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Abstract. Diagnosing several lung diseases is challenging and usually requires
various methods and tests, including a patient’s clinical history, auscultation,
spirometry, pulmonary function tests, and other methods using more special-
ized medical devices. For its part, the pulmonary auscultation with the mechanic
stethoscope represents an early approach to the disease. However, it is highly
subjective. Therefore, acquiring and analyzing respiratory sounds through mobile
computerized devices, such as smartphones, has been an attractive alternative for
the estimation of physiological parameters, including respiratory rate (RR). This
study explored the estimation of RR performed completely on a single smart-
phone device, from the tracheal sound acquisition, signal conditioning and pro-
cessing, and results report. To this end, a mobile application was developed for the
Android system, and acquisitions were made in ten (N = /0) healthy volunteers
while breathing at different metronome RR. The results obtained with the app
were compared with the ones obtained from a respiratory reference signal. Mean
absolute errors of 0.06, 0.18, 0.66 and 0.54 bpm were found for RR of 6, 12, 18 and
24 bpm, respectively. The promising results point out to test the mobile-developed
system in breathing maneuvers that include temporal changes in RR.
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1 Introduction

Many years ago, the World Health Organization ranked cardiorespiratory diseases among
the top ten causes of death worldwide, independently of the income level of the coun-
tries. A vital sign that allows their detection and monitoring is respiratory rate (RR).
Among simple methods used to estimate RR are human observation and palpation, as
well as auscultation using a mechanical or digital stethoscope [1]. The latter allows the
respiratory acoustic signals to be amplified and filtered, which facilitates their hearing
that sometimes cannot be achieved through the classical mechanical stethoscope. This
study focused on respiratory tracheal sounds (TS) whose vibrations are originated in the
trachea and upper lung and transmitted through the surrounding tissue up to the neck
surface and its vicinity, where they are heard, analyzed, and related to physiological
characteristics that represent health or disease. Therefore, TS and RR are relevant to
learn about the respiratory system [2].

Computerized respiratory sound analysis systems (CORSA) have helped overcome
traditional auscultation’s limitations, making it possible to acquire, store, reproduce,
analyze, and display information on various respiratory sounds, including TS. Nowa-
days, CORSA systems have begun to permeate clinical settings, and commercial medical
devices currently exist, e.g., the MASIMO Rainbow equipment, which allows the esti-
mation of RR using an acoustical approach based on TS [3]. Alternatively, efforts have
recently been made to use smartphones to develop mobile CORSA systems (mCORSA),
given the characteristics of ubiquity, mobility, and cost-effective sensors of these devices.
This approach has allowed the implementation of digital signal processing algorithms
on smartphones to facilitate the application of CORSA systems in different locations,
without traveling to more specialized sites, and even to perform the acquisition and
analysis of respiratory sounds directly at the patient’s bedside [4].

Our research group has made some efforts regarding RR estimation from TS and the
development of mobile applications (apps) for TS analysis. In a first effort, the estimation
of RR was performed offline, i.e., the smartphone-acquired TS was analyzed on a regular
computer, not in the mobile device itself [5]. In a posterior effort, an mCORSA system
allowing the acquisition, processing, and display of results was developed to detect
adventitious respiratory sounds [4]. In a recent effort, a mobile app was implemented
to compute the Shannon entropy (SE), which quantifies the uncertainty of a stochastic
signal of a previously uploaded file, sound or not, to the app [6]. It has been reported that
the SE of TS provides a surrogate signal of the normalized respiratory airflow, providing
the rationale for using them to estimate RR [7]. Hence, the development of an mCORSA
system that allows RR estimation directly from TS acquired by the smartphone device
was pending for our research group.

In this study, we addressed the end-to-end estimation of RR on a single smartphone
using a tracheal sounds approach which, to the best of our knowledge, has not been
addressed yet. We developed a mobile app to govern the acquisition of TS using an
acoustical sensor attached to the smartphone. The app computes the RR based on the
power spectral density (PSD) of the SE of the acquired TS. The results are displayed
right on the mobile device. Tests were made with metronome breathings maneuvers
while considering the RR derived from a piezoelectric respiratory band as a reference.
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2 Methodology

2.1 Hardware

An acoustical sensor was employed to acquire TS, as described in our previous study [4].
Briefly, the sensor comprises a subminiature electret microphone (BT-2159000, Knowles
Electronics, IL, USA) encapsulated in a plastic bell and connected to the 3.5 mm audio
input of the smartphone. Regarding the smartphone, the Huawei Y6 2018 (Huawei,
Shenzhen, China), which has 2.0 GB of RAM and runs an Android 8.0 operating system,
was used. The mCORSA system was governed by the mobile app, whose design and
implementation are described below.

2.2 Mobile App

The app was developed in Android Studio Flamingo 2022.2.1 (Google, CA, USA) using
Java (Oracle Corp., CA, USA). The app oversaw the setting, starting, and stopping of
the TS acquisition stage, as well as performed the digital signal processing required
to estimate RR from the acquired sounds. Hence, the design and implementation were
divided into two main parts: 1) the graphical user interface (GUI) and 2) the internal
digital signal processing of the TS.

IRR estimation

Graphic display

Activity_AnalyzeSignal

Choosing the registry

Patient’s data location Breath sound recording
Patients list —>
Patient signal list Choosing of respiratory Graphic display
maneuver
Activity_Main I | Activity_Patient | | Activity_Chooselocation | | Activity_RecordSound

Add a new patient to the
list

| Activity_AddPatient |

Fig. 1. Main Flow of activities of the developed mobile app.

Several activities were implemented regarding the GUI, as shown in Fig. 1. First, the
user can select a patient (volunteer) from an existing list in the main activity. In the add
patient activity, the user is prompted to introduce the patient’s data, including first and
last name, age, and gender. Subsequently, the user can select among different breathing
maneuvers and the location of the acquired signal. The neck location was always used
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in this study, as only TS was acquired. Finally, the user can start recording the TS by
clicking an acquisition signal button. After the acquisition is finalized and saved, the
acquired data is displayed if not discarded. If the user selects an existing patient from
the list, the app uploads its available data and recordings. Finally, the user can choose
the “analyze signal” activity to perform the data analysis, resulting in the visualization
of the TS, its normalized SE signal, its PSD, and the corresponding estimated RR.

TS is acquired using the aforementioned acoustic sensor, where the corresponding
electrical signal is digitized at a sampling frequency of 10 kHz and 16 bits-per-sample, to
comply with Nyquist sampling theorem and international CORSA guideline recommen-
dations. The TS is bandpass filtered using a digital FIR filter with a Hamming window
of 500 samples and 100 and 3000 Hz cutoff frequencies. The filtered TS are normalized
between 0 and 1, resulting in the signal x;[n] of the block diagram in Fig. 2. The files
in this stage correspond to the raw audio signal and the text file with the amplitudes
obtained from the TS. The block diagram shown in Fig. 2 expands the “analyze signal”
activity block from Fig. 1.

x1[n] l Filtered and

normalized signal (TS)

Shannon yaln] SE processing Y2 [n] Power spectral RR estimation
Entropy (SE) density (PSD) results
25 ms window and Interpolation with cubic Welch ‘Meth?d Graphics:
50% overlap spline at 10 Hz Hamming Window SR
50% overlap *
Parzen windows Butterworth lowpass filter NFFT = 512 bins e SE
with Gaussian kernel fc=2Hz Find the PSD peak e DsSP
SE assigned to the Inverted, normalized [0, 1], and its o Peak freq (RR)
midpoints of the Average is removed corresponding peak
windows Butterworth high pass filter frequency (RR)
fe=0.05Hz 1

psd.txt
| entropyxt e
entropy.txt peak_freq.txt

Fig. 2. Block diagram of the digital signal processing performed by the mobile app.

First, the SE signal of the acquired and preprocessed TS, x1 [1], is estimated following
the method described in our previous work [4, 5]. Briefly, TS is divided into successive
windows of 25 ms with 50% overlap, and the probability density function (pdf) is cal-
culated for each window using the Parzen window method with a Gaussian kernel. The
SE value of each window is assigned to its midpoint, resulting in the time series y{[n] in
Fig. 2. To achieve a uniform sampling frequency adequate for RR estimation accordingly
to Nyquist sampling theorem, as well as to focus on the RR frequency range, y;[n] is
interpolated using cubic splines at 10 Hz and filtered with an IIR Butterworth lowpass
filter with a cutoff frequency of 2 Hz. To facilitate the subsequent signal processing, the
SE signal is reversed, normalized between 0 and 1, its mean (DC component) is removed,
and filtered again with an IIR Butterworth high pass filter with a cutoff frequency of
0.05 Hz, resulting in the time series y;[n].
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After computing the processed SE signal, the RR is obtained via the frequency
corresponding to the peak of the PSD of the SE signal. To this end, the PSD is estimated
with the Welch periodogram method, using a Hamming window of 10 s, with 50%
overlap between consecutive windows, and NFFT = 512 frequency bins.

Once all the calculations are completed, the TS signal, the SE signal, the PSD of the
SE, and the corresponding RR are displayed in the mobile app. Finally, the related text
files are stored for possible export to external programs like MATLAB or Python. It is
worth mentioning that, in this study, the resulting text files with information about the SE
signal, its PSD, and its corresponding peak frequency, i.e., estimated RR, were exported
to MATLAB R2023a (The MathWorks, MA, USA) only for comparison purposes with
the respiratory reference, i.e., no more signal processing was performed outside the
developed mobile app.

2.3 Data Acquisition

Data from ten (N = 10) respiratory healthy volunteers were acquired, with ages rang-
ing from 19 to 23 years old, seven women and three men. Before the acquisition, the
experimental protocol was explained to the volunteers, and their informed consent to
participate in the study was obtained according to the Declaration of Helsinki.

To acquire the TS, the acoustic sensor was placed on the lateral surface of the neck,
as shown in Fig. 3, using a two-sided adhesive ring. Simultaneously, the respiratory
reference and ECG signals were acquired using the Biosignal Plux wireless system
(PLUX Wireless Biosignal, Lisboa, Portugal), using a sampling frequency equal to
1000 Hz. It is worth mentioning that the ECG signal was not used in this study, but it
was acquired for its future use by our research group when developing and comparing
different RR estimation methods. The respiratory reference signal was acquired using a
piezoelectric respiratory band, while the ECG was acquired following a configuration
that emulated DI by placing three adhesive Ag/AgCl electrodes on the thoracic area.

Acoustical
sensor

ECG
electrodes

Piezoelectric
respiratory

band
Biosignal Plux
acquisition
Smartphone system

app &o

Fig. 3. Experimental setting showing a volunteer during the signal acquisition stage.
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For this study, data from fixed RR maneuvers were acquired. To this end, each
volunteer was instructed to perform four different metronome breathing maneuvers,
each at a fixed RR equal to 0.1, 0.2, 0.3, and 0.4 Hz, equivalent to 6, 12, 18, and 24
breaths-per-minute (bpm). Each recording at a given fixed RR lasted one minute. Visual
metronome feedback was provided to the volunteers through a display placed in front
of them to facilitate them following the required breathing rhythm.

2.4 Data Analysis

The mCORSA-based RR estimates were compared to the ones obtained from the refer-
ence piezoelectric sensor. The reference RR estimates were automatically computed via
the PSD of the respiratory reference signal by searching for the frequency corresponding
to its maximum peak. Data analysis included descriptive statistics, boxplots, computing
absolute errors (AE), in bpm and normalized percent, as well as Bland-Altman anal-
ysis and non-parametrical statistical tests using two-sided Wilcoxon signed-rank tests,
considering a 5% significance level.

3 Results and Discussion

Screen captures of the implemented mobile app for the estimation of RR from TS are
displayed in Fig. 4, where it can be seen the GUI developed for the “add patient” activity
(left panel), for the “sound recording” activity (central panel), and the “results display”
activity (right panel). The app lets us quickly introduce the patient’s information and
validate the data. The app allows the user to start and stop the recording of TS, as well as
to save or discard the acquisition. After performing all the digital signal processing, from
the TS to the RR estimation, the app displays several signals, including the TS alone,
the TS together with its corresponding SE signal, and the PSD of the SE together with
the detected maximum PSD peak and the frequency peak (RR estimate). It is possible
to observe that, for the example shown in Fig. 4, the volunteer was asked to breathe at
12 bpm, and the calculated peak frequency using the app was 0.195 Hz, corresponding
to a RR equal to 11.70 bpm.

The RR estimation results obtained for all volunteers are summarized in Table 1 for
each metronome maneuver, where RRref denotes the RR reference values based on the
piezoelectric respiratory band, and RRapp indicates the RR estimated values computed
with the developed mCORSA system. AE represents the absolute error of the estimate, in
bpm units and normalized units, concerning the reference value. Each value is presented
as mean = standard deviation, median, and (minimum, maximum). It was found that the
higher AE was 1.2 bpm, corresponding to 6.41% of the reference fixed RR of 18 bpm.

Figure 5 shows the normalized AE for each of the four metronome maneuvers (M1-
M4), where it can be noted that data does not follow a normal distribution. No statisti-
cally significant differences were found between the median of RR estimates from the
mCORSA system and those from the piezoelectric reference sensor, at the 5% signifi-
cance level, for all maneuvers. A statistically significant bias of —0.27 bpm was found,
and the 95% limits-of-agreement (LoA) were -1.07 and 0.53 bpm.
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Fig. 4: Screenshots of the developed mobile app for RR estimation using TS. Left: Add patient
activity. Center: Sound recording activity. Right: Results display activity.

The obtained results in this study are comparable to previous efforts reported in the

literature, e.g., the bias and LoA

were found to be 0.11 and —1.41 to 1.63 bpm in a study

employing smartphone-acquired TS [5]. In contrast, the median error was less than 1%
in a study using smartphone-acquired nasal sounds [6], but our system has the advantage
of performing an end-to-end RR estimation in the smartphone.

Table 1: Results obtained

for the metronome breathing maneuvers (N = 10).

Metronome RRref (bpm) RRapp (bpm) AE (bpm) AE (%)
breathing (bpm)
6 5.76 £0.19 5.82 £ 8.7x10-16 0.06 £ 0.190 1.15 £ 3.63
5.82 5.82 0.00 0.00
(5.22,5.82) (5.82,5.82) (0.00, 0.60) (0.00, 11.49)
12 11.88 +0.29 11.70 £ 1.7x10713 0.18 £ 0.29 1.46 £2.39
11.70 11.70 (11.70,11.70) | 0.00 0.00
(11.70, 12.30) (0.00, 0.60) (0.00, 4.48)
18 18.18 £ 0.189 17.52 4+ 3.5x10-15 0.66 £+ 0.19 3.62 £ 0.98
18.12 17.52 0.60 3.31
(18.12, 18.72) (17.52, 17.52) (0.60, 1.20) (3.31, 6.41)
24 24.06 + 0.19 23.76 + 0.58 0.54 +£0.19 2.25 +0.79
24.00 23.40 0.60 2.50
(24.00, 24.60) (23.40, 24.60) (0.00, 0.60) (0.00, 2.50)

Values presented as mean =+ standard deviation, median, (minimum, maximum).
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Besides the promising results of this study, some limitations should be addressed in
future studies. First, the sensor is sensitive to other sounds coming from the respiratory
tract, and for this reason the volunteers were asked not to swallow or talk during the
acquisitions. Second, the sample size is small, and we are trying to increase it. Third, the
piezoelectric sensor used as a reference is not as good as respiratory bands based on an
inductive sensor, but unfortunately the latter is not available in our laboratory. Finally,
more breathing maneuvers should be explored, including spontaneous breathing and
abrupt changes in RR, where incorporating time-frequency analysis, e.g., the spectro-
gram, would be helpful to contend with the time-varying nature of the corresponding
respiratory rates.

RPC: 0.8 bpm (5.4%)
127%

Refence (bpm)

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 0.527 (+1.96SD)

AE (%)

. . - -0.27 [p=0.00015]
R e il -1.07 (-1.96SD)

N
mCORSA system -

15 20 25

. . . 10
M1: 6 bpm M2: 12 bpm M3: 18 bpm M4: 24 bpm Mean Refence & mCORSA system (bpm)

Fig. 5. Results of RR estimation via mCORSA system. Left: Boxplot of the absolute error for
each metronome maneuver (M). Right: Bland-Altman graph.

4 Conclusions

The end-to-end estimation of respiratory rate using a smartphone-based system for tra-
cheal sound analysis was explored in this study, obtaining results comparable to the ones
reported in the literature for metronome breathing. It is worth mentioning that the record-
ings of this study were performed in a regular classroom, with the associated acoustical
noise from the environment, pointing out the feasibility of extending the RR estimation
beyond clinical or research settings.
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