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Abstract. Diabetes Mellitus (DM) is a chronic disease worldwide. By 2030 are
estimated to be 643 million people with DM, and by 2045 is projected to be 783
million, according to International Diabetes Federation. Machine Learning (ML)
can be used as a smart preventive medicine tool for clinical records in hospitals,
clinical laboratories, medical personnel, and patients. ImplementingML in current
healthcare systems could translate into early diagnosis of DM. This work aimed to
implement a classification algorithm for complicated Type 2DM(T2DM), uncom-
plicated T2DM, and healthy Mexican participants. For this work, we enrolled 82
subjects from New Hospital Civil Juan I. Menchaca of Guadalajara, divided into
26 complicated T2DM, 26 uncomplicated T2DM, and 30 healthy subjects. ML
algorithms used were decision tree (DT), Random Forest, AdaBoost, Bagging
Classifier, and Support Vector Machine (SVM). The models use a dataset of 24
different clinical, biological, and molecular variables to discriminate between the
3 groups. The average accuracy was 78% from the C4.5 DT classifier, and we per-
formed anAUC-ROCcurvewith value= 088.MLmodels can serve for early diag-
nosis of T2DM in healthcare systems, implementing this in preventive medicine
clinics, developing an APP for smart mobile for personal care, and improving
pharmaceutical approaches for treating T2DM.

Keywords: Diabetes Mellitus · Machine Learning · smart preventive medicine ·
decision tree
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1 Introduction

1.1 Diabetes Mellitus

Diabetes Mellitus (DM) is an old chronic disease that remains a significant challenge
for the public health system. The main feature of diabetes is lifting blood glucose levels
over 126mg/dl, caused by defective insulin secretion accompanied by several biological
adjustments [1]. The most affected systems are well described and can lead to retinopa-
thy, neuropathy, cardiovascular diseases, and several stages of kidney damage [2]. Until
today DM is considered in three categories: type 1 (T1DM), type 2 (T2DM), and gesta-
tional diabetes; nevertheless, DM occurs in young adults, in people between the fourth
and sixth years of life, and minus degree in the elderly and children; mainly T2DM is
often associated with the development of metabolic syndrome, micro andmacrovascular
complications of DM besides sedentarism and improper eating habits [3]. The external
biological factor contributing to this disease is living in a country with low income and
middle-income, where 80% of people with T2DM; in this sense, México is considered
a middle-income country [4]. This dilemma is increasing without a strategy effective
until today. Therefore, exploring T2DM early diagnosis by Machine Learning (ML)
tools is nowadays a reality implemented in medicine, primarily due to access to hospital
database repositories in developed countries that contain biochemical and anthropo-
metric variables that diagnose DM, such as glycosylated hemoglobin (HbA1c) fasting
plasma glucose (FPG), oral glucose tolerance tests (OGTT), random blood glucose lev-
els, Body Mass Index (BMI), waist circumference, insulin among others [5]. The early
diagnosis of T2DMmakes it easier to control the natural course of the disease and delay
micro and macrovascular complications; this way, ML can help healthcare personnel
make a preliminary diagnosis of T2DM based on their monthly physical examination
data as well as improve their pharmacological management [6, 7].

1.2 Machine Learning in Diabetes Mellitus

Artificial intelligence has emerged as an area of help in medical diagnoses as well as in
the most appropriate pharmacological approach for different pathologies; in this case,
ML is a technique that has gained confidence in many professional guilds and especially
in the medical area and is based on this there are several works with ML and diabetes
mellitus this because it is a health emergency. It is necessary to implement more effec-
tive technological resources for early diagnosis and extend the micro and macrovascular
complications as much as possible or alert people predisposed to developing DM to
more significant health care [8]. In this sense, ML tools are affordable to be used even
in a mobile application or the creation of a computational aid system (CAS) in more
vulnerable populations. Today, in Berlin, exists a CAS since 1974, which is powered
with data from 55,000 patients with T2DM and gives them prevalence, incidence, phar-
macological treatments, and duration of DM; this is achieved by recording blood and
urinary glucose for metabolic criteria [9].

Algorithms classifiers like multilayer perceptron (MLP) and long short-term mem-
ory (LSTM) for DM were used by Butt et al. [10], obtained an accuracy of 86.08% and
87.26%, respectively, using PIMA Indian Diabetes database consisting in 8 variables,
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and 1was considered like target variable, is important to mention that they only com-
pared the state-of-the-art with previously work reported in the same database. On the
other hand, Phongying et al. [11] worked on the dataset from the Department of medical
services in Bangkok from 2019-2021 with 20,227 samples with 10 attributes related to
developing DM; they applied ML tools like DT, random forests, SVM, and K-nearest
neighbors and obtained after tuning the hyperparameters, and the interaction terms that
the random forest tree had the best performance classification, with 97.5% accuracy,
97.4% precision, 96.6% recall, and a 97% F1-score.Also, Habibollah et al. [12] worked
with DT and random forest tools, and they explored the (MASHAD) Study program
from Iran; they obtained 9258 records and 18 attributes, considering 17 like predictors
and 1 like target; they only identified T2DM or no event of T2DM. In conclusion, they
observed the best results with the random forest model and reported 71.1% accuracy,
71.3% sensitivity, and 69.9% specificity, and the AUC of the ROC curve measured
77.3% correspondingly. It should be noted that they used several attributes biochemical
and anthropometric, like our work, but not cellular or molecular attributes. In this sense,
there is no report of MLwith this kind of attributes for diabetes mellitus disease; mainly,
the rest of the reported manuscript focus on only classier o predict DM. Recently, Schall-
moser et al. [13] workedwithMLmodels, logistic regression (LR), and gradient-boosted
decision trees (GBDTs) for the prediction of the risk of developing micro or macrovas-
cular complications in 13,904 participants with 105 predictors in prediabetes or DM
participants from dataset EHRs (Israeli health provider); they included 3 microvascular
complications (retinopathy, nephropathy, and neuropathy), and 3macrovascular compli-
cations: peripheral vascular, cerebrovascular and cardiovascular diseases. Their results
for prediabetic individuals were plotted in a AUC-ROC of the LR, and GBDTs corre-
spondingly, 0.657 and 0.681 for retinopathy, 0.807 and 0.815 for nephropathy, 0.727
and 0.706 for neuropathy, 0.730 and 0.727 for peripherical vascular disease, 0.687 and
0.693 for cerebral vascular disease, 0.707 and 0.705 for the cardiovascular condition;
on the other hand DM participants obtained AUC-ROC in the same ML models LR and
GBDTs, respectively, 0.673 and 0.726 for retinopathy, 0.763 and 0.775 for nephropa-
thy, 0.745 and 0.771 for neuropathy, 0.698 and 0.715 for peripherical vascular disease,
0.651 and 0.646 for cerebral vascular disease, and 0.686 and 0.680 for the cardiovascular
condition. They conclude that ML models can predict prediabetes and DM patients to
develop micro and macrovascular complications in this population. Hence, MLmethods
are widely used in diabetes prediction and obtain favorable results; in this work, a DT
model was implemented to classify T2DM patients into uncomplicated, complicated
patients and healthy participants.

2 Methods

2.1 Database

For this study, we enrolled 82Mexican participants fromNewHospital Civil of Guadala-
jara obtained through 2020–2021 previously reported [14]. The study was conducted
following the Helsinki Declaration and the General Health Law on research; the hospi-
tal’s Ethical Committee accepted this study with the number approbation 17 CI 14 039
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116 COFEPRIS, and by the no: 940/CEIH/2019 of the Ethics Committee of the Univer-
sity of Granada, Spain. Before biological samples were collected, all participants were
informed about the study and signed informed consent forms.All participantswere adults
from 40–65 years of age and divided into three groups of study: 1. Healthy individuals
without a family history of first-degree diabetes, besides non-disease of kind inflamma-
tory, endocrine, vascular, or autoimmune, were not taking any pharmaceutical treatment.
For patients with T2DM who had at least 5 years with a diagnosis of DM according to
ADA criterion [5] (fasting plasma glucose ≥ 126 mg/dL, oral glucose tolerance test ≥
200 mg/dL, or glycosylated hemoglobin (HbA1c) ≥ 6.5%/) and were divided as T2DM
uncomplicated and T2DM complicated. The uncomplicated patients were defined with
reasonable glucose control and free of micro (diabetic neuropathy, diabetic nephropa-
thy, and diabetic retinopathy) or macrovascular complications of DM (atherosclerosis,
myocardial infarction, stroke, and cerebrovascular disease) [15]. Patients with DM com-
plications were those with any micro or macro complications of DM before mentioned.
We obtained a complete clinical history of each patient and measured anthropometric
parameters, Body Mass Index (BMI) and waist circumference, and biochemical and
molecular variables.

2.2 Data Preprocessing

The initial dataset comprised 56 clinical, biological, andmolecular variables from82 sub-
jects. Aiming to create a more concise dataset, variables with greater significance were
selected to be kept in the final dataset. Also, variables representing 2TDM complications
in patients were removed (retinopathy, nephropathy, neuropathy, stroke, pharmacologi-
cal treatment). Variables with a small percentage of missing data were imputed with the
mean value of the corresponding group [16]. For variables such as sex, a value of 1 for
females and 2 for males was given, as well as for the variables of alcohol consumption,
smoking, and physical activity, 1 represents an affirmation and 0 a negation. The final
dataset comprises the following 24 variables (see Table 1).

The 24 variables listed in the table above correspond to themore significant attributes
that helped theDT to discriminate between healthy subjects, patientswith uncomplicated
T2DM, and patients with complicated T2DM. The primary reason for analyzing the
groups in a splitmanner corresponds precisely to differentiating clinical profiles; dividing
patients into groups according to the presence or absence of complications helps to
understand the unique characteristics of each group better and to identify specific risk
factors associated with complications; similarly by analyzing and comparing these three
groups, unique patterns, biomarkers, and associations can be discovered that might not
be evident if all diabetes patients were considered as a homogeneous group. This may
lead to new insights into the underlying mechanisms of complications and diabetes in
general.

2.3 Implementation and Training of Classifier Models

Different classifier models were trained and validated with the corresponding datasets,
and all classifier models were implemented using the scikit-learn (version 1.0.2) and
Python library existing models (version 3.9.13). The dataset was divided into train and
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validation subsets using the scikit-learn train/test splitter; 70% (n = 57) of the records
were used for the model training, while the remaining 30% (n = 25) were used for
the model validation and we performance a five-fold cross-validation procedure. The
split was performed using stratification; train and validation subsets were tested and
had a significant representation of the 3 groups; the training subset was composed of
21 healthy subjects, 18 uncomplicated, and 18 complicated T2DM patients, and the
validation subset with 9 healthy subjects, 8 uncomplicated and 8 complicated T2DM
patients, are shown in Fig. 1.

The dataset split train-validation process, training, and model validation were exe-
cuted 200 times for the classifier models. The optimization of hyperparameters was
carried out exhaustively through the modification (tuning) in its maximum depth, the
proportion or number of cases of the training and test set, the minimum number of
subjects per sheet, and all pertinent biological markers were selected according to the
physiology of Type 2 Diabetes mellitus, that is, the characteristics were designated in
such a way that those variables that were not in the definition of complicated diabetes
were included. The number of iterations for optimizing and adjusting the model in a total
of 200 executions was also modified and adjusted. For this work, it was the performance
of those classifier models.

2.3.1 Support Vector Machine

This algorithm was built with the default parameters provided by the Scikit library), is
a supervised learning algorithm used for classification and regression. It searches for a
hyperplane that best separates data classes in amultidimensional space. SVMmaximizes
the margin between classes, resulting in good generalization to new data. It can handle
both linearly separable and non-linearly separable data using kernel functions.

2.3.2 Random Forest

This algorithm was built using 350 estimators, while the remaining parameters were set
to the default option; this ML tool creates multiple decision trees and combines their
predictions to obtain a result. Each tree is trained on a random subsample of the data and
uses bootstrapping to build different data sets. The predictions of the individual trees are
then averaged or voted to make a final decision.

2.3.3 ADAboost

This classifier was built with 100 estimators and a 0.01 learning rate; all other parameters
were set as the default option; this ensemble algorithm combines several weak learning
models (e.g., weak decision trees) to form a strongermodel. Adaboost givesmoreweight
to instances misclassified in the previous iteration at each iteration, allowing the model
to focus on hard-to-classify cases. The weak models are then weighted according to
accuracy and combined to make joint decisions.
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Table 1. Summary of clinical, biochemical, and molecular characteristics of T2DM subjects.
‡Relative expression was calculated using the 2 − ��CT method (�Ct target miR-�Ct control
gene)

N° Variable Type Value

0 Age (Years) Numeric [1–100]

1 Sex Nominal [1–2]

2 Waist circumference (cm) Numeric [70–150]

3 BMI index (kg/mt2) Numeric [17–47]

4 Systolic Blood pressure (mm/Hg) Numeric [80–205]

5 Diastolic Blood pressure mm/Hg) Numeric [60–115]

6 HOMA IR (fasting glucosa mg/dL * fasting insuline IU/L/405) Numeric [0.25–20]

7 HbA1c (%) Numeric [4–13]

8 TG (mg/dL) Numeric [40–360]

9 Cholesterol(mg/dL) Numeric [100–320]

10 Urea (mg/dL) Numeric [13–135]

11 Creatinine (mg/dL) Numeric [0.1–2.6]

12 miR_21 (relative expression)‡ Numeric [30–350]

13 miR_126 (relative expression) ‡ Numeric [10–195]

14 IL_6 (pg/mL) Numeric [0.01–5.50]

15 IL_10 (pg/mL) Numeric [0.20–13.5]

16 IL_18 (pg/mL) Numeric [10–426]

17 TNF_alfa (pg/mL) Numeric [6–127]

18 Diabetic Family Nominal [0–6]

19 Alcohol intake Nominal [0–1]

20 Smoke Nominal [0–1]

21 Physical activity Nominal [0–1]

22 Glucose (mg/dL) Numeric [70–380]

23 Years of diabetic (years) Numeric [0–35]

2.3.4 Bagging Classifier

This model was built using 200 estimators, with the remaining parameters set to the
default value; this algorithm is an ensemble technique used to improve the accuracy
and stability of MLmodels. Using bootstrapping, the Bagging Classifier builds multiple
base models (e.g., decision trees) on random subsets of the training data. Then, the
predictions of the base models are combined by voting to determine the final class of an
instance, and finally, we implemented the C4.5 DT (the class to measure the quality of
a split was set to “gini,” splitter to “best,” no max depth, and the rest of the parameters
as the default option). Since this last ML model was the one that gave us the best overall
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performance, we will focus on describing it in detail. Finally, the precision, recall, F1-
score, and accuracy results of every execution were saved and averaged to review the
results further.

Fig. 1. Flow diagram for data processing and functioning sequences of the proposed diabetes
classification model.

2.4 Model Decision Tree

The DT methodology was used, C4.5, as a classifier. It was implemented in Python, a
high-level programming language whose function emphasizes the readability of its code
[17]. Due to its free software characteristics, it is used to develop academic, scientific,
and technological applications. It is a programming language that allows the coexistence
of different paradigms, such as oriented object programming, structured programming,
imperative programming, reactive programming, and functional programming searching
to improve the production of the development of the projects. The DTmodel is a primary
and regression method with a tree structure describing classifying instances based on
features [18]. It is considered a set of “if-then” rules, which also function as conditional
probability distributions defined in feature and class space.

The DT utilizes a tree structure, starting with a single node representing the training
samples [19]. If the samples are located inside the same class, the node is transformed
into a leaf and labeled with the same class. Otherwise, the algorithm chooses the dis-
criminative attributes as the actual node of the DT. According to the value of the current
attribute of the decision node, the training samples are divided into different subsets,
each in different forms, values, and branches. The anterior steps are repeated for each
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subset or for each branch obtained, recursively forming a DT on each partitioned sample
[20]; see the pseudocode in Table 2. Typical DT algorithms are ID3, C4.5, and CART,
among others.

This study used the DT C4.5 and some parameters like entropy and GINI index that
work in DT with the information that was input from the dataset used to classify each
subset test. The dataset generated has nominal attributes for the classification tasks with
non-missing values. In general, if a probability distribution P = (p1, p2, p3, …, pn) and
an example S is given, then the information carried by this distribution is known as the
entropy P, and is calculated by: Eq. (1):

Entropy P = −
n∑

i=1

pi · log(pi) (1)

In this work, when the entropy level is 0, it will be the level of order, 1. On the other
hand, the information gain allows us to measure the degree of impurity of the classes
for all the examples and, therefore, any position of the tree under construction. It must
have a new function that allows one to select the attribute that should label the current
node. This defines the gain Eq. (2) for a test T and a position p:

Gain(p,T) = Entropy P −
n∑

j=1

(pj · Entropy)(pj)) (2)

Where the values (pj) is the set of all possible values for attribute T. This measure can
then be used to determine which attribute is best and build the DT where at each node
is the attribute with the highest information gain of all the attributes not yet considered
in the path from the root node [21].

Information gain of attribute A Eq. (3):

Gain(A) = Info(D) − InfoA(D) (3)

Pre-segmentation of information entropy Eq. (4):

Info(D) = Entropy(D) = −�p(j|D) log2 p(j|D) (4)

Entropy of distributed information Eq. (5):

InfoA(D) = �(ni/n)Info(Di) (5)

The impurity GINI is one of the possible measures for generating the DT. It provides
more information about the data distribution per node than the classification used in the
accuracy reporting. The impurity of the model nodes is calculated using each count of
each objective category divided by every record obtained by one node. The total GINI
impurity is calculated as a sum of squares of the count of proportion divided by all the
objective categories per node from which one is subtracted. The result is multiplied by
the quantity of records Eq. (6). For example, when splitting a tree node, the algorithm
searches for a field with the highest improvement in total impurity, calculated as the total
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impurity among all potential child nodes subtracted from the total impurity of the parent
node. The goal is for the gini index to be as small as possible.

Gini(Xq) = 1 −
k∑

k=1

(
pk,q

)2 (6)

2.5 Algorithm C4.5

C4.5 is an algorithm used to generate a DT developed by Ross Quinlan [18], and this is
an extension of the ID3 algorithm. DT generated by C4.5 can be used for classification;
therefore, C4.5 is almost always referred to as a statistical classifier. C4.5 builds DT
from a training data set as ID3 does, using the concept of information entropy. In a DT,
the training data refers to a collection of examples used to train the tree. Each example is
denoted as Si and represents a data point with associated information. This collection of
examples forms the dataset the DT algorithm uses to learn and build the tree structure.
Each example Si is represented as a vector of attributes or features, such as X1, X2, etc.
These features describe the characteristics or properties of the data point Si.

The training data are augmented with a vector C = C1, C2, where C1, C2, represent
the class to which each sample belongs. Each example Si is associated with a specific
class or category, and a class label represents this class. The vector C contains these class
labels for each example Si. These labels indicate the predefined categories that each data
point belongs to.

In every tree node, the DT C4.5 selects the variable that better divides the sample
into different data subsets with a predominant class; the criteria are normalized for
information gain resulting in the selection of the variable that better divides the data.
The decision parameterwill be the variable that achieves the best-normalized information
gain [17]. See pseudocode Table 2.

This algorithm has 3 main features; firstly, the DT C4.5 creates a leaf node when
all samples are classified in the same class. In the second instance, when none of the
variables show a significative information gain, the DT C 4.5 creates a decision node
to continue with the tree; finally, when an unseen class is found, the DT also creates a
decision node to continue with the tree C4.5.

2.6 Metrics to Evaluate the Performance of Classifiers on Unbalanced Datasets

It is essential to mention that the performance of a classificationmethod on data sets with
two classes is to use a confusion matrix. This contains information about the predictions
made by the classifier using the number of true positives, true negatives, false positives,
and false negatives. Table 3 shows an example of the confusion matrix.

The confusion matrix should only be used for classification accuracy to determine
the performance of a classifier; it is not suitable when dealing with unbalanced data
sets. This is because high classification accuracy values can be obtained in these types
of applications by simply ignoring the minority class; however, the latter is essential in
cases such as web mining detection, direct marketing, and medical diagnostics [22].
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Table 2. Algorithm C4.5 for the construction of DT

RETURN a leaf node with that class
IF no attributes left THEN

RETURN a leaf node with the majority class 
in the data

ELSE
chosenAttribute = SelectWinningAttri-

bute(data, attributes)
NEW NODE decisionNode WITH chosenAttribute

FOR each value in chosenAttribute.VALUES 
DO

subsetData = FilterData(data, chosenA-
ttribute, value)

IF subsetData is empty THEN
RETURN a leaf node with the majo-

rity class in the data
ELSE

NEW NODE child WITH CreateDeci-
sionTree(subsetData, attributes - {chosenAttri-
bute})

ADD child TO decisionNode WITH la-
bel value

END IF
END FOR

RETURN decisionNode
END IF

END FUNCTION

FUNCTION SelectWinningAttribute(data, attributes)
bestAttribute = NULL
bestGain = 0

FOR each attribute IN attributes DO
gain = CalculateGain(data, attribute)
IF gain > bestGain THEN

bestGain = gain
bestAttribute = attribute

END IF
END FOR

RETURN bestAttribute
END FUNCTION

C4.5 Gnal Pseudocode

FUNCTION CreateDecisionTree(data, attributes)
IF all data belongs to a single class THEN

(continued)
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Table 2. (continued)

FUNCTION CalculateGain(data, attribute)
dataEntropy = CalculateEntropy(data)
conditionalEntropy = 0

FOR each value IN attribute.VALUES DO
subsetData = FilterData(data, attribute, 

value)
weight = size of subsetData / size of data
conditionalEntropy = conditionalEntropy + 

(weight * CalculateEntropy(subsetData))
END FOR

gain = dataEntropy - conditionalEntropy
RETURN gain

END FUNCTION

FUNCTION CalculateEntropy(data)
countClass(class) counts the number of exam-

ples in data with the given class label

entropy = 0
FOR each class IN classes DO

probability = countClass(class) / size of 
data

IF probability > 0 THEN
entropy = entropy - (probability * 

log2(probability))
END IF

END FOR

RETURN entropy
END FUNCTION

FUNCTION FilterData(data, attribute, value)
NEW SET subset
FOR each example IN data DO

IF example.attribute = value THEN
ADD example TO subset

END IF
END FOR
RETURN subset

END FUNCTION

According to the Confusion Matrix, True Positive (TP) is a Positive Value that is
Correctly Classified as Positive, then False Positive (FP) is a Negative Value that is
Incorrectly Classified as Positive; also, We Have False Negative (FN) that is a Positive
Value Classified as Negative and FinallyWeHave True Negative (TN)Which Indicates a
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Table 3. Confusion matrix

Actual class

Positive Negative

Predicted class Positive True Positive (TP) False Positive (FP)

Negative False Negative (FN) True Negative (TN)

Negative Value Predicted Classified Negative (See Table 3). in ThisWork, the Confusion
Matrix Was Calculated in a Python Program and Obtained the Subsequent Metrics:
Accuracy = [(TP + TN) / (TP + TN + FP + FN)] × 100, Sensitivity or Recall =
[(TP/ (TP + FN)], Specificity = [TN/ (TN + FP)], Precision = [TP/ (TP + FP)], and
F1 − score = (2 × Precision × Recall)/ (Precision + Recall) See Fig. 3. Besides, We
Performed in the Phyton Program an Area Under the Curve (AUC) with a Cutoff of 0.5,
and Values Were Plotted in the AUC- Receiver Operation Curve (ROC) of DT’s Best
and Worst Performance. Fig. 4.

3 Results and Discussion

The design objective of this DT C4.5 was programmed to identify 3 groups of patients
belonging to the following categories: 1.Healthy subjects, 2. Patientswith uncomplicated
T2DM, and 3. Patients with T2DM with complications; the results are shown in Fig. 2.

Fig. 2. DT C4.5: this tree shows in the leaves (white boxes) where “x” represents the variable
taken into consideration to make a classification; “gini” expresses the degree of impurity; the
“samples” are subjects. Finally, the “value” represents the vector where the first index belongs to
healthy, the second is T2DM uncomplicated, and the last is T2DM complicated subjects.
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The results of the ML classifiers are shown in Table 4, precision, recall, F1 score,
and classification accuracy corresponding to the mean ± SD of the dataset obtained
from the New Hospital Civil Juan I. Menchaca, considering 24 attributes of 82 patients
(Table 1), subdivided in healthy, uncomplicated T2DM and complicated T2DMpatients.
We obtain from DT C 4.5 the best results of all classifiers, showing for precision of 0.77
± 0.04, recall of 0.76 ± 0.03, F1 score of 0.76 ± 0.02 and accuracy of 78% ± 0.02. The
rest of the classifier are described in the Table 4.

Table 4. Performance metrics of ML model

Classifier Precision Recall F1 Score Accuracy

C4.5 (DT) 0.77 ± 0.04 0.76 ± 0.03 0.76 ± 0.02 78% ± 0.02

Adaboost 0.75 ± 0.0 0.75 ± 0.0 0.76 ± 0.0 76% ± 0.0

Bagging 0.73 ± 0.04 0.72 ± 0.03 0.70 ± 0.04 73% ± 0.03

RF 0.74 ± 0.04 0.72 ± 0.03 0.69 ± 0.04 73% ± 0.03

SVM 0.66 ± 0.0 0.66 ± 0.0 0.64 ± 0.0 68% ± 0.0

We also performed a confusion matrix multiclass to determine the classification
problem of 3 groups: healthy subjects, 2TDM uncomplicated, and 2TDM complicated
the results are the average of 200 executions of the DT C4.5.

Finally, we plotted the results of DT C4.5 in T2DM complicated and was analyzed
by ROC curve showing accuracy in the best performance with an area under the curve
(AUC) = 0.88 and the worst performance with AUC = 0.76. Fig. 4.

SeveralMLworks have been developed tomanage databases of patientswith diabetes
mellitus to establish a prediction in the course of the disease; some focus on complicated
T2DM, such as the work of Ljubic et al. [19], who worked with a dataset of more than
1 million people diagnosed with DM over 9 years, they focused on predicting micro
and macrovascular complications of DM. They considered 10 of these and the num-
ber of hospitalizations on average 1 to 4 and employing the Recurrent neural network
(RNN) with a gated recurrent unit (GRU), they obtained an accuracy of 73% (myocar-
dial infarction) and 83% (chronic ischemic heart disease). On the other hand, Agliata
et al. [23] worked with 3 different datasets to diagnose DM2 and included characteristics
such as insulin sensitivity, age, sex, BMI, and glycosylated hemoglobin, among other
parameters; to train their data; they chose a binary classifier trained in scratch which
gave them an area under the receiver operating characteristic curve (AUROC) of 0. 934;
however, these authors mention the importance of the characteristics to be used in a
database; since there are too many variables that may not be considered, they decided
to work with the simplest to obtain from almost any medical history. Pan et al. [24].



80 V. M. Medina-Pérez et al.

Fig. 3. Confusion matrix for multiclass DT classifier.

They focused on building a multivariate logistic regression model to predict the risk of
diabetic retinopathy in a Chinese population of 2385 patients already diagnosed with
DM,where they built model I with classical predictors such as glycosylated hemoglobin,
systolic blood pressure, ongoing disease, postprandial blood glucose, and the urinary
albumin/creatinine ratio, obtaining an AUROC of 0.703 with an accuracy of 0.79. In
this sense, our database is of Mexican patients, and with variables beyond only clini-
cal, anthropometric, and biochemical data, but also included cellular (interleukins) and
molecular (microRNAs) variables that, to date, there are no similar reports in Mexi-
can patients where DM2 is a severe health problem, our ML model consisted of a DT
C4. 5 which gave us an accuracy of 78%, which for the number of patients in a small
sample shows that it is very efficient at the time of classifying healthy patients with
uncomplicated T2DM and with T2DM with complications.
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Fig. 4. ROC curve analysis for DT C4.5 classifier during the use of the best performance with a
value of AUC = 0.88 and worst performance with a value of AUC = 0.76 for T2DM complicated
class.

4 Conclusion

This work was carried out in Mexican patients with T2DM and is the first to our knowl-
edge in the classification by ML of the complications of the disease itself, as well as
the inclusion of novel cellular and molecular parameters already studied T2DM, such as
proinflammatory and anti-inflammatory interleukins (Il-6, TNF-α, IL-10, and IL-18) and
microRNAs (Mirs-21 and 126) that can regulate gene expression and thus, may become
a therapeutic target in the future; our primary intention is to encourage the existence
of more robust databases with markers that can contribute to a better early diagnosis in
order to avoid the disabling complications of DM2 since it is a worldwide public health
problem. Our future work will be focus on making this database bigger, since this was
only the implementation of the machine learning algorithms as an exploratory classifi-
cation method as well as developing deep learning to discover possible best results with
a larger database.
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