirm the top pairs there are few other collisions to check. In fact, the index
construction time dominates the join time (Fig. 2c) by a large margin.

In contrast with this for k = 10 000 we have that for Orkut increasing the
memory usage gives better performance. In fact, the 10 000th pair of this dataset
has relative contrast of just about 3, meaning that our approach requires either
many repetitions or short hash values to confirm it: using more memory allows
to use more repetitions on longer hashes, thus reducing the number of collisions
to be evaluated. Using too little memory makes the join part of the algorithm
dominate on the index construction part, enabling the tradeoff that is observed
in the figure.
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Abstract. The rapid development of deep learning and artificial intelli-
gence has transformed our approach to solving scientific problems across
various domains, including computer vision, natural language process-
ing, and automatic content generation. Information retrieval (IR) has
also experienced significant advancements, with natural language under-
standing and multimodal content analysis enabling accurate information
retrieval. However, the widespread adoption of neural networks has also
influenced the focus of IR problem-solving, which nowadays predomi-
nantly relies on evaluating the similarity of dense vectors derived from
the latent spaces of deep neural networks. Nevertheless, the challenges
of conducting similarity searches on large-scale databases with billions
of vectors persist. Traditional IR approaches use inverted indices and
vector space models, which work well with sparse vectors. In this paper,
we propose Vec2Doc, a novel method that converts dense vectors into
sparse integer vectors, allowing for the use of inverted indices. Prelimi-
nary experimental evaluation shows a promising solution for large-scale
vector-based IR problems.

Keywords: Inverted Index · Approximate Search · High-Dimensional
Indexing · Very Large Databases · Surrogate Text Representation

1 Introduction

Deep learning and artificial intelligence have significantly changed the scientific
research landscape, impacting a wide range of fields such as computer vision, nat-
ural language processing, and data science. One field that has experienced a pro-
found transformation is Information Retrieval (IR), where the ability to retrieve
information accurately and across different modalities has greatly improved. This
has been made possible by the advent of neural networks, which have simplified
IR problems into searches for vector similarities in latent spaces generated by
deep neural networks. These advances have opened up new possibilities for the
development of more sophisticated and accurate search systems.
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When it comes to indexing billions or trillions of data descriptors, there
is limited consensus on which algorithms are the most effective at this scale
versus their hardware cost [14]. However, when dealing with large-scale databases
containing billions of data objects, such as those found on the web, common
approaches of comparing query feature vectors with data feature vectors can
become computationally infeasible.

In the context of textual documents, full-text search engines, like Elastic-
search, Solr, or Lucene, have been extensively used and tested in various domains
and have already proven to be effective for large-scale indexing and searching.
They leverage mature technology and infrastructure, offering scalability, flexibil-
ity in querying, and a rich set of features. For these reasons, over the years, we
have explored various approaches to enable the searching of non-textual data by
transforming it into text format, which can then be indexed and queried using
off-the-shelf text search engines. We have called this family of approaches as
Surrogate Text Representation (STR) [2,3,6].

In this short paper, we propose Vec2Doc, an alternative approach that trans-
forms dense vectors into sparse representations that can be efficiently indexed
using inverted indices. This technique allows us to take advantage of the well-
established performance of inverted indices while also benefiting from the power
of deep learning-generated dense vectors. Our method is specifically designed
for dense vectors and allows easy indexing and retrieval using standard search
engines that employ inverted indices. It extends the Scalar Quantization (SQ)
STR approach [2] with a simple but effective idea to expand the codebook used
for indexing, leading to improved performance of the inverted index.

The remainder of this paper is structured as follows: Sect. 2 provides an
overview of related work, Sect. 3 presents the methodology of Vec2Doc, Sect. 3.1
details the experimental setup and results, and Sect. 4 concludes the paper and
outlines directions for future research.

2 Background and Related Work

Most of the approaches for approximate metric search rely on transforming data
objects into a different space where the search can be performed more efficiently.
This is especially relevant when the original space has a high intrinsic dimen-
sionality, when the dataset being searched is large, or when the actual distance
to compare two data objects is computationally expensive. Examples of such
techniques include transforming metric objects into binary sketches [7,8], per-
mutations [4,16], and other pivot-based representations [9,15].

In 2010, Gennaro et al. [6] introduced a technique that utilized the distances
between data objects and a set of reference objects (pivots) to map the data
into a textual representation. Their objective was to convert a global descriptor
into a sequence of terms resembling a text document, which could be processed
by a text search engine such as Lucene. To achieve this, the mapping should
be designed to approximate the original distance function, ensuring that the
distance between textual documents and queries reflects the original similarity
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between data objects and data queries. The main advantage of encoding data
objects as text was the ability to leverage off-the-shelf text retrieval engines
for performing similarity searches. This approach was initially referred to as the
Surrogate Text Representation (STR) approach. However, over the years, various
techniques have been proposed to transform descriptors into textual documents,
and the term STR has come to encompass the broader family of approaches
of this nature [1–3]. Some of these techniques have been designed to work on
general metric spaces, while others are specialized for vector spaces.

In this work, our focus is on STR techniques specialized to index and search
dense real vectors, such as data descriptors extracted with deep neural networks.
These techniques can be mathematically formalized as space transformations
of the form f : R

d → N
m, where each original vector y is mapped into an

integer-valued vector y. The key idea is to interpret y as a term frequency vector
based on a synthetic codebook C = {τ1, . . . , τm} of m terms. Consequently,
the associated text document for vector y is obtained by concatenating the
codebook terms with space separators, where each term τi is repeated a number
of times equal to yi. We indicate with Tf,C(·) the overall transformation from
the original vectors to the text documents, which depends on both the function
f and the used codebook C. For example, if f(y) = y = [3, 1, 0, 2] and C =
{“A”, “B”, “C”, “D”}, the resulting text document associated with y would
be Tf,C(y) =“A A A B D D”. The rationale behind this approach is that the
abstract transformation f corresponds to the function that precisely generates
the vectors used internally by the search engine based on the vector space model
[12], particularly in the case of a simple TF-weighting scheme.

To ensure compatibility with text retrieval engines and the efficiency of the
inverted index, it is important that f generates a sparse vector with non-negative
components. Various STR approaches exist, differing in their specific methods
for handling negative values, achieving sparsification, and performing the final
real-to-integer discretization. For example, in [2,3], the use of the Concatenated
Rectified Linear Unit (CReLU) activation function is employed to prevent the
presence of negative values in the transformed vectors. In [3] a Voronoi partition-
ing scheme is employed, where different codebooks are utilized for each partition.
This approach aims to increase the sparsity of the transformed data, leading to
more efficient indexing and retrieval processes.

3 Vec2Doc

The Vec2Doc is a generalization of the Scalar Quantization STR approach [2].
The SQ transforms a dense vector y ∈ R

d into a term frequency vector y ∈ N
m

through four main steps:

1. Centering and Random Orthogonal Projection: y1 = R(y − µ) ∈ R
d where

R ∈ R
d×d is a random orthogonal matrix and µ ∈ R

d is set to center the
data to zero mean. This step is used to uniform the distribution of vector
components. In particular, the random rotation helps distribute the informa-
tion along all the components of the vector in order to limit the presence of
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unbalanced posting lists in the final inverted file (important for the efficiency
of inverted indices). In [2] the centering operation is applied only to the data
object but not to the queries in order to preserve dot-product similarities.

2. Positivization: y2 = CReLU(y1) ∈ R
2d, where the Concatenated Rectified

Linear Unit transformation [13] is applied to transform the vector into a
positive one. The CReLU operation involves concatenating both the origi-
nal vector and its negation and then setting all negative values to zero, i.e.,
CReLU(v) = max([v,−v],0) where the max is applied element-wise.

3. Sparsification: y3 = gγ(y2) ∈ R
2d where gγ is a component-wise thresholding

function, i.e., gγ(x) = x if x > γ, 0 otherwise.
4. Integer Quantization: y4 = �sy3� ∈ N

2d where �·� denotes the floor function
and s is a multiplication factor > 1 that works as a quantization factor to
transform float components into integer.

The primary drawback of this approach is its limitation in terms of the dimen-
sionality of the resulting term frequency vectors, which is fixed at 2d, where d
represents the dimensionality of the original vector. Consequently, the vocabu-
lary size necessary for indexing the data with inverted files remains constant,
posing an inconvenience when dealing with large datasets. To clarify further, if
the number of posting lists is fixed, the length of each posting list may become
excessive for large datasets, ultimately impacting search efficiency negatively.

To overcome this issue, in [3] we proposed the VP-SQ approach where the
data is clustered in Voronoi cells and a different vocabulary can be used for each
cell. In this paper, instead, we propose a simple but effective idea to extend
the vocabulary size without using centroids. Nevertheless, our new Vec2Doc
approach can be used alone or in combination with the Voronoi partitioning
strategy to improve performance further.

The Vec2Doc transformation employs a semi-orthogonal transformation to
expand the dimensionality of the vectors before the real-to-integer discretization
process. Specifically, the initial step of the SQ approach (step 1. described above)
is replaced with the following transformation:

y1 = Ay ∈ R
m, (1)

where A ∈ R
m×d is a semi-orthogonal matrix (i.e., AT A = I) with m > d. This

transformation is applied to both data and query vectors without centering the
former. The purpose of this transformation is to increase the vector dimension-
ality while preserving the dot product:

< Av, Aw >= vT AT Aw = vTw =< v,w > .

Moreover, since the semi-orthogonal matrix is randomly chosen, it behaves sim-
ilarly to a random rotation, effectively distributing information across the dif-
ferent dimensional components.

To sample a random semi-orthogonal matrix, we follow [11] and apply the
following recurrent formula to a random normally-distributed real-valued matrix

A ← A − 1
2
A

(
AT A − I

)
(2)
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that efficiently converge into a semi-orthogonal matrix in a few iterations.

3.1 Experiments

For evaluation, we adopt two approximate nearest neighbor benchmarks, which
are Glove-100 [10] and NYTimes-256 [5], collecting ∼ 1M 100-dimensional and ∼
280k 256-dimensional real-valued vectors as search set respectively. Both provide
10k test queries and desired results (100 nearest neighbors). We L2-normalize
all vectors to perform cosine similarities as inner products.

We measure the search effectiveness with the Recall@10 metric. For efficiency,
we measure the search cost in an implementation-independent way by counting
the number of accessed posts in the posting lists in the inverted index, which
also corresponds to the number of multiply-add operations needed to compute
scores for all data points. In addition, we measure the index size as the total
number of posts in the posting lists.

First, we compare our improved SQ scheme against the original one proposed
in [2] in Fig. 1. Each line is obtained by choosing the desired vocabulary size
(i.e., the number of rows m of the semi-orthogonal transformation A in Eq. 1)
and varying the threshold γ that controls the sparsification level. We set the
quantization factor s = 105 for all experiments. We note that, as m increases, the
obtained recall increases when considering a fixed search cost, thus achieving a
better recall-speed trade-off on both benchmarks. However, this is paid in terms
of space; as m increases, the index size increases to maintain the same recall
values. We also observe diminishing returns as m increases.

Next, we test our proposal in combination with the Voronoi partitioning
scheme proposed in [3]. In brief, the search set is divided into c partitions via
k-means at index time, and at query time, only the n partitions having the
closest centroids to the query are accessed. In each partition, whichever STR
technique can be adopted as long as each partition has its vocabulary that
does not share tokens with other partitions. In Fig. 2, we compare the Voronoi-
partitioned version of our proposal with the Voronoi-partitioned SQ method
(VP-SQ). Each line is obtained by varying all the method parameters (num-
ber of centroids c ∈ {128, 256, 512, 1024, 2048, 4096, 8192}, number of partitions
accessed at query time n ∈ {1, 2, 4, 8, . . . , c}, plus the parameters of the under-
line STR technique, i.e., sparsification threshold γ, vocabulary size m) and by
keeping only the configurations belonging to the Pareto frontier. Due to the
large number of parameter configurations to be tested, we report results only on
the smaller NYTimes-256 benchmark. We can see that our proposal provides an
improved effectiveness-efficiency trade-off also in the Voronoi-partitioning ver-
sion.

These preliminary experiments demonstrate that the Vec2Doc approach can
be effectively utilized in conjunction with Voronoi-partitioned STRs, offering an
easy-to-implement strategy to enhance the vocabulary size within each Voronoi
cell. In most cases, this achieves the optimal trade-off between efficiency and
effectiveness.
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Fig. 1. Effectiveness (Recall@K) vs. Search Cost (# of multiply-add needed to compute
scores) and Index Size (# of entries in the index) of our proposal and of the SQ
baseline [2]. Each line is obtained by choosing the desired vocabulary size m and varying
the sparsification threshold γ.
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Fig. 2. NYTimes-256. Effectiveness (Recall@K) vs. Search Cost (# of multiply-add
needed to compute scores) of the Voronoi-partitioned versions of our proposal and
of SQ [3]. Each line is obtained by plotting the Pareto-optimal configurations when
varying the number of partitions c, the number of accessed partitions n, the vocabulary
size m, and the sparsification threshold γ.

4 Conclusion

In this paper, we have presented Vec2Doc, a novel approach for transforming
dense vectors into sparse representations specifically designed to address the
challenges of large-scale information retrieval tasks. Our approach enables an
expansion of the vocabulary size utilized in STR encoding, thereby positively
impacting search efficiency.

However, our approach is not without limitations. One of the challenges we
aim to address in future work is the problem of out-of-distribution queries such as
those arising from cross-modal features. Currently, Vec2Doc’s performance may
be hindered when dealing with cross-modal embeddings due to the application
of the CReLU activation function. This limitation can lead to poor performance
when handling datasets with mixed data modalities, such as text and images.

To overcome this challenge, future research will explore alternative feature
transformation techniques that better handle cross-modal features. Additionally,
we plan to investigate the scalability of Vec2Doc for increasingly larger datasets
and the potential integration with other advanced IR systems to improve its
applicability and performance further.

Acknowledgements. This work was partially funded by AI4Media - A European
Excellence Centre for Media, Society, and Democracy (EC, H2020 n. 951911), SUN
- Social and hUman ceNtered XR (EC, Horizon Europe n. 101092612), and National
Centre for HPC, Big Data and Quantum Computing - HPC (CUP B93C22000620006).



222 F. Carrara et al.

References

1. Amato, G., Bolettieri, P., Carrara, F., Falchi, F., Gennaro, C.: Large-scale image
retrieval with elasticsearch. In: The 41st International ACM SIGIR Conference on
Research Development in Information Retrieval, pp. 925–928 (2018)

2. Amato, G., Carrara, F., Falchi, F., Gennaro, C., Vadicamo, L.: Large-scale
instance-level image retrieval. Inf. Process. Manage. 57(6), 102100 (2020)

3. Carrara, F., Vadicamo, L., Gennaro, C., Amato, G.: Approximate nearest neigh-
bor search on standard search engines. In: Similarity Search and Applications:
15th International Conference, SISAP 2022, Bologna, Italy, October 5–7, 2022,
Proceedings, pp. 214–221. Springer (2022)
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Abstract. Within the topic of similarity search, all work we know
assumes that search is based on a dissimilarity space, where a query
comprises a single object in the space.

Here, we examine the possibility of a multiple-object query. There are
at least three circumstances where this is useful. First, a user may be
seeking results that are more specific than can be captured by a single
query object. For example a query image of a yellow hot-air balloon may
return other round, yellow objects, and could be specialised by a query
using several hot-air balloon images. Secondly, a user may be seeking
results that are more general than can be captured by a single query. For
example a query image of a Siamese cat may return only other Siamese
cats, and could be generalised by a query using several cats of different
types. Finally, a user may be seeking objects that are in more than a sin-
gle class. For example, for a user seeking images containing both hot-air
balloons and cats, a query could comprise a set of images each of which
contains one or other of these items, in the hope that the results will
contain both.

We give an analysis of some different mathematical frameworks which
capture the essence of these situations, along with some practical exam-
ples in each framework. We report some significant success, but also
a number of interesting and unresolved issues. To exemplify the con-
cepts, we restrict our treatment to image embeddings, as they are highly
available and the outcomes are visually evident. However the underlying
concepts transfer to general search, independent of this domain.

1 Introduction

In recent years, the field of content-based retrieval has witnessed significant
advancements in the area of nearest neighbour search, enabling efficient retrieval
of similar items from large collections. However, traditional nearest neighbour
queries often overlook the inherent relationships between multiple complemen-
tary queries, limiting their ability to provide comprehensive results for conjunc-
tive search scenarios. This paper introduces the concept of conjunctive similarity
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queries, which aims to enhance traditional nearest neighbour search by extend-
ing it to handle multiple complementary queries simultaneously. Specifically,
we explore the challenges and potential problems encountered in attempting
to build answers for conjunctive queries. By addressing the limitations of tra-
ditional nearest neighbour search methods and offering a more comprehensive
retrieval approach, conjunctive similarity queries have the potential to revolu-
tionise content-based retrieval systems. This paper sets the foundation for future
research in this exciting and promising area, aiming to bridge the gap between
isolated queries and more holistic retrieval scenarios.

In this article, to exemplify the concepts, we restrict our treatment to image
embeddings, as they are highly available and the outcomes are visually evi-
dent. However the underlying concepts transfer to general search, independent of
this domain. In the context of images, the proposed approach is complementary
to simultaneously searching a collection with both text-based and image-based
queries; in this paper we use a pure image-based embedding.

To motivate this paper consider the output of the nearest neighbour search
shown in Fig. 1a. The query is the top leftmost image - a photograph of an
albatross. In total there are 25 images in these results which are of an albatross1.
By contrast in Fig. 1b we show the output of a conjunctive query, where the query
subject comprises a set formed by the best few results of the first query. The
conjunctive query gives 82 images of albatrosses.

We stress that this is conceptually a single query, rather than the collated
output of six different queries, and in fact the technique used here has approxi-
mately the same evaluation cost as the single-image query.

Fig. 1. (a) The 100NN results of a traditional single image query of an albatross. Many
of the results are images of swans. (b) The 100NN results of a six-image conjunctive
query for albatross images. The majority of the results are now albatrosses.

1 We describe the data set and how these categorisations were made later in the paper.
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There are (at least) three scenarios where conjunctive query could be a useful
mechanism:

query specialisation As in the above example, a user may be using a query
image in order to find images of albatrosses, in which case a conjunctive query
comprising images of several more specific images gives better results.

query generalisation In this scenario, the user may be seeking images of
seabirds in general, in which case the initial results may be more specialised
than desired. This is an increasingly prevalent scenario as embeddings improve
and collections become larger. A conjunctive query comprising images of sev-
eral different types of bird can give more suitable results in this case.

subject combination query In this scenario, a user has a number of query
objects in different subject domains, and wishes to find objects from a col-
lection that are somewhat similar to all of them. For example, the individual
query items may be images of seabirds and boats, where the user wishes to
find images which contain both of these subjects.

As far as we know, the notion of addressing these issues through a conjunc-
tive query mechanism has not previously been explored. Note that in all of these
cases, the result of the single conjunctive query should contain results that would
not be found from performing separate queries over each element of the conjunc-
tive query set. The intention is that the conjunctive query mechanism performs
a single coherent query over some abstraction of its multiple-object argument.

The rest of this article is structured as follows. In Sect. 2 we outline three
different possible formal models for conjunctive query, and in Sect. 3 we give
some examples within each of the models. In Sect. 4 we report on the results
of experiments we have performed. Finally we summarise the progress we have
made, and list a number of open issues we have encountered.

2 Formal Models of Conjunctive Query

Similarity search is normally defined over a dissimilarity space (U, d), where U is
some universal domain and d is a dissimilarity function. Search is performed with
respect to a large finite space S ⊂ U . The general requirement is to efficiently
find members of S which are most similar to an arbitrary member of U given as
a query, where the function d gives the only way by which any two objects may
be compared. [1,13] summarise a large volume of research in this domain.

In this paper we explore an extension of this concept where, instead of search-
ing using a single element of U given as a query, we search using a set of elements
Q = {q1, ..., qn} where qi ∈ U .

We seek general models of search in this domain; a little care is required to
ensure that investigations are grounded in a useful formal framework.
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Normally, for a single query q, the desired result can be defined as {s ∈
S | d(q, s) ≤ t}, for some threshold value t which gives a useful size of result set2.
For our context, we require to extend this. We propose that the following will
suffice:

– we maintain the definitions of spaces (U, d) and (S, d) as above
– instead of a query q ∈ U , search is defined in terms of a query Q = {q1, ..., qn}

where qi ∈ U
– we require some more general numeric dissimilarity function θ : P(U) × U →

R
+ where P(U) is the powerset of U . θ then defines an ordering on S according

to the query Q and each element s ∈ S, so that the result of a query will be
{s ∈ S | (θ(Q, s) ≤ t} for some suitable threshold t

We have outlined three general techniques for defining θ, as follows.

2.1 Aggregate Measures over Dissimilarity

Simplest, if we assume a similarity space (U, d), any form of aggregation may
be used over d to derive θ. For example, θ(Q, s) can be very simply defined as∑

q∈Q d(q, s).

2.2 Generative Functions

A second general model is that, from a query set Q, a single numeric function
is generated, and used to order the finite data set. This requires a generative
function σ : P(U) → (U → R). The result of the conjunctive query is then
{s ∈ S | f(s) ≤ t}, where f = σ(Q), for some appropriate t.

One particular case of this is when f re-applies the domain distance function
d. The idea is to find a single element q′ ∈ U that best represents the conjunctive
query Q in the original dissimilarity domain. In this case a function σ− maps Q
to a value q′, and then f(s) = d(s, q′), or more formally σ(Q) = λu.d(u, σ−(Q)).

2.3 Divergence Functions

The term divergence is not, in general, formally defined. Here, we define a diver-
gence function δ as a (positive, numeric) dissimilarity measure over a finite sub-
set3 of a domain U , i.e. δ : P(U) → R. The notion is that the function returns
some indicator of a general dissimilarity over all the elements of its argument;
for example, a collection of identical objects should return 0, while a collection
of objects that have little in common with each other should return a high value.

A normal binary dissimilarity function would thus be a special case of this
more general divergence: given a divergence function δ, a dissimilarity function
d can be defined as d(x, y) = δ({x, y}).
2 Note that this definition encompasses both range and nearest-neighbour search.
3 As for full generality we do not wish to exclude repeated elements, we are really

discussing bags rather than sets.
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In the context of conjunctive query, a divergence function δ can be used by
ordering the search space in terms of the divergence of the query Q, with each
element of S added in turn: the nearest neighbour to a query Q is thus the
database object which gives the smallest divergence when that object is added
to the query.

Formally, the solution to a conjunctive query Q over a finite set S is therefore

{s ∈ S | δ(Q ∪ {s}) ≤ t}

for some appropriate value of t.

2.4 Evaluation Cost

Finally in this section we note a significant difference in the potential cost of
mechanisms within the different categories. For any aggregation mechanism, it
will be necessary to calculate all distances between every object within Q and
every object within S. For any generative mechanism which reverts to a normal
distance function, not only is the cost that of a single distance against S, but
any mechanism used to optimise a normal similarity search can be re-used for
this purpose. Divergence functions may vary between these two extremes, and
in fact our examples include one function within each cost category.

3 Conjunctive Search Mechanisms

Here we outline some examples in each of the above categories.

3.1 Aggregation Functions

As mentioned, θ(Q, s) can be very simply defined as
∑

q∈Q d(q, s). Other func-
tions such as harmonic or geometric means are obvious contenders and have
been used in agglomerative clustering [9]. A problem with such approaches is
that the distances between every element of S and every element of Q require
to be evaluated.

Fagin [6] gives a mechanism for extracting database objects with multiple
properties, where the database has pre-calculated orderings for objects in some
pre-defined categories. Fagin’s algorithm gives an optimisation for searching the
multiple lists to find the best-ranking solutions, but again requires all distances
between S and Q to be pre-calculated.

3.2 Generative Functions

One example of a generative function is the “perfect point” strategy. Suppose
for example U = (Rn, �2). For each element of the query set Q, an effective near-
neighbour distance is calculated, i.e. a distance within which similar objects
are found in S. From this set of distances, a point q′ ∈ R

n can be calculated,
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with the distance from q′ to each qi ∈ Q being equal to the near-neighbour
distance of qi. The result of a conjunctive search based on this principle is then
{s ∈ S | �2(q′, s) ≤ t}.

We note that the point q′ almost undoubtedly will not exist within (S, d),
especially if the elements of Q are disparate. However q′ is a value which should
be similar to any element of U which is equally similar to all elements of Q, and
the idea is that the nearest elements of S should therefore inherit this property.

3.3 Divergence Functions

We have experimented with two divergence functions, MSED and nSimplex vol-
ume. MSED can be applied to any probability space, that is a vector space where
each vector contains only positive or zero values that sum to 1. nSimplex volume
can be applied to any space that is finitely embeddable in Hilbert space, which
includes Euclidean, Cosine, Jensen-Shannon and Quadratic Form spaces.

MSED. The information-theoretic metric Structural Entropic Distance (SED)
was first introduced in [3]. While initially proposed as a metric over labelled tree
structures, the core evaluation is over probability vectors, that is any domain
R

n where for each element v, vi ≥ 0 and
∑

i vi = 1. This more general metric
was evaluated in [11].

SED as a pairwise distance metric at its heart compares the Shannon entropy4

of two vectors with that of their arithmetic mean. The key observation is that, if
the two are equal, then so also is their mean; however the less similar they are,
the higher the relative entropy of their mean. This function is normalised by the
form

SED(v, w) =
C(v+w

2 )
√

C(v) · C(w)
− 1

where C(x) = eH(x), to give an outcome in the range [0, 1]. 0 implies the two
input vectors are identical, and 1 implies that no individual dimension has a
non-zero value in both input vectors, i.e. their dot product is zero and they are
therefore orthogonal.

In [11] we observed that this function generalises to a variadic input, rather
than just a pair of values. A normalised form of this notion may derived, for a
set of n probability vectors V , as:

MSED(V ) =
1

n − 1

(
C

(∑
i
Vi

n

)

n
√

ΠiC(Vi)
− 1

)

Again, an outcome of 0 implies all elements of V are identical, and an outcome
of 1 implies that all elements of V are mutually orthogonal. For calculations of
the term MSED(Q ∪ {s}) where Q is fixed for many different values of s, the
majority of the cost can be amortised given prior knowledge of Q.

4 defined by H(v) = −∑
i vi ln vi.
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nSimplex Volume. In [4] it is shown that, in many metric spaces, a finite set
of objects can be used to form an nSimplex. An nSimplex is a specific mapping
from a set of n objects to a simplex5 in (n − 1)-dimensional Euclidean space.
The observation underlying the divergence mechanism is that, for a set of similar
objects, the volume of this simplex will be relatively small.

The specific construction of the nSimplex is iterative over the objects used
as its basis, at each stage forming a simplex whose last Euclidean point forms an
apex of the previous simplex, in one further dimension. That is, an nSimplex in n
dimensions can be formed from an nSimplex σ in (n−1) dimensions and an object
u, by creating a new point in n dimensions according to the distances measured
between u and each object already represented in σ. Thus, the representation
of u in the new simplex is the only point with a non-zero coordinate in the nth
dimension, with this final coordinate representing the altitude of that point over
the base simplex σ.

In the context of conjunctive search, the divergence function is the volume of
this simplex. A base simplex is formed from the elements of Q, and each s ∈ S is
used to construct a new apex. The volume of each resulting simplex is therefore
directly proportional to the altitude of this apex, that is its final coordinate,
making the ordering of the volumes very simple to extract.

Note that although the cost of constructing the base simplex is incurred only
once per conjunctive query, for each object of the database a distance must be
calculated to each element of Q, making this mechanism potentially expensive
as with aggregate functions.

4 Experiments

In this section we describe some of the experiments we have conducted to explore
the concept of conjunctive queries6 At this stage, our outcomes are primarily
qualitative: these are novel semantic queries and we do not at present have a
way of constructing a framework for objective measurements7.

We first describe the experimental setup in general and some of the infras-
tructure used to qualitatively assess the efficacy of the mechanisms.

The data used for all the experiments consists of one million images from
the MIRFLICKR-1M image collection [8,10]. We have encoded these images
using two different convolutional neural networks: one to provide a set of feature
vectors to be be used in the search process, and another to provide categorical
data to be used as ground truth on image similarity.

5 A simplex is an object constructed from a set of points in n-dimensional space, by
considering each point as a vertex which is joined to all of the other points. For
example, a tetrahedron is a simplex formed from four points in 3D space.

6 All the code for these experiments can be found on github: https://github.com/
MetricSearch/sisap2023.git.

7 We note that constructed ground truth for even a single query requires (n2) observa-
tions.

https://github.com/MetricSearch/sisap2023.git
https://github.com/MetricSearch/sisap2023.git
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The feature vectors used in the experiments are encoded using the Dino2
ViT-S/14 network [12]. Dino2 is a state-of-the-art self-supervised pre-training
method for computer vision tasks. Cosine distance is the normal metric to use
over these embeddings, and we used this in most cases. MSED however is defined
over probability vectors. To obtain these we applied the RELU transform to the
raw data, followed by �1 normalisation. We measured the use of SED over this
transformed data for normal search to be almost, but not quite, as good as
Cosine distance over the raw data.

We used the Resnet18 model [7] to extract categorical labels for the images.
Resnet18 is trained over ImageNet [5] data and categories.

For testing all of the conjunctive mechanisms outlined in Sect. 3, we have
used the Dino2 embeddings. Many of our observations are based on the relatively
subjective judgements we are able to make by repeating many different queries
and looking at the outcomes. For generalisation and combination queries, we
do not know of a better judgement mechanism. We re-emphasise that the data
and code are both publicly available for interested researchers to do their own
experiments.

4.1 Measuring Specialisation Queries

For specialisation queries, we have developed an objective test methodology
based on the Resnet18 categorisation of the data. Given this, a significant reason
for using Dino2 embeddings is that the network is trained independently of the
ImageNet categorisation. That is, we only use Dino2 to perform any search task,
and we use Resnet18 only to measure the quality of the search.

We take as an assumption that a high-quality classification implies a strong
semantic similarity in cases where the categorisation is based on a particularly
high softmax score. That is, two data items placed in the same category, both
with high softmax values according to the classifier, are very likely to be visually
similar. Furthermore, we assume that two objects, one with a high softmax score
and the other with a low score, are very unlikely to be visually similar. Both of
these assumptions are relatively straightforward to test.

The MIRFLICKR collection is large enough that many images are cate-
gorised correctly, even although the image set was extracted pseudo-randomly
from uncategorised Flickr photographs, independent of subject matter. Over
55,000 images in the collection have a softmax value of greater than 0.9. In the
experiments we use queries drawn from a subset of the data for which the rel-
evant category contains between 100 and 184 such images; there are 100 such
categories. For each individual test, we judge the success of a query by the num-
ber of images returned within the 100 nearest neighbours which have the same
categorisation as the query, according to the softmax values.

For example, referring back to Figs. 1a and 1b, there are 147 images in the
data set for which “albatross” is the highest category. In the results of the single
query 13 of them are categorised the same as the query. For the conjunctive
query, 82 of the top 100 results are categorised as “albatross”.
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In each case where we have also visually checked the outcomes; in fact the
visual inspection in almost all cases looks rather better than is implied by the
categorical scoring technique; however the latter is entirely objective.

4.2 Specialisation Query Experiments

In this section we compare conventional metric search, using query by exam-
ple, with the conjunctive query approach with multiple query images, using the
methodology described in Sect. 4.1.

Using the Dino2 embeddings we performed normal nearest-neighbour queries
using Cosine distance to act as a baseline for the evaluation of the different
conjunctive techniques.

We also ran four different variants of conjunctive queries: nSimplex, MSED,
a simple average, and the perfect point strategy, all as documented in Sect. 3.

Fig. 2. Cumulative sums of specialisation queries. cos denotes the single-query baseline,
others are conjunctive query results.

Figure 2 shows the cumulative sums from the 100 experiments conducted as
described above. To make the results clearer to read we show the cumulative
results for the last 20 queries. The plots are of the cumulative sums for the
nearest 100 results which are in the same category as the query. For reference
the maximum possible cumulative total from the database is 9744.

From the figure it can be seen that three of the conjunctive queries (aggregate,
nSimplex and MSED) are significantly better than the corresponding single-
object queries. The perfect point strategy improves only a little on the single-
object query. nSimplex performs the best overall, closely matched by aggregate
average and MSED, although these differences may not be statistically signifi-
cant.
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It is also worth noting that the computational cost of both nSimplex and
aggregate is much higher than perfect point or MSED, both of which cost approx-
imately the same as the single-object query. For nSimplex and aggregate, it is
necessary to measure the distance between each point in the conjunctive query
to all points in the database.

4.3 Generalisation Query Experiments

To demonstrate how generalisation may be used with conjunctive queries con-
sider Fig. 3a. The first figure shows the results from a traditional nearest neigh-
bour for query using the image in the top left hand corner of the grid of a
Siamese cat (category 284). All the results are of Siamese cats. This is an excel-
lent result if the user were indeed looking for Siamese cats. However, they may
have been seeking cats in general. The second image in Fig. 3b shows the result of
a conjunctive query using images drawn from the following ImageNet categories:
tabby cat (281), tiger (282), Persian cat (283), Siamese cat (284), Egyptian cat
(285) and leopard (288).

Fig. 3. Results from Siamese cats and general cat searches

The results show cats drawn from all of the categories in the query, and indeed
other types of cats which are not in any of the categories. They are subjectively
very obviously different from the single-category results shown in Fig. 3.

We do not report quantitatively on the efficacy of the searches from this and
the following section as we have not as yet performed any objective measurement.
However similar results are obtained for other similar search tasks, for example
by grouping different categories of dogs, fish etc. We have noted that MSED
appears to function rather better than any of the other techniques we have
applied to this task, but have no measurement to justify this observation.



Similarity Search with Multiple-Object Queries 233

4.4 Combination Query Experiments

Combination queries are perhaps the most obvious use for conjunctive queries
in general, and indeed this is where we started work within this domain.

After many attempts, we had had no success with any combination query
mechanism. We were very hopeful that both nSimplex volume and perfect point
queries would give us results in this category, but neither did. However at that
point we tried MSED and the results were, in relative terms, almost unbelievably
better. There are still many issues to understand, but at this point we believe
MSED is the only mechanism that works well for this task, at least within the
domain of image embeddings.

We give a single example of this to illustrate how the technique may be
employed. The Resnet18 categories 440 and 441 are “beer bottle” and “beer
glass”. The 100 images with the highest categorical scores in each of these cat-
egories are shown in Figs. 4a and 4b below. Note that Fig. 4 contains 3 cups
or glasses and Fig. 4b contains 5 bottles. Figure 5 shows the top 100 nearest
neighbours from a conjunctive query formed from the best three images from
each category. These images show: 19 images containing just glasses, 41 images
containing just bottles (or cans) and 30 containing both categories.

Fig. 4. Results from beer-bottles and beer-glasses searches
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Fig. 5. Results from the conjunctive query for bottles and glasses

5 Conclusions

Our proposal of querying with multiple objects enables a more comprehensive
and refined exploration of an object space than can be achieved by traditional
dissimilarity queries. By allowing a set of objects as a query, a system can capture
the collective characteristics and features present in the data. This allows for
a more holistic representation of the desired concept or theme. As a result,
the ranked set of objects in the solution provides a more focused and targeted
selection that aligns with the specific attributes present in the query set. At this
early stage we have concentrated on results in the single domain of search over
image embeddings. Although our techniques are general and not image-specific,
it is of course possible that they do not transfer to other semantic domains.

We have identified three specific classes of user task for which conjunctive
querying provides solutions: specialisation, where a single-object search gives
overly general results; generalisation, where a single object search gives overly
specific results; and combination, where results which satisfy more than a single
search topic are desired. We have shown successful examples in each of these,
where a relevant user task has been satisfied.

We have identified a formal framework which serves to allow investigation
into the domain, as well as identifying three different classes of functions. The
classification highlights some issues of the cost of conjunctive query; for example
aggregate functions require up to nk distance evaluations for n data and k query
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objects, while generative and some divergence functions require a maximum of
only n calculations.

Objective measurement of outcomes is a significant problem. We have out-
lined a mechanism for measuring query specialisation, but generalisation and
combination are more difficult, which makes it impossible to give any very strong
and general conclusions as to the different mechanisms tested.

Our early results can be summarised as follows. For query specialisation, the
outcomes are in two groups: the aggregate sum, nSimplex volume, and MSED
all give notably better results than the baseline similarity query and the “per-
fect point” strategy. For generalisation and combination, our perception is that
MSED gives significantly better results than any of the other mechanisms. This
perception is very clear, however we do not know a way of measuring it convinc-
ingly. We invite interested researchers to access our code base.

In terms of query efficiency, MSED and “perfect point” both give a relatively
tolerable O(n) calculation cost, compared with the the O(kn) incurred by all
of the other mechanisms, for n data and a conjunctive query with k objects.
Furthermore some of these strategies can be significantly optimised; for example
generative functions result in a standard distance-based search, and the inverted
index incremental evaluation strategy shown in [2] can be applied to MSED.

6 Further Work

This article represents a first effort to implement and evaluate a number of
different mechanisms towards the novel concept of conjunctive search. We have
made significant progress, but there are very many open issues.

Confirming initial results In particular for subject combination queries, our
results are patchy: for some combinations of queries they work very well, for
others not at all. There are many different possible explanations for this, some
technical and some based simply on unknown limitations of the data sets we
have used so far.

Other semantic domains In particular, we have so far experimented only
with images, and in fact a specific set of images. We have used a number
of different embeddings and found similar results, so we predict these results
will carry forward to other image sets and queries, and also to other spaces
represented by embeddings. However this requires to be checked. We can eas-
ily do so with word embeddings, high quality sets of which are freely available.
It would be very interesting to try language model embeddings, where the
three query types have clear and useful parallels.

Objective measurement of outcomes For specialisation queries on images,
we have found a reasonable working model of an objective test of different
techniques. As yet we are less clear about how to test generalisation or combi-
nation queries. Without such objective tests it is difficult to be very confident
in comparing mechanisms with each other.
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Efficient conjunctive search Almost all of the effort expended in the similar-
ity search domain has been on how to evaluate queries efficiently against very
large data sets. Many of these techniques transfer directly to this domain, in
particular for techniques which result in a normal similarity search against the
database. However it may be that sets of restrictive postulates exist in this
domain, as alternatives to e.g. the metric postulates, which allow scaleable
or other more efficient search to avoid exhaustive calculation against the
database, in which case the more expensive metrics such as nSimplex volume
may become relatively more usable.

Potential Application Domains We are currently exploring avenues for
exploiting these results. One of these is in data-linkage in which it is advan-
tageous to be able to search for groups of related records; for example the
birth records of siblings in a single family. Recommender systems could allow
suggestions for future purchases based on a conjunctive query comprising
items already purchased within a category, which for example may capture
a certain fashion sense. In the domain of drug discovery, a researcher might
be interested in finding a peptide that possesses antibacterial and anticancer
properties: a conjunctive similarity query might aim to retrieve such peptides.
Lastly in the field of histology, it may be possible to generalise over a number
of different pathological cell images in order to detect others of a similar type
with a different visual presentation.
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Abstract. The Similarity Join (SJ) has become one of the most popular and valu-
able data processing operators in analyzing large amounts of data. Various types
of similarity join operators have been effectively used in multiple scenarios. How-
ever, these operators usually generate a large output size and many similar output
pairs that represent almost the same information. In previous work, a new operator
called Diversity Similarity Join (DSJ) has been proposed to address these issues.
DSJ generates a smaller scale output andmoremeaningful and diverse result pairs.
This operator, however, was proposed as a single node operator crucially limit-
ing its scalability properties. In this paper, we propose the Distributed Diversity
Similarity Join (D2SJ) operator, an approach that enables SJ diversification on big
datasets. We present the design guidelines and implementation details on Apache
Spark, a popular big data processing framework. Our experimental results with
real-world high-dimensional data show that the proposed operator has excellent
performance and scalability properties.

Keywords: Diversity Similarity Join · Big Data · Performance Evaluation ·
Spark · MapReduce

1 Introduction

Today, big data has unprecedentedly spread to all kinds of industries. Big Data-driven
decision-making has become very popular, and many applications produce and pro-
cess massive amounts of data. While operators with exact-based semantics, such as the
Natural Join and grouping/aggregation operators are widely used, many application sce-
narios, such as social-media platforms, biomedical information processing, and sensor
data processing, can significantly benefit from similarity-aware operators (operators that
identify and leverage similarities in the data). One of the most useful types of similarity
operators is the distance range join (or sometimes referred to simply as the similarity
join). This operator finds the pairs of records from two datasets that are separated at most
by a distance threshold provided as a parameter ( 1) [1]. Multiple similarity join imple-
mentation algorithms have been previously proposed. Some of them rely on distributed
frameworks and can process massive datasets. However, the similarity join operator can
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generate a massive amount of result pairs. Moreover, many of these output pairs can
be very similar to others adding little value to the analysis process, and the output size
can grow quickly when the distance threshold grows. These characteristics generate the
need to diversify the output of this operator.

The idea of output diversification has been studied primarily in the context of other
data operators such as range and k-nearest-neighbor search. To the best of our knowl-
edge, the only paper directly addressing the problem of diversifying the output of the
similarity join was proposed by Santos et al. [2]. This previous work proposed the Diver-
sity Similarity Join algorithmwhich integrates two phases. In the first phase, the standard
output of the similarity join between two datasets R and S is computed. In the second
phase, the records from S that are within the distance threshold from a given record in R
are processed to identify a diversified subset. Crucially, however, this previous algorithm
was proposed for a single-node scenario and cannot directly scale to multiple nodes to
process big datasets. In this paper, we propose the Distributed Diversity Similarity join
(D2SJ) operator, a fully distributed approach to diversify the similarity join output that
can be used with big datasets and multiple data types and distance metrics. The main
contributions of this paper are:

• We introduce the design elements of D2SJ. A distributed operator to diversify the
output of the similarity join suitable to process big datasets.

• We present the implementation details for Apache Spark [3], one of the most popular
big data frameworks.

• We comprehensively assess the performance and scalability properties of D2SJ and
a baseline solution. We study the performance of the operators when key parameters
are increased (data size, number of nodes, dimensionality, and similarity distance
threshold).

• The source code of our implementation is publicly available [4].

The remainder of the paper is organized as follows: Sect. 2 describes the related
work, Sect. 3 presents the general D2SJ algorithm, Sect. 4 describes the implementation
details in Apache Spark, Sect. 5 reports the performance/scalability evaluation results,
and Sect. 6 presents paths for future work.

2 Related Work

In the field of similarity-aware data processing, various types of similarity joins have been
proposed. These include the distance range join, which identifies pairs with distances
belowapredefined threshold 1[1, 5–8], the k-Distance join that returns the kmost-similar
pairs [9], and the kNN-join which retrieves the k nearest neighbors in one dataset for
each record in another dataset [10]. The distance range join has been extensively studied
and is recognized as one of the most valuable similarity-aware operators. Because of
this, it is usually referred to simply as similarity join.

In the realm of Big Data systems, Hadoop [11] and Spark [3] are two commonly used
platforms. Hadoop, along with its programming framework MapReduce [12], facilitates
two fundamental operations, namely map and reduce. The input data is divided into
multiple map tasks that process the input data chunks in parallel. Each map call takes



240 Y. N. Silva et al.

a pair (k1, v1) and produces a list of (k2, v2) pairs. The output of the map calls is
subsequently transferred to reduce nodes, ensuring that all intermediate records with the
same intermediate key (k2) are routed to the same reducer node (shuffle phase). At each
reducer node, the intermediate records corresponding to a given key k2, are grouped
and processed in a single reduce call. Spark, a more recent framework and considered a
successor of Hadoop, uses Resilient DistributedDatasets (RDDs) as its fundamental data
structure and supports a broader range of operations that include various types of map,
reduce, grouping, filtering, and set operations. Spark operations are primarily executed
in a distributed fashion utilizing the main-memory resources of a computer cluster [3].

Multiple techniques have been proposed to implement the similarity join operator on
big data frameworks such as Hadoop and Spark. Several of them were experimentally
compared in [13, 14]. Some of these techniques such as the Ball Hashing, Subsequence,
Splitting, Hamming Code, and Anchor Points approaches [15] support string/text data
and the Hamming and Edit distance functions. Other techniques such as the MRSetJoin
[16] and the V-Smart-Online Aggregation [17] were proposed for set-based data and
applicable distance functions such as the Jaccard and Dice Similarity. More versatile
techniques such as the MRSimJoin [8, 18] and MRThetaJoin [19] can be used with a
wide range of data types and distance functions.

Several approaches have also been studied to diversify the output of common data
analysis operators. Most of them consider the case of the range and k-NN search oper-
ations. Drosou and Pitoura proposed DisC diversity [20], an approach to identify the
representatives of a set of tuples considering coverage and dissimilarity. Both properties
are defined using a distance threshold r. In this approach, each record a in the original set
is represented by a record d in the diverse set, i.e., dist(a, d)≤ r). Also, the objects in the
diverse set should be dissimilar to each other, i.e., for every pair of records d1 and d2 in
the diverse set, dist(d1, d2)> r. Vieira et al. proposed two approaches to diversify k-NN
search queries [21]. These approaches are based on the use of a ranking framework that
includes a component measuring the level of relevance (with respect to the query) of
the selected k records and another one measuring the diversity (distance) among these
records. The framework allows the user to set a parameter to specify the relative impor-
tance of each component. More recently, Ge and Chrysanthis proposed PrefDiv [22],
a technique that aims at identifying a set of dissimilar records based on user-provided
distance functions and diversity thresholds on specific attributes. For instance, given
two records a and b, two specified attributes A1 and A2, their corresponding distance
functions, f 1 and f 2, and thresholds, t1 and t2, a and b are considered diverse if f 1(a.A1,
b.A1) > t1 and f 2(a.A2, b.A2) > t2. This approach also aims to maximize relevance
using a utility function that measures the benefit of selecting a certain record. While
these diversification approaches can be used in top-k search and range search operators,
the authors did not explore how these techniques can be applied to the case of similarity
join operators which link elements of two sets.

To the best of our knowledge, the only previouswork directly addressing the problem
of diversification in the context of similarity join was proposed by Santos et al. [2]. In
this approach, given two sets of records R and S, for every record r ∈ R, the algorithm
identifies all records s ∈ S that are within 1from r. Then, all identified records s are
processed one by one in order of distance from r. At this point, each record s is added to
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the diverse set of records in connection to r, denoted as DivSet(r), if s does not belong
to the area of influence (neighborhood) of any previously added record. This ensures
that any added record s is sufficiently different than the previously added records. In our
work, we use a similar notion of diversity but propose a fully distributed algorithm that
is suitable to process big datasets.

Fig. 1. Example of D2SJ partitioning and output generation using two pivots.

3 Distributed Diversity Similarity Join (D2SJ) Algorithm

The distributed diversity similarity join (D2SJ) algorithm presented in this section
addresses the problem of generating a diversified subset of the similarity join output.
D2SJ adopts a similar notion of diversity as thework in [2] but uses a fully distributed and
parallelized approach that enables it to process very large datasets. D2SJ can be used
with any data type and metric-space distance function, and is deterministic (multiple
executions with the same input data and 1generate the same output).

Given two datasets that are joined (R and S), D2SJ identifies first the records in S that
are located withing the distance threshold ( 1) from the records in R. For every record r
∈ R, the algorithm identifies the similarity ball around it (set of records s ∈ S that are
within 1from r, i.e., dist(s, r) ≤ 1). This process is performed in a distributed fashion
but ensuring that each ball is eventually processed on a single node (to avoid duplicates
in the output). In a second stage, the algorithm processes each ball (also in a parallel
fashion) identifying the diverse set of records s′ around each record r ∈ R. For D2SJ to
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function across a cluster of computers to process vast amounts of data, the algorithm
uses pivot-based partitioning to evenly distribute and parallelize the workload. Similar
pivot-based partitioning was used in previous distributed algorithms, e.g., [7, 8, 23]. To
make sure the algorithm identifies all the records in each similarity ball, in stage one, it
duplicates some records from neighboring partitions.

Figure 1 shows an example of how D2SJ partitions and identifies the diversified
similarity join pairs using 2D data and two pivots (P0 and P1). The top-left image
represents the input datasets (R and S). This image shows the similarity ball around each
element in R (B1 to B7 ). The bottom-left image represents the two generated partitions
(Part0 and Part1). Observe that regions A1 and A2 contain the records that are closer to
P0 than to P1, while A3 and A4 the ones that are closer to P1 than to P0. The regions
A1 + A2 and A3 + A4 are referred to as base regions. Observe that the records in A1 +
A2 and A3 + A4 are assigned to partitions Part0 and Part1, respectively. Additionally,
the regions at the boundary between the two base regions (points within 2 1from the
boundary) are replicated. In this example, region A3 is added to Part0 and A2 to Part1.
Regions A2 and A3 are referred to as window regions. The final content of Part0 and
Part1 are A1 + A2 + A3 and A2 + A3 + A4, respectively. Observe that all the similarity
balls (B1 to B7 ) are fully contained in at least one of the partitions. The two partitions
could now be sent to and processed by two different computers. The only problem is
that some of the balls (B2 to B6) are partially or fully contained in both partitions. The
approach needs a mechanism to process each similarity ball only once and ensure that a
similarity ball is processed in the partition that contains the entire ball. To this end, D2SJ
applies the following guidelines: (1) during partitioning, each record x in partition P is
augmented with information of its closest pivot (cPiv) and assigned partition (P), and
(2) given any generated similarity ball B, the ball will be processed only in the partition
corresponding to the smallest cPiv among all the records in B. In Fig. 1, B4 (which
appears in Part0 and Part1) contains some records that have P0 as their closes pivot and
others that have P1 as their closest one. Since the smallest one (based on index) is P0,
B4 is processed in the partition linked to this pivot (Part0). Observe that while D2SJ
requires replicating the records in the window regions, most useful queries involve a
small 1with a small effect on performance.

Algorithm 1 presents D2SJ’s main algorithmic steps. Two sets of input data, R and
S, are merged into one dataset (line 1), with pivots being selected from this combined
set (line 2). After selecting the pivots, the algorithm partitions the data (lines 3–12),
allowing for an even distribution of the data to be processed in each cluster node. Every
input record rec is assigned to the partition of its closest pivot pc (lines 5–6) and all the
partitions of pivots p where rec belongs to the window regions between the partitions
of p and pc (lines 7–11). In general, the records in the window regions between two
partitions (corresponding to pivots p1 and p2) should be a superset of all the records
within 2 1from the hyperplane that separates the partitions. However, this hyperplane
does not always explicitly exist in a metric space. Instead, it is implicit and known as the
generalized hyperplane. Since the distance of a record rec to the generalized hyperplane
between two partitions for pivots p1 and p2 cannot always be computed exactly, a lower
bound is used following [25] (line 8): genHyperplaneDist(rec, p1, p2) = (dist(rec, p1)
− dist(rec, p2)) / 2. This expression can be replaced by the exact distance when this can
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be computed, e.g., for the Euclidean distance, genHyperplaneDist can be replaced by
euclideanHyperplaneDist(rec, p1, p2) = |(dist(rec, p1)2 − dist(rec, p2)2| / (2 × dist(p1,
p2). The partitioning phase also records the information of the closest pivot and assigned
partition of each record (sequence of closest pivots and partitions if the execution requires
multiple rounds). This information is used later in the process. The partitioning phase
of D2SJ can be implemented using the map operations in Spark or Hadoop.

Alg. 1. Main D2SJ algorithm.

Algorithm 1: DistDivSimJoin_Main
Input: input_R (input dataset R), input_S (input dataset S), eps (radius), 

part_num (number of partitions), mem_T (memory threshold)

Output: diversified set of similaritry join pairs

1 input =

2 pivots
3 //Partitioning - // rec: ID, dataset, value, assignedPartitionSeq, closestPivotSeq
4 for each record rec in input do
5 pc = getClosestPivot(rec, pivots)

6

7 in pivots do
8 if rec, pc)) / 2 ≤ 2eps) then
9 output - window region

10 end if
11 end for
12 end for
13 //Shuffle: all the records sharing the same key will form a partition

14 //Similarity ball generation and diversification
15 for each partition Pi do //each partition may be processeed in a different node 

16 if (Pi.memSize() > mem_T) do
17 store Pi for processing in subsequent round

18 else
19 Bi = IdentifySimBalls(Pi, eps) //Bi (ball set) format: {Bi_k}

20 //Bi_k: centerPoint, records, flags , flags contains partitioning data

21 //Output Generation (preventing duplication)

22 for each similarity ball Bi_k in Bi do
23 generate minFlags for Balli_k //minFlags[q] = {index of first element in 

24 [q] equal to 1}

25 //s is any record in Bi_k

26 [q]) then //if we are in the 

27 to process this similarity ball

28

29 output divBi_k //final output

30 end if
31 end for
32 end if
33 end for
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The intermediate records generated in the partitioning phase are grouped in the
shuffle phase (line 13) such that all the records that belong to the same partition will
form a single group. This task is implemented using the grouping operator in Spark
and would be automatically performed in the shuffle phase of a Hadoop job. In the
next phase, partitions are processed (1) identifying the similarity balls contained in each
partition, (2) determining if a similarity ball should be processed on a given cluster node,
and (3) diversifying and outputting the selected similarity ball (lines 14–33). Different
partitions could be processed on different nodes. For a given partition, the algorithm
first checks if the partition is small enough to be efficiently processed in a single node
(line 16). If this is not the case, the partition is stored for further processing using the
same D2SJ algorithm but applied to this single partition (line 17). This feature makes
D2SJ a multi-round algorithm where at every round the small partitions are directly
processed, and the large partitions are stored for processing in subsequent rounds. It is
important to observe, however, that while D2SJ can be executed in multiple rounds, the
best execution times in our experimental tests were obtained by increasing the number
of pivots to generate a single round (with smaller partitions). When the partition is small
enough to be processed in the current round, the algorithm identifies first the similarity
balls contained in this partition (line 19). The details of this process are described later
(Algorithm 2: IdentifySimBalls). Each similarity ball contains the records s within eps
( 1) from a given record r used as a center point. The output of IdentifySimBalls is a set of
similarity balls where each ball is composed of a center point (from R), the data records
(from S), and information needed to ensure non-duplicated ball processing ( flags). The
flags component of a given ball B contains a sequence of flag arrays (one array per round
that processed data that included this ball). This component is used to determine if the
ball should be processed in the node processing the current partition or not (lines 23–30).
For example, if four pivots are being used (p0, p1, p2, p3) and a single round is needed,
B.flags has the form {[ f 0, f 1, f 2, f 3]} and the content could be {[0, 0, 1, 1]}. A value of
1 at index i indicates that ball B contains at least one record whose closest pivot is pi. In
this example, B contains records with base region equal to p2 and others with base region
equal to p3. A given ball of partition Pi (corresponding to pivot pi) will be processed in
the current node only if the minimum index of 1 in the flag array of this ball matches i.
In the example, ball Bwill be processed only when this ball is detected in the partition of
p2 (because the smallest index with a value of 1 is 2). If a ball should be processed in the
current node, the algorithm applies the diversification method (Algorithm 3: Diversify).
This method processes a similarity ball and generates the subset of diversified similarity
join pairs, where each pair is composed of the center point and one of the (S) records
in the ball. The set of diverse SJ pairs is then added to the final output of D2SJ (line
29). The similarity ball generation and diversification phase can be performed using the
reduce operations in Spark or Hadoop.

The details of IdentifySimBalls are presented in Algorithm 2. This algorithm identi-
fies the similarity balls in an input partition. Each similarity ball is composed of a center
point r (a record in R), a set of records (records in S within 1from r) and a set of flags
which contain partitioning information. The algorithm separates first the records from
R and S (lines 4–11). In our implementation, we use an initial algorithm to identify the
similarity balls as this will be executed on a relatively small set of records and on a single
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node. Any other single-node similarity join algorithm could be integrated to identify the
balls. In our case, a data structure for a ball is initialized in line 15. For each record r
(from R) in the partition, the algorithm checks if the available records from S are within
1from r. All the qualifying records are added the ball of r (lines 16–21). The algorithm,

then, generates the flags component of the ball using the closet-pivot information of the
records in the ball (line 22). After this, the generated ball is added to the set of balls
identified in the current partition (line 23).

Alg. 2. Identification of Similarity Balls.             Alg. 3. Diversification of Similarity Balls.

Algorithm 3: Diversify
Input: b (a similarity ball)

Output: b' (diversified similarity ball)

1 c = b.centerPoint
2 f = b.flags
3 sort(b.records, c) //sort the records in the

4 //ball in increasing distance from the

5 //center point c
6 b' = {c, [], f} //initializing the 

7 //diversified ball

8 for every record s in b.records do
9 isDiverse = True

10 for each record d in b'.records do //this

11 //will be empty initially, but will 

12 //get filled as diverse elements

13 //are discovered

14 if inInfluenceArea(s, d, c) then //if 

15 //s is too similar to the diversified

16 //record d
17 isDiverse = False

18 break
19 end if
20 end for
21 if (isDiverse = True) then
22 b'.records.add(s)

23 end if
24 end for
25 return b'

Algorithm 2: IdentifySimBalls
Input: Pi (a partition), eps (radius)

Output: Bi (similarity balls in partition Pi,

ball structure: centerPoint, records, flags )

1 inputR = {}

2 inputS = {}

3 Bi = {}

4 for each record rec in Pi do
5 if (rec.dataset = 0) then //dataset

6 //values: 0 (R), 1(S)

7 inputR.add(rec)

8 else
9 inputS.add(rec)

10 end if
11 end for
12 //Generation of similarity join balls

13 for each record r in inputR do //creates a

14 //ball around each records in R
15 b = {r, [], []}//r is the center point

16 for each record s in inputS do //find 

17 //the records in S similar to r
18 if distance(r, s) ≤ eps then
19 b.records.add(s)

20 end if
21 end for
22 generateFlags(b) //updates b.flags
23 Bi.add(b) //adds the ball to the set 

24 end for
25 return Bi

Algorithm 3 presents the details of the Diversify subroutine. The goal of this algo-
rithm is to diversify the records of a similarity ball using a similar notion of diversity
as in [2]. This algorithm receives a similarity ball (b) and returns a similarity ball (b′)
that contains a diverse subset of the records. The algorithm sorts first the records in the
input ball as they will need to be processed in increasing distance from the center point
(line 3). The structure for the diversified ball is initialized in line 6. The set of diverse
records (b′.records) is initially empty. Then, the algorithm processes each record s from
the input ball (lines 8–24). In each iteration, the algorithm verifies that s is diverse from
every other record already in the diverse set (lines 10–20). If this is the case, s is added
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to the diverse set b′.records (lines 21–23). Observe that if s fails the diversity test with
an already added diverse record d in line 14, s is considered not diverse enough and the
algorithm stops the process of checking with additional diverse records (lines 17–18).
At the end, the method returns the diversity similarity ball b′.

d
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s

Area of 

Influence

(diverse 
record)

(candidate)d

c (center 
point)

s

Area of 

Influence

(diverse 
record)

(candidate)

(a) s inside of area of influence (b) s outside of area of influence 

Fig. 2. Examples of different outcomes of inInfluenceArea with 2D data.

A key aspect of this algorithm is checking if a record s (that belongs to a ball centered
in c) is contained in the area of influence of an already added diverse record d. This check
is performed by inInfluenceArea(s, d, c). Building on the work in [2], inInfluenceArea(s,
d, c) returns True if I(d,s) ≥ I(d,c) and I(d,s) ≥ I(s,c), where I is the inverse of the
distance function. Thus, inInfluenceArea(s, d, c) returns True if:

(
1

dist(d , s)
≥ 1

dist(d , c)

)
∧

(
1

dist(d , s)
≥ 1

dist(s, c)

)
,

or, equivalently, if (dist(d,c) ≥ dist(d,s) ∧ dist(s,c) ≥ dist(d,s)).
The intuition is that this check will return true if s (a record of a ball centered in c)

belongs to the neighborhood of d. Figures 2.a and 2.b show examples of the two different
outcomes for the case of 2D data and the Euclidean distance. Observe that in this case,
the first condition (dist(d,c) ≥ dist(d,s)) checks if s is contained in the circle centered
in d with radius dc, , and the second one (dist(s,c) ≥ dist(d,s)) checks if s is closer to d
than to c. The shaded area in both images is the area that would be considered the area
of influence of record d. In Fig. 2.a, s belongs to this area and will be considered not
diverse enough. In Fig. 2.b, s does not belong to the area of influence.

4 Implementation

Section 3 presented the algorithmic steps of D2SJ. This algorithm could be implemented
on any MapReduce-based framework, e.g., Hadoop and Spark. Section 3 also indicated
the main Spark and Hadoop operations for the core phases of the algorithm. As Spark is
broadly considered amore efficient successor of Hadoop, we implemented the algorithm
in Spark. The source code is available in [4].
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In this section, we provide some additional implementation details. The implemen-
tation in Spark uses the RDD API. Spark’s robust array of data processing operations
enables a compact implementation. The takeSample operation is used to randomly select
the pivots. Then, the flatMapToPair operation is used to implement the partitioning
phase and the partitionBy operation to group the records that belong to the same parti-
tion (Shuffle phase). After this, mapPartitionsToPair is used in the implementation of
IdentifySimBalls, which identified the similarity balls in a partition. Finally, map and
saveAsTextFile are used to generate the final output.
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Fig. 3. Effect of the number of pivots (partitions) on execution time.

5 Performance Evaluation

5.1 Test Configuration

In this section we evaluate the performance and scalability properties of D2SJ. We
also compare D2SJ with DSJ-CP, a direct Spark extension of the single-node algorithm
presented in [2] (which uses a cartesian product to perform the similarity join). Both
algorithms were implemented in Spark 3.0. Unless otherwise stated, all tests were exe-
cuted using a cluster composed of 1 master and 20 worker nodes on the Google Cloud
Platform. Each node used the Cloud Dataproc 2.0 image and had 4 virtual CPUs, 15 GB
of memory, and 500 GB of disk space. The number of splits per Spark job was set to 2
× (# of worker nodes) × (# of vCPUs).

We used real data to perform our experiments. Specifically, we used the CoPhIR
data collection [24], which is composed of visual descriptors extracted from 100 mil-
lion images from Flickr. We used the following collections: Color Structure (CS, 64D),
Scalable Color (SC, 64D), Edge Histogram (EH, 80D), Color Layout (CL, 12D), and
Homogeneous Texture (HT, 62D). The datasets for different dimensionalities were gen-
erated as follows: 16D, 32D, and 64D: first 16, 32, and 64 attributes of CS, 128D: CS
+ SC, 208D: CS + SC + EH, and 282D: CS + SC + EH + CL + HT. The dataset for
scale factor N (SFN) had 1,000,000 × N records. These records were equally divided to
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form the R and S datasets. The value of 1is expressed as the percentage of the maximum
potential distance between two records.

Next, we compare how the various parameters affect D2SJ and DSJ-CP (except for
varying the pivot count which is only applicable to D2SJ). Since DSJ-CP does not scale
as well as D2SJ, we provide two graphs in each case. In the first, we scale down the
experimental settings to maintain execution times under 10 h and avoid stack overflow
errors in DSJ-CP’s cartesian product. In the second, we evaluate D2SJ under larger
workloads. The settings of each test appear in the top-right label of the figure.

(a) D2SJ vs DSJ-CP (b) D2SJ with larger datasets 
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Fig. 4. Execution time when increasing dataset size.

5.2 Performance Evaluation Results

Optimal Pivot Count. Figure 3 shows how D2SJ’s execution time changes when the
number of pivots increases (since a partition is generated for each pivot, this is equal
to the number of partitions). This test uses the 282D SF5 dataset, a cluster with 20
worked nodes, and a large distance threshold ( 1= 10%). We observe that the execution
time quickly decreases when the number of pivots increases initially. In general, larger
numbers of pivots generate smaller execution times. However, exceeding 4,000 pivots
leads to excessive replication in the window regions and increased execution times. The
optimal pivot count is between 800 and 3500. These pivot counts solve the job in a single
round. We use numPivots = 400 × SF in the remaining tests.

Increasing Scale Factor. Figure 4.a shows how the execution times of D2SJ andDSJ-CP
(lines) and the output size (bars) vary when the scale factor (data size) increases. These
tests used scaled-down parameters to enable the comparison ( 1= 1%, SF:[0.1–0.2]).
We can observe that the execution times of D2SJ increase slowly as the scale factor
increases. DSJ-CP’s execution times, on the other hand, are significantly larger than
those of D2SJ and grow rapidly. In fact, the execution time of DSJ-CP grows from being
29 times the execution time of D2SJ for SF 0.1 to 70 times for SF 0.2. Figure 4.b shows
D2SJ’s execution times with heavier settings ( 1= 5% and SF:[1–5]). D2SJ’s execution
time grows gracefully following a semi-linear pattern. In this case, none of the DSJ-CP
jobs were able to finish in under 10 h.

IncreasingScaleFactor andNumber ofClusterNodes.Adesired property in distributed
algorithms is to have good scalability when the data size and number of nodes increase
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proportionally. While some overhead is expected with larger loads, a reduced overhead
is desired. Figure 5.a shows the execution times of D2SJ and DSJ-CP as the data size
and number of worker nodes increase from (4 nodes, SF 0.05) to (16 nodes, SF 0.2).
The results with these scale-down settings show that D2SJ scales significantly better
than DSJ-CP. The execution time of DSJ-CP with the largest SF is 11 times the one with
the smallest SF. In the case of D2SJ, the increase is only 2.8 times. Figure 5.b presents
D2SJ’s execution time with larger workloads increasing from (4 nodes, SF 1) to (20
nodes, SF 5). We can observe that D2SJ scales well producing an execution time that is
linear with a relatively small slope. D2SJ’s execution time with SF5 (and 20 nodes) is
only 2.2 times its execution time with SF1 (and 4 nodes).

             (a) D2SJ vs DSJ-CP                                  (b) D2SJ with larger clusters and datasets 
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Fig. 5. Execution time when increasing dataset size and number of worker nodes.

               (a) D2SJ vs DSJ-CP                                 (b) D2SJ with higher dimensionality 
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Fig. 6. Execution time when increasing the number of dimensions.

Increasing Number of Dimensions. To evaluate the effect of data dimensionality on
execution time, we executed each algorithm with datasets of varying dimensionality
while fixing the scale factor. Figure 6.a shows the execution time of both algorithms
using SF 0.2 and 16D-128D datasets. In general, the execution time of both algorithms
increases when dimensionality increases. D2SJ, however, has better scalability. While
DSJ-CP’s execution time with 128D represents an increase of 16% with respect to the
16D dataset, the increase is only of 2% for D2SJ. Figure 6.b shows the execution time of
D2SJ with larger workloads (SF2 and 64D-282D). This figure shows that the execution
time of D2SJ increases sublinearly in this dimensionality range.
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Increasing Distance Threshold ( 1). The use of diversification was motivated in part due
to the large number of output records generated by traditional similarity join operations
(with many output records being very similar to others). The work in [2] showed that
the output of the diversified similarity join returns a very small fraction of the output
of the standard similarity join. However, increasing the distance threshold ( 1), still has
a significant effect on the overall output size and execution time. In this experiment,
we evaluate the execution time of both algorithms when 1increases. Figure 7.a shows
the execution time of D2SJ and DSJ-CP when 1increases from 0.25% to 1%. We can
observe that the execution time of D2SJ is significantly better than that of DSJ-CP.
D2SJ’s execution time grows from 67s ( 1= 0.25%) to 75s ( 1= 1%), while the growth
for DSJ-CP is from 4680 s to 5220 s. Figure 7.b shows D2SJ’s execution time with larger
workloads ( 1:[1%–10%]). In this case, we observe that D2SJ’s execution time for 1=
10% is 4.2 times the one for 1= 1% while the output size for 1= 10% is 51.7 times
the one for 1= 1%.

(a) D2SJ vs DSJ-CP                                (b) D2SJ with larger distance thresholds
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Fig. 7. Execution time when increasing the similarity join distance threshold.

6 Conclusion and Future Work

Many organizations are collecting vast amounts of data that often include very similar
data items. When data operators such as the Similarity Join, are executed on these
datasets, the results include many similar output pairs that do not add much value to the
understanding of data patterns. To address this problem in the case of similarity joins,
previous work explored the integration of a diversification step. This previous work,
however, was proposed for small data on a single computer. In this paper, we present
D2SJ, a distributed approach to solve the diversity similarity join problem with big data.
D2SJ can be used with multiple data types and distance functions. We present a detailed
description of D2SJ as well as implementation details in Apache Spark. Moreover, we
also present experimental results with real datasets that show strong performance and
scalability properties. Future areas of research building on the results of this work could
include (1) the comparative study of additional ways to diversify the output of different
types of similarity join for big data and (2) the development of efficient distributed
algorithms supporting these new notions of diversity.
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Abstract. This manuscript presents the premiere SISAP 2023 Index-
ing Challenge, which seeks replicable and competitive solutions in the
realm of approximate similarity search algorithms. Our aim is recall,
all while optimizing build time, search time, and memory consumption.
Using a subset of the deep features of a neural network model provided
by the LAION-5B dataset, the challenge posed three tasks, each with its
unique focus:

– Task A: Conduct classical approximate nearest neighbor search,
ensuring an average recall of at least 0.9 for 10-NN queries.

– Task B: Find a succinct binary embedding of the original data that
ensures high recall on the original data.

– Task C: Index and search binary representations from Task B.
Notably, an innovative and competitive binary mapping method emerged
from the challenge. It also spotlighted graph methods as the preferred
indexing technique for binary and real-valued high-dimensional vectors.
However, these methods have little room for improvement. Enhancing
memory efficiency, refining navigational strategies, and tackling the sec-
ondary memory challenge are pivotal next steps.

Keywords: Approximate nearest neighbor search · Indexing and
searching pipelines · Experimental comparison of search methods

1 Introduction

Similarity search algorithms are pivotal for efficiently retrieving similar items
from vast datasets, underpinning tasks like information retrieval, multimedia
indexing, and pattern recognition. As machine learning, dense retrieval, and
computer vision become increasingly prevalent, similarity search methods must
meet the quality and computational demands of both applications and the sys-
tems they run on.

The curse of dimensionality [3] dictates that all metric search algorithms
falter when confronted with high-dimensional datasets. This matter necessitates
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adopting approximate or probabilistic methods to balance speed against quality.
Furthermore, there’s an opportunity to trade-off between construction time and
memory usage, leading to a variety of indexing solutions, each with its merits
and drawbacks.

The SISAP Indexing Challenge1 seeks to identify efficient similarity search
algorithms that strike a balance between accuracy and practical constraints like
build time, search time, and memory consumption. To facilitate this, we devised
a test bed utilizing the LAION deep features English subset, segmented into 10M,
30M, and 100M benchmarks. Additionally, there are two query sets: public and
private, each comprising 10k vectors. The public queries were made available
during the call for papers, while the private ones were revealed post-submission
and evaluation.

2 The Dataset

The LAION dataset, as detailed in [15], is an expansive public image collection
comprising both images and textual descriptors. It has proven instrumental in
training large visual and language deep-neural models, as cited in [4,13]. Every
image within the collection is paired with a URL handle, simplifying the demon-
stration process. Moreover, the LAION consortium has made vector embeddings
available using the Contrastive Language-Image Pre-Training (CLIP), specifi-
cally harnessing the OpenCLIP architecture [4]. These deep features manifest as
768-dimensional vectors, represented using 16-bit floating point numbers. The
CLIP architecture was initially introduced in [12].

We employed three subsets from the English segment of the LAION collection
(commonly referred to as LAION2B) as benchmarks. These subsets consist of 10,
30, and 100 million vectors, with vectors labeled as Not Safe for Work (NSFW)
duly excluded. Further insights regarding the selection and packaging of these
subsets can be found on the challenge’s companion site.

3 Task Descriptions

The Indexing Challenge focuses on nearest neighbor queries, specifically on
approximate k nearest neighbor queries. We have established three tasks that
emulate various application scenarios, each catering to different needs in terms
of quality, speed, and memory.

A key aspect of this challenge is reproducibility. Submissions were accepted
in the form of Github repositories with operational Github Action (GHA) work-
flows.2 Teams crafted their solutions by meticulously setting and benchmarking
hyperparameters for each task and clearly detailing their choices in their GHA
entry point.

1 Official site of the challenge https://sisap-challenges.github.io/.
2 Github Actions is a continuous integration platform that enables continuous testing

of repositories within virtual machines.

https://sisap-challenges.github.io/
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We designed four benchmarks from the LAION2B dataset, each with a dis-
tinct number of vectors: 300K for development and 10M, 30M, and 100M work-
loads designated for the challenge. Furthermore, we designed two sets of pub-
lic and private queries. Teams were tasked with designing their solutions and
determining the hyperparameters based on the public query set. The private set
was subsequently used to re-test and rank all solutions on our system. We com-
puted gold standards for k nearest neighbor queries in public and private queries,
which is the foundation for calculating the recall score in the final results. Pub-
lic queries, along with their associated gold standards, were available from the
commencement of the challenge, while private ones were unveiled post-validation.
We expected teams to construct indexes that efficiently solve queries and excel
under the specific conditions and metrics defined for each task. All tasks revolved
around retrieving the approximate k = 10 nearest neighbors.3

During the challenge, Vladimir Mı́č (private communication) reported certain
anomalies he detected in the public gold standard. He highlighted numerous dis-
tance value ties at k and k + 1 neighbors and instances of neighbors at distance
0, i.e., duplicates. Upon confirmation, we ascertained that these discrepancies
were likely due to the prevalence of near duplicates in the LAION database [20].
For the private query set, we implemented measures to curb these issues, uti-
lizing IEEE 754 floating point arithmetic to compute distance functions in the
gold standard and excluding query objects where the k and k + 1 neighbors
matched identically.4 The subsequent segments of this section delve deeper into
the intricacies of the tasks.

Task A: Searching the Original Embeddings. Task A focuses on high-
throughput solutions with little loss in quality. The aim is to design the fastest
search algorithm that hits a recall of at least 0.9 (on average over all queries).
Teams adopted the strategy to build a single index and used a large collection
of search parameters for each subset size. A small catch is that only the best-
performing probe in the private query set gets to stay. Repositories should be
ready to run right out of the box with all the settings in place. Note that teams
likely used the public query set to fine-tune their settings.

Task B: Producing Binary Sketches. This task concerns the succinct repre-
sentation of the original 768-dimensional real-valued vectors using fixed-length
binary strings. These have a much smaller memory footprint and allow efficient
distance calculations via SIMD instructions. The main goal of this task is to find
embeddings that, using Hamming distance and a linear scan, produce a higher
average recall than our baseline of 0.24. The baseline uses our current go-to
method based on permutation binary sketches [18].

3 Gold standards incorporate results up to k = 1000.
4 This constraint was determined using the 100 million benchmark.
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Task C: Indexing and Searching on Binary Sketches. For Task C, the
challenge seeks solutions that let us first index and then search using these binary
sketches while using the Hamming distance as our measuring stick. Participants
can use the embeddings they came up with in Task B or go with the baseline
embeddings. The benchmark? The fastest solutions with a recall close to ours,
meaning they should achieve or surpass a recall of 0.216, i.e., 90% of our baseline.

4 Solutions Overview

This section describes the set of solutions to the SISAP Indexing Challenge. The
solutions use diverse programming languages: C++, Rust, Java, and some use
Python as a wrapper language. One baseline uses C++ with Python wrappers,
and the rest uses the Julia programming language. The teams used different
techniques to tackle the challenge: graph-based indexes, hashing-based indexes,
linear projections, reranking, combinatorial and numerical optimization, among
others.

4.1 Baselines

We included three baselines to compare with previous work: BL-SearchGraph,
BL-FAISS-HSNW, and Bruteforce. Note that the first two are far from triv-
ial solutions. The rest of this section describes our baselines and explains its
construction and searching hyperparameters.

Bruteforce. This is a straightforward solution. It is implemented as an exhaus-
tive search using the SimilaritySearch.jl package. However, as with the rest
of our baselines, this approach takes advantage of the multithreading capabil-
ities of our running infrastructure. Unsurprisingly, a well-implemented brute
force algorithm can improve more sophisticated algorithms when the intrinsic
dimension of the data is high.

BL-FAISS-HNSW. This baseline uses the HNSW index from FAISS.5 The
Hierarchical Navigable Small World (HNSW) index, see [8], is a graph-based
index using a hierarchical structure to navigate the graph efficiently. It is created
iteratively, adding one new object at a time. The ith element is inserted by adding
edges from the ith element to a set of M approximate nearest neighbors using
the graph containing the previous i − 1 objects; the hierarchy is maintained
throughout the construction. The search algorithm consists of navigating the
graph greedily using two priority queues. The first is the result set of size ef,
and the second is a candidate list to prioritize the navigation. The search is
conducted in rounds: The not-yet-visited current closest point to the query is
inspected at each round. The search finishes when it is impossible to improve

5 https://faiss.ai/.

https://faiss.ai/
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the result set during the navigation. Due to its flexibility, the HNSW index is
the de-facto standard in the industry; most vector databases also implement it.
According to standard benchmarks [1], it is one of the faster metric indexes
known. As a baseline, we set its parameters as follows. We set the M = 32 for
all subsets and the ef parameter as 40 for construction. At the search stage, we
probe with the following ef values: 32, 64, 128, 256, and 512.

BL-SearchGraph. This baseline uses the SearchGraph index from Julia’s pack-
age SimilaritySearch.jl, see [16,17]. This index is a graph-based index sim-
ilar to the HNSW, but instead of a hierarchy, it uses a small sample of disjoint
neighbors to get fast navigation. The construction is also based on connecting
the ith element with its neighbors, but it is simplified since there is no hierar-
chy. In contrast to HNSW, it uses variable-size neighborhoods using shrinking
heuristics based on the Spatial Access Trees [10], with an upper bound defined
as M = O(log i). It uses Beam Search (BS) as a search algorithm. The search
stores candidates in a priority list of maximum size (beam size) and also limit
what is considered to be inserted into the beam using a parameter 0 < Δ < 2;
the result set is populated during the navigation, and the search finishes when
the result set does not improve and the beam is empty. It supports single-pass
automatic index optimization for a given quality score. It is a flexible alterna-
tive that supports automatic optimization and user-defined metrics, the latter
due to Julia’s just-in-time compiler. As a baseline, it was constructed with 0.9
as objective recall and a neighborhood size of M = log1.5 i. During the search
stage, we varied the optimized Δ parameter in the range Δ/1.052 ≤ Δ′ < 2
growing exponentially in a 1.05 factor.

4.2 Teams Solutions

Six teams submitted a candidate for evaluation; one team (HIOB) targeted all
three tasks, one team (SWANN) focused on indexing binary sketches (Task C),
the remaining teams (UTokyo, CRANBERRY, LMI, HSP) focused on efficient
retrieval in the standard setting (Task A). Teams used their implementations
and modifications or tuning of well-known approximate nearest neighbor search
libraries.

UTokyo. This approach proposes a pipeline of dimensionality reduction,
database subsampling, and entry point optimization to solve Task A. The
pipeline is designed for graph-based indexes and optimizes the computational
requirements in terms according to specified accuracy, runtime, and memory
requirements. It employs black-box optimization for parameter tuning. In par-
ticular, the authors optimized a Navigating Spreading-out Graph (NSG) [7] with
a neighborhood of 32 as index for their submission. More details are given in
[11].
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CRANBERRY. This approach combines several search techniques in a three-
stage pipeline: data partitioning, candidate filtering, and reranking. The input
database is divided into a Voronoi partition. The search algorithm locates the
nearest partitions to the query to retrieve a list of potentially similar vec-
tors. Then, 512-bit sketches and 24-dimensional prefixes of vectors are used to
reduce the candidate list; an early termination strategy accompanies the filtering.
The list of candidates is reranked using the original distance, that is, the 768-
dimensional CLIP vectors and the cosine distance. CRANBERRY is designed to
solve Task A. More details are found in [9].

SWANN. This approach uses a collection of tries together with the bit-
sampling locality-sensitive hashing scheme [2]. Their solution targets Track C
(indexing binary vectors). During index building, each binary vector is hashed
K · L times, and each block of length-K bit strings is used to insert the vector
into one out of L tries. The query vectors are hashed and looked up in the trie
during the search. If too few candidates are found on the leaf level, the search
is dynamically expanded to cover larger parts of the trie. More details are given
in [14].

HIOB. This approach is based on creating binary sketches of a vector database
explicitly designed for cosine similarity. The binarization is made through hyper-
planes, i.e., encoding where the vector lies. The random sample consensus
inspires the initialization of the set of encoding hyperplanes, RANSAC [5]. Then,
the encoders are refined by maximizing bit independence and bit balance for
binary sketches on the unit sphere. The iterative optimization process improves
sketch quality through orthogonalization and is made in small batches, similar
to stochastic gradient descent. In each iteration, a displacement vector is com-
puted to update some hyperplanes. The bit assignments are recomputed after
each batch. In the search stage, the bit-vectors under hamming distance are used
to calculate a candidate list of size n�, this process is computed with a brute
force procedure since the authors found no improvement on using HNSW or
faiss [19]. The candidate set is reranked with the original database objects and
cosine distance to get the k nearest neighbors.

We used the specified hyperparameters for each task and subset. For Task A
and C, we used 256, 192, and 128 bit-vectors for 10M, 30M, and 100M subsets,
respectively. The n� parameter is increased with the dataset for Task A, going
from more than a thousand to 60,000. Task B uses 1024-bit vectors with n� = k.
Task C is similar to task A, but n� = k. More details are given in [19].

LMI. The Learned Metric Index uses an architecture of interconnected learned
models; the LMI demonstrates notable performance characteristics, often sur-
passing traditional methods in terms of efficiency and effectiveness. Central to
the LMI is a tree structure that harnesses machine learning, particularly neu-
ral networks, to shrink the search space, facilitating a sequential search among
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significantly fewer objects than the original dataset. This is followed by a more
time-intensive bucket-level sequential search within identified data partitions.
The distances between objects are ascertained through a trained neural network,
resulting in a probability distribution matrix that captures object-category rela-
tionships. The approach is adaptable, with the procedure iterating over matrix
columns based on similarity, treating the exact count as a parameter. The app-
roach is more useful with the help of a GPU or TPU, which was not considered
for this challenge.

Table 1. Task A results for all LAION subsets. Entries are sorted by best rank in the
10M subset. Query time is measured in seconds for the entire query set. OOM label
means for out of memory and NR for not run.

Team 10M 30M 100M

Build Search Rank Build Search Rank Build Search Rank

time time time time time time

HSP 1h 21m 0.34 1 4 h 16m 0.49 1 17 h 15m 0.51 1

UTokyo 38m 0.49 2 2 h 35m 0.71 2 OOM – –

BL-SearchGraph 13m 0.61 3 53m 1.09 4 5 h 55m 1.67 2

BL-FaissHNSW 16m 0.74 4 33m 0.86 3 4 h 48m 21.40 3

HIOB 7m 35.89 5 8m 89.97 5 13m 247.01 4

CRANBERRY 1h 57m 107.05 6 5 h 49m 192.02 6 17 h 29m 589.76 5

LMI 7 h 4m 450.25 7 NR – – NR – –

Bruteforce 0m 2,415.75 8 0m 9,010.50 7 NR – –

HSP. The HSP team performed several modifications and tuning to the HNSW
index, specifically on the hnswlib.6 The authors reduced the memory require-
ments by hacking how the database is loaded and maintained in memory. This
change allowed them to reduce the construction time by half. Another customiza-
tion removes unnecessary functionality directed to vector databases and other
search engines. The authors performed a broad ablation study and hyperparam-
eter optimization to obtain a competitive setup for the challenge. Interestingly,
one of the most critical parameters is the construction ef, which interchanges con-
struction time by search quality. Note that construction was previously reduced,
resulting in a net moderate increase in the building time. The parameters M = 20
and ef= 800 (construction) of the HSNW were determined to be the best choices
for the provided workloads. The search state iterates on different values ef from
10 to 1000. The HSP team designed their solution for Task A. More details are
given in the accompanying paper [6].

5 Results and Discussions

Evaluation Setup. Following the GHA setup, we prepared docker Linux images.
The evaluation was conducted on 2× Intel(R) Xeon(R) CPU E5-2690 V4 CPUs
6 Official site of the hnswlib project https://github.com/nmslib/hnswlib.

https://github.com/nmslib/hnswlib
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(28 cores, 56 hyperthreads) workstation with 512GiB of RAM. The original
dataset resided on a 1TB SSD, but all solutions loaded data vectors and index
data structures in memory. We encouraged participants to use multithreading
or multiprocessing in the construction and searching stages to take advantage of
the hardware—all participants except team SWANN employed multithreading.
We enforced a time limit of 24 h for building the index and running the query
workload.

Task A. Table 1 shows the results of Task A. As mentioned in Sect. 3, all teams
built a unique index. We recorded the build time and, for each set of hyperpa-
rameters, the search time accumulated over 10k queries. From these timings, we
present the shortest search time that exceeded the recall requirement.

All solutions worked on the 10M subset, and this performance is used to sort
the table; five worked on 30M, and only three on 100. The HSP team presents the
top-performing solution in all subsets. It achieved search times below a second,
which put it in the tens of thousands of queries per second. On the downside,
it has one of the most costly constructions. UTokyo performs the second best,
having a better trade with construction time but having memory issues and being
unable to run the 100M benchmark. Focusing on build time, team HIOB has an
order of magnitude shorter build times but provides rather slow searches. Entries
marked as NR were not run due to diverse causes, like very high computational
resources or not given hyperparameters.

Table 2. Task B results. Recall values for 1024-dimensional bit-vectors.

Team Recall

10M 30M 100M

HIOB 0.55 0.57 0.58

Baseline 0.24 0.24 0.25

Task B. Results of the second task are presented in Table 2. Here, the recall
is used as the main performance score. Only the HIOB team participated, sur-
passing significantly our baseline by a factor of more than two. Interestingly,
the 1024-dimensional bit-vectors are faster to compute and contain more metric
information than approaches like PCA for the same given memory.

Task C. Table 3 shows the performance in Task C. Here, two teams were able
to submit. The HIOB team uses the same configuration as in Task A but with-
out reranking the results on the binary embedding using the original vectors.
Since HIOB uses just 128-bit vectors for 100M, see Sect. 4, it achieves a lower
recall behind the accepted threshold (AT). Using more bits improves their result
quality at the cost of the search time. The SWANN team marked all entries
beyond the AT, but its solution did not take advantage of the multicore archi-
tecture and was run in a single thread. Thus, they can improve their performance
significantly if they solve queries in parallel.
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Table 3. Task C results: Indexing binary vectors. The reference recall for bruteforce
is around 0.24. Displayed are the top-performing parameters that surpass a recall of
0.216.

Team 10M 30M 100M

Build Search Rank Build Search Rank Build Search Rank

time time time time time time

BL-SearchGraph 5m 0.10 1 14m 0.36 1 2 h 6m 1.09 1

HIOB 7m 36.56 2 8m 90.35 2 – – –

Bruteforce 0m 74.51 3 0m 246.95 3 0m 816.93 2

SWANN 3m 159.82 4 12m 717.54 4 1 h 3m 3794.05 3

6 Conclusions

The SISAP 2023 Indexing Challenge’s first edition was a successful event that
brought together researchers worldwide to work on the problem of approximate
similarity search. The challenge becomes a trigger for innovative methods; several
indexing methods for vector spaces emerged, along with binary mappings, and
indexes for the binary Hamming space, as well as insights into the strengths and
weaknesses of different approaches.

One of the most notable findings of the challenge was the emergence of a
new binary mapping method that is both competitive and efficient. The chal-
lenge highlighted the importance of graph-based indexing techniques for real-
valued and binary high-dimensional vectors. While the methods developed in
the SISAP 2023 Indexing Challenge represent a significant step forward, there
is still room for improvement. Future work should enhance memory efficiency,
refine navigational strategies, and tackle the secondary memory challenge.

The SISAP 2023 Indexing Challenge was a valuable opportunity to advance
the state of the art in approximate similarity search. The challenge’s findings
will interest researchers and practitioners working in various fields, including
information retrieval, machine learning, and computer vision.
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Abstract. Locality-Sensitive-Hashing (LSH) plays a crucial role in
approximate nearest neighbour search and similarity-based queries. In
this paper, we present a study on the performance of LSH for indexing
and searching high-dimensional binary vectors under the hamming dis-
tance metric. The paper presents a simple implementation of LSH-tries,
utilizing binary indexing to seamlessly traverse to neighbouring buck-
ets. To speed up queries, two optimization techniques, Batch Extrac-
tion & Trie Rebuilding, are introduced and their impact on perfor-
mance analyzed. For evaluation, we conducted benchmarks using 1024-
bit binary sketches from the LAION dataset, showcasing the accuracy
and efficiency of our solution w.r.t. the brute-force approach, optimiza-
tion strategies, and dataset size. The results show that SWANN outper-
forms the brute-force approach, and exhibits sub-linear growth as the
size of the dataset increases. Our results w.r.t. the aforementioned opti-
mizations showcase the importance of the bucket distribution, and the
impact of hash function configuration.

Keywords: Index Challenge · Approximate Nearest Neighbors ·
Locality-Sensitive Hashing · Binary-Indexed LSH-Tries · LSH-Forests

1 Introduction

The motivation for the paper has been to participate in the SISAP 2023 Imple-
mentation Challenge [8]. The challenge revolves around finding efficient ways
to search for approximate nearest neighbors (ANN) in high-dimensional spaces.
ANN search at a billion-scale (Big ANN) is a fundamental challenge in computer
science. Notably, this challenge has applications in contemporary systems like
image searches, recommendation engines and search systems [3].

Efficiently addressing this challenge, while considering memory utilization
and performance optimization, is of paramount importance. Although tree-like
approaches such as k-d trees exists, they suffer from scalability issues when

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
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dealing with a large number of dimensions – a conundrum often referred to as
the ”curse of dimensionality” [5]. To combat these challenges, Locality-Sensitive
Hashing (LSH), a hash-based approximation technique, has emerged as a solu-
tion [6].

This paper builds on the findings of PUFFINN [2] by researching the perfor-
mance of LSH under the Hamming distance metric on a dataset comprising 100
Million 1024-dimensional binary vectors.

The paper introduces two straightforward optimizations Trie Rebuilding
(Subsect. 3.4) and Batch Extraction (Subsect. 3.5), and discuss their impact
on performance. In section Sect. 3 we will present our version of the LSH-trie,
which utilizes pre-built masks and binary indexing to facilitate seamless traversal
between neighboring buckets.

1.1 (k, δ, q)-NN Problem Definition

Let P = {p1, . . . , pN} define a dataset of N points in the Hamming space and let
each point be a D-dimensional binary vector. Furthermore, let λ(a, b) denote the
Hamming distance metric between point a and b. The nearest neighbour of a
point q can then be defined to be the point pi ∈ P, such that λ(q, pi) ≤ λ(q, pn)
for n = {1, · · · , N}. Given P and λ(a, b), the (k, δ, q)-NN problem is about finding
k points in P, such that each is among the k closest points to q with a probability
of at least 1 − δ.

2 Locality-Sensitive Hashing

The key to LSH’s effectiveness lies in employing locality-sensitive hash fami-
lies – special families of hash functions tailored to maintain pairwise similarity,
reinforcing the property that nearby points are more likely to hash to the same
value. The properties of LSH hash-families are formally defined in Definition 1.

Definition 1. A family of hash functions are locality-sensitive for points p and
q in a metric space if and only if the following conditions hold.

λ(p, q) ≤ R → Pr[hash(p) = hash(q)] ≥ P1 (1)
λ(p, q) ≥ cR → Pr[hash(p) = hash(q)] ≤ P2 (2)

Where R is a threshold, c is an approximation factor, and Pr[E] is the probability
of an event E occurring.

Single-Bit Hash Family. For SWANN we have utilized the single-bit hash
family. Given a binary vector p = {0 , 1}D, let the notation p[i] denote the value
of the i’th bit of p for i ∈ {1, . . . ,D}.

single bit hash(x) = x[i] (3)
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Equation 3 depicts the single-bit hash function. The idea is select i at ran-
dom, and return the value of that bit as the hash. A single-bit hash function
does not impose a major optimization by itself, in clustering points together.
However, multiple locality-sensitive hash functions can be chained to create a
new LSH-function with improved properties.

Chaining LSH-functions naturally decreases P2, the probability of distant
points being hashed to the same cluster. By utilizing this chaining, the total
number of clusters is increased to 2n clusters.

3 Binary-Indexed LSH-Tries

The LSH-trie is a tree-like data structure, in which a chain of LSH-functions are
employed to group closely related data points into clusters.

LSH-tries are organized using a binary-indexed approach, which entails struc-
turing them in a manner that allows direct indexing of buckets based on the hash
values of query points. See 3.2 for more details on this.

This indexing method facilitates seamless traversal not only within a bucket,
but also to its neighboring buckets across the trie.

3.1 Building LSH-Tries

When constructing an LSH-trie, each of the hash functions is assigned to a par-
ticular depth within the trie. This assignment ensures that any point’s traversal
through the trie corresponds to a sequence of hash function applications. Con-
sequently, a LSH-trie of depth d maps each data point to a binary string. The
d letters of the string is determined by the outcome of the hash functions, such
that the j’th character corresponds to the outcome of applying the j’th hash-
function. As such, all combination of binary strings can be found within the
numbers 0 to 2d − 1. Hence, the data structure can be implemented by storing
the buckets in a 2d-length array. To avoid the memory overhead of storing empty
buckets, we use a hash-map to store buckets instead. For the indexing to work
correctly the d hash functions used in the LSH-trie must be binary, i.e. yielding
true or false, forming a perfectly balanced trie with 2d leaf nodes. Figure 1 illus-
trates an LSH-trie made up of 4 hash functions, resulting in 4-bit binary string
indexes.

3.2 Querying for Candidate Points

To determine the approximate nearest neighbors for a query point, the LSH-
trie maps it to a specific bucket. If this bucket contains an adequate number of
candidate points, those points are returned. Otherwise, neighboring buckets are
examined to enhance candidate retrieval.

The LSH-trie provides a convenient mechanism to access adjacent buckets.
By modifying the binary string representing the query point, one can navigate to
nearby buckets. Specifically, flipping z bits in the binary string equates to moving
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to buckets that share the outcomes of d−z hash functions. This approach permits
gradual adjustments in the number of flipped bits to efficiently explore buckets
with decreasingly similar points.

Fig. 1. An LSH-trie, with nodes of distance 1 and 2 from nodes 0000 and 1111 high-
lighted, respectively

Figure 1 illustrates the traversal from the bucket with the binary string
“0000” to its four closest neighbors by flipping any one of its bits, equivalent
to a distance of 1 in Hamming space. However, the number of neighboring buck-
ets varies based on the distance from the query point. For instance, a Hamming
distance of 1 results in four neighbors, while a distance of 2 results in six neigh-
bors. To efficiently iterate through all buckets that share d − h hash functions,
we utilize a pre-computed array of bitmasks indexed by the current depth h.
The bitmasks for h is an ordered-set of all possible permutations containing h
set bits for a binary string of length d.

3.3 LSH-Forests

The LSH-forest [3] is a data structure composed of multiple LSH-tries, forming
a forest-like arrangement.

Constructing an LSH-forest involves inserting all of the data points into a
set of LSH-tries. These tries share a consistent depth value, that determines the
number of hash functions used and, in turn, the length of the binary strings.

When querying the k ANN of a specific data point, the LSH-forest extracts
candidate points from each of the LSH-tries, and then returns the k points to
the user.

The performance of the forest depends on the choice of depth d and number
of tries in the forest L. The correct choice of d and L depends on the probabilities
P1 and P2 for the underlying hash family used [2]. For a single-bit hash function,
the depth can be calculated as:

d =
⌈ log N
log 1

P2

⌉
(4)
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L =
⌈
P−d
1

⌉
(5)

3.4 Rebuilding LSH-Tries

The LSH-trie rebuilding optimization occurs during the building of the index.
The rebuilding optimization derives from the fact that different configurations of
hash functions lead to different bucket distributions in the tries. How to rank a
bucket distribution is difficult, but we have found γ, the size of the largest bucket
in the trie, to be a good metric. This is due to a strong correlation between the
size of γ and the worst-case performance of queries.

The optimization is simply to rebuild each trie τ > 1 times and choosing the k
LSH-tries that minimizes γ. By rebuilding the tries multiple time the likelihood
of encountering good configurations must be improved, as we examine more
possibilities.

SWANN deploys a multi-threaded version of the rebuilding process to utilize
the cores available of the SISAP contest machine. To build k LSH-tries with τ
optimization steps, a priority queue of LSH-tries ordered by γ is initialized. Now
build k × τ LSH-tries with random hash-family configurations, and insert the
tries into the queue. Once all the tries have been built, choose the k tries at the
top of the priority queue.

3.5 Extracting in Batches

Another key optimization we’ve implemented is to extract candidate points from
buckets in the LSH-tries in batches. The underlying idea is to minimize the
number of distance computations for more points than necessary. In the worst-
case w.o. the optimization, L × γ points would be included as candidate points
before evaluating the exit criteria. Let β denote the batch size, the maximum
number of candidate points extracted simultaneously from a single bucket. By
partitioning each bucket into smaller batches, the optimization aims to limit the
worst-case to L × β points. Equation 6 estimates β by multiplying some bucket
factor α with the number of elements queried for, k.

β = α + k, where α > 0 (6)

In practice, this optimization improved our average running time by approx-
imately three times.

4 Results

4.1 Methodology

To evaluate the performance and correctness of our solution, the benchmarking
methodology is important [1]. Our benchmarks were conducted in Docker con-
tainers, to ensure reproducibility. We utilized the open-source C++ benchmark
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library by Google to execute parameterized benchmarks with multiple repeti-
tions, enhancing result accuracy. Code to reproduce the benchmarks is available
in on our GitHub repository.

Benchmarking involved a subset of the laion-5B dataset [7], projected into
1024-bit binary sketches, along the Gold Standard list containing answers to the
queries, both provided by the SISAP committee [4].

Our solution requires manual tuning of hyper-parameters P1 and P2.

4.2 Evaluation

In Fig. 2, our benchmarks cover 10-NN queries for up to 10 million 1024-bit
points under the Hamming distance metric. Figure 2a shows that as dataset
size increases, SWANN examines a smaller fraction, with an average number of
candidate points close to β × L.

Comparing Fig. 2b, SWANN outperforms our C++ brute-force approach for
10M points on the same hardware. The average query achieves at least a 90%
recall in 0.024 s, about 48 times faster than brute-force.

Fig. 2. Benchmarks of ANN queries

Figure 3a illustrates the impact of the rebuilding optimization on the average
queries per second for selected iterations between 1 to 8 for 300k points.

Figure 3b compares the build times for different rebuilding strategies when
run on 20 cores. As seen, rebuilding the tries slows down the build time signifi-
cantly but by multi-threading, the effect is diminished.

5 Implementation Refinement

The SISAP challenge evaluation is done using a 32-core Intel(R) Xeon(R) CPU
E7-4809 workstation. As our solution uses a single thread for query evaluation,

https://github.com/google/benchmark
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Fig. 3. Benchmarks of trie rebuilding

an obvious improvement would be to segregate the work to multiple threads.
Further, we could improve the performance of the Hamming distance compu-
tations by utilizing the hyper-optimized AVX-512 instruction set, as advised in
the SISAP challenge.

6 Conclusion

In conclusion, this paper has addressed the challenge of efficient approximate
nearest neighbor search in high-dimensional spaces using Locality-Sensitive
Hashing.

We explored the application of binary-indexed LSH-tries under the Hamming
distance metric on a large dataset of binary vectors and introduced optimization
techniques, namely Batch Extraction and Trie Rebuilding, to enhance query
efficiency.

SWANN’s efficiency and accuracy were demonstrated through benchmarks
with the LAION dataset, showcasing its superiority over brute-force approaches.
By harnessing the power of binary indexed LSH-tries and the mentioned opti-
mizations, SWANN achieves sub-linear growth in query times as dataset size
increases.

We acknowledge that there remains potential for further improvement. In
particular, refining the implementation could involve the integration of hardware-
specific optimizations along with concurrent processing of queries through multi-
threading.
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Abstract. Despite the efficacy of graph-based algorithms for Approx-
imate Nearest Neighbor (ANN) searches, the optimal tuning of such
systems remains unclear. This study introduces a method to tune the
performance of off-the-shelf graph-based indexes, focusing on the dimen-
sion of vectors, database size, and entry points of graph traversal. We
utilize a black-box optimization algorithm to perform integrated tuning
to meet the required levels of recall and Queries Per Second (QPS). We
applied our approach to Task A of the SISAP 2023 Indexing Challenge
and got second place in the 10 M and 30 M tracks. It improves per-
formance substantially compared to brute force methods. This research
offers a universally applicable tuning method for graph-based indexes,
extending beyond the specific conditions of the competition to broader
uses.

Keywords: ANN search · Graph-based index · Black-box optimization

1 Introduction

The proliferation of deep learning has amplified the utility of Nearest Neighbor
Search (NNS) in finding the closest vector within a set of embedding vectors
for various documents. Particularly for million-scale data, the typical choice is
Approximate Nearest Neighbor Search (ANNS). While different ANNS methods
exist, graph-based techniques are superior in speed and accuracy, given that the
data fits in RAM [9]. Renowned graph-based methods like NSG [4] and HNSW [8]
are readily available through optimized libraries like Faiss [6].

While off-the-shelf graph indexes provide an efficient baseline, performance
tuning becomes crucial to meet specific performance requirements. The evalu-
ation of ANNS performance typically revolves around three metrics: accuracy
(Recall@k), runtime (Queries Per Second; QPS), and memory usage. In practi-
cal scenarios, such as those presented in the SISAP competition, optimizing one
metric often comes with constraints on accuracy, runtime, or memory. A per-
formance tuning method for graph indexes under such constraints is non-trivial
and remains an open area of investigation.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
O. Pedreira and V. Estivill-Castro (Eds.): SISAP 2023, LNCS 14289, pp. 273–281, 2023.
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Our work proposes a practical approach for performance tuning off-the-shelf
state-of-the-art graph-based method (e.g., NSG [4]) according to specified accu-
racy, runtime, and memory requirements. We focus on three key factors: vector
dimensionality reduction, database subsampling, and entry point optimization
for graph traversal. We employ black-box optimization for parameter tuning. Our
method is flexible and adaptable to various datasets and performance demands.

We participated in Task A in SISAP Indexing Challenge [12] and got second
place in the final score. In Task A, we use the LAION2B dataset [10] to perform
k-nearest neighbor search (k = 10). The dataset consists of 16-bit float vectors
with 768 dimensions. Under the condition of exceeding a recall of 0.9, the faster
the search speed, the higher the score you will receive. We use several subsets
(300K, 10 M, and 30 M size) for evaluation. The submitted code is available at
https://github.com/mti-lab/UTokyo-sisap23-challenge-submission.

We specifically apply our method to optimize the runtime of NSG index [4]
within constraints on accuracy and memory usage. NSG index is a graph-based
index approximating MRNG (Monotinic Relative Neighborhood Graph) [4]
structure. The time complexity of the search is close to logarithmetic time.

This work makes two key contributions.

1. Through exhaustive experiments, we demonstrate that dimensions, database
size, and the entry point of the graph traversal serve as valuable parameters
for performance tuning.

2. We introduce a practical and universal method for performing constrained
optimization in ANN, considering accuracy, runtime, and memory metrics,
utilizing black-box optimization.

2 Preliminary Study and Findings

2.1 Preliminary Study

We first evaluate representative types of indexes with subsets of LAION5B [10]
provided in the competition to choose the baseline. The subset size is 300K,
and the query set is 10K public queries provided in the competition. [12]. The
evaluated indexes include the brute force approach, graph-based, PQ-based, and
IVF-based index. Evaluation metrics are Recall@k, QPS, and memory usage.
Let ground truth k-nearest neighbors be R and approximate nearest neighbors
be R̂. Recall@k is defined by |R∩R̂|

k . QPS is the average number of processed
queries per second. Memory usage represents the index’s memory footprint.

All implementations utilize indexes provided by Faiss [6], a well-optimized
ANNS library with C++ and Python bindings. We run preliminary experiments
on an Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50 GHz with 512 GB RAM.

From the outcomes illustrated in Fig. 1, we found NSG is promising for Task
A. We also demonstrate that a graph-based index is the best choice when a
memory capacity is sufficient, as often suggested [9]. Among records whose recall
is more than 0.9, NSG index runs 22.2 times faster than the brute force method.
In addition, despite the memory efficiency and better QPS of the PQ-based

https://github.com/mti-lab/UTokyo-sisap23-challenge-submission
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Fig. 1. A preliminary experiment comparing various indexes: The FlatL2 means brute-
force approach. Other indexes have a common format consisting of two parts separated
by a comma. The former means the index name. “NSG32” means NSG [4] index whose
number of links per vertex is 32. (2) “HNSW32” means HNSW [8] index whose number
of links per vertex is 32. (3) “IVF512” means an inverted file index that divides the
dataset into 512 clusters. The latter means the precision of data. “Flat” means original
database vectors, and “PQ32” means quantized vectors of 32-byte PQ [7] code. Note
that we did not re-rank the quantized vectors.

approach, we cannot employ it due to its low accuracy. Thus, we select NSG
index as a baseline.

In addition, we conducted performance profiling and found that the bottle-
neck of NSG index is the computation of L2 distances. It occupies a significant
fraction (more than 90%) of the whole computational cost during the search
phase. We used perf as a profiling tool.

2.2 Findings

Based on these results, we propose three key tuning parameters to improve the
search speed: the dimensionality of database vectors, the size of the database, and
the entry point for graph traversal. Reducing the dimensionality of vectors and
subsampling the database directly reduces the cost of computing L2 distances.
In addition, we can change where to start the graph traversal. It is another
parameter to be tuned. We aim to optimize these three parameters to improve
QPS without compromising Recall@10.

Efficiently selecting these parameters in ANN is not straightforward since
Recall@10 and QPS are trade-offs. In addition, the increase in speed due to
these parameters is not monotonic due to the various complex factors involved.
Moreover, conducting a simple grid search is inefficient. Therefore, this paper
proposes a practical framework for tuning an off-the-shelf graph-based index,
specifically the NSG index. This framework is a generic method that applies to
other types of constraints or different targets.
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Fig. 2. The whole pipeline of our method.

3 Method

Figure 2 shows the whole pipeline of our method. It subsamples the database and
reduces the dimensionality of vectors. In the search phase, it selects the entry
point where the graph traversal begins. We explain the details of each reduction
method in Sect. 3.1 and how to effectively optimize them in Sect. 3.2. Note that
we do not modify the graph index itself. Thus, this approach is independent of
the implementation of NSG graph index.

3.1 Components in Pipeline

Dimensionality Reduction. We employ Principal Component Analysis
(PCA). It is a linear dimensionality reduction algorithm that projects data to
a lower dimensional subspace. It reduces the dimension from D0 to D(≤ D0)
(Fig. 2). It can directly reduce the computational cost of L2 distance calculation.
The reduced dimension D is an indexing parameter to be tuned.

Database Subsampling. We employ AntiHub Removal [11] to subsample the
database effectively. This reduction method is based on hubness in data. It reduce
the size of database from Nd to αNd(0 ≤ α ≤ 1) (Fig. 2). It can improve accu-
racy at a given memory consumption level while maintaining the same QPS.
This approach is a compelling tuning candidate because we can apply it with
dimensionality reduction methods. The ratio α is also a parameter for indexing.

Optimizing Entry Point. If we have multiple entry point candidates, starting
with the one closest to the query dramatically speeds up the search [2,5]. We
propose a novel and straightforward entry point selection method utilizing k-
means clustering. It first divides the entire dataset into k clusters and computes
a centroid of each cluster (i.e., a centroid is the nearest vector to the mean vector
of the cluster). Given a query, we select the closest centroid to the query as an
entry point. This approach enables to start traversal from a near point to the
query. It prevents excessively long search paths. The number of clusters k is a
parameter for building the entry point searcher.
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Our approach works well in parallel, even when queries arrive in a batch.
Faiss is good at a parallel search at the query level within a batch. However,
because our approach requires each query in a batch to have a different optimal
entry point, batch processing can become inefficient (Algorithm 1). To address
this issue, we propose a gather-style parallel-friendly approach (Algorithm 2). It
divides queries into multiple subsets based on optimal entry points and performs
batch processing separately for each subset. This approach achieves the same
result as Algorithm 1, but with more room for parallel execution (L1 and L6).

Algorithm 1. An implementation with naive approach

1 for query id , query in enumerate ( qu e r i e s ) :
2 ep = sea r ch en t rypo in t ( query )
3 s e t e n t r ypo i n t ( index , ep )
4 # s i n g l e query
5 r e s u l t s [ query id ] = index . search ( query , k )

Algorithm 2. An implementation for query batch

1 epts = s ea r ch en t r ypo i n t s ( qu e r i e s ) # runs in batch
2 for ep in np . unique ( epts ) :
3 que ry id s = ( epts == ep )
4 query batch = que r i e s [ query ids , : ]
5 s e t e n t r ypo i n t ( index , ep )
6 # runs in batch
7 r e s u l t s [ que ry id s ] = index . search ( query batch , k )

3.2 Parameter Tuning with Black-Box Optimization

We apply a black-box optimization technique to tune parameters D, α, and k to
maximize QPS under memory usage constraints and Recall@10, as specified in
Task A. As we cannot compute the gradient of QPS with respect to the tunable
parameters, we employ black-box optimization. It is an optimization method
that does not need derivatives. We use Optuna [1], a framework for black-box
optimization, to implement it. Optuna offers various efficient optimization algo-
rithms. We explore two different strategies under constraints: 1) single-objective
optimization with constraint and 2) multi-objective optimization.

Single-Objective Optimization with Constraint. Single-objective opti-
mization with constraint is formulated as shown in Eqs. (1) and (2). Optuna
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Fig. 3. Ablation Study for Each Components (30 M subset): (a) PCA + NSG [4], (b)
Antihub Removal [11] + PCA and (c) entry point Search with k-means + NSG.

has a sampler that narrows the parameter search space considering optimiza-
tion history. TPE (Tree-structured Parzen Estimator) sampler [3] supports this
type of optimization. It is important to note that it does not guarantee that the
obtained solution will always satisfy the constraints; we can only treat them as
soft constraints.

maximize QPS (1)
subject to Recall@k ≥ 0.9. (2)

Multi-objective Optimization. Multi-objective optimization is formulated
as shown in Eq. 3. It can include multiple objective functions, and each of them
is desired to be maximized or minimized. TPE sampler [3] also supports it.
The result is a Pareto frontier, a set of parameter points that achieve the best
trade-offs. Since QPS and Recall@k are competing objectives, we can apply
multi-objective optimization for Task A.

maximize QPS,Recall@k. (3)

4 Experiment

We evaluate the impact of each of these components on QPS and Recall@k.
Then, we conduct an experiment to tune everything integratively with Optuna.
We used the same dataset and query set as Sect. 2.1. The tested subset size
is 300K, 10 M, and 30 M. The whole experiments are conducted on the same
environment as Sect. 2.1.

4.1 Ablation Study

Dimensionality Reduction + NSG (ours) vs Vanilla NSG. In addition
to the vanilla NSG, we apply PCA for dimensionality reduction. We varied the
reduced dimension D and measured QPS and Recall@k. The results shown in
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Fig. 3 (a) demonstrates that applying PCA can increase QPS without compro-
mising accuracy. The best configuration with the condition of Recall@k ≥ 0.9
is D = 600. Its QPS is 1.53 times greater than the best records in the vanilla
NSG [4].

Subsampling + NSG (ours) vs Vanilla NSG. We apply Antihub Removal
to reduce the size of the database. Figure 3 (b) shows the performance with
various subsampling ratios α. It demonstrates that applying subsampling to the
database improves efficiency while maintaining accuracy. The best configuration
among them is α = 0.9, which exhibits 1.61 times greater QPS than the vanilla
NSG [4].

Entry Point Optimization + NSG (ours) vs Vanilla NSG. We com-
pare performance among various entry point candidates with k-means. Figure 3
(c) demonstrates that optimizing the entry point with k-means can potentially
increase the QPS in the high accuracy regime. The best configuration shows 1.30
times greater QPS than the vanilla one, while its Recall@10 is 0.9 or greater.

4.2 Parameter Tuning

We conducted parameter tuning with black-box optimization. Our ablation
study demonstrates that all three aspects can improve performance, and the
trends are consistent across different subset sizes for all tuning components.
Therefore, we conducted the tuning using a 300K subset for efficiency.

The result demonstrates that multi-objective optimization outperforms
single-objective optimization with constraints. When compared over the same
tuning time (about 3.5 h), the best configuration with the former method is 1.85
times faster than that with the latter.

Table 1 shows the best results for each subset. We apply tuned parameters
for the subset 300K. We choose the best setting among some records for other
subsets. It demonstrates that performances for all subsets significantly increased
compared to vanilla NSG [4] and brute-force method.

Table 1. The best results for each subset size (Recall@k ≥ 0.9).

Recall@10(↑) QPS [1/s] (↑)
Size Ours Ours Vanilla NSG [4] Brute-force

300K 0.9208 1.104 × 105 (×34.16) 7.186 × 104 (×22.23) 3.232 × 103 (×1.0)

10M 0.9082 3.822 × 104 (×1078) 2.881 × 104 (×812.5) 35.46 (×1.0)

30M 0.9030 3.010 × 104 (×1188) 1.860 × 104 (×734.6) 25.32 (×1.0)
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5 Discussion

5.1 Applicability to General Settings

Our framework is practical in other general ANN problems. If there are more
complex constraints than the ones in this work, our method may not be suitable,
requiring a more complex approach. However, many real-world ANN tunings are
oriented towards improving the three axes - Recall, QPS, and Memory - in a
straightforward manner. Thus, our approach is applicable in other settings.

In addition, we need to investigate whether the methods proposed here are
adequate for graph indexes other than NSG. Since the search for the entry point
and the reduction of dimensionality and database are not techniques bound by
the specific circumstances of NSG, we can expect their applicability.

5.2 Comparison to a Previous Work

SimilaritySearch.jl [14] also introduces an autotuning method for graph-based
indices, leveraging a beam search algorithm for parameter tuning [13]. Like our
methodology, it models the problem as a black-box optimization to optimize
recall and efficiency. SimilaritySearch.jl uses the count of distance computations
as its efficiency metric. In contrast, our approach models efficiency using an
average QPS measured ten times. A shared limitation for both methods is the
presumption of consistent query distributions during tuning and search. If the
assumption is invalid, it might lead to suboptimal outcomes or drastic perfor-
mance drops.

5.3 Limitation and Future Work

Our method cannot satisfy the memory constraint with a 100 M subset. It
requires further dimensionality and data size reduction, but the problem is that
it takes far more time to tune it.

We select conservative parameters to satisfy accuracy for unknown queries
in our 10M and 30M submissions. We recognize the need for using more diverse
query sets other than public queries for tuning to ensure robust performance.

Lastly, we only used the 300K subset for tuning in these experiments, as
the impact of the three parameters we tuned showed consistent trends across all
subset sizes. Although it would be ideal to perform tuning on larger subsets, it is
exceedingly time-consuming when working with larger subsets. This is because
we have to rebuild the index every time the parameters D and α change with
each trial. We need to explore practical strategies to reduce the duration.

6 Conclusion

In conclusion, this study proposes a successful tuning method for an off-the-
shelf graph-based ANN index. By adjusting vector dimension, database size, and
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graph traversal entry points and utilizing a black-box optimization, we signifi-
cantly improve Recall@k and QPS performance. We applied our approach to the
SISAP Indexing Challenge and significantly outperformed brute force methods.
It is also applicable under general conditions.

Acknowledgments. This work was supported by JST AIP Acceleration Research
JPMJCR23U2, Japan.
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Abstract. This submission into the SISAP Indexing Challenge exam-
ines the experimental setup and performance of the Learned Metric
Index, which uses an architecture of interconnected learned models to
answer similarity queries. An inherent part of this design is a great deal of
flexibility in the implementation, such as the choice of particular machine
learning models, or their arrangement in the overall architecture of the
index. Therefore, for the sake of transparency and reproducibility, this
report thoroughly describes the details of the specific Learned Metric
Index implementation used to tackle the challenge.

Keywords: sisap indexing challenge · learned metric index · similarity
search · machine learning for indexing · performance benchmarking

1 Introduction

The Learned Metric Index (LMI) [1] functions as a hierarchical tree structure
composed of nodes housing machine learning models. These models are trained
to classify query objects, simulating the behavior of traditional index nodes.
However, instead of ascertaining object positions based on distances, queries
are resolved by executing a series of predictions. This departure from the usual
index creation and query assessment approach results in markedly different per-
formance characteristics, frequently outperforming conventional similarity search
methods in terms of both efficiency and effectiveness.

The building process to form LMI’s tree structure prepares a machine learn-
ing model for each internal node. Such a model is trained on a sub-section of
data assigned to it by its parent node. We applied K-Means to obtain the data
partitions in this paper. Leaf nodes constitute storage of data objects.
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The search algorithm traverses the tree by making inferences for the query
object. The higher the inference value, the higher the priority of accessing the
branch. Leaf nodes are gathered until the specified number of objects have been
accessed, which serves as a stop condition. The objects stored within the leaf
nodes make up the candidate objects, which are then ranked based on their
distance from the query object. This way the final query answer is formed.

In the following sections, we provide an insight into the implementation and
configuration used for the SISAP 2023 Indexing Challenge, and report the results
of our experimental evaluation.

2 Related Work

The idea of a learned index as a series of increasingly specific machine learning
models was originated by Kraska et al. [9], and has since seen several applications
on simple structured data, such as approximate data-aware index structures [4]
or a learned database system [8]. An analogous concept was later proposed for
similarity searching in complex data [1], and then extended into the data-driven
version [11,14] used in this submission.

Other applications of learned models in the domain of similarity searching
in metric data have also been proposed, such as ANN-tree [7], the FLANN
library [10], Neural Locality-Sensitive Hashing (Neural LSH) [3]. Furthermore,
a learned model that approximates bounds on k nearest neighbor distances
and computes reverse nearest neighbors has been introduced in [2]. Finally,
Hünemörder et al. [5] explored the application of various predictive models to
train an index for approximate nearest-neighbor queries.

3 Implementation

The design and implementation decisions of the LMI are geared towards opti-
mizing a fast approximate nearest neighbor (ANN) search for ten nearest objects
while achieving a recall of at least ninety percent. We detail the construction
and searching stages of LMI, as well as the approaches considered and adopted
within our submission, in the following sections.

3.1 Construction

The index construction is composed of two phases – a partitioning phase and a
learning phase. In the partitioning phase, a clustering algorithm produces cat-
egories of similar data, which serve as inputs to the learning phase. A neural net-
work is then employed to learn the associations between individual data objects
and their categories, thereby forming an index with one internal (root) node
and n leaf nodes (buckets) corresponding to the number of categories. Utilizing
the neural network on top of the clustering allows for faster probability-based
navigation in query answering.
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Partitioning algorithms on large data volumes oftentimes run into scalability
issues caused by their big space and time complexity. To avoid these problems,
K-Means is used in favor of K-Medoids and DBSCAN1. In our experience, the
latter two fail to cluster volumes larger than 100K, whereas K-Means successfully
clusters the entire 10M dataset in a matter of seconds (up to a few minutes). K-
Means operates in Euclidean space, however, the dataset uses the cosine distance.
To resolve this inconsistency, the data is L2-normalized, where it holds that the
negative squared Euclidean distance is proportional to the cosine distance [17].

The learning phase involves solving a supervised multi-class classification
problem, which can be addressed with an arbitrary classifier [1,14]. In this chal-
lenge, LMI uses a single fully-connected neural network, in particular, a multi-
layer perceptron (MLP).2 The reason is that, as is explained in the following
section, the search procedure for this challenge is optimized toward considering
queries in parallel, and a big hierarchical structure slows down this kind of pro-
cessing by producing more categories that need to be accessed sequentially. The
learning phase is the more time-intensive of the two, usually taking up to several
hours depending on the number of epochs the training runs for (but always less
than twelve hours). The entirety of the dataset is used for the training.

3.2 Searching

The search process is composed of navigation and a bucket-level sequential
search. The main role of navigation, powered by the inference operation of the
neural network, is to vastly reduce the search space, resulting in a sequential
search in far fewer than the original 10M objects. Subsequently, the bucket-
level sequential search is done in the identified data partitions (buckets). This
step is more time-demanding as it computes the pair-wise distances between the
remaining data objects and the queries in the original (768 dimensional) space.
The process is visualized and described in Fig. 1.

To further reduce the time necessary for the retrieval, LMI adopts the fol-
lowing optimizations: (1) parallelism of query processing and (2) object
filtering. Firstly, since all queries are known beforehand and there are many
more queries than categories, LMI leverages the fact that many queries share
one category and need to compute distances to the same objects. Therefore, all
queries are processed in parallel during navigation.3 Secondly, the most similar
categories (buckets) are searched and used to populate the final answer first.
Any subsequent bucket accesses can therefore capitalize on the recorded value
of the k-th distance in the final answer and disregard objects with a distance
greater than this value. This results in a much smaller matrix of mutual dis-
tances to be sorted, a particularly expensive operation. Irrespective of the data
1 K-Means is adopted from the FAISS library [6], K-Medoids’ implementation with

FasterPAM [13] is used, and DBSCAN [12] is taken from the scikit-learn library, v.
0.24.2.

2 The neural network is implemented in the PyTorch library (v 1.1.0), using the ReLU
activation function and Adam optimization algorithm.

3 Python’s NumPy library [16] (v. 1.19.5) is used to achieve this optimization.
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Fig. 1. Schema of the search process. Navigation starts by passing all 10 000 queries
(dim = 96) through the trained neural network, resulting in a probability distribu-
tion matrix, which captures the relationship of every query object to every category.
To gather input for bucket-level sequential search, the procedure iterates over several
columns of this matrix, starting from the most similar. The exact number is treated as
a hyper-parameter (number of buckets). Each column is broken down into individual
categories (colored cells), and processed separately. The bucket-level sequential search
starts by evaluating and sorting the distances between the data objects from a given
category and the relevant queries (both with dim = 768), forming a matrix of mutual
distances. The first k columns are then used to continuously update the final output –
two matrices of k closest distances and ANNs.

dimensionality employed during index construction or navigation, LMI utilizes
the original data descriptors during bucket-level sequential search. Based on our
observations, only the unreduced version of the data consistently managed to
effectively locate the k-NNs among candidate objects using sequential search.

Observing the LMI configuration with the fastest search time, the most
expensive operation in terms of search time is computing the matrices of mutual
distances (72.5% of overall search time) to objects in the buckets, followed by
sorting these matrices to extract the k nearest distances (16%). Identifying the
objects within a given category accounts for 9.7% and constructing the proba-
bility distribution matrix (navigation) only for 0.016%.

4 Experimental Evaluation

The search performance of LMI is evaluated in more than 2k experiments with
varying hyper-parameters. The three provided dataset versions are used in the
building and navigation process: clip768, pca96, and pca32, while, as noted
in Sect. 3, the bucket-level sequential search operates exclusively with clip768.
Apart from the main goal of the challenge (recall above 90% on the ground
truth set), we optimized for reasonable RAM consumption (below 40 GB) in
conjunction with training time (under 12 h).
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Table 1. Explored hyper-parameter values.

Hyper-parameter Explored values

Dataset version pca32, pca96, clip768

No. categories 10, 20, 30, 50, 80, 90, 95, 100, 105, 110, 112, 114, 115, 116, 118,

120, 121, 122, 123, 124, 125, 130, 150, 200

No. epochs 1, 10, 20, 30, 40, 45, 50, 55, 60, 80, 100, 120, 160, 180, 190, 195,

200, 205, 208, 209, 210, 211, 212, 220, 250, 300

Learning rate 0.001, 0.005, 0.007, 0.008, 0.009, 0.01, 0.05, 0.09, 0.1, 0.11

No. visited buckets 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 15, 20, 24, 25, 40, 50, 100

4.1 Hyper-parameter Selection

LMI’s efficiency is primarily affected by three kinds of hyper-parameters: the
size of the structure, the size of the candidate set, and the model parameters.
Given that the instance of LMI is only one level deep, its size is determined
by the number of categories, i.e., leaf nodes or buckets. Navigation quality is
closely linked to the hyper-parameters of the single inner node, i.e., MLP, where
the learning rate and number of epochs are carefully considered. The learning
rate mainly affects the quality of the navigation, whereas the number of epochs
influences the training time. In all experimental scenarios, an MLP architecture
comprising one hidden layer containing 128 neurons is utilized. This architecture
provides good performance for the task at hand, and we leave fine-tuning of the
architecture as future work. Finally, the stop condition is defined in the number
of buckets limiting the size of the candidate set. The full enumeration of the
explored hyper-parameter values is listed in Table 1.

The hyperparameter search was performed in two steps. First, a coarse set
of hyperparameters was evaluated, indicating their general trends, followed by a
restricted hyperparameter search around the observed optima.

Fig. 2. (Left) Relationship between overall search time and the number of categories.
(Right) Relationship between overall search time and the average number of visited
objects. Only experiments achieving recall ≥ 90% are shown.
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Table 2. Building time and query performance of the best-performing setup for each
dataset version with the hyper-parameter values.

Dataset Epochs Learning rate Categ. Build time (h) Stop condition Query time (s) Recall (%)

pca32 190 0.050 105 7.2 5 689.58 90.19

pca96 205 0.009 122 8.2 4 514.92 90.88

clip768 180 0.010 100 11.5 4 839.35 92.88

4.2 Results

The evaluation of numerous hyper-parameter values reveals the following trends.
The overall execution time is most significantly influenced by the quantity of
categories and the number of visited buckets, which directly corresponds to the
count of objects processed during bucket-level sequential search, see Fig. 2. Fur-
thermore, when these parameters are fixed, the fastest configurations remain
relatively stable in their learning rate, and their build time is proportional to
the number of epochs.

Table 2 presents the setups that performed the best on each dataset and
highlights the differences between them. LMI constructed on pca96 provided
the fastest response to 10 000 queries, with a training time of over eight hours.
The index inspected four buckets while surpassing the required recall in 514.92 s,
i.e., 51.5 ms per query.

The construction times and, to a certain extent, the search times indicate
that it is beneficial to use datasets produced by dimensionality reduction tech-
niques. Using pca96, LMI finishes the building three hours faster than when
using clip768. The smaller size descriptors of pca32 further reduce the construc-
tion cost but do not show superior query performance. LMI successfully uses the
additional principal components of pca96 to reduce query processing time by
more than 174 s compared with pca32. However, setups based on pca32 have to
visit one additional bucket in order to rank among the best-performing setups,
costing additional time. This result might indicate a navigation impairment,
which could be attributed to insufficient dimensionality. Compared to clip768,
LMI with pca32 holds an advantage in terms of epoch numbers and dataset
division granularity. Dimensionality reduction should therefore be considered
in situations where LMI processes high-dimensional data; however, the optimal
dimensionality after the reduction is to be further investigated.

The observed optimal number of categories, the first high-impact hyper-
parameter, is between 100 and 125 across all dataset versions. Furthermore,
tuning this hyper-parameter with finer-grained steps within the interval is cru-
cial for query time and further time reduction. It decreases the query time by
more than 180 s, implying a strong impact of the number of categories on query
processing time. As seen in Fig. 2, the number of categories also roughly corre-
lates with the value of the stop condition.
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Table 3. Instructions to reproduce the results

The optimal value of the second high-impact hyper-parameter, the stop con-
dition, proves to be sufficient up to ten. LMI can visit only a fraction of the
total buckets, typically four or five out of more than a hundred, to exceed the
required recall. Navigation can thus efficiently and effectively pinpoint the rele-
vant buckets and present them to the bucket-level sequential search.

4.3 Reproducing the Results

The software accompanying this paper is made available on GitHub4 and is
designed in a way to support ease of use, reproducibility, and seamless integration
with the challenge’s evaluation pipelines. Table 3 guides the reader through the
installation, running, and evaluation of our submission.

All of our experiments were carried out on a single-core AMD EPYC 7532
CPU with 40 GB RAM and on Linux Debian 5.10 operating system. The code
was written in Python 3.8. Since search time is hardware-dependent, we expect it
to be weakly reproducible, while we expect recall to be strongly reproducible [15].

5 Summary and Conclusions

With the constraint of solving the approximate nearest neighbor search with
recall above ninety percent, our method shows fast navigation times and intro-
duces several optimizations to reduce bucket-level sequential search times.

In future work, we aim to investigate the trade-off relationship between accu-
racy and time in regard to the architecture of the index (the number of inner
nodes) and the architecture of the neural networks (the number of hidden layers
and neurons), as well as scalability to larger data volumes.

4 https://github.com/TerkaSlan/sisap23-laion-challenge-learned-index.

https://github.com/TerkaSlan/sisap23-laion-challenge-learned-index
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Abstract. The Hierarchical Navigable Small World (HNSW) Graph is
a graph-based approximate similarity search algorithm that achieves fast
and accurate search through a hierarchical structure providing long-range
and short-range links. The HNSW remains as a state-of-the-art method,
as shown by this submission to the SISAP 2023 Indexing Challenge. This
submission introduces a modification to the implementation of HNSW
that avoids the cost of a batched construction and drastically reduces
disk-space of the saved index when working with large datasets. Through
the lens of this competition, this work provides a careful analysis of sev-
eral important factors for high-performance applications, including the
removal of unnecessary functionality, the use of SIMD vectorization for
distance computations, and optimal utilization of cache through spatial
locality and cache prefetching.

Keywords: similarity search · large datasets · memory efficiency

1 Introduction

The navigation between two distant locations by car requires the traversal of the
road network, a scalable system of roads that enables both long-range and short-
range travel. This type of network has the “small world” property [7], i.e., the
path between two nodes scales logarithmically with network size. Small world
networks are found many places in nature, often in relation to navigation and
social networks [2].

The small world property has proven useful in a variety of domains, including
the field of similarity search, where the goal is to search a dataset to return
objects similar to a given query object. Graph-based methods of similarity search
first construct a graph on the elements of the dataset and traverse the edges of
this graph to approach the local neighborhood of the query. The Navigable Small
World (NSW) [10] Graph, introduced in 2014, is an approximate graph-based
method that provides the small-world property by having both long-range and
short range-links. This provides excellent navigability, but the presence of both
types of links increases the average degree of the graph and reduces its efficiency
at search time.

A few years later, the Hierarchical Navigable Small World (HNSW) [9] Graph
was proposed as an improvement to the NSW by leveraging a hierarchical
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
O. Pedreira and V. Estivill-Castro (Eds.): SISAP 2023, LNCS 14289, pp. 291–299, 2023.
https://doi.org/10.1007/978-3-031-46994-7_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-46994-7_25&domain=pdf
https://doi.org/10.1007/978-3-031-46994-7_25


292 C. Foster and B. Kimia

Fig. 1. A conceptual understanding of the hierarchical of the HNSW [9] through the
analogy of a road trip. The upper levels of the HNSW contain long-range links, anal-
ogous to highways or freeways, while the bottom level has short-range links similar to
local streets. These satellite images of Providence, RI, USA are captured by Google
Earth [5].

organization of the graph. The key intuition of HNSW is to use the layers to
separate links based on length: returning to the road network analogy, the upper
layers of the hierarchy contain a sparse sampling of the dataset which provide
long-range links, analogous to high-volume roads like highways or freeways, and
is used for long-distance traversal on the graph. Conversely, the bottom-layer
of the hierarchy contains short-range links, similar to local streets, since it is
dense with all members of the dataset, Fig. 1. This separation of links by length
is intuitive: when traveling a long distance, one starts on high-speed roads like
major highways, and once closer to the destination, more fine-grained roads like
local streets can be used.

SISAP Indexing Challenge: The Similarity Search and Applications (SISAP)
2023 Indexing Challenge [13] features a competition to index 100 million 768D
vector embeddings of the LAION-5B dataset [12]. The goal of this competition
is to have the fastest time to perform kNN search (k=10) on 10,000 queries with
over 90% recall. This challenge further specifies the constraints of a 512GB RAM
and 24 h wall time limit.

Overview: Despite the introduction of several new algorithms [4,14] in the
past few years, the HNSW remains a state-of-the-art algorithm in similarity
search as evident through this submission to the SISAP Indexing Challenge. Our
submission features modifications to the hnswlib1 implementation of HNSW,
namely, modification of internal storage of the dataset for improved memory
efficiency with large datasets and the removal of unnecessary functionality for
optimal efficiency. There are several public implementations of the HNSW: the
one we use, hnswlib, is a lightweight, header-only library written in C++ while
faiss2 is a part of Facebook’s collection of different indexing methods. It has been

1 https://github.com/nmslib/hnswlib.git.
2 https://github.com/facebookresearch/faiss.git.

https://github.com/nmslib/hnswlib.git
https://github.com/facebookresearch/faiss.git
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observed that hnswlib is faster than faiss implementation3 [1,8] and this is also
highlighted here. This work also provides a careful analysis of several important
concepts for high-performance applications, including the use of vectorization
in high-dimensional distance computations and the importance of optimizing
cache performance. Finally, we provide an analysis of the the impact of hyper-
parameters on the performance of HNSW. The results of the competition show
that our submission4 achieved the highest throughput (queries per second) with
over 90% recall on all subsets (10M, 30M, and 100M) of the LAION dataset.

2 Memory Efficiency for Large Datasets

The 768D embeddings of the 100 million text-image pairs of the LAION
dataset [12], produced by CLIP [11], result in a large, high-dimensional dataset
for this challenge. Although these embeddings are stored as half-precision (16-
bit) floating point numbers, most existing algorithms rely on single-precision
(32-bit), thus requiring 3KB of memory to store each embedding. In total, this
dataset requires 143.05GB of memory in its half-precision form and 286.10GB
in its single-precision form. Thus, proper memory use is an important point of
concern in this competition, as it is when working with any large dataset.

The hnswlib library of HNSW is designed with cache efficiency in mind.
Throughout the search procedure, the HNSW algorithm will simultaneously tra-
verse the edges of the graph and compute distances to nodes in the graph. The
hnswlib implementation improves spatial locality [3] by storing the vector rep-
resentation of each point alongside its neighborhood information in one large,
contiguous block of memory. This memory organization improves the number of
“cache hits” which in turn provides better memory transfer efficiency.

Fig. 2. Recall vs. throughput (queries per
second) on LAION 100M subset, up and to
the right is better. Our submission features
a memory-efficient modification to hnswlib
that results in a loss of search speed.

On the other hand, the faiss
implementation stores the vector
representations separately from the
graph structure to provide compat-
ibility with the rest of the library,
but this comes at the cost of more
“cache misses”. It is important to
note that both implementations store
their own copy of the dataset. For
this reason, users must be careful,
particularly with large datasets, to
avoid the duplication of the entire
dataset: two copies of the LAION
dataset, in single precision, would
take up 572.20GB of RAM which sur-
passes the 512GB limit of the compe-
tition.
3 https://ann-benchmarks.com/.
4 https://github.com/cole-foster/sisap-2023.git.

https://ann-benchmarks.com/
https://github.com/cole-foster/sisap-2023.git
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To avoid this duplication, one approach is to construct the index in batches.
Specifically, the original dataset can remain in disk memory and one batch at a
time can be loaded to the RAM for its incremental addition to the index. How-
ever, this batched approach, requiring costly disk to RAM transfers, increases
the overall construction using hnswlib took 13.85 h while the batched approach
required 15.46 h using batches of 100,000. Note that all results of this paper,
unless otherwise specified, use the HNSW hyperparameters of M = 20 and
efConstruction=800 and are evaluated on a workstation with a 32-Core Intel(R)
Xeon(R) Gold 6242 CPU@2.80GHz and 756GB of RAM.

Rather than incurring the additional construction time costs of the batched
approach, our submission opts to load the full dataset into RAM and modify the
hnswlib implementation to use a pointer to this memory location. By using the
original memory location, our submission avoids the increased construction cost
of the batched approach and further avoids copying each vector representation
throughout the incremental construction. With these changes, our submitted
approach required 13.18 h for construction, slightly less than the hnswlib imple-
mentation in both forms. However, this benefit comes at the detriment of losing
spatial locality, which is evident by a drop in search speed, Fig. 2. Note that
this modification to hnswlib is still much faster than the faiss implementation,
suggesting spatial locality alone does not explain the major difference in perfor-
mance between hnswlib and faiss.

Another significant benefit of this memory modification is that our submitted
index can be serialized without the dataset, drastically reducing the disk memory
usage. Specifically, the faiss and hnswlib implementations must save the entire,
single-precision dataset (286.10GB) within their index, requiring 309.00GB and
309.40GB, respectively. On the other hand, our submitted approach stores the
index without the dataset, requiring only 17.16GB of disk space. Of course, this
assumes the dataset is separately stored on the disk, and in the case of this
competition, it can be the half-precision version that only requires 143.05GB.

3 Maximizing Efficiency at Online Search Time

In this competition, where every microsecond matters, it is imperative to inves-
tigate all possible optimizations of the HNSW algorithm. Often times, publicly
available libraries focus on compatibility, ease of use, and offering a wide range
of functionality. While this is beneficial to the larger community, it is not neces-
sarily useful for optimal performance.

Speed Improvement by Discarding Unnecessary Functionality: The
first, most simple improvement that can be made is to remove unnecessary func-
tionality from the implementation, analogous to “trimming the fat”. Building on
the memory modification, our submission removes the search-time functionality
to (i) avoid deleted nodes, (ii) filter out specific nodes, and (iii) record statisti-
cal information. The cost of this functionality is small in comparison to the cost
of distance computations and memory transfer, and thus provides a small, but
visible impact on efficiency, Fig. 3(a).
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Importance of Vectorization in Distance Computations: Distance com-
putations, particularly for high-dimensional vectors, contain a large number of
repetitive, non-sequential instructions that can be performed in parallel. While
CPU-based systems only have a few cores, and in the case of HNSW they are
all handling different queries, it is possible to use vectorization on a single core
through Single Instruction/Multiple Data (SIMD) instructions [6]. Figure 3(b)
shows the comparative performance of different types of SIMD instructions used
for distance computations during the search procedure. Note that hnswlib con-
tains functionality to use AVX512 instructions when available, while the faiss
implementation only supports AVX2 instructions, which may partially explain
the significant performance difference between the two libraries [8].

Fig. 3. Observing the comparative impact of (a) unnecessary functionality, (b) different
types of SIMD vectorization for distance computations, and (c) cache prefetching on the
100M subset. The differences between “hnswlib” and “hnswlib + data modification”
serve as an observation on the importance of spatial locality.

Critical Nature of Caching: The memory configuration of the hnswlib imple-
mentation provides efficient memory access by increasing “cache hits” with spa-
tial locality. However, our modification the memory configuration separates the
vector representations from the graph information, increasing the likelihood of
“cache misses”. The comparative performance of hnswlib with and without this
memory modification in Fig. 3 emphasizes impact of spatial locality on search
speed. Another way to improve cache performance is through cache prefetch-
ing [3], a technique where developers hint towards memory locations that will
be used in the near future, allowing the memory to be transferred into the cache
before it is used. This concept is fully utilized by hnswlib, which further opti-
mizes the cache utilization of the approach. To understand the benefit of cache
prefetching, observe in Fig. 3(c) that disabling cache prefetching has a significant
impact on performance.
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Admission of Error: While analyzing the final results of the competition,
it has come to our attention that our submission inadvertently had cache
prefetching disabled. Thus, the performance of our submission is even further
improved by correctly enabling the cache prefetching functionality, as suggested
by Fig. 3(c).

4 Hyperparameter Selection for HNSW

The HNSW algorithm has two hyper-parameters to select: M , which controls the
maximum degree of the graph, and efConstruction, which determines the size of
the candidate list used to choose neighbors during construction. With only two
hyperparameters, we perform a simple grid search on the 10M subset to choose
the optimal parameters for the 100M subset. This optimization is performed
on the hnswlib featuring the modification to memory configuration, the removal
of unnecessary functionality, and the preserved use of cache prefetching and
AVX512 vectorization.

Fig. 4. The impact of the hyperparameters M and efConstruction on the performance
of our submission on the 10M subset.

To visualize the impact of M and efConstruction on performance, Fig. 4
fixes either of the two hyper-parameters and observes the impact of varying the
other. Table 1 shows the grid search optimization based on the target of the
competition, which is the maximum queries-per-second (QPS) with 90% recall.
It is clear that efConstruction provides the greatest impact on performance yet
heavily influences the construction time, Table 2. Thus, efConstruction should be
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chosen as the largest time afforded by the time limit. Surprisingly, the parameter
M has a low impact on performance, provided that efConstruction is greater
than 200 and M is greater than 5.

Table 1. The impact of hyperparameters on the maximum queries-per-second with at
least 90% recall. Best viewed in color.

efConstruction M=5 M=10 M=15 M=20 M=25 M=30 M=35 M=40

50 N/A N/A 4,124.80 8,653.46 5,428.77 7,384.09 11,732.78 4,189.05

100 N/A 17,988.60 25,071.56 10,704.81 21,138.30 21,341.14 26,023.84 19,719.42

200 12,801.05 17,526.32 18,700.81 21,916.05 24,860.16 31,302.62 28,288.30 29,526.87

400 12,004.72 28,581.44 29,196.84 23,602.70 29,992.69 24,881.28 27,959.25 25,870.50

800 14,026.79 28,208.72 26,152.74 30,832.04 28,293.23 21,933.03 32,422.35 33,836.27

1600 14,529.17 27,290.25 24,844.08 31,178.00 26,026.81 27,882.65 26,929.86 31,024.27

Table 2. The impact of hyperparameters on construction time (minutes) for the 10M
subset. Best viewed in color.

efConstruction M=5 M=10 M=15 M=20 M=25 M=30 M=35 M=40

50 3.43 4.40 5.50 5.46 5.73 6.07 5.79 6.05

100 12.72 8.12 10.29 10.80 11.26 11.23 12.72 12.10

200 9.84 14.94 17.32 23.37 21.49 25.95 28.25 25.02

400 17.76 31.16 33.81 38.41 43.22 49.39 48.04 48.76

800 28.66 48.56 64.16 78.82 88.11 98.26 95.77 90.99

1600 53.73 61.44 147.09 145.01 161.95 157.92 219.37 182.25

5 Results of the Competition

The final results of the SISAP 2023 Indexing Challenge are shown in Fig. 5, which
features the Recall vs. Queries-Per-Second (QPS) trade-off for each submission
on the three subsets (10M, 30M, 100M). All submissions were evaluated on the
same workstation featuring a 28-Core Intel(R) Xeon(R) CPU E5-2690 V4 with
512GB of RAM. Our submission featured the hnswlib implementation with the
memory modification and the removal of unnecessary functionality. The inner
product was used as a similarity measure, the selected hyperparameters were
M = 20 and efConstruction=800, and the search parameter ef was varied from
10 to 1000 to obtain the recall vs. queries-per-second curve. Our submission
performed the best in all three subsets by achieving the highest throughput
with over 90% recall, besting the faiss implementation (faissHNSW), the Search
Graph [14] (SearchGraph), the Navigable Spreading-Out Graph [4] (NSG32),
and several others.
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Fig. 5. The final results of the competition, up and to the right is better. Our submis-
sion, in orange, performed the best in each subset by achieving the greatest queries-
per-second with a recall over 90%. (Color figure online)

6 Conclusion

This submission to the SISAP 2023 Indexing Challenge [13] proves that the
HNSW [9] is still a state-of-the-art method for approximate similarity search,
especially with large datasets. This approach modified the memory configura-
tion of the hnswlib implementation of HNSW to avoid the increased time of
a batched construction and drastically reduce disk space upon serialization.
Our work demonstrates that the hnswlib implementation of HNSW performs
much better than the faiss implementation, which is made clear by its order-of-
magnitude improvement on the 100M subset. Finally, this work highlights the
importance several factors for fast searching, including the removal of unnec-
essary functionality, the utilization of SIMD vectorization in high-dimensional
distance computations, and the optimization of cache efficiency.

Acknowledgement. We gratefully acknowledge the support of NIH Award
1S10OD025181 and NSF award 1910530.
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Abstract. Recent advances in cross-modal multimedia data analysis
necessarily require efficient similarity search on the scales of hundreds
of millions of high-dimensional vectors. We address this task by propos-
ing the CRANBERRY algorithm that specifically combines and tunes
several existing similarity search strategies. In particular, the algorithm:
(1) employs the Voronoi partitioning to obtain a query-relevant candi-
date set in constant time, (2) applies filtering techniques to prune the
obtained candidates significantly, and (3) re-rank the retained candidate
vectors with respect to the query vector. Applied to the dataset of 100
million 768-dimensional vectors, the algorithm evaluates 10NN queries
with 90 % recall and query latency of 1.2 s on average, all with a through-
put of 15 queries per second on a server with 56 core-CPU, and 4.7 q/sec.
on a PC.

Keywords: approximate similarity searching · high-dimensional data ·
indexing · filtering · LAION dataset

1 Introduction

The recent boom in cross-modal multimedia analysis, such as text-to-image and
text-to-video retrieval, has attracted much attention from the IR community. For
example, the LAION-5B dataset1 offers several billions of images and associated
text annotations, both of the modalities represented by high-dimensional vectors.
We target the SISAP 2023 Indexing Challenge2 [8] (shortly Challenge) that
serves as a competition benchmark for evaluating k-nearest neighbour (kNN)
similarity queries over 100M 768-dimensional CLIP vectors extracted from a
subset of the LAION dataset. Formally, we assume domain D of the searched
vectors and the cosine distance function d : D × D �→ R+

0 that quantifies the
dissimilarity of two vectors. We focus on an efficient evaluation of kNN(q) queries
where q ∈ D is a query vector and k ∈ N: having a dataset X ⊆ D and q ∈ D,
kNN(q) query searches for the k most similar vectors o ∈ X to q. The Challenge
addresses the evaluation of 10NN queries in the collections of 10M, 30M, and
100M vectors.

This work was supported by a research grant (VIL50110) from VILLUM FONDEN.
1 https://laion.ai/blog/laion-5b/.
2 https://sisap-challenges.github.io/.
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Disregarding a target hardware infrastructure, we generally expect that data-
set X is maintained in the secondary storage (e.g., SSD or HDD) since very large
volumes of vectors can hardly fit into the main memory. Therefore, our main
objective is to minimize secondary-storage accesses, which we consider the main
bottleneck. Based on these assumptions, we aim at utilising main memory to keep
only IDs and compact representations of all dataset vectors, accompanied by
additional space characteristics. To achieve this, we propose the CRANBERRY
algorithm (similarity searChing using voRonoi pArtitioNing, Binary skEtches
and Relational similaRitY), which constitutes a unique combination of retrieval
techniques that have been treated in the past only separately.

2 The CRANBERRY Algorithm

The CRANBERRY algorithm consists of the following steps that combine several
searching techniques specifically connected into a single pipeline.

– Data partitioning. We adopt the Voronoi partitioning to decompose data-
set X of 768D vectors into non-overlapping partitions (Voronoi cells), each of
them consisting of a set of similar vectors. In the retrieval phase, the nearest
partitions to the query vector q are quickly identified to return a candidate
set of IDs of vectors that are potentially similar to the query vector.

– Filtering candidates. We adopt two filtering techniques to further prune
the set of candidates obtained from the previous step. In particular, we learn
and extract two types of representations from original vectors: 512bit sketches
and 24D prefixes of vectors shortened by the PCA to 256D. In the retrieval
phase, the sketch and PCA filters accompanied by an early termination strat-
egy are applied to return a very small set of candidates’ IDs.

– Refining candidates. The remaining IDs from the previous step are used
to read original 768D representations from data storage. Such original vectors
are compared against the 768D query vector q using the cosine distance to
obtain a final ranking.

If the dataset X is stored in the secondary storage, the refinement is the
only step that reads data from this storage. Information needed for the data
partitioning and filtering is stored in the main memory. The whole process is
schematically illustrated in Fig. 1 and discussed in the following sections in more
detail. The implementation for reproducibility of the results, along with other
implementation details, is available at the GitHub repository: https://github.
com/xsedmid/sisap23-laion-challenge-CRANBERRY.

2.1 Data Partitioning

The only data partitioning we use is the one-layer Voronoi partitioning [10] with
the set P ⊆ D of 20,000 reference vectors called pivots, selected at random. The
Voronoi partitioning assigns each vector o ∈ X to the closest partition clpmin

given by pmin ∈ P such that d(o, pmin) ≤ d(o, p) for each p ∈ P .

https://github.com/xsedmid/sisap23-laion-challenge-CRANBERRY
https://github.com/xsedmid/sisap23-laion-challenge-CRANBERRY
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Fig. 1. A schematic illustration of indexing and searching phases of the CRANBERRY
on 100M dataset of 768-dimensional CLIP vectors

When a query vector q comes, all 20,000 distances d(q, p), p ∈ P are evaluated
to identify the nearest pivots to q. The first-level candidate set is made of IDs of
vectors from the partitions with the closest pivots to q, and the number of par-
titions is given to create the candidate set with at most V IDs. In other words,
adding IDs from the next partition would increase the number of candidates
over threshold V. Threshold V is set automatically using empirical knowledge:
We observed suitable V values 100,000; 200,000; 400,000; and 1 million for the
datasets of size 300k, 10M, 30M, and 100M, respectively. Datasets of different
sizes use V given by linear interpolation of these known thresholds V. Identifi-
cation of candidate vectors with the Voronoi partitioning is very efficient since
it uses only the main-memory map associating each partition ID with assigned
IDs of vectors.

2.2 Filtering Candidates

CRANBERRY algorithm filters candidates using a sketch filter, a PCA-based
filter, and an early termination strategy. Applied filters require storing just the
IDs and compact representations of the original vectors in the main memory.
This leads to an order of magnitude less space requirement compared to the
original 768D representations. We describe these filters in more detail in the
following.

Learning Binary Sketches. We transform dataset X to sketches sk(o), o ∈ X
by technique GHP 50 512 [3,4] learned before the index build. GHP 50 512
produces sketches with 512 bits using 512 instances of a generalised hyperplane
partitioning (GHP) [10]. Each bit i of sketches sk(o), o ∈ X is defined by pivots
pi0, pi1 and denotes which of them is closer to o according to d(o, pi0), d(o, pi1).
All pivots come from 20,000 pivots used by the Voronoi partitioning and define
sketches with approximately balanced and low-correlated bits [4].
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Sketch Filtering. To further prune the candidate set, we employ the so-called
Secondary filtering with sketches [5]. This filtering is applicable just together
with the sketching technique that we use, regardless length of sketches.

The technique of the Secondary filtering with sketches defines a mapping of
the Hamming distances h(sk(o1), sk(o2)) to the cosine distances d(o1, o2). Having
the searching radius x = d(q, ok) given by the distance to the kth nearest neigh-
bour found so far, the mapping is utilised to define the search radius in the space
of sketches, i.e., the threshold on the Hamming distance. This threshold defines
vectors o to be filtered out due to a high Hamming distance h(sk(q), sk(o)). We
emphasise that (1) this filtering is dynamic, i.e., the threshold on the Hamming
distance decreases with decreasing search radius x = d(q, ok) during the query
execution, and (2) it takes into account differences between particular query
vectors q, i.e., their local intrinsic dimensionality [1].

The CRANBERRY algorithm sorts the candidates o identified by the Voronoi
partitioning according to the Hamming distances h(sk(q), sk(o)). This sorting
is done in parallel due to a possibly high number of candidates. Having the
candidates sorted according to the Hamming distances of sketches, the mapping
of distances defines a direct stop condition for the candidate set filtering.

Relational Similarity (simRel) Filtering. If candidate o ∈ X goes through
the sketch filter, it is checked by the relational similarity function simRel [6,7].
The simRel compares triplets of vectors with the following semantics:

simRel(q, o1, o2) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1 q, o1are more similar to each other thanq, o2

2 q, o1are less similar to each other thanq, o2

0 both similarities are the same or the difference in the

similarities is as small as its proper investigation does

not pay off, and they can be treated arbitrarily

The CRANBERRY uses the simRel implementation from [6] which is applicable
to the Euclidean and Cosine spaces. It shrinks vectors o ∈ X by the Principal
Component Analysis (PCA) to vectors oPCA(L) of length L = 256 and tries
to estimate which of o

PCA(L)
1 , o

PCA(L)
2 , o1, o2 ∈ X is more similar to qPCA(L)

using the first 24 dimensions of shrunk vectors. Since the variance of values in
coordinates of oPCA(L) decreases with increasing index of coordinate, the prefixes
of shrunk vectors are often sufficient to correctly estimate the simRel(q, o1, o2)
result.

The simRel filtering proposed in [6] splits the filtered set into three parts:
(1) highly similar vectors to q, (2) vectors with unknown relation to q, and (3)
dissimilar vectors to q. If a given vector has an unknown relation to q, it is
immediately refined. The set of similar vectors to q according to the simRel are
being improved during the simRel filtering, so they are refined just occasionally
to shrink the search radius x = d(q, ok) and thus possibly shrink the threshold on
the Hamming distance h(sk(q), sk(o)), i.e., increase the power of the Secondary
filtering with sketches for the remaining candidates.
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Fig. 2. Example of d(q, o) and corresponding Hamming distances h(sk(q), sk(o)) for a
given q ∈ D. Adopted illustration [2] made for 256bit sketches

Early Termination Strategy. The early termination of the query execution is
essential for the CRANBERRY’s efficiency. Figure 2 illustrates3 that for a given
q ∈ D, Hamming distances h(sk(q), sk(o)), o ∈ X generally grow with distances
d(q, o) and the variance of the Hamming distances decreases with decreasing
distance d(q, o) – notice the almost triangular shape of the plotted area. This is
important for the early termination strategy.

The CRANBERRY algorithm limits the number of candidates refined during
the query execution. If the threshold is achieved, the filtering with sketches is
interrupted and just the remaining vectors defined by the simRel as similar to
q are refined. Therefore, the threshold on the refined vectors is soft and we use
value 800 in the case of all datasets.

2.3 Refining Candidates

IDs of vectors that remain after the filtering are used to read the original 768D
vectors from data storage. If the dataset is kept in secondary storage, this can
be one of the most expensive operations. The cosine distance d(q, o) between the
query q and each read vector o is calculated to return the 10 nearest neighbours.
The resulting query answer is approximate in a general case.

3 Experiments

We evaluate 10NN queries with 10,000 query vectors on 3 subsets of the
LAION2B dataset. The 10M, 30M and 100M datasets contain 10,109,960 vectors;

3 This figure is adopted from [2] and reports sketches of length 256 bits made for a
different dataset. Illustrated properties are independent of specific data.
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30,369,256 vectors; and 102,041,055 vectors, respectively4. The query vectors are
not in the datasets. Experiments ran on 2 computers. Computer A is a PC with
the Intel Core i9-9900K processor, NVMe SSD 512 GB, and 96 GB DDR4 RAM.
Server B has the Intel Xeon E5-2690 v4 processor with 56 cores, and 512 GB
DDR4 RAM.

Table 1. CRANBERRY: Averages of 10NN search with 10,000 query vectors

Dataset Refined Recall Computer A – NVMe SSD Server B – RAM

vectors Latency Throughput Σ time Latency Throughput Σ time

100M 821 0.901 1.07 s 4.7 q/s 2,139 s 1.20 s 15.0 q/s 669 s

30M 855 0.902 0.40 s 12.6 q/s 796 s 0.37 s 48.7 q/s 205 s

10M 876 0.909 0.16 s 30.9 q/s 324 s 0.20 s 88.0 q/s 114 s

Table 2. Decreasing recall (the last column) with the increasing number of refined
vectors (the first column), search in the 100M dataset

# refined o ∈ X # q percentage of queries with the recall Avg. Avg. dist of q

out of 100M 1 0.9 0.8 0.7 0.6 – 0.2 0.1 0 recall to true 10NN

10 126 78 * 2* 21* 0.779* 0.001

11 – 50 158 87 9 2 1 1 0.978 0.019

51 – 200 152 80 14 4 1 1 0.967 0.032

201 – 800 226 81 17 1 < 0.5 0.976 0.046

803 4,097 64 23 7 3 3 < 0.5 < 0.5 0.937 0.123

804 – 901 456 67 21 6 3 3 0.943 0.148

902 609 62 23 7 4 4 < 0.5 0.929 0.153

903 – 910 1,795 57 21 9 6 7 < 0.5 < 0.5 0.905 0.182

911 – 930 1,332 43 22 13 8 14 < 0.5 < 0.5 0.855 0.230

931 – 1,000 909 29 19 17 9 25 1 < 0.5 0.774 0.296

1,001 – 1,100 125 20 13 9 8 46 2 2 0.642 0.359

1,101 – 1,390 15 13 7 7 20 53 0.647 0.335

Average: 821 10,000 57 21 8.5 4.8 7.8 0.2 0.4 0.901 0.165

3.1 Results of the CRANBERRY

Table 1 summarises the average search statistics. The CRANBERRY filters out
99.9992 % of the 100M dataset so just 821 vectors out of 102,041,055 refined on
average. These 821 vectors contain at least 9 out of 10 NN per average query –
the average recall is 0.901. The filtering power enables efficient search even with
the dataset stored in the secondary storage. The query throughput is 4.7 queries
per second on Computer A where the 100M dataset is on the NVMe SSD and
4 https://sisap-challenges.github.io/datasets/.

https://sisap-challenges.github.io/datasets/
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15 queries per second on Server B where the dataset is in the main memory. The
query throughput on the smaller datasets grows up to 88 queries per second in
the case of Server B and the 10M dataset.

Table 2 illustrates varying numbers of refined vectors when querying the 100M
dataset. The first and last columns illustrate decreasing filtering power when a
distance between q and its 10th NN increases. The CRANBERRY thus adapts to
the difficulty of queries, often formalised by the local intrinsic dimensionality [1].
Most of the queries with the 10th NN in a very small distance need to refine
just 10 o ∈ X thanks to the Secondary Filtering with Sketches [5] – see the
first row in Table 2. If a query is evaluated efficiently, users should expect an
answer of above-average quality, otherwise, the engine should have spent more
resources on the evaluation. The first row of Table 2 shows that 78 %, i.e., 98
out of 126 queries that need to refine just 10 o ∈ X are evaluated precisely,
2 %, i.e., 2 out of 126 searches find just 1 out of 10 NN, and 21 %, i.e., 26 out
of 126 find none of 10 NN. However, we evaluate the recall as the size of the
intersection of the returned answer with the precise answer (of size 10) divided
by 10. Therefore, if the true 10th NN of q is in the same distance as the 11th NN,
the recall can decrease by chance. Some of our query vectors have thousands of
NNs in the same distance [9]. Luckily, these nearest neighbours are usually within
very small distances to q which increases the filtering power of the Secondary
Filtering by Sketches up to the maximum, i.e., the CRANBERRY refines just
10 vectors during the query execution, and the recall is 0 even though the error
on distance [10] is 0 as well. We confirm that all 156 queries that need to refine
less than 15 vectors o ∈ X have zero error on distance.

The rest of Table 2 illustrates that the recall generally decreases when the
number of refined vectors increases. For instance, 15 queries with the most refined
vectors, i.e., from 1,100 to 1,390, have an average recall of just 0.647. The last
row clarifies that 57 % of queries are evaluated precisely, the average number
of the refined vectors is 821, and the average recall is 0.901. The parallel brute
force evaluation of all 10,000 queries with just one reading of the dataset from
an SSD takes approximately 155,443 s i.e., ≈ 43 h using Computer A.

Table 3. Contributions of the CRANBERRY’s steps to the filtering power and filtering
error, search in the 100M dataset

Voronoi P. Voronoi P + Voronoi P. + all + early term.

Sketches Sketches + simRel = CRANBERRY

Refined o Recall Refined o Recall Refined o Recall Refined o Recall

Min 841,743 0 10 0 10 0 10 0

1st quartile 987,139 1.0 35,128 1.0 26,407 0.9 803 0.9

Median 993,611 1.0 192,890 1.0 75,631 1.0 836 1.0

3rd quartile 997,394 1.0 616,322 1.0 145,882 1.0 909 1.0

Max 1,000,000 1.0 1,000,000 1.0 627,375 1.0 1,390 1.0

Average 989,724 0.979 336,621 0.966 98,892 0.951 821 0.901
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3.2 Contribution of Particular Techniques

Table 3 illustrates contributions of CRANBERRY’s steps to the filtering power
and decrease of the recall – averages are evaluated over 10,000 query vectors on
the 100M dataset. The Voronoi partitioning identifies almost 1M vectors. Just
336,621 of them remain after the secondary filtering with sketches, and 98,892
remain after the filtering with the relational similarity. The early termination
of query executions leads to the recall 0.901 and 821 refined vectors. The recall
decreases from 0.979 after the Voronoi partitioning to 0.966 after the sketch
filtering, and to 0.951 after the simRel filtering. Experiments also confirmed
that the number of the simRel computations grows over-linearly with respect to
the filtered set size [7]. This clarifies why the simRel is used as the last filter in
the CRANBERRY. We have also evaluated an ablation study by varying selected
hyper-parameters. The detailed description and evaluation are available online
at https://github.com/xsedmid/sisap23-laion-challenge-CRANBERRY.

4 Conclusions

The proposed CRANBERRY algorithm applied to the 100M dataset of 768-di-
mensional vectors is capable of extreme space pruning by accessing only 0.0008 %
of the original vectors while reaching the recall higher than 90 %. This is achieved
by a convenient pipeline of the Voronoi partitioning, filtering techniques based on
learned bit-sketches plus PCA representations, early termination strategy, and
final refinement. The adopted techniques could not have achieved such results
when treated separately, even with additional tuning of parameters. The great
advantage of the proposed approach is also its main-memory space complexity
requiring roughly an order of magnitude less space compared to the original
dataset representation. This enables the indexing of datasets bigger by an order
of magnitude in comparison with the approaches keeping the dataset in the main
memory such as FAISS5. In the future, we would like to target larger datasets by
utilising more powerful space partitioning instead of the Voronoi partitioning,
as the follow-up sketch filtering consumes a significant portion of time due to
computations and sorting of many Hamming distances. We would also like to
investigate batch execution of queries as the current implementation supports
only one-by-one query processing.
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