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Abstract. Lung segmentation is a critical step in machine-learning-based
radiomics using thoracic computed images. It involves isolating a specific region
of interest, but variations in lung intensity values caused by diseased lung tissue can
difficult correct segmentation. Although K-means is commonly used, it requires
manual intervention to select each cluster related to the region of interest, leading
to an efficiency decrease in terms of the specialist’s time and effort, especially for
large image volumes. To address these limitations, an automatic cluster selection
methodology is proposed. It involves a training process to determine a threshold
for discriminate clusters; then, morphological transformations and image process-
ing techniques enhance segmentation. Evaluation using DICOM images from the
Interstitial Lung Diseases Database yielded a Jaccard Similarity Index of 0.9056
and a Dice Similarity Coefficient of 0.9475, demonstrating the effectiveness and
accuracy of the proposed approach.
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1 Introduction

Segmentation is the process of delineating specific areas within an image, achieved by
assigning labels to each pixel based on regions of interest (ROIs). Various methodolo-
gies exist for performing semi-automatic or automatic segmentation, intelligent image
processing analysis in the scenario [1, 2]. Thresholding is an easiest algorithm used for
image segmentation which groups pixels based on intensity differences [2].

In lung images, segmentation serves as a preprocessing step to separate the lungs,
enabling various machine learning tools to concentrate their actions exclusively on this
tissue, thus improving performance. Thresholding algorithms work well when lung
pathologies are absent, as there is a noticeable contrast between the lungs and the sur-
rounding tissue in both computed tomography (CT) images and plain X-rays. However,
complications arise when the lung tissue density increases due to diseases such as pul-
monary fibrosis [3], interstitial lung disease [4], and cancer [5], among others, resulting
in X-ray beams interacting similarly with both lung and surrounding tissues [6, 7].
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To overcome this challenge, state-of-the-art (SOA) approaches often employ K-
means due to their simplicity and interpretability. For instance, Gupta et al. (2022)
used K-means, fuzzy C-means to separate anatomical structures within the CT images,
incorporating wavelet techniques to enhance the obtained mask. Their method achieved
an accuracy, Dice Similarity Coefficient (DSC), and Jaccard Similarity Index (JSI) of
0.9928, 0.9872, and 0.9787, respectively [1]. Similarly, Hu et al. (2020) employed Con-
volutional Neural Networks for lung region mapping and utilized Bayes, Support Vector
Machines, and K-means as kernels, achieving an accuracy of 0.97 [8]. Liu et al. (2023)
utilized K-means in conjunction with Hough transform to remove cavities, obtaining a
DSC and JSI of 0.9786 and 0.9512, respectively [9].

While these studies effectively tackle lung segmentation (LS), they rely on themanual
identification of lung clusters per image to generate masks. This can be time-consuming
for specialists dealingwith sizable image volumes during diagnosis and treatment, where
accuracy is vital. Hence this work proposes an approach to automate the selection of
lung and non-lung clusters. The goal is to have a methodology for the segmentation of
diseased lungs that achieves competitive performances regarding SOA methods.

2 Materials and Methods

K-means is an unsupervised clustering algorithm designed to identify K groups within a
dataset. In the context of image segmentation, the dataset consists of elements represented
by a dimension M × N image matrix denoted as X. The algorithm groups the pixels in
X into K based on their similarity. The user determines the number of clusters, K, based
on prior X data analysis. The resulting segmentation, Y, allows for drawing conclusions
and characterizing the K groups [10].

2.1 Image Segmentation Process using K-means

The image segmentation process is showed in Fig. 1 [11]. It involves treating the image
as a dimension M × N matrix, denoted as X, where each element Xmn represents the
intensity information. In CT images, this intensity is expressed in Hounsfield Units [12].
To facilitate processing, the matrix is transformed into a vector using lexicographical
ordering ·L{·}, this consists of the column-by-column to left-to-right stacking of the
matrix X [13]. This vector is then subjected to the K-means algorithm, resulting in a
vector where each pixel is assigned to one of the K clusters. Then K-means clustering
model output is reorganized through lexicographical reordering ·L−1{·}, resulting in a
Y matrix of dimensionM× N. With this, the user can identify and select the clusters of
interest. In the context of LS, the user designates all the pixels within the lung clusters
with an intensity value of 1, while non-lung pixels are assigned an intensity value of 0.
This process is referred to as binarization, given its binary decision nature in this study.

One drawback of the image segmentation process using K-means is the manual
assignment of labels (such as lung or not-lung) to each cluster in every image, which
can compromise its effectiveness.
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Fig. 1. Representation of image segmentation process using K-means.

2.2 Automatic Cluster Selection

To address the issue of manual selection and labeling of clusters in K-means LS, an
automatic methodology is proposed (see Fig. 2). The main idea of this methodology is
to determine an upper threshold α and a lower threshold β. Once these thresholds are
computed, the ratio of pixels within each cluster that falls within the limits of α and β

is calculated.
First, the data set A is divided into two sets: 70% of the studies for training (A1)

and 30% for test (A2). The training set, A1, contains Bi thorax CT images, while the
test set, A2, consists of Ci thorax CT images. Additionally, the Di mask is required as
a counterpart for Ci and Bi; every image matrix of M × N dimension. The Di mask
contains labeled pixels indicatingwhether they belong to lung and non-lung regions,with
lung pixels assigned an intensity value of 1 and non-lung pixels assigned an intensity
value of 0. This resulting mask serves as gold-standard for each Bi and Ci images.

The training process involves the following steps: for each Bi image in A1, the Di
mask is applied to compute the element-wise product (×) between Bi andDi resulting in
the extraction of lung intensities. This procedure is repeated for all A1 images. Using the
lung intensities from all A1 images, the global mean x and global standard deviation σ

are calculated. These values are then used to determine the threshold using the following
equations:

α = x + σ, (1)

β = x − σ. (2)

During the experiment, all Ci images from A2 are collected and concatenated into
a matrix C′ with dimensions M × Ni. Subsequently, the K-means image segmentation
process, as described in Sect. 2.1, is applied to C′.

To determine the number of clusters, various experimentswere conductedwith values
of k ranging from 2 to 10. Optimal results were achieved with 4 clusters. Through the K-
means segmentationprocess everypixel in thematrixC′ is assigned a label corresponding
to one of the K clusters. To determine whether a cluster represents the lungs, a ratio is
calculated based on the pixels within the threshold defined by α and β. This ratio is
computed using the following equation:

γ = p

P
(3)
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Fig. 2. Schematic of the proposed methodology. δ and ε are values greater than 0.001.
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where p is the number of pixelswithin the threshold for a given cluster, whileP represents
the total number of pixels in that cluster. By calculating γ , clusters with values greater
than 0.001 are selected. Subsequently, all pixels belonging to the selected clusters are
assigned a value of 1, while the remaining pixels are assigned 0. This generates theM ×
Ni matrix binary mask C′, that needs to be divided into i separate matrices. As a result,
we obtain Zi matrices with M × N dimensions.

2.3 Post-processing Mask Strategy

The resulting Zi is obtained for each Ci and undergoes post-processing, which involves
applying morphological transformation and image-processing techniques. This process
aims to refine the mask and ensure that it covers most lung pixels. Further details of this
post-processing procedure are shown in Fig. 3.

Fig. 3. Schematic post-processing including the gold-standard comparison.

The initial step involves applying a median filter as suggested by Tukey [13], with
the defined kernel size of three pixels. This process eliminates scattered pixels in the
image and smooth out the relevant ones. Next, a morphological closing operation, ini-
tially proposed by Matheron and Serra [14] is performed. The image undergoes dilation
followed by an erosion to enhance the solidity of the mask. A circular structural element
with a radius of eight pixels is utilized for this operation.

The presence of air outside the body and within the lungs leads to similar intensity
values, making it necessary to remove it from the mask. To accomplish this, a morpho-
logical transformation is applied, taking advantage of the proximity of air pixels along
the image edge. By intersecting the input image with its edge, a marker image is created,
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containing seeds for each connected pixel or particle at the edge. Through reconstruc-
tion, an image consisting of these particles is obtained and subsequently erased [15].
To fill any remaining unconnected holes, an erosion-based reconstruction is performed
using the mask and a marker image with consistent lung values [15].

Depending on the disease, cavities can appear at the edge of the region of interest
(ROI). To address this, the circular shape of the cavities can be leveraged using an
algorithm described by Liu et al. [9]. The algorithm utilizes the Hough transform to
detect circles to be filled. Selection criteria were defined as follows: circles with less
than 1/2 of lung pixels, and circles with more than 2/3 of lung pixels on their perimeter.
This process results in the post-processing matrix Z

∧

i withM × N dimensions.

2.4 Evaluation Metrics

To assess the performance of the proposed methodology, the post-processed matrix Z
∧

i

was compared to the corresponding gold-standard mask Di using DSC [16] and JSI [17].
These metrics provide a similarity value ranging from 0 to 1, where 0 indicates no spatial
overlap and 1 represents complete spatial agreement.

Following extensive comparisons using DSC and JSI metrics, the global mean and
standard deviation for each metric were calculated and then compared to previous works
in the SOA.

We use DSC and JSI metrics in this study based on their common usage in segmenta-
tion methodologies and their ability to evaluate performance. However, it is important to
note that JSI offers advantages over DSC. Unlike DSC, JSI satisfies all the properties of
a metric, including the crucial triangular inequality property [18]. The relaxed triangular
inequality in DSC can affect efficiency and approximation ratios, rendering it not fully
considered as a metric [19].

2.5 Computational Tools

This methodology and experimentation were developed using Python 3.9.16. Pydicom
2.3.1 for reading DICOMfiles and their metadata. OpenCV 4.7 for imagemorphological
transformations, NumPy 1.21.5 and Pandas 1.5.3 for matrix analysis, operations, data
transformation, and structures, and Matplotlib 3.6.3 for image and results displaying.
All this work was carried out using the hardware CPU AMDRyzen 7 5800 H 3.20 GHz,
GPU Nvidia GeForce RTX 3060 6 GB VRAM and 16 GB RAM.

3 Results and Discussion

The evaluation of the proposed methodology use the Multimedia Database of Interstitial
Lung Diseases created by Depeursinge et al., and its use for research purposes permitted
by the ethics committee of the University Hospitals of Geneva [20]. This database com-
prises 3076 CT images in DICOM format, obtained from 113 patients diagnosed with
various lung diseases within ILDs. Each image has dimensions of 512× 512 pixels and
is of uint16 value type.
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Additionally, a gold-standard lungmask,manually annotated by amedical specialist,
is available for each image in the database. For the quantitative assessment, the metrics
DSC and JSI were employed. Figure 4 presents box plots illustrating the outcomes
obtained by applying the proposed methodology to all 3076 images split randomly into
a training set (70% - 2,153 images) and test set (30% - 923 images). Furthermore, the
results reported by Gupta et al. [1] and Liu et al. [9] are also depicted in Fig. 4.

Fig. 4. Performance of the proposed methodology showed in JSI and DCS.

The performance of the proposed automatic cluster selection using K-means can be
observed. The box plot reveals a low dispersion of 0.0660 and 0.0520 for JSI and DSC
respectively. Notably, Quartile 1 for JSI is 0.887 and for DSC is 0.9351, while Quartile 3
for JSI is 0.9403, and for DSC is 0.9723. These results indicate that approximately half
of the automatic segmentation indexes fall within these ranges, suggesting stability in the
proposal. However, there are three outliers for JSI and two outliers for DSC, implying
that certain images pose challenges for segmentation using this approach. Hence, it is
expected to achieve performances close to themedian values of 0.9092 for JSI and 0.9539
for DSC. In the comparison with the SOA, Fig. 4 demonstrates that the segmentation
results obtained by this proposal are comparable to Gupta et al. [1], and in certain cases,
they even surpass the results reported by both authors.

Additionally, Table 1 presents the results obtained using the samemetrics and dataset,
with K-means as the clustering method. First, Gupta’s approach [1] incorporated fuzzy
C-means and wavelets into their methodology, while Liu et al.‘s approach [9] incorpo-
rated the Hough transform. Both authors noted that manual intervention is required for
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selecting lung or not-lung clusters. Gupta et al. also reported the need for manual selec-
tion of clusters during image decomposition and reconstruction using wavelets, which
further increases the level of user intervention required for creating the mask.

Table 1, demonstrates that with the proposed automatic cluster selection approach, it
is possible to achieve performances above 0.90 for both JSI and DSC metrics, with
a standard deviation of 0.066 or lower. In contrast, Gupta et al. [1] and Liu et al.
[9] did not provide information on error rate results or standard deviation resulting
from manual interaction. Consequently, the potential impact of this manual selection on
reproducibility within their methodologies cannot be determined.

Table 1. Comparison of the proposal with the SOA.

Methodology JSI DSC

Mean Standard Deviation Mean Standard
Deviation

Gupta et al. [1] 0.9787 - 0.9872 -

Liu et al. [6] 0.9512 - 0.9786 -

Proposed
methodology

0.9056 0.0660 0.9475 0.0520

Furthermore, results above 0.90 in DSC and JSI (see Table 1) were accomplished,
which are near to the values reported by each author, but without the manual intervention
of experts that spend important time and effort.

4 Conclusions

This work introduces a methodology that enables automatic cluster segmentation elim-
inating the need for manual selection of clusters by experts. This approach facilitates
fully automated LS, which can be valuable for various applications such as disease clas-
sification and delineating ROIs within the lungs for radiological analysis allowing to
decrease specialist’s work and time spent in the analysis of large image volumes.

In futurework, thismethodologywill be enhanced by incorporating additional image
characteristics such as textures and pixel relationships. It is also crucial to evaluate the
performance of the proposed methodology on different datasets to assess its robustness.
By testing the methodology in diverse scenarios, its applicability and generalization
capabilities can be examined.
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