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Abstract. A timely and accurate skin cancer diagnosis is a key factor in
reducing mortality rates, especially with melanoma which often resem-
bles in its early stages with moles. Convolutional neural networks (CNNs)
are models commonly used to classify dermoscopy images into benign
or malignant. CNNs are frequently implemented on Graphical Process-
ing Units (GPUs), which are not always available in rural areas. This
paper compares three CNNs to classify benign and malignant melanoma
images. We select the most appropriate neural architecture by compar-
ing accuracy results and model lightness to load it on a mobile device.
With this strategy, the training of the CNN is performed on the GPU
and the inference in portable devices that can be used in rural areas. The
developed app is named SkinSight. This app was evaluated with images
of two different datasets achieving competitive results compared to state-
of-the-art models. Considering that most people have a mobile device,
this app could be used in areas where it is difficult to have specialized
GPUs and highly trained personnel in cancer detection.

Keywords: melanoma detection · convolutional neural network ·
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1 Introduction

According to the American Cancer Society, melanoma is the most dangerous type
of skin cancer; its early diagnosis is essential for successful treatment and patient
survival [1]. In a study published in the Skin Cancer Foundation [3], late diagnosis
of melanoma is a significant problem in many parts of the world, including Latin
America, where lack of access to health services and awareness about skin cancer
contributes to a late diagnosis. In 2020, according to data from the International
Agency for Research in Cancer of the World Health Organization, through the
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GLOBOCAN project, the incidence of Melanoma in Mexico was 2,051 cases with
773 deaths [4].

The diagnosis of melanomas is mainly made by visually inspecting skin lesions
by highly trained dermatologists. Asymmetry, border, color, diameter, and lesion
enlargement are the standard features that specialists consider. Another com-
mon way to diagnose cancer is by performing a biopsy, a pathological exami-
nation that takes much time and resources to provide the results. The Sierra
Tarahumara is a mountain range part of the Sierra Madre Occidental located in
Chihuahua. This rural and remote area lacks sufficient pathologists and medical
resources to diagnose and treat skin cancer. The lack of information and aware-
ness about this type of cancer in these communities can lead to delayed seeking
care and late diagnosis of the disease. This problem can seriously affect the pop-
ulation’s health and lead to higher mortality and morbidity rates in the region.
A comprehensive approach is needed to address the lack of access to pathology
services, including actions to increase skin cancer awareness, improve local doc-
tors’ training, and provide resources and technology for diagnostic testing and
treatment.

Deep learning techniques, especially convolutional neural networks (CNNs),
have been widely used in different image recognition tasks to automatically clas-
sify specific patterns on images [11]. Particularly for classifying skin cancer,
different CNN models have been proposed achieving very accurate classification
results [7,16,22].

Unfortunately, these systems have not yet been incorporated into daily clin-
ical practice because most CNN models need the usage of Graphical Processing
Units (GPUs), a hardware not very common in most hospitals. As an alternative
to using expensive hardware equipment, TensorFlow (an open-source machine
learning ML framework) has launched a lightweight version named TensorFlow
Lite (TFLite) [5]. TFLite is optimized for deploying deep learning models on
mobile and embedded devices with limited computational resources. Then, CNNs
can be implemented in low-cost, low-power, portable, easy-to-use devices for clas-
sification and detection tasks. The training is performed on the GPU, but the
inference can be executed on mobile devices, also known as on-device inference.

This work presents a comparison of state-of-the-art CNN models to clas-
sify images into benign or malignant melanoma lesions automatically. These
models are trained and tested on two skin cancer datasets, demonstrating their
robustness in different scenarios. The inference of the selected CNN model can
be performed on a mobile device, known as on-device inference. The TFLite
framework, in combination with Android Studio, allows us to convert the CNN
model to a light version capable of working on low-cost, low-power devices. In
this way, this CNN can be easily used by medical specialists with access to
dermoscopy images and have the opportunity to diagnose suspicious cases in
an early manner. Even when this methodology has already been implemented
in recent research, most of them only evaluate their proposal in one dataset
with few samples, achieve low-performance results, or perform the inference of
the model in a server computer. In our proposal, we could maintain a balance
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between accurate performance results considering two different datasets demon-
strating the robustness of our proposal. We named our application SkinSight,
which can be loaded on Android devices. Considering that most people have a
smartphone, this tool could be used where it is difficult to have highly specialized
GPUs and/or trained personnel in cancer detection. It is worth mentioning that
this paper aims to identify the best CNN configuration that achieves a compa-
rable performance with state-of-the-art models trained and tested on GPUs and
with those developed to be used in portable devices.

2 Literature Review

The International Skin Imaging Collaboration (ISIC) is a global organization
with an online repository of dermoscopic and clinical images of skin lesions [2].
The objective is that researchers from all over the world can work in the devel-
opment of computer-aided systems to detect and diagnose melanoma and other
skin cancers. With the advancement in computer vision algorithms based on deep
learning models, different researchers have reported accurate results in classify-
ing benign and malignant skin lesions. Cassidy et al. performed a benchmark
study in [9] with images of the ISIC dataset and 19 state-of-the-art deep learn-
ing architectures. The VGG19, DenseNet121, and EfficientNetB2 architectures
achieved the best area under the Receiver Operating Characteristic Curve (AUC)
results. Benyahia, Meftah, and Lezoray [8] also investigate the efficiency of 17
deep learning architectures and 24 machine learning classifiers using the ISIC
dataset. They concluded that the DenseNet201 neural architecture combined
with the Cubic SVM algorithm produces the best classification results.

Rehman et al. [25] use a modified pre-trained DenseNet201 by staking three
convolutional layers at the end of the model, followed by a global average pool-
ing, a batch normalization, and two dense layers. The authors used a contrast
stretching enhanced technique to improve the quality of the images reporting
an average accuracy of 95.5%. In [21], was adapted a ResNet101 architecture to
classify benign and malignant skin cancer images. Two convolutional layers were
included at the end of the model, followed by pooling and two fully connected
layers. The authors reported an average accuracy of 90.67%.

All these previous research papers perform their training and testing in a
specialized GPU, achieving state-of-the-art performance in skin lesions classi-
fication tasks. After deeply analyzing their results, we select the ResNet101,
DenseNet201, and a CNN of the EfficientNet family in our experiments. The
accurate reported results and reduced number of parameters in these neural
architectures make them ideal candidates for our research.

Figure 1 shows a block diagram of the process we follow in developing our
SkinSight app. First, it is necessary to train the different deep learning models
on TensorFlow with the appropriate datasets and compare their performance to
select the most appropriate model. Then, convert the selected CNN to Tensor-
Flow Lite. Next, set up Android Studio for Android App development with the
appropriate Android SDK and NDK components installed, add TensorFlow Lite
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dependencies, and copy the TF-Lite model into the project. The TFLite inter-
preter is necessary to load the model in the project. A user interface is designed
to create the views and controls to interact with the model and display the pre-
diction results appropriately. Then, connect an Android device to the computer
and build the app with Android Studio. Finally, test SkinSight with images to
confirm that the CNN model works as required.

Fig. 1. Block diagram of deploying a CNN in a mobile device using TF-Lite and
Android Studio.

The general methodology of performing the training of the CNN in the GPU
and the inference in a mobile device (to be used by the medical sector) has
already been proposed in different research papers. In [19] is presented a mobile
app to classify skin diseases considering their severity based on the MobileNetV2
architecture. A dataset of 1,220 images is processed, achieving an accuracy of
94.32% in the classification task. In [14], a dataset of 2,358 images was classified
as melanoma or benign using the InceptionV3 neural architecture. The accuracy
reported by the authors is 81%. Dai et al. [10] presented an on-device inference
app using 10,015 images. The accuracy achieved by the model was 75.2%. In [15]
is presented an augmented reality app that classifies skin lesions for identifying
melanoma. The app continuously tracks the lesion, implementing different image
pre-processing algorithms to remove hair and segment the lesion before analyzing
the image in the CNN model. Their method achieved an accuracy of 78.8%.
Kousis et al. [20] load a light version of a DenseNet169 network on a mobile
Android device to classify benign or malignant images. The DenseNet169 model
achieved an accuracy of 91.10%, considering a dataset of 10,015. The authors
mentioned that when testing their app in a real environment, it was necessary to
transfer the image to a server for better performance. In [12], the MobileNetV2
architecture classifies skin lesion images considering three datasets. The overall
accuracy performance reported when testing their proposal in a new dataset
with the mobile app was 91.33%. Arani et al. [6] presented the Melanlysis app for
detecting skin cancer based on the EfficientNetLite-0 architecture. The authors
use only the dataset’s dermoscopy images, achieving an accuracy of 94%. In
[13] is presented a lesion segmentation and classification method based on a
DenseNet201 model loaded on a mobile device. The classification task considers
the identification of seven skin lesion classes achieving an accuracy of 89%.
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3 Methodology

3.1 Deep Learning Models

The ResNet (Residual Neural Network) architecture introduces the concept of
residual or skip connection to address the vanishing gradient problem present
in deep neural networks [17]. The Residual Blocks of the ResNet model have
convolutional and batch normalization layers and ReLu activation functions.
The number of residual blocks defines the variant of the ResNet architecture.
We select the ResNet101 in our experiments considering the results reported in
[21].

DenseNet, or Dense Connected Convolutional Network, uses the concept of
dense blocks to connect the output of every other layer within each of its blocks
[18]. That is, the output of each layer is concatenated before passing it to the
input of the subsequent layer within each dense block. To reduce the spatial
dimensions between dense blocks and the number of channels, DenseNet defines
Transition Layers. Similar to ResNet, DenseNet defines different variants, and
in our experiments, the DenseNet201 is selected according to the results in [25].

EfficientNet is a family of deep neural network architectures that use a neural
architecture search method to uniformly scale the network’s depth, width, and
input image size. EfficientNetV2 [24] aims to optimize the training speed and
parameter efficiency. Regularization techniques are adaptively adjusted during
training, considering different input image sizes. The authors define this partic-
ularity as Progressive Learning with Adaptive Regularization. In TensorFlow are
implemented seven versions of EfficientNetV2. In our experiments, we select the
EfficientNetV2-S variant because it has almost the same number of parameters
as DenseNet201.

In order to adapt these three different CNN architectures to the skin cancer
datasets, we consider two options. The first one only includes a global average
pooling in the last convolutional layer of these architectures, followed by a fully
connected layer. Inspired in [25], a second option considers including three con-
volutional layers, a global average pooling, and a batch normalization, followed
by fully connected with dropout layers. A transfer learning strategy was used to
train these neural architectures where initially, only the extra layers were trained
by ten epochs (freezing the layers of the CNN architectures). Then, a fine tune
strategy unfreezes 20% of the CNN architecture, and a new training is performed
with a reduced learning rate.

3.2 TensorFlow Lite (TFLite)

TensorFlow Lite (TFLite) [5] is a lightweight deep learning framework specifi-
cally designed for deploying CNN models to mobile and embedded devices cre-
ated by Google. TFLite optimizes the size and speed of the models without
neglecting their performance. TFLite uses quantization methods to compress
the deep learning model by using fewer bits to represent model parameters [23].



Melanoma Detection 19

Once the model is converted to a TFLite format, the integrated development
environment (IDE) of Android Studio for Android App is used to load the CNN
model into the mobile device. The TFLite interpreter is in charge of running
the inference of the model and producing the predictions. Then, deploying deep
learning models on mobile devices is possible by combining Tensor Flow, TFLite,
and Android Studio.

4 Experimental Settings and Results

In our experiments, we use two datasets presented on Kaggle that consider
images of the ISIC challenges. Dataset one (DS1)1 has 3,297 dermoscopic images.
1,800 images are classified as benign and 1,497 as malignant, respectively. Kaggle
provides a data partition where 80% of the data is separated to train and 20%
to test. In our experiments, the training data was re-partitioned into train and
validation with a final distribution of 60% to train, 20% to validate, and 20%
to test. The second dataset (DS2)2 has 10,605 images. Kaggle defines 9,605 for
training and 1,000 for testing. Same as the previous dataset, the training data
was re-partitioned to provide a validation set. The final data split corresponds
to 80% to train, 10% to validate, and 10% to test.

The training of the CNN models used in this work is performed on Google
Colaboratory, a cloud-based platform with pre-installed libraries and dependen-
cies. In our case, we use the TensorFlow library to train the CNN models. Table 1
shows the accuracy classification results of the different CNN architectures. The
second column specifies if the CNN considers the three convolutional extra lay-
ers, global average pooling, and batch normalization, followed by fully connected
and dropout layers. The third column indicates the number of parameters of each
CNN. The fourth and fifth columns indicate the accuracy percentage achieved
by each CNN.

Table 1. Accuracy results of the different neural architectures.

CNN model Extra layers Parameters DS1 DS2

ResNet101 No 42,660,225 87.87% 92.10%

ResNet101 Yes 43,575,129 86.97% 92.40%

DenseNet201 No 18,832,905 86.06% 91.9%

DenseNet201 Yes 19,189,785 86.96% 90.7%

EfficientnetV2-S No 20,332,641 85.61% 91.40%

EfficientnetV2-S Yes 20,953,401 87.57% 91.90%

1 https://www.kaggle.com/datasets/fanconic/skin-cancer-malignant-vs-benign.
2 https://www.kaggle.com/datasets/hasnainjaved/melanoma-skin-cancer-dataset-of-

10000-images.

https://www.kaggle.com/datasets/fanconic/skin-cancer-malignant-vs-benign
https://www.kaggle.com/datasets/hasnainjaved/melanoma-skin-cancer-dataset-of-10000-images
https://www.kaggle.com/datasets/hasnainjaved/melanoma-skin-cancer-dataset-of-10000-images
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The accuracy results of the models are very similar. The best accuracy and
the model with fewer parameters are highlighted in bold. ResNet101 obtains the
best classification results but is the CNN with the largest number of parameters.
EfficientnetV2-S and DenseNet201 obtain comparable performance, but in our
implementation, it is very important to have a reduced number of parameters
because our objective is to deploy the CNN model in an Android application
running on a mobile device. For this reason, we select the DenseNet201 model.
Figure 2 shows the confusion matrix results obtained with the DenseNet201
model considering the two datasets.

Fig. 2. Confusion matrix results

By visually inspecting the images of the datasets, we realize that some of
them are very difficult to classify as benign or malignant. Figure 3 shows some
of them where, despite being difficult samples, the DenseNet201 model correctly
classifies them.

Fig. 3. Examples of difficult samples of the datasets

Once the model was trained, it was converted to a light version with TF-
Lite and loaded into the mobile device using Android Studio for Android App.
Figure 4 shows the final user interface designed for SkinSight with prediction
results. SkinSight can load images from the smartphone gallery. With this option,
we could select the testing images of DS1 and DS2 and confirm that the accuracy
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performance of the model is maintained on the light version obtaining the same
results reported on the confusion matrix of Fig. 2. By comparing these results
with those models reported in Sect. 2, our accuracy performance is superior to
most mobile apps. Only two of them achieved better results. The first only
considers one dataset of few samples (1,220 images), and the second eliminates
images not obtained with a dermoscopy (the ISIC dataset has images obtained
with simple cameras and are commonly incorrectly classified).

Fig. 4. Prediction results of the SkinSight app.

5 Conclusions

This paper presents the process we follow to design an Android app named Skin-
Sight to detect melanoma automatically. First, we compare the performance of
state-of-the-art CNN models trained and tested with images of two datasets
of the ISIC challenge. The accuracy results obtained with EfficientnetV2-S,
ResNet101, and DenseNet201 are very similar. However, considering that our
objective is to develop a mobile app that medical personnel can use to diagnose
suspicious cases early, we select the CNN model with the fewest parameters. The
combination of using TensorFlow, TensorFlow Lite, and Android Studio offers a
powerful solution for deploying deep learning models on mobile devices.

Recent models that surpass the results reported in this paper implement
highly cost pre-processing techniques to remove noise and artifacts from the
images. Also, some of these publications stack more than five machine learning
algorithms, but the improvement is only 3% compared to our implementations.
Considering that our SkinSight app is designed to be used by the medical sector
with limited resources, we bear in mind a balance between accurate classification
results and a few parameters of the model. In this paper, we only perform the
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testing of SkinSight with images already analyzed by specialists. Because we
want to bring this tool closer to rural areas of our location, our next step is to
work with local medical doctors and patients already diagnosed with this disease
and test the app in a real environment to identify how to handle different skin
tonalities and factors not considered on the ISIC dataset.
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