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Abstract. Hyperspectral imaging (HSI) is a versatile modality that can provide
a noninvasive tool for cancer detection, image-guided surgery, tissue classifica-
tion, among other applications. In this work, we demonstrate the integration of
hyperspectral imaging, spectral unmixing, and machine learning models to accu-
rately classify tumor and non-tumor tissue from histopathology samples. The
studied database contains 494 images from 13 different patients diagnosed with
glioblastoma. Our approach is based on identifying characteristic spectral signa-
tures for each hyperspectral image by spectral unmixing, and using them as an
input feature vector for machine learning models: support vector machine, random
forest, and a voting ensemble. The resulting average accuracy in our evaluation of
four folds was 89.4% that improves the reference value of 85.5%, which was the
best performance in the state-of-the-art. In this way, our proposed methodology
shows promising results to assist in pathological analysis and provide support to
healthcare professionals.
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1 Introduction

In histopathology, digital imaging is a powerful tool for achieving a systematic evalu-
ation of the studied samples [2]. Nonetheless, different factors affect the evaluations,
such as sample preparation and pathologist expertise. In this sense, machine learning
has recently been suggested in medical applications to avoid bias in diagnosis [4], and
in particular for digital histopathology samples [5]. Unlike traditional images, which
only work with three color channels (Red, Green, and Blue - RGB), hyperspectral (HS)
images provide much more detailed spectral information about the object and its com-
position. Hyperspectral imaging (HSI) is an emerging imaging modality that provides a
noninvasive tool in medical applications: cancer detection, image-guided surgery, tissue
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classifica tions, etc. HSIis a hybrid modality that combines imaging and spectroscopy, by
collecting spectral information at each pixel of a two-dimensional detector array, gener-
ates a three-dimensional dataset of spatial and spectral information, known as hypercube.
In this way, each pixel in the HS image has a unique spec tral signature, which refers
to the pattern or distribution of light intensity across different wavelengths. Through
analyzing these spectral signatures, these images allow the detection and identification
of various pathological conditions [1]. HSI can be incorporated to improve diagnosis, as
the intensity of the light transmitted through the sample could be analyzed beyond the
visible spectrum. Some examples of this trend include the application of deep learning
for the diagnosis of breast cancer cells [6], the use of machine learning for the auto-
matic recognition of colon and esophagogastric cancer [7], and the implementation of
an ensemble of deep neural networks to identify cancer samples in brain tissue [13].

In this work, we focus on utilizing spectral unmixing and machine learning models
(support vector machine with polynomial and radial basis function ker nels, random
forest, and a voting ensemble) to classify HS images of histopathology samples of
brain tissue. A supervised classification approach was employed, where a pathologist
previously labeled the samples in the HSI database as non-tumor and tumor. The database
was organized into four folds to address the variance in the dataset during the learning
stage due to the imbalance in the classes. The input feature vectors for the machine
learning models were obtained by the concatenation of the estimated endmembers from
the spectral unmixing stage. The results obtained were compared with those produced
in [13], where the same database was considered, along with an ensemble of deep neural
networks for classification. Our results show an improvement in the average accuracy
with respect to the state-of-the-art method (89.4% vs. 85.5%).

2 Materials and Methods

The proposed methodology in this work consists of six steps: (i) HSI database, (ii) pre-
processing, (iii) spectral unmixing, (iv) features extraction, (v) training and testing, and
(vi) results, as illustrated in Fig. 1. In this section, we describe each step highlighting
their collective contribution to the overall research objective.

2.1 HSI Database

This research work used a database consisting of human biopsies obtained during brain
tumor resection procedures. The study protocol and consent procedures were approved
by the “Comité Etico de Investigacién Clinica - Comité de Etica en la Investigacién”
(CEIC/CEI) of “Hospital Universitario de Gran Canaria Doctor Negrin” [8]. The HS
camera was configured with a magnification.

20x and captured images with a size 1004 x 800 pixels. Further details about the
dataset can be found in [8]. After the resection, the samples were diagnosed as glioblas-
toma (GB) based on the World Health Organization (WHO) classification of nervous
system tumors by a pathologist. Regions of interest (ROI) were selected for subsequent
analysis, using the mentioned instrumentation [8], resulting on 494 HS images from 13
different patients (P1, P2, ...,P13) with GB. An example of tumor and non-tumor tissue
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samples from the database are illustrated in Fig. 1.(i). In fact, not all patients presented
simultaneously tumor and non-tumor tissue samples. In Fig. 2, the distribution of tumor
and non-tumor HS images is presented. In this way, patients P9 to P13 only contain
tumor tissue samples.
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Fig. 1. Diagram of the proposed methodology to classify hyperspectral histopathology images.

2.2 Pre-processing Stage

A pre-processing of the database was performed to adjust the spectral responses of the
HS images, and reduce noise and redundant information. The HS images covered a
spectral range of 400 to 1000 nm with a resolution of 2.8 nm. Thus, the original HS
images had a spatial size of 1004 x 800 pixels with 826 spectral channels. In [8], a
reduction of the spectral bands was proposed to remove redundant information by their
high correlation, which led to a decrease from 826 to 275 channels.

As mentioned earlier, not all patients in the database presented both types of classes
(non-tumor and tumor), nor they have the same number of HS images for each class (as
explained in detail in [8]). This imbalance in class representation, along with the limited
number of patients (just 13 different), presented a challenge for the classification scheme.
To address these issues and mitigate the potential bias and overfitting during the learning
stage, the database was organized into four distinct folds (A, B, C, and D) for cross-
validation, with subsets for training, validation, and test. Folds, A, B, and C included
nine patients for training, one for validation, and three for testing. Meanwhile, Fold
D contained eight patients for training, one for validation, and four for testing. These
folds are illustrated in Fig. 3, with different colors (red, green, and blue) indicating
each subset. All the folds were randomized to ensure that each sample was presented
once in the testing subset, and that patients with both types of labeled data (non-tumor
and tumor) were selected for the validation subset. With this four folds approach, the
database is presented in four different ways to the ML algorithms for cross-validation.
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This perspective follows previous works in [8] and [9], which served as guides for this
study.
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Fig. 2. Distributions of tumor and non-tumor HS images acquired from 13 patients (P1,
P2,...,P13).

2.3 Spectral Unmixing

In the field of HS imaging, spectral unmixing (SU) plays a crucial role in analyzing
and extracting information about the fundamental materials present in a scene or image.
By identifying specific spectral signatures known as endmem bers, which represent
the fundamental materials, the unmixing technique uses them as reference points. This
process enables the computation of concentrations or abundances of each component
at pixel level. The resulting abundance maps, like the ones depicted in Fig. 1. (iii),
provide valuable insights into the spatial distribution of materials within the image. This
technique is a valuable tool to understand the composition and characteristics of the
scene or image captured through HSI [10]. Hence, the identification of the fundamental
signatures in the HS image by spectral unmixing allows the implementation of machine
learning models to perform classification tasks. In addition, the computational cost of
the classification task can be reduced through the application of spectral unmixing.

In this study, the SU stage was carried out by using the EBEAE algorithm [10]. Other
unmixing algorithms such as sparse non-negative matrix factorization, non-smooth non-
negative matrix factorization, or their variants could also be applied [11], but EBEAE
was chosen due to its robustness to different types and levels of noise and its low com-
plexity. EBEAE has the ability to estimate the abundances of individual endmembers by
minimizing the approximation error and maximizing their entropy. In addition, EBEAE
normalizes the cost function to mitigate the dependence on the size of the database. The
EBEAE hyperparameters were determined according to the recommendations provided
in [10], and they were set to, p = 1 (similarity weight), u = 0 (entropy weight), error
threshold € = 1 107°, and a maximum number of 10 iterations (maxiter). The linear
unmixing process assumed four characteristic components, that is, N = 4, as in [13].
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Fig. 3. Database folds for the 13 patients (P1, P2,...,P13) with subsets for training, validation,
and testing.

2.4 Features Extraction

In the histopathology samples, there are areas without brain tissue where the microscope
light can transmit directly. These areas without tissue do not contain information and
need to be eliminated to avoid bias in the classification process. To address this issue, the
first step is to identify the endmember with a flat spectral signature that corresponds to no-
tissue regions, where the microscope light is transmitted directly. Next, this endmember
must be eliminated since it does not provide characteristic information of the sample.
This phenomenon can be easily identified due to the sum-to-one restriction applied by
EBEAE [10], which results in a spectral signature with uniform information across most
spectral bands. In Fig. 4.(i), the green-colored endmember, denoted as endmember 3,
corresponds to the microscope light (roughly flat spectral signature). Another challenge
is that in EBEAE, the order of the resulting endmembers could vary for each HS image.
Therefore, a mathematical method needs to be devised to identify this flat endmember.
For this goal, the Euclidean distance between each resulting endmember and a flat
spectral signature is computed by recalling that there are 275 spectral bands:

Vie{l,2,3,4} (1)

E; = ‘Pi
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275
where p; represents the i-th estimated endmembers by EBEAE, 1 is a vector with just
unitary entries, and ||.|| denotes the Euclidean norm. Consequently, for each HS image,

we eliminate the endmember with the smallest value E;.

Next, the remaining three endmembers were organized in a specific order to define
an overall feature vector for each HS image. To achieve this, we selected a HS image
as a reference in the database and utilized the order of endmembers in this image as a
guide to arrange the remaining ones. In this stage, we used again the Euclidean distance
as a similarity index among endmembers. At the end of this stage, the arranged and
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concatenated endmembers (as visualized in Fig. 4.(ii)) were used as a single feature
vector per HS image. As a final step, the feature vectors were randomly mixed in each
set of the different folds to ensure that the processes were not biased towards any specific
order.
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Fig. 4. Features extraction step: (i) Example of the estimated endmembers; and (ii) features
vectors by concatenating the endmembers with the same order.

2.5 Training and Testing

In this study, a supervised approach is employed for the classification task, since each
HS in the database is already labeled as tumor or non-tumor (binary problem) by the
pathologist [8]. Machine learning models have varying strengths and weaknesses, and
their suitability depends on factors, such as the source of the data, the complexity of the
problem, and the specific requirements of the task [12]. For instance, certain classifiers
may excel in handling linearly separable data, while others may be more effective for non-
linear relationships or high-dimensional data. Now, by looking at the endmembers and
input feature vectors in Fig. 4, there is some similarity in the input data for classification
and the vectors are high-dimensional, so a complex nonlinear problem could be expected.
As a result, we focus on two well-known strategies to deal with this complex scenario:
Support Vector Machine (SVM) and Random Forest (RF). In the following, we present
a short description of these classification models:

— SVM is a powerful, versatile, and popular machine learning model. SVMs are par-
ticularly well suited for the classification of complex small or mediumsized datasets
[12]. For nonlinear classification problems, the selection of the kernel can help to
adjust the decision boundaries, for example, polynomial and radial basis functions.
Each of these kernels has hyperparameters that can be adjusted to fit the training
dataset.

— RFis an ensemble of decision trees, generally trained with the bagging method and
based on the wisdom of the crowds paradigm [12]. Therefore, the RF classifier is also
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Fig. 5. Structure of the voting ensemble.

a popular machine learning model that can capture complex relationships between
features and targets.

Three classification models were initially considered: SVM with a polynomial kernel
(SVM-Polynomial), SVM with a Gaussian radial basis function kernel (SVM-Gaussian),
and RF. Furthermore, to utilize the specific properties of each classifier and enhance the
decision’s robustness, an ensemble of them was also explored, resulting in the consid-
eration of a voting methodology. In this methodology, the prediction is based on the
class that receives most votes [12]. Typically, the voting ensemble outperforms the best
classifier within the ensemble in terms of accuracy. The structure of the voting ensemble
is depicted in Fig. 5. To have the best hyperparameters, we used a Bayesian Optimizer
in this tuning process, and the final values are listed in Table 1. Two principal hyper-
parameters are associated with SVM-Polynomial: the degree of the polynomial kernel
function (PolynomialDegree), and the regularization weight C. The degree of the ker-
nel establishes a compromise between model complexity and computational time, and
the regularization weight C shows an inverse relationship with the margin size of the
decision regions and must be strictly positive. In the case of SVM- Gaussian, there are
two hyperparameters: scaling coefficient of the radial basis function (Gamma), and once
more, the regularization weight C. In this case, Gamma is related to the influence radius
of the support vectors. Finally, for RF, there are three hyperparameters: the number of
estimators (Estimators), the minimum samples split (MinSamplesSplit), and maximum
depth (MaxDepth). The number of estimators corresponds to the number of decision
trees in the forest, while MinSamplesSplit denotes the minimum number of samples
required to split an internal node. Lastly, MaxDepth indicates the maximum depth of
each decision tree [12].
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3 Results

In this section, we discuss the results obtained from the supervised classification process
of the HS images in the database. Every fold proposed in Sect. 2.2 was trained with
different hyperparameters to get the best results in each one. The pre-processing stages
were carried out in MATLAB. Meanwhile, the machine learning classification was per-
formed and evaluated in Python using Scikit-learn [14] to take advantage of the libraries
and tools for this goal.

Table 1. Optimized hyperparameters of the machine learning models.

Classifier Partitions

Parameter Fold A Fold B Fold C Fold D
SVM-Polynomial PolynomialDegree 3 2 3 3

C 1 0.126 120 0.21
SVM-Gaussian Gamma 110 101 800 500

C 8000 9 8 5
Random Forest Estimators 100 140 88 100

MinSamplesSplit 0.015 2 0.001 1

MaxDepth 10 18 3 20

Table 2. Accuracy scores of the machine learning models in the test subset.

Classifier Folds Average Accuracy
A B C D

SVM-Polynomial 95.22 79.27 94.53 95.22 91.06
SVM-Gaussian 93.85 79.67 94.46 92.83 90.20

Random Forest 90.00 77.25 88.92 85.66 85.46

Voting Ensemble 96.51 79.67 94.31 93.09 90.89

Average 93.89 78.96 93.05 91.70 89.40

Reference in [13] 96 79 77 90 85.5

Table 2 presents the accuracy score (%) obtained in each fold with every classifier in
the test subset. Hence, Fold A reached the best performance with the Voting Ensemble at
96.51%, and the average of all machine learning models was 89.40%. However, the best
machine learning model by averaging four folds was SVM-Polynomial, followed by the
Voting Ensemble. Meanwhile, Fold B had the worst performance out of the four folds.
To validate the results, we compared our work with [13], which used the same database
and applied a similar partition methodology, but the classification model is based on
an ensemble of deep neural networks. In the following, the metrics to evaluate the
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performance of the machine learning models in the test subset were: accuracy, precision,
F1-score, sensitivity, and specificity.
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Fig. 6. Performance metrics for Fold A with the proposed machine learning mod els compared
to [13] in the test subset.

In Fig. 6, Fold A shows good results and high similarity with the reference scores
in [13]. Among the proposed classifiers, RF exhibited the poorest performance in all
metrics. The reference in [13] showed a clear improvement in precision and specificity,
but in accuracy, all the proposed machine learning models were close to each other.
Meanwhile, in Fl-score, SVM-Gaussian achieved top-performance, and in sensitivity,
all the proposed models improved the reference. Hence, the resulting high sensitivity
indicates the ability to accurately identify true positives.
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As mentioned earlier, the lowest performance among the four partitions was observed
in Fold B, where the results are illustrated in Fig. 7. All four machine learning models
and the reference in [13] achieved roughly the same performance in accuracy, precision,
and F1-score. But the proposed models improved sensitivity, and the reference in [13]
reached the best specificity. In overall, the sensitivity rates were relatively higher than
accuracy, precision, F1-score, and specificity suggesting that the proposed models were
more successful in identifying true positives. This observation could be attributed to the
limited number of samples and the imbalanced nature of the database.

Finally, Folds C and D demonstrated the superior performance of our machine learn-
ing models compared to the reference in [13]. Figure 8 shows the results for Fold C,
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where all four proposed machine learning models outperformed the reference. For Fold
D, the performance metrics are illustrated in Fig. 9, where SVM-Polynomial achieved
the highest metrics among all, and improved both the reference and other classifiers in
every metric. It can be inferred that the more robust results observed in Fold D might be
attributed to the difference in the number of samples of each class in every fold, which
can be visualized in Figs. 2 and 3.

4 Conclusions

In this work, the effectiveness of machine learning models in conjunction with SU
techniques has been demonstrated for the classification of HS histopathological images
for tumor tissue diagnosis. The performance metrics obtained from our proposals have
surpassed in most cases the reference performance in [13]. In our study, we obtained
an average accuracy of 89.40%, which improves the previous result of 85.5% in [13].
Moreover, the proposed machine learning models are based on shallow classifiers (SVM
and RF) compared to the scheme in [13]. On average, the best machine learning mod-
els were SVM-Polynomial and the Voting Ensemble (see Table 2). These results open
up exciting possibilities for clinical applications, where our methodology could be uti-
lized to assist in pathological analysis and support healthcare professionals to improve
decision-making processes and patient diagnosis.

Nevertheless, a limitation of this proposal is that specific hyperparameters and inde-
pendent training stages were required for each fold. As future work, we will explore
common hyperparameters in the four folds that could maintain or exceed our perfor-
mance metrics. Besides that we will investigate other pathologies that can be analyzed
using HSI and this classification methodology.
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