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Ratko Magjarević, Faculty of Electrical Engineering and Computing, ZESOI,
University of Zagreb, Zagreb, Croatia

Associate Editors
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Preface

The XLVI Mexican Conference on Biomedical Engineering (CNIB 2023), organized
by the Mexican Society of Biomedical Engineering (SOMIB), took place at Villaher-
mosa Tabasco, Mexico, on November 2–4. The CNIB 2023 aims to close the gap among
academia, industry, and clinics by sharing the latest advances in biomedical engineering
and related fields. The conference joins researchers, academics, students, health pro-
fessionals, and industry partners in an enriching environment to discuss and foster the
advancements in biomedical engineering.

This book condenses the advances related to signal and image processing. Within
this book, it is possible to find the novelties regarding health monitoring using the
various modalities of bioinstrumentation. Several artificial intelligence applications are
presented throughout this book, impacting all biomedical engineering branches. The
topics covered by this book are related to, but not limited to, artificial intelligence, signal
and image processing, biosensors, biomaterials, data science, biosensors, and computer
modeling.

In this book, the scientific committee presents high-quality papers resulting from a
peer review.More than 120 referees performed the screening process under the guidance
of the scientific committee. As a result of the strict review process, 42 papers conform
to this volume set, representing 60% of the total number of submissions.

All plenary and scientific presenters and distinguished guests from academia, gov-
ernment, health care, industry, and society made this conference the leading event in
the field in the country. We want to express our gratitude to the scientific committee
and the organizing committee for their essential labor, diligence, and optimism leading
up to the conference. We would also like to express our gratitude to the session chair-
persons, authors, and reviewers for their involvement and essential contributions to the
biomedical engineering field.

We hope to inspire new generations to continue growing and developing this
discipline. We thank you on behalf of all those involved in organizing this CNIB 2023.

Balam Benítez-Mata
Co-chair Program CNIB 2023

José de Jesús Agustín Flores Cuautle
Chair Program CNIB 2023



President of the Mexican Society of Biomedical
Engineering Message

Dear readers and collaborators in the field of biomedical engineering,

It is an honor to address you on the occasion of the XLVI Mexican Conference on
Biomedical Engineering, an event that symbolizes our collective commitment to the
advancement of biomedical engineering. At a time when technology and innovation
play an essential role in the development of our country, this congress represents an
invaluable opportunity to bring together the brightest and most dedicated minds in this
field.

Biomedical engineering plays a fundamental role in merging technology with the
health sector. This congress is a showcase for the latest research and developments in this
area. The scientific papers that are presented here reflect the hard work and dedication
of experts who seek to innovate and contribute to improving health through engineering;
by coming together at this event, we create a space to share ideas and establish fruitful
collaborations that further advance our field.

This congress is not only a platform for the dissemination of results, but also a space
for personal and professional growth. I hope that you find inspiration in the work and
that you take the opportunity to establish collaborations that allow you to develop new
research.

I appreciate your participation andhope you enjoy andbenefit from this event asmuch
as we did organizing it. Together, we are shaping the future of biomedical engineering
in Mexico.

Sincerely,

Francisco Javier Aceves Aldrete
President of the Mexican Society of
Biomedical Engineering 2022–2023,
Organizing Committee of the XLVI
Mexican Conference on Biomedical

Engineering
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Abstract. ADHD, or attention deficit hyperactivity disorder, is a persistent pat-
tern of inattention that affects both young people and adults, causing interference
with their functioning and overall development. The objective of this study is to
develop an efficient diagnostic tool based on machine learning algorithms. The
proposed tool utilizes eye-tracking technology to collect data on patients’ eye
movements while engaging in a concentration game. The eye movement patterns
are carefully analyzed and categorized into two groups: patients with ADHD and
those without. Initially, a manual classification was performed, followed by the
training of algorithms, resulting in F1 scores of 100%, 95.55%, and 60.86% for
KNN, ANN, and SVM, respectively. The main goal of this project is to provide a
comparation comparison between four machine learning techniques and get base
for a diagnostic tool that surpasses the accuracy of current diagnostic methods. By
achieving this, it aims to enhance the precision and efficiency of ADHD diagnosis,
ultimately improving the quality of care and support provided to individuals with
this condition.

Keywords: ADHD · Machine Learning · Eye Tracking · Diagnosis

1 Introduction

Attention Deficit Hyperactivity Disorder (ADHD) is characterized by persistent pat-
terns of inattention and/or hyperactivity that interfere with functioning or development.
In ADHD, the inattention aspect of the disorder manifests as distractibility, lack of
persistence, difficulty concentrating, and confusion. Hyperactivity involves excessive
movement in inappropriate situations or engaging in excessive fidgeting, tapping, or
excessive talking. Symptoms of this disorder can range from mild to absent [1].

Individuals with ADHD often exhibit a pattern of hyperactivity or inattention that
hinders proper development. Common characteristics of patients with ADHD include
frequently not following instructions, inability to complete tasks, being easily bothered
or entering a state of denial when faced with mentally demanding tasks that require
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prolonged effort. Currently, the diagnosis of this disorder is conducted through various
medical examinations, such as auditory and visual tests, to rule out other disorders with
similar symptoms to ADHD. A crucial stage in the process is completing a checklist to
assess ADHD symptoms. It is important to highlight that diagnosis and treatment should
be carried out by an interdisciplinary team available in specialized neurology clinics,
consisting of different experts in this pathology [1].

Machine learning is a branch of technology to learn various tasks using data analysis
and prediction algorithms. This tool in the field of medicine has a wide range of appli-
cations that can contribute to diagnosis. The application of this technology is highly
beneficial for data mining in medical research and acquiring knowledge to improve
health outcomes [2, 3].

Currently, there are already several investigations on different methods for detecting
ADHD, such as electroencephalographic signals (EEG), attention and continuous per-
formance test (CPT), as well as patient behavioral activity (BA). These studies employ
different metrics than those obtained in this research [4 − 6].

Previously works using eye tracking for detect some disorders, this technique can
be using for diagnosis and detection of spectrum autism, neurological disorders or
affect for medications. Thus, is because the eye movements are a principal indicator
of concentration, distraction and neurological impulses [13, 14].

The objective of this research is to develop a comparation of four popular algorithm
of machine learning for detect ADHD that can accurately identify individuals with this
disorder. This algorithm relies on a variety of characteristics associated with ADHD,
such as inattention and hyperactivity. By analyzing different variables and features of
the obtained samples, the algorithm can be a valuable tool in establishing a reliable diag-
nosis. It is important to emphasize that this diagnosis cannot replace existing evaluations
conducted by a trained mental health professional. However, our intention is for it to
serve as a supportive tool, providing additional information for clinical diagnosis.

2 Methodology

2.1 Signal Acquisition

For this work, we developed a graphical user interface (GUI) using the Python language.
This GUI displayed a central point, and random images appeared around this point at
a frequency of 2 Hz. Eye movement signals were acquired using a camera. To do this,
participants were required to hold their heads in a static position and look directly at the
central point. See Fig. 1.

This investigation was conducted with the participation of sixteen clinically diag-
nosed ADHD students and sixteen students without indications of this mental disorder,
who were asked for their consent and were shown that their data would be anonymous
in the research. All participants were between the ages of 18 and 27 and are students of
biomedical engineering at the Autonomous University of Chihuahua.

The experiment acquired data for 15 s at a frequency of 12.4 Hz. This work used
80 signals (SADHD) for the class of ADHD and 80 signals (SNOADHD) for the class of
No ADHD. This was for the application of 10 experiments per participant [13]. The
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Fig. 1. GUI and a participant for sample collection.

data was divided into two groups: train and test. The train group contained 70% of the
signals (tr), while the test group contained the remaining 30% (ts). In order to perform
the algorithms, we use windows 10 with 16 GB RAM memory and using MATLAB
2020b.

2.2 Data Preprocessing

Each signal SD; D = {tr, ts} has two signals corresponding to the movement of the iris
in the axis x and the movement on axis y denoted by pl = {xl,yl}; l = {1,2,3,…L}. Using
mapminmax algorithm Eq. (1) where c correspond at class c = {ADHD, NOADHD}, r
represents the number of experiment r = {1,2,3…R} and i is the sample i = {1,2,3,…
I} on the signal.

NormD,pl
c,r,i = mapminmax

(
SD,pl

c,r,i

)
(1)

This process was necessary for the variation on the position of the camera during
data acquisition.

2.3 Feature Extraction

The feature extraction was necessary for develop the description of each signal. The
features selected show a variation with eye movement, for this we used the feature of
entropy whit the Eq. (2).

H D,pl
c,r = Entropy(NormD,pl

c,r,i) (2)

Other feature was the energy calculated with the Eq. (3)

ED,pl
c,r = Energy(NormD,pl

c,r,i) (3)
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The finish feature was the standard deviation, for this we used the Eqs. (4), where

NormD,pl
c,r represent the average of the signal NormD,pl

c,r and I represents the number of
samples in this signal.

σ
D,pl
c,r =

√√√√∑I
i=1(NormD,pl

c,r,i − NormD,pl
c,r )

I
(4)

Each feature was put into a vector how show in the Eq. (5)

V D
c,r = [H D,x

c,r , H D,y
c,r , σD,x

c,r , σ
D,y
c,r , ED,x

c,r , ED,y
c,r ] (5)

2.4 Support Vector Machine

The algorithm of support vector machine (SVM) using a linear kernel for classification
data [7, 8]. In this case, we used a SVM trained into MATLABwith fitcsvm function and
Vtr vectors. The results are shown in the Eq. (6). Where Vts represents the vector for
predicting and the subindices are the position agree Eq. (5) and W represent the value
of each component calculated from the SVM model.

Rsvm = W1 ∗ V ts
1 + W2 ∗ V ts

2 + W3 ∗ V ts
3 + W4 ∗ V ts

4 + W5 ∗ V ts
5 + W6 ∗ V ts

6 + Wb (6)

2.5 Artificial Neural Network

An artificial neural network, or simply a neural network, is a mathematical model based
on biological brain networks [9, 10]. The ANN designed contains 6 inputs, 1 hidden
layer with 5 neurons and 2 outputs (see Fig. 2). The network’s training schedule was
carried out using 15 epochs, a validation check of 6, a learning factor of 1× 10−7 and a
minimum error 1× 10−29, using the Levenberg-Marquardt backpropagation technique.
These numbers were acquired experimentally using vectors of trained group.

2.6 K-Nearest Neighbors

The KNN algorithm, known as K-nearest neighbors, is a machine learning technique
used for classification and regression. Its approach is based on identifying the nearest
distances between a new sample and a set of training samples, allowing it to make
predictions [11].

For this algorithm, is necessary to obtain the training data, which consists of a
series of instances with their own features and a class label. This training vector allows
training the classification model with the nearest neighbors using the fitcknn function
in MATLAB, this makes a model calculates the Euclidean distance between the sample
data point and the training data. This allows finding theK nearest neighbors to the sample
point, where K is a predefined parameter representing the number of closest neighbors
to consider for prediction. In this case, the selected value for K was 7.
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Fig. 2. ANN design with 6 inputs, one hidden layer of 5 neurons with sigmoidal tangential
activation function and two outputs.

Finally, the classes to which these K nearest neighbors belong are tallied: ADHD
(KADHD) and non-ADHD (KNOADHD), and the number of identified classes is compared.
See Eq. (6)

Class =
{

ADHD if KADHD >= KNOADHD

NOADHD if otherwise
(7)

2.7 Naïve Bayes

The Naive Bayes (NB) classifier is a generative learning method that assumes each
feature, where the features are independent and do not interact with each other. It is a
computationally efficient tool that can handle large datasets with multiple dimensions
[12].

The probability of a specific class was calculated using Eq. (7). This equation refers
to the random probability of a vector belonging to a patient with ADHD or a patient
without ADHD, respectively. The number of vectors for training that agree at class c is
denoted by N. Since this number is equal for both classes, the probability is 50%.

Pc = NV tr
c

NV tr
ADHD

+ NV tr
NOADHD

(8)

Afterward, statistical values of themean ((X c,j)) and variance (σ 2
c,j) were determined

with the help of Eqs. (8) and (9), where j represents each characteristic, c corresponds
to each of the classes, c = {ADHD, NOADHD}, r represents an experiment and NV tr

c,j,r

corresponds to the total of data for each characteristic j of the class c.

X c,j =
∑( V tr

c,j,r)

NV tr
c,j,r

(9)

σ 2
c,j =

∑( V tr
c,j,r − X c,j)

2

NV tr
c,j,r

− 1
(10)
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Subsequently, using Eq. (10), the probability of a new sample belonging to a class
was calculated as a function of each characteristic.

Prc =
(∏

P(c|j)
)
(Pc) (11)

To obtain the priority (Prc), the product of the probabilities obtained in Eqs. (10)
and Eq. (7) was used with the help of Eq. (11).

Prc =
(

P∏
(c|j)

)
(Pc) (12)

Then, the evidence (Ev) was calculated using Eq. (12), which was used in Eq. (13)
to calculate the posteriori (Psc) and determine the probability of each class.

Ev =
P∑

rc (13)

Psc = Prc

Ev
(14)

Finally, to determine the class to which the sample belongs, the rule presented in
Eq. (14) must be followed.

Class =
{

ADHD if PsADHD > PsNOADHD

NOADHD if Otherwise
(15)

2.8 Metric Evaluation

With the remaining 30% of the data, we evaluated the accuracy of each algorithm to
assess their performance and reliability. To evaluate these metrics, Eqs. (15), (16), (17)
and (18) were used to determine the precision, accuracy, recall and F1 score, as can be
seen in the equations the data of true positives (TP), true negatives (TN), false positives
(FP) and false negatives (FN), which were being obtained with the development of the
algorithm, are used. Precision focuses on the proportion of correct positive results, recall
focuses on the ability to find all positive cases, accuracy focuses on the proportion of
correct predictions overall, and the F1 score combines precision and recall to provide a
balanced measure of model performance.

Accuracy = TP + TN

TP + FN + FP + TN
(16)
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Precision = TP

(TP + FP)
(17)

Recall = TP

TP + FN
(18)

F1 = 2
PrecisionRecall

Precision + Recall
(19)

The development of the eye-tracking algorithm for ADHD diagnosis is a complex
procedure that must be carefully elaborated, as it takes into account multiple factors as
mentioned before, including data selection and preparation. (See Fig. 3).

Fig. 3. Diagram illustrating research methodology

3 Results

The designed algorithms of SVM, ANN, Naïve Bayes, and KNN was evaluated using
Vts data to obtain our results. Where our SVM is show in Fig. 4. This was our lowest per-
forming algorithm, with an accuracy of 46.66%, precision of 43.75%, recall of 87.50%,
and an F1 score of 60.86%.

Next, the results obtained from our artificial neural network can be observed in Fig. 5.
The metric results show an accuracy of 95.83%, precision of 96.66%, recall of 93.33%,
and an F1 score of 95.55%.
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Fig. 4. SVM algorithm confusion matrix

Fig. 5. Confusion matrix of the artificial neural network

For the Bayesian algorithm, the results are presented in a confusion matrix shown
in Fig. 6. The metric results with an accuracy of 93.75%, precision of 93.75%, recall of
87.5%, and an F1 score of 93.33%.

Fig. 6. Confusion matrix of the Naïve Bayes algorithm

Lastly, our best-performing algorithm, KNN, is presented in Fig. 7. This show 100%
accuracy, precision, recall, and F1 score.
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Fig. 7. Confusion matrix of the KNN algorithm

4 Discussion

The development of an eye tracking algorithm for the diagnosis of ADHD is a promising
area of research in the integration of biomedical engineering and psychology. The eye
tracking method can provide objective information about attention patterns and gaze
control in patients with ADHD, which could improve traditional diagnostic methods
based on clinical observations and subjective evaluations. It is important to consider that
an eye tracking algorithm for ADHD diagnosis may present significant challenges.

The main advantage of this type of systems is the reduction of time for detection
ADHD in comparationwithmethod of recompilation of data from family, clinical history
and psychological test. If the tool mentioned on this paper is only a probe, in a future
this can be used how a first intervention in case suspicious for a deep analysis agree the
results and congruence with a specialist. As mentioned earlier, several studies have been
conducted using differentmethods for ADHDdiagnosis. The inclusion of the biomedical
engineer in this field offers several important advantages.

Firstly, the eye tracking method provides a continuous and non-invasive measure of
visual behavior, allowing for the capture of subtle patterns and important features of
eye movement. For example, features such as fixation frequency, duration, movement
speed, and deviation from the fixation point demonstrate significant differences between
patients with ADHD and individuals without indications of the disorder. Furthermore, it
offers advantages in terms of objectivity and standardization, reducing the inherent bias
in clinical assessments and improving diagnostic consistency. By automating the process
of analyzing eye tracking data, variability is reduced, and the reliability of diagnostic
results is increased. Table 1 shows a comparison of metrics obtained from different
previously investigated diagnostic methods, highlighting the significant performance
difference of the mentioned algorithms.

This approach also has the potential to reduce costs and time in the diagnosis of
ADHD. By using eye tracking algorithms and machine learning, a supportive model has
been developed to detect individuals with ADHD. This automation allows for a more
efficient and rapid evaluation, facilitating early detection and timely intervention.

While further development and validation are required, this project offers an inno-
vative and effective way to objectively assess ADHD and improve the quality of life for
affected individuals. The inclusion of biomedical engineering in psychology, through the
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development of tools such as the eye tracking algorithm, enables interdisciplinary col-
laboration that drives significant advancements in the diagnosis and treatment of mental
disorders, thereby enhancing patient care and well-being.

Table 1. Comparison of accuracy represented in percentage for various methods used in the
algorithms.

Algorithm EEG (%)[4] CPT (%)[6] BA (%)[5] ET (Ours) (%)

SVM 96.4 - 71.9 46.66

ANN 96 89 72.1 95.83

KNN 81.2 - 84 100

NB - - 69.8 93.75

The present work is designed to focus on the diagnosis of children, as it is a difficult
field to detect ADHD, but it would be introducing another graphical interface that could
be suitable for preschool infants. Some of the main changes that would be made in the
GUI would be the way in which the images are presented to children, since compared
to adults in children it is easier for them to be distracted whether they are patients with
ADHD or not, so it would be ideal to present another series of images to be able to
evaluate them with eye tracking
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Abstract. A timely and accurate skin cancer diagnosis is a key factor in
reducing mortality rates, especially with melanoma which often resem-
bles in its early stages with moles. Convolutional neural networks (CNNs)
are models commonly used to classify dermoscopy images into benign
or malignant. CNNs are frequently implemented on Graphical Process-
ing Units (GPUs), which are not always available in rural areas. This
paper compares three CNNs to classify benign and malignant melanoma
images. We select the most appropriate neural architecture by compar-
ing accuracy results and model lightness to load it on a mobile device.
With this strategy, the training of the CNN is performed on the GPU
and the inference in portable devices that can be used in rural areas. The
developed app is named SkinSight. This app was evaluated with images
of two different datasets achieving competitive results compared to state-
of-the-art models. Considering that most people have a mobile device,
this app could be used in areas where it is difficult to have specialized
GPUs and highly trained personnel in cancer detection.

Keywords: melanoma detection · convolutional neural network ·
mobile application

1 Introduction

According to the American Cancer Society, melanoma is the most dangerous type
of skin cancer; its early diagnosis is essential for successful treatment and patient
survival [1]. In a study published in the Skin Cancer Foundation [3], late diagnosis
of melanoma is a significant problem in many parts of the world, including Latin
America, where lack of access to health services and awareness about skin cancer
contributes to a late diagnosis. In 2020, according to data from the International
Agency for Research in Cancer of the World Health Organization, through the
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GLOBOCAN project, the incidence of Melanoma in Mexico was 2,051 cases with
773 deaths [4].

The diagnosis of melanomas is mainly made by visually inspecting skin lesions
by highly trained dermatologists. Asymmetry, border, color, diameter, and lesion
enlargement are the standard features that specialists consider. Another com-
mon way to diagnose cancer is by performing a biopsy, a pathological exami-
nation that takes much time and resources to provide the results. The Sierra
Tarahumara is a mountain range part of the Sierra Madre Occidental located in
Chihuahua. This rural and remote area lacks sufficient pathologists and medical
resources to diagnose and treat skin cancer. The lack of information and aware-
ness about this type of cancer in these communities can lead to delayed seeking
care and late diagnosis of the disease. This problem can seriously affect the pop-
ulation’s health and lead to higher mortality and morbidity rates in the region.
A comprehensive approach is needed to address the lack of access to pathology
services, including actions to increase skin cancer awareness, improve local doc-
tors’ training, and provide resources and technology for diagnostic testing and
treatment.

Deep learning techniques, especially convolutional neural networks (CNNs),
have been widely used in different image recognition tasks to automatically clas-
sify specific patterns on images [11]. Particularly for classifying skin cancer,
different CNN models have been proposed achieving very accurate classification
results [7,16,22].

Unfortunately, these systems have not yet been incorporated into daily clin-
ical practice because most CNN models need the usage of Graphical Processing
Units (GPUs), a hardware not very common in most hospitals. As an alternative
to using expensive hardware equipment, TensorFlow (an open-source machine
learning ML framework) has launched a lightweight version named TensorFlow
Lite (TFLite) [5]. TFLite is optimized for deploying deep learning models on
mobile and embedded devices with limited computational resources. Then, CNNs
can be implemented in low-cost, low-power, portable, easy-to-use devices for clas-
sification and detection tasks. The training is performed on the GPU, but the
inference can be executed on mobile devices, also known as on-device inference.

This work presents a comparison of state-of-the-art CNN models to clas-
sify images into benign or malignant melanoma lesions automatically. These
models are trained and tested on two skin cancer datasets, demonstrating their
robustness in different scenarios. The inference of the selected CNN model can
be performed on a mobile device, known as on-device inference. The TFLite
framework, in combination with Android Studio, allows us to convert the CNN
model to a light version capable of working on low-cost, low-power devices. In
this way, this CNN can be easily used by medical specialists with access to
dermoscopy images and have the opportunity to diagnose suspicious cases in
an early manner. Even when this methodology has already been implemented
in recent research, most of them only evaluate their proposal in one dataset
with few samples, achieve low-performance results, or perform the inference of
the model in a server computer. In our proposal, we could maintain a balance
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between accurate performance results considering two different datasets demon-
strating the robustness of our proposal. We named our application SkinSight,
which can be loaded on Android devices. Considering that most people have a
smartphone, this tool could be used where it is difficult to have highly specialized
GPUs and/or trained personnel in cancer detection. It is worth mentioning that
this paper aims to identify the best CNN configuration that achieves a compa-
rable performance with state-of-the-art models trained and tested on GPUs and
with those developed to be used in portable devices.

2 Literature Review

The International Skin Imaging Collaboration (ISIC) is a global organization
with an online repository of dermoscopic and clinical images of skin lesions [2].
The objective is that researchers from all over the world can work in the devel-
opment of computer-aided systems to detect and diagnose melanoma and other
skin cancers. With the advancement in computer vision algorithms based on deep
learning models, different researchers have reported accurate results in classify-
ing benign and malignant skin lesions. Cassidy et al. performed a benchmark
study in [9] with images of the ISIC dataset and 19 state-of-the-art deep learn-
ing architectures. The VGG19, DenseNet121, and EfficientNetB2 architectures
achieved the best area under the Receiver Operating Characteristic Curve (AUC)
results. Benyahia, Meftah, and Lezoray [8] also investigate the efficiency of 17
deep learning architectures and 24 machine learning classifiers using the ISIC
dataset. They concluded that the DenseNet201 neural architecture combined
with the Cubic SVM algorithm produces the best classification results.

Rehman et al. [25] use a modified pre-trained DenseNet201 by staking three
convolutional layers at the end of the model, followed by a global average pool-
ing, a batch normalization, and two dense layers. The authors used a contrast
stretching enhanced technique to improve the quality of the images reporting
an average accuracy of 95.5%. In [21], was adapted a ResNet101 architecture to
classify benign and malignant skin cancer images. Two convolutional layers were
included at the end of the model, followed by pooling and two fully connected
layers. The authors reported an average accuracy of 90.67%.

All these previous research papers perform their training and testing in a
specialized GPU, achieving state-of-the-art performance in skin lesions classi-
fication tasks. After deeply analyzing their results, we select the ResNet101,
DenseNet201, and a CNN of the EfficientNet family in our experiments. The
accurate reported results and reduced number of parameters in these neural
architectures make them ideal candidates for our research.

Figure 1 shows a block diagram of the process we follow in developing our
SkinSight app. First, it is necessary to train the different deep learning models
on TensorFlow with the appropriate datasets and compare their performance to
select the most appropriate model. Then, convert the selected CNN to Tensor-
Flow Lite. Next, set up Android Studio for Android App development with the
appropriate Android SDK and NDK components installed, add TensorFlow Lite
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dependencies, and copy the TF-Lite model into the project. The TFLite inter-
preter is necessary to load the model in the project. A user interface is designed
to create the views and controls to interact with the model and display the pre-
diction results appropriately. Then, connect an Android device to the computer
and build the app with Android Studio. Finally, test SkinSight with images to
confirm that the CNN model works as required.

Fig. 1. Block diagram of deploying a CNN in a mobile device using TF-Lite and
Android Studio.

The general methodology of performing the training of the CNN in the GPU
and the inference in a mobile device (to be used by the medical sector) has
already been proposed in different research papers. In [19] is presented a mobile
app to classify skin diseases considering their severity based on the MobileNetV2
architecture. A dataset of 1,220 images is processed, achieving an accuracy of
94.32% in the classification task. In [14], a dataset of 2,358 images was classified
as melanoma or benign using the InceptionV3 neural architecture. The accuracy
reported by the authors is 81%. Dai et al. [10] presented an on-device inference
app using 10,015 images. The accuracy achieved by the model was 75.2%. In [15]
is presented an augmented reality app that classifies skin lesions for identifying
melanoma. The app continuously tracks the lesion, implementing different image
pre-processing algorithms to remove hair and segment the lesion before analyzing
the image in the CNN model. Their method achieved an accuracy of 78.8%.
Kousis et al. [20] load a light version of a DenseNet169 network on a mobile
Android device to classify benign or malignant images. The DenseNet169 model
achieved an accuracy of 91.10%, considering a dataset of 10,015. The authors
mentioned that when testing their app in a real environment, it was necessary to
transfer the image to a server for better performance. In [12], the MobileNetV2
architecture classifies skin lesion images considering three datasets. The overall
accuracy performance reported when testing their proposal in a new dataset
with the mobile app was 91.33%. Arani et al. [6] presented the Melanlysis app for
detecting skin cancer based on the EfficientNetLite-0 architecture. The authors
use only the dataset’s dermoscopy images, achieving an accuracy of 94%. In
[13] is presented a lesion segmentation and classification method based on a
DenseNet201 model loaded on a mobile device. The classification task considers
the identification of seven skin lesion classes achieving an accuracy of 89%.
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3 Methodology

3.1 Deep Learning Models

The ResNet (Residual Neural Network) architecture introduces the concept of
residual or skip connection to address the vanishing gradient problem present
in deep neural networks [17]. The Residual Blocks of the ResNet model have
convolutional and batch normalization layers and ReLu activation functions.
The number of residual blocks defines the variant of the ResNet architecture.
We select the ResNet101 in our experiments considering the results reported in
[21].

DenseNet, or Dense Connected Convolutional Network, uses the concept of
dense blocks to connect the output of every other layer within each of its blocks
[18]. That is, the output of each layer is concatenated before passing it to the
input of the subsequent layer within each dense block. To reduce the spatial
dimensions between dense blocks and the number of channels, DenseNet defines
Transition Layers. Similar to ResNet, DenseNet defines different variants, and
in our experiments, the DenseNet201 is selected according to the results in [25].

EfficientNet is a family of deep neural network architectures that use a neural
architecture search method to uniformly scale the network’s depth, width, and
input image size. EfficientNetV2 [24] aims to optimize the training speed and
parameter efficiency. Regularization techniques are adaptively adjusted during
training, considering different input image sizes. The authors define this partic-
ularity as Progressive Learning with Adaptive Regularization. In TensorFlow are
implemented seven versions of EfficientNetV2. In our experiments, we select the
EfficientNetV2-S variant because it has almost the same number of parameters
as DenseNet201.

In order to adapt these three different CNN architectures to the skin cancer
datasets, we consider two options. The first one only includes a global average
pooling in the last convolutional layer of these architectures, followed by a fully
connected layer. Inspired in [25], a second option considers including three con-
volutional layers, a global average pooling, and a batch normalization, followed
by fully connected with dropout layers. A transfer learning strategy was used to
train these neural architectures where initially, only the extra layers were trained
by ten epochs (freezing the layers of the CNN architectures). Then, a fine tune
strategy unfreezes 20% of the CNN architecture, and a new training is performed
with a reduced learning rate.

3.2 TensorFlow Lite (TFLite)

TensorFlow Lite (TFLite) [5] is a lightweight deep learning framework specifi-
cally designed for deploying CNN models to mobile and embedded devices cre-
ated by Google. TFLite optimizes the size and speed of the models without
neglecting their performance. TFLite uses quantization methods to compress
the deep learning model by using fewer bits to represent model parameters [23].



Melanoma Detection 19

Once the model is converted to a TFLite format, the integrated development
environment (IDE) of Android Studio for Android App is used to load the CNN
model into the mobile device. The TFLite interpreter is in charge of running
the inference of the model and producing the predictions. Then, deploying deep
learning models on mobile devices is possible by combining Tensor Flow, TFLite,
and Android Studio.

4 Experimental Settings and Results

In our experiments, we use two datasets presented on Kaggle that consider
images of the ISIC challenges. Dataset one (DS1)1 has 3,297 dermoscopic images.
1,800 images are classified as benign and 1,497 as malignant, respectively. Kaggle
provides a data partition where 80% of the data is separated to train and 20%
to test. In our experiments, the training data was re-partitioned into train and
validation with a final distribution of 60% to train, 20% to validate, and 20%
to test. The second dataset (DS2)2 has 10,605 images. Kaggle defines 9,605 for
training and 1,000 for testing. Same as the previous dataset, the training data
was re-partitioned to provide a validation set. The final data split corresponds
to 80% to train, 10% to validate, and 10% to test.

The training of the CNN models used in this work is performed on Google
Colaboratory, a cloud-based platform with pre-installed libraries and dependen-
cies. In our case, we use the TensorFlow library to train the CNN models. Table 1
shows the accuracy classification results of the different CNN architectures. The
second column specifies if the CNN considers the three convolutional extra lay-
ers, global average pooling, and batch normalization, followed by fully connected
and dropout layers. The third column indicates the number of parameters of each
CNN. The fourth and fifth columns indicate the accuracy percentage achieved
by each CNN.

Table 1. Accuracy results of the different neural architectures.

CNN model Extra layers Parameters DS1 DS2

ResNet101 No 42,660,225 87.87% 92.10%

ResNet101 Yes 43,575,129 86.97% 92.40%

DenseNet201 No 18,832,905 86.06% 91.9%

DenseNet201 Yes 19,189,785 86.96% 90.7%

EfficientnetV2-S No 20,332,641 85.61% 91.40%

EfficientnetV2-S Yes 20,953,401 87.57% 91.90%

1 https://www.kaggle.com/datasets/fanconic/skin-cancer-malignant-vs-benign.
2 https://www.kaggle.com/datasets/hasnainjaved/melanoma-skin-cancer-dataset-of-

10000-images.

https://www.kaggle.com/datasets/fanconic/skin-cancer-malignant-vs-benign
https://www.kaggle.com/datasets/hasnainjaved/melanoma-skin-cancer-dataset-of-10000-images
https://www.kaggle.com/datasets/hasnainjaved/melanoma-skin-cancer-dataset-of-10000-images
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The accuracy results of the models are very similar. The best accuracy and
the model with fewer parameters are highlighted in bold. ResNet101 obtains the
best classification results but is the CNN with the largest number of parameters.
EfficientnetV2-S and DenseNet201 obtain comparable performance, but in our
implementation, it is very important to have a reduced number of parameters
because our objective is to deploy the CNN model in an Android application
running on a mobile device. For this reason, we select the DenseNet201 model.
Figure 2 shows the confusion matrix results obtained with the DenseNet201
model considering the two datasets.

Fig. 2. Confusion matrix results

By visually inspecting the images of the datasets, we realize that some of
them are very difficult to classify as benign or malignant. Figure 3 shows some
of them where, despite being difficult samples, the DenseNet201 model correctly
classifies them.

Fig. 3. Examples of difficult samples of the datasets

Once the model was trained, it was converted to a light version with TF-
Lite and loaded into the mobile device using Android Studio for Android App.
Figure 4 shows the final user interface designed for SkinSight with prediction
results. SkinSight can load images from the smartphone gallery. With this option,
we could select the testing images of DS1 and DS2 and confirm that the accuracy
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performance of the model is maintained on the light version obtaining the same
results reported on the confusion matrix of Fig. 2. By comparing these results
with those models reported in Sect. 2, our accuracy performance is superior to
most mobile apps. Only two of them achieved better results. The first only
considers one dataset of few samples (1,220 images), and the second eliminates
images not obtained with a dermoscopy (the ISIC dataset has images obtained
with simple cameras and are commonly incorrectly classified).

Fig. 4. Prediction results of the SkinSight app.

5 Conclusions

This paper presents the process we follow to design an Android app named Skin-
Sight to detect melanoma automatically. First, we compare the performance of
state-of-the-art CNN models trained and tested with images of two datasets
of the ISIC challenge. The accuracy results obtained with EfficientnetV2-S,
ResNet101, and DenseNet201 are very similar. However, considering that our
objective is to develop a mobile app that medical personnel can use to diagnose
suspicious cases early, we select the CNN model with the fewest parameters. The
combination of using TensorFlow, TensorFlow Lite, and Android Studio offers a
powerful solution for deploying deep learning models on mobile devices.

Recent models that surpass the results reported in this paper implement
highly cost pre-processing techniques to remove noise and artifacts from the
images. Also, some of these publications stack more than five machine learning
algorithms, but the improvement is only 3% compared to our implementations.
Considering that our SkinSight app is designed to be used by the medical sector
with limited resources, we bear in mind a balance between accurate classification
results and a few parameters of the model. In this paper, we only perform the
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testing of SkinSight with images already analyzed by specialists. Because we
want to bring this tool closer to rural areas of our location, our next step is to
work with local medical doctors and patients already diagnosed with this disease
and test the app in a real environment to identify how to handle different skin
tonalities and factors not considered on the ISIC dataset.
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Abstract. The present research aims to develop a tool in the form of an algorithm
that can provide an accurate diagnosis of a patient’s acid-base balance without the
need formanual calculations by the attending physician. During the research, three
different algorithms (Bayesian, KNN and a neural network) were used, tested and
compared in order to achieve a reliable result, speeding up the diagnostic process
for the patient and reducing the human error that can arise from manual calcula-
tions. The results show that the Bayesian algorithm had the lowest performance
achieved with an MF1 of 0.7850, followed by the KNN algorithm with an MF1
of 0.8553, the next was the neural network which obtained an MF1 of 0.9711.
Finally, an algorithm assembled by the three mentioned above was tested gener-
ating an MF1 of 1, which was tested on 70 data samples. This suggests that the
design can be used for the classification of acid-base problems.

Keywords: ANN · Acid-base diagnostic · Classification

1 Introduction

One of the inherent attributes to blood is its characteristic pH level, which is indicated in
any solution by the pH scale. This scale ranges from 0 for strong acids to 14 for strong
bases, with neutral value in the middle of both [1].

Normal pH values found in blood range from 7.35 to 7.45, typically staying around
7.40, which is considered slightly basic [1]. The measurement of these pH values is
performed by the physician to assess the acid-base balance of a patient, and the values
of carbon dioxide levels (CO2) as well as blood bicarbonate levels (HCO3) are used [2].

The acid-base balance mentioned earlier is constantly maintained by the precise
action of both the renal system and the respiratory system, preserving the harmony
between CO2 and HCO3-. Any deviation from the normal values would also imply
an alteration in the functions of various organs in the body, leading to physiological
disturbances and even death [1, 2]. The body also has buffering systems that can combine
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with acids or bases, depending on the situation at hand, helping to prevent rapid changes
in pH levels [2].

To date, the Henderson-Hasselbalch equation, in conjunction with various other
equations, is used to express the patient’s pH, which utilizes the values of carbon dioxide
partial pressure (pCO2) and HCO3, determining the relationship between acids and
bases. This equation aids in classifying different acid-base disorders that may occur in
the body and helps define whether these problems are respiratory or metabolic in nature
[2]. The Henderson-Hasselbalch equation is written as Eq. (1)

pH = 6.1 + log

[ (
HCO−

3

)
(0.03xpCO2)

]
(1)

Currently, there are also acid-base maps available, especially the Du Bose basic map,
which help visually identify the specific disorder [2]. The acid-base map is only helpful
from a graphical perspective, but it’s not practical for daily patient care use.

The problem that arises when using the Henderson-Hasselbalch equation and identi-
ficationmaps is that, when it comes tomaking a precise diagnosis, the physician is forced
tomanually perform these calculations ormeasurements once they have the patient’s lab-
oratory data. This process is unnecessarily time-consuming and can be tedious, leading
to erroneous results. Therefore, there is now a search for the automation of this process,
completely eliminating the possibility of human calculation errors. This automation is
seen as a tool for healthcare personnel.

2 Methodology

2.1 Database

The information used in each of the developed algorithms was gathered from a synthetic
database (SDB), which is artificially generated data rather than data based on real-world
events [3]. This database was created by the collaborators of this work based on the acid-
base map, which serves as a graphical tool for doctors to diagnose acid-base disorders.
This enables them to visualize a graphical representation showing potential chemical
states between blood concentrations of HCO3-, pH, and CO2.

The following acronyms were used to facilitate the later mention of the characteris-
tic disorders, which correspond to the areas that compose the DuBose acid-base map.
These classes are: normal state, SN, metabolic acidosis state, SACM, acute respiratory
acidosis, SACRA, chronic respiratory acidosis, SACRC, metabolic alkalosis, SAM, acute
respiratory alkalosis, SARA, and chronic respiratory alkalosis, SARC. Random points of
the DuBose acid-base map distributed across these seven different regions were used to
create the data for each of the possible patient conditions, resulting in a total of 268 data
points p(x,y), being x the HOC3 and y the pCO2 concentration respectively. From these
points we randomly utilized 198 for training and 70 for testing considering the seven
state classes. Table 1 shows the partitioning of the database data [2].
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Table 1. Composition of the data set

Full database Data partitioning Data consider by class acronym

268 randomly selected points of
the DuBose acid-base map

198 for training 17 -Normal state SN

33 -Metabolic acidosis SACM

33 -Acute respiratory
acidosis

SACRA

33 -Chronic respiratory
acidosis

SACRC

33 -Metabolic alkalosis SAM

33 -Acute respiratory
alkalosis

SARA

16 -Chronic respiratory
alkalosis

SARC

70 for testing 10 for each class

2.2 Neural Network

The ANNmodels have the specific architecture format, which is inspired by a biological
nervous system. ANN models are made up of neurons in a complex, nonlinear man-
ner, just like the human brain. Weighted links are used to connect the neurons. [4]. In
biological neural networks, learning is primarily driven by two forms of synaptic plastic-
ity: long-term potentiation (LTP) and long-term depression (LTD). LTP strengthens the
connections between neurons when they consistently exhibit correlated activity, while
LTD weakens the connections when the activity is uncorrelated or weakly correlated.
These changes in synaptic strength enable neurons to form new connections and modify
existing ones, which is essential for learning and memory formation [5].

ANNs on the other hand are made up of an input node layer and an output node layer
coupled by one or more hidden node layers. By activating functions, input layer nodes
transmit information to hidden layer nodes, which then either activate or do nothing in
response to the evidence. When the value of a certain node or collection of nodes in
the hidden layer hits a certain threshold, a value is transmitted to one or more nodes in
the output layer. The hidden layers apply weighting functions to the evidence. A lot of
examples (data) must be used to train ANNs. [6].

For the realization of this project, a feedforward ANN with a single hidden layer
consisting of 5 neurons was used, with the following hyperparameters: a learning rate
of 0.1, 1000 epochs, and an error tolerance of 1e-29 these values were selected using a
grid search technique, which shows the most optimal hyperparameters that will increase
the efficiency of the algorithm. The value of the bias remains 1, but the values of their
weights are being constantly updated. Figure 1 illustrate the ANN proposed model.

The output provided by the neural network determines the patient’s acid-base bal-
ance situation as Eq. (2), Where: Output1 represents a normal state, Output2, chronic
respiratory acidosis, Output3, metabolic alkalosis, Output4, acute respiratory alkalosis,
Output5, chronic respiratory alkalosis, Output4, metabolic acidosis, and Output6 , acute
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Fig. 1. Neural network

respiratory acidosis. Also, zi stands for the final softmax output vector obtained after
evaluating each i-th output, beingN the total number of ANN outputs evaluated. Finally,
arg max function is applied to obtain the winner class.

Zi = eOutputi∑
nεN eOutputn

Class = argmax({Zi}) (2)

2.3 Bayesian Algorithm

TheBayesian algorithm (AB) functions as a probabilistic classifier that takes into account
a particular feature and assigns a label to an element. AB operates using probability
and employs empirical reasoning based on training data [7]. Its functionality lies in
the correlation between a sample and its membership in a specific class, based on a
set of features that are associated with different classes, each having its representative
characteristics [8].

The AB training was performed using the set of classes C = {SN, SACM, SACRA,
SACRC, SAM, SARA, SARC} shown in Table 1. The probability of a training class PC

was obtained using Eq. (3), where T represents the total number of data points p(x,y)
consider for a c-th training class.

Pc = Tc∑
cεC Tc

(3)
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Also, BA involves Eqs. (4) and (5) that correspond to the mean and variance
respectively.

plc =
∑T l

c
j=1 p

l
j,c

T l
c

;l = {x, y} (4)

(
σ l
c

)2 =
∑T l

c
j=1(p

l
c,j − plc)

2

T l
c

(5)

where j stands for the j-th point p evaluated on the characteristic l. Once the results
of Eqs. (4) and (5) were obtained, Eq. (6) was used, where P(c|pl) correspond to the
probability of a class c given a point p with features l [8, 9].

P
(
c|p l

)
= 1√

2π
(
σ l
c

)2 e
− (pl−plc)

2

2
(
σ lc

)2
(6)

Subsequently, Eq. (7) was implemented, which determines the relationship between
all the probabilities obtained from Eqs. (3) and (6) for each of the seven classes.

Prc =
(∏

P
(
c|p l

))
· (Pc) (7)

Equation (8) was used to obtain the evidence, which is the sum of all the different
results from Eq. (7). This allows for the calculation of the likelihood that a given sample
belongs to a particular class, based on Eq. (9) [8].

Ev =
∑

c∈C Prc (8)

Psc = Prc
Ev

(9)

Finally, the AB determines the class to which it belongs by considering the Eq. (10)

Class = argmax(Psc) (10)

where Class can have values from 1 to 7 according to C.

2.4 KNN

The KNN algorithm, also known as the k-nearest neighbors’ algorithm, is a machine
learning algorithm. Similar to the previous two algorithms, it is supervised, as the data
provided to it already has labeled output values, allowing for the creation of a model to
predict new input data [10].

The prediction of new input data is done by calculating the distance between the
sample data and the data for each of the seven classes used in the training set [8]. In
this case 5 neighboors (K) were used to classify the test dataset. This is done using
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Euclidian distance between two samples pl and ql depicted on Eq. (11), being D the
total components of the sample pl, in this case D = 2 for the two components l = {x,y}.

dp,q =
√√√√ D∑

l=1

∣∣pl − ql
∣∣ (11)

3 Results

The results of the evaluation on each previously trained algorithm are presented. The
metrics show the precision, recall, and F1 scores (calculated using Eq. 12) for each
class. The MF1 score (calculated using Eq. 13) is also shown for the overall results of
the analysis algorithm. For this evaluation, we used 70 test data (10 per class) shown on
Table 1.

F1c = 2 · precision · recall
precision + recall

(12)

MF1 =
∑7

c=1 F1c
7

(13)

Table 2 shows the metrics of the ANN classifier, with an MF1 score of 0.97114
(97.114%). This value is affected by the precision and recall scores for class one and
class six. Where the precision score for class one is 0.8 (80%) and the recall for class
six is 0.83 (83%).

Table 2. Effectiveness metrics for ANN

Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Class 7
Precision 0.8 1 1 1 1 1 1 

Recall 1 1 1 1 1 0.833 1 
F1 0.8888 1 1 1 1 0.9090 1 

MF1 0.97114

Table 3 shows the metrics for the KNN algorithm. The data shows a variation for
each class, with the best-evaluated classes being class one and class six, both with a F1
score of 0.9523 (95.23%). However, this algorithm has an MF1 score that is 11.584%
lower than the ANN algorithm.

Table 4 shows that the classes two and three were perfectly classified, with an F1
score of 1.0 (100%). However, the class six was not classified at all, with an F1 score of
0.0 (0%). This data affected the MF1 score, which was 0.785036 (78.5036%).
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Table 3. Effectiveness metrics for KNN

Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Class 7
Precision 1 1 0.8 0.7 0.8 1 0.7

Recall 0.9090 0.7142 1 0.7777 0.8 0.9090 1 
F1 0.9523 0.8333 0.8888 0.73684 0.8 0.9523 0.82352

MF1 0.8553

The lower MF1 score is due to the fact that the class six was not classified at all.
This means that the algorithm was not able to identify any of the instances of class six
in the test dataset.

Table 4. Effectiveness metrics for Bayes

Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Class 7
Precision 1 1 1 1 1 0 1 

Recall 0.83333 1 1 1 0.76923 1 0.625
F1 0.90909 1 1 0.94736 0.86956 0 0.7692

MF1 0.785036

The neural network algorithm was the most efficient of the three individual algo-
rithms, with an MF1 score of 97.11%. This suggests that the neural network can be
used to classify the seven classes. However, there is an approximate 3% error rate in the
classification of a data point. This problem could be fixed by retraining each algorithm
with a larger dataset and comparing the future results with those obtained in this work.

4 Conclusion

At the end of the project, we managed to create a classification algorithm that, unlike
the conventional method based on the Henderson-Hasselbach equation, uses only two
parameters for classification. Additionally, our classification algorithm provided us with
a 97% effectiveness score with its most reliable method, this being the neural network
algorithm, which can serve as a prototype and later as a replacement for highly fallible
and unpredictable human interference. This given that machine learning techniques
provide numerous advantages over traditional diagnostic methods in the classification of
acid-base disorders. These benefits encompass increased efficiency, enhanced accuracy,
objectivity, scalability, decision support, early detection, and seamless integration with
existing healthcare systems. The utilization ofmachine learningmodels enables the rapid
processing of substantial amounts of data, facilitating prompt diagnosis in time-sensitive
scenarios.
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Abstract. Radiology plays an essential role in the identification of pathologies;
however, image interpretation and the guarantee of accurate diagnoses continue
to represent a challenge that involves expert radiologists. This study proposes
a model to identify pneumonia in chest X-rays using the deep transfer learning
technique, where five pre-trained network architectures and a classifier are tested.
The images used in this work are categorized into bacterial pneumonia, viral
pneumonia, and normal cases. The pre-trainedmodels used include DenseNet201,
MobileNet, VGG16, VGG19 and ResNet50. A support vector machine is used
as a classifier. Results show that the ResNet50 model performs best in binary
classification (pneumonia vs. non-pneumonia) with 98.1% accuracy and 98.7 F1-
score. For multiclassification, VGG19 performs best with an accuracy of 84.7%
and an average F1-score of 81.1%. The methodology employed proved to be
competent and outstanding when compared to other studies in the state of the art.

Keywords: Pneumonia · X-ray images · Deep Transfer Learning · Support
Vector Machine

1 Introduction

The probability of lung disease is notably elevated, particularly in lower-middle-income
nations undergoing development, where countless individuals are exposed to poverty
and air pollution. Based on estimations by the World Health Organization (WHO), over
4 million premature deaths happen every year due to household air pollution, which can
lead to the emergence of health issues like asthma and pneumonia. Pneumonia is an
infectious condition impacting either one or both lungs, resulting in the air sacs, known
as alveoli, becoming filled with fluid or pus. Pneumonia can be caused by bacteria,
viruses, or fungi. This illness poses a significant public health concern and stands as a
leading contributor to illness and death in both Mexico and worldwide. It is estimated
that pneumonia caused 921,000 deaths in children under 5 years of age in 2015 glob-
ally, which represents 15% of all deaths in children under 5 years of age worldwide, a
considerable figure related to this disease [1].
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To diagnose pneumonia, a doctor reviews your medical history, performs a physical
exam, and orders diagnostic tests, such as a chest X-ray. Diagnosing pulmonary diseases
like pneumonia from chest X-rays or computed tomography scans can be challenging,
often needing experienced physicians or radiology specialists to interpret the signs due
to similar-looking diseases in the images. This sometimes requires additional time or
studies for an accurate diagnosis. Moreover, issues like low resolution or varying char-
acteristics of the images can further complicate identification. Therefore, developing
diagnostic systems to assist in decision-making for lung disease diagnosis is valuable
[2].

In the last decade, deep learningmethods, specifically convolutional neural networks
(CNNs), have been chosen as they are able to automatically learn multiple invariant
features in signals or images for a given task. Because of their feature extraction ability,
CNNs have proven to perform well in many applications showing strong robustness
against geometric distortions, skew, scale, etc. Furthermore, CNNs trained with large
amounts of data (images) in a large scenario of a demanding task can be used to extract
image features from another particular context and perform efficiently; this technique
is known as deep transfer learning (DTL). The objective of this work is to develop an
algorithm capable of identifying pneumonia in chest X-ray images based on the DTL
technique, using pre-trained convolutional network architectures as feature extractors
and a machine learning classification model. A recent review reported that, regarding
the use ofDTL inmedical image classification tasks, theVGG16 andDenseNet networks
have been used more frequently in lung X-ray studies [3]. In this way, the authors of
this study decided to explore the performance that the different networks would have for
classification and define which of them had the best performance. Thus, five networks
were tested that present differences in terms of complexity, number of parameters, depth,
size, etc. It is important to highlight that while there are numerous studies that utilize
DTF, a majority of them are centered around fine-tuning pre-trained networks. Notably,
our proposal surpasses the algorithms found in the current state of the art [4–8].

2 Methodology

This section outlines the steps taken to create and evaluate the proposed classification
model. It starts by introducing the database employed, followed by clarifying themethod
for extracting features via pre-trained convolutional neural networks. The training of the
classifier is then elaborated upon, and lastly, the conducted performance tests on the
generated models are described.

The algorithms were developed using the Python programming language. The Keras
library was used to handle the convolutional neural networks [9], and the Sklearn library
was used to develop the support vector machine-based classifier model [10].

2.1 Database

This project utilized images sourced from the Kaggle website, a repository that offers
a wide range of beneficial databases for data science projects. The specific database
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used, named “Chest X-ray Images”, comprises X-ray images of patients with bacterial
pneumonia, viral pneumonia, and patients without the disease [11].

The database is organized into training and test sets, and contains images labeled as
normal, bacterial pneumonia and viral pneumonia. The images were stored in grayscale
8-bit depth.jpeg format, and their sizes ranged from 494 × 151 pixels to 2024 × 2036
pixels (width× height). Table 1 below provides a summary of the number of images for
each class in each set of the database.

Table 1. Database summary.

Set Normal Bacterial pneumonia Viral pneumonia

Training 1068 1931 1104

Test 270 555 209

2.2 Feature Extraction by Deep Transfer Learning

Feature extraction byDTL refers to a technique in deep learningwhere pre-trained neural
network models are used as a starting point to extract relevant features from different
datasets. Transfer learning leverages the knowledge and representations learned by a
model on a large dataset to improve performance on a smaller or different dataset.

In DTL, the initial layers of a pre-trained model, typically trained on a large-scale
dataset (such as ImageNet), are used as a feature extractor. These initial layers are
responsible for learning low-level features such as edges, textures, and shapes, which
are generally applicable across various visual tasks. By freezing the parameters of these
layers and removing the final classification layers, the pre-trained model can be trans-
formed into a feature extraction network [3]. When constructing a classifier model using
the technique of deep transfer learningwith feature extraction, it is necessary to employ a
machine learning model that is trained taking the extracted features from the pre-trained
networks as input and subsequently performs inference on the test observations. Com-
monly used machine learning models include support vector machines, random forests,
k-nearest neighbors, among others. More details about this technique can be found at
[3, 12].

In this study, the pre-trained networks VGG16, VGG19, ResNet50, DenseNet201,
and MobileNet were utilized for feature extraction from images. These networks were
pre-trained on the ImageNet dataset, a renowned dataset for object recognition [13].

The networks were fed resized database images of 224×224 pixels, with intensity
values scaled between 0 and 1. Each network produced an output feature vectorwith sizes
of 512 (VGG16 and VGG19), 1024 (DenseNet and MobileNet), and 2048 (ResNet50)
for each image.

2.3 Classifier Training

A Support Vector Machine (SVM) with a Gaussian radial basis kernel function was
chosen as the classification model. Five models were trained, each corresponding to a
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network used for feature extraction. A matrix of feature vectors from the training set
imageswas used as input for SVM training. The regularization hyperparameter ‘C’ of the
SVM loss function was determined through a grid search with possible values, utilizing
5-fold cross-validation.

2.4 Experimentation and Evaluation

Two experiments were conducted: the first focused on creating multiclassification mod-
els to distinguish normal, bacterial pneumonia, and viral pneumonia classes within
the database. The second experiment involved binary classification models to identify
normal images from those with pneumonia, without specifying the type of pneumonia.

For the second experiment, bacterial and viral pneumonia image files were pooled,
and the task consisted of discriminating patients with pneumonia vs. normal. Since in
this experiment, the number of total pneumonia images (3875) almost tripled the number
of normal case images (1341) in the training set, it was decided to artificially create a
larger number of normal case images with the intention of balancing the number of
images from both classes. To achieve this, the data augmentation technique was applied.
In this process, a subset of normal class images (N= 2540) underwent random rotations
(within the range of 0 to ± 15°), zooming (within the range of 0 to ± 15%), horizontal
and vertical shifts (within the range of 0 to± 10%), and shearing (within the range of 0 to
± 15%). These augmented images were then incorporated into the training set alongside
the pre-existing ones.

To assess the effectiveness of the constructed classifier models, evaluation metrics
including classification accuracy (Acc), recall (Rec), precision (Pre), and F1-score (F1)
were computed solely using images from the test set. Equations 1 to 4 were employed
to calculate these metrics.

Acc = tp+ tn

tp+ tn+ fp+ fn
(1)

Rec = tp

tp+ fn
(2)

Pre = tp

tp+ fp
(3)

F1 = 2 · tp
2 · tp+ fp+ fn

= 2
Rec · Pre
Rec + Pre

(4)

where tp and tn mean true positives and true negatives respectively, and fp and fn mean
false positives and false negatives respectively. To calculate the metrics in the multilabel
classification task, the strategy of one vs. all was used.

3 Results

This section presents and describes the results of this study. Various deep learning archi-
tectures were utilized for feature extraction and subsequent training and testing of clas-
sification models. The performance of these models in relation to the two proposed
experiments is presented, employing the performance metrics discussed earlier.
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Table 2 shows the performance obtained by the multiclassification models using the
different pre-trained neural network architectures.

Table 2. Performance of multiclassification models for the three classes of images.

Network Class Acc (%) Pre (%) Rec (%) F1 (%)

DenseNet201 Bacterial pneumonia 79.5 80.5 87.8 84.0

Viral pneumonia 96.1 34.9 51.2

Normal 74.2 97.0 84.1

MobileNet Bacterial pneumonia 81.0 79.5 92.3 85.4

Viral pneumonia 94.3 39.2 55.4

Normal 80.2 90.0 84.8

VGG16 Bacterial pneumonia 84.0 85.9 87.8 86.8

Viral pneumonia 70.5 56.0 62.4

Normal 87.7 97.8 92.5

VGG19 Bacterial pneumonia 84.7 85.7 89.6 87.6

Viral pneumonia 71.7 54.5 62.0

Normal 89.8 98.2 93.8

ResNet50 Bacterial pneumonia 84.4 85.9 87.8 86.8

Viral pneumonia 66.7 57.4 61.7

Normal 92.7 98.5 95.5

As can be seen in Table 2, the model trained with the features extracted using the
VGG19 network presented the highest accuracy in the classification of the 3 classes of
images. While this model demonstrates high sensitivity (recall) in detecting patterns of
bacterial pneumonia and normal cases with 89.6% and 98.2% respectively, its sensitivity
in identifying images of viral pneumonia is notably low at 54.5%. In fact, all models
exhibited strong sensitivity for normal cases and bacterial pneumonia, yet their sensitiv-
ity for identifying viral pneumonia was consistently lower. Notably, the model utilizing
ResNet50 exhibited the highest sensitivity for this class, albeit reaching only 57.4%. On
the other hand, the DenseNet201 and MobileNet models demonstrated high precision
in detecting viral pneumonia at 96.1% and 94.3% respectively. However, their low sen-
sitivity indicates they may be misclassifying many viral pneumonia cases as normal or
bacterial pneumonia. This is further supported by their low F1-score values.

Figure 1 shows the confusion matrix for evaluating the model using the VGG19
network. It reveals that the model committed 5 errors in identifying normal patient
images,where onewaswrongly labeled as viral pneumonia and 4 as bacterial pneumonia.
For bacterial pneumonia identification, the model inaccurately classified 14 instances
as normal and 44 as viral pneumonia. The main confusion within the model is evident
between the two pneumonia categories.
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Fig. 1. Confusion matrix of model evaluation using the VGG19 network

A summary of the evaluation of the models in relation to the binary classification
task (normal vs. pneumonia) is presented in Table 3.

Table 3. Performance of models for binary classification (normal vs. pneumonia).

Network Acc (%) Pre (%) Rec (%) F1 (%)

DenseNet201 95.2 97.1 96.3 96.7

MobileNet 95.9 97.6 96.9 97.2

VGG16 96.9 99.7 96.1 97.9

VGG19 96.9 99.1 96.7 97.9

ResNet50 98.1 99.3 98.0 98.7

As indicated in Table 3, the ResNet50 model exhibited the highest performance,
boasting a precision of over 99.3% in identifying positive pneumonia cases (regardless
of the pneumonia type) and an F1-score of 98.7%. Notably, all models demonstrated out-
standing performance, achieving sensitivities exceeding 96% and F1 scores surpassing
96%.

Figure 2 shows the confusion matrix of the model test using the ResNet50 network.
Notably, model misclassification was observed in only 20 out of a total of 1,034 images,
resulting in a classification error rate of 1.9%. It is worth highlighting that the model
also exhibits substantial specificity, achieving a remarkable value of 98.1%.

Prior to training themodels, data augmentationwas applied to balance the numbers of
normal and pneumonia cases using themethodology described in Sect. 2.4. Initial results
without data augmentation indicated that themodels never exceeded 91% accuracy (with



38 Z. Campos-Lopez et al.

Fig. 2. Confusion matrix of the ResNet50 model for binary classification.

specificity values below 80%). Consequently, the decision was made to employ the data
augmentation technique.

Table 4 presents a summary of the best results obtained in previous studies that
utilize the same database as our work to perform the binary classification task (normal
vs. pneumonia).

Table 4. Comparison with previous works

Paper Method / model Acc (%) Pre (%) Rec (%) F1 (%)

Laing et al. [4] Fine-tunning / VGG19 90.5 89.1 96.7 92.7

Jain et al. [5] Training a Custom CNN 92.31 -- 98 94

Patel et al. [6] Fine-tunning / VGG19 91.19 95 92 88

Sharma and Guleria [14] Feature extraction /
VGG16 + SVM

92.15 94.28 93.08 93.7

Dey et al. [8] Feature extraction +
handcrafted features /
VGG19 + Random-Forest

97.94 95.02 97.56 96.27

Hashmi et al. [7] Fine-tunning / Weighted
combination of five
networks

98.43 98.26 99 98.26

Our work Feature extraction /
ResNet50 + SVM

98.1 99.3 98.0 98.7

Table 4 displays that our model, based on ResNet50 + SVM, achieved the high-
est precision and F1-score (99.3% and 98.7%) among reviewed studies. It was second
only to Hossain et al. in accuracy and sensitivity. Notably, our model’s advantage lies
in simplicity, using features from one network, unlike Hossain’s model which com-
bines outputs from five networks: ResNet18, Xception, InceptionV3, DenseNet121, and
MobileNetV3.
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4 Conclusions

Identifying lung diseases like pneumonia in X-ray images through automated computer
vision algorithms is challenging due to the resemblance of patterns and characteristics
to other diseases in these images.

This project developed a model to identify pneumonia in X-ray images, utilizing
deep transfer learning for feature extraction and an SVM classifier. Two tasks were exe-
cuted: a multi-classification task for identifying bacterial, viral pneumonia, and normal
images, and a binary classification task for pneumonia versus normal cases. The VGG19
model showed the best performance in the three-class classification task with an aver-
age precision of 82.4%, sensitivity of 80.8%, and F1-score of 81.1%. Furthermore, the
ResNet50-based model outperformed other models in both this work and state-of-the-
art models for binary classification, achieving a precision of 99.3% and an F1 score of
98.7%.

The results of this project demonstrate the reliability of the use of models designed
using the deep transfer learning technique for the task of detecting pneumonia in X-ray
images. Bearing in mind that timely identification of the disease is essential for adequate
treatment and thus achieve the recovery of the patient, the development of this type of
models would open the possibility of clinical applications in which they can serve as a
support tool in decision-making for the diagnosis of this type of pathology.
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Abstract. Since 2020, breast cancer has been the one with greater incidence
across the world. It is important to evaluate the possibility of the application
of this minimally invasive procedure to treat the different types of premalignant
lesions present in this type of cancer. Since microwave ablation therapy has been
proven effective against liver and bone cancer, this research aims to assess the
feasibility of an optimization method for the design of an antenna applicator that
takes into consideration the effective wavelength of the breast tissue. Therefore,
the computational finite element method is used to evaluate the therapy in an in-
silico environment, which considers the thermodynamic, dielectric properties of
the materials, modelling the response of the heat transfer in biological tissues due
to microwave and the matching of the antenna. Achieving a S11 = −24.79 dB,
SAR = 25 dB, and maximum temperature of 110 °C for a medium fat tissue
density breastmodel. Inserting a 14mmof diameter spherewith the characteristics
of Ductal Carcinoma In-Situ, resulted in a S11 = −11.47 dB. Thus, not only
maintaining the desired values for the coupling parameters, but also reaching
greater ablation zones and temperatures with the lesion.

Keywords: Microwave Ablation · Standing Wave Ratio · Power Reflection

1 Introduction

Microwave ablation (MWA) therapyhas beenproven a reliable and effective treatment for
bone and liver cancer [1, 2]. DuringMWA therapy, the antenna applicator is guided to the
target tissue percutaneously with the guidance of computerized tomography, ultrasound,
or magnetic resonance imaging. High-frequency electromagnetic waves are radiated
into the tissue in which the antenna is inserted, which causes tissue death due to the
coagulation and protein denaturation caused by the heating effect of microwaves to the
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polar molecules present in the tissue [3]. Many optimization methods have been used to
obtain large and round ablation zones in this type of cancers [4–6], but few have been
applied to breast cancer MWA therapy [7]. Since 2020 breast cancer has been the type of
cancerwith greater incidence andmortality across theworld [8], it is important to evaluate
the possibility of the application of this minimally invasive procedure to these types of
lesions. However, since the dielectric properties in the breast tissue varies with the fat
density, it is important to evaluate the feasibility of MWA in different types of fat tissue
densities. Hence, this paper aims to assess the possibility of an optimization method that
takes into consideration the effective wavelength of breast tissue with medium adipose
density tissue.

2 Materials and Methods

2.1 Bioheat Transfer Due to Electromagnetic Waves

MWA is achieved thanks to the interaction of the electromagnetic waves with the polar
molecules of the biological tissue [9], this interaction produces movement, therefore
friction and heat are generated [10]. This heat is transferred across the tissue and is
described by the Pennes Bioheat Equation, shown in Eq. (1). It takes into consideration
the thermodynamic characteristics of blood in the perfused tissue. Were, ρbl is the blood
density, Cbl is the blood-specific heat capacity, ωbl is the blood perfusion rate, Tbl is the
blood temperature, ρ is the tissue density, C is the tissue-specific heat capacity, k is the
tissue thermal conductivity, T is the final temperature.

ρC∂T

∂t
= ∇ · (k∇T)ρblCblωbl(Tbl − T) + Qmet + Qext (1)

The termQmet is themetabolic activity,which isminimal during the therapy, therefore
its neglected from the computational analysis. The external heat produced by the antenna
applicator is described by the term Qext , which is proportional to the conductivity of the
tissue and the electric field, described as follows:

Qext = σE2 (2)

To evaluate the efficiency of the power delivered to the tissue with the antenna,
several parameters need to be considered. Such as the frequency dependent coefficient
(S11). Which requires the input power and reflected power [11], hence:

S11 = 20 log10 � = 10 log10

(
Pr
Pin

)
(dB) (3)

where the � term enables the calculation of the Standing Wave Ratio (SWR). This
parameter allows us to determine the mismatch of the antenna, thus:

SWR = 1 + |�|
1 − |�| (4)
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� is useful to calculate the percentage of reflected power to the source of the
microwaves, obtained with the following equation:

% Pr = 100 |�|2(% ) (5)

The specific absorption rate (SAR) represents the amount of power deposited per
unit mass, which depends on the tissue conductivity σ , the electric field E, and the
density of the tissue ρ:

SAR = σ

2ρ

∣∣∣�E∣∣∣2(W · Kg−1
)
, (6)

This parameter defines the absorption of microwave energy, which causes tempera-
ture to rise, however, it does not determine the temperature distribution in the tissue. At
last, the geometric parameters for the antenna applicator design are given by the effective
wavelength of the breast tissue, given by:

λeff = c

f
√

εrμr
(7)

where c is the speed of light, f is the operating frequency, εr is the relative permittivity
of the breast tissue, and μr is the relative permeability of the medium.

2.2 Model Definition

The physics behind the Pennes bioheat equation and electromagnetic waves is described
by systems of partial differential equations that can be modeled and solved by numerical
methods and computational means. One such numerical method is the Finite Element
Method (FEM), that aims to solve the physics involved in the given dimensional model
(which can be 1D, 2D, 2D-Axi-Simetric or 3D) by dividing the geometry into simple
elements. Thus, by applying this discretization solving the system of equations at the
nodes of edges of each element. For this study, we use COMSOL Multiphysics 5.5
software to apply a parametric sweep, frequency domain, and time dependent studies to
our breast model with medium fat tissue density. The model solution took 34 min, a 6
core i7-8750H Intel CPU 32 GB of DDR4 RAM Laptop was used for the simulations.

The breast model tissue proposed is a semi-sphere of a 72 mm radius, as seen on
Fig. 1. For the study simulations we need to consider the dielectric and thermodynamic
characteristics of breast tissue, that’swhyTable 1 shows these parameters for a breastwith
a medium adipose tissue density. Specifically, we feed the tissue Cole-Cole parameters
to a modified Debye expression to get the relative permittivity and conductivity of a
breast with medium fat density [12].

Equation (7) was the foundation for the maximum element size for the model mesh,
taking into consideration the effective wavelength of the intermediate fat density tissue,
which resulted in 879013 domain elements, 128478 boundary elements, and 7709 edge
elements. For electromagnetic wave physics, we chose the external domains of the breast
and antenna as the scattering boundary condition. The boundary condition for the bioheat
transfer is the thermal insulation in the external boundaries of the geometries.
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Fig. 1. Breast Model

Table 1. Thermodynamic and Dielectric Parameters of the Proposed Breast Tissue.

Parameter Magnitude Unit Reference

Density ρ 932 kg · m−3 [12]

Thermal Conductivity K 0.171 W · m−1 · K−1

Heat Capacity at Constant Pressure C 2,200 J · mol−1 · K−1

Relative Permeability μr 1 – [13]

Relative Permittivity εr 23.5959 –

Electrical Conductivity σs 0.5 S · m−1

Blood Density ρbl 1040 kg · m−3 [14]

Blood Specific Heat Cbl 3,639 J · Kg−1 · K−1

Blood Perfusion Rate ωbl 0.0036 s−1

For the antenna applicator we propose an original 3D model of a double slot coaxial
antenna that is comprised of an outer and inner conductorsmade of copper and an internal
dielectric made of PTFE (As seen in Fig. 2), where the UT-47 coaxial cable standard is
used. The geometric and dielectric parameters are shown in Table 2.
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Table 2. UT-047 antenna parameters.

Parameter Magnitude Unit Reference

Internal Conductor Diameter 0.287 mm –

External Conductor Diameter 1.19

Internal Dielectric Diameter 0.94

Relative Permittivity of Copper 1 – [13]

Relative Permittivity of PTFE 2.03

Electrical Conductivity of Copper 5.998 × 107 S · m−1

Electrical Conductivity of PTFE 5.1 × 10−17

Fig. 2. UT-047 coaxial double slot antenna model.

2.3 Effective Wavelength (λeff ) Driven Optimization

The proposed optimization method is based on the effective wavelength of the breast
tissue, as seen in Eq. (7), which relays on the relative permittivity of the medium density
of adipose tissue (MD) εr, the operating frequency f = 2.45 GHz, with an arbitrary
power of 8 W, and the speed of light c = 3× 108 m/s. Given the relative permittivity of
the MD breast, the calculated λeff ≈ 25 mm, therefore, we propose rational multiples
of λeff, as seen in Table 3, for the Slot Width (SW) and Distance Between Slots (DBS)
parameters of the antenna.

Table 3. Slot Width and Distance Between Slots Parameter definition based on λeff

Parameter λeff rational multiples

Slot Width λeff
4

3·λeff
16

λeff
8

λeff
16

6.2500 mm 4.6875 mm 3.1250 mm 1.5625 mm

Distance Between Slots λeff
10

3·λeff
40

λeff
20

λeff
40

2.50 mm 1.875 mm 1.250 mm 0.625 mm
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3 Results

The optimization of the SW and the DBS was done by applying a parametric sweep
through all the rational multiples of the calculated effective wavelength given in Table 3.
The goal is to find the SW and DBS that achieve de desired values of S11 ≤ −10 dB,
%Pr ≤ 10%, and SWR ≤ 2 [15, 16]. Therefore, Table 4 shows the combination of values
for the SW and the DBS, where with a SW = 1.875mm and a DBS = 1.5652mm the
better parameters are obtained, achieving values for S11 = −24.79 dB, %Pr = 0.36%,
and SWR = 1.1286.

Table 4. Combination of SW and DBS values with the desired values for s11, SWR, and % Pr.

SW (mm) DBS (mm) SWR (Eq. (4)) S11dB (Eq. (3)) %Pr (Eq. (5))

0.625 3.125 1.3986 −15.589 2.76%

1.25 1.5652 1.1799 −21.666 0.68%

1.25 3.125 1.7807 −11.033 7.88%

1.875 1.5652 1.1286 −24.379 0.36%

2.5 1.5652 1.439 −14.895 3.24%

With the parameters that yielded the best results, we evaluated thermal performance
by modelling a 520 s MWA therapy in the proposed MD breast tissue, as seen in Fig. 3.
Notice that the greater concentration of power given by the normalized SAR distribution,
in Fig. 3a, corresponds with the heat distribution seen in Fig. 3b.

Fig. 3. Normalized SAR and temperature distribution in MD breast tissue.
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With these results, the MWA therapy was also applied to a sphere that stands as
a Ductal Carcinoma In-Situ (DCIS) mass of 14 mm of diameter, to know the thermal
characteristics and the coupling of the antennawith amalignant tissue.Where the thermal
and dielectric parameters of the DCIS lesion are taken from [17], thus, resulting in a
S11 = −11.47dB, SWR = 1.7198, and a %Pr = 7.004%. Where it is clearly seen in
Fig. 4, that the energy is more concentrated within the DCIS boundaries, thus achieving
more heat in the lesion.

Fig. 4. Normalized SAR and temperature distribution in MD breast tissue with DCIS.

4 Discussion

This computational optimization has achieved themain goal of an antenna design capable
of having the desired coupling parameters formatching the applicator with a breast tissue
with medium fat tissue density, making this study relevant, as previous works [17–19]
only dealt with a breast with high adipose tissue density, which does not represent
the entirety of patients who could experience these conditions. The tissue irreversible
damage starts at 45 °C, but it is best to achieve temperatures between 50 °C and 100 °C
[20]. Therefore, the desired ablation temperatures are reached in the 520 s ≈ 8.66min
therapy time, shown in Fig. 5, which also shows that the antenna worked within its
operational 150 °C temperature.
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Fig. 5. Average temperatures reached over a 520 s MWA therapy time within the breast tissue
models, antenna tip and DCIS.

5 Conclusions

The presented computational optimization successfully achieved the desired coupling
parameters, S11 = −11.47dB which represents a %Pr = 7.004%, for effective
microwave ablation therapy in breast tissue. The proposed antenna design demonstrated
efficient energy delivery and temperature control, resulting in targeted and controlled
thermal treatment, because the ablation temperature of 55 °C is reached on the tumor
domain before 100 s and can be sustained for at least 20 s before reaching tempera-
tures that might compromise the proper functioning of the antenna, as seen in Fig. 5.
Since this can be obtained with 8 watts of power, it is not necessary to simulate other
power conditions. Moreover, since blood perfusion is not considered in this model, it
is expected that the temperature distribution due to this factor will be more efficient,
allowing for a longer duration of the ablation treatment. Comparing this study with
those previously conducted, it can be observed that the breast’s adipose tissue density
is crucial for optimization and proper treatment planning. This approach holds promise
for potential application in breast cancer treatment, warranting further exploration and
validation through experimental studies.
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Abstract. This paper proposes an automatic classifier, based on a convolutional
neural network, capable of identifying different pathologies and diseases seen in
anterior chest radiographs. The dataset was obtained from the National Institutes
of Health (NIH) and Kaggle to be used as training for the classifier. For example,
healthy, cardiomegaly, infiltration, effusion, mass, pneumothorax, emphysema,
fibrosis, oedema, nodules and others. The average results for the evaluated metrics
recall, accuracy and F1 score were 92%, 82% and 87% respectively, showing the
flexibility of the proposed model to handle different tasks. This paper proposes an
automatic classifier based on a convolutional neural network capable of identifying
different pathologies and diseases shown in anterior chest X-ray studies. The data
setwas obtained from theNational Institutes ofHealth (NIH) andKaggle to be used
as training for the classifier. E.g., Healthy, Cardiomegaly, Infiltration, Effusion,
Mass, Pneumo-thorax, Emphysema, Fibrosis Edema, Nodule and others.

Keywords: Deep Learning · Thoracic Diseases · Automatic Classifier

1 Introduction

Imaging the chest cavity is crucial for diagnosing heart and lung disease. These intercon-
nected systems can affect each other. Narrowed coronary arteries due to ischemic heart
disease can cause breathing problems. Similarly, lung diseases such as COPD (chronic
obstructive pulmonary disease) can increase the likelihood of heart failure [1].

Cardiovascular disease is a major cause of death and disability worldwide. The most
common types of cardiovascular disease include ischemic heart disease, cerebrovascular
disease and peripheral vascular disease [2].

On the other hand, common lung diseases include asthma, chronic obstructive
pulmonary disease (COPD), pulmonary fibrosis and pneumonia.

Machine learning, a branch of Artificial Intelligence (AI), allows machines to learn
and improve from data without explicit programming [4]. It uses algorithms to recog-
nize patterns and make decisions from inputs, including supervised and unsupervised
learning.
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Deep learning, a subset of machine learning, uses deep neural networks to extract
features and learn through complex layers to capture intricate data features [4]. Some
articles use convolutional neural networks (CNN) for image classification.

CNN is a mathematical model that use as input data each pixel of an image, this
information is processed for extracting patterns and weight adjustments, and developing
recognition systems. A limitation is that it is necessary to specify the resolution and
size on the input image. Therefore, many times it is necessary to develop a conditioned
algorithm for normalizing and match the systems requirements [10]. In medical field,
the AI systems can be used for detection and classification of diseases by using images
studies such as magnetic resonance, ultrasound, tomographic data, X-ray and other
similar.

In this way, we developed a convolutional neural network algorithm, which uses
x-ray studies, but considering that a single x-ray may reveal one or more diseases, the
neural model was trained with disease categories.

Similar works in literature includes; A convolutional neural network algorithm that
detects lesions in chest x-rays, mentioned in [10], and a Deep Convolutional Neural
Network forComputer-AidedDetection andClassificationofAnomalies inFrontalChest
Radiographs [11]. However, these works can only detect between three to four diseases.

Here, we are developing an algorithm to classify images using two different data sets
solving 15 disease tasks through X-ray images. For this purpose, we took into a count
doctor’s analyses of anatomical or physiological abnormalities, images, and the patient’s
medical history. The neural network is trained to find relations, and to identify conditions
in the study images. These conditions are extracted from true positive databases. Our
aim is not to replace the doctor diagnosis, but to make his job easier.

2 Methodology

2.1 Database

For this work, we used two databases. The first database was generated from information
collected by the NIH (National Institutes of Health), with images of 1024× 1024 pixels
and uniform size. These images came from the NIH Clinical Centre itself, representing
60% of all frontal chest studies.

For the second database, chest studies were collected from institutions such as the
Cohen Medical Center and Actmed, among others. Although image resolution and size
varied, we corrected this variation by adjusting the dimensions of the images to ensure
that both databases had the same characteristics. We collected a total of 39,296 chest
radiology images and studies from patients with cardiomegaly, infiltration, effusion,
mass, pneumothorax, emphysema, fibrosis, oedema, nodule, atelectasis, consolidation,
pneumonia, COVID-19, pleural thickening and healthy. Each condition in the patients
can be described as follows:

– Cardiomegaly: An enlarged heart.
– Infiltration: A hazy opacity in the lungs.
– Effusion: A collection of fluid in the space between the lungs and the chest wall.
– Mass: A solid tumor or other abnormality in the lung.



52 L. A. Gómez-Celaya et al.

– Pneumothorax: A collapsed lung.
– Emphysema: A condition in which the air sacs in the lungs become damaged and

enlarged.
– Fibrosis: The formation of scar tissue in the lungs.
– Oedema: An accumulation of fluid in the tissues.
– Nodule: A small, round mass in the lungs.
– Atelectasis: The collapse of a lung.
– Consolidation: The filling of a lung with fluid or other material.
– Pneumonia: An infection of the lungs.
– COVID-19: A respiratory illness caused by the SARS-CoV-2 virus.
– Pleural thickening: Thickening of the lining of the lungs.
– Healthy patients: Patients who have none of the above.

The diseases described above are themost commonly diagnosedmedical problems in
the chest area by x-ray, so it is important to have an idea of the condition of each disease
in order to properly build the database and achieve the goal of the neural network.

The training process for our network involved randomly using 80% of the images
for training and the remaining 20% for testing. The distribution of the data is shown in
Table 1 [5].

2.2 Convolutional Neural Network

Our first database, as mentioned earlier, shared uniformity in resolution (1024× 1024),
size, and font. This is contradicted by the second images database. Therefore, we per-
formed image size adjustments considering the computational capability available, set-
ting the size of 500 × 500 pixels. Images were grouped into batches of 64 units for
training due to the maximum processing capacity of the computers.

Dense convolutional networks (DenseNets) offer a beneficial strategy of referencing
prior feature maps from the network’s inception. Each feature map layer is combined
with the input of subsequent layers within a dense block. This facilitates subsequent
layers to directly utilize preceding layer features, promoting feature reuse [3].

The model was trained and structured using Adam optimization and the Binary
Cross Entropy loss function. The DenseNET architecture was adopted for multi-label
classification [3]. For this work, we used DenseNet201 architecture, as shown in Fig. 1,
where the input is an image in RGB format.

We first created the base for the model using the DenseNet201 architecture with
ImageNet weights and an input of 500x500x3 (L,W,Ch).

We then froze these parameters, created a sequential model and added the basemodel
as the first layer. We then added our own 512 and 256 layers that would change their
weights according to the image feed. These layers have a ReLU activation and a kernel
of L2 with a value of 0.1. Finally, our last layer has 15 neurons and a sigmoid activation,
which is recommended for multi-label work.

To implement this CNN, we used Eq. (1), where CNN() represents a function that
propagates an xj image for the test to obtain a zi output vector, being i the i-th output class
category. The winning class is chosen according to the higher value of zi. See Table 2.
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Table 1. Categories included in the study for training and test Convolutional Neural Network.

Categories Data per class Data for training Data for test

Healthy 5353 4282 1071

Cardiomegaly 2776 2221 555

Infiltration 2894 2315 579

Effusion 2317 1854 463

Mass 2782 2226 556

Pneumothorax 2302 1842 460

Emphysema 2516 2013 503

Fibrosis 1686 1349 337

Edema 2303 1842 461

Nodule 2331 1865 466

Atelectasis 2559 2047 512

Consolidation 2667 2134 533

Pneumonia 1431 1145 286

Covid-19 2994 2395 599

Pleural Thickening 2385 1908 477

Fig. 1. Diagram block of DenseNET.

zi = CNN
(
xj

)

Class = argmax(zi) (1)
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Table 2. Outputs from the CNN

Class Value of i-th output

Healthy 1

Cardiomegaly 2

Infiltration 3

Effusion 4

Mass 5

Pneumothorax 6

Emphysema 7

Fibrosis 8

Edema 9

Nodule 10

Atelectasis 11

Consolidation 12

Pneumonia 13

Covid-19 14

Pleural Thickening 15

3 Results

To evaluate the algorithm, we used the data presented in Table 1, column 4, together with
Eqs. (2), (3) and (4) to calculate precision, recall and accuracy, respectively. In these
equations, TP denotes true positives, FP denotes false positives and FN denotes false
negatives [7].

It is essential to know some concepts related to neural networks and their
characteristics to have a better perception of the information, these are:

Accuracy (%): Represents the allowable variation between measured and actual
values when a known value is used as a reference. Suitable for balanced classes of target
variables, as in project datasets.

Accuracy: Measures correct predictions across all types of predictions. Indicates the
proportion of positive diagnoses that are truly positive.

Recall: Informs about the performance of the classifier with respect to false negatives
and complements the insight of precision with respect to false positives.

F1 Score: Combines Recall and Accuracy into a single score, often calculated as
their arithmetic mean.

Average: is the average of all metrics obtained in this work.
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The aim is to accurately categorize them as either ‘sick’ or ‘not sick’ and to identify
the specific disease within these categories. In addition, the evaluation extends to the
accurate diagnosis of images with multiple diseases, confirming whether they have been
correctly classified or treated as false positives.

precision = TP

(TP + FP)
(2)

recall = TP

(FN + TP)
(3)

accuracy = (TP + TN )

(TP + TN + FP + FN )
(4)

Using the results of each equation, we calculated the F1 score for a given class. We
agreed on Eq. (5) [7].

F1 = 2

(
precisionrecall

precision+ recall

)
(5)

Themodel is amulti-label convolutional neural networkwith the ability to classify the
diseases selected for analysis. It is necessary to mention that the metrics of the different
diseases are different, as the same model was used for all the categories mentioned in
Table 2. These results are shown in Table 3.

These are promising results, but the data for the test were from the same sources
(obviously not used for training, but still sharing conditions from the other images in
training, so we would like to try with different x-ray images from different hospitals to
confirm these results).

The metrics were compared with those obtained in some articles with similar dis-
eases. The progress observed in this field is mainly concentrated on diseases that have
increased in recent years, such as the different pathologies analysed in this article.
Comparative Table 4 shows the different results obtained in previously published articles.

Despite our best efforts, as any other system, there are some limitations. Mainly
related to the absence of information and the high costs access associated with the
articles outlined in our theoretical framework. Consequently, full data collection for
Table 4 was elaborated with these limitations. In particular, the article ‘Lesion-aware
convolutional neural network for chest radiograph classification’ [10] remains excluded
as it lacks explicit model metrics. Instead, it only provides an average 95% confidence
index for 4 conditions - atelectasis, mass and nodule - while remaining silent on the
remaining 11 conditions.

Table 4 compares the metrics within three categories: Health, Pneumonia and
COVID-19, as these are the only metrics reported in the articles. Notably, our developed
network identifies 15 indicators, which is a wider range compared to other studies that
typically focus on two or three indicators. Previous studies used different database splits,
including 80–20 [1], 70–30 [2, 3], and none shared the same database.

Unlike previous research [7–9], the implementation of our model is distinguished
by our base architecture. Previous models used ResNet [8], LeNet [7] and VGGNet-19
[7], while we used DenseNet. Furthermore, previous studies considered a maximum of
three diseases, whereas our model effectively encompasses and recognizes 15 diseases
without sacrificing accuracy.
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Table 3. Analysis categories with their respective percentages of precision, recall, and F1 Score.

Name Accuracy (%) Recall (%) F1-Score (%) Precision (%)

Healthy 96 80 87 96

Cardiomegaly 91 80 85 91

Infiltration 98 90 94 98

Effusion 88 81 84 88

Mass 88 80 84 88

Pneumothorax 93 82 87 93

Emphysema 94 83 88 94

Fibrosis 92 77 84 92

Edema 89 83 86 89

Nodule 93 79 85 93

Atelectasis 89 78 83 89

Consolidation 91 85 88 91

Pneumonia 90 76 82 90

Covid-19 93 88 90 93

Pleural Thickening 88 84 86 88

Average 92 82 87 92

Table 4. Comparison results respect state-of-the-art algorithms.

Accuracy (%) Recall (%) F1 score (%)

Ours [7] [8] [9] [11] Ours [8] [7] [9] Ours [8] [7] [9]

Healthy 96 83 91 - 96 80 89.2 99.6 - 87 90.6 91.0 -

Pneumonia 90 - 92.1 74 - 76 98 - 74 82 96.2 - 82

Covid-19 93 99 94 - - 88 98 80.8 - 90 96.2 89.2 -

Pleural
Thickening

88 - - - 96 78 - - - 83 - - -

Edema 89 - - - 86 83 - - - 86 - - -

Consolidation 91 - - - 85 85 - - - 88 - - -

Cardiomegaly 91 - - - 87 80 - - - 85 - - -

Pneumothorax 93 - - - 86 82 - - - 87 - - -
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4 Conclusion

The DenseNet-based model developed in this study provides accurate results for a wide
range of lung diseases. The results obtained by our model encourage the developing
of deep learning efforts into different areas, introducing additional data such as blood
counts as inputs to the neural network, thus improving the detection capabilities.

In particular, the model developed provides a viable solution in a resource-
constrained environment, providing accurate detections that support accurate disease
diagnoses. This comprehensive strategy allows for the creation of an internal database,
eliminating the need for additional infrastructure expenditures and streamlining future
network expansion.

For future efforts, an alternative approach could be to build disease-specific models
and ensemble them. This ensemble approach would include 15 neural networks (1 for
each disease), improving the accuracy of individual models and resulting in superior
overall system performance. The use of category-specific models and ensemble tech-
niques has effectively increased disease classification accuracy by capitalizing on the
strengths of individual models.
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Abstract. The instantaneous velocity generated by human-sperm flag-
ellum is key for the fundamental description and understanding of flagel-
lar movement and sperm motility. Furthermore, since the flagellar move-
ment is intrinsically three-dimensional, only with 3D dynamic data of the
flagellar trajectory it is feasible to compute the instantaneous velocity
of flagellar point elements. It was only recently that real flagellar 3D+t
motility data were available, which is indispensable for the calculation of
instantaneous velocity. In this work we present the first results of flagel-
lar instantaneous velocity obtained from 3D+ t data of human sperm by
means of a Fourier fitting method. One descriptor and its distribution
over the sperm sample are presented to compare the experimental con-
ditions (induced to capacitate, and not induced to capacitate as control)
related to the fertilization process. While the descriptor distributions
are evidently distinct across both experimental conditions, a statistical
analysis confirmed this difference supporting the visual perception and
importance of the finding.

Keywords: Instantaneous velocity · Fourier transform · Fourier
series · Vector resultant · Human sperm · 3D microscopy

1 Introduction

The study of sperm motility has been mainly based on the bidimensional (2D)
head trajectory over time [2,14–19,21,23,26]. This approach has made possible
important advances in basic research (see [9] and references therein) and in the
health sciences [20]. Nonetheless, this framework is clearly incomplete as sperm
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J. de J. A. Flores Cuautle et al. (Eds.): CNIB 2023, IFMBE Proceedings 96, pp. 59–66, 2024.
https://doi.org/10.1007/978-3-031-46933-6_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-46933-6_7&domain=pdf
https://doi.org/10.1007/978-3-031-46933-6_7


60 D. S. Dı́az-Guerrero et al.

swim in three dimensions (3D) in certain regions of the female reproductive tract.
A comprehensive understanding of the sperm dynamics needs to incorporate the
third spatial dimension and the flagellum. This approach was technologically
impaired until about 20 years ago [7]. Recently there have been numerous and
important developments (see [5,6,8,10,11,25]) that include the flagellar beating
in the sperm motility analysis of sperm flagellar beating [4,6,13].

More recently [13], an experimental setup and a methodological framework
were developed to obtain dynamical 3D human whole-sperm data (3D+t). This
opened a myriad of possible research lines regarding flagellar motility. However,
this significant achievement came with big challenges in the form of enormous
quantities of images and numerical data.

In this work, the 3D + t data set consists of 60744 data files (from 147 sperm),
each containing the x, y, z coordinates of the segmented flagellum [12]. Each cell
belongs to one of two conditions: not induced to capacitate (NoCap, 60 cells)
and induced to capacitate (Cap, 87 cells). Using these data, a Fourier series was
constructed and used to compute the instantaneous velocity for the mid-flagellar
point for each one of the 147 sperm cells in the dataset. The Fourier series of
the component functions allowed us to compute instantaneous velocities, and
opening other scientific venues.

2 Methodology

The x, y, z coordinates of a sperm at a given time will be called a flagellar curve,
thus the entire trajectory of a given sperm will consist of T flagellar curves.
Due to the experimental setup there are 90 flagellar curves per second [13].
For instance, if there are 270 flagellar curves for a given sperm, then the time
recorded is three seconds.

To compute the instantaneous velocity of each point of the flagellum, first
let’s use the position vector notation

{ri,t}n−1
i=0 = {r0,t, r1,t, . . . , rn−1,t} (1)

where ri,t = (xi(t), yi(t), zi(t)) is the i-th flagellar point at time t. The flagel-
lar point with index i = 0 represents the head-flagellum junction and the last
flagellar point index i = n − 1 represents the tail of the flagellum. For instance,
take a given point of the flagellum, let’s say the ninth point at time five, then
it is denoted by r9,5 = (x9(5), y9(5), z9(5)). So, the instantaneous velocity at
the point ri,t is its time derivative, this is denoted by ṙi,t. Although there are
several options to compute discrete derivatives, in general they all have numer-
ical instabilities. Considering this, the ideal option is to have the mathematical
expression of the function describing the experimental points over time, a diffi-
cult solution to achieve. However, there are feasible options: series expansions of
mathematical functions. Therefore, it is necessary to obtain an accurate curve
fitting of ri,t over time. Let’s call this curve a time-point curve, that is the set
{ri,t} for t ∈ {1, 2, . . . , T} (abbreviated as {ri,t}Tt=1) at a fixed flagellar position
i over the flagellum, see Fig. 1.
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Fig. 1. Flagellar curves, corresponding to times 0.44, 0.47, and 0.49 s (or indices 40, 42,
44). The points in the lower left corner indicate the head of the flagellum, meanwhile
the points in the middle are precisely their middle points. Therefore, fixing the flagellar
point to value m and considering all the registered times one gets the time-point curve
indicated by joining the middle points with lines.

The Taylor series are frequently used to expand a mathematical function. In
the Taylor series each term involves a derivative of the objective function, so the
mathematical expression of the function must be known a priori. Nevertheless,
there is another well known series more suited to the case of time-point curves
that is the Fourier series. One of the advantages of these series is that they do
not use the derivative of the objective function. The Fourier series require the
Fourier transform and their associated frequencies, as shown next in Eq. 2.

g(t) =
1
n

n−1∑

k=0

φ(k) exp(2πjε(k)t) (2)

where j is the imaginary unit (j2 = −1), exp(t) is the exponential function, and
φ(k) is the k-th point of the Fourier transform, and ε(k) is its frequency. Given
the Fourier series, its time derivative is straight-forward

d

dt
g(t) =

2πj

n

n−1∑

k=0

φ(k)ε(k) exp(2πjε(k)t). (3)

Hence, by numerically computing the Fourier transform and its frequencies
a time-point curve is modeled by its Fourier series of the form (2) with the
corresponding Fourier transform and frequencies, computed numerically with
python-numpy-fft package.
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3 Results

The Fourier-models of the function components (xi(t), yi(t), zi(t)) over time for
the time-point curve {ri,t}Tt=1 were obtained and used to compute the instanta-
neous velocity. Thus, ri,t = (gx(t), gy(t), gz(t)) for each t ∈ {1, 2, . . . , T}. Here
gx(t), gy(t), gz(t) are obtained by applying Eq. 2 to xi(t), yi(t), zi(t), respectively.
In Fig. 2 a comparison of the model with the experimental 3D + t points is illus-
trated.

Fig. 2. Fourier model. The experimental data points of the z0(t) function component
are plotted in blue, their corresponding Fourier series is plotted in red with lines for
visual clarity.

Given the excellent fitting of the experimental points by the Fourier model, we
used the velocity (Eq. 3) on all three xi(t), yi(t), zi(t) function components and
for all flagellar points. The latter process produces the set of velocities {ṙi,t}n−1

i=0

for t ∈ {1, 2, . . . , T}. As this set consists of all the velocities for every point
for each sperm in the dataset, we choose the middle flagellar point to apply a
statistical analysis of the velocities. Even with the restriction to one point, there
are 147 sperm and several times for each one of them. Therefore, we considered
one descriptor based on the norm of the velocity vectors: the norm-resultant
velocity.

The norm-resultant velocity (Eq. 4) is an integrative measure, as it is the
norm of the vector sum of all the velocities. In Fig. 3 the violin plots of the norm-
resultant velocity for each sperm conditions are shown. The resultant velocity
vector is the vector sum of the velocities of the middle flagellar point over all
available times.

‖ṙres‖ =

∥∥∥∥∥

T∑

t=1

ṙm,t

∥∥∥∥∥ . (4)

The norm-resultant velocity distributions for both conditions are visually
distinguishable. In the NoCap condition, the distribution is more uniformly dis-
persed over its range. Meanwhile, in the Cap condition its distribution is localized
over its boxplot.
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Fig. 3. Norm-resultant velocity distributions. This is a single descriptor for each sperm
cell defined as the euclidean norm of the resultant velocity vector for the middle flagellar
point. In this figure the norm-resultant velocity is used to compare both experimental
conditions: spermatozoa not induced to capacitate (NoCap), and spermatozoa induced
to capacitate (Cap). It is visually clear that those cells induced to capacitate have a
more localized norm-resultant velocity distribution.

In the norm-resultant distribution it seems that there are more sperm, for
the Cap condition, with values less than 10µm/s (see Fig. 3). This suggests that
induction to capacitate changes the distribution of the velocity vectors of the
middle flagellar point. This change is such that more sperms have norm-resultant
values lower than most of the sperms for the NoCap condition.

A statistical analysis of significance was applied to the Norm Resultant Veloc-
ities (NRVs). First, a Shapiro-Wilk normality test was conducted, yielding a
p-value of 0.002. This value implies that the data does not follow a normal dis-
tribution. Second, a Wilcoxon signed-rank test was performed, resulting in a
p-value of 0.02. This p-value allows us to reject the null hypothesis that the
NRVs for both the NoCap and Cap conditions come from the same distribution.

In summary, based on the obtained results, it can be concluded that the
Norm Resultant Velocities (NRVs) do not follow a normal distribution and that
NoCap and Cap conditions have significant different distributions.

4 Discussion and Conclusions

The knowledge of the instant velocity for every single flagellar point is of great
value due to the possible venues of research that it opens, such as the anal-
ysis of the local forces and their relation with hydrodynamics. Furthermore,
with the results presented in this work there are differences in the distributions
of the considered descriptor for conditions NoCap and Cap. The existence of
statistical differences is of crucial importance in this context. This significance
stems from the fact that, according to the literature (e.g., [3]), only a relatively
small percentage, ranging from 10 to 20%, of cells under the Cap condition
attain hyperactivation. Moreover, the diversity in local dynamical properties
could obscure hyperactivation features. However, among those cells with a norm
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resultant velocity lower than 10µm/s it is possible that local hyperactivation
characteristics may be exhibited.

A key element in the presented analysis is the local character of the instanta-
neous velocity. In fact, this locality is the reason why this descriptor was selected
to give global information about each cell. But this doesn’t imply that a local
analysis is not possible or desirable. On the contrary, it indicates that local anal-
ysis for both experimental conditions could be very relevant as there are features
in the Cap condition absent in the NoCap sample.

However, a local analysis is as interesting as is challenging due to the size
of the set of velocity vectors, and its diversity (magnitudes and directions). In
this sense, previous findings [4,21] showed that a hyperactivated sperm could
display motility features belonging to both NoCap and Cap conditions. Thus,
a local analysis demands not only to know if a sperm was or wasn’t induced
to capacitate, but the identification of the flagellar curves (times) that have
distinctive features too. In this line of thought it would be ideal to have a labeled
set of hyperactivated sperms (those sperm cells induced to capacitate that truly
reach capacitation), this would enable a target-oriented analysis with the main
aim of locally characterizing the hyperactivated motility features.

Recently other features of the flagellar beating have been studied: the second
harmonics of human flagellar sperm beat [24], the flagellar energetics of beating
patterns in mouse sperm [22], and the change of flagellar beating forces before
and after capacitation in human sperm [1]. These will be complemented and may
be improved by our results because, although in this work only the flagellar mid-
point was considered, the methodology described above can be directly applied
to any point in the dataset. In contrast the methodology described in [1] is
limited to the tip-point of the sperm tail.

In conclusion, we implemented a Fourier fitting method and used it to com-
pute the instantaneous velocity of a mid-flagellar point. Based on this set of
instantaneous velocity vectors we proposed a descriptor which showed differ-
ences between the two experimental conditions under consideration. Moreover,
the obtained set of instantaneous velocity has a wide potential of describing the
local details of flagellar dynamics. This local level of accuracy in the flagellar
movement is only limited by the experimental setup from which the dataset was
obtained.

Meanwhile, the immediate research question that can, and will be, explored
are those concerning with the characterization of the distinctive flagellar forms
that are empirically identified as signatures of hyperactivated sperm cells. Also,
the flagellar movement in different viscosity conditions will be analyzed under
the hypothesis that due to high viscosity the average curvature over the flagellum
should decrease.
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Abstract. Diabetes Mellitus (DM) is a chronic disease worldwide. By 2030 are
estimated to be 643 million people with DM, and by 2045 is projected to be 783
million, according to International Diabetes Federation. Machine Learning (ML)
can be used as a smart preventive medicine tool for clinical records in hospitals,
clinical laboratories, medical personnel, and patients. ImplementingML in current
healthcare systems could translate into early diagnosis of DM. This work aimed to
implement a classification algorithm for complicated Type 2DM(T2DM), uncom-
plicated T2DM, and healthy Mexican participants. For this work, we enrolled 82
subjects from New Hospital Civil Juan I. Menchaca of Guadalajara, divided into
26 complicated T2DM, 26 uncomplicated T2DM, and 30 healthy subjects. ML
algorithms used were decision tree (DT), Random Forest, AdaBoost, Bagging
Classifier, and Support Vector Machine (SVM). The models use a dataset of 24
different clinical, biological, and molecular variables to discriminate between the
3 groups. The average accuracy was 78% from the C4.5 DT classifier, and we per-
formed anAUC-ROCcurvewith value= 088.MLmodels can serve for early diag-
nosis of T2DM in healthcare systems, implementing this in preventive medicine
clinics, developing an APP for smart mobile for personal care, and improving
pharmaceutical approaches for treating T2DM.
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1 Introduction

1.1 Diabetes Mellitus

Diabetes Mellitus (DM) is an old chronic disease that remains a significant challenge
for the public health system. The main feature of diabetes is lifting blood glucose levels
over 126mg/dl, caused by defective insulin secretion accompanied by several biological
adjustments [1]. The most affected systems are well described and can lead to retinopa-
thy, neuropathy, cardiovascular diseases, and several stages of kidney damage [2]. Until
today DM is considered in three categories: type 1 (T1DM), type 2 (T2DM), and gesta-
tional diabetes; nevertheless, DM occurs in young adults, in people between the fourth
and sixth years of life, and minus degree in the elderly and children; mainly T2DM is
often associated with the development of metabolic syndrome, micro andmacrovascular
complications of DM besides sedentarism and improper eating habits [3]. The external
biological factor contributing to this disease is living in a country with low income and
middle-income, where 80% of people with T2DM; in this sense, México is considered
a middle-income country [4]. This dilemma is increasing without a strategy effective
until today. Therefore, exploring T2DM early diagnosis by Machine Learning (ML)
tools is nowadays a reality implemented in medicine, primarily due to access to hospital
database repositories in developed countries that contain biochemical and anthropo-
metric variables that diagnose DM, such as glycosylated hemoglobin (HbA1c) fasting
plasma glucose (FPG), oral glucose tolerance tests (OGTT), random blood glucose lev-
els, Body Mass Index (BMI), waist circumference, insulin among others [5]. The early
diagnosis of T2DMmakes it easier to control the natural course of the disease and delay
micro and macrovascular complications; this way, ML can help healthcare personnel
make a preliminary diagnosis of T2DM based on their monthly physical examination
data as well as improve their pharmacological management [6, 7].

1.2 Machine Learning in Diabetes Mellitus

Artificial intelligence has emerged as an area of help in medical diagnoses as well as in
the most appropriate pharmacological approach for different pathologies; in this case,
ML is a technique that has gained confidence in many professional guilds and especially
in the medical area and is based on this there are several works with ML and diabetes
mellitus this because it is a health emergency. It is necessary to implement more effec-
tive technological resources for early diagnosis and extend the micro and macrovascular
complications as much as possible or alert people predisposed to developing DM to
more significant health care [8]. In this sense, ML tools are affordable to be used even
in a mobile application or the creation of a computational aid system (CAS) in more
vulnerable populations. Today, in Berlin, exists a CAS since 1974, which is powered
with data from 55,000 patients with T2DM and gives them prevalence, incidence, phar-
macological treatments, and duration of DM; this is achieved by recording blood and
urinary glucose for metabolic criteria [9].

Algorithms classifiers like multilayer perceptron (MLP) and long short-term mem-
ory (LSTM) for DM were used by Butt et al. [10], obtained an accuracy of 86.08% and
87.26%, respectively, using PIMA Indian Diabetes database consisting in 8 variables,
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and 1was considered like target variable, is important to mention that they only com-
pared the state-of-the-art with previously work reported in the same database. On the
other hand, Phongying et al. [11] worked on the dataset from the Department of medical
services in Bangkok from 2019-2021 with 20,227 samples with 10 attributes related to
developing DM; they applied ML tools like DT, random forests, SVM, and K-nearest
neighbors and obtained after tuning the hyperparameters, and the interaction terms that
the random forest tree had the best performance classification, with 97.5% accuracy,
97.4% precision, 96.6% recall, and a 97% F1-score.Also, Habibollah et al. [12] worked
with DT and random forest tools, and they explored the (MASHAD) Study program
from Iran; they obtained 9258 records and 18 attributes, considering 17 like predictors
and 1 like target; they only identified T2DM or no event of T2DM. In conclusion, they
observed the best results with the random forest model and reported 71.1% accuracy,
71.3% sensitivity, and 69.9% specificity, and the AUC of the ROC curve measured
77.3% correspondingly. It should be noted that they used several attributes biochemical
and anthropometric, like our work, but not cellular or molecular attributes. In this sense,
there is no report of MLwith this kind of attributes for diabetes mellitus disease; mainly,
the rest of the reported manuscript focus on only classier o predict DM. Recently, Schall-
moser et al. [13] workedwithMLmodels, logistic regression (LR), and gradient-boosted
decision trees (GBDTs) for the prediction of the risk of developing micro or macrovas-
cular complications in 13,904 participants with 105 predictors in prediabetes or DM
participants from dataset EHRs (Israeli health provider); they included 3 microvascular
complications (retinopathy, nephropathy, and neuropathy), and 3macrovascular compli-
cations: peripheral vascular, cerebrovascular and cardiovascular diseases. Their results
for prediabetic individuals were plotted in a AUC-ROC of the LR, and GBDTs corre-
spondingly, 0.657 and 0.681 for retinopathy, 0.807 and 0.815 for nephropathy, 0.727
and 0.706 for neuropathy, 0.730 and 0.727 for peripherical vascular disease, 0.687 and
0.693 for cerebral vascular disease, 0.707 and 0.705 for the cardiovascular condition;
on the other hand DM participants obtained AUC-ROC in the same ML models LR and
GBDTs, respectively, 0.673 and 0.726 for retinopathy, 0.763 and 0.775 for nephropa-
thy, 0.745 and 0.771 for neuropathy, 0.698 and 0.715 for peripherical vascular disease,
0.651 and 0.646 for cerebral vascular disease, and 0.686 and 0.680 for the cardiovascular
condition. They conclude that ML models can predict prediabetes and DM patients to
develop micro and macrovascular complications in this population. Hence, MLmethods
are widely used in diabetes prediction and obtain favorable results; in this work, a DT
model was implemented to classify T2DM patients into uncomplicated, complicated
patients and healthy participants.

2 Methods

2.1 Database

For this study, we enrolled 82Mexican participants fromNewHospital Civil of Guadala-
jara obtained through 2020–2021 previously reported [14]. The study was conducted
following the Helsinki Declaration and the General Health Law on research; the hospi-
tal’s Ethical Committee accepted this study with the number approbation 17 CI 14 039
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116 COFEPRIS, and by the no: 940/CEIH/2019 of the Ethics Committee of the Univer-
sity of Granada, Spain. Before biological samples were collected, all participants were
informed about the study and signed informed consent forms.All participantswere adults
from 40–65 years of age and divided into three groups of study: 1. Healthy individuals
without a family history of first-degree diabetes, besides non-disease of kind inflamma-
tory, endocrine, vascular, or autoimmune, were not taking any pharmaceutical treatment.
For patients with T2DM who had at least 5 years with a diagnosis of DM according to
ADA criterion [5] (fasting plasma glucose ≥ 126 mg/dL, oral glucose tolerance test ≥
200 mg/dL, or glycosylated hemoglobin (HbA1c) ≥ 6.5%/) and were divided as T2DM
uncomplicated and T2DM complicated. The uncomplicated patients were defined with
reasonable glucose control and free of micro (diabetic neuropathy, diabetic nephropa-
thy, and diabetic retinopathy) or macrovascular complications of DM (atherosclerosis,
myocardial infarction, stroke, and cerebrovascular disease) [15]. Patients with DM com-
plications were those with any micro or macro complications of DM before mentioned.
We obtained a complete clinical history of each patient and measured anthropometric
parameters, Body Mass Index (BMI) and waist circumference, and biochemical and
molecular variables.

2.2 Data Preprocessing

The initial dataset comprised 56 clinical, biological, andmolecular variables from82 sub-
jects. Aiming to create a more concise dataset, variables with greater significance were
selected to be kept in the final dataset. Also, variables representing 2TDM complications
in patients were removed (retinopathy, nephropathy, neuropathy, stroke, pharmacologi-
cal treatment). Variables with a small percentage of missing data were imputed with the
mean value of the corresponding group [16]. For variables such as sex, a value of 1 for
females and 2 for males was given, as well as for the variables of alcohol consumption,
smoking, and physical activity, 1 represents an affirmation and 0 a negation. The final
dataset comprises the following 24 variables (see Table 1).

The 24 variables listed in the table above correspond to themore significant attributes
that helped theDT to discriminate between healthy subjects, patientswith uncomplicated
T2DM, and patients with complicated T2DM. The primary reason for analyzing the
groups in a splitmanner corresponds precisely to differentiating clinical profiles; dividing
patients into groups according to the presence or absence of complications helps to
understand the unique characteristics of each group better and to identify specific risk
factors associated with complications; similarly by analyzing and comparing these three
groups, unique patterns, biomarkers, and associations can be discovered that might not
be evident if all diabetes patients were considered as a homogeneous group. This may
lead to new insights into the underlying mechanisms of complications and diabetes in
general.

2.3 Implementation and Training of Classifier Models

Different classifier models were trained and validated with the corresponding datasets,
and all classifier models were implemented using the scikit-learn (version 1.0.2) and
Python library existing models (version 3.9.13). The dataset was divided into train and
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validation subsets using the scikit-learn train/test splitter; 70% (n = 57) of the records
were used for the model training, while the remaining 30% (n = 25) were used for
the model validation and we performance a five-fold cross-validation procedure. The
split was performed using stratification; train and validation subsets were tested and
had a significant representation of the 3 groups; the training subset was composed of
21 healthy subjects, 18 uncomplicated, and 18 complicated T2DM patients, and the
validation subset with 9 healthy subjects, 8 uncomplicated and 8 complicated T2DM
patients, are shown in Fig. 1.

The dataset split train-validation process, training, and model validation were exe-
cuted 200 times for the classifier models. The optimization of hyperparameters was
carried out exhaustively through the modification (tuning) in its maximum depth, the
proportion or number of cases of the training and test set, the minimum number of
subjects per sheet, and all pertinent biological markers were selected according to the
physiology of Type 2 Diabetes mellitus, that is, the characteristics were designated in
such a way that those variables that were not in the definition of complicated diabetes
were included. The number of iterations for optimizing and adjusting the model in a total
of 200 executions was also modified and adjusted. For this work, it was the performance
of those classifier models.

2.3.1 Support Vector Machine

This algorithm was built with the default parameters provided by the Scikit library), is
a supervised learning algorithm used for classification and regression. It searches for a
hyperplane that best separates data classes in amultidimensional space. SVMmaximizes
the margin between classes, resulting in good generalization to new data. It can handle
both linearly separable and non-linearly separable data using kernel functions.

2.3.2 Random Forest

This algorithm was built using 350 estimators, while the remaining parameters were set
to the default option; this ML tool creates multiple decision trees and combines their
predictions to obtain a result. Each tree is trained on a random subsample of the data and
uses bootstrapping to build different data sets. The predictions of the individual trees are
then averaged or voted to make a final decision.

2.3.3 ADAboost

This classifier was built with 100 estimators and a 0.01 learning rate; all other parameters
were set as the default option; this ensemble algorithm combines several weak learning
models (e.g., weak decision trees) to form a strongermodel. Adaboost givesmoreweight
to instances misclassified in the previous iteration at each iteration, allowing the model
to focus on hard-to-classify cases. The weak models are then weighted according to
accuracy and combined to make joint decisions.
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Table 1. Summary of clinical, biochemical, and molecular characteristics of T2DM subjects.
‡Relative expression was calculated using the 2 − ��CT method (�Ct target miR-�Ct control
gene)

N° Variable Type Value

0 Age (Years) Numeric [1–100]

1 Sex Nominal [1–2]

2 Waist circumference (cm) Numeric [70–150]

3 BMI index (kg/mt2) Numeric [17–47]

4 Systolic Blood pressure (mm/Hg) Numeric [80–205]

5 Diastolic Blood pressure mm/Hg) Numeric [60–115]

6 HOMA IR (fasting glucosa mg/dL * fasting insuline IU/L/405) Numeric [0.25–20]

7 HbA1c (%) Numeric [4–13]

8 TG (mg/dL) Numeric [40–360]

9 Cholesterol(mg/dL) Numeric [100–320]

10 Urea (mg/dL) Numeric [13–135]

11 Creatinine (mg/dL) Numeric [0.1–2.6]

12 miR_21 (relative expression)‡ Numeric [30–350]

13 miR_126 (relative expression) ‡ Numeric [10–195]

14 IL_6 (pg/mL) Numeric [0.01–5.50]

15 IL_10 (pg/mL) Numeric [0.20–13.5]

16 IL_18 (pg/mL) Numeric [10–426]

17 TNF_alfa (pg/mL) Numeric [6–127]

18 Diabetic Family Nominal [0–6]

19 Alcohol intake Nominal [0–1]

20 Smoke Nominal [0–1]

21 Physical activity Nominal [0–1]

22 Glucose (mg/dL) Numeric [70–380]

23 Years of diabetic (years) Numeric [0–35]

2.3.4 Bagging Classifier

This model was built using 200 estimators, with the remaining parameters set to the
default value; this algorithm is an ensemble technique used to improve the accuracy
and stability of MLmodels. Using bootstrapping, the Bagging Classifier builds multiple
base models (e.g., decision trees) on random subsets of the training data. Then, the
predictions of the base models are combined by voting to determine the final class of an
instance, and finally, we implemented the C4.5 DT (the class to measure the quality of
a split was set to “gini,” splitter to “best,” no max depth, and the rest of the parameters
as the default option). Since this last ML model was the one that gave us the best overall
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performance, we will focus on describing it in detail. Finally, the precision, recall, F1-
score, and accuracy results of every execution were saved and averaged to review the
results further.

Fig. 1. Flow diagram for data processing and functioning sequences of the proposed diabetes
classification model.

2.4 Model Decision Tree

The DT methodology was used, C4.5, as a classifier. It was implemented in Python, a
high-level programming language whose function emphasizes the readability of its code
[17]. Due to its free software characteristics, it is used to develop academic, scientific,
and technological applications. It is a programming language that allows the coexistence
of different paradigms, such as oriented object programming, structured programming,
imperative programming, reactive programming, and functional programming searching
to improve the production of the development of the projects. The DTmodel is a primary
and regression method with a tree structure describing classifying instances based on
features [18]. It is considered a set of “if-then” rules, which also function as conditional
probability distributions defined in feature and class space.

The DT utilizes a tree structure, starting with a single node representing the training
samples [19]. If the samples are located inside the same class, the node is transformed
into a leaf and labeled with the same class. Otherwise, the algorithm chooses the dis-
criminative attributes as the actual node of the DT. According to the value of the current
attribute of the decision node, the training samples are divided into different subsets,
each in different forms, values, and branches. The anterior steps are repeated for each
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subset or for each branch obtained, recursively forming a DT on each partitioned sample
[20]; see the pseudocode in Table 2. Typical DT algorithms are ID3, C4.5, and CART,
among others.

This study used the DT C4.5 and some parameters like entropy and GINI index that
work in DT with the information that was input from the dataset used to classify each
subset test. The dataset generated has nominal attributes for the classification tasks with
non-missing values. In general, if a probability distribution P = (p1, p2, p3, …, pn) and
an example S is given, then the information carried by this distribution is known as the
entropy P, and is calculated by: Eq. (1):

Entropy P = −
n∑

i=1

pi · log(pi) (1)

In this work, when the entropy level is 0, it will be the level of order, 1. On the other
hand, the information gain allows us to measure the degree of impurity of the classes
for all the examples and, therefore, any position of the tree under construction. It must
have a new function that allows one to select the attribute that should label the current
node. This defines the gain Eq. (2) for a test T and a position p:

Gain(p,T) = Entropy P −
n∑

j=1

(pj · Entropy)(pj)) (2)

Where the values (pj) is the set of all possible values for attribute T. This measure can
then be used to determine which attribute is best and build the DT where at each node
is the attribute with the highest information gain of all the attributes not yet considered
in the path from the root node [21].

Information gain of attribute A Eq. (3):

Gain(A) = Info(D) − InfoA(D) (3)

Pre-segmentation of information entropy Eq. (4):

Info(D) = Entropy(D) = −�p(j|D) log2 p(j|D) (4)

Entropy of distributed information Eq. (5):

InfoA(D) = �(ni/n)Info(Di) (5)

The impurity GINI is one of the possible measures for generating the DT. It provides
more information about the data distribution per node than the classification used in the
accuracy reporting. The impurity of the model nodes is calculated using each count of
each objective category divided by every record obtained by one node. The total GINI
impurity is calculated as a sum of squares of the count of proportion divided by all the
objective categories per node from which one is subtracted. The result is multiplied by
the quantity of records Eq. (6). For example, when splitting a tree node, the algorithm
searches for a field with the highest improvement in total impurity, calculated as the total
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impurity among all potential child nodes subtracted from the total impurity of the parent
node. The goal is for the gini index to be as small as possible.

Gini(Xq) = 1 −
k∑

k=1

(
pk,q

)2 (6)

2.5 Algorithm C4.5

C4.5 is an algorithm used to generate a DT developed by Ross Quinlan [18], and this is
an extension of the ID3 algorithm. DT generated by C4.5 can be used for classification;
therefore, C4.5 is almost always referred to as a statistical classifier. C4.5 builds DT
from a training data set as ID3 does, using the concept of information entropy. In a DT,
the training data refers to a collection of examples used to train the tree. Each example is
denoted as Si and represents a data point with associated information. This collection of
examples forms the dataset the DT algorithm uses to learn and build the tree structure.
Each example Si is represented as a vector of attributes or features, such as X1, X2, etc.
These features describe the characteristics or properties of the data point Si.

The training data are augmented with a vector C = C1, C2, where C1, C2, represent
the class to which each sample belongs. Each example Si is associated with a specific
class or category, and a class label represents this class. The vector C contains these class
labels for each example Si. These labels indicate the predefined categories that each data
point belongs to.

In every tree node, the DT C4.5 selects the variable that better divides the sample
into different data subsets with a predominant class; the criteria are normalized for
information gain resulting in the selection of the variable that better divides the data.
The decision parameterwill be the variable that achieves the best-normalized information
gain [17]. See pseudocode Table 2.

This algorithm has 3 main features; firstly, the DT C4.5 creates a leaf node when
all samples are classified in the same class. In the second instance, when none of the
variables show a significative information gain, the DT C 4.5 creates a decision node
to continue with the tree; finally, when an unseen class is found, the DT also creates a
decision node to continue with the tree C4.5.

2.6 Metrics to Evaluate the Performance of Classifiers on Unbalanced Datasets

It is essential to mention that the performance of a classificationmethod on data sets with
two classes is to use a confusion matrix. This contains information about the predictions
made by the classifier using the number of true positives, true negatives, false positives,
and false negatives. Table 3 shows an example of the confusion matrix.

The confusion matrix should only be used for classification accuracy to determine
the performance of a classifier; it is not suitable when dealing with unbalanced data
sets. This is because high classification accuracy values can be obtained in these types
of applications by simply ignoring the minority class; however, the latter is essential in
cases such as web mining detection, direct marketing, and medical diagnostics [22].
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Table 2. Algorithm C4.5 for the construction of DT

RETURN a leaf node with that class
IF no attributes left THEN

RETURN a leaf node with the majority class 
in the data

ELSE
chosenAttribute = SelectWinningAttri-

bute(data, attributes)
NEW NODE decisionNode WITH chosenAttribute

FOR each value in chosenAttribute.VALUES 
DO

subsetData = FilterData(data, chosenA-
ttribute, value)

IF subsetData is empty THEN
RETURN a leaf node with the majo-

rity class in the data
ELSE

NEW NODE child WITH CreateDeci-
sionTree(subsetData, attributes - {chosenAttri-
bute})

ADD child TO decisionNode WITH la-
bel value

END IF
END FOR

RETURN decisionNode
END IF

END FUNCTION

FUNCTION SelectWinningAttribute(data, attributes)
bestAttribute = NULL
bestGain = 0

FOR each attribute IN attributes DO
gain = CalculateGain(data, attribute)
IF gain > bestGain THEN

bestGain = gain
bestAttribute = attribute

END IF
END FOR

RETURN bestAttribute
END FUNCTION

C4.5 Gnal Pseudocode

FUNCTION CreateDecisionTree(data, attributes)
IF all data belongs to a single class THEN

(continued)
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Table 2. (continued)

FUNCTION CalculateGain(data, attribute)
dataEntropy = CalculateEntropy(data)
conditionalEntropy = 0

FOR each value IN attribute.VALUES DO
subsetData = FilterData(data, attribute, 

value)
weight = size of subsetData / size of data
conditionalEntropy = conditionalEntropy + 

(weight * CalculateEntropy(subsetData))
END FOR

gain = dataEntropy - conditionalEntropy
RETURN gain

END FUNCTION

FUNCTION CalculateEntropy(data)
countClass(class) counts the number of exam-

ples in data with the given class label

entropy = 0
FOR each class IN classes DO

probability = countClass(class) / size of 
data

IF probability > 0 THEN
entropy = entropy - (probability * 

log2(probability))
END IF

END FOR

RETURN entropy
END FUNCTION

FUNCTION FilterData(data, attribute, value)
NEW SET subset
FOR each example IN data DO

IF example.attribute = value THEN
ADD example TO subset

END IF
END FOR
RETURN subset

END FUNCTION

According to the Confusion Matrix, True Positive (TP) is a Positive Value that is
Correctly Classified as Positive, then False Positive (FP) is a Negative Value that is
Incorrectly Classified as Positive; also, We Have False Negative (FN) that is a Positive
Value Classified as Negative and FinallyWeHave True Negative (TN)Which Indicates a
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Table 3. Confusion matrix

Actual class

Positive Negative

Predicted class Positive True Positive (TP) False Positive (FP)

Negative False Negative (FN) True Negative (TN)

Negative Value Predicted Classified Negative (See Table 3). in ThisWork, the Confusion
Matrix Was Calculated in a Python Program and Obtained the Subsequent Metrics:
Accuracy = [(TP + TN) / (TP + TN + FP + FN)] × 100, Sensitivity or Recall =
[(TP/ (TP + FN)], Specificity = [TN/ (TN + FP)], Precision = [TP/ (TP + FP)], and
F1 − score = (2 × Precision × Recall)/ (Precision + Recall) See Fig. 3. Besides, We
Performed in the Phyton Program an Area Under the Curve (AUC) with a Cutoff of 0.5,
and Values Were Plotted in the AUC- Receiver Operation Curve (ROC) of DT’s Best
and Worst Performance. Fig. 4.

3 Results and Discussion

The design objective of this DT C4.5 was programmed to identify 3 groups of patients
belonging to the following categories: 1.Healthy subjects, 2. Patientswith uncomplicated
T2DM, and 3. Patients with T2DM with complications; the results are shown in Fig. 2.

Fig. 2. DT C4.5: this tree shows in the leaves (white boxes) where “x” represents the variable
taken into consideration to make a classification; “gini” expresses the degree of impurity; the
“samples” are subjects. Finally, the “value” represents the vector where the first index belongs to
healthy, the second is T2DM uncomplicated, and the last is T2DM complicated subjects.
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The results of the ML classifiers are shown in Table 4, precision, recall, F1 score,
and classification accuracy corresponding to the mean ± SD of the dataset obtained
from the New Hospital Civil Juan I. Menchaca, considering 24 attributes of 82 patients
(Table 1), subdivided in healthy, uncomplicated T2DM and complicated T2DMpatients.
We obtain from DT C 4.5 the best results of all classifiers, showing for precision of 0.77
± 0.04, recall of 0.76 ± 0.03, F1 score of 0.76 ± 0.02 and accuracy of 78% ± 0.02. The
rest of the classifier are described in the Table 4.

Table 4. Performance metrics of ML model

Classifier Precision Recall F1 Score Accuracy

C4.5 (DT) 0.77 ± 0.04 0.76 ± 0.03 0.76 ± 0.02 78% ± 0.02

Adaboost 0.75 ± 0.0 0.75 ± 0.0 0.76 ± 0.0 76% ± 0.0

Bagging 0.73 ± 0.04 0.72 ± 0.03 0.70 ± 0.04 73% ± 0.03

RF 0.74 ± 0.04 0.72 ± 0.03 0.69 ± 0.04 73% ± 0.03

SVM 0.66 ± 0.0 0.66 ± 0.0 0.64 ± 0.0 68% ± 0.0

We also performed a confusion matrix multiclass to determine the classification
problem of 3 groups: healthy subjects, 2TDM uncomplicated, and 2TDM complicated
the results are the average of 200 executions of the DT C4.5.

Finally, we plotted the results of DT C4.5 in T2DM complicated and was analyzed
by ROC curve showing accuracy in the best performance with an area under the curve
(AUC) = 0.88 and the worst performance with AUC = 0.76. Fig. 4.

SeveralMLworks have been developed tomanage databases of patientswith diabetes
mellitus to establish a prediction in the course of the disease; some focus on complicated
T2DM, such as the work of Ljubic et al. [19], who worked with a dataset of more than
1 million people diagnosed with DM over 9 years, they focused on predicting micro
and macrovascular complications of DM. They considered 10 of these and the num-
ber of hospitalizations on average 1 to 4 and employing the Recurrent neural network
(RNN) with a gated recurrent unit (GRU), they obtained an accuracy of 73% (myocar-
dial infarction) and 83% (chronic ischemic heart disease). On the other hand, Agliata
et al. [23] worked with 3 different datasets to diagnose DM2 and included characteristics
such as insulin sensitivity, age, sex, BMI, and glycosylated hemoglobin, among other
parameters; to train their data; they chose a binary classifier trained in scratch which
gave them an area under the receiver operating characteristic curve (AUROC) of 0. 934;
however, these authors mention the importance of the characteristics to be used in a
database; since there are too many variables that may not be considered, they decided
to work with the simplest to obtain from almost any medical history. Pan et al. [24].
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Fig. 3. Confusion matrix for multiclass DT classifier.

They focused on building a multivariate logistic regression model to predict the risk of
diabetic retinopathy in a Chinese population of 2385 patients already diagnosed with
DM,where they built model I with classical predictors such as glycosylated hemoglobin,
systolic blood pressure, ongoing disease, postprandial blood glucose, and the urinary
albumin/creatinine ratio, obtaining an AUROC of 0.703 with an accuracy of 0.79. In
this sense, our database is of Mexican patients, and with variables beyond only clini-
cal, anthropometric, and biochemical data, but also included cellular (interleukins) and
molecular (microRNAs) variables that, to date, there are no similar reports in Mexi-
can patients where DM2 is a severe health problem, our ML model consisted of a DT
C4. 5 which gave us an accuracy of 78%, which for the number of patients in a small
sample shows that it is very efficient at the time of classifying healthy patients with
uncomplicated T2DM and with T2DM with complications.
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Fig. 4. ROC curve analysis for DT C4.5 classifier during the use of the best performance with a
value of AUC = 0.88 and worst performance with a value of AUC = 0.76 for T2DM complicated
class.

4 Conclusion

This work was carried out in Mexican patients with T2DM and is the first to our knowl-
edge in the classification by ML of the complications of the disease itself, as well as
the inclusion of novel cellular and molecular parameters already studied T2DM, such as
proinflammatory and anti-inflammatory interleukins (Il-6, TNF-α, IL-10, and IL-18) and
microRNAs (Mirs-21 and 126) that can regulate gene expression and thus, may become
a therapeutic target in the future; our primary intention is to encourage the existence
of more robust databases with markers that can contribute to a better early diagnosis in
order to avoid the disabling complications of DM2 since it is a worldwide public health
problem. Our future work will be focus on making this database bigger, since this was
only the implementation of the machine learning algorithms as an exploratory classifi-
cation method as well as developing deep learning to discover possible best results with
a larger database.
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Abstract. This project integrates an interface and a prototype that allows the
simulation of vascular procedures, both previously performed at the “Instituto
Nacional de Cardiología Ignacio Chávez”, with the objective that these can work
together and achieve a simulator with greater competitiveness, performance, and
functionality. This simulator incorporates a mechanical, hydraulic, digital, and
imaging system like the one used in fluoroscopy, as well as interchangeable and
personalized anatomical models. The user can operate it manually by using analog
controls or more precise instructions through the interface control panel. By using
this simulator, medical specialists, and residents will be able to practice the place-
ment of various cardiovascular devices and have an approach to specific clinical
cases.

Keywords: simulator · anatomic models · cardiovascular devices

1 Introduction

Cardiovascular procedures pose a significant challenge in the medical field, particularly
within the educational context. This is due to the inherent limitations of the traditional
training approach, which relies on expert-guided supervision. The constraints of this
approach become apparent when considering factors such as the student-to-teacher ratio,
available working hours, the risk stemming from technical complexity, and the legal and
ethical implications [1].

In response to these limitations, alternatives to the traditional teaching approach have
emerged. These options involve the utilization of animals and cadavers as instructional
resources. However, both approaches come with considerable disadvantages. In the case
of using animals for experimental procedures, ethical dilemmas and discrepancies arise,
as the animals used are often healthy specimens, leading to substantial differences in
physiological responses, pharmacological interactions, and disease manifestations com-
pared to patients and their cardiac conditions. On the other hand, the use of cadavers
raises legal implications, and specifically, in the manipulation of a guide through the
radial artery, it becomes hindered by blood coagulation [2].
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Another emerging training method is the use of virtual reality or augmented real-
ity, which is conceptually appealing but doesn’t provide a reliable physical feedback
medium, potentially lacking realism due to current technological limitations [3].

Currently, various research fields have been working with a range of physically
accurate anatomical models, which are based on image capture (Magnetic Resonance
Imaging, Computed Tomography, and Ultrasound) and employ 3D printing technology
with a variety of materials, each with distinct properties and finishes [4, 5]. By applying
thesemethodologies, the capability to generate models in both common and catastrophic
clinical scenarios is attainable. When needed, it is possible to make suitable modifica-
tions to replicate situations like serious medical complexities, like arterial blockage or
a congenital anomaly.

The focus of this study was directed towards the development of a simulator for
transcatheter cardiovascular procedures, which include guided placement of stents. This
simulator was constructed within a controlled environment, resembling real procedure
situations, utilizing 3D printing technology. Furthermore, it was meticulously designed
to comprehensively incorporate critical tools for the procedure, including radial puncture
and motion control for fluoroscopy image acquisition, all without exposure to ionizing
radiation.

2 Materials and Methods

2.1 Segmentation

Segmentation was executed using theMimics software (Materialise. https://www.materi
alise.com/en/healthcare/mimics-innovation-suite/mimics) and with the support of addi-
tive manufacturing, the generation of multiple resin-printed models was achieved (Clear
Resin by Formlabs). The segmented files are processed into the area of interest and
adapted to the inputs and outputs of the hydraulic system (Fig. 1). The integration of
these models with a hydraulic system is essential and will be discussed further, as such
incorporation enables the reproduction of both radial and coronary flows. These models
are interchangeable, allowing for the selection of the most appropriate one according to
the specific scenario of interest.

2.2 Hydraulic System

The hydraulic system is based on circulating water through the segmented model to
simulate flow conditions. To achieve this, two tools were employed: a peristaltic pump
and a set of hoses with outer and inner diameters like physiological values (Average
reported diameter 2.68 ± 0.15 mm [6]). This approach aims to achieve a more realistic
pulsation.

Peristaltic Pump. The choice was made to use a 12V peristaltic pump with a 2-roller
design. The operating voltage was determined within a range of 4 to 7 V, allowing the
generation of simulated pulsations at a frequency comparable to the 60–100 bpm range.
This setting can be modulated to meet specific requirements according to the scenario’s
needs (Fig. 2).

https://www.materialise.com/en/healthcare/mimics-innovation-suite/mimics
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Fig. 1. Aortic artery adapted for integration into the hydraulic system.

Radial Puncture. The puncture process is performed through a simulated artery sur-
rounded by a portion of radial bone, where the hose is routed. This point has been
designated specifically for palpation and insertion of the introducer sheath, followed by
guide wire insertion and device navigation (Fig. 3).

2.3 Motion Axes

The operation of a fluoroscope involves a C-arm that performs movements known as
cephalocaudal and oblique motions. Additionally, there is a linear motion on the bed.
The spectrum of movements covers a range of 90° in the cranial direction, 90° in the
caudal direction (Fig. 4), 90° in the left oblique direction, and 90° in the right oblique
direction (Fig. 5). For this device, a linear bed displacement of 30 cm is controlled. This
measurement is determined as the optimal range to allow comprehensive visualization
of the printed model.

The system features three axes of movement: cephalocaudal, oblique, and linear.
The first two axes can be controlled using a joystick, while the third is operated using
two buttons. It is important to emphasize that all three systems are in constant feedback,
always enabling precise determination of their position.



Simulator for Cardiovascular Procedures 87

Fig. 2. Detailed representation of the comprehensive hydraulic system. The segmented anatom-
ical model of the aortic artery, accurately segmented beforehand. 4-way return configuration for
fluid flow. Internal view of the subsystem dedicated to radial puncture simulation. Includes arterial
pulse simulation and a portion of radial bone for reference. 2-way system arrangement, centered
on air removal within the model.

Fig. 3. System for performing radial puncture.

The cephalocaudal movement is based on a mechanical transmission and a Nema
23 motor, adapted to move an arc where the camera is situated in a range of 0° to 90°
(Fig. 6). A mechanical transmission was incorporated, which also serves to maintain the
position of the arc even when the system is not powered by a power source.



88 T. E. S. Pérez et al.

Fig. 4. The top section depicts the oblique axis of the fluoroscope, while the bottom section shows
the oblique axis of the simulator. In references a) and d), the positive side is observed; in references
b) and e), the neutral position is shown; and finally, in references c) and f), the negative side is
observed.

Fig. 5. The top section depicts the cephalocaudal axis of the fluoroscope, while the bottom section
shows the cephalocaudal axis of the simulator. In references a) and d), the caudal side is observed;
in references b) and e), the neutral position is shown; and finally, in references c) and f), the cranial
direction is observed.

The oblique movement comprises a Nema 17 motor and a camera, anchored to a
housing. With the assistance of the motor and a toothed belt, it’s possible to move the
camera along the arc, providing left and right oblique positions (Fig. 7).

The bed’s movement is designed using a 12V linear actuator at a speed of 10 mm/s.
It’s mounted on an acrylic base, and above it, a box holds the lamp and features a rail
system to allow smoother movement.
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Fig. 6. Cephalocaudal Axis. On the right side, you can observe the transmission mechanism
responsible for supplying the required torque for mobility and stabilization of the arc.

Fig. 7. Oblique Axis. The camera will move along the perimeter of the arc to acquire different
viewing angles. The arc’s configuration is designed to maintain a constant focal point.

2.4 Mechanical and Digital System

Graphical Interface. The interface was designed using Visual Studio Commu-
nity (Microsoft Corporation. https://visualstudio.microsoft.com/es/vs/community/) and
incorporates image acquisition and motion control features (Fig. 8).

The interface provides predefined positions, including right cranial oblique (−30°,
30°), right caudal oblique (−30°, −30°), right neutral oblique (−30°, 0°), left cranial
oblique (45°, 30°), left caudal oblique (45°,−30°), left neutral oblique (45°, 0°), among
others. However, in case, at some point during the simulation, the specialist or resident

https://visualstudio.microsoft.com/es/vs/community/
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Fig. 8. Perspective of the interface in operation. The three axes of movement are controllable,
where the “Center” button resets the three axes to their corresponding neutral coordinates. The
“Enable” option authorizes system control directly from the interface. The first line manages
predefined positions, while the second line enables the preservation of the current position with
its respective identifier. The third line selects a previously established position. On the right-hand
side, the camera display is present, with a button to activate and stop the display. Below this
section, controls for image and video capture and storage in a predefined folder are situated.

identifies a specific useful position, there is an option to save it for accessing it when
needed.

Image Acquisition. With the aim of obtaining images that emulate those acquired
through fluoroscopy, the image acquisition technique in grayscale with backlight sup-
port, known as “Backlight,” was implemented. This strategy involves placing the object
of interest between the camera and a light source, allowing the visualization of its
silhouette through the generation of contrasts. The resulting signal is presented on the
graphical interface in the form of a grayscale image (Fig. 9).

3 Results

The environment has been meticulously designed to replicate the conditions of a trans-
catheter procedure. During the simulation, the medical professional can perform a radial
puncture guided by the cardiac pulse. They can then insert an introducer, guide a catheter
through a real anatomical model assisted by the fluoroscopy-mimicking system, and
position the area of interest for the release of trans-catheter medical devices. This process
is achieved without exposure to ionizing radiation, is repeatable in a brief period, and is
adaptable to any clinical case obtained through imaging techniques such as CT, MRI, or
echocardiography.
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Fig. 9. Comparison between fluoroscopy (a) and its equivalent in the simulator (b). The
representation on the left displays the insertion of a guide in a porcine model.

4 Discussion

The cardiovascular procedure simulation system introduces innovative approaches, such
as precise segmentation of anatomical models and the implementation of 3D printing
techniques. Additionally, it integrates a fluoroscopy system along with radial puncture
technique. It is worth noting that being a design developed by the INC, this system
stands out for its reduced cost compared to commercially available simulators with
similar features. Furthermore, it presents unique attributes, such as the ability to adapt
to any clinical case and the potential to adjust based on current needs. These qualities
make the simulator a highly suitable tool for training physicians in the field of radial
puncture and trans-catheter procedures.

5 Study Limitations

Achieving a complete replication of an environment identical to that of a cardiovascular
procedure is a task of great complexity. The proposed system represents an approxima-
tion to the procedure’s conditions; however, there are opportunities for further improve-
ments. These enhancements could include the use of a blood-analog fluid, precise mea-
surement of pressure and flow velocity, the establishment of a contrast medium injection
system, utilization of more transparent and flexible materials for better visualization,
among other potential areas of improvement.
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6 Conclusions

This work highlights the advantages of incorporating physical simulators for training
and educating professionals. The flexibility to encompass a wide variety of clinical cases
and the ability to adapt the system to changing needs in the medical field make it a highly
valuable tool for training in trans-catheter procedures and radial puncture.

This system marks a step forward in medical education by allowing medical profes-
sionals to practice procedures in a controlled and realistic environment. While there is
still a path to perfection in cardiovascular simulation, current and future advancements
in this field will undoubtedly contribute to the improvement of training and healthcare
in the realm of cardiovascular procedures.
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Abstract. Tissue engineering has managed to revolutionize the transplantation
and regenerativemedicine, it is responsible for developing biomaterials to generate
a promising approach for studying complex physiological processes in vitro. The
design and applicationof biological systems evaluate amicrofluidic platformbased
on organs physiology, modeling the nutrient distribution, and testing potential
implants.

The present investigation aims to design and characterize a biological system
to simulate the microfluidic environment of the bone tissue. The system must pro-
vide the conditions for adequate cell regulation, to achieve this, adhesion, migra-
tion, proliferation, and differentiation are used, as well as the adequate delivery
of bioactive factors such as growth and adhesion.

A novel hydraulic circuit with radial flow and their components were designed
in SolidWorks, then the pieces were calculated with the Navier-Stokes equations
using ANSYS and COMSOL software, to have a laminar environment and their
behavior using microfluidics and cells mimicking the bone structure. The com-
ponents were generated by 3D printing and the additive stereolithography resin
technique.

According to the CFD simulations, it was found that the system had a media
flow of 18.56 nl/s with the smallest pressure of 146.32 mPa our chamber is the
optimum model for the bone cells.

Our microfluidic system’s design shows the flow change can be used to follow
the bone anatomy, which indicates an appropriate irrigation of nutrients for the
cells. The proposed biological system has confirmed to be an adequate model for
the bone tissue with a continuous irrigation of the media.

Keywords: biomaterials · bone tissue · tissue engineering · biological system ·
microfluidic simulation
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1 Introduction

Bone tissue engineering seeks to develop innovative approaches to regenerate and repair
bone defects. The biological system technology provides a platform to mimic the com-
plex microenvironment andmicrofluidic of bone tissue and study its cellular interactions
and physiological processes in function of the structural and functional aspects of the
bone tissue. The key components such as microchannels, cell culture chambers, and per-
fusion systems are discussed, emphasizing their role in creating dynamic and biomimetic
bone tissue models [1].

The aging of the population leads to an increased incidence of bone fractures due to
osteoporosis. Understanding the mechanisms of bone physiology is essential to design
advanced treatments. Bone is a dynamic tissue in continuous formation and resorption
through coordinated communication between osteoblasts (Ob) and osteoclasts (Oc).
Mechanical loads modulate bone architecture and cell physiology and play an important
role in bone tissue homeostasis. Although many in vitro models of Ob/Oc cultures
exist for material analysis, little is known about cell communication under mechanical
stimulation in this system [2].

Around 115 million animals were used in experiments around the world last year,
with most tests being carried out without anesthesia or painkillers, and the toxic sub-
stances cause long-term pain, according to the report. European Coalition to End Ani-
mal Experiments (ECEAE). Mexico spends 10 million on animals for experimentation.
Worldwide, more than 500,000 animals suffer and die each year because of laboratory
tests [3].

The development and characteristics of biologicalmodels, explores the integration of
relevant cell types, such asOb,Oc, andmesenchymal stemcells,within the designed plat-
forms, to avoid the animal experimentation in every experiment. The platform includes
the incorporation of mechanical properties, such as fluid flow, share stress and strain, and
the importance of extracellular matrix components in creating physiologically relevant
bone tissue microenvironments [4].

The strategies employed in design biological models’ considerate aspects of the bone
tissue microenvironment. This includes the integration of vascular networks, the intro-
duction of biochemical gradients, and the simulation of bone remodeling processes. It
discusses the ability of the systems tomimic bone-related pathologies, such as osteoporo-
sis, bone metastasis, and bone infections. The use of this platforms for high-throughput
drug screening, assessment of drug efficacy, and personalized medicine approaches is
also addressed [5].

The challenges associated with bone tissue models, including the need for improved
complexity and scalability, the incorporation of other tissue interfaces like muscle-bone
interfaces, and the integration of patient-specific cells. It also discusses potential future
directions, such as combining biological system models with advanced imaging tech-
niques, multi-organ systems, and the use of bioinks for 3D printing of bone tissues
[6].

For the design of the Bioreactor, the COMSOL Multiphysics software was used
based on the Solidworks design and the ANSYS mesh, The combination of those tools
allowed us to solve the physics problems necessary to carry out the fluid simulation and
control. In the simulation process it is considered the geometry of theBioreactor, the fluid
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physics with their respective boundary conditions and domains, define the simulation
parameters and define and simulate the control strategy of the device [7].

This research presents a design of bone tissue biological system. The models were
designed using SolidWorks, and hydrodynamic simulations were done in ANSYS and
COMSOL afterward. The flow behavior in the irrigation system’s channels were studied
to determine which configuration of pressure and stress were the optimum values to
imitate the anatomy and irrigation of bone microenvironment.

2 Methodology

2.1 Biological System Design

The blood flow in bone tissue, circulates trough a closed cavity where the pressure must
stay constant in the vessels and above the veins. This circulation allows the interchange
of nutrients and minerals among the blood and bone tissue. In other hand, the capillaries
within bone structure have the same anatomic assembly as those located elsewhere in
the body [7].

We design a platform based on bone circulation with two tubes of 2 mm of diameter
for the input and output media, the base is an octagon of 30 mm side and 3 mm wide,
the circular base is 25 mm long and 3 mm wide. The base of the test system is circular
because it refers to an internal part of a bone, the two external parts are for introducing
the cells and in the same way they can be introduced by lifting the lid. The in vitro test
system was designed in an octagon shape with 1 tube at each end using SolidWorks
CAD software to observe cell flow. It has 1 removable lid that prevents the cells from
coming out as shown in Fig. 1), inside it has a tube with holes that allow the cells to
flow.

2.2 System Flow Simulation

The objectives of the flow simulation were to see in which zones of zero flow within
the in vitro test system, the assembled system was exported to the ANSYS software to
obtain the optime mesh for the model and then it was used in COMSOL Multiphysics
to resolve the Navier-Stokes equations to determine the flow fields, speed, and tension
alongside bone tissue.

The simulation carried out allowed us to study the behavior of the fluid, such as the
pressure profiles and velocity in the chamber, with these values it was possible to define
a qualitative range of stresses present in the chamber for different flow values. With
the variable control of flow and stress, it was possible to establish a range in which the
simulation converges. For the validation of the Bioreactor simulation, it was proposed
to design an object with specific characteristics and like that of a human bone tissue.

Once imported the model we can generate their mesh, a volume to represent the
fluid in the channels had to be created. This volumetric body meshed with hexagonal
hexahedral volumetric elements. The elements were refined at the channels. Working
pressure at 1 atm, and a viscous-laminar model to describe the fluid as Newtonian,
therefore, viscosity is considered constant. Theworkingfluidwas setwith a characteristic
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a)                               b)

d)

c)             

Fig. 1. Components of the microfluidic biological system. a) Top view of the system. b) The pipes
and holes of the in vitro test system. c) The top view of the pipes of the in vitro test system. d)
preliminary Flow simulation with inlet velocity of 8.3 × 10–5 m/s, value referred to a peristaltic
pump; and outlet condition at 1 atm.

Pr = 4.34. The boundary conditions were set as: inlet velocity 8.3 × 10–5 m/s. Solver
algorithm was set to Simple, with a Green-Gauss Cell gradient, and residuals were set
to 1 × 10–06. Set was started at the inlet, and 500 iterations as shown in Fig. 2.

2.3 Platform 3D Print

The parts of the biological systemwere 3D printed on a photolithography additive printer
(Creality LR-002) using a photosensitive resin to generate the complex figures in one
piece to fabricate the final test. To complete this, Creality® Chitubox V2.2® slicing
software was used to print the resin parts with the following parameters used for resin
printing:

Layer Height 0.4 mm Bottom/Top, Thickness 0.2 mm Print Speed (mm/s) 6 s, Print
Temp 27 °C, Fan Enable, Cut Bottom of Object 0.0 mm, Overlap 0.15 mm, supports
along the structure 5 mm.

3 Results

The results of the flow simulation are shown in Fig. 3. a) at the entrance and exit is
constant 9 × 10–4 m/s. b) the simulation shows that the flow decreases as it passes
through the pipes. c) top view of the simulation and it is observed how the flow changes
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a)

b)

c)

Fig. 2. Components of the microfluidic biological system meshed, Fluid volume: 1.009169 ×
10−08 m3, Solid volume: 2.716106 × 10−06 m3. a) Volume of the system. b) Generic mesh. c)
Element quality and functional cells.

color. The spiral lines are continuous colors, without turbulent flow, it is observed as
is, ensuring that the cells will not have shear stress. The simulation values were Fluid
volume: 1.009169× 10−06 m3, Solid volume: 2.716106× 10−06 m3, Total cells: 11,913,
fluid cells: 11,913, Fluid cells in contact with solids: 7,132.

3.1 Printed Model

Finally, the images of the printed model are shown in Fig. 4. This prototype could be
probed with a colored liquid to demonstrate the computational results. The system with
the bone cell culture will be on a CO2 incubator to control the gases temperature and
measure the density of living cells and biomass, it allows to monitor critical parameters
continuously and automatically to the changing conditions of the process.
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a)                                                       b)

                                            c)

Fig. 3. Navier-Stokes COMSOL solver of the microfluidic biological system. Flow simulation
components. a) System Volume with conditions. b) Chamber flow fields and their distribution. c)
Vectors fields through the support in the form of the chamber.

a)                                 b)

     c)

Fig. 4. Final prototype printed model of the in vitro test system. The clear resin was selected to
facilitate the visual inspection of the flow and culture.

4 Conclusion

The biological systemwas designed andmanufactured, it will provide a constant laminar
flow, since in the flow lines it can be observed that there were no regions with zero flow,
since a good fluid exchange was carried out, and the cells will not be affected.
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Themicrofluidic technology holds immense potential for advancing bone tissue engi-
neering and regenerative medicine. The ability to create biomimetic bone tissue models
in a controlled and dynamic microenvironment allows for better understanding of bone
biology, disease mechanisms, and drug responses. With continued advancements and
interdisciplinary collaborations, bone tissue models have the potential to revolutionize
personalized medicine, accelerate drug discovery, and improve patient outcomes in the
field of bone health.
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Abstract. Hyperspectral imaging (HSI) is a versatile modality that can provide
a noninvasive tool for cancer detection, image-guided surgery, tissue classifica-
tion, among other applications. In this work, we demonstrate the integration of
hyperspectral imaging, spectral unmixing, and machine learning models to accu-
rately classify tumor and non-tumor tissue from histopathology samples. The
studied database contains 494 images from 13 different patients diagnosed with
glioblastoma. Our approach is based on identifying characteristic spectral signa-
tures for each hyperspectral image by spectral unmixing, and using them as an
input feature vector for machine learningmodels: support vector machine, random
forest, and a voting ensemble. The resulting average accuracy in our evaluation of
four folds was 89.4% that improves the reference value of 85.5%, which was the
best performance in the state-of-the-art. In this way, our proposed methodology
shows promising results to assist in pathological analysis and provide support to
healthcare professionals.

Keywords: Hyperspectral imaging · Machine Learning · Binary Classification ·
Glioblastoma · Spectral Unmixing

1 Introduction

In histopathology, digital imaging is a powerful tool for achieving a systematic evalu-
ation of the studied samples [2]. Nonetheless, different factors affect the evaluations,
such as sample preparation and pathologist expertise. In this sense, machine learning
has recently been suggested in medical applications to avoid bias in diagnosis [4], and
in particular for digital histopathology samples [5]. Unlike traditional images, which
only work with three color channels (Red, Green, and Blue - RGB), hyperspectral (HS)
images provide much more detailed spectral information about the object and its com-
position. Hyperspectral imaging (HSI) is an emerging imaging modality that provides a
noninvasive tool in medical applications: cancer detection, image-guided surgery, tissue
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classifica tions, etc. HSI is a hybridmodality that combines imaging and spectroscopy, by
collecting spectral information at each pixel of a two-dimensional detector array, gener-
ates a three-dimensional dataset of spatial and spectral information, known as hypercube.
In this way, each pixel in the HS image has a unique spec tral signature, which refers
to the pattern or distribution of light intensity across different wavelengths. Through
analyzing these spectral signatures, these images allow the detection and identification
of various pathological conditions [1]. HSI can be incorporated to improve diagnosis, as
the intensity of the light transmitted through the sample could be analyzed beyond the
visible spectrum. Some examples of this trend include the application of deep learning
for the diagnosis of breast cancer cells [6], the use of machine learning for the auto-
matic recognition of colon and esophagogastric cancer [7], and the implementation of
an ensemble of deep neural networks to identify cancer samples in brain tissue [13].

In this work, we focus on utilizing spectral unmixing and machine learning models
(support vector machine with polynomial and radial basis function ker nels, random
forest, and a voting ensemble) to classify HS images of histopathology samples of
brain tissue. A supervised classification approach was employed, where a pathologist
previously labeled the samples in theHSI database as non-tumor and tumor. The database
was organized into four folds to address the variance in the dataset during the learning
stage due to the imbalance in the classes. The input feature vectors for the machine
learning models were obtained by the concatenation of the estimated endmembers from
the spectral unmixing stage. The results obtained were compared with those produced
in [13], where the same database was considered, along with an ensemble of deep neural
networks for classification. Our results show an improvement in the average accuracy
with respect to the state-of-the-art method (89.4% vs. 85.5%).

2 Materials and Methods

The proposed methodology in this work consists of six steps: (i) HSI database, (ii) pre-
processing, (iii) spectral unmixing, (iv) features extraction, (v) training and testing, and
(vi) results, as illustrated in Fig. 1. In this section, we describe each step highlighting
their collective contribution to the overall research objective.

2.1 HSI Database

This research work used a database consisting of human biopsies obtained during brain
tumor resection procedures. The study protocol and consent procedures were approved
by the “Comité Ético de Investigación Clínica - Comité de Ética en la Investigación”
(CEIC/CEI) of “Hospital Universitario de Gran Canaria Doctor Negrin” [8]. The HS
camera was configured with a magnification.

20× and captured images with a size 1004 × 800 pixels. Further details about the
dataset can be found in [8]. After the resection, the samples were diagnosed as glioblas-
toma (GB) based on the World Health Organization (WHO) classification of nervous
system tumors by a pathologist. Regions of interest (ROI) were selected for subsequent
analysis, using the mentioned instrumentation [8], resulting on 494 HS images from 13
different patients (P1, P2, …,P13) with GB. An example of tumor and non-tumor tissue
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samples from the database are illustrated in Fig. 1.(i). In fact, not all patients presented
simultaneously tumor and non-tumor tissue samples. In Fig. 2, the distribution of tumor
and non-tumor HS images is presented. In this way, patients P9 to P13 only contain
tumor tissue samples.

Fig. 1. Diagram of the proposed methodology to classify hyperspectral histopathology images.

2.2 Pre-processing Stage

A pre-processing of the database was performed to adjust the spectral responses of the
HS images, and reduce noise and redundant information. The HS images covered a
spectral range of 400 to 1000 nm with a resolution of 2.8 nm. Thus, the original HS
images had a spatial size of 1004 × 800 pixels with 826 spectral channels. In [8], a
reduction of the spectral bands was proposed to remove redundant information by their
high correlation, which led to a decrease from 826 to 275 channels.

As mentioned earlier, not all patients in the database presented both types of classes
(non-tumor and tumor), nor they have the same number of HS images for each class (as
explained in detail in [8]). This imbalance in class representation, along with the limited
number of patients (just 13 different), presented a challenge for the classification scheme.
To address these issues and mitigate the potential bias and overfitting during the learning
stage, the database was organized into four distinct folds (A, B, C, and D) for cross-
validation, with subsets for training, validation, and test. Folds, A, B, and C included
nine patients for training, one for validation, and three for testing. Meanwhile, Fold
D contained eight patients for training, one for validation, and four for testing. These
folds are illustrated in Fig. 3, with different colors (red, green, and blue) indicating
each subset. All the folds were randomized to ensure that each sample was presented
once in the testing subset, and that patients with both types of labeled data (non-tumor
and tumor) were selected for the validation subset. With this four folds approach, the
database is presented in four different ways to the ML algorithms for cross-validation.
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This perspective follows previous works in [8] and [9], which served as guides for this
study.

Fig. 2. Distributions of tumor and non-tumor HS images acquired from 13 patients (P1,
P2,…,P13).

2.3 Spectral Unmixing

In the field of HS imaging, spectral unmixing (SU) plays a crucial role in analyzing
and extracting information about the fundamental materials present in a scene or image.
By identifying specific spectral signatures known as endmem bers, which represent
the fundamental materials, the unmixing technique uses them as reference points. This
process enables the computation of concentrations or abundances of each component
at pixel level. The resulting abundance maps, like the ones depicted in Fig. 1. (iii),
provide valuable insights into the spatial distribution of materials within the image. This
technique is a valuable tool to understand the composition and characteristics of the
scene or image captured through HSI [10]. Hence, the identification of the fundamental
signatures in the HS image by spectral unmixing allows the implementation of machine
learning models to perform classification tasks. In addition, the computational cost of
the classification task can be reduced through the application of spectral unmixing.

In this study, the SU stage was carried out by using the EBEAE algorithm [10]. Other
unmixing algorithms such as sparse non-negative matrix factorization, non-smooth non-
negative matrix factorization, or their variants could also be applied [11], but EBEAE
was chosen due to its robustness to different types and levels of noise and its low com-
plexity. EBEAE has the ability to estimate the abundances of individual endmembers by
minimizing the approximation error and maximizing their entropy. In addition, EBEAE
normalizes the cost function to mitigate the dependence on the size of the database. The
EBEAE hyperparameters were determined according to the recommendations provided
in [10], and they were set to, ρ = 1 (similarity weight), μ = 0 (entropy weight), error
threshold ε = 1 10−6, and a maximum number of 10 iterations (maxiter). The linear
unmixing process assumed four characteristic components, that is, N = 4, as in [13].
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Fig. 3. Database folds for the 13 patients (P1, P2,…,P13) with subsets for training, validation,
and testing.

2.4 Features Extraction

In the histopathology samples, there are areas without brain tissue where the microscope
light can transmit directly. These areas without tissue do not contain information and
need to be eliminated to avoid bias in the classification process. To address this issue, the
first step is to identify the endmemberwith a flat spectral signature that corresponds to no-
tissue regions, where the microscope light is transmitted directly. Next, this endmember
must be eliminated since it does not provide characteristic information of the sample.
This phenomenon can be easily identified due to the sum-to-one restriction applied by
EBEAE [10], which results in a spectral signature with uniform information across most
spectral bands. In Fig. 4.(i), the green-colored endmember, denoted as endmember 3,
corresponds to the microscope light (roughly flat spectral signature). Another challenge
is that in EBEAE, the order of the resulting endmembers could vary for each HS image.
Therefore, a mathematical method needs to be devised to identify this flat endmember.
For this goal, the Euclidean distance between each resulting endmember and a flat
spectral signature is computed by recalling that there are 275 spectral bands:

Ei =
∥
∥
∥
∥
pi −

1

275
1

∥
∥
∥
∥

∀i ∈ {1, 2, 3, 4} (1)

where pi represents the i-th estimated endmembers by EBEAE, 1 is a vector with just
unitary entries, and ‖.‖ denotes the Euclidean norm. Consequently, for each HS image,
we eliminate the endmember with the smallest value Ei.

Next, the remaining three endmembers were organized in a specific order to define
an overall feature vector for each HS image. To achieve this, we selected a HS image
as a reference in the database and utilized the order of endmembers in this image as a
guide to arrange the remaining ones. In this stage, we used again the Euclidean distance
as a similarity index among endmembers. At the end of this stage, the arranged and
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concatenated endmembers (as visualized in Fig. 4.(ii)) were used as a single feature
vector per HS image. As a final step, the feature vectors were randomly mixed in each
set of the different folds to ensure that the processes were not biased towards any specific
order.

Fig. 4. Features extraction step: (i) Example of the estimated endmembers; and (ii) features
vectors by concatenating the endmembers with the same order.

2.5 Training and Testing

In this study, a supervised approach is employed for the classification task, since each
HS in the database is already labeled as tumor or non-tumor (binary problem) by the
pathologist [8]. Machine learning models have varying strengths and weaknesses, and
their suitability depends on factors, such as the source of the data, the complexity of the
problem, and the specific requirements of the task [12]. For instance, certain classifiers
may excel in handling linearly separable data,while othersmaybemore effective for non-
linear relationships or high-dimensional data. Now, by looking at the endmembers and
input feature vectors in Fig. 4, there is some similarity in the input data for classification
and the vectors are high-dimensional, so a complex nonlinear problem could be expected.
As a result, we focus on two well-known strategies to deal with this complex scenario:
Support Vector Machine (SVM) and Random Forest (RF). In the following, we present
a short description of these classification models:

– SVM is a powerful, versatile, and popular machine learning model. SVMs are par-
ticularly well suited for the classification of complex small or mediumsized datasets
[12]. For nonlinear classification problems, the selection of the kernel can help to
adjust the decision boundaries, for example, polynomial and radial basis functions.
Each of these kernels has hyperparameters that can be adjusted to fit the training
dataset.

– RF is an ensemble of decision trees, generally trained with the bagging method and
based on the wisdom of the crowds paradigm [12]. Therefore, the RF classifier is also
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Fig. 5. Structure of the voting ensemble.

a popular machine learning model that can capture complex relationships between
features and targets.

Three classificationmodels were initially considered: SVMwith a polynomial kernel
(SVM-Polynomial), SVMwith aGaussian radial basis function kernel (SVM-Gaussian),
and RF. Furthermore, to utilize the specific properties of each classifier and enhance the
decision’s robustness, an ensemble of them was also explored, resulting in the consid-
eration of a voting methodology. In this methodology, the prediction is based on the
class that receives most votes [12]. Typically, the voting ensemble outperforms the best
classifier within the ensemble in terms of accuracy. The structure of the voting ensemble
is depicted in Fig. 5. To have the best hyperparameters, we used a Bayesian Optimizer
in this tuning process, and the final values are listed in Table 1. Two principal hyper-
parameters are associated with SVM-Polynomial: the degree of the polynomial kernel
function (PolynomialDegree), and the regularization weight C. The degree of the ker-
nel establishes a compromise between model complexity and computational time, and
the regularization weight C shows an inverse relationship with the margin size of the
decision regions and must be strictly positive. In the case of SVM- Gaussian, there are
two hyperparameters: scaling coefficient of the radial basis function (Gamma), and once
more, the regularization weight C. In this case, Gamma is related to the influence radius
of the support vectors. Finally, for RF, there are three hyperparameters: the number of
estimators (Estimators), the minimum samples split (MinSamplesSplit), and maximum
depth (MaxDepth). The number of estimators corresponds to the number of decision
trees in the forest, while MinSamplesSplit denotes the minimum number of samples
required to split an internal node. Lastly, MaxDepth indicates the maximum depth of
each decision tree [12].
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3 Results

In this section, we discuss the results obtained from the supervised classification process
of the HS images in the database. Every fold proposed in Sect. 2.2 was trained with
different hyperparameters to get the best results in each one. The pre-processing stages
were carried out in MATLAB. Meanwhile, the machine learning classification was per-
formed and evaluated in Python using Scikit-learn [14] to take advantage of the libraries
and tools for this goal.

Table 1. Optimized hyperparameters of the machine learning models.

Classifier Partitions

Parameter Fold A Fold B Fold C Fold D

SVM-Polynomial PolynomialDegree 3 2 3 3

C 1 0.126 120 0.21

SVM-Gaussian Gamma 110 101 800 500

C 8000 9 8 5

Random Forest Estimators 100 140 88 100

MinSamplesSplit 0.015 2 0.001 1

MaxDepth 10 18 3 20

Table 2. Accuracy scores of the machine learning models in the test subset.

Classifier Folds Average Accuracy

A B C D

SVM-Polynomial 95.22 79.27 94.53 95.22 91.06

SVM-Gaussian 93.85 79.67 94.46 92.83 90.20

Random Forest 90.00 77.25 88.92 85.66 85.46

Voting Ensemble 96.51 79.67 94.31 93.09 90.89

Average 93.89 78.96 93.05 91.70 89.40

Reference in [13] 96 79 77 90 85.5

Table 2 presents the accuracy score (%) obtained in each fold with every classifier in
the test subset. Hence, Fold A reached the best performance with the Voting Ensemble at
96.51%, and the average of all machine learning models was 89.40%. However, the best
machine learning model by averaging four folds was SVM-Polynomial, followed by the
Voting Ensemble. Meanwhile, Fold B had the worst performance out of the four folds.
To validate the results, we compared our work with [13], which used the same database
and applied a similar partition methodology, but the classification model is based on
an ensemble of deep neural networks. In the following, the metrics to evaluate the
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performance of the machine learning models in the test subset were: accuracy, precision,
F1-score, sensitivity, and specificity.

Fig. 6. Performance metrics for Fold A with the proposed machine learning mod els compared
to [13] in the test subset.

In Fig. 6, Fold A shows good results and high similarity with the reference scores
in [13]. Among the proposed classifiers, RF exhibited the poorest performance in all
metrics. The reference in [13] showed a clear improvement in precision and specificity,
but in accuracy, all the proposed machine learning models were close to each other.
Meanwhile, in F1-score, SVM-Gaussian achieved top-performance, and in sensitivity,
all the proposed models improved the reference. Hence, the resulting high sensitivity
indicates the ability to accurately identify true positives.

Fig. 7. Performance metrics for Fold B with the proposed machine learning mod els compared
to [13] in the test subset.
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Fig. 8. Performance metrics for Fold C with the proposed machine learning mod els compared
to [13] in the test subset.

Fig. 9. Performance metrics for Fold D with the proposed machine learning models compared to
[13] in the test subset.

Asmentioned earlier, the lowest performance among the four partitionswas observed
in Fold B, where the results are illustrated in Fig. 7. All four machine learning models
and the reference in [13] achieved roughly the same performance in accuracy, precision,
and F1-score. But the proposed models improved sensitivity, and the reference in [13]
reached the best specificity. In overall, the sensitivity rates were relatively higher than
accuracy, precision, F1-score, and specificity suggesting that the proposed models were
more successful in identifying true positives. This observation could be attributed to the
limited number of samples and the imbalanced nature of the database.

Finally, Folds C and D demonstrated the superior performance of our machine learn-
ing models compared to the reference in [13]. Figure 8 shows the results for Fold C,
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where all four proposed machine learning models outperformed the reference. For Fold
D, the performance metrics are illustrated in Fig. 9, where SVM-Polynomial achieved
the highest metrics among all, and improved both the reference and other classifiers in
every metric. It can be inferred that the more robust results observed in Fold D might be
attributed to the difference in the number of samples of each class in every fold, which
can be visualized in Figs. 2 and 3.

4 Conclusions

In this work, the effectiveness of machine learning models in conjunction with SU
techniques has been demonstrated for the classification of HS histopathological images
for tumor tissue diagnosis. The performance metrics obtained from our proposals have
surpassed in most cases the reference performance in [13]. In our study, we obtained
an average accuracy of 89.40%, which improves the previous result of 85.5% in [13].
Moreover, the proposed machine learning models are based on shallow classifiers (SVM
and RF) compared to the scheme in [13]. On average, the best machine learning mod-
els were SVM-Polynomial and the Voting Ensemble (see Table 2). These results open
up exciting possibilities for clinical applications, where our methodology could be uti-
lized to assist in pathological analysis and support healthcare professionals to improve
decision-making processes and patient diagnosis.

Nevertheless, a limitation of this proposal is that specific hyperparameters and inde-
pendent training stages were required for each fold. As future work, we will explore
common hyperparameters in the four folds that could maintain or exceed our perfor-
mance metrics. Besides that we will investigate other pathologies that can be analyzed
using HSI and this classification methodology.
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Abstract. This study focuses on the use of neural networks and clinical
data collected by the Mexican Ministry of Health to classify the risk of
death from COVID-19. A multi-layer perceptron neural network model
was designed, achieving remarkable results with an accuracy of 96.28%,
sensitivity of 99.23%, and an F1 score of 0.9773. The model was opti-
mized through meticulous exploration of various network configurations
and performance enhancement techniques. The results showcase the effi-
cacy of neural networks in predicting the risk of death, allowing health-
care professionals to prioritize treatment and allocate resources more
efficiently. The value of artificial intelligence in the fight against the pan-
demic is emphasized, along with its potential application in diverse geo-
graphical and healthcare contexts. This work contributes to the advance-
ment of predictive models and encourages further research in the fields
of epidemiology and artificial intelligence to combat COVID-19.

Keywords: COVID-19 · Artificial Neural Network · Multi-Layer
Perceptron · Mortality Risk

1 Introduction

The COVID-19 pandemic, has posed an unprecedented global health challenge.
The World Health Organization (WHO) reports that as of June 2023, the virus
has caused the death of over 6.9 million people worldwide, with the actual num-
ber possibly exceeding 20 million [13,15]. Despite the declaration of the national
emergency as concluded, the number of infections and fatalities continues to rise.
In just June 2023, WHO reports 1 million new cases and 5,700 deaths [14], while
the Mexican Government during the same period reports 14,820 new cases and
143 deaths [4].

The pandemic has highlighted the need for more sophisticated data process-
ing techniques to handle the vast amount of generated information. Artificial
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Intelligence (AI), specifically Artificial Neural Networks (ANNs), holds great
potential in these circumstances. ANNs are computational models that mimic
the pattern recognition capabilities of the human brain, enabling the identifica-
tion of complex patterns within extensive datasets [9,10].

In this context, various AI-based models predict patient mortality, aiming
for early at-risk identification. Notable examples include using LASSO regres-
sion and XGBoost to predict mortality from clinical and inflammatory features
[5]; machine learning on lab markers like C-reactive protein and D-dimer for
mortality forecasting [3]; combining demographic, clinical, and lab data in logis-
tic regression achieving high effectiveness [6]; using advanced algorithms like
XGBoost and CatBoost for ventilation and mortality anticipation [16]; a model
combining neural networks and random forests for hospital admission mortality
prediction from blood samples [7]; adopting federated learning across hospitals
to enhance COVID-19 patient mortality prediction [12]; and a risk scoring sys-
tem based on an ANN showing high accuracy in COVID-19 patient mortality
prediction at admission [1].

In contrast to these studies, it is essential to emphasize that several of them
are based on specific hospital datasets or particular regions, potentially limiting
the extrapolation of their findings to broader populations. Furthermore, while
some articles rely on existing laboratory data to construct their models, there
have also been cases where the availability of such data is restricted within the
scope of the proposed research. The lack of laboratory information could hinder
the replication and applicability of the models in diverse clinical settings. These
considerations underscore the importance of addressing data heterogeneity and
the need for accessibility to comprehensive clinical information to achieve robust
and generalizable predictions.

Hence, this research aims to design an ANN capable of capturing patterns
from a dataset encompassing an entire nation, thereby incorporating diversity
and enriching the data. Additionally, it includes data from patients of other
nationalities who were treated in Mexico.

2 Materials and Methods

2.1 Dataset Description and Preprocessing

The data used during this project comes from the open data portal of the
Mexican Ministry of Health [11]. It consists of a CSV file containing a total
of 7, 294, 030 instances and 40 attributes.

Out of the available 40 attributes, the date of death attribute was selected
as the target variable through a labeling process, where, if the date of death
was present, the label death was assigned, and in the absence, the label no death
was assigned. Out of the remaining 39 attributes, 24 were excluded because they
did not provide information related to clinical indicators, such as: registration
ID, birth entity, residence entity, treatment entity, indigenous, among others.
This resulted in a final set of 15 clinical indicators, of which 14 are categorical
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(immunosuppression, hypertension, cardiovascular disease, obesity, gender, intu-
bation, pneumonia, pregnancy, diabetes, chronic obstructive pulmonary disease,
chronic kidney disease, smoking, asthma, and nationality) and 1 is numerical
(age).

Given the objective of this research to develop a classifier for COVID-19 mor-
tality risk, a class balance analysis was conducted. It was revealed that 99% of
the utilized dataset contained instances labeled as no death (coded as 0), while
only the remaining 1% represented instances labeled as death (coded as 1). Due
to this class imbalance, a data reduction technique was employed by randomly
selecting 46, 729 instances from the majority class (category 0), equalizing the
number of available samples in the minority class (category 1). This data reduc-
tion approach resulted in an equal number of instances for each class, totaling
93, 458 instances.

After selecting the instances, a process of data encoding and imputation was
carried out. Since the attributes to be encoded were categorical in nature, ordinal
encoding was applied to them. For the imputation process, mode imputation was
applied to categorical attributes, while for the age attribute, mean imputation
was performed with the decimal part truncated to the nearest integer.

2.2 Search and Selection of ANN Architectures

Inspired by a Multi-Layer Perceptron (MLP) architecture, a heuristic search was
conducted to identify optimal network configurations to achieve the objective of
classifying mortality risk. The search involved modifying various hyperparam-
eters, such as the number of hidden layers, the number of neurons per layer,
dropout regularization, and batch normalization. However, certain hyperparam-
eters, including training epochs, batch size, optimizer, learning rate, and loss
function, remained fixed. The range of values tested for each variable hyperpa-
rameter is illustrated in Table 1, while Table 2 provides the values of the fixed
hyperparameters used during the training process.

Table 1. Set of hyperparameters and values modified during the search for MLP
architectures.

Hyperparameter Tested values

Number of hidden layers 2, 3, 4

Number of neurons per layer 16, 32, 64, 128, 256, 512, 1024

Regularization by dropout Enabled or disabled

Batch normalization Enabled or disabled

As shown in Table 1, the architecture search process encompassed evaluat-
ing various MLPs ranging from 2 to 4 hidden layers. The number of neurons
in each hidden layer spanned powers of 2 from 4 to 10. The ReLU activation
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Table 2. Set of hyperparameters and fixed values during the search for MLP architec-
tures.

Hyperparameter Value

Training epochs 10

Batch size 1024

Optimizer Adam

Learning rate 0.001

Loss function Binary crossentropy

function was consistently applied to all hidden layers. Furthermore, performance-
enhancing techniques like dropout regularization and batch normalization were
flexible options that could be independently enabled or disabled for each hidden
layer within a given architecture. As a result, certain layers could have these
enhancements while others did not, allowing for greater flexibility in optimizing
network performance.

Throughout this search process, a total of 100 unique hyperparameter com-
binations were tested using a holdout evaluation method. From this comprehen-
sive evaluation, the five architectures that exhibited the highest accuracy were
selected. To ensure robustness, these architectures underwent further assessment
via cross-validation in later stages of the analysis.

2.3 Architectures Training and Validation

Performance metrics are crucial tools for evaluating the effectiveness of a classi-
fication model in machine learning. They help us understand how well the model
performs and where improvements can be made.

Five widely used metrics were employed, as commonly found in the literature:
accuracy = TP+TN

TP+FP+FN+TN , sensitivity = TP
TP+FN , specificity = TN

TN+FP ,
F1 − score = 2TP

2TP+FP+FN , and precision = TP
TP+FP [2]. Where: TP, true posi-

tive; TN, true negatives; FP, false positives; FN, false negatives [2].
To obtain reliable performance values, a cross-validation methodology was

employed. The dataset is divided into subsets for training and testing. In k-fold
cross-validation, the dataset is divided into k subsets, and each subset is used
as a test set while the others are used for training [8]. This process is repeated
k times, and at the end, the metrics obtained in each iteration are averaged to
derive the model’s performance. Common values for k are 5 and 10, and in this
project, a 10-fold cross-validation was utilized, resulting in a distribution of 90%
training and 10% testing in each fold.

3 Results and Discussions

Related to the class balancing and data imputation process, a description of
the distribution for each of the utilized attributes can be observed in Table 3
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and Table 4. In these tables, it can be observed that the performed sampling
and imputation process ensures that the data used for analysis constitutes a
representative sample of the original data. In other words, the data preprocessing
performed does not affect the distribution of the data.

Table 3. Distribution of features in original data set.

Feature Original dataset

Non dead Dead

Sex Female (57.0), Male (43.0) Female (40.9), Male (59.1)

Intubed 97 (96.2), 2 (3.7), 1 (0.1) 97 (0.3), 2 (84.2), 1 (14.9), 99
(0.6)

Pneumonia 2 (97.6), 1 (1.4), 99 (1.0) 2 (44.4), 1 (55.5), 99 (0.1)

Age 36 (25–49) 69 (56–80)

Pregnancy 2 (55.0), 97 (43.0), 1 (1.4), 99
(0.6)

2 (40.8), 97 (59.1), 1 (0.1), 99
(0.1)

Diabetes 2 (93.7), 1 (6.0), 98 (0.4) 2 (63.3), 1 (36.3), 98 (0.4)

COPD 2 (99.1), 1 (0.5), 98 (0.4) 2 (99.2), 1 (7.4), 98 (0.4)

Asthma 2 (97.7), 1 (1.9), 98 (0.4) 2 (98.0), 1 (1.7), 98 (0.3)

INMUSUPR 2 (99.1), 1 (0.5), 98 (0.4) 2 (95.0), 1 (4.6), 98 (0.4)

Hypertension 2 (91.2), 1 (8.5), 98 (0.4) 2 (55.8), 1 (43.8), 98 (0.4)

Cardiov Desease 2 (98.8), 1 (0.8), 98 (0.4) 2 (91.2), 1 (8.4), 98 (0.4)

Obesity 2 (93.6), 1 (6.0), 98 (0.3) 2 (88.7), 1 (11.1), 98 (0.2)

CKD 2 (98.9), 1 (0.7), 98 (0.4) 2 (87.6), 1 (12.0), 98 (0.3)

Smoking 2 (95.5), 1 (4.2), 98 (0.4) 2 (91.2), 1 (8.4), 98 (0.4)

Nationality MX (99.3), USA (0.3), Others
(0.4)

MX (99.7), USA (0.1), Others
(0.2)

Categorical features are expressed as ‘label (%)’. Feature ‘age’ is
expressed as ‘mean (IQR)’.
Abbreviations: IQR, Interquartile range; Cardiov desease, Car-
diovascular Desease; INMUSUPR, Immunosuppression; CKD,
Chronic kidney disease; COPD, Chronic obstructive pulmonary
disease.
Labels: 1, Yes; 2, No; 97, Not Apply; 98, Unknown; 99, Unknown.

The resulting metrics from the 10-fold cross-validation can be observed in
Table 5, presenting the mean values and their corresponding standard deviations
(std).

Based on the findings presented in Table 5, it is noticeable that the results
obtained for each of the models exhibit slight variations. Therefore, an ANOVA
test was applied to determine whether there is a significant difference among the
various metrics. This statistical test yielded a p-value of 1.00, indicating that
there is no significant difference in the performance of each model.

These conditions of non-significant difference led to the selection of the model
with lower complexity as the best model. Consequently, the third model was
chosen as the best. The architecture proposed by the third model is summarized
in Table 6, where we can observe the number of layers used, as well as their
respective sizes.
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Table 4. Distribution of features in a sampled data set.

Feature Sampled dataset

Non dead Dead

Sex Female (57.1), Male (42.9) Female (40.9), Male (59.1)

Intubed 97 (96.2), 2 (3.7), 1 (0.1) 97 (0.8), 2 (84.2), 1 (14.9)

Pneumonia 2 (98.6), 1 (1.4) 2 (44.5), 1 (55.5)

Age 36 (25–49) 69 (56–80)

Pregnancy 2 (98.6), 1 (1.4) 2 (99.9), 1 (0.1)

Diabetes 2 (94.1), 1 (5.9) 2 (63.7), 1 (36.3)

COPD 2 (99.4), 1 (0.6) 2 (92.6), 1 (7.4)

Asthma 2 (98.1), 1 (1.9) 2 (98.3), 1 (1.7)

INMUSUPR 2 (99.5), 1 (0.5) 2 (95.4), 1 (4.6)

Hypertension 2 (91.4), 1 (8.6) 2 (56.2), 1 (43.8)

Cardiov desease 2 (99.1), 1 (0.9) 2 (91.6), 1 (8.4)

Obesity 2 (93.8), 1 (6.2) 2 (88.9), 1 (11.1)

CKD 2 (99.2), 1 (0.8) 2 (88.0), 1 (12.0)

Smoking 2 (96.1), 1 (3.9) 2 (91.6), 1 (8.4)

Nationality MX (99.2), USA (0.3), Others (0.5) MX (99.7), USA (0.1), Others (0.2)

Categorical features are expressed as ‘label (%)’. Feature ‘age’ is expressed as ‘mean (IQR)’.

Abbreviations: IQR, Interquartile range; Cardiov desease, Cardiovascular Desease; INMUSUPR,

Immunosuppression; CKD, Chronic kidney disease; COPD, Chronic obstructive pulmonary dis-

ease.

Labels: 1, Yes; 2, No.

Table 5. Comparison of the performance metrics obtained in the cross-validation.

Model Accuracy [%] Sensitivity [%] Specificity [%] Precision [%] F1-score

Mean Std (×10−5) Mean Std (×10−5) Mean Std (×10−5) Mean Std (×10−5) Mean Std (×10−5)

Model 1 97.68 9.2 99.16 29.9 96.31 16.0 96.31 16.0 0.9771 9.4

Model 2 97.69 4.2 99.22 5.5 96.28 5.2 96.28 5.2 0.9773 4.2

Model 3 97.70 8.1 99.23 24.1 96.28 16.4 96.28 16.4 0.9773 8.1

Model 4 97.68 9.0 99.20 22.8 96.28 15.4 96.28 15.4 0.9772 9.0

Model 5 97.69 33.4 99.22 68.2 96.27 12.9 96.27 12.9 0.9773 33.6

Table 6. Description of the architecture with the best performance obtained.

Layer Units Activation Dropout Batch normalization

Input 15 Linear False True

Hidden 1 256 ReLu False False

Hidden 2 128 ReLu False False

Output 1 Linear False False

Lastly, taking the best model as the reference (model number 3), a compari-
son was conducted with the reported metrics from other algorithms implemented
for similar purposes as in the present study. This comparative analysis of metrics
is presented in Table 7.

As shown in Table 7, the architecture proposed in model 3 outperforms the
metrics reported by other state-of-the-art algorithms. However, it’s important
to highlight that this comparison of metrics may be subject to biases, as each
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Table 7. Comparison of the best model obtained against the best ones found in the
state of the art.

Article Data Algorithm Accuracy Sensitivity Specificity Precision F1-score AUC

Provider [%] [%] [%] [%] [%]

Our best model Secretaria de Salud México* MLP 97.70 99.23 96.28 96.28 0.97 -

Booth et al. [3] University of Texas Medical Branch SVM - 91.00 91.00 - - 93.00

Guan et al. [5] Wuhan China Hospitals XGBoost - 85.00 - 90.00 0.90 -

Hu et al. [6] Tongji Hospital, Wuhan RF - 91.40 76.00 - - 92.20

Yu et al. [16] Beaumont Health Catboost 80.3 - - 79.00 - 85.00

Ko et al. [7] Hospitals from China and Korea* DNN+RF 93.00 92.00 93.00 - - -

Vaid et al. [12] Mount Sinai Health System MLP 78.00 80.50 70.20 - 0.32 83.60

Abdulaal et al. [1] West London Teaching Hospital ANN 86.25 87.50 85.90 60.87 - 90.12

* Open access dataset
The symbol - indicates that the information is not provided or is not calulated.
Abbreviations: RF, Random Forest; XGBoost, Extreme Gradient Boosting; DNN,
Dense Neural Network; SVM, Support Vector Machine.

research study employs different datasets, which in turn vary in the number of
instances and attributes used.

4 Conclusions

This study demonstrates the potential and effectiveness of ANNs in accurately
predicting the risk of COVID-19 mortality. By leveraging tabular data collected
from the healthcare sector in Mexico, we successfully developed and trained a
model that excels in performance evaluation metrics, exhibiting high precision
and accuracy.

The detailed and meticulous methodology, which encompassed an extensive
exploration of MLPs and advanced performance enhancement techniques, played
a pivotal role in the success of this project. The evaluation process, utilizing the
holdout method followed by cross-validation on the most promising architectures,
facilitated robust model optimization and validation.

With an impressive accuracy of 97.70%, notable sensitivity of 99.23%, an F1
score of 0.9773, precision of 96.28%, and specificity of 96.28%, the final model
showcased outstanding performance across all metrics. These exceptional out-
comes underscore the potential of neural networks and artificial intelligence in
the realm of healthcare and epidemiology.

In conclusion, this work highlights the significant contribution of artificial
intelligence in the battle against the COVID-19 pandemic. While tailored to the
Mexican context, this study holds immense potential for application in other
geographical and healthcare settings. This approach has the potential to become
a valuable tool for healthcare professionals worldwide, as it aims to utilize readily
accessible clinical parameters from electronic health records, assisting in guiding
treatment decisions and enhancing patient outcomes.

References

1. Abdulaal, A., Patel, A., Charani, E., Denny, S., Mughal, N., Moore, L.: Prognostic
modeling of COVID-19 using artificial intelligence in the United Kingdom: model



Classification of COVID-19 Mortality Risk 119

development and validation. J. Med. Internet Res. 22(8), e20259 (2020). https://
doi.org/10.2196/20259

2. Aceves Fernández, M.A.: Inteligencia artificial para programadores con prisa. Uni-
verso de Letras (2021). ISBN 9788418854613

3. Booth, A.L., Abels, E., McCaffrey, P.: Development of a prognostic model for
mortality in COVID-19 infection using machine learning. Mod. Pathol. 34(3), 522–
531 (2021). https://doi.org/10.1038/s41379-020-00700-x
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Abstract. Manual segmentation is still the gold standard in hippocampal seg-
mentation due to its precision. However, it requires a considerable amount of
time. Convolutional neural networks offer a less resource-intensive alternative.
In this study, we propose a parallel convolutional neural network architecture for
segmenting the hippocampus in patients with epilepsy and healthy patients based
on magnetic resonance images. Our network design resembles a wavelet filter
bank but utilizes adaptive filters generated by convolutional layers. By employ-
ing a limited number of convolutional layers, our approach achieves improved
computational efficiency compared to existing network models in the literature.
The performance evaluation was conducted using the Jaccard index, Dice coeffi-
cient, sensitivity, and precision, and compared to the widely used U-Net network
segmentation. The results, based on similarity metrics, indicate that the parallel
network demonstrates higher predictive similarity to the test dataset, achieving a
precision score of 0.80 outperforming the U-Net network.

Keywords: Convolutional Neural Network · Hippocampus Segmentation ·
Wavelet

1 Introduction

Around 50 million people in the world experience epilepsy, making it one of the most
common neurological disorders, and organizations such as the World Health Organiza-
tion recognize it as a major health problem. One of the most common form of human
epilepsy is temporal lobe epilepsy. Nowadays, manual segmentation software allows
professionals to perform automatic hippocampus segmentation in the temporal lobe
in magnetic resonance imaging for epilepsy detection. These methods are costly and
time-consuming, so neural network-based solutions have been used instead. The U-Net
architecture is often used as the base network in several models for image segmentation
tasks in the biomedical field [1–3].

In 2021, in [2] a network employing the U-Net architecture was introduced. In their
work several alterations were implemented to the original U-Net structure: residual
connections were integrated between the convolutional block’s input and output, to each
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convolutional layer, batch normalization was used, and instead of utilizing a single
input, 2D adjacent patches were employed. The devised approach underwent training
and validation using the HCUni-camp database as outlined in their study. Likewise, the
method presented by [3] in 2019 utilized a 3D U-Net with a fusion of the anatomical
planes’ outputs, which incorporates different segmentation and error correction steps
employing replacing and refining networks. Finally, the Quick Nat software from [4]
uses various 2DU-Net approximation for each image orientation andmasks aremanually
refined. Free Surfer software is used for auxiliary data augmentation.

Prior research has showcased the utilization of intricate and resource-intensive net-
works for segmentation tasks, such as U-Net. These networks often pose challenges
in terms of implementation, particularly when integrating algorithms into embedded
systems or when dealing with volumetric data that necessitates a specialized server for
processing. The complexity and computational demands of these networks impede their
practicality in real-world scenarios, where efficiency and resource utilization are cru-
cial. Additionally, the need for specialized hardware or dedicated servers for processing
volumetric data further adds to the complexity and cost of implementing such segmen-
tation algorithms. Addressing these limitations, our study aims to explore alternative
approaches that prioritize simplicity and computational efficiencywithout compromising
segmentation accuracy [5–7].

Hereby,we introduce a 2DParallel convolutional neural network (CNN) for automat-
ing hippocampal segmentation forMRI images of the temporal lobe. Our proposed archi-
tecture exhibits several advantages over existing models, such as the well-known U-Net.
Notably, our network comprises fewer components, resulting in improved computational
efficiency. Moreover, it surpasses the time-consuming manual segmentation process in
terms of speed. One key feature of our architecture is the utilization of multiple channels
to process the input image. Each channel applies filters of varying sizes, allowing us to
capture diverse levels of detail comparable to a wavelet filter bank. However, unlike fixed
wavelet filters, our adaptive filters are dynamically determined through the convolutional
layers. This approach enables our network to adapt and extract relevant features from
the input image, optimizing the accuracy of the segmentation process. By incorporating
these adaptive filters within our architecture, we enhance the network’s ability to capture
intricate hippocampal structures and boundaries more effectively. By proposing this 2D
Parallel CNN, we aim to provide a more computationally efficient and accurate solution
for hippocampal segmentation in MRI images.

2 Methods

In this section, we provide a comprehensive description of the Parallel and U-Net archi-
tectures, along with the preprocessing steps, training process, and evaluation techniques
utilized in our study.

2.1 Database

Several databases were searched on the Kaggle site. The Hippocampus Segmentation in
MRI Image database was selected, which contains 50MRI images in ANALYZE format
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with T1W weighting, from 40 epileptic and 10 non-epileptic patients. A magnetic field
of 1.5 T was applied to 20 epileptic and 10 non-epileptic subjects, with the remaining
subjects a 3 T magnetic field was used: in both cases with impaired recovered gradient
echo sequence (SPGR).

In Fig. 1 is depicted the anatomical planes in a sample from the set of images from
the database. Note that the following is included for segmentation, subiculum, head,
body, and tail of the hippocampus. In contrast, the alveus and fimbria were not included:
neither the amygdala nor the temporal horn of the lateral ventricle [8].

(a) (b) (c)

Fig. 1. MRI from the database. (a) Sagittal, (b) Coronal and (c) Transverse slices.

2.2 Preprocessing

Originally the database contained images size 516. However, the images were modified
with a resize function to 128 × 128, to speed up the training and evaluation of the
networks. Only the coronal slices were chosen, in a range of 40 to 70 slices, where
the hippocampal segmentation is best appreciated. Figure 2 shows both images already
modified. Additionally, the label’s set images were binarized with a threshold of 0.5.
Finally, data partitioning was performed. The train_test_split function was used on a
total of 755 images, to obtain a test set of 90% and a training set of 10%.

(a) (b)

Fig. 2. Images obtained after preprocessing. (a) Original coronal slice (b) Hippocampal mask
resized segmentation.
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2.3 Architecture for Segmentation

To accomplish the hippocampus segmentation,we proposed amodified and adapted deep
learning network architecture based on the framework presented in reference, [9, 10].
Figure 3 shows a schematic of the network. Our architecture consists of three channels,
each incorporating a total of nine convolutional layers. The purpose of utilizing multiple
channels is to process the input image using filters of varying sizes, enabling us to
capture different levels of detail akin to a wavelet filter bank. However, unlike fixed
wavelet filters, our adaptive filters are obtained through the convolutional layers.

Specifically, the three channels operate at different resolutions to extract distinct
representations from the input image. The first channel operates at a coarse resolution
using a 9 × 9 filter, enabling the acquisition of broader contextual information. The
second channel operates at a medium resolution using a 4 × 3 filter size, facilitating
the extraction of intermediate-level features. Lastly, the third channel employs a fine
resolution with a 2 × 2 filter size, allowing for the capture of fine-grained details.

The information from each channel is then concatenated and fed into a series of
convolutional networks. By incorporating multiple channels, we aim to obtain diverse
representations of the input signal, which in turn aids the final layers of the network in
accurately segmenting the different regions of the hippocampus.

The sigmoid activation function is employed in the network. The rationale behind
this is worth noting. It facilitates the tendency of the output image to become binary,
which aligns perfectly with the requisite for our specific two-class segmentation.

Fig. 3. Parallel architecture.

To compare the proposed network, we used a U-Net, with the following attributes.
For the contracting path, a Conv2D layer of 32 kernels of size 3× 3with ReLU activation
was used, followed by aMaxPooling layer of size 2× 2. Another three layers were added
for the downstream phase, with 64, 128, and 256 filters of the same size as the input layer,
with their respective reduction layers. The intermediate layer also consisted of Conv2D
using 512 kernels of size 3× 3 with ReLU activation. For the expansion pathway, three
layers with 64, 128, and 256 filters of the same size as the input layer were used, with
their respective up sampling layer, which was performed with the Conv2DTranspose
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function, with 25 filters of size 2× 2. Finally, the output layer consisted of a convolution
with a filter of size 1 × 1 with sigmoid activation.

Both networks employed as loss function the binary crossentropy, and as optimizer
the Adam algorithm, and accuracy metric. In the training phase of the U-Net network,
it underwent 70 epochs, a batch size of 50 and with a 0.001 learning rate. On the other
hand, the second network underwent a longer training period of 400 epochs, a batch size
of 40 and with a 0.0001 learning rate. The choice of binary crossentropy loss function
is because the models were trained to perform binary classification tasks in this case
the pixels were classified into two classes: hippocampus or not. The Adam optimizer,
known for its efficiency and ability to handle large-scale optimization problems, was
employed to update the weights of the network in the training.

Dice coefficient, Jaccard index (IoU), sensitivity and precision were obtained to
assess the performance of both networks.

3 Results and Discussion

This section presents the results from the networks with 697 samples from the training
set, of which 20% was used as the validation set. The U-Net was trained with 70 epochs
and the parallel network with 400 epochs.

3.1 Test Set Result

We compare the coronal slices image, and the results of the hippocampal segmentation
predictions of the images with higher accuracy, with the masks of the U-Net test set
in Fig. 4. Both show the segmentation of the left and right lobes of the hippocampus.
However, in the test set the edges are well defined while in the predictions it is seen to
take neighboring pixels belonging to the amygdala as part of the hippocampus.

(a) (b) (c)

Fig. 4. Comparison of the A) coronal slices, B) the hippocampal segmentation from the test set
and C) the predicted segmentation mask of the U-Net network.

Analogous, Fig. 5 put side by side the coronal slices image, its corresponding seg-
mentation from the test set and the prediction made by the parallel network. The seg-
mentation of both hippocampal lobes can be distinguished in yellow, where the contours
are more similar to the test set compared to the first network, however, it can be seen
that the network segmented pixels corresponding to the amygdala.
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(a) (b) (c)

Fig. 5. Comparison of the (a) coronal slices, (b) the hippocampal segmentation from the test set
and (c) the predicted segmentation mask of the parallel network.

3.2 Evaluation Metrics

Table 1 reports the average values of the evaluation metrics obtained by the U-Net and
parallel network. In contrast, Table 2 shows the average values obtained by using two
automatic segmentation algorithms to predict segmentation: Classifier Fusion software
and Labelling (CFL) and Brain Parser using the same database The U-Net and paral-
lel convolutional neural networks evaluation metrics have similar values for the IoU
segmentation metrics and the Dice coefficient to those resulting from using the two
segmentation algorithms CFL and Brain Parser. In the case of the parallel neural net-
work, the average in the segmentation coefficients is higher, indicating a more accurate
segmentation. In the case of the sensitivity metric, a value of 0.92 was reported when
using Brain Parser, higher than that achieved in the two proposed neural networks. On
the other hand, when comparing the precision of the two designed neural networks, it is
observed that higher values were achieved than those obtained by the algorithms.

Table 1. Evaluation Metrics of U-Net and Parallel networks on the test dataset

Architecture IoU Dice Coefficient Sensitivity Precision

U-Net Mean 0.48 0.60 0.61 0.68

SD 0.21 0.22 0.25 0.19

Parallel Mean 0.63 0.76 0.75 0.80

SD 0.12 0.10 0.12 0.13

In addition, the work in [2] obtained a Dice of 0.71 using Quick Nat network [4], a
Dice of 0.76 for Ext2D, and a Dice of 0.74 for Hippodeep [12]. However, these networks
were using a different database they were not included in Table 2.

The value obtained in the metrics is relatively low due to the smaller area to be
segmented in each image concerning the entire image; consequently, the loss function
obtains a good value even when the hippocampal pixels have not been segmented since
the rest of the pixels (background) are themajority.An essential factor for segmentation is
image quality. In this case, the current resolution of the images, 0.78× 0.78× 2.00mm3,
does not allow adequately differentiating the edges so that the hippocampus blends with
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Table 2. Evaluation Metrics of CFL and Brain Parser algorithms on the test dataset [8].

Algorithm IoU Dice Coefficient Sensitivity Precision

Brain Parser Mean 0.47 0.64 0.92 0.50

SD 0.06 0.06 0.06 0.08

CFL Mean 0.60 0.75 0.74 0.77

SD 0.07 0.07 0.10 0.07

the amygdala. This causes a lowerDice coefficient due to false positive cases. In addition,
the presence of a high number of anisotropic voxels makes segmentation difficult. Other
factors are intrinsic or extrinsic lesions such as hippocampal atrophy, which affect the
hippocampal texture area [10, 11].

To achieve the best contrast and higher resolution in structural MRI in patients with
epilepsy is recommended anMRI basic protocol that includes 3D-T1 sequences, coronal
T2 and FLAIR slices, and axial FLAIR and T2 slices.

4 Conclusion

The gold standard for hippocampal segmentation has long been manual segmentation,
primarily due to its high precision. However, this method is time-consuming, requiring a
significant investment of time and effort. To address this issue, CNNs have emerged as a
promising alternative that significantly reduces the time required for segmentation. In this
study, two specific network architectures were compared: 1) the U-Net architecture, and
2) a Parallel architecture. Both networks aimed to perform hippocampal segmentation
usingmagnetic resonance imagingdata obtained fromboth epileptic andhealthypatients.
To compare the performance of the two models, evaluation metrics such as the IoU and
Dice coefficient were utilized.

The U-Net network yielded the following metrics: a mean IoU value of 0.48, an
average Dice coefficient of 0.60, an average sensitivity of 0.61, and a precision of 0.68.
On the other hand, the parallel network demonstrated superior performance, with amean
IoU value of 0.63, a mean Dice coefficient of 0.75, an average sensitivity of 0.75, and a
precision of 0.8. These results clearly indicate that the parallel network outperforms the
U-Net network in terms of producing more precise segmentations of the hippocampus.

However, despite these encouraging findings, there is still room for improvement to
enhance the overall reliability of the developednetworks. For instance, it is recommended
to augment the training dataset by including a larger number of data samples specifically
obtained from the hippocampus of epileptic patients. Additionally, adopting an imaging
protocol that provides higher resolution images could potentially improve the accuracy
of the segmentation. Moreover, incorporating sagittal slices into the training process
could lead to more precise delineation of the hippocampal boundaries, particularly in
capturing the leading edges.

By addressing these suggested improvements, the performance and reliability of the
networks could be significantly enhanced, making them even more valuable tools in the
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field of hippocampal segmentation. Continued research and development in this area
are vital to refine these neural network models further and unlock their full potential in
medical image analysis applications.
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Abstract. The creation of a diagnostic exam for biomedical engineering under-
graduate students using virtual agents based on GPT language models is analyzed
in this work. Thirty-nine eighth-semester students answered a 20-question exam
generated by ChatGPT-3 covering the topics of acquisition, amplification, pro-
cessing, and visualization of biomedical signals encompassing different levels of
thinking according to the taxonomy of Bloom, including the application, analysis,
and evaluation levels. Three academic experts assessed the quality of the questions
based on clarity, relevance, level of thinking, and difficulty. Also, difficulty and
discrimination indexes and Rasch analysis were calculated. Students obtained an
average grade of 5.91, with a standard deviation of 1.39 points. Subject reliability
was 0.599, and the p-value for the fit of the model of Rasch was 0.017. High cor-
relations between some questions were observed. Based on their difficulty, a few
questions could be considered irrelevant. The Wright competency map showed a
good distribution on the ability scale with some redundancies and gaps. In conclu-
sion, virtual agents have great potential to create diagnosis exams in biomedical
engineering. However, it is necessary to consider their limitations and conduct a
rigorous evaluation of the quality and reliability of the questions generated.

Keywords: ChatGPT-3 · education · biomedical engineering · teaching ·
artificial intelligence
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1 Introduction

Artificial intelligence and virtual agents based on GPT language models have recently
gained relevance in academia [1]. Texts on specific academic topics can be generated
by these tools facilitating the teaching and learning process. Their use allows academics
to focus on essential tasks through time savings [2]. These tools can simplify tasks for
scholars and improve their efficiency by making summaries and translating information
[3]; Virtual agents can help students learn by acting as tutors and answering their ques-
tions. For example, in microbiology, ChatGPT-3, a virtual agent based on GPT language
models, has proven to be effective for automatically answering questions, providing
students with accurate and relevant information [4].

However, scholars must know the limitations and potential biases of virtual agents.
Although the information generated by these tools may seem authentic to a not fully
trained reader, such as a student-in-training, it is essential to recognize that ChatGPT
needs help interpreting and understanding the content profoundly, which can probably
cause it to generate incorrect information [5]. Thus, there is concern about the reliability
and possible biases of virtual agents since these tools are trained on large amounts of
data and may reflect the tendencies present in that data. Therefore, it is essential to
verify the facts of all virtual agent statements and be aware of the possibility of incorrect
content. Another reported aspect is the tendency of virtual agents to generate information
not based on actual events, known as “hallucinating” [6]. Therefore, it is necessary to
exercise critical judgment when evaluating the text generated by virtual agents and use
reliable sources to contrast the information.

Despite these considerations, the use of virtual agents has the potential to increase
scholarly output. These tools can help in the creation of questionnaires. These agents
have been used in medicine to organize material and generate and correct texts [7]. Thus,
virtual agents have potential benefits for the academy, such as the generation of exams;
however, their limited interpretation capacity, biases, and errors must be considered, so
it is essential to verify the information and use a critical approach to evaluate its content.
Therefore, this work aims to evaluate the use of virtual agents based on GPT language
models to create diagnostic tests for biomedical engineering courses. This will be done
by analyzing the quality of the questions generated.

There aremultiple reports exploring the use of ChatGPT to answer quizzes. Although
some authors propose the creation of questions, only one have tested this hypothesis by
creating multiple-choice questions. The study compared various virtual agents to gen-
erate reasoning-based multiple-choice questions in medical physiology [8]. The authors
found that virtual agents require improvement and that each tool had limitations, as Bing
developed less valid and ChatGPT less complex questions. This work contributes to the
field of biomedical engineering education by exploring the potential of virtual agents in
creating personalized diagnostic tests at different cognitive levels. The work validates
the quality of the exam and considers practical issues. The findings of the article could
improve assessmentmethods in biomedical engineering education to improve the quality
of education for students in this field.
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2 Methodology

The methodology used in this study was based on the ChatGPT-3 virtual agent due
to its more equitable and unrestricted access compared to more recent models such as
ChatGPT-4. The study aimed to create a 20-question multiple-choice diagnostic exam
for biomedical engineering students in their final year before the biomedical measure-
ments course. The biomedical measurements course focuses on designing instruments
for electrophysiological signal measurements to support the clinical diagnosis of vari-
ous pathologies. The course is part of the curriculum line of applied engineering. The
questions evaluated topics related to the acquisition, amplification, processing, and visu-
alization of biomedical signals, which consider different levels of thinking according to
the taxonomy of Bloom, including the application, analysis, and evaluation levels. An
example of a prompt for ChatGPT-3 to generate questions of analysis level is shown in
Fig. 1.

Fig. 1. Example of a prompt for ChatGPT-3 to generate questions of analysis level.

The exam creation process began with a researcher reviewing the content and select-
ing twenty out of thirty questions generated by the virtual agent based on their clarity,
relevance, level of thinking, and difficulty. Subsequently, the selected questions were
captured in a question bank using the Moodle learning platform. With this bank of ques-
tions, the examwas created, where each question and its response optionswere presented
individually and sequentially, with a maximum resolution time of 20 min.

The examwas applied to all students in the last year of a degree program inbiomedical
engineering, certified according to CACEI. The quality of each question was evaluated
by an external sample of academic experts in the subject who had training in biomedical
engineering and at least five years of teaching experience related to the topics to be eval-
uated. The consistency of the evaluators was calculated using the Intraclass correlation
coefficient (ICC).

Academics were asked to rate the clarity, validity and relevance, level of thinking,
and difficulty of each question and answer through a survey using a standardized form in
Word. The document contained a supporting explanation for each domain to be assessed.
Clarity and relevance were assessed using a dichotomous variable (yes/no), the thinking
levelwas classified according to the levels ofBloom(application, analysis, or evaluation),
and the difficulty was classified as low, medium, or high.

General descriptive statistics were performed for test subjects and scores. The diffi-
culty and discrimination indexes were calculated for each question. The Rasch analysis
was carried out in the free software Jamovi [9], where the reliability of the subjects, the
p-value for the model fit, the correlation matrix of all the exam questions, and the skills
map of Wright for the test were calculated. The difficulty index measures the difficulty
of the question calculated by dividing the number of students who answered the question
correctly by the total number of students. The discrimination index measures the ability
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of questions to distinguish between high and low-achieving students. Subject reliability
is a measure of the consistency of students in their responses. The question correlation
matrix shows the correlation between all questions and may indicate that a pair of ques-
tions measure the same thing. The Wright Skill Map is a graphical representation of the
relationship between student skills and the difficulty of test questions. The ability and
error in estimating item ability measures how well the Rasch model estimates the skills
of students. The fit of the answer to each question (infit) and the general fit of all the
answers (outfit) to the model indicates how well the question fits the model.

3 Results

The 20-question diagnostic exam was applied to 39 eighth-semester biomedical
engineering Spanish-speaking students (see Fig. 2).

Fig. 2. Description of the 20 questions obtained by ChatGPT for the diagnostic exam. Analysis,
application, and evaluation questions are coded as A, Ap, and E.

The average grade obtained on the exam was 5.91, with a standard deviation of 1.39,
in a total score range of 3.00 to 9.00 points. The examwas designed to assign half a point
to each correct answer with a maximum total score of 10 points. The examwas written in
English. Some students needed help with an English written exam. Students were helped
by paraphrasis and using synonyms to clarify questions. All questions were classified
as relevant by the three experts. Nine questions were related to the amplification topic,
five to acquisition and processing, and one to display. Of the 20 questions, ten selected
questions corresponded to the analysis level of thinking (A01 to A10) and five to the
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application and evaluation levels (Ap01 to Ap05 and E01 to E05, see Fig. 3). There was
no consistency among evaluators regarding the clarity and level of thinking of questions
(ICC < 0.01, p-value = 0.48). However, in most of the questions, at least two experts
agreed on the level of thinking (N = 15) and clarity (N = 14). On the other hand, a
moderate agreement (ICC= 0.55, p-value< 0.01) was reached between experts for the
difficulty of the questions.

Fig. 3. Analysis by experts of the validity: clarity, level of thinking, and difficulty of each question.
Analysis, application, and evaluation questions are coded as A, Ap, and E.

All students answered one knowledge application question correctly (Ap02) and was
therefore omitted from the Rasch analysis. Rasch analysis revealed a subject reliability
of 0.599 and a p-value for themodel fit of 0.017, indicating acceptable consistency in stu-
dent responses. The correlation matrix showed a few questions with a strong correlation
between them (see Fig. 4). The highest correlation was found between knowledge appli-
cation questions (A01 and A10), while another knowledge application question (A08)
presented several high correlations (>0.3) with three questions of the same thinking
level (A04, A05, and A06).

The diagnostic exam questions presented an average difficulty index of 0.57, with
a standard deviation of 0.27 (see Fig. 5). However, according to this index, most of
the questions (12 in total) could be considered invalid or irrelevant because they were
straightforward (>0.7) or very difficult (<0.3). On the other hand, the average ability of
the students was −0.47, with a standard deviation of 1.66. The average infit and outfit
values were close to 1, with standard deviations of 0.09 and 0.31, respectively. However,
one analysis question (A10) was identified that presented a significant outfit deviation
(2.040), suggesting the presence of unexpected answers, such as a low-ability student
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Fig. 4. Correlation Matrix of Rasch analysis.

obtaining a high score on a difficult question. To evaluate the discrimination index, the
sample of students was divided into a group with the worst performance (36%, N= 14)
and a group with the best performance (33%, N= 13) based on the total scores obtained.
The average discrimination index was 0.19, with a standard deviation of 0.14.

The competency map of Wright showed a good distribution throughout the compe-
tency scale, with more significant clustering around the mean (see Fig. 6). Redundancy
was also observed in four questions of the same dimension (E02 and E03, A04 and A05,
E01, and E04, A03 and A09), as well as in two pairs of questions of different dimensions
(A02 and Ap05, A08 and Ap04). In addition, gaps in the scale were identified around
extreme difficulty levels (±2), which suggests that the questionnaire might not have
sufficient capacity to discriminate students with extreme performance. No groupings of
students were observed at the extremes that could be attributed to the ceiling or floor
effects of the questionnaire.

4 Discussion

The questions generated by ChatGPT followed a normal difficulty index distribution
with an average close to the ideal value of 0.5. Thirty percent of the questions had a
discrimination index above the excellent value of 0.3. Subject confidence was slightly
less than the ideal value 0.8. The p-value for model fit was lower than the excellent
value of 0.05. Some correlations between the questions were higher than the ideal value
of 0.3. The person-question map of Wright followed the perfect smooth curve with no
outliers. Only one question had an outfit value above the ideal range of 1.3. A previous
investigation showed that ChatGPT generated easy questions for medical physiology
based on the assessment of experts using a 3-point scale [8]. This result is lower than
the median rate of difficulty assigned by our experts using a similar scale. Our results
showed no consistency among evaluators regarding the clarity and level of thinking of
questions. Training experts and the supporting explanation included in the document for
evaluation could improve those aspects. For future work, index values for Moodle could
also be integrated for analysis.
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Fig. 5. Analysis of the difficulty index, abilitymeasurements, standard errors of ability estimation,
infit and outfit values, and the discrimination index for each question in the diagnostic exam. The
questions are categorized by their respective code, including ‘A’ for analysis, ‘E’ for evaluation,
and ‘Ap’ for application questions.

Fig. 6. Person-question map of Wright shows the relative position of questions and students. The
Scale increases vertically from less capable student less capable/more straight-forward question
to more skilled/more difficult question.

The use of virtual agents in academia raises validity issues. To ensure the responsible
use of these tools, it is necessary to reach a consensus on regulating their use to prevent
possible abuse and guarantee academic integrity. Virtual agents should not be used
for cheating but to enhance personalized learning and provide new opportunities for
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scholars and students. Teachers can integrate these tools into their teaching by creating
new exercises that encourage critical thinking and problem-based learning, using AI to
support and enrich the educational process [3]. Potential advantages of virtual agents
for creating exams are their availability at any time, scalability to respond to significant
work demands in less time and effortlessly, and customization to individual needs with
high variability.

Our results showed that it is necessary to conduct tests and studies to determine the
quality of the information these tools provide. Academics and students should always
verify the content validity of the questions with these tools. Scholars and students who
use virtual agents must be transparent about their use and take responsibility for the
veracity of the information [10, 11]. As we can see, more work is still needed to improve
the performance of virtual agents for academic use, [4] especially in specific areas
such as biomedical engineering. Finally, we consider it essential to educate teachers
and students about the limitations of virtual agents and how to use them effectively
[3]. Giving scholars the authority and independence to use them is also essential [12].
We also consider it necessary to guarantee that everyone has the same access to these
technologies [13].

5 Conclusion

In conclusion, using artificial intelligence and virtual agents based on GPT language
models in academia raises several practical and ethical considerations. Implementing
clear guidelines, a code of ethics, and consensus in regulating its use are required.
Academics must be transparent in their use, assuming responsibility for the informa-
tion generated. Literacy in this area, constant evaluation, and continuous improvement
are essential to maximize the benefits and minimize the risks associated with these
technologies.
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Abstract. A notable challenge in modern biomedicine is the development of
innovative therapies that mitigate resistance to conventional antibiotics. Antimi-
crobial peptides (AMPs), represent a promising source of new antibiotics due to
their broad-spectrum activity and low incidence of resistance development, even
against new infectious diseases. In nature, anuran amphibians (such as frogs and
toads) are the largest source of recorded AMPs. However, salamanders and newts
(such as the Mexican axolotl) have received less attention despite the fact that
some promising bioactive peptides have been detected in their skin secretions.
The axolotl is a critically endangered caudate amphibian endemic from Xochim-
ilco’s Lake in Mexico, which is considered a biological model par excellence for
genomic studies related to salamanders. In the present study, the wide availability
of genomic resources of the axolotl was used to investigate the presence of possi-
ble new AMPs with biomedical potential, whose findings could be also extensive
to other salamander species unexplored. In the axolotl, seventeen different coding
transcripts for presumptive antimicrobial peptides, such as Leap2, Cathelicidins,
β-Defensin, Hepcidins, Transferrins, and Cystatin-C were identified, whose tran-
scriptional expression is mainly concentrated in the liver and spleen. This could
potentially foster the development of newpharmacological treatments in the future.

Keywords: Axolotl · Transcriptomics · Antimicrobial Peptides

1 Introduction

Antimicrobial peptides (AMPs) are organic polymers of amino acids that are produced
endogenously by numerous multicellular metazoans in order to protect the host from
pathogenic microorganisms [1]. Therefore, AMPs are also known as defense peptides
due to their involvement in innate immunity [1]. Among the various characteristics
described for AMPs, there is a relatively short length (∼12 to 100 residues), a net posi-
tive charge ranging from+2 to+9, as well as a certain amphipathicity that enables them
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to dissolve in aqueous environments [1]. By exhibiting antimicrobial and immunomod-
ulatory activities, AMPs are humoral factors able to activate immune response mecha-
nisms such as phagocytosis, prostaglandin release, neutralization of lipopolysaccharide
effects, immune cells recruitment at inflammatory sites, wound healing, and promo-
tion of angiogenesis, between others [1]. The largest source of AMPs found in litera-
ture records are anuran amphibians, which account for ∼30% (mainly frogs followed
by toads), being some typical classes described of amphibian AMPs the β-Defensins,
Cathelicidins, Hepcidins, Cystatins, Bombinins, Magainins, Dermaseptins, Esculentins,
among many others [1, 2]. In fact, some classes of AMPs are characterized by contain-
ing disulfide bridges in their structure, being commonly expressed in epithelial cells and
leukocytes. In addition, many AMPs also give to a prepropetide consisting of a secretion
signal peptide, a linker proregion or protease inhibitor domain, as well as a highly vari-
able mature peptide segment that is responsible for the antimicrobial biological function
[2]. Particularly, most of scientific attention for the identification and characterization of
novel bioactive peptides have been directed towards the anuran families of Pipidae and
Bombinatoridae, given their global distribution and degree of diversification [3]. Mean-
while, genera from the orders Caudata and Apoda, which include tailed and limbless
amphibians respectively, have been largely overlooked in this regard [3].

The axolotl (Ambystoma mexicanum) is a representative specie of salamander (cau-
date amphibian) that has garnered significant attention as an emergent biological model
organism [4]. Native from Mexico, the axolotl exhibits interesting characteristics, such
as its regenerative ability, neoteny, scar-free healing, and robust immune system, which
has led to the availability of extensive genomic resources, make it an invaluable bio-
logical model [4]. These features impact multiple disciplines, including regenerative
biomedicine, developmental biology, wound healing, immunology, biomedical engi-
neering, and genomic sciences [4]. Indeed, the axolotl genome has been sequenced,
being one of the few complete sequenced genomes of salamanders to date, provid-
ing comprehensive resources to study the genes and regulatory elements involved in
regeneration, and immunity related to AMPs [5]. While several countries regulate and
protect certain amphibian species, such as the axolotl (by NOM-059-SEMARNAT-2010
inMexico), it is now possible to obtain antimicrobial peptides (AMPs) through genomic
information implementing heterologous expression or similar biotechnological systems
[6]. This allows sustainability and bioavailability to be guaranteed without endanger-
ing amphibian biodiversity, which is already threatened. Thus, the rich genomic dataset
offers an unprecedented opportunity to discover new representative antimicrobial pep-
tides in salamanders and potentially translate them into therapeutic strategies for human
health to future.

Given the evident increase in resistance to conventional drugs by pathogens, the
scientific community has been forced to develop and improve new anti-infective agents.
Since AMPs are one of the best alternatives to address this problem, the search and
characterization of new AMPs has become imperative, with amphibians being a promis-
ing source of these peptides, as previously mentioned [7]. The role of antimicrobial
peptides in the fight against antibiotic-resistant bacterial infections seems set to be a
turning point in the coming decades [7]. Therefore, the present study aims to identify
new antimicrobial peptides present in the Mexican axolotl, through in silico screenings



Transcriptional Expression of Bioactive Antimicrobial Peptides 139

with bioinformatics tools and taking advantage of available genomic resources, which
could represent a great alternativewith biomedical potential in the pharmacological field,
currently threatened due to increasing resistance to conventional drugs available.

2 Materials and Methods

2.1 Screening of Coding Transcripts for Bioactive Peptides in the Axolotl
Transcriptome

We used online data from the UniProt repository to create a non-redundant reference
database of bioactive antimicrobial peptides from amphibians. This database helped us to
detect AMP-encoding axolotl transcripts via BLAST v2.12with the options “task blastp-
short -evalue 1e-3 -max_target_seqs 1” (bitscore ∼28). The axolotl transcriptomes used
in this study were obtained from the NCBI GenBank database with the following TSA
(transcriptome shotgun assembly) accessions: GFBM010000000, and GFZP01000000.
All axolotl transcripts were merged and redundancy reduced with CD-HIT-EST v4.8.1
under the parameters “-c 0.95 -g 1 -b 50 -n 10 -A 0.95” before being employed for AMPs
screening.We then used the EMBOSS v6.6 package to identify and translate all possible
six-frame open reading frames (ORFs) in the axolotl transcripts, by running getorf with
the parameters “-table 1 -minsize 30 -find 3”. After, we applied transeq to convert the
ORFs into protein sequences for BLAST searches, first discarding any sequences with
non-standard undefined amino acids.

2.2 Annotation and Domain Architecture Analysis of Candidate Sequences
with Potential Antimicrobial Activity

The annotation of the selected axolotl transcripts was done with Trinotate v4.0. The
annotated amphibian protein sequences were classified according to their gene family
with InterProScan v5, SMARTv9.0, and ScanProsite v20.0 to determine the composition
and structural organization of the characteristic protein domains. In addition, Cyscon
was used for the inference of disulfide bridges and PeptideCutter for cleavage sites.
The results of domain architecture identification for the determined AMP classes were
plottedwith IBS v2.0. The prediction of antimicrobial properties was donewithAMPlify
v1.1 (which is an attentive deep learning model), and AmpGram v1.1 (based on n-gram
encoding and random forests), using the default parameters.

2.3 Transcript Expression Analysis with Axolotl Transcriptomic Data

Raw mRNA-seq data publicly available at NCBI was acquired to study the gene expres-
sion patterns of previously identified axolotl AMPs in different organs and excised
segments of structures. The corresponding accessions of the SRA studies used were
SRP093628 and SRP065567. Quality profiling was done with FastQC v0.12.1. For
adapter trimming and readfiltering, theBBTools v37.62BBDuckwas usedwith “ktrim=r
k=23mink=11 hdist=1 tpe=t tbo=t qtrim=rl trimq=20minlen=15 forcetrimleft=14”, and
BBMap with “maxindel=1 minid=0.95”. RiboDetector v0.2.7 was employed to discard
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rRNA reads from data set. Then, sequencing reads were mapped to the axolotl transcrip-
tome with Bowtie2 v2.5 using the parameters “--sensitive --dpad 0 --gbar 99999999
--mp 1,1 --score-min L,0,-0.1 --no-mixed --no-discordant -k 200 -I 1 -X 1000”. RSEM
v1.3.1 was after assessed for estimating gene expression levels by expected counts with
EM algorithm to mapped reads. Subsequently, abundance analysis was performed with
EdgeR obtaining the counts per million (CPM) for axolotl AMP transcripts, and cal-
culating the Fold Change based on housekeeping transcript abundance of amx-odc-1.
Results were graphed in a bar plot and a heatmap with the libraries gplots v3.1.3 and
RColorBrewer v1.1 of R v4.1.2.

3 Results and Discussion

In the Mexican axolotl transcriptome, seventeen transcripts were identified encoding for
at least 3 different classes of Transferrins (oneMelanotransferrin, one Saxiphilin and one
Serotransferrin), four Hepcidins, two Leap2 (Liver-Enriched Antimicrobial Peptide 2),
six Cathelicidins, one Cystatin-C, and one β-Defensin. Through a domain architecture
analysis (see Fig. 1), it was possible to verify the presence of characteristic functional
peptide domains, as well as the presence of signal peptides. In this sense, it was observed
that the vastmajority of the axolotl bioactive peptides analyzed have a clear signal peptide
of the Sec/SPI type, a standard secretory signal through the Sec pathway found in the
endoplasmic reticulum and which directs the insertion of membrane proteins; destined
in turn to the vesicle sorting pathway and which are cleaved by a signal peptidase I [8].

Fig. 1. Domains organization schemes for sequences translated of axolotl transcripts identi-
fied encoding antimicrobial peptides; where domains are distinguished with different colors and
names; predicted secretory signal in orange; red diamonds represent cleavage sites; yellow spheres
correspond to binding sites. (A) Transferrins. (B) Liver-Enriched Antimicrobial Peptide 2. (C)
β-Defensin. (D) Cystatin-C. (E) Cathelicidins. (F) Hepcidins.

Furthermore, the size range of the predicted axolotl antimicrobial proteins was
between approximately 5 and 20 kDa, with exception of Transferrin proteins of around
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∼80 kDa, all as expected [7]. Among the most outstanding findings, the presence of
multiple axolotl paralogs for the Leap2 and Hepcidin classes can be mentioned. These
are proteins intimately related to iron homeostasis (together with Transferrins), which
display a classical tripartite organization of a signal peptide, with a linker variable prore-
gion, and the functional peptide cleaved by a Furin during prepropeptide maturation [9,
10]. However, unlike what happened in mammals, there are at least two different par-
alogs for each class of Leap2 and Hepcidin (see Fig. 1, B and F panels), more similar
to what is observed in fish and reptile species [9, 10]. In the case of Transferrins, these
axolotl proteins showed two transferrin domains that are known to form two homologous
lobes called N-lobe and C-lobe (see Fig. 1, panel A), the latter domain being the most
important due to its high affinity for Fe3+ binding, as can be seen in Serotransferrin [11].
On the other hand, the axolotl β-Defensin and Cystatin-C identified (see Fig. 1, C and D
panels) had three and two predicted disulfide bridges respectively, as reported in other
studies [12, 13]. For axolotl Cathelicidins (see Fig. 1, panel E), these proteins presented a
classical architecture with a secretory signal, followed by a Cathelin-like domain related
to Cathepsin-L-like inhibition, commonly cleaved by Elastase or Proteinase-3 proteases
to give rise a mature peptide highly variable in length [14].

Table 1. Antimicrobial activity prediction for protein sequences identified in axolotl.

Sequence ID Probability score (AMPlify) Probability score (AmpGram)

amx-b-Defensin 0.4764318 0.987373016

amx-Cathelicidin-B2-1 0.6586954 0.403123016

amx-Cathelicidin-B2-3 0.7404948 0.872134127

amx-Cathelicidin-B3-1 0.37388664 0.944224603

amx-Cathelicidin-B3-2 0.9541861 0.976533622

amx-Cathelicidin-B3-3 0.34033796 0.950809524

amx-Cathelicidin-B3-4 0.9080199 0.909112698

amx-Cystatin-C 0.23207442 0.513125397

amx-Hepcidin3-A 0.98758775 0.99975

amx-Hepcidin-A 0.8232733 1

amx-Hepcidin-B 0.8644066 1

amx-Hepcidin-C 0.84842086 0.9995

amx-Leap2 0.987711 0.21107619

amx-Leap2AB 0.99623394 0.989477778

Sequences with a cut-off value equal to or greater than 0.5 for both cases were highlighted with
bold letters. The probability scores given by the prediction algorithms range from 0 to 1 only. Due
to limitations of the AMPlify algorithm, Transferrins were omitted in the table.
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When carrying out the prediction of antimicrobial activity with AMPlify and Amp-
Gram [15, 16] for the annotated protein sequences of the axolotl, a high probability
score was denoted for the mature forms of Hepcidins, as well as for some Cathelicidins
and Leap2 (see Table 1). In other studies, some in vitro antibacterial activity has also

Fig. 2. Transcript expression profiling of axolotl sequences identified as presumptive AMPs.
(A) Relative abundance in counts per million (CPM) for transcripts expressed in different organs,
including biological structure segments. (B) FoldChange normalizedwith housekeeping amx-odc-
1 abundance of axolotl transcripts and evidencing their similarities to each other. Fold changes
(above 2) that were significant were highlighted in bold.
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been reported for similar amphibian Hepcidins, Cathelicidins, and Leap2, which is also
consistent with our predictions shown [17].

The axolotl organs and structure portions that revealed a high abundance of tran-
scribed AMPs were the liver and spleen, followed by the tail (see Fig. 2, A and B
panels). It has been documented in previous works that the vast majority of the reg-
ulatory factors of iron homeostasis in mammals are mainly produced by the liver, as
was also evidenced by the abundance of messenger RNAs coding for axolotl leap-2,
and several of hepcidins and transferrins [9–11]. Likewise, an organ that drew partic-
ular attention is the spleen. This organ, being histologically made up of red and white
pulp, the latter abundant in leukocytes, was expected to show a high abundance of tran-
scripts for several cathelicidins in the axolotl (see Fig. 2, panel A), since cathelicidin
transcripts are usually expressed in epithelium and white cells of the immune system
[14]. This transcriptional expression profiling, referring to the two previously contrasted
conditions, allows us to note that the same trend is evolutionarily conserved even up to
amphibians. Particularly, a significant change in abundance of the transcripts encoding
hepcidin-b and leap-2ab is observed (see Fig. 2, panel B). More additional analyzes
would be needed to unravel functional differences to the canonical ones described for
the different paralogs identified in the present study.

4 Conclusion

Through a conservative comparative approach, using only public genomic resources, the
identification of seventeen potential antimicrobial bioactive peptides in the axolotl was
achieved. Furthermore, the structural organization of domains for the vast majority of
the proteins encoded in the identified axolotl transcripts was observed to be highly con-
served with respect to their counterparts reported in other species. Although predictions
of antimicrobial activity are promising for many of the axolotl peptide sequences found,
further exploratory analyzes are required to confirm this finding. Finally, the abundance
of the axolotl transcripts coding AMPs analyzed in the transcriptional expression pro-
filing, allowed the liver and spleen to be highlighted as important biological sources,
information that could contribute to the isolation of such sequences or their products for
future assays.
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Abstract. Breast cancer is the most common neoplasm and the leading cause of
cancer death in women worldwide, followed by cervical cancer. The process of
developing anticancer drugs focuses on synthesis and biological testing. However,
it is a process that requires a large investment of resources. In the present work,
the visualization of their most stable structure, that is, the one that requires less
energy for its conformation, and the visualization of their molecular orbitals have
been carried out in the analysis of some drugs commonly used in breast cancer
patients. To generate useful information for the design and study of potential
analogs to treat breast cancer. To evaluate the feasibility and properties of drug
candidates, DFT allows the theoretical prediction of pharmacological properties.
The HOMO and LUMO are particularly important in the study of drugs because
they are related to properties such as light absorption and emission, electron-
donating or accepting capacity, and the formation of chemical bonds with other
molecules. Pharmacological activity and the design of new compounds depend on
these properties.

Keywords: Computational chemistry · Breast cancer · Tamoxifen ·
Anastrozole · Lapatinib · Tucatinib · Capecitabine · Ifosfamide

1 Introduction

Breast cancer is a disease where cells in the breast tissue grow uncontrollably [1]. In
2020, theWorld Health Organization detected around 2 million new breast cancer cases,
adding to an existing 7.8 million cases. This data confirms breast cancer is the most
prevalent and common cancer worldwide [2, 3].

The breast is composed of three main parts: lobes that produce milk, ducts that carry
milk to the nipple, and connective tissue that supports and surrounds all parts of the breast.
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Breast cancer has several subtypes, including invasive ductal carcinoma, invasive lobular
carcinoma, and inflammatory breast carcinoma. Other subtypes are diagnosed based on
molecular characteristics and specific markers found in cancer cells. The first subtype
is HR-positive, which indicates the expression of hormone receptors, estrogen, and/or
progesterone in the cancer cells. The second subtype is HER2-positive, where the cancer
cells overexpress theHER2 receptor. Finally, triple-negative cancers are those that do not
express hormone receptors (ER-/PR-) or overexpress HER2. Cancer treatment options
depend on the tumor type and may include drugs, hormonal and biological therapies,
surgery, and radiation therapy.

Biological testing and synthesis are the heart and ground of the cancer drug devel-
opment process; however, it is a long process that requires over 15 years and more
than 800 million dollars without guaranteeing the test’s success [4]. Therefore, integrat-
ing new technologies and reducing development times and costs would be necessary.
An alternative option is computer-assisted drug design and testing which has proven
to be a favorable implement in development cost and time [5]. Computational chem-
istry comprises the application of computation in the areas of chemistry, biology, and
physics for the study of atoms, molecules, and macromolecules through modeling and
representations in three dimensions [6, 7].

Specifically in breast cancer, computational chemistry has been used for the design
of drug analogs to those already demonstrated to be effective. In a recent study, drug
analogs were generated by modifying the functional groups of tamoxifen to improve the
activity and selectivity of the drugs [8]. Using computer modeling techniques such as
molecular dynamics, docking, and density functional theory (DFT), it has been possible
to simulate molecular interactions and predict how a drug will interact with a specific
protein or enzyme in the body. A review was published highlighting and demonstrating
the efficacy of tucatinib and trastuzumab for HER2-positive breast cancer based on
molecular docking results [11]. Also, another study in which a computational analysis
of different candidate compounds for breast cancer was performed, obtained promising
results for these compounds, designating them as good candidates for preclinical studies
[10]. This saves time and resources by directly reducing the number of compounds that
need to be synthesized and tested in laboratory experiments. In addition, computational
science is used to predict the toxicity of compounds, helping to identify the potential
side effects and risks associated with a drug before it is tested in animals or humans.

Although computational chemistry has been widely used in the study of drugs and
their interactions with their therapeutic targets, including studies for breast cancer treat-
ment, there is still a lack of physicochemical information on drugs that are effective
against breast cancer and the chemical properties of their interactions with therapeutic
targets. In the present work, the analysis of some drugs commonly used in breast can-
cer patients was performed, obtaining the visualization of their most stable structure
and their molecular orbitals (HOMO-LUMO), to generate helpful information for the
design and study of potential analogs drugs for the treatment of breast cancer using a
computational chemistry methodology, reduce cost and investment time than the origi-
nal drug design and study. To accomplish the objective of this study, a physicochemical
characterization was performed, that is, to obtain chemical measurements to determine
the properties of the drugs that are currently effective for breast cancer.



Drugs and Therapeutic Targets in Breast Cancer 147

2 Methodology

The molecules used in this study were tamoxifen, anastrozole, lapatinib, tucatinib,
capecitabine and isofosfamide. These are the most used molecules in the clinical treat-
ment of the three types of cancer mentioned: HR, HER2, and triple negative. The full
set of molecules shown in Fig. 1 was searched and downloaded from the open-access
database PubChem, grouped according to the type of cancer being treated.

Fig. 1. Most common drugs administered to breast cancer patients.

The first set of calculations consisted of a geometric optimization of all the structures.
The aim is to obtain the most energy-stable molecular structure. We first obtained the
structure by molecular dynamics using Tinker software with optimization parameters of
structural convergence of energy 2x10–5 kcal/mol, force 0.5 kcal/mol/Å, and maximum
displacement 1x10–5Åwith amaximumof 500 iterations.After the atoms are positioned
at a given coordinate, Molecular Dynamics calculates each of these quantities. It then
performs the same energy and force calculation by changing the position and torsion
angle of each atom. These two measurements show that for some pairs of atoms, there
is an increase/decrease in force and energy. The software then looks for combinations
that will decrease both the force between the pairs of atoms and the total energy of the
system.

The second set of calculations is performed with the most stable molecule obtained
bymolecular dynamics. This next level of theory is theDensity Functional Theory (DFT)
method. The DFT method in quantum chemistry uses electron density to calculate the
properties and energies of compounds. It provides information on electronic states and
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energy transitions relevant to pharmacological activity. TheHighest OccupiedMolecular
Orbital (HOMO) and the Lowest Unoccupied Molecular Orbital (LUMO) orbitals are
of special interest at this level of theory as they indicate where a molecule can lose or
give up electrons, and where it can accept electrons.

All calculations were performed on a desktop computer with an i7-processor with
32GB of RAMand a dedicated video card Nvidia GTX-1080 Ti with 3584 CUDA cores.

3 Results and Discussion

The set of sixmolecules is shown inTable 1. Thefirst row (molecules a) to f)) corresponds
to the molecules assembled from the Lewis structure and optimized at the molecular
dynamics level. The energetically optimized structures by DFT are shown in the second
row (molecules g) to l)). In terms of distances, the atom-atom variations were less than
5 Å in absolute terms, while the energy decreased by more than 2 eV.

Since our molecules are in an isolated state, it is easy to see that they are different
from the state they are in reality. This is because the drugs in clinical use are presented
in a medium that would modify our ideal structure due to the different temperatures, pH,
enzymes, proteins, and H2O that surround them and are not taken into account in the
calculations. However, the molecules of the present work, after the mentioned energetic
optimization, can be used to know each of their affinity and chemical selectivity towards
therapeutic targets in a reliable way. The B3LYP functional we are considering has
proven to be very powerful in the search for minimum energies in isolated molecules,
so these structures can be used at this point to obtain their electronic structures and
reliably compare them with each other. However, electronic quantities of interest, such
asHOMO-LUMO, suffer from slightmodifications in this isolation simulation compared
to what would be expected in a real medium. It is the knowledge of the volumes of the
HOMO-LUMO orbitals that allows us to move to the next point of analysis and use it
for drug correlation.

Table 2 shows the electronic structures of the 6 molecules energetically obtained at
the level of DFT theory. The interactions between the drugs and the therapeutic target
would be expected to occur in the volumes framed by the yellow and blue clouds in the
images. The chemical properties listed would also depend on two factors, the position of
the HOMO and the LUMO. On one hand, the HOMO of a molecule is associated with
the most energetic electrons and thus represents the orbital with the greatest capacity
to donate electrons. On the other hand, the LUMO is associated with the lower energy
electrons and can act as an electron acceptor or acceptor orbital. These properties are
relevant to the ability of the molecule to participate in chemical bonding and electron
transfer reactions.

For tamoxifen, the chemical interactions would be at the ends of the benzene or
phenyl rings (six carbon atoms). For anastrozole, the phenyl and triazole rings (two N
and two C atoms) would be the sites of chemical interactions. For the remaining four
drugs, the same trend is found: the HOMO-LUMO orbitals are found around the rings,
which in these cases create more complex structures between more than one ring. For
the six drugs, the volumes are not found in the other functional groups, such as methyl,
amino, and cyan, so it would be expected that they do not intervene in the chemical
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Table 1. Molecular dynamic optimization (a) through f)) and DFT energetic optimization (g)
through l)) of drugs commonly used in breast cancer patients.

HR+ HER2+ Triple-negative breast 
cancer

Tamoxifen Anastrozole Lapatinib Tucatinib Capecitabine Isofosfamide

a) b) c) d) e) f)

g) h) i) j) k) l)

bonds of the drugs. Thus, it is only in the part of the molecule formed by the rings that
the anchoring points with enzymes or proteins present in the cancer process will occur.
Non-covalent interactions such as hydrogen bonding, electrostatic interactions, and pi-
pi stacking would be some of the crucial mechanisms for molecular recognition and
therapeutic activity in chemically reactive zones defined by HOMO-LUMO volumes.

TheHOMOorbital can only donate electrons to orbitals with a lower energymodulus
(negative values closer to zero) that are present in the therapeutic targets. The tendency of
the molecule to donate electrons increases as the energy level of the HOMO decreases.
For example, tamoxifen, lapatinib, and tucatinib, which have energies closer to zero,
can donate electrons to more molecules than anastrozole. LUMO can be thought of as
the orbital that can accept electrons or participate in electron transfer reactions. It is an
indicator of a molecule’s ability to accept electrons or act as an oxidant. The tendency
of a molecule to accept electrons increases as the energy level of the LUMO decreases.
Of our group of drugs, capecitabine has the highest oxidizing property and isofosfamide
has the lowest. The difference in energy between the HOMO and LUMO, also known
as the electronic gap, is also important. A smaller gap can indicate a higher reactivity
and interaction capacity of a molecule.

As mentioned above, there are several computational studies of drugs used in cancer,
however, the objectives of these studies are oriented to modify the properties to measure
their efficacy, analyze interactions with other drugs or analyze the therapeutic activity
of combined drugs, but there is no information available on the physicochemical char-
acteristics of isolated drugs. An area of interest for this type of result is the development
of targeted therapies since the drug and the therapeutic target must be known in detail to
make the treatment more effective, however, a limitation to the present work would be
that future cross-validations and comparisons with experimental data are important to
support and verify the theoretical results. In addition, once the properties of the drugs are
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Table 2. Molecular orbitals (HOMO-LUMO) of drugs commonly used in breast cancer patients.

Treatment for HR-positive breast can-
cer

Treatment for HER2 – positive breast 
cancer

Treatment for triple-negative breast 
cancer

Tamoxifen Anastrozole Lapatinib Tucatinib Capecitabine Isofosfamide

LUMO

-0.0775 eV

LUMO

-0.0717 eV

LUMO

-0.0904 eV

LUMO

-0.0923 eV

LUMO

-0.1074 eV

LUMO

-0.0208 eV

0.0976 eV 0.1697 eV 0.092 eV 0.0959 eV 0.1168 eV 0.2066 eV

HOMO

-0.1751 eV

HOMO

-0.2414 eV

HOMO

-0.1824 eV

HOMO

-0.1882 eV

HOMO

-0.2242 eV

HOMO

-0.2274 eV

known, it is possible to performmolecular docking studies to determine their interactions
with the therapeutic targets.

4 Conclusions

Cancer has impacted the scientific community since its beginnings, not only because of
the complexity of its treatment, which does not always guarantee a complete cure but
also because of all the social effects that the fight against this disease entails. One of
the types of cancer that is currently most present in humanity is breast cancer, which
impacts many women of all ages and backgrounds every year, and even if all risk factors
are treated, only 30% of the probability of suffering from this cancer is reduced; even if
it’s not present in the background of a lineage that precedes all patients. This motivates
waves of fear and uncertainty in society, which at some point in their lives may be part
of the statistics. This is why in modern times we find ourselves in the necessity of using
all the tools and technology available to solve health problems as relevant as this one, to
offer new effective and less invasive alternatives for breast cancer.

To accelerate drug discovery and development, improve efficiency, and reduce the
costs associated with drug discovery and testing, computational science has provided
powerful tools and methods. It is important to note, however, that computational science
does not completely replace traditional methods. Rather, it is used in conjunction with
them to enhance and complement the drug development process. It is important to note
that DFT is used in conjunction with other experimental techniques and approaches,
although it is a valuable tool in drug design. To ensure the efficacy and safety of the
compounds being developed, drug design and development is a complex and multi-
disciplinary process that requires the integration of information and data from multiple
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sources. As mentioned before, knowing the drugs and properties that are currently effec-
tive against cancer provides relevant information for the search for analogous drugs or
the design of new drugs with these same characteristics. HOMO and LUMO measure-
ments in studies of molecules designed to treat breast cancer provide information about
the reactivity, molecular interactions, and optical properties of the molecules that may
be relevant to their therapeutic activity.
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Abstract. Lung segmentation is a critical step in machine-learning-based
radiomics using thoracic computed images. It involves isolating a specific region
of interest, but variations in lung intensity values caused by diseased lung tissue can
difficult correct segmentation. Although K-means is commonly used, it requires
manual intervention to select each cluster related to the region of interest, leading
to an efficiency decrease in terms of the specialist’s time and effort, especially for
large image volumes. To address these limitations, an automatic cluster selection
methodology is proposed. It involves a training process to determine a threshold
for discriminate clusters; then, morphological transformations and image process-
ing techniques enhance segmentation. Evaluation using DICOM images from the
Interstitial Lung Diseases Database yielded a Jaccard Similarity Index of 0.9056
and a Dice Similarity Coefficient of 0.9475, demonstrating the effectiveness and
accuracy of the proposed approach.

Keywords: Lung segmentation · K-means · Computational Vision · Image
Processing

1 Introduction

Segmentation is the process of delineating specific areas within an image, achieved by
assigning labels to each pixel based on regions of interest (ROIs). Various methodolo-
gies exist for performing semi-automatic or automatic segmentation, intelligent image
processing analysis in the scenario [1, 2]. Thresholding is an easiest algorithm used for
image segmentation which groups pixels based on intensity differences [2].

In lung images, segmentation serves as a preprocessing step to separate the lungs,
enabling various machine learning tools to concentrate their actions exclusively on this
tissue, thus improving performance. Thresholding algorithms work well when lung
pathologies are absent, as there is a noticeable contrast between the lungs and the sur-
rounding tissue in both computed tomography (CT) images and plain X-rays. However,
complications arise when the lung tissue density increases due to diseases such as pul-
monary fibrosis [3], interstitial lung disease [4], and cancer [5], among others, resulting
in X-ray beams interacting similarly with both lung and surrounding tissues [6, 7].
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To overcome this challenge, state-of-the-art (SOA) approaches often employ K-
means due to their simplicity and interpretability. For instance, Gupta et al. (2022)
used K-means, fuzzy C-means to separate anatomical structures within the CT images,
incorporating wavelet techniques to enhance the obtained mask. Their method achieved
an accuracy, Dice Similarity Coefficient (DSC), and Jaccard Similarity Index (JSI) of
0.9928, 0.9872, and 0.9787, respectively [1]. Similarly, Hu et al. (2020) employed Con-
volutional Neural Networks for lung region mapping and utilized Bayes, Support Vector
Machines, and K-means as kernels, achieving an accuracy of 0.97 [8]. Liu et al. (2023)
utilized K-means in conjunction with Hough transform to remove cavities, obtaining a
DSC and JSI of 0.9786 and 0.9512, respectively [9].

While these studies effectively tackle lung segmentation (LS), they rely on themanual
identification of lung clusters per image to generate masks. This can be time-consuming
for specialists dealingwith sizable image volumes during diagnosis and treatment, where
accuracy is vital. Hence this work proposes an approach to automate the selection of
lung and non-lung clusters. The goal is to have a methodology for the segmentation of
diseased lungs that achieves competitive performances regarding SOA methods.

2 Materials and Methods

K-means is an unsupervised clustering algorithm designed to identify K groups within a
dataset. In the context of image segmentation, the dataset consists of elements represented
by a dimension M × N image matrix denoted as X. The algorithm groups the pixels in
X into K based on their similarity. The user determines the number of clusters, K, based
on prior X data analysis. The resulting segmentation, Y, allows for drawing conclusions
and characterizing the K groups [10].

2.1 Image Segmentation Process using K-means

The image segmentation process is showed in Fig. 1 [11]. It involves treating the image
as a dimension M × N matrix, denoted as X, where each element Xmn represents the
intensity information. In CT images, this intensity is expressed in Hounsfield Units [12].
To facilitate processing, the matrix is transformed into a vector using lexicographical
ordering ·L{·}, this consists of the column-by-column to left-to-right stacking of the
matrix X [13]. This vector is then subjected to the K-means algorithm, resulting in a
vector where each pixel is assigned to one of the K clusters. Then K-means clustering
model output is reorganized through lexicographical reordering ·L−1{·}, resulting in a
Y matrix of dimensionM× N. With this, the user can identify and select the clusters of
interest. In the context of LS, the user designates all the pixels within the lung clusters
with an intensity value of 1, while non-lung pixels are assigned an intensity value of 0.
This process is referred to as binarization, given its binary decision nature in this study.

One drawback of the image segmentation process using K-means is the manual
assignment of labels (such as lung or not-lung) to each cluster in every image, which
can compromise its effectiveness.
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Fig. 1. Representation of image segmentation process using K-means.

2.2 Automatic Cluster Selection

To address the issue of manual selection and labeling of clusters in K-means LS, an
automatic methodology is proposed (see Fig. 2). The main idea of this methodology is
to determine an upper threshold α and a lower threshold β. Once these thresholds are
computed, the ratio of pixels within each cluster that falls within the limits of α and β

is calculated.
First, the data set A is divided into two sets: 70% of the studies for training (A1)

and 30% for test (A2). The training set, A1, contains Bi thorax CT images, while the
test set, A2, consists of Ci thorax CT images. Additionally, the Di mask is required as
a counterpart for Ci and Bi; every image matrix of M × N dimension. The Di mask
contains labeled pixels indicatingwhether they belong to lung and non-lung regions,with
lung pixels assigned an intensity value of 1 and non-lung pixels assigned an intensity
value of 0. This resulting mask serves as gold-standard for each Bi and Ci images.

The training process involves the following steps: for each Bi image in A1, the Di
mask is applied to compute the element-wise product (×) between Bi andDi resulting in
the extraction of lung intensities. This procedure is repeated for all A1 images. Using the
lung intensities from all A1 images, the global mean x and global standard deviation σ

are calculated. These values are then used to determine the threshold using the following
equations:

α = x + σ, (1)

β = x − σ. (2)

During the experiment, all Ci images from A2 are collected and concatenated into
a matrix C′ with dimensions M × Ni. Subsequently, the K-means image segmentation
process, as described in Sect. 2.1, is applied to C′.

To determine the number of clusters, various experimentswere conductedwith values
of k ranging from 2 to 10. Optimal results were achieved with 4 clusters. Through the K-
means segmentationprocess everypixel in thematrixC′ is assigned a label corresponding
to one of the K clusters. To determine whether a cluster represents the lungs, a ratio is
calculated based on the pixels within the threshold defined by α and β. This ratio is
computed using the following equation:

γ = p

P
(3)
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Fig. 2. Schematic of the proposed methodology. δ and ε are values greater than 0.001.
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where p is the number of pixelswithin the threshold for a given cluster, whileP represents
the total number of pixels in that cluster. By calculating γ , clusters with values greater
than 0.001 are selected. Subsequently, all pixels belonging to the selected clusters are
assigned a value of 1, while the remaining pixels are assigned 0. This generates theM ×
Ni matrix binary mask C′, that needs to be divided into i separate matrices. As a result,
we obtain Zi matrices with M × N dimensions.

2.3 Post-processing Mask Strategy

The resulting Zi is obtained for each Ci and undergoes post-processing, which involves
applying morphological transformation and image-processing techniques. This process
aims to refine the mask and ensure that it covers most lung pixels. Further details of this
post-processing procedure are shown in Fig. 3.

Fig. 3. Schematic post-processing including the gold-standard comparison.

The initial step involves applying a median filter as suggested by Tukey [13], with
the defined kernel size of three pixels. This process eliminates scattered pixels in the
image and smooth out the relevant ones. Next, a morphological closing operation, ini-
tially proposed by Matheron and Serra [14] is performed. The image undergoes dilation
followed by an erosion to enhance the solidity of the mask. A circular structural element
with a radius of eight pixels is utilized for this operation.

The presence of air outside the body and within the lungs leads to similar intensity
values, making it necessary to remove it from the mask. To accomplish this, a morpho-
logical transformation is applied, taking advantage of the proximity of air pixels along
the image edge. By intersecting the input image with its edge, a marker image is created,
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containing seeds for each connected pixel or particle at the edge. Through reconstruc-
tion, an image consisting of these particles is obtained and subsequently erased [15].
To fill any remaining unconnected holes, an erosion-based reconstruction is performed
using the mask and a marker image with consistent lung values [15].

Depending on the disease, cavities can appear at the edge of the region of interest
(ROI). To address this, the circular shape of the cavities can be leveraged using an
algorithm described by Liu et al. [9]. The algorithm utilizes the Hough transform to
detect circles to be filled. Selection criteria were defined as follows: circles with less
than 1/2 of lung pixels, and circles with more than 2/3 of lung pixels on their perimeter.
This process results in the post-processing matrix Z

∧

i withM × N dimensions.

2.4 Evaluation Metrics

To assess the performance of the proposed methodology, the post-processed matrix Z
∧

i

was compared to the corresponding gold-standard mask Di using DSC [16] and JSI [17].
These metrics provide a similarity value ranging from 0 to 1, where 0 indicates no spatial
overlap and 1 represents complete spatial agreement.

Following extensive comparisons using DSC and JSI metrics, the global mean and
standard deviation for each metric were calculated and then compared to previous works
in the SOA.

We use DSC and JSI metrics in this study based on their common usage in segmenta-
tion methodologies and their ability to evaluate performance. However, it is important to
note that JSI offers advantages over DSC. Unlike DSC, JSI satisfies all the properties of
a metric, including the crucial triangular inequality property [18]. The relaxed triangular
inequality in DSC can affect efficiency and approximation ratios, rendering it not fully
considered as a metric [19].

2.5 Computational Tools

This methodology and experimentation were developed using Python 3.9.16. Pydicom
2.3.1 for reading DICOMfiles and their metadata. OpenCV 4.7 for imagemorphological
transformations, NumPy 1.21.5 and Pandas 1.5.3 for matrix analysis, operations, data
transformation, and structures, and Matplotlib 3.6.3 for image and results displaying.
All this work was carried out using the hardware CPU AMDRyzen 7 5800 H 3.20 GHz,
GPU Nvidia GeForce RTX 3060 6 GB VRAM and 16 GB RAM.

3 Results and Discussion

The evaluation of the proposed methodology use the Multimedia Database of Interstitial
Lung Diseases created by Depeursinge et al., and its use for research purposes permitted
by the ethics committee of the University Hospitals of Geneva [20]. This database com-
prises 3076 CT images in DICOM format, obtained from 113 patients diagnosed with
various lung diseases within ILDs. Each image has dimensions of 512× 512 pixels and
is of uint16 value type.
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Additionally, a gold-standard lungmask,manually annotated by amedical specialist,
is available for each image in the database. For the quantitative assessment, the metrics
DSC and JSI were employed. Figure 4 presents box plots illustrating the outcomes
obtained by applying the proposed methodology to all 3076 images split randomly into
a training set (70% - 2,153 images) and test set (30% - 923 images). Furthermore, the
results reported by Gupta et al. [1] and Liu et al. [9] are also depicted in Fig. 4.

Fig. 4. Performance of the proposed methodology showed in JSI and DCS.

The performance of the proposed automatic cluster selection using K-means can be
observed. The box plot reveals a low dispersion of 0.0660 and 0.0520 for JSI and DSC
respectively. Notably, Quartile 1 for JSI is 0.887 and for DSC is 0.9351, while Quartile 3
for JSI is 0.9403, and for DSC is 0.9723. These results indicate that approximately half
of the automatic segmentation indexes fall within these ranges, suggesting stability in the
proposal. However, there are three outliers for JSI and two outliers for DSC, implying
that certain images pose challenges for segmentation using this approach. Hence, it is
expected to achieve performances close to themedian values of 0.9092 for JSI and 0.9539
for DSC. In the comparison with the SOA, Fig. 4 demonstrates that the segmentation
results obtained by this proposal are comparable to Gupta et al. [1], and in certain cases,
they even surpass the results reported by both authors.

Additionally, Table 1 presents the results obtained using the samemetrics and dataset,
with K-means as the clustering method. First, Gupta’s approach [1] incorporated fuzzy
C-means and wavelets into their methodology, while Liu et al.‘s approach [9] incorpo-
rated the Hough transform. Both authors noted that manual intervention is required for
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selecting lung or not-lung clusters. Gupta et al. also reported the need for manual selec-
tion of clusters during image decomposition and reconstruction using wavelets, which
further increases the level of user intervention required for creating the mask.

Table 1, demonstrates that with the proposed automatic cluster selection approach, it
is possible to achieve performances above 0.90 for both JSI and DSC metrics, with
a standard deviation of 0.066 or lower. In contrast, Gupta et al. [1] and Liu et al.
[9] did not provide information on error rate results or standard deviation resulting
from manual interaction. Consequently, the potential impact of this manual selection on
reproducibility within their methodologies cannot be determined.

Table 1. Comparison of the proposal with the SOA.

Methodology JSI DSC

Mean Standard Deviation Mean Standard
Deviation

Gupta et al. [1] 0.9787 - 0.9872 -

Liu et al. [6] 0.9512 - 0.9786 -

Proposed
methodology

0.9056 0.0660 0.9475 0.0520

Furthermore, results above 0.90 in DSC and JSI (see Table 1) were accomplished,
which are near to the values reported by each author, but without the manual intervention
of experts that spend important time and effort.

4 Conclusions

This work introduces a methodology that enables automatic cluster segmentation elim-
inating the need for manual selection of clusters by experts. This approach facilitates
fully automated LS, which can be valuable for various applications such as disease clas-
sification and delineating ROIs within the lungs for radiological analysis allowing to
decrease specialist’s work and time spent in the analysis of large image volumes.

In futurework, thismethodologywill be enhanced by incorporating additional image
characteristics such as textures and pixel relationships. It is also crucial to evaluate the
performance of the proposed methodology on different datasets to assess its robustness.
By testing the methodology in diverse scenarios, its applicability and generalization
capabilities can be examined.
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Abstract. Upper limb impairments can give rise to alterations or functional lim-
itations that may result from strokes. These limitations have conducted to the
development of novel tools to aid in various stages of the rehabilitation process.
One such tool is the assessment of the patient’s level of impairment. Traditionally,
the assessment necessitates the continuous involvement of a specialized thera-
pist, which leads to substantial consumption of time and medical resources. To
address this, some works have proposed the automatic evaluation of the patient’s
affectation level by using electromyography, by extracting parameters like the
muscle activation level or the co-contraction index, others use the muscle activity
patterns to look at movement compensation. Nonetheless, none of those works
attempt to use muscle activation patterns and the corresponding muscle com-
pensation to automatically assess the impairments. Hence, this work proposes a
method for automated detection of muscle activations in electromyography and
utilizes them in statistical analysis to compare healthy and post-stroke subjects.
It highlights similarities for both groups in muscles with higher activation dur-
ing tasks, particularly in muscles such as the deltoid and extensor carpi, as well
as differences in overall muscle activation percentages. Additionally, significant
differences between activation patterns were observed.

Keywords: EMG Muscle Activation Patterns · Stroke · Impairment
Assessment · Upper Limb · Daily Living Activities

1 Introduction

Upper limb impairments can arise from various circumstances, resulting in limitations
in the performance of activities of daily living. These limitations can arise from various
causes, including Acquired Brain Injuries (ABI) such as strokes or Traumatic Brain
Injuries (TBI) [1]which according to theNational Systemof Statistical andGeographical
Information (INEGI, by its acronym in Spanish) in Mexico in 2021 there were 118 cases
per 100, 000 inhabitants [2]. They can also be a result ofmuscle overexertion or repetitive
use of the limb, such as in sports activities [3], and can be associated with age-related
limitations in older individuals [4]. In order to restore lost functions in the upper limb
and enhance the quality of life for individuals affected by such impairments, various
rehabilitation strategies are being implemented [5].
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The rehabilitation process can be conceptualized as a cyclical approach, including
the assessment of the patient, the establishment of goals, intervention, and subsequent
assessment to evaluate progress according to the goals [6]. Various scales are employed
for the assessment process, including the Functional Ability Scale (FAS) [7], the Wolf
Motor Function Test (WMFT) [8], and the Fugl-Meyer Assessment Upper Extremity
(FMA-UE) [9], among others.

These scales are typically administered by a therapist and present certain drawbacks,
such as significant time and medical resource requirements. Additionally, it can be
affected by the subjectivity of the individual conducting the assessment [10]. Tomitigate
these challenges, alternative approaches have been developed to automate the assessment
process by utilizing biosignals during the execution of specific movements.

One example of such biosignals is electromyography (EMG).Hu et al. [11] employed
a rehabilitation robotic hand equipped with EMG sensors to detect movement intentions
and replicate them. Additionally, the sensors recorded EMG signals to assess whether
there was improvedmuscle coordination following the interventions. Also,McCrea et al.
[12] utilized EMG signals to examine muscle saturations (i.e., muscle is maximally
activated) in four specific muscles and investigate potential differences between healthy
and post-stroke subjects.

Despite there are several studies using EMG signals to evaluate post-rehabilitation
improvements ormeasuremuscle saturation to distinguish between groups of subjects, to
the best of our knowledge, no studies have yet been found that specifically investigate the
utilization ofmuscle activation patterns for assessing impairments, which is an important
source of information due to the compensatorymechanism caused by the impairments. If
such information canbe automatically detected, it can provide new insights for automated
assessment purposes. In thiswork,we employed a database obtained byAverta et al. [13].
These signals were conditioned and processed to calculate the muscle activation patterns
and then, a comprehensive statistical analysis was conducted to compare and contrast
these patterns between the two groups. This work aims first to identify differences
in muscle patterns between the groups to aid in assessing impairments in post-stroke
patients and second in further work to use this information for automated assessment
purposes.

2 Materials and Methods

The methodology consists of four main activities: Data Exploration, Preprocessing,
Muscle Activation Detection, and Statistical Analysis.

2.1 Data Exploration

This study utilizes a database from Hannover Medical School [13] comprising physi-
ological and kinematic data of 20 healthy (8 female, age 46.77 ± 15.25 years) and 20
post-stroke subjects (6 female, age 49.88 ± 16.92 years), from now on Healthy Group
(HG) and Stroke Group (SG), respectively. The electromyographic data was recorded
using a wireless sEMG system (Trigno Delsys, Inc., Natick, MA, USA) 12 bipolar
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electrodes in the impaired upper limb at 2000 Hz while the subjects performed three
repetitions of 30Daily LivingActivities (DLA) (see Fig. 1), each execution time depends
on the subject.

Fig. 1. List of the 30 DLAs. Gestures are shown in a), Reach and grasp with no interaction (in
red DLA #19, did not start with a reach and grasp as the rest of the DLAs in this block) are shown
in b), Reach and grasp interacting with another object are shown in c), some of the tasks from “c”
group do not have a 3rd execution stage and is labeled as “No more interaction”.
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2.2 Preprocessing

The EMG data underwent several filtering steps to enhance the quality of the signal.
Firstly, a second-order IIR band-stop filter at 50 Hz was applied to eliminate power
line noise. Then, a third-order IIR high-pass filter at 5 Hz was used to remove DC
offset. Finally, a third-order IIR low-pass filter at 600 Hz was applied to eliminate high-
frequency noise. The EMG signals were used without a normalization to take advantage
of the magnitudes of each recording.

2.3 Muscle Activation Detection

To automatically detect the muscle activations in the EMG signals a two-step proce-
dure was employed. This procedure involved calculating the threshold and subsequently
binarizing the signal.

Two thresholds were calculated for HG based on mean and standard deviation (std)
of rectified and windowed EMG signals. A 50-sample window with a 98% overlap was
utilized and mean and std were calculated for each window. The maximum value from
each measure was recorded, and each threshold was defined as 30% of the maximum
values obtained.

For the SG the thresholds from the HG were applied, resulting in only two general
thresholds: one based on the mean and the other based on the standard deviation. This
was accomplished by taking all the individual thresholds from the HG and calculating
their mean value.

Then, for both HG and SG, two binary vectors were generated. When the EMG
signal reached or exceeded the thresholds, the corresponding values were mapped to 1;
otherwise, they were mapped to 0 (see Fig. 2b).

Some abnormal peaks and holes were observed in the new vectors, therefore a refine-
ment of the binarization by morphological hole filling, which consists of an erosion (see
Fig. 2c) and dilation (see Fig. 2d) procedure, was conducted to address this issue [14].

Both, erosion, and dilation operations, were calculated using a 60-sample window,
chosen empirically with the aim of having a good resolution and representing around
1% of the average length of the recordings, with a 98% overlap.

A final vector was then calculated bymultiplying the two resulting vectors and finally
dilated one last time (see Fig. 2e).

This process was performed for the 12 EMG signals of each repetition of the DLA,
to every subject.

2.4 Statistical Analysis

Using the previously obtained vectors, the percentage of muscle activation during each
of the DLAs was computed by dividing the active state values by the total signal dura-
tion. This calculation was performed for each muscle in each DLA and was recorded.
Subsequently, the mean percentage across all DLAs was calculated for each muscle.
This process was performed for both HG and SG. Figure 3 depicts all the muscles along
with their respective percentage of activation for Task #9 and #10. Similar plots were
generated for each DLA (not shown here for space restrictions).
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Fig. 2. Detection of muscle activation: (a) EMG Signal (b) Binarized vectors (c) Vectors eroded
(d) Vectors dilated (e) Final refined vector (f) Windows with activity in the EMG signal.

After obtaining the percentage values for both HG and SG, a statistical analysis was
performed. First, the normality of the data was assessed. If the data followed a normal
distribution, a T-test was employed. However, if the data did not meet the assumptions
of normality, the Mann-Whitney Test (U-test), which is the non-parametric equivalent
of the T-test, was utilized. Both tests allow to verify the probability that 2 samples
(HG & SG) come from the same populations and have the same mean. And finally, and
Holm-Bonferroni (H-B) correction was made due to the large number of comparisons.

3 Results and Discussion

The results obtained can be divided into two different parts: the muscle activation
patterns, and the statistical analysis.
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3.1 Muscle Activation Patterns

Muscle activation patterns in terms of activation percentages are shown in Fig. 3, for
example, in DLA #9 and DLA #10 the muscle activation pattern can be observed as the
changes in muscle activation in function of the DLA, in each of the muscles involved
in the task. For instance, it is possible to see that most of the muscles have an activation
grouped in range of around 20 percentage units for each of the 30 DLAs, 40%–60% in
the HG (blue lines) and 20%–40% in the SG (red lines), but there are fewmuscles below
or above this range.

The difference in the range between HG and SG can be seen as a lack of activation
for most of the muscles during the realization of the tasks from the SG.

3.2 Statistical Analysis

Regarding the statistical analysis, box plots were created for each DLA. An example for
DLA# 10 can be seen in Fig. 4. These box plots were based on the calculated percentages,
allowing the identification of muscles with significantly different activation patterns
between the groups. Regarding the median values, the HG demonstrates a range of
approximately 40% to 60% for muscle activation whereas the SG exhibits lower values
around 20% to 40%. Thus, reinforcing the idea that for the SG the activation of most of
the muscles is lower than the activation from HG.

Table 1 presents the p-values resulting from the statistical analysis conducted on all
repetitions of each DLA for each subject. The values highlighted in the table indicate
significant differences (p < 0.05) after H-B correction. Notably, only seven out of the
30 DLAs did not show any significant difference, with five of them belonging to the
“Reach and grasp with no interaction” group (see Fig. 1). This could be attributed to the
specific movements required for these tasks. In all five cases, the objects to be held were
described as “big” in size and/or “light” in weight, and intricate finger movements were
not necessary for their manipulation.

Among the other groups of DLAs, the “Gesture” type exhibited the lowest p-values.
This observation could be attributed to the specific phase of the movement where the
upper limb is required to maintain a gesture position for an extended period of time.
This task appears to be more demanding for the SG group compared to the HG group.

The boxplots also provided insights into the presence of outliers, which helped
identify muscles with higher or lower percentages of activation during certain DLAs.
For instance, in Fig. 4, it is evident that for the HG, the M. Deltoideus pars clavicularis
(DPC) exhibit higher activity, while the M. Brachioradialis demonstrated lower activity.

Another important point was that in certain DLAs the outliers from HG matched
with those from the SG. This may be due to the nature of the task, where a particular
muscle is expected to be consistently active, or nearly inactive throughout the activity.
This observation highlights another notable distinction between groups and subjects.
For instance, if the task requires consistent activation of the DPC, and a subject from the
SG exhibits a lack of activation in this muscle, it could indicate an impairment in that
particular muscle for that subject.

To gain a clearer understanding of these effects, the number of times eachmuscle was
identified as an outlier was recorded. This data was used to create a histogram displaying
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Fig. 3. Percentage of muscle activation during the DLA #9 and #10 of the HG & SG.
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Fig. 4. Boxplot of the DLA #10 for both groups where the muscle names are the muscles showing
an activation outside IQR.

Table 1. P-values table of each DLA

No.
DLA

P-value No.
DLA

P-value No.
DLA

P-value

1 2.86 e-04 11 5.96 e-05 21 8.93 e-04
2 9.75 e-04 12 1.31 e-02 22 8.86 e-01
3 5.71 e-03 13 2.14 e-01 23 3.02 e-02
4 4.69 e-05 14 5.65 e-02 24 5.06 e-04
5 9.01 e-04 15 7.25 e-03 25 7.80 e-03
6 2.01 e-03 16 1.01 e-02 26 6.01 e-04
7 9.66 e-07 17 2.82 e-01 27 6.09 e-03
8 3.84 e-04 18 5.05 e-04 28 1.93 e-02
9 3.84 e-04 19 2.47 e-03 29 2.94 e-03

10 6.79 e-06 20 3.63 e-03 30 1.01 e-02

Gesture Reach and grasp 
with no interac-
tion

Reach and grasp 
interacting with 
another object

the muscles with either higher or lower activity in both groups (see Fig. 5). In the HG
group, only three distinct muscles were identified, with the DPC muscle being the most
frequently observed for high activity.

In the case of the SG group, a higher number of muscles (five) exhibited variations
in activity. This is evident in Fig. 5, where each green bar represents a muscle with either
increased or decreased activity in the SG. These findings align with the observations
reported in [12], which indicated that stroke subjects tend to relymore on certainmuscles
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compared to healthy subjects. Specifically, theM. Pronator teres was the muscle with the
highest frequency of appearances for lower activity. It is worth noting that the second
highest frequency of appearances was the same as in the HG group, suggesting that
this muscle may consistently be active during specific DLAs, as is the case with the M.
Extensor carpi ulnaris.

Fig. 5. Frequency of muscle activity variations across DLAs.

4 Conclusions

In this study, the muscle activation percentages were computed for various DLAs in
two groups: HG and SG. The objective was to compare these percentages and acquire
additional information, specifically the muscle activation patterns, that can distinguish
between the two groups. The findings confirmed that there are notable differences in
muscle activations between the two groups. Specifically, it was observed that the differ-
ences are more pronounced in the first type of DLAs, while the disparity becomes less
prominent in the second type of DLAs due to the nature of the movements involved. Fur-
thermore, it was observed that certain muscles exhibit similar activation patterns, char-
acterized by increased activity; however, the percentages of activation differ between
the two groups. Notably, SG demonstrated a greater number of individual muscles with
heightened activity. This phenomenon can be attributed to the compensatorymechanisms
employed when a particular muscle is unable to execute a movement independently.

As part of the limitations of this work some factors that could affect the signals used
were not considered, such as the muscle fatigue due to the execution of 90 tasks, or
the used of the impaired limb even if it was the non-dominant arm that could make the
execution slower.
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Finally, for further works the information obtained here, specifically the muscle
activation patterns will be useful along with other EMG characteristics for implementing
new assessment tools based in machine learning techniques, using a normalization of
the EMG signals could be useful as well to look at similar shapes between the groups,
the ratio of agonist to antagonist muscles could be a good information to use in future
works to confirm the muscle compensation as well.
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Abstract. Iowa Gambling Task is a widely used tool that involves the evaluation
of decision-making ability while playing a strategic gambling game. The assess-
ment of the game results has been analyzed using tools such as inferential statistics,
knowledge-based systems, andmachine-learning classification techniques.Hence,
the purpose of this research is to examine a publicly available subset of data from
over 300 non-clinical participants who have performed the Iowa Gambling Task
(IGT), using K-means to identify performance-related subgroups during IGT. The
findings suggest that while the samples were initially reported as homogeneous,
there are significant differences observed based on their database origin. Fur-
thermore, the application of the K-means algorithm revealed numerous distinct
subgroups of behavior in relation to the credits earned during the test. Thus, the
analysis of this feature may suggest previously unconsidered information that
could help us to obtain a more detailed view of the behavior in decision making,
in both non-clinical and patients with decision making disorders.

Keywords: Iowa Gambling Task · Decision-Making · K-means · Heterogeneity
Behavior

1 Introduction

Data science applied in biomedical engineering provides information from different
types of evaluation: biological, physiological, or through data obtained from neuropsy-
chological tests,which have becomeawidely employed tool for evaluating the behavioral
characteristics of a specific population. Among them, for evaluation of decision-making
ability, Iowa Gambling Task (IGT) [1] is noticeable. It is conducted through a gambling
game in an arrangement of four decks (A, B, C or D), in which the participants must
create a strategy that allows them to earn more credits according to the choices they
made. The analysis of behaviors resulted in the neuropsychological test has shown that
different dispositions occur according to the experience generated; thus, depending on
the temporal moment being evaluated, the participant will have different knowledge and
tendencies. IGT is typically divided into five blocks of 20 decisions each, until all 100
decisions are completed. Different versions have been developed, where 95 [2], 120 [3]
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or up to 200 elections [4] are applied. Thereby, the processing and analysis of decisions
made in the IGT, allow recognition of the strategic predispositions generated by the
participants and evaluation of their performance.

For analysis purposes, ANOVA is the most widely used tool comparing IGT scores.
[4–8] Although its explainability is easy to understand, this approach only takes in
consideration the final credits of the participants or its division by blocks, so that the
generated strategies visible in the credits of the participants during the test, result in
loss of information, which is important in diagnostic accuracy to identify differences
between groups. This differentiation can be performed at each trial of the test, this is
the statistical analysis of every decision; however, this procedure may not be useful or
interpretable. Given this problematic, the purpose of this work is to use machine learning
tools that are able to identify specific differentiation features in IGT data.

In this perspective, several techniques have been used to identify patterns in IGT;
for example, knowledge-based models have been designed [9] or classification tools
have been also used for pattern identification in IGT [10]. However, to the best of our
knowledge, no clustering techniques have been used to identify subgroups related to
the performance of participants during IGT, based on the number of credits obtained;
this could be useful to study heterogeneity in the decisions made. Therefore, the aim
of this research is to propose a different approach to identify performance-related sub-
groups during the IGT, using one of the most popular and easily understood cluster-
ing techniques, the K-means algorithm. This approach will provide useful and clearly
interpretable information in the analysis of the performance of participants in the IGT,
additionally it could change the way in which data from this neuropsychological test is
processed, improving the quality of interpretation and the explicability of the results.

2 Materials and Methods

The proposed methodology consists of the following phases: 1) Database selection, 2)
Feature extraction and datasets creation, 3) Experimental setup, 4) Clustering process
and 5) Clustering evaluation (see Fig. 1).

2.1 Database Selection

This study uses a publicly available database compilation, provided by Steingroever et al.
[11], which collects results from 10 independent studies evaluating the performance of
neurotypical participants on the IGT. Institutional Review Board approval was obtained
for each data collection. The data set comprises results from 617 participants; however,
there are variations in the protocols used, ranging from 95 to 150 decisions. For this
research, only the results of subjects who applied the 100-trial version were used. The
dataset used in this study comprises 315 participants obtained fromHorstmann’s research
(data originally published by Anette Horstmann in Steingroever et al. [12]) (n = 162)
and Wood et al. [13] (n = 153). Each study specifies three types of variables: the choice
made by the participant in each trial (A, B, C or D), the positive feedback (credits ranging
from 50 to 100) and negative feedback (credits ranging from −50 to −1250; 0, in case
there was none).
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Fig. 1. Methodological diagram.

2.2 Feature Extraction

To analyze different behavioral patterns according to the credits obtained by the partic-
ipants, four features per module were analyzed: 1) Credits per trial (datasets H1, W1,
H&W1), obtained by the addition of the feedback on each trial, resulting in 100 features;
2) Credits per block (datasets H2, W2, H&W2), analyzing only the scores obtained at
the end of each block (decisions 20, 40, 60, 80 and 100), resulting in five features; 3)
Wins per trial (datasets H3, W3, H&W3), where the earnings of the participants in each
trial are evaluated, resulting in 100 features; and finally 4) Losses per trial (datasets H4,
W4, H&W4), which evaluates the defeats at each trial, resulting in100 features. Each
characteristic was chosen according to two conditions: 1) the information provided by
the database, 2) the general test arrangements, whichmake it possible to recognize where
differentiating patterns can be found.

2.3 Experimental Setup

The experiments were structured into three modules: first, using only data extracted by
Horstmann et al.; second, for data extracted by Wood et al. and last, for the data com-
bined (Horstmann et al. & Wood et al.), this was performed with the aim of identifying
differences between experiments, according to their origin. For each dataset, clustering
experiments, as described in Sect. 2.4, were conducted.
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2.4 Clustering

To perform the clustering process, one of the most employed and comprehensive cluster-
ing algorithms, namely K-means, was selected. K-means is an unsupervised machine-
learning algorithm designed to identify elements that are closest in the solution space,
given a Euclidean-type geometry [14]. Thus, given a series of K-centroids, the distance
of each instance with respect to each centroid is calculated and clustered according to
the smallest distance.

E =
∑k

i=j

∑
p∈Ci

dist(p, ci)
2 (1)

where E is the sum of the squared distance for all objects in the data set, p is the point
in space representing a given object (instance), and ci is the centroid of cluster Ci.
The K-means clustering method, implemented using the Orange3® data mining tool
[15], was employed to cluster each instance of the experiments based on the extracted
features. By the nature of the algorithm, which requests the number of centroids k to be
used for clustering (see Eq. 1), clustering was performed using a brute force method,
applying the algorithm for k values ranging from two to eight. Therefore, for each dataset,
seven different experiments were performed, one for each k value, and all of them were
evaluated through silhouette coefficient metric.

2.5 Cluster Evaluation

The silhouette coefficient is a measure used to evaluate the quality of clustering. Its
value ranges from -1 to 1. A higher silhouette coefficient refers to a model with more
cohesive clusters [14]. For each object o, coefficient incorporates two spacing types:
a(o), representing the compactness of the cluster to which o belongs (see Eq. 2) and
b(o) corresponding to the degree of separation of o from the other clusters (see Eq. 3).

a(o) =
∑

o′∈Cio �=o′dist(o, o′)
|Ci| − 1

(2)

b(o) = min
Cj :1≤j≤k,j �=i

⎧
⎨

⎩

∑
o′ ∈Cj

dist
(
o, o

′)

∣∣Cj
∣∣

⎫
⎬

⎭ (3)

where Ci are each cluster evaluated, Cj are the other each cluster; each object o belongs
to Ci; whereas each o′ belongs to Cj cluster and, k is the clusters which the dataset is
partitioned. Finally, the silhouette coefficient of o, is then defined as

s(o) = b(o) − a(o)

max{a(o), b(o)} (4)

Thus, max{} is a function that selects the maximum value from the indicated func-
tions: a(o) and b(o). As can be observed, the silhouette coefficient is computed for
each individual sample, and the resulting values can be averaged to represent the entire
cluster. In this study, the averaged silhouette coefficient was employed to represent a
clustering experiment. This allows us to identify those experiments in which the cohe-
sion between samples has been achieved in a better quality, and in this way, to identify
the characteristic that best indicates this differentiation between samples.
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3 Results and Discussion

To determine the general tendency of the studied population, credits of the participants
were evaluated. Both studies reported the same initial conditions in the application of the
IGT (see Fig. 2 at trial zero), starting with 2000 credits. Also, observe that at trial twenty,
the most significant differences between databases are observed. In addition, negative
feedback seems more punitive in the Horstmann dataset, whereas the Wood dataset
shows larger positive feedback. On the other hand, between trials 50 and 60, minimal
differences are observed across all databases. However, after this point, differences start
to increase again. The tendency shifts, with the Horstmann dataset displaying a shift
towards more weighted positive feedback, and theWood dataset showing a shift towards
more punitive negative feedback. The combinedHorstmann andWood dataset represents
an average tendency observed in each dataset separately.

Fig. 2. The average scores for Horstmann, Wood and combined databases are shown. Note that,
for all cases, the number of credits at the end of the test does not exceed the initial credits and
that different behaviors are described in relation to the credits obtained during the test, among
participants of both studies.

Quantitative clustering evaluation indicates that the most differentiating features are
the Scores per trial and the Scores per block (see Table 1). To do so, the silhouette
results were used to rank the features and find the highest silhouette coefficient. These
features exhibit differences of approximately one order ofmagnitude compared to profits
and losses. For Horstmann & Wood, the highest silhouette coefficient was observed in
clusters two and four for Scores per trial and Scores per block, respectively. In the case
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of Horstmann, it occurred in two clusters for both features, whereas for Wood, it was
observed in clusters three and four.

Table 1. Silhouette coefficients for each feature at each experimental module.

Horstmann & Wood

Clusters Scores per trial Scores per block Profits Losses

2 .205 .257 .072 .080

3 .202 .258 .032 .036

4 .200 .269 .015 .058

5 .166 .234 .007 .022

6 .166 .224 .018 .016

7 .158 .222 .003 .015

8 .145 .228 .006 .013

Horstmann

2 .186 .242 .066 .020

3 .143 .214 .043 .051

4 .154 .237 .041 .037

5 .156 .240 .038 .014

6 .131 .228 .032 .030

7 .119 .224 .022 .010

8 .115 .222 .035 .005

Wood

2 .212 .281 .072 .017

3 .218 .294 .021 .052

4 .194 .312 .042 .087

5 .186 .266 .027 .031

6 .130 .268 .024 .025

7 .119 .267 .026 .024

8 .125 .254 .019 .049
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Fig. 3. Scored averaged according to the clustering analysis. Each column corresponds to the
differentiating features,whereas each row indicates the experimentalmodule:Horstman,Woodand
Horstmann &Wood. The center dotted line indicates the credits at IGT startup. Two fundamental
performances can be observed: good and bad performance.

This k distribution for each feature could indicate that, as previously reported, the
behavior of neurotypical subject is heterogeneously distributed [8, 12]. This hetero-
geneity may be due to several factors: gender [3], nationality [8] or medical history
[16]. However, the findings suggest that there may be more than just two behavioral sub-
groups, with some cases potentially exhibiting three or even four subgroups. Considering
each clustering experiment with the highest silhouette coefficient, the credits obtained
during IGT were evaluated. Each curve represents the averaged behavior of k-means
clusters founded. These observations, as an initial remark, may indicate distinct phases
of learning within the IGT. For instance, when clustering by scores per trial (see Fig. 3,
left column) a notable shift in direction can be observed around trial 40, for the three
datasets (H&W1, H1 and W1). This change potentially means a shift in the strategies
employed by the participants. On the other hand, when clustering by scores per block
(see Fig. 3, right column), it is observed the influence of the dataset on the tendencies



Heterogeneous Behavior in the Iowa Gambling Task: A Clustering 181

among the blocks. However, for the three datasets (H&W2, H2 and W2) a notable shift
in direction can be observed between blocks 0-20 and 21-40.

For all experiments, two main trends are observed: participants who performed bet-
ter and those who performed worse. This pattern of performance behavior has been
previously reviewed in several research studies [8], nevertheless, their classification has
not been previously reviewed using unsupervised artificial intelligence tools, such as k-
means. The possible implications that could be associated with changes in k value, due
to the clustering process, might be reviewed. Moreover, although the different phases
in IGT have been reviewed [6, 12], there are internal trends that could be studied in
detail, given the clustering performed with machine-learning techniques. The implica-
tions of a better analysis of participants’ behavior within the IGT could lead to a better
interpretation of the results for the identification of related decision-making deficits.

4 Conclusions

The methodical review of the evaluated parameters through the experimentation per-
formed, in which data were extracted from participants, and features were extracted and
evaluated using K-means as a clustering machine-learning tool, has provided several
suggestions: the processing of results obtained from IGT or other neuropsychological
assessments tools is not only reliable, but also complementary in behavioral interpreta-
tion. Also, the subgroups differentiation among a set of participants, such as the neu-
rotypical population, in this case, is an interpretation that deserves to be reviewed from
different points of view: previous work already indicates the existence of such non-
homogeneous behavior; however, the causes of this differentiations and its relation to
the health status of the individual are still unknown. Therefore, future work would con-
sider the identification of such differentiation factors, relating them to the performance
of participants during the IGT, and the comparison between different clustering tools.
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Abstract. Conventional intracranial pressure monitoring consists of an
invasive neurosurgical intervention in which a hole is made in the cra-
nium, at the frontal level, through which a sensor is inserted and lodged
in the epidural, intracerebral or intraventricular space. The sensor is con-
nected to a system that continuously measures intracranial pressure and
is maintained for the necessary time, depending on the pathology. For
this reason, this paper proposes the development of a vision algorithm
to compute pupil parameters in order to collect data from the pupil that
could be considered to estimate an approximate value of intracranial
pressure, which can be used by neurosurgeons to assess the possible dis-
ease of a patient without the need to perform an invasive neurosurgical
procedure.

Keywords: ICP monitoring · ICP vision system · Pupillometer

1 Introduction

The central nervous system is a structure made up of four main components
which are: the brain, spinal cord, cerebrospinal fluid (CSF) and blood [1]. An
increment in the volume of any of the constituents will lead to a reduction in
volume in one or two of the remaining constituents. This change in volume has
the consequence of elevating intracranial pressure (ICP) [2,3]. The normal ICP
range for adults is approximately 10 to 15 mmHg, for younger children is 3
to 7 mmHg, for newborns is 1.5 to 6 mm Hg, and for pediatrics is not clearly
established [1].

Among adults, the dimensions of the pupil typically span from 2 to 4 mm
under well-lit circumstances, but can dilate to a range of 4 to 8 mm in condi-
tions of dim lighting. Both pupils are usually equal in size. The pupil enlarges,
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
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or dilates, when exposed to darkness. The pupil constricts when focusing on a
nearby object. It responds to direct light and consensual illumination. Abnor-
malities occur when the pupil fails to dilate in darkness or constrict in response
to light or accommodation [4]. Pupil constriction lasts about one second, with
diameter changes ranging from 0.25 mm to 2.2 mm [5,6]. ICP is not the only
condition that affects the constriction or dilatation of the pupil, other condi-
tions that can affect the pupil include: medications, traumatic brain injuries or
neurological disorders [7–9].

ICP is a condition characterized by elevated pressure within the cranium,
exceeding 20 mmHg. Various factors can contribute to ICP, including brain vol-
ume changes, injuries, tumors, abscesses, blood clots, cerebrospinal fluid buildup,
increased cerebral blood flow, and cranial deformities [2]. Controlling ICP is cru-
cial to prevent brain damage or death. High ICP can lead to cerebral ischemia, as
well as bradycardia and respiratory irregularities caused by Cushing’s response,
a sympathetic-renal mechanism [10].

Pupils’ responses to visible light provide valuable information for determining
ICP levels. Signals controlling pupil contraction and dilation travel from retina
nerves to midbrain and hypothalamus, affecting the response if damaged [5,11].
The parasympathetic and sympathetic nervous systems control pupil size. The
retina relays light data to the pretectal olive nucleus, which signals the midbrain’s
Edinger-Westphal nucleus. This nucleus, via cranial nerve III, prompts pupil
constriction [7].

Numerous approaches have been suggested for the non-invasive assessment of
elevated ICP. These encompass: pupillometry, optic nerve sheath measurements,
transcranial doppler, magnetic resonance imaging, computed tomography, and
electroencephalography analysis [12–16]. Non-surgical techniques employed for
measurement have the benefit of avoiding procedures that might result in brain
injury. Nonetheless, it is acknowledged that these methods still exhibit limited
accuracy when is compared with invasive approaches, also, they are unable to
facilitate uninterrupted monitoring. This paper proposes the development of
vision algorithm that can measure the different parameters from the human eye
that could be used to estimate an approximate value of intracranial pressure.

2 Methodology

The computational vision algorithm proposed here consists in the development
of a tool based on Python and OpenCV to detect pupil diameter changes. A
disturbance, such as light, can alter the pupil’s size over time, allowing us to
calculate dilation or constriction speed based on its position and time. Pupil
constriction velocity less than 0.8 mm/sec is considered abnormal [17]. To have
a better knowledge of the vision algorithm, the diagram of Fig. 1 is proposed.

2.1 Video Acquisition

Here, an offline system is proposed, then it is first necessary to consider recording
a video through a camera and then turning that video into information that can
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Fig. 1. Vision algorithm flow chart.

determine if a person has elevated ICP. To achieve the above, an algorithm is
developed to continuously examine and analyzes the video. The video analyzed
in this study comprises a frame of 640× 480 pixels, and operates at a velocity
of 10 fps.

2.2 Video Processing

Haar cascade classifiers, introduced by Viola and Jones [18], are effective for
pupil detection. They use positive and negative images (Positive images show
the desired object to detect, while negative images do not) in a cascading machine
learning approach, enabling object detection in various images.

The video starts with color-to-gray conversion. Then, DetectMultiScale from
CascadeClassifier identifies objects of various sizes, including eye states (open,
closed, or blinking). The detected objects are returned as a list of rectangles
[19]. The DetectMultiScale function has four return values. These four values
correspond to the x and y axis of the initial point and height and width of the
position, so considering this the rectangle around the eye can be made using the
rectangle function.

Once there is a rectangle of the area of interest, the second stage of process-
ing is to analyze the space obtained. For that, some ImageFiltering functions
are used, which are GaussianBlur and erode. GaussianBlur applies convolution
to the source image using a designated Gaussian kernel and erode generates a
structuring element with the defined size and shape for use in morphological pro-
cedures. In the thresholding process, the video is performed in gray-scale since
the same threshold value is applied to each pixel. The pixel value is set to 0 if it
falls below the threshold, if not it is set to a maximum value.

After that, the video must be analyzed using HoughCircles function, which is
used to find circles in an image or video. Hough Circle Transform works based on
the mathematical circle theory. In mathematical terms, a circle can be expressed
as,

(x − xc)2 + (y − yc)2 = r2 (1)
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where r is the radius of the circle, and (xc, yc) are the centers. Finally, the eye
pupil is rounded by a circle. To do that, Circle from Drawing Functions is used.

Taking advantage that the pupil’s circular shape and prior processing, ideally,
a single black circle remains, simplifying detection. Table 1 lists the relevant
functions, while Algorithm 1 provides the video processing pseudocode.

Table 1. Image and video processing functions.

Function Python code Description

CvtColor cv2.cvtColor(src,code,dst,dstCn) Converts image color

CascadeClassifier cv2.CascadeClassifier(filename) Object detection

DetectMultiScale x.detectMultiScale(src,sF,minN) List of rectangles

GaussianBlur cv2.GaussianBlur(src,ksize,dst) Blurs and image

Erode cv2.erode(src,kernel,iterations) Erodes an image

Threshold cv2.threshold(src, thresh,maxval,type) Segmentation process

HoughCircles cv2.HoughCircles(src,c,m,dp,md,p) Circles in an image

Circle cv2.circle(src,cent,rad,col,th) Draws a circle

Append x.append(elmnt) Makes a data list

Algorithm 1. ICP monitoring vision system pseudocode
1: Initialize Video and Cascade Classifier
2: while 1:
3: ret, img = cap.read()
4: gray = cv2.cvtColor()
5: eyes = eyecascade.detectMultiScale()
6: if (len(eyes) > 0) then ”Eye Open”
7: for = (ex,ey,ew,eh) in eyes:
8: roigray = gray [ey : ey + eh, ex : ex + ew]
9: blur = cv2.GaussianBlur(roigray)
10: erosion = cv2.erode(blur)
11: ret3, th3 = cv2.threshold(erosion)
12: circles = cv2.HoughCircles(erosion)
13: circles = np.uint16(np.around(circles))
14: for = i in circles [0, :]:
15: if = i [2] > 0 and i [2] < 55:
16: cv2.circle(roigray)
17: diameter calculation
18: velocity calculation
19: end
20: end
21: end
22: else: ”Eye Close”
23: cv2.imshow()
24: end
25: end

2.3 Analysis of the Acquired Measurements

From the prior processing, we detect the pupil diameter. So, now we focus on
two key data points: pupil size and dilation/constriction speed.
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The HoughCircles function returns as output i[0] corresponding to the x-axis,
i[1] corresponding to the y-axis and i[2] corresponding to the radius of the circle.
To store the diameter and speed, lists were created with the Append function
while the program collects the information until the end of the video time. So,
considering that the radius of the circle is available according to the HoughCir-
cles function and that a list can also be made using the Append function, the
diameter data is calculated when executing the algorithm, once the video ends,
two variables are generated where the list of pupil diameters and velocities is
stored. Position or diameter of the pupil is obtained from the video processing
tools of OpenCV. Velocity can be calculated as follow,

v =
�d

�f
=

dn − dn−1

fn − fn−1
(2)

For n = 1, 2, 3 ... last calculated diameter and where dn−1 is the first calcu-
lated diameter in the first frame fn−1 and dn is the second calculated diameter
in the second frame and continues consecutively.

2.4 Medical Research Protocol

Elevated ICP often arises after a brain injury, causing skull pressure and affecting
the midbrain and brainstem, leading to changes in pupil reactivity. Pupil reac-
tivity alterations observed with a vision system are associated with elevations
in ICP [20]. The Neurologic Pupil Index (NPi) is a developed algorithm aimed
at measuring pupillary reactivity and eliminating subjective elements from this
evaluation [8]. The NPi algorithm integrates several pupil-related factors, includ-
ing latency, dimension, rate of dilation, and rate of constriction, which are all
included as parameters in Table 2. Each aspect obtained from a pupil measure-
ment is contrasted with a standard distribution derived from individuals without
health issues, serving as a reference. The difference between the measurements
and the mean is calculated and standardized using the standard deviation. A
composite score ranges from 0 to 5, with a score of 3 or higher indicating nor-
mal pupil behavior. A score below 3 indicates abnormal pupillary light reflex, a
slow response compared to the normative model. A score of 1 is considered more
abnormal than a score of 3.

Table 2. Pupil size variables.

Variable Units

Pupil Min/Max Size mm

Constriction %

Latency seconds

Constriction Velocity mm/sec

Max. Constriction Velocity mm/sec

Dilation Velocity mm/sec

NPi Scalar value
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In individuals with elevated ICP, an inverse correlation between pupil reactiv-
ity and ICP is presented. Pupil metrics summarized in Table 2 are: (a) minimum
size (pupil’s size when it reaches the maximum level of constriction), (b) con-
striction percentage (difference between maximum and minimum size divided
by maximum size), (c) time difference (duration between light stimulation and
pupillary constriction onset), (d) average velocity (extent of constriction divided
by constriction duration), with the highest velocity occurring during constriction,
(f) recovery rate (extent of pupil size recovery divided by recovery duration), and
(g) an algorithm comparing these variables to a conventional model to generate
an overall score for pupillary reaction.

As mentioned, pupil reactivity shows an inverse correlation with ICP in
individuals with elevated ICP, particularly in those with impaired NPi. More
research is required to investigate the temporal relationship between NPi and
ICP and evaluate its potential as a non-invasive biomarker [20]. To conduct
offline ICP monitoring, a suitable test environment must be established. This
involves ensuring consistent video acquisition by using a single camera model
with the same resolution, position, and orientation for all participants. Ambient
lighting should be kept constant. Additionally, the light source used to stimulate
pupil dilation or contraction should be standardized across the study.

3 Results

Having considered the previous work, the outcomes of the algorithm creation
for the ICP vision monitoring system are showcased. As mentioned in video
acquisition section, proposed video consists of a frame of 640× 480 pixels, and a
speed of 10 fps, a screenshot of the original model could be seen in Fig. 2. Figure 3
show the functions mentioned in Table 1.

Fig. 2. Screenshot of a frame from the proposed original video.

As mentioned in Subsect. 2.3, the code calculates the pupil diameter and
velocity and stores them in lists, Fig. 4 shows when the eye is closed, open and
the pupil diameter in millimeters in addition to the graphs obtained of diameter
and velocity once the video concludes.
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Normal pupil diameter size is from 2 to 4 mm when exposed to light and 4 to
8 mm while is out of light [4,21]. According to Fig. 5(a), average pupil diameter
is approximately 4 mm, so measurement presents a normal size. In case of the
velocity, rate change can be positive or negative depending on a dilatation or
constriction of the pupil but observing the Fig. 5(b), an average velocity could be
0.6 to 0.8 mm/s [17]. Pupil velocity less than 0.8 mm/s is considered abnormal,

Fig. 3. (a) Rectangle and Circle functions, (b) Blur function and (c) Erosion function.

Fig. 4. Response of the proposed system to the following states: (a) Eye is closed, (b)
Eye is open and (c) Eye is open and detect the pupil.

Fig. 5. (a) Pupil diameter graph and (b) Pupil rate of change graph.



190 G. A. De La Rosa Hernández et al.

so velocity results must be revised to check that velocity coding based on the
diameter and frames data is correct.

4 Discussion

The proposed methodology shows that the development of the visual algorithm
accomplished pupil diameter and velocity calculation. Pupil diameter results are
in adequate ranges according to background investigations, but physical imple-
mentation is needed to proceed with the calibration, validation, and optimization
of the algorithm because velocity rate presents an abnormal functionality. The
development of the vision algorithm to compute pupil parameters in order to
collect data from the human eye could be considered to develop a non-invasive
ICP estimation method. As mentioned in Subsect. 2.4, a medical research pro-
tocol needs to be made to have several study subjects that help us to improve
the algorithm calibration. So, future research needs to be continuing to obtain
an approximate value of ICP related to parameters of the NPi.

5 Conclusions

Vision systems based on video processing could be used to measure human mor-
phological changes. In the case of measurement and tracking of the pupil diame-
ter, the vision system proposed here worked in a regular way. Haar feature-based
cascade classifiers was introduced about 2000s and is just like a kernel in a Con-
volutional Neural Network (CNN), nevertheless, in CNN, the kernel values are
determined through training, whereas in the case of a Haar Feature, manual
selection is employed. This is important because the parameter adjustment of
the different functions spends a lot of time when cascade classifiers are applied
to videos.

Results show that the pupil diameter could be measure in a regular way
because of the imprecision used in the function parameters don’t allow a perfect
pupil detection. Velocity codification needs to be checked to be sure that the
diameter data or the frame data are correct. A medical research protocol must
be carried out when the algorithm works properly, making reliable measurements
of pupil diameter and velocity, at the same time the way of recording video of
the patients who could participate in the protocol must be standardized.
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Abstract. Post-Traumatic Stress Disorder (PTSD) is a mental health disorder
diagnosed by physical and psychological evaluations, scales of assessment, and
diagnosis criteria. PTSD diagnosis can be affected by subjective evaluations and
limited accessibility. Hence, alternative methodologies for diagnosing PTSD have
emerged, like speech analysis, it is recognized as a source of predictors to psy-
chiatric disorders, can be evaluated remotely and suggest sex-based differences.
Few studies have been focused on changes in the speech of PTSD population, and,
as far as we can ascertain do not explored features of sex-based speech associ-
ated with PTSD. For this reason, the present study aims to automatically detect
sex-based speech patterns linked to indicators of PTSD through the characteriza-
tion of speech signals. This research employed decision trees to recognize speech
predictors of PTSD. The resulting models achieved favorable performance, being
the women’s model the most accurate. Moreover, when not considering sex-based
differences, the spectral domain features highlighted and confirmed that PTSD
population is more likely to have uniform speech. Additionally, the results sug-
gest sex-based differences. Such as, the men’s model considers the dispersion of
speech and if a voice is tense, and the women’s model focuses on the frequency
bands of the speech.

Keywords: PTSD · Speech · Sex-based Patterns · Decision Tree

1 Introduction

Post-traumatic stress disorder (PTSD) is a psychiatric disorder stemming from direct or
indirect exposure to shocking, scary, or dangerous event. It can impact the psychological,
physiological, interpersonal, and spiritual aspects [1], affecting individuals of diverse
ethnicities and nationalities without age-related restrictions.

According to World Health Organization reported that approximately 3.6% of the
global population experienced PTSD in 2013 [2]. Additionally, theAmerican Psychiatric
Association estimated that one in eleven people would be diagnosed with PTSD [1].
Among women, the occurrence of PTSD throughout their lifetime is recorded at a rate
of 9.7%, while men have a lower rate of 3.6% [3].
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To diagnose PTSD, therapists use several assessment instruments, such as perform a
physical exam, a psychological evaluation, scales of interview-based assessment, which
usually estimate symptom presence and severity, and diagnosis criteria described in
manuals like the Diagnostic and StatisticalManual ofMental Disorders [4], often known
as the “DSM-V”.

However, PTSD diagnosis can be affected by accessibility barriers, including eco-
nomic factors, social stigma, the experience of clinicians, patient acceptability, or the
episodic nature of psychiatric conditions [5].

Hence alternative methodologies for PTSD diagnosis have emerged, managing to
improve the evaluations by using biosignals [6], neuroimaging [7], clinical lab markers
[8], facial expressions [9, 10], text data [9, 11] and speech [12–15], among others.
Speech is recognized as a source of predictors to psychiatric disorders and presents
advantages like expressing emotion and thoughts directly through verbal content, which
can generalize in different languages.

In this regard, most studies have used automatic extraction of speech features to
classify the presence or absence of PTSD [13, 14]. Some others focused on changes in the
speech PTSD population. For example, Marmar et al. [12] found features that contribute
to high performance in detecting PTSD, these features indicated slower speech and less
change in tonality. Similarly, Scherer et al. [15] discovered reduced tonality in the vowel
space and exhibited that the participants with PTSD and depression show more tense
voice features.

Although promising, these studies did not explore the sex-based variability of speech
features associated with PTSD. In this respect, previous findings suggest differences in
women and men evaluations of psychiatric disorders. Stratou et al. [10] demonstrate
that employed a sex-specific approach notably enhances the identification of nonverbal
signs associated with PTSD. However, this study does not consider speech features as
potential biomarkers of PTSD.

At present, few publications have described and explained indicators that could be
related to PTSD. To a lesser extent, studies do not consider sex-based differences in
searching for such indicators; which leads us to the following research question: Are
there differences in speech patterns between women and men in the PTSD population
that can be identified by using signal characterization and machine learning techniques?
For this reason, the present study aims to automatically detect sex-based patterns linked
to indicators of PTSD through the characterization of speech signals.

2 Materials and Methods

The proposed approach is divided into three main phases: data pre-processing, experi-
mental dataset, and machine learning modeling. A methodology overview is shown in
Fig. 1.

2.1 Dataset

TheDistressAnalysis InterviewCorpus -Wizard ofOz (DAIC-WOZ) is a dataset created
to aid in diagnosingmental health disorders, such as PTSD, developed in 2014 byGratch
et al. [16] at the University of California.
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Fig. 1. Proposed methodology to detect sex-based patterns linked to speech indicators of PTSD.

This resource contains audio and transcriptions of clinical interviews by Ellie, an
animated virtual interviewer (a person who asked a set of questions in a semi-structured
way operated Ellie).

The database involves 189 participants aged from 18 to 70 years, who were fluent
English speakers for which speech features were extracted through COVAREP [16].
Such features were: fundamental frequency (F0), maxima dispersion quotient (MDQ),
the first two harmonics of the differentiated glottal source spectrum (H1, H2), voicing
(VUV), normalized amplitude quotient (NAQ), quasi-open quotient (QOQ), Mel Fre-
quency Cepstral Coefficients (MCEP 0-12), Mel cepstral coefficients (MCEP 13-24),
parabolic spectral parameter (PSP), spectral slope of wavelet responses (peak/slope),
shape parameter of the Liljencrants-Fant model of the glottal pulse dynamic (Rd), Rd
conf, harmonic model and phase distortion mean values (HMPDM 0-24) and deviations
(HMPDD 0-12), for a total of 73 features.

Also, the database provides the scores from a standardized self-report questionnaire
called the PTSD Checklist-Civilian version (PCL-C) [17] based on the DSM-IV criteria
for PTSD recognition. Scores range from 17 to 85, representing the magnitude of PTSD
severity. The first range (17–29) represents little to no severity, the second range (30–
44) indicates moderate to moderately high severity, and the last range (45–85) signifies
high severity and a positive diagnosis for PTSD. The distribution of the DAIC-WOZ
participants is noted in Table 1.

Table 1. Distribution of DAIC-WOZ database participants

Severity Score Women Men Total

Little to no severity 17–29 43 54 97

Moderate
severity

30–44 27 10 37

High severity 45–85 17 38 55

Total 87 102 189



Sex-Based Speech Pattern Recognition for Post-traumatic Stress 195

2.2 Data Pre-Processing

The first phase of the methodology consists of data cleaning and standardization.
Initially, features with zero value across all instances were dropped. Then, inter-

viewer parts and spaces without speech were removed to analyze only the voice of the
participants.

Furthermore, feature vectors were standardized using z-score [18], a statistical mea-
sure to evaluate data from populations with different standard deviations and means, and
placed them on a common scale.

2.3 Experimental Dataset

The second phase involves grouping participants by sex and PCL-C scores. In addition,
a dimensionality reduction was generated for speech features.

As can be seen in Table 1, each participant has a PTSD severity score. The 97
participants with no severity are considered as the control group, and the 55 participants
with high severity conform to the group with active PTSD. In this study, the moderate
group is not considered because it could bias the indicators related to PTSD.

As previous studies have noted, there are differences in the automatic evaluations
of mental disorders of women and men [10]. During subsetting, women and men were
considered as different groups to recognize sex-based patterns linked to PTSD.

Therefore, this work is divided in three experiments. The general experiment is not
sex-aggregated and has a total of 152 participants. The following experiments involve a
women group (60 participants), and a men group (92 participants).

Subsequently, a dimensionality reduction approach was used to remove features that
exhibit the same trends and to reduce the computation time. In this sense, Spearman
correlation [18] was calculated, which is a non-parametric method for determining the
correlation between two tests of measurements taken from the same individuals and is
robust to outliers. According to Dancey and Reidy [18], the threshold for considering a
high correlation ratio is 0.7. Finally, the general, women, and men experiments contain
53, 55 and 58 features, respectively.

2.4 Machine Learning Modeling

The last phase of the methodology consists of generating and evaluating the machine
learning models, corresponding to the three experiments: general, women, and men.

Initially, supervised classificationwith a decision tree algorithm [19]was used to train
and classify participants as either PTSD or non-PTSD (controls). This method, employ-
ing graphical decision rules, was chosen for its interpretability and feature recognition
capabilities.

The parameters set were a binary tree approach, a minimum of two instances in
leaves, no split subsets smaller than 5, a maximal tree depth of 5, and an unemployment
rate when the majority reaches 95%. The decision trees were pruned to six levels for
graphic representation.

Finally, the testing step evaluates the generated models to measure the performance.
A ten-fold cross-validation was utilized, calculating performance measures including
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F1 score, Precision, Recall and Specificity (see Eqs. 1 to 4). In these equations, true
positive (TP) refers to correctly identified positives, while false positive (FP) represents
incorrectly identified positives. By contrast, true negative (TN) accurately identified
negative, while false negative (FN) signifies incorrectly identified negatives.

F1 = Precision · Recall
Precision+ Recall

(1)

Precision = TP

TP + FP
(2)

Recall = TP

TP + FN
(3)

Specifity = TN

TN + FP
(4)

Data were processed using Orange, a robust data analysis platform [20].

3 Results and Discussion

The results are discussed into main two parts: classification performance of the models
and the analysis of the features discovered by the models.

Table 2 presents the performance measures for classifying PTSD vs control group
for general, women andmen. The general model obtained an F1 score of 0.7, precision of
0.702, recall of 0.706 and specificity of 0.649. The women’s model achieved an F1 score
of 0.791, precision of 0.790, recall of 0.792, and specificity 0.756. The men’s model
attained F1 score of 0.733, precision of 0.743, recall of 0.742, and specificity score of
0.681. The results demonstrate improved performance when considering sex separation,
with the women’s model exhibiting the highest metrics.

Table 2. Performance measures results for each experiment

Experiment Performance

F1 Score Precision Recall Specificity

General 0.7 0.702 0.706 0.649

Women 0.791 0.790 0.792 0.756

Men 0.733 0.743 0.742 0.681

On the other hand, Figs. 2, 3 and 4 show the decision trees generated and blue shaded
features representing the decision rules to classify PTSD. As can be seen in the three
models, the 11th value Harmonic Model Phase Distortion-Mean (HMPDM-11) is the
root node of all decision trees and themajor indicators of PTSD in this analysis, unbiased
by sex. This feature is included in a spectral group of parameters based on the harmonic
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Fig. 2. Schematic of a decision tree generated from general experiment; it was pruned to six
levels.
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Fig. 3. Schematic of a decision tree generated from a men experiment; it was pruned to six levels.

model characterized by the phase distortion throughmean. Particularly, these parameters
are distinguished to reflect the uniformity of a signal.

Previous work reported similar patterns, Marmar et al. [12] selected voice markers
that indicated more monotonous speech with less activation. Findings from this proposal
might confirm that a person diagnosed with PTSD is likelier to have uniform speech.

Regarding the above, the research results have also demonstrated sex-based differ-
ences. The general model (see Fig. 2) found two groups of features, spectral and glottal
source underlining the Maxima Dispersion Quotient (MDQ) due to generating a leaf
node, which means that the classification process considers only three features. The
MDQ is a glottal source feature linked to the sharpness of the glottal excitation used to
quantify the dispersion. In addition, multiple features related to Harmonic Model Phase
Distortion-Mean (HMPDM), and the first two harmonics of the differentiated glottal
source spectrum (H1H2) were found.
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Fig. 4. Schematic of a decision tree generated from a women experiment; it was pruned to six
levels.

The men’s model (see Fig. 3) also reflects features of the HMPDM group, and
the MDQ feature increases its importance as a predictor since, to classify PTSD, the
decision tree evaluates only MDQ and the 11th value HMPDM. The model also shows
the 10th deviation HMPD and the H1-H2 feature, used to search changes in phonation
and related to opening of the glottis phase, when a second harmonic is stronger than
the first harmonic (negative value) indicates a pressed phonation and causes a tense and
restricted voice.

The women’s model (see Fig. 4) founds multiple features of the HMPDM group,
particularity, the 14th, 21st and 22nd values HMPDM. Similarly, the 6th Mel Frequency
Cepstral coefficient is considered, these represent the short-term power spectrum in
different frequency bands. This approach suggests that the voice of control or PTSD
woman depends on the frequency band in which her speech is.

Thepreviousmentionedfindings provide newpossibilities and implications in detect-
ing PTSD patients, offering a quantitative diagnostic tool, and potentially enhancing the
understanding of PTSD.As future trends, the proposal is to engage in the characterization
of alternative data sources and use others interpretable automated algorithms.

4 Conclusion

This paper proposed a speech pattern recognitionmethod to analyze sex-based indicators
linked to PTSD through a decision tree algorithm.

Overall, it was proved that patterns could be found in the speech of patients
with PTSD and promising performance of machine learning models, with subtle
improvements when considering participant sex.

The results found indicators linked to PTSD based on speech, such as uniformity in
a voice, recognized by all experiments. In addition, the findings suggest that indicators
may vary by sex differences. The men’s model evaluates the dispersion of speech and if
a voice is tense. In contrast, the women’s model focuses on the frequency bands of the
speech.
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Among the limitations of this study, even though promising performance metrics
were obtained, it would be desirable to evaluate the models in a different database to test
their stability.

As future work, it would be interesting to evaluate other possible sources of PTSD
indicators, such as text data, facial movements, and among others; due to only DAIC-
WOZ dataset features being considered in this analysis, there is a high potential to find
other indicators with more defined patterns of PTSD.
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Abstract. COVID-19 disease has caused a significant impact on the global health
sector, due to its high rate of contagiousness, along with the repercussions that
this disease has on the people who have suffered from it. Some types of sequels
are often presented, among which stand out those affecting the nervous system.
These have been detected due to the mental fog that some people present after
their recovery, or when they present persistent symptoms, these can usually be
analyzed by an electroencephalogram. In this work, we compare the electroen-
cephalographic record of four persons affected by COVID-19 concerning records
of this same type of people, considered with a normal signal. To be able to do
this, it was necessary to elaborate an algorithm to recover the quantitative data of
persons with alterations due to COVID-19, after which the analysis of this signal
was performed together with normal cases. This analysis shows that the COVID-
19 signal presents smaller values than variance, amplitude, zero crossings, and
dominant frequency compared to normal cases.

Keywords: COVID-19 · EEG · Neurological sequels

1 COVID-19

1.1 Introduction

COVID-19 disease is the result of the SARS-CoV-2 virus, a member of the coronavirus
family. Within this family, two other strains have greatly influenced the well-being of
various geographic regions. One of these is the SARS-CoV virus, which emerged in
2002 in the Chinese province of Guangdong, infecting more than 8,000 people in 32
countries. Despite this, it did not reach pandemic status [1]. Similarly, in 2012, Middle
East Respiratory Syndrome (MERS), caused by MERS-CoV, occurred in Jeddah, Saudi
Arabia, with 2,499 cases reported [1]. These numbers, although significant, are small
compared to the millions reached by SARS-CoV-2. They have contributed to improving
the understanding and management of diseases caused by this virus.
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On the 11th of March 2020, the World Health Organization (WHO) designated
COVID-19 as a global pandemic owing to its substantial incidence rates [1]. This pan-
demic has received its conclusion designation; nevertheless, its consequences endure
unabated. The effects of this disease have impacted the ordinary life of inhabitants
worldwide, exerting a profound influence on sectors such as economics, education, and,
particularly, public health. One reason is that even when people recover from the disease,
in many cases, they present some sequels, often affecting various organs and systems,
one of which is the nervous system [2].

1.2 EEG

Electroencephalography is a noninvasive technique used to study and diagnose the state
of the nervous system and measure, on electrodes located on the scalp, the brain’s elec-
trical activity produced by clusters of neurons working simultaneously. These electrodes
are placed following the international 10/20 system [3]. This system names the anatomi-
cal areas of the brain Fp (frontopolar), F (frontal), T (temporal), O (occipital), C (central),
and P (parietal), and the various electrodes are numbered using even numbers for the left
side and odd numbers for the right, with the lower numbers reflecting locations closer
to the midline [3].

An integral aspect to remember when measuring this kind is establishing the precise
configuration that will be utilized. These include monopolar montage, i.e., one elec-
trode concerning another reference electrode, or bipolar, in which the measurement is
performed concerning two electrodes that are not reference points [3].

The resulting measurement is a voltage versus time signal composed of four brain-
wave groups (signals with different frequencies) and artifacts. Therefore, the signal is
filtered before analysis to remove noise caused by external and internal signals. Once
this has been done, the resulting signal is analyzed in the frequency domain to visualize
the brainwaves. Those are alpha (8–12 Hz), beta (13–30 Hz), theta (4–7 Hz), and delta
(<4 Hz), each of which appears in a normal case in specific circumstances and areas
of the brain [3]. If the brainwaves appear in abnormal circumstances, it implies some
neurological alteration.

1.3 Neurological Sequels

COVID-19presentsmany sequels affecting several bodyparts, someof themost common
being muscle pain, headache, loss of sense of taste or smell, among others. According
to [4, 5], these sequels can be correlated with alterations in their EEG, which are usually
epileptiform discharges, epileptic discharges, and slowwaves in the frontal and temporal
areas [5].

According to Furlannis [4], patients with some alteration in their EEG signal exhibit
cognitive disturbance and occasionally some persistent symptoms, described in Table 1,
which shows the persistent symptoms and the frequency of their occurrence, considering
the patients with EEG alterations caused by COVID-19. It is observed that the most
frequent symptoms are headaches, dizziness, and hyposmia. On the other side, it is also
shown that the absence of these symptoms does not imply a normal EEG, especially
considering that 53.85% did not present persistent symptoms.
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Table 1. Neurological symptoms present concurrently with EEG abnormalities [4].

Neurological symptoms Relative frequency (%)

Hyposmia 23.08

Tinnitus 15.38

Myalgia 7.69

Paresthesia 7.69

Headache 23.08

Dizziness 23.08

No symptoms 53.85

Also, in [4], different EEG abnormalities are mentioned and shown in Table 2
with their relative frequencies. The slow wave is the most frequent in this study. The
abnormalities found in this study were also found in patients with COVID-19 [5–7].

Table 2. Electroencephalographic abnormalities [4].

Neurological symptoms Relative frequency (%)

Slow wave 69.23

Epileptiform discharges 23.07

Epileptic discharges 7.69

From this, it is found that EEG abnormalities exist due to COVID-19 disease and
the brain areas where they occur. According to data in [4, 5], frontal and temporal areas
are the most frequent.

Everything described above corresponds to qualitative data, which allows knowing
the characteristics of EEG impairments caused by COVID-19 documented by medical
research. Although it is essential to analyze electroencephalographic signals qualita-
tively, it is not feasible due to the absence of available data [7, 8]. Thus, as an alternative
way, using images were found that exemplify EEG affectations caused by COVID-19,
from which it is possible to obtain quantitative data using image processing algorithms
[8, 9].

2 Signal Analysis

2.1 Signal Recovery

As mentioned above, EEG images of (anonymous) patients affected by COVID-19 are
available in different research articles. In this work, we use an EEG image with the
described features. Signal data was extracted from the available images using image
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processing functions accessible in Python. We consider some relevant characteristics
needs, like having around 200 pixels per second and a scale, which is essential to obtain
a voltage/pixel ratio that allows a proper conversion of the values. In some cases, EEG
recordings have overlapping channels, which would interfere with the conversion, so it
is necessary to separate each channel into a new image, where the lowest value of the
signal is in the last column of the image, considering it like a matrix. Another important
consideration is to create an image corresponding to the scale measurements, which will
allow obtaining the contribution of each pixel in the voltage and check that it matches
the resolution mentioned above.

So, an algorithm was implemented using the scale and channel images, considering
these as a n×mmatrix [10], and generating a vector ranging from 1 to n andmultiplying
this by the pixel/voltage correlation factor. Fig. 1 shows the flowchart of the proposed
algorithm. The algorithm was implemented in Python using the OpenCV, NumPy, and
Pandas modules.

Fig. 1. Signal recovery algorithm flowchart.

Example. Using a signal from the NMT database, available in [10], plotted with Python
to obtain an image with the previously mentioned characteristics. Once the image and
the signal scale have been obtained, it is possible to use signal restoration from the
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image. Fig. 2 shows the restored signal in blue and the original signal in red. We can see
overlapped signals.

Fig. 2. Original and recovered signals.

Table 3 shows the main statistical values of both signals, where there are some
differences. In the cases of the maximum and minimum, the error is 1.593 µV and
0.4744 µV respectively, which implies an error of 2.53% and 0.57% in each case.

Table 3. Electroencephalographic averages values.

Parameters Original signal Restored signal

Samples 1401 1817

Average −0.2054 µV 0.662 µV

Standard deviation 15.4474 15.231

Minimum −62.751 µV −61.158 µV

Maximum 81.8656 µV 82.340 µV

2.2 Statistics Analysis for Cases of Study

Once the signal data are available, extracting themquantitatively for eachmeasurement is
possible. In this sense, each EEG channel for the studied cases is analyzed in terms of its
parameters in the time domain, such as standard deviation,median,maximum,minimum,
variance, skewness, kurtosis, amplitude, and zero crossings. These parameters are used in
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other EEG analyses [11, 12]. Moreover, in this type of signal, the dominant frequency is
fundamental since it allows for finding neurological abnormalities [3]. These parameters
allow for highlighting the qualitative characteristics of the signal quantitatively. In this
research, it is observed the parameters for the cases of healthy and affected by COVID-
19 persons. The cases of healthy persons will be analyzed NMT database [13], and in
the cases of persons with COVID-19, the signals retrieved from the article [6].

For the statistical analysis, it is imperative to consider that theNMTdatabase employs
a monopolar montage, whereas the COVID-19 cases utilize a bipolar configuration. To
make a feasible compare is necessary to retake the database NMT and get the difference
between the channels Fp2- C4, C4-O2, T4-O2, Fp1-C3, C3-O1, Fp1-T3, and T3-O1 to
achieve a similar type of measurement that was performed in the patient’s EEG with
COVID-19, such that all the recordings have signals coming from the corresponding
location.

Four healthy cases will be contrasted with four cases affected by COVID-19. To
achieve this, database files exhibiting analogous attributes to those of the COVID-19-
affected cases, matched explicitly in gender and approximate age, will be employed
[6, 11]. We use the parameters mentioned for each measurement on each record, espe-
cially amplitude and dominant frequency, which are usually signal alterations caused by
COVID-19 [6].

3 Results

As mentioned above, abnormalities attributed to COVID-19 typically manifest in the
temporal and frontal brain regions. Consequently, it is important to investigate the chan-
nel signals within EEG records. Fig. 3 shows the first seconds in the channels: Fp2-
C4, C4-O2, T4-O2, Fp1-C3, C3-O1, Fp1-T3, and T3-O1 of a healthy patient, and one
affected by COVID-19. In both cases, they are signals from women aged 83 and 84
years, respectively. It can be seen how the signal affected by COVID-19 has a smaller
amplitude and a lower frequency than the healthy case, which translates into fewer zero
crossings. Similar results were found when comparing the other cases.

Statistical parameterswere retrieved and averaged across all channels, encompassing
four healthy cases and four COVID-19-affected cases, as illustrated in Table 4. The data
shows that the amplitude, variance, dominant frequency, and zero crossings exhibit
notably higher values in healthy cases compared to those affected by COVID-19.

Figure 4 depicts the average dominant frequency observed in the channels stud-
ied. In particular, the dominant frequency shows variations, especially in the temporal
and occipital regions, with disparities of approximately 10 Hz more pronounced in
individuals without COVID-19 than those affected by the disease.
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Fig. 3. EEG signals of a person considered normal, and a person affected by COVID-19.

Drawing from [4, 5], the regions exhibiting more pronounced alterations because of
COVID-19 are primarily the temporal and frontal areas. Hence, the statistical parameters
of the Fp1-T3 and Fp2-T4 channels are highlighted to establish a contrast with the values
of the reference cases. Table 5 presents the values pertinent to the right hemisphere, while
Table 6 encompasses the signals from the left hemisphere; both tables show lower values
in terms of amplitude, variance, dominant frequency, and zero crossings in the instances
of COVID-19-affected cases, in alignment with the data presented in Table 4.
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Table 4. Average statistical parameters for the cases: a) normal and b) COVID-19 persons.

Parameters Normal COVID-19

Average 0.0414 µV 3.0949 µV

Standard deviation −1.5627 3.9456

Median 0.7996 µV 2.9757 µV

Maximum 344.0706 µV 119.04328 µV

Minimum −535.2224 µV −110.7787 µV

Variance 1862.8078 244.4142

Skewness −3.0685 0.1019

Kurtosis 33.5497 6.3346

Amplitude 879.2930 µV 229.8219 µV

Zero crossings 1260 496.5

Dominant frequency 10.6428 Hz 4.84093 Hz

Fig. 4. Dominant frequency for each channel for the cases: a) normal and b) COVID-19 persons.
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Table 5. Statistical parameters for the cases: a) normal and b) COVID-19 persons in channel
Fp2-T4.

Parameters Normal COVID-19

Average −0.3952 µV 7.0974 µV

Standard deviation −0.6926 9.1264

Median 1.2796 µV 6.8930 µV

Maximum 474.4208 µV 118.9079 µV

Minimum −865.4444 µV −112.0145 µ V

Variance 3,159.8254 250.4935

Skewness −6.2287 0.0779

Kurtosis 62.6974 4.9386

Amplitude 1,339.8652 µV 230.9224 µV

Zero crossings 1211 579

Dominant frequency 7.2571 Hz 5.0111 Hz

Table 6. Statistical parameters for the cases: a) normal and b) COVID-19 persons in channel
Fp1-T3.

Parameters Normal COVID-19

Average −0.0133 µV 8.8855 µV

Standard deviation −3.4262 5.9624

Median 0.2555 µV 9.3062 µV

Maximum 449.4642 µV 119.9983 µV

Minimum −834.8713 µV −114.5507 µV

Variance 2,671.6986 261.2239

Skewness −7.1214 −0.5069

Kurtosis 72.7827 6.5072

Amplitude 1,284.3355 µV 234.5490 µV

Zero crossings 1304 634

Dominant frequency 7.6571 Hz 5.2180 Hz

4 Discussion and Conclusions

From the above results, it can be affirmed that the main alteration of EEG signals in
patients with Covid-19, for the cases studied, is observed in their dominant frequency.
This observation aligns with the diagnoses depicted in the study [6]. As a result, we get
analogous conclusions regarding the recovered signal to those drawn from the original
signal.
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We also found that the abnormalities in the signal caused by the disease also affect
their amplitude, as mentioned in [6], being much lower than the normal cases used in
this work. Although other studies [14] mention alterations in the frontal and temporal
areas, it is interesting to note that in the cases reviewed, the frequency alterations were
mainly in the occipital and temporal areas of the right side of the brain, which is different
from what is shown in the Tables of the articles [3, 5].

Therefore, it is important to highlight that no conclusions can be drawn due to
the small number of cases studied. However, this work could contribute to a more in-
depth study of these signals. The absence of these databases is an important limitation.
Although it is possible to reconstruct the EEG signal from images, they do not substitute
the use of a sturdy database with greater detail and a more significant number of records.
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Abstract. Accurate segmentation of breast skin inmammograms is of great inter-
est for computer-aided diagnosis systems aiming for early cancer detection, as it
can highlight contralateral asymmetries linked to the development of different
types of carcinomas. We present an automated skin segmentation algorithm based
on Otsu multi-thresholding. It was evaluated on a dataset of 102 pairs of mam-
mograms from females of ages ranging from 30 to 74 years. We then proposed
two novel characteristics for asymmetry assessment: mean skin thickness, which
resulted in 0.88 pixels long, with a standard deviation of 1.16 pixels; and skin
area, with an average of 285.79 pixels and a standard deviation of 399.35 pixels.
Under these considerations, the algorithm identified 26 out of 102 cases (25.49%)
as exhibiting asymmetry in skin thickness, and 24 out of 102 cases (23.52%)
as displaying variations in skin area. These results demonstrate the effectiveness
of the proposed algorithm in accurately segmenting breast skin and detecting
potential asymmetries. Our advanced skin segmentation method enhances breast
imaging for cancer detection. Analyzing BI-RADS correlation with skin thickness
reveals significant asymmetries, aiding early diagnosis. Our innovative approach
outperforms previous techniques, although sample size and subjectivity warrant
consideration.

Keywords: Automatic segmentation · Breast cancer ·Multi-otsu segmentation ·
Skin thickness

1 Introduction

Breast cancer is a pressing global health issue. Each year, more than 2 million new
cases of breast cancer are diagnosed worldwide [1]. Studies have consistently shown
that identifying breast cancer at an early stage significantly increases the chances of
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treatment, with a rate of 90% of successful survival [2, 3]. One common characteristic
observed in breast cancer is the occurrence of contralateral asymmetry. Notably, such
asymmetry often serves as an early indication of the disease. Some breast cancer related
to asymmetry involves Invasive Carcinoma, and Inflammatory Breast tissues, each with
distinct clinical manifestations and prognoses [4, 5]. There is a 12.8% likelihood that
the individual may develop breast cancer. Moreover, if the degree of asymmetry exceeds
20%, it can be regarded as a potential indication of breast cancer with a 99% confidence
level [6–9]. Skin pattern thickness has emerged as a potential indicator for detecting
early signs of breast cancer. Variations in skin pattern thickness have been shown to cor-
relate with underlying pathological changes. By analyzing and quantifying these subtle
differences in skin pattern thickness, our study aims to contribute to the development of
non-invasive and accurate diagnostic tools. This approach holds promise for enhancing
the precision and reliability of breast cancer detection, ultimately leading to improved
patient outcomes and more effective healthcare interventions [10]. Table 1 presents an
overview of the current state-of-the-art in terms of algorithmic advancements in skin
segmentation techniques.

As depicted in Table 1, algorithms applied to mammograms attempt to identify the
skin-line rather than the complete skin tissue, except in the case of MRI images where
it is often excluded in favor of internal tissues [14]. Moreover, neither of these tech-
niques attempts to correlate skin characteristics with a diagnosis, as is presented in our
work. The Breast Imaging Reporting and Data System (BI-RADS) classification could
potentially hold a significant correlation with contralateral asymmetries. Therefore, the
exploration of algorithms for skin segmentation in mammograms and the quantification

Table 1. Table summarizing the state of the art related to automatic segmentation algorithms for
breast skin.

Description Algorithm ROI Reference

Edge detection algorithms,
scale space concepts, and
a growing active contour
method. Applied to
mammograms

Segmentation process
with a seed point
Contour growth is based
on the gradient factor

Skin-line Martí R. et al. [11]

Segmentation of the skin
and dense tissue in MRI to
produce a biomechanical
model of the breast

C-means (4 classes) Skin Solves Llorens J. A., et al.
[12]

Fractal and Hausdorff
Distance analysis applied
to breast skin line
segmentation in
mammograms

Fractal-based
segmentation

Skin-line Don. S., Min. D [13]

(continued)
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Table 1. (continued)

Description Algorithm ROI Reference

An automated skin
segmentation algorithm
was developed to remove
the skin in MRI before 3D
reconstruction

Active contour model Skin Lee C. et al.[14]

Automatic Breast
Segmentation algorithm
for low contrast, indistinct
boundaries, noise, and
artifacts. Used on
mammograms

Iterative movement of the
original seed along the
diagonal reference line

Skin-line Zhang Z., Lu J., Yip Y.
[15]

of differences in skin thickness across contralateral breasts within a BI-RADS classifi-
cation dataset provide novel and valuable insights into early breast cancer detection and
diagnosis.

2 Methods

2.1 BI-RADS Database

The BI-RADS dataset used in this study consists of Medial Lateral Oblique (MLO)
and Craniocaudal (CC) projections, including left and right views for each patient. The
dataset involves a total of 102 patients, all women with ages ranging from 30 to 74 years,
and categorized by oncologists from B1 to B5. The data used in this study was sourced
from the University of Pittsburgh Text Information Extraction System (TIES) [16].

2.2 Multi-otsu Region Segmentation

Otsu segmentation is a widely used image segmentation technique that aims to auto-
matically determine optimal thresholds for separating regions of interest according to
their brightness. Otsu’s algorithm calculates the optimal thresholds by maximizing the
between-class variance, which represents the separability between the two classes [17].

In the initial step, the image is extracted from the DICOMfile, which is subsequently
converted to a grayscale format. Then, a tissue contrast enhancement technique, known
asTheLook-UpTableRegion of Interest (VOILUT),was applied.VOILUT technique is
an image processing tool utilized inmammography to enhance the visualization of breast
lesions, mapping different shades of gray to adjust the image intensity and accentuate
specific features such as the skin [18, 19]. To focus solely on the breast region, a mask
is created to isolate it from the surrounding areas. To ease computational procedures
and maintain consistency, every image is resized to a spatial resolution of 512 × 512
pixels. Figure 1 depicts the differences between the original mammography image, the
VOI LUT process, and a mask enclosing the breast.
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Fig. 1. Preprocessing steps applied to a mammography image, a) the mammogram is extracted
from the DICOM file, exhibiting low tissue contrast, b) VOI LUT result, c) breast mask. While
applying VOI LUT is not essential for obtaining the mask, it becomes necessary for differentiating
the intensity of the skin from other tissues.

For the second step, a 13× 13 kernel was used to perform an erosion operation. Next,
by applying element-by-elementXORoperation between themask and the eroded image,
only the pixels closer to the edges of the breast are retained. A histogram is computed
using only these pixels. Subsequently, the Otsu method is employed to determine an
optimal thresholds. The optimum thresholds computed that maximize the variance is
given by Eq. (1). In Fig. 2, we can observe the variation in variance as the threshold is
adjusted across the intensity values.

σ2G =
L−1∑

i=0

(i−mG)2Pi (1)

where σ 2
G is the global intensity variance of all the pixels in the image. For the particular

case of having 2 classes, σ 2
B is also given by Eq. (2)

σ2B = P1P2(m1 − m2)
2 = (mGP1 − m)2

P1(1− P1)
(2)

where mG is the global intensity average, andm1 andm2 are the averages of both classes,
P1 is the probability calculated with the summation from 0 to the hypothetical threshold
over the normalized histogram, and P2 would be from the threshold up to 255, which is
the maximum value. Next, the variances are calculated for each hypothetical threshold
value, around all possible values divided into four different thresholds. The threshold
that yields the maximum variance is determined, indicating the optimal point where the
image is segmented. Algorithm I shows the pseudocode that presents the implementation
described in this section.
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Fig. 2. This graphical representation provides insights into the selection of an optimal threshold,
as it allows for the identification of the threshold value that maximizes the variance. The dashed
red line indicates the location where the maximum value occurs for the pixel collection.

Algorithm I: skin segmentation by Otsu multi -thresholding
Inputs:
- Breast image I
- Erosion kernel size N

Outputs:
- Skin image mask S 

1 Create binary matrix Z from the image turning any pixel value greater than 0 
into a 1

2 Apply element-by-element XOR operation between E and Z and save as X.
3 Apply X as a mask to I, creating a border matrix B

Create new list L where non-black pixel values will be collected
4 for every pixel P in B:
5 if P > 0
6 Append P to L

7 Ts = threshold_multiotsu(L, 5); we use 5 as argument to produce 4 thresholds 
(for 5 classes) and store them to the T list

8 Make the final threshold Tf equal to the second element of Ts.
9 Generate mask F by evaluating the cases where B > Tf

10 Create a kernel K2 of ones having size 5x5
11 Erode the Z image using K2 in a new R matrix.

12 Combine mask F and R with an element-by element OR operation to include 
the most outer pixels, and store as S

2.3 Analyzing BI-RADS Cases and Breast Skin Asymmetry

After acquiring the skin segmentations, a study was conducted to assess the correlation
between BI-RADS cases exhibiting skin asymmetry. The evaluation revolved around
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computing the average difference between skin pixels and the area of the left and right
breast. The underlying premise was that in the presence of asymmetry, both breasts
would exhibit high differences. Figure 3 presents a comparison between a case displaying
asymmetry and another case demonstrating normality.

Fig. 3. Segmentation cases, a) skin symmetry of patient with BI-RADS1 with single threshold,
b) skin asymmetry of a patient with BI-RADS2 with single threshold, c) and d) cases of skin
symmetry and asymmetry with class division respectively.

3 Results

Preliminary results obtained from segmentation techniques based solely on a single class
can be observed in Fig. 4. Some skin pixels that are slightly distant from the main border
fail to be included in the initial boundary delineation.

Therefore, the pixels were divided into five classes based on these thresholds,
depicted in Fig. 6a). Pixels closer to the skin are red, while those closer to blue are
not part of the skin. To refine the segmentation, a new mask is generated by including
only the pixels within the top three classes of highest intensity. Additionally, to ensure
that the boundary pixels are included in the segmentation, they are combined with a
small edge obtained through the erosion of three pixels from the original breast region.
Figure 5 presents a histogram in which the threshold values are computed for separate
five classes where: 17, 40, 90, and 179.

Figure 6 showcases a result of the skin segmentation process applied to the original
mammography. It is important to note that skin segmentation does not yield a uniformly
defined border. The resulting segmentation highlights the intricate and non-uniform
nature of the skin region.

In terms of validation concerning the labeled BIRADS cases, our paper presents the
results regarding the level of variation in skin thickness between the contralateral sides
of each patient. These findings shed light on the extent of differences observed in skin
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Fig. 4. Results of skin segmentation with a single class, a) shows the pixels that were considered
part of the skin, while b) shows the segmentation on the original mammogram. The red arrow
denotes skin regions that were omitted.

Fig. 5. Segmentation resultswith the distinction of five different classes, a) presents the segmented
subregions in which 5 classes can be observed within different colors and b) mask segmentation.

Fig. 6. Processing results for segmenting breast skin based on Multi-Otsu Region Growing
Approach.
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thickness between the corresponding sides of the breasts in Table 2, presented in Fig. 7
and Table 3 presents the cases found concerning each BI-RADS type.

Fig. 7. Results of the analysis, a) average skin thickness differences and b) difference according
to skin area.

Table 2. Results of the analysis for BI-RADS cases. The cases considered asymmetric are those
that present anomalies in the dataset whose value exceeds the σ threshold.

Statistics Skin thickness Skin area

Pairs analyzed 102 102

μ 0.88 285.79

σ 1.16 399.35

Asymmetry cases 26/102 24/102

Asymmetry % 25.49 23.52

Table 3. Results divided by BI-RADS cases.

BI-RADS Number of cases Number of asymmetries
(Mean difference)

Number of asymmetries
(Area difference)

1 19 4 2

2 7 2 2

3 33 10 10

4 31 5 7

5 11 5 2
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4 Discussion

The results of our study underscore the significance of skin segmentation within breast
imaging, for potential application in early cancer detection. Our methodology addressed
challenges posed by tissue overlap and indistinct boundaries.We assessed the association
between BI-RADS classification and variations in skin thickness, revealing substantial
dissimilarities across contralateral breasts. These disparities serve as markers for asym-
metry and abnormalities. However, it is essential to acknowledge the limitations inherent
in our study. The relatively limited sample size employed might not comprehensively
represent the broader population, prompting the necessity for further investigation using
larger, more diverse datasets.

Comparing our findings, it is evident that our approach represents a distinct advance-
ment. The incorporation of advanced techniques, including multiclass segmentation,
allows us to achieve a more refined delineation of skin regions. This is a substantial
departure from previous works that predominantly focused on identifying the skin-line.
Our exploration of skin thickness and area as indicators of breast health further sets our
study apart, enabling a comprehensive assessment of asymmetries.

5 Conclusion

Based on our findings, an asymmetry between contralateral sides in terms of skin thick-
ness was found. Notably, 25.49% of cases exhibited variations in skin thickness, while
23.52% displayed differences in skin area. The cases considered asymmetric are those
that present anomalies in the dataset whose value exceeds the σ threshold. Furthermore,
our study highlights the potential of using amulticlass approach to enhance skin segmen-
tation. By assigning different classes to distinct regions based on the initial segmentation,
we can achievemore accurate and refined results. Thismulticlass segmentation approach
enables a finer delineation of boundaries and aids in the identification of specific areas
of interest within the breast images. These findings underscore the value of implement-
ing advanced techniques, such as the systematic testing of threshold combinations, to
improve skin segmentation in breast imaging analysis. By incorporating these techniques
into computer-aided diagnosis systems, we can enhance the detection and diagnosis of
breast abnormalities, ultimately leading to improved patient care and outcomes.
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Abstract. Dehydration in older adults leads to numerous adverse outcomes and
is associated with cognitive diseases and medical treatments affecting thirst sensi-
tivity. Technological solutions, including wearable sensors in devices like smart-
watches, play a crucial role in monitoring physical activity and health. The inte-
gration of wearable technology, data processing, and advanced analysis offers
a non-intrusive, accurate method for quantifying fluid intake in older adults by
analyzing wrist and arm movements. This paper presents an algorithm for detect-
ing liquid intake movements in older adults using signal samples collected from
a wearable sensor equipped with accelerometry and gyroscope technology. The
algorithm focuses on preprocessing the signals and extracting relevant features
related to fluid intake in two different experimental conditions: standing and sit-
ting. The proposed algorithm accurately identifies fluid intake events, including
instances with uncontrolled movements. Various validation metrics were used to
evaluate the algorithm’s performance, including precision, accuracy, sensitivity,
and F1-Score. The recorded metrics consistently showed high percentages rang-
ing from 92% to 100%. These results indicate the algorithm’s effectiveness in
accurately detecting and classifying fluid intake events in older adults.

Keywords: fluid intake · older adults · accelerometry · gyroscope

1 Introduction

Dehydration in older adults is a significant contributing factor to accidents, falls, delir-
ium, confusion, reduced appetite, depression, dementia, and impaired body mobility,
among other conditions. These factors account for a substantial percentage of hospital
admissions and readmissions [1–4]. These consequences are directly associated with
age-related cognitive diseases and treatments involving medication, which can decrease
the patient’s sensitivity to thirst and disrupt water balance in the body. Additionally,
various pathologies such as diabetes, Alzheimer’s disease, renal failure, colon cancer,
fragility syndrome, infections, constipation, and other factors can limit dailywater intake
due to concerns about urinary or fecal incontinence [1].
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Several technological solutions have been proposed to quantify fluid intake, both in
the general population and in specific groups like the elderly. These solutions aim to
improve hydration monitoring and promote healthy habits. Some of the technologies
that have been used include mobile applications designed to track and record fluid
intake [5]. Users can input the quantity and type of beverage they consume, and the app
calculates their daily intake, some apps also provide reminders to drink water and offer
hydration tips; smart water bottles equipped with ultrasonic, RGB color, temperature,
and accelerometer sensors as well as a computational framework for machine-learning-
based fluid intake type classification, volume estimation, and bottle-state-recognition
[6]; smart cups that use weight sensors to measure how much liquid is consumed [7].
Some models sync with mobile apps to provide real-time information about fluid intake.
Connected health tracking systems like smart scales or body composition monitors, can
indirectly measure hydration by considering factors such as variations in body weight
and the percentage of body water [8].

Advancements in biomedicine and related technologies have led to the development
of wearable sensors, which utilize accelerometry and gyroscope techniques to monitor
three-dimensional movement patterns of the human body. These wearables consist of
reference points placed on different body parts to collect raw data. The accelerometer
captures linear acceleration, enabling the detection of changes in bodymovements.Addi-
tionally, the gyroscope measures alignment and detects rotational movements, providing
valuable data for analysis [9].

The combination of data collection and analysis techniques is commonly used in
human activity recognition (HAR) and applications involving artificial intelligence (AI),
machine learning (ML), and deep learning (DL). Through these techniques, algorithms
can be trained to classify and identify specific issues by processing the collected data
using signal or image processing techniques. This integration of wearables, data pro-
cessing, and advanced analysis methods offers promising opportunities for various fields
of research and practical applications.

Wearable sensors, such as those found in smartwatches and smartphones, play a vital
role in monitoring both physical activity and health of individuals. These devices can
acquire electrocardiographic signals to provide valuable insights into human well-being
[10]. Additionally, they utilize reference points on various body parts to identify and
track specific human activities, including walking, running, sitting, standing, and object
manipulation, employing the principles of HAR [9]. In addition to the daily activities,
the application of sensors combined with HAR and AI has led to the development of
smartwatch-like devices capable of identifying various other behaviors. For instance,
these devices can accurately determine the timing of food consumption [11]. For fluid
intake detection, these sensors can provide real-time data on the frequency and duration
of wrist movements and calculate the amount of water consumed when lifting the hand
to drink [12]. The integration of wearable technology, data processing, and advanced
analysismethods enables the quantification of fluid intake in a non-intrusive and accurate
manner.

The objective of this study is to develop an algorithm for detectingfluid intake in older
adults using accelerometry and gyroscope techniques. By collecting data from wearable
sensors, a comprehensive database will be generated, specifically focusing on older
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adults’ water consumption. The algorithm will then analyze this data to automatically
determine the amount of fluid intake within a specified time frame. This research aims
to contribute to a better understanding of fluid intake patterns in older adults and provide
valuable insights for healthcare professionals and caregivers.

2 Methods

TheWitMotion Bluetooth 2.0 wearable sensor, specifically the BWT901CL model, was
carefully chosen for data acquisition in this study. The sensor was calibrated using the
MinilMU.exe program, which can be installed either on a PC or a mobile device. The
calibration process involved adjusting the accelerometer, magnetic field, gyroscope, and
z-axis of the sensor.

During calibration, the configuration algorithm was set to accommodate 9 axes with
a range of ±16 G. The horizontal direction of the sensor was specified, and the settings
included a bandwidth (BW) of 256 Hz, a sampling frequency (fs) of 50 Hz, and a baud
rate of 9600 bits per second for data transmission. These calibration parameters were
carefully selected to ensure accurate and reliable data acquisition from the wearable
sensor for further analysis and interpretation in the study.

2.1 Experimental Design

The experimental design and protocol for this project adhered to the guidelines outlined
by the Research Ethics Committee (CEI) of the UACJ for approval. The design involved
recruiting individuals aged 60 years or older, regardless of their gender, who appeared
to be in good health. Participants were provided with a letter of informed consent, which
they signed, andwere given the opportunity to choose a location for the sample collection.

Fig. 1. Activity scheme of experiment A (a) and experiment B (b).

During the signal recording stage, three experiments were conducted with the wear-
able sensor placed on the participant’s wrist in the form of a watch. Each experiment
had a total duration of approximately 10 min. Experiment A (Fig. 1a) involved partici-
pants seated while drinking liquids, while experiment B (Fig. 2b) involved participants
standing while drinking liquids. In experiment C, participants were asked to include
hand movement activities other than fluid intake. Signals of similar movements such as
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touching the hair or adjusting the glasseswere captured to denote the differences between
both signals and thus facilitate the characterization of the signal of interest. The timing
of fluid intake for each experiment was recorded on a data recording sheet. The protocol
was designed to ensure ethical considerations and the collection of relevant data for the
study’s objectives. In the signal safeguarding stage, personal data from the participants
were collected, including age, dominant hand, and sex. To ensure confidentiality and
anonymity, these personal identifiers were assigned a numerical code instead of using
the participant’s actual identification data. This approach was implemented to protect
the privacy and identity of the participants throughout the study.

2.2 Database Collection for Training and Test Sets

For the database collection of training and test sets, a total of 120 signal samples were
gathered from each of the 10 participants, 70%of the sampleswere randomly selected for
the training set and 30% for the test set. The samples were divided into three types: Type
A, which involved participants seated during fluid intake (three samples per participant),
Type B, which involved participants standing while consuming fluids (three samples per
participant), and Type C activities involving hand movements other than fluid intake
(six samples per participant including similar movements such as touching the hair or
adjusting the glasses). The signal data was automatically synchronized from the Wit
Motion sensor to the MinilMU.exe program, and each sample was saved in a.txt file for
further analysis. Table 1 provides an overview of the participants’ general data, including
their age and sex, all participants were right-handed.

Table 1. General information about the participants.

ID Age (years) Sex

1 63 Male

2 84 Male

3 79 Female

4 75 Male

5 73 Female

6 60 Female

7 61 Male

8 63 Female

9 65 Male

10 60 Female

2.3 Data Analysis and Pre-processing

The original signals obtained from the accelerometer and gyroscope of themotion sensor
were analyzed based on the type of liquid intake (A and B) in all three axes (x, y, and z).
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Among the axes, the Y-axes of both the accelerometer and gyroscope were considered
the most relevant due to distinct patterns observed across the samples in both types of
intakes.

In the accelerometer’s Y-axis (Fig. 2a), a consistent pattern was observed initially,
indicating the hand resting on the table. This was followed by a gradual increase in signal
amplitude as the glass was lifted and brought to the mouth for drinking. The amplitude
formed an almost perfect curve that lasted a few seconds, representing the duration of
liquid intake. Subsequently, the amplitude gradually decreased as the glass was lowered
towards the table until it returned to the initial point of minimum amplitude, indicating
the hand and glass back on the table.

Regarding the gyroscope’s Y-axis (Fig. 2b), the pattern displayed a constant mini-
mum amplitude over 0°/s at the beginning, representing the hand on the table. This was
followed by a series of peaks that converged into a curve with a slight decrease, followed
by an increase in amplitude after a few seconds, indicating rotational movements and
alignment during the action of bringing the glass to the mouth. The signal then partially
stabilized with slight movements in alignment, oscillating at 0°/s for several seconds
during liquid ingestion. Finally, positive and negative peaks of varying amplitudes were
observed, culminating in a return to a minimum amplitude of 0°/s, signifying the glass
being returned to the table.

Fig. 2. Y-axis of accelerometer (a) and gyroscope (b).

To process the signals, a low-passButterworth filter of order 5with a cutoff frequency
(fc) of 3 Hz, which represents the maximum frequency of interest, was applied. The
signals were sampled at a frequency (fs) of 50 Hz, complying with the Nyquist theorem
and considering the frequency range of 15 Hz to account for arm movements and the
targeted signal of interest, i.e., liquid intake. After applying the filter, the first derivative
was calculated for the gyroscope’s Y-axis. This was done to attenuate the representative
peaks of the signal pattern mentioned earlier and to smoothen the slightly stable line
corresponding to liquid intake in this axis.
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To determine the start time and end time of the liquid intake, the onset of the action
was defined 1 s prior to the detected start time, and the completion of the action was
defined 1 s after the detected end time. These time points were crucial for accurately
capturing the duration of liquid intake during the experiments conducted in this project.

Fig. 3. Algorithm for fluid intake detection.

2.4 Algorithm Development

The development of the algorithmwas conducted in theMATLABenvironment. Figure 3
outlines the developed algorithm for detecting fluid intake in signal samples from
individuals aged over 60 years, single or repetitive sip gestures were not considered.
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This algorithm aims to identify and visualize instances of fluid intake based on
the processed signal samples. It utilizes various thresholds, windowing techniques, and
signal analysis to detect and represent the occurrence of fluid intake by older adults.

3 Results

The acquired signals representing fluid intake had a minimum duration of 3.86 s, a
maximumof 33.92 s, and an average of 9.8 s across the different participants. To compare
the signals based on their type (A and B), Fig. 4 displays the graphical representations.
It can be observed that the signal of interest for type B, which corresponds to fluid
intake while the participant is standing, exhibits a higher amplitude compared to type
A. However, the general patterns in both types of signals remain similar.

Fig. 4. Comparison of both types of fluid intake on the accelerometer (a) and gyroscope (b)Y-axes.

To visually represent the detected fluid intake in a signal, two dotted lines are utilized
to mark the beginning and end of the intake. Figure 5 displays the outcome of intake
detection in a healthy 84-year-old individual. In this specific case, the accelerometer sig-
nal (shown in blue) exhibits a sustained peak at its maximum point, while the gyroscope
peaks (indicated by the red signal) are well-defined. As a result, the algorithm success-
fully detects the fluid intake event, and the demarcation lines accurately correspond to
its duration. This visualization provides clear evidence of the algorithm’s capability to
identify and delimit fluid intake periods in the signal.

By implementing a 10-s window with a 3-s step in the algorithm, the detection of
multiple fluid intakes within a single signal, even in the presence of uncontrolled move-
ments, was achieved. Figure 6 illustrates an example where two fluid intake events were
correctly detected, as indicated by the dotted linesmarking the beginning and end of each
intake. Importantly, the algorithm successfully distinguished these fluid intake events
from other participantmovements, ensuring accurate identification specifically for liquid
ingestions. This capability underscores the algorithm’s effectiveness in discerning and
isolating the targeted fluid intake events while disregarding other unrelated movements
performed by the participant.



Towards Fluid Intake Quantification in Older Adults: An Algorithm 229

Fig. 5. Example of a fluid intake result in an 84-year-old male participant.

Fig. 6. Example of a signal with fluid intake and uncontrolled movements. Two ingestions
delimited by the dotted lines are detected.

Fig. 7. Confusionmatrix in training set (a) and test set (b) of the liquid intake detection algorithm.

The results of the algorithm validation for all samples in both the training and test
datasets are presented in Fig. 7.
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The corresponding data is summarized inTable 2. The algorithmdemonstrated excel-
lent performance in detecting fluid intake in elderly individuals, as evidenced by the high
accuracy rates. In the training set, the algorithm achieved an accuracy of 92.8%, while
in the test set, it achieved a perfect accuracy of 100%. Additionally, the algorithm dis-
played a high sensitivity of 100% in both the training and test sets, indicating its ability to
correctly identify all instances of fluid intake. The F1-Score, which combines precision
and recall, was 96.29% in the training set and 100% in the test set, further indicating the
algorithm’s robust performance in accurately detecting fluid intake events. In accordance
with another proposition documented in the literature [12], the attained accuracy exhib-
ited a notable level of proficiency, as evidenced by a comparison to the 94% accuracy
achieved in [12],which exclusively focused on signal analysis fromyounger participants.

Table 2. Training and test set evaluation metrics.

Metric Training Test

Precision 0.9285 1

Accuracy 0.9642 1

Sensibility 1 1

F1-score 0.9629 1

4 Conclusions

In conclusion, the utilization of human activity recognition technologies and the devel-
opment of an algorithm in MATLAB have demonstrated promising results in detecting
liquid intake events in signals obtained from individuals and over the age of 60. The
application of this technology, in conjunction with a thorough analysis for the quantifi-
cation of the amount of liquids ingested and reminders for water consumption based on
a predetermined schedule, holds great potential to benefit individuals in the future.

The validation of the algorithm showcased strong performance, including instances
with uncontrolled movements. The validation metrics, which were derived from testing
a total of 120 samples (60 liquid intake samples and 60 samples of different activities),
consistently exhibited high accuracy rates ranging from 92% to 100%. These results
indicate the algorithm’s effectiveness in accurately detecting and distinguishing fluid
intake events, even amidst challenging conditions.

The successful implementation of this algorithm and its validation highlight its
potential for practical use in monitoring and promoting adequate fluid intake in vari-
ous populations, particularly among older adults. Further development and integration
with wearable sensor technologies hold promise for enhancing personalized hydration
reminders and improving overall health and well-being.
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Abstract. This paper presents preliminary results of the standardiza-
tion for the acquisition of fMRI scans for post-stroke motor rehabilitation
in the MRI service of the Mexican National Institute of Rehabilitation.
fMRI scans of 9 healthy volunteers (30.22 ± SD 3.41 years) with no
prior history of neurological or psychiatric disorders were acquired while
they performed a motor paradigm that included tasks of action observa-
tion plus motor execution (AOME) and action observation plus motor
imagery (AOMI) for fist and finger tapping. Our findings revealed that
the primary cortical surfaces (precentral gyrus, postcentral gyrus, sup-
plementary motor area, and premotor cortex) had a functional gradient
with higher values for AOME and lower values for AOMI, which is in line
with existing literature, indicating that this standardized approach can
be beneficial for routinely carrying out post-stroke motor rehabilitation
research projects.

Keywords: fMRI · standardization · post-stroke · motor imagery

1 Introduction

Biomedical Engineers (BME) study the physics of magnetic resonance imaging
(MRI), the hardware, software and understand the clinical relevance of MRI.
In a multidisciplinary field, BME are responsible for the development of new
types of imaging [1], improve the image quality [2], reduce imaging artifacts
and acquisition times [3], all with the goal of maximizing the clinical utility of
MRI techniques. In this work BME students worked alongside psychologists,
radiologists, and technicians on a global project aimed at refining a protocol for
motor rehabilitation using functional MRI (fMRI).
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Numerous studies have highlighted the potential benefits of Motor Imagery
(MI, dynamic processes whereby actions are mentally generated and unfold
over time without physical movement execution) and Action Observation (AO,
dynamic mental processes that represent action content and are triggered when
observing other’s actions); as strategies for aiding post-stroke motor rehabilita-
tion [4–8]. However, the combination of Action Observation and Motor Imagery
(AOMI) produces increased activity in motor-related brain areas compared with
AO or MI alone. AOMI involve greater neural activity in the caudal supple-
mentary motor area (SMA), left precentral gyrus, basal ganglia, and cerebellum
compared with AO, and the bilateral cerebellum and precuneus compared with
MI [9,10]. These findings indicate that AOMI may be more effective in enhanc-
ing motor function during post-stroke rehabilitation. fMRI has proven to be
useful for monitoring post-stroke rehabilitation because it has valuable charac-
teristics for both clinical and research applications. However, in MRI facilities
with initial experience in hardware and software, there is a continuous need for
methodological improvements to ensure the validity and reliability of studies, as
errors, variations, or inconsistencies are often observed, which have an impact on
obtaining reliable results, and the design of the paradigm is a key factor in opti-
mizing these parameters [11]. Therefore, the contribution of BME expertise and
skills are crucial in optimizing the time spent on selection and interviews with
patients, reducing the acquisition time of fMRI, programming and validating the
paradigm task, and achieving functional results in line with those reported in
the literature.

This paper reports on the initial validation of the paradigm task as a means
of obtaining functional outcomes comparable to those reported in the literature
for healthy volunteers, with the aim of using fMRI studies as a monitoring tool
for post-stroke motor rehabilitation in the MRI service of the Mexican National
Institute of Rehabilitation.

2 Methods

2.1 Participants

Nine healthy participants (5 women) with an average age of 30.22 ± SD 3.41
years (range: 26–36 years) were selected. The participants had no history of neu-
rological or psychiatric disorders and provided written consent to participate in
the study. The participants were enrolled through direct invitation. Interested
subjects voluntarily attended a brief interview at the MRI service to perform
a series of psychological tests, verify the inclusion and exclusion criteria, sign a
letter of informed consent if they were met and participate in a training session.
The inclusion criteria were: ages between 25 and 40 years; dexterous (Edinburgh
Inventory ≥ 10); between 9 and 18 years of schooling; Kinaesthetic and Visual
Imagination Questionnaire R (KVIQ) test ≥ 3 and Perceived Stress Control
Questionnaire (PCE)≤ 13. The exclusion criteria were: structural brain lesions
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(insults, dysplasias or tumors); systemic or chronic disease; claustrophobia; con-
traindication to MRI procedure (prostheses, pacemakers, valves, etc.). The elim-
ination criteria were: voluntary abandonment; excessive motion that produces
artifacts during MRI acquisition and loss or deterioration of subject information.

2.2 Training Session

Subjects who met the selection criteria were scheduled for a training session
where they performed the following tasks: 1) opening and closing the fist (fist
AOME), 2) joining and separating the tips of the thumb and index finger (finger
tapping AOME), 3) imagined opening and closing the fist (fist AOMI), and 4)
imagined joining and separating the tips of the thumb and index finger (finger
tapping AOMI). Subjects had to synchronize their perfomance with a short
video (30 s) of the expected task with 1 Hz frequency presented at the begining
of each trial. The video also included a 1 Hz beat to facilitate syncronization.
The approximate duration of the training session was 12 min, in addition to the
time used for explanation.

2.3 fMRI Paradigm

On the day following the training session, MRI images were acquired while par-
ticipants performed the trained tasks. A block design paradigm was employed
(5 blocks for Rest and 5 blocks for Task), each lasting 30 s (10 volumes, TR =
3 s) while the subjects were shown the indications and videos of the tasks to be
performed as well as the beginning and end of the activation periods. The basic
structure of the paradigm is illustrated in Fig. 1. Each paradigm was presented
separately by randomizing the order of exposure, and the tasks were randomized
to avoid carryover and interaction effects.

2.4 fMRI Acquisition and Preprocessing

The MRI equipment was synchronized to a laptop computer via an event syn-
chronizer device designed specifically for this research. The objective of this
device was to synchronize the electrical pulses from the MRI equipment with the
stimulation paradigm controller software (PsychoPy v3.0) to start the sequences
of each trial. Anatomical and functional images were acquired using a Philips
Magneto Ingenia 3 Tesla with a standard 16-channel head antenna. For func-
tional MRI, a whole-brain echo planar imaging (EPI) sequence with the following
parameters was used: Repetition Time (RT) = 3000 ms, Echo Time (ET) = 36
ms, acquisition matrix = 80 × 95 voxels, Field of View (FOV) = 190 × 230 mm,
Flip Angle (FA)= 90◦, slices = 40, slice thickness = 4 mm, inter-slice gap = 0
and 4000 volumes over the experimental scan time of 5 min. Functional image
preprocessing and analysis were conducted using the FMRIB Software Library
(FSL, FLIRT version 6.0). The Brain Extraction Tool (BET) was applied to each
structural image from the command line before preprocessing and for functional
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Fig. 1. The basic structure of the paradigm execution during fMRI scanning. The Task
and Rest blocks were composed of five blocks, each lasting 30 s (10 volumes, TR = 3 s).
The entire paradigm was carried out for each condition (fist AOME, fist AOMI, finger
tapping AOME, and finger tapping AOMI).

data with the BET option within the Prestats module of FEAT. The rest of
the preprocessing steps (motion correction, slice-timing correction, smoothing,
registration, and normalization) were performed using the FEAT GUI with the
default options. To correct for motion, each volume from the BOLD images was
first rigidly registered to the middle volume using a normalized correlation cost
function and linear interpolation (MCFLIRT12 tool). After spatial smoothing
with a 5 mm FWHM, registration and normalization were performed using the
default linear registration method with full search and 12 degrees of freedom.

2.5 Functional Analysis

The first-level analysis was performed using a general linear model (GLM), and
the contrast images were computed for the following conditions: fist AOME, fist
AOMI, finger tapping AOME and finger tapping AOMI. On the second level
analysis, we used separated models to compute the main effect between con-
ditions by conducting one-sample t-tests with the respective first-level contrast
images (Fist AOME > AOMI, Finger tapping AOME > AOMI, Fist AOME
> Finger tapping AOME, and Fist AOMI > Finger tapping AOMI) on whole
brain level concerning all clusters considering a p-value below 0.05 as significant.
As results the cluster sizes higher than 20 voxels, the coordinates of the cluster
peaks as well as further relevant local maxima within these clusters are reported.
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3 Results and Discussions

3.1 Differences and Similarities Between Fist AOME and AOMI

Figure 2 shows the functional analysis of the Fist AOME, Fist AOMI, and
Fist AOME > Fist AOMI in the cluster coordinates [–44 –18 54]. This clus-
ter caused a considerable rise in the left-sided BOLD signal of the precentral
and postcentral gyrus, as well as the premotor cortex and supplementary motor
area (PM+SMA). The voxel volume in AOME was significantly larger than
AOMI in the precentral gyrus (3357 vs. 82), postcentral gyrus (3190 vs. 81),
and PM+SMA (1739 vs. 17). The contrast to Fist AOME > AOMI shows a
significant decrease in voxel volume across all structures while preserving the
proportions as seen in AOME. These findings indicate that Fist AOME and
AOMI involve the same cortical areas but differ in their volume sizes, and that
Fist AOMI can be beneficial for post-stroke motor rehabilitation. Our results are
consistent with those reported by Chepurova et al. [12] which verified the activa-
tion of primary motor cortex (M1, situated in the precentral gyrus) during both
active and passive hand movements. They monitored the brain activity of the
motor cortex while the participants performed independent (active) and assisted
(passive) fist opening and closing tasks. During active movement, the contralat-
eral M1 showed slightly more activation and there were also some overlapping

Fig. 2. T-maps showing group brain activation related to the fist condition: AOME,
AOMI and AOME>AOMI.
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activity in the contralateral primary somatosensory cortex (S1, located in the
postcentral gyrus). The authors conclude that the fist opening and closing task
is successful in stimulating M1 and S1, even with the help of assisted movement,
making it a viable option for patients with paresis.

3.2 Differences and Similarities Between Movement and Imagined
of Finger Tapping

Figure 3 shows the functional analysis of the Finger tapping AOME, Finger tap-
ping AOMI, and Finger tapping AOME > Finger tapping AOMI in the cluster
coordinates [–44 –18 54]. As in Fist analysis, Finger tapping caused a significant
increase in the left-sided BOLD signal of the precentral and postcentral gyrus, as
well as in PM+SMA. The voxel volume in AOME was significantly bigger than
AOMI in the precentral (1171 vs. 201), postcentral gyrus (1574 vs. 50), and
PM+SMA (634 vs. 89). The contrast to Finger tapping AOME > AOMI shows
a significant decrease in voxel volume of precentral gyrus (337) and PM+SMA
(24) but a lesser change in postcentral gyrus (673).

Fig. 3. T-maps showing group brain activation related to the finger tapping condition:
AOME, AOMI and AOME>AOMI

These findings are in line with those of Rao et al. [13], who showed that
basic free-frequency finger extension and flexion movements activate M1, and
that complex finger tapping movements with the same fingers activate the con-
tralateral (sometimes ipsilateral) M1, as well as both SMA and PM bilaterally.
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They also showed that when the frequency of the movement is set to 2 Hz for
complex movements, there is less intense activation (due to the lower frequency
compared to free frequency movements) in the (M1), (SMA), (PM). Lastly, the
authors discovered that during a first-person complex movement imagination
task, the SMA is more active than the PM.

3.3 Differences and Similarities Between Fist and Finger Tapping
in AOME and AOMI

Figure 4 shows the functional analysis of the Fist AOME > Finger tapping
AOME and Fist AOMI > Finger tapping AOMI in the cluster coordinates [–
44 –28 54]. Analyzing the sames structures in AOME contrast (first row) the
voxel volume for precentral gyrus, postcentral gyrus and PM+SMA were 128,
411 and 9 voxels respectively. While non-significant differences were found for
AOMI contrast (second row).

Fig. 4. T-maps showing group brain activation between Fist and Finger Tapping in
AOME and AOMI.

Hanakawa et al. [14] reported similar results identifying common cortical
brain areas that were activated during the Finger tapping AOMI and Finger
tapping AOME tasks. The M1, dorsolateral premotor area in its caudal portion
(PMdc) and supplementary motor area in its caudal portion (SMAc) were more
active during movement execution than during imagination. Nevertheless, acti-
vation was equal in the rostral part of the dorsolateral premotor area (PMdr),
ventral premotor area (PMv) and rostral part of the supplementary motor area
(SMAr). Their findings suggest a functional gradient from more “executive” to
more “imaginative” areas, which further corroborates Rao et al. [13], adding
specificity to the neuroanatomy of equivalent activation.
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4 Conclusions

The aim of this work was to provide an overview of the standardization process
for the acquisition of fMRI studies as a monitoring tool for post-stroke motor
rehabilitation in the MRI service of the Mexican National Institute of Rehabil-
itation. To this point, we have established a standard set of psychological tests
and a pre-training protocol that is indicated to the subjects one day before the
MRI images are taken. The connection between the MRI machine and the com-
puter that displays the results of the motor paradigm has been established and
standardized, making it possible for the service to routinely conduct this type
of research. The motor paradigm designed with AOME and AOMI motor tasks
of fist and finger tapping showed that, in a control group of healthy volunteers,
the primary cortical surfaces (precentral gyrus, postcentral gyrus, SMA, and
PM) had a functional gradient from executive to imaginative surfaces (AOME
> AOMI), which is in line with the literature. In future work, we will assess the
efficiency (time/effect) of the training processes and performance of motor tasks,
and a linguistic processing paradigm will be included to evaluate the accuracy
(percentage) of motor and linguistic tasks during image acquisition, and analyze
the overall brain BOLD signal intensity during motor and linguistic processing
tasks.
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Abstract. Independent component analysis (ICA) denoising represents a useful
tool in functional magnetic resonance imaging (fMRI) preprocessing pipelines.
The most used methods for ICA denoising involve automatic artifact component
selection for resting-state fMRI studies on healthy populations. However, these
automated methods have important limitations that are magnified if they are to
be used in clinical populations with commonly limited sample sizes, like stroke,
and in task-based fMRI (tb-fMRI), which requires the execution of a given task.
Nevertheless, this imagingmodality can offer helpful information about the neural
activation patterns post-stroke produced by the execution of a motor task, which
could be relevant in clinical assessments.However, stroke populations showhigher
artifact presence in tb-fMRI studies and increased variability in neural activation
patterns, which can complicate the identification of signal components. In this
work, recommendations to manually identify features of artifact and signal com-
ponents in ICA denoising of tb-fMRI stroke data are provided. These suggestions
could allow amore reliable analysis and interpretation of tb-fMRI studies in stroke
populations.

Keywords: BOLD signals · ICA denoising · stroke

1 Introduction

Independent component analysis (ICA) has been shown as a useful denoising tool in
functional magnetic resonance imaging (fMRI) preprocessing pipelines [1]. An ICA
cleanup can remove different types of artifacts (noise) from the signal of interest, com-
monly related to neural activity (i.e., blood oxygen level dependent (BOLD) signals),
after decomposing the 4D fMRI data into independent components (ICs) [2]. The main
step towards an ICA data denoising is to identify which ICs reflect artifacts and which
ones reflect BOLD signal. To this end, automated ICA cleanup methods have been pro-
posed [3, 4]. However, their use is focused on resting-state fMRI (rs-fMRI) studies of
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healthy populations, limiting their impact in other modalities, such as task-based fMRI
(tb-fMRI), and in clinical populations, like stroke, where denoising can have a beneficial
impact in data interpretation.

In stroke populations, tb-fMRI has proven to be a helpful tool in the assessment of
upper-extremity (UE) motor neural activity [5, 6]. This imaging modality can allow a
better understanding of the modified motor control patterns produced post-stroke [5–7].
During tb-fMRI, patients are commonly instructed to perform a motor task following
a block design, which allows the analysis of the BOLD signal changes during the task
execution [8]. However, tb-fMRI stroke data can contain increased artifact presence due
to the patients’ motor limitations and discomfort when attempting to move their affected
UE [9]. Nevertheless, ICA cleanups in this type of data are scarce [10], which can be
attributed, in part, to the automated algorithms’ limitations, including the requirement
of a training set or focusing on the removal of one type of artifact [3, 4]. However, these
limitations can be avoided ifmanual identification of signal and artifact ICs is performed,
as it still remains the gold-standard in ICA denoising [11].

Manually identifying the ICs’ information after an ICA decomposition of tb-fMRI
stroke data can be difficult. Stroke patients present greater head motion in tb-fMRI,
increasing artifact presence in the acquired data [9]. Additionally, the identification of
neural activation patterns in stroke patients produced by motor tasks can be challenging
due to vascular alterations or neurological changes [7, 12]. Nevertheless, correct identi-
fication of the ICs’ information is crucial in artifact removal and in preserving the BOLD
signal. To this end, guidelines have been proposed tomanually identify the ICs’ informa-
tion [11]. However, these suggestions focus on healthy subjects’ rs-fMRI data. For ICA
denoising purposes, the main difference between the tb-fMRI and rs-fMRI modalities
is what is expected to be BOLD signal, whereas artifacts can be of similar origin but
with increased presence in the task-based modality, especially for stroke populations.
Additionally, accounting for altered BOLD-related activation patterns in stroke patients
is required [7]. Thus, particular indications for tb-fMRI data of stroke populations are
needed, especially to handle increased artifact presence and to identify the BOLD signal
components associated to the performed motor task. This, in turn, could allow a more
reliable assessment of the neural activation patterns of stroke populations. In this work,
recommendations for manual identification of artifact and BOLD signal ICs during ICA
denoising of tb-fMRI data of stroke patients are presented. The ensuing sections include
an introduction to ICA, suggestions to identify noise and signal ICs, and, lastly, an ICA
cleanup example in tb-fMRI stroke data.

2 Independent Component Analysis in fMRI Data

The spatial probabilistic ICA (PICA) model allows a non-square data mixing process
while assuming that additive Gaussian noise (η(t)) is present, making it useful for fMRI
data [1]. This type of data can be described by Eq. 1:

xi = Asi + μ + ηi (1)

where xi represents the individual measurements at the i-th voxel,A is themixingmatrix,
si denotes the non-Gaussian sources, and μ is the mean value of all xi [1]. PICA looks
to estimate an unmixing matrixW = A−1 that allows a good approximation s

∧

to the real



Recommendations for ICA Denoising of Task-Based Functional MRI Data 243

sources s following Eq. 2:

s
∧ = Wx (2)

In spatial PICA, the estimated sources (the ICs) are comprised by a 3D spatial map
and its corresponding time series, which can be used to identify noise or artifact features
in each component. In turn, this allows the removal of noise ICs from the data, i.e., data
denoising, by substituting the corresponding columns ofAwith zeros and, subsequently,
regressing the components’ information out of the data according to Eq. 3:

x′ = A′ŝ (3)

where x′ denotes the filtered data and A′ the modified mixing matrix. However, it is
necessary to correctly identify the ICs’ information to adequately denoise the data.

3 Identifying Artifact and Signal Components in tb-fMRI Data
of Stroke Patients

Classifying the ICs as artifact or BOLD signal is the most important step in an ICA
cleanup. In this section, suggestions to identify the type of information that a component
contains during ICA denoising of tb-fMRI stroke data are presented. Here, the following
examples were obtained from a private database of tb-fMRI data of stroke patients
acquired in a 3T Philips Ingenia scanner (TR/TE = 3000/35 ms, flip angle = 90º, 120
volumes, 36 slices/volume, voxel size = 2.4 × 2.4 × 4 mm3). During each sequence,
patients performed (attempted to perform) continuous finger flexion and extension of
their affected hand interleaved with rest periods following a block design. In this work,
the image processing and analysis was performed via the FSL (v6.0.4) package [13].
The preprocessing stage included traditional steps like realignment, outlier detection,
smoothing (5 mm full width at half maximum), grand-mean intensity normalization,
and high-pass filtering (0.011 Hz). Lastly, the ICA decomposition was performed after
preprocessing via the PICA algorithm implemented in the FSL’s MELODIC tool using
default parameters [1].

For tb-fMRI data of stroke patients, it is necessary to account for a high artifact
presence. This could result in many components containing noise information, which
exhibit specific characteristics depending on the type of artifact it reflects. Several exam-
ples of noise ICs’ patterns obtained from multiple tb-fMRI sequences of stroke patients
are shown in Fig. 1, where the presented axial slices of the spatial distributions highlight
each artifact source. To identify a noise component, the following features can be looked
out for:

1. The spatial distribution has:
a. Small and sparse clusters (Fig. 1a–d).
b. Cluster peaks around blood vessels, corticospinal fluid (CSF), or white matter

(Fig. 1a–d).
c. A ring-like pattern, associated to motion artifacts (Fig. 1e).
d. Cluster peaks around air-tissue areas, causing magnetic resonance imaging (MRI)

susceptibility distortion (Fig. 1f).
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2. The time series shows:
e. Saw-like morphology, reflecting pulsation artifacts (Fig. 1a, 1d).
f. Abrupt changes, associated to motion artifacts (Fig. 1e–f).

3. The time series’ power spectrum is predominantly of high frequency (Fig. 1a-f) [11].

Additionally, a single component can contain multiple artifact features (Fig. 1a–b)
or multiple components can show the same noise feature due to an increased number
of artifact sources in tb-fMRI stroke data. Thus, if similar patterns are recognized in
a components’ spatial distribution, time series and/or power spectrum, it can then be
identified as a noise component and, subsequently, regressed out of the data.

Fig. 1. Selected axial slices of spatial distributions (on top of the corresponding slices of fMRI
images), time series, and power spectra of artifact ICs. (a) Artery-, vein-, and CSF-related artifacts
component. (b) CSF artifact component. (c) Vein-related artifact component. (d) Pulsation artifact
component. (e) Motion artifact component. (f) MRI susceptibility artifact component. R: right, L:
left.

Identifying the BOLD-related components in a tb-fMRI ICA decomposition requires
the definition of an expected signal according to the selected design. For example, the
BOLD signal in a block design paradigm is expected to follow an “off-on” pattern,
similar to the one shown in Fig. 2a [8]. Here, the estimated hemodynamic response
function (HRF) in each block is shown in red. In this design, patients are instructed to
rest (light blocks) and to perform a task (dark blocks) during the “off” and “on” periods,
respectively [6, 10]. Both the selected task and design can provide an expected BOLD
signal location (for example, around the contralateral primary motor cortex (M1) when
executing a UE motor task) and morphology (“off-on” pattern), which can be reflected
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in a component’s own spatial distribution and time series, respectively. Additionally,
BOLD-related components have features that can be used to identify them, including:

1. The spatial distribution has:
a. Cluster peaks around brain regions associated with the performed task during the

tb-fMRI sequence.
b. Large and few clusters.
c. Low number of activations around blood vessels, CSF, and white matter.

2. The time series shows regular oscillatory patterns similar to the selected design for
the tb-fMRI sequence.

3. The time series’ power spectrum is mainly of low frequency [11].

These features can be seen in Fig. 2b, where a component that contains BOLD pat-
terns produced when a stroke patient performs a motor task with its affected hand is
presented [12]. Here, the axial slices of the component’s spatial distribution around the
ipsilesional M1 are shown. Albeit establishing the BOLD signal hypothesis is impor-
tant to identify the associated ICs, it is not as straightforward in stroke patients due to
vascular alterations, lesion site, or neurological changes in activation patterns [7, 12].
This can be observed in some components where either the spatial distribution, time
series, or power spectrum reflect, in part, the expected BOLD signal while the other fea-
tures do not match it completely. In Fig. 2c–f, multiple ICs with this behavior obtained
from a single ICA decomposition are shown, focusing on the axial slices that highlight
their distribution patterns. Here, the ICs show spatial distributions surrounding the left
(Fig. 2c) and right (Fig. 2d–e) M1, and the cerebellum (Fig. 2f), while including addi-
tional non-motor related areas (Fig. 2c–f), with changing time series that have, mainly,
low frequency power spectra, suggesting that the BOLD signal was partitioned into
multiple ICs. Additionally, the BOLD signal in these components is mixed with artifact
information, possibly due to increased variability in the spatial distribution of the signal
of interest and higher artifact presence in stroke patients’ tb-fMRI studies, making the
ICA decomposition amore complex task [7, 9, 12]. Therefore, the following suggestions
can also be established:

1. Label the component as BOLD-related if its spatial distribution is mainly located
around gray matter.

2. Do not regress the component out of the data if it is a noise and signal mixture.
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Fig. 2. Block design of a tb-fMRI study involving finger flexion and extension with the affected
(left) hand of a stroke patient and ICs containing BOLD signal information on top of selected
axial slices of fMRI images. (a) Block design with 6 rest conditions (light) alternating with 6 task
conditions (dark) with the expected HRF superimposed (red line). (b) Component that mainly
reflects the spatial distribution, time series, and power spectrum of the expected BOLD signal.
(c) Component with partitioned BOLD signal (left M1) and artifact information. (d) Component
with partitioned BOLD signal (right M1) and artifact information. (e) Component with partitioned
BOLD signal (right M1) and artifact information. (f) Component with partitioned BOLD signal
(cerebellum) and artifact information.

4 ICA Denoising Example in tb-fMRI Data of a Stroke Patient

Significant activation maps showing the ICA denoising effect in tb-fMRI stroke data are
presented in Fig. 3. These maps were obtained after the processing and analysis of a
tb-fMRI sequence of a stroke patient before (Fig. 3a) and after (Fig. 3b) including ICA
denoising as the last step of the previously described preprocessing stage. Statistical
analysis was carried out via a generalized linear model (GLM) including regressors of
the expected HRF and its temporal derivative, of 24 realignment parameters [13], and
of the detected outliers. Additionally, the regressors were high-pass filtered (0.011 Hz).
The resulting Z-maps show the statistically significant activations (cluster threshold of
Z > 3.1, corrected cluster significance threshold of p = 0.05) produced during the tb-
fMRI sequence. In Fig. 3a, significant activations can be found around the ipsilesional
(right)M1 (marked in red dashed circles), which can be associated to the expectedBOLD
response given the left-handmotor task [12]. However, additional significant activations,



Recommendations for ICA Denoising of Task-Based Functional MRI Data 247

possibly associated to vein, motion, and CSF artifacts, can also be observed. In Fig. 3b,
after ICA denoising, significant activations are preserved around the ipsilesional M1.
Moreover, the activations deemed as artifact related are no longer present. This suggests
that an ICA cleanup can further denoise tb-fMRI data even after traditional preprocess-
ing pipelines and the inclusion of several motion-related regressors in the GLM analysis.
Reliability in the obtained significant activations is of particular importance in quantifi-
cation methods of tb-fMRI data, such as the often used laterality index [14], which are
dependent on the number and location of these activations.

Fig. 3. Significant activationmaps of a stroke patient on top of selected axial slices of fMRI images
when performing continuous finger flexion and extension with its affected hand (left hand) during
a tb-fMRI sequence. Ipsilesional M1 is marked in red dashed circles. (a) Activation maps obtained
before ICA denoising. (b) Activation maps obtained after ICA denoising. R: right hemisphere.

5 Conclusion

ICA denoising represents an important tool in tb-fMRI preprocessing that can lead to
more reliable results. The recommendations to recognize noise and signal components
presented in this work aim to provide a guideline to correctly identify by hand each
component obtained after an ICA decomposition of tb-fMRI stroke data. The included
example illustrates that ICA denoising can be helpful in removing persistent activations
associated with artifacts while preserving BOLD information. In turn, an adequate tb-
fMRI artifact cleanup could allow for a more reliable interpretation and quantification
analyses of neural activation patterns in stroke patients.
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Abstract. Given the need for a universal communication method for people who
cannot communicate using oral language (as speech disability, limited or nomove-
ment in the upper limbs avoiding the use of sign language, among others), the elec-
trooculogram (EOG) is proposed as a tool for recording eye patterns. Therefore,
a total of 10 patterns derived from the Blink-to-speak language, which contains
essential needs, were carefully chosen to be recorded by 20 participants. From
these recordings, various statistical and signalmeasurementswere extracted as dis-
tinctive features. Subsequently, a comprehensive database was constructed using
these features in order to train a machine-learning algorithm, specifically a deci-
sion tree model. The primary objective of this model was to accurately detect
and predict the specific eye-movement patterns that corresponded to a given word
or communicative concept, all while considering the underlying intention behind
each movement. An 83.4% of accuracy were achieved for this multiclass task, the
patterns that achieved 100% correct predictions were “I want to sleep” and “dan-
ger”, while the patterns with lower performance were “yes” and “toilet”. Hence,
our proposal represent a viable communication alternative for those who cannot
communicate due to speech and limb movement limitations.

Keywords: Eye movements · EOG · communication · Blink to Speak · machine
learning

1 Introduction

Communication is defined as the process of transmitting information between a sender
and a receiver [1], this process is inherent to human beings, as it is a basic mechanism
for socialization.

According to the census conducted in 2020 by INEGI, in Mexico there are about
945,000 individuals with speech or communication disabilities [2]. People with speech
or communication disabilities often rely on Sign Language as a communication method.
However, thismethodpresents limitations; for example, both the sender and receiver need
to be familiar with hand movements and facial expressions. Furthermore, sign language
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varies depending on the geographical region or language, resulting in approximately
300 different sign languages [3]. Additionally, individuals with speech disabilities and
limited upper limb mobility face even more significant communication challenges since
sign language is not suitable for their situation.

In 2018, as part of the TBWA/India campaign, a universal language called “Blink to
Speak” (BTS) [4] was introduced to tackle this problem. It utilizes eight key alphabets
(shut, blink, left, right, up, down, wink, and roll).

While the BTS language provides a solution by eliminating the need for limb move-
ment and being universally applicable, its use implies a high level of concentration
from both the sender and the receiver. Any distractions must be avoided, and the pro-
cess can be complex and time-consuming, as it requires the attention of both parties
involved. Consequently, current efforts are focused on the creation of a method that
allows the recognition of eye movement (EM) patterns, in order to help people with
speech disabilities and motor limitations to communicate with their environment.

In order to facilitate the interaction of individuals with speech disabilities and motor
impairments, several systems have been proposed that utilize EMs, particularly eye
blinking, as they are the least affected muscle movements [5]. Additionally, the EOG
has emerged as a practical and user-friendly method for acquiring EM data, making it
convenient and straightforward to implement.

For instance, the use of EOG is proposed in [6] for the development of a computer-
assisted communication support system that allows the user to make and receive voice
calls, send SMS and emails. While this system is capable of identifying simple EM
patterns, its intended use is for individuals with motor disabilities who still retain their
speech abilities.

Besides, the use of EMs to control virtual keyboards has also been proposed. In [7]
an EOG-based writing system is described, employing eight distinct patterns of EMs,
and in [8] is presented a system with 10 patterns representing basic needs achieving an
accuracy of 80%, however, calibration is required for each user. Although these systems
present an alternative means of communication, as virtual keyboards, they necessitate a
monitor and their usage is intricate, since selecting each character involves more than
one EM.

On the other hand, machine learning (ML) has been used in the patterns eye recog-
nition for communication. In [9] an EOG-based eye-writing system is proposed as a
communication tool that recognizes 10 Arabic numerals. The data of each participant
underwent individual testing. A comparison between different models is performed,
reporting a mean accuracy of 96.79%, but excluding 2 number patterns that were not
classified correctly.

Also, computer vision has been employed to recognize EM patterns with commu-
nicative intent. An example of this is [10], where the Blink-to-live system is proposed,
which is a language of 4 EMs (left, right, up and down), based on “BTS” which uses
a camera through a mobile application and a python module for the processing of the
images obtained. An important disadvantage of using images is that variations in ambient
brightness levels must be considered [9].
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Although the mentioned works aim to provide a communication tool for person,
these involve multiple EMs to represent a single command and may require the use of
additional devices such as monitors located in front of the person. Also, the use of ML
has demonstrated its usefulness in detecting ocular patterns for communicative purposes.
However, this approach is constrained by the fact that themodelswere exclusively trained
to each individual, and the reported averages of the best accuracies exclude patterns with
lower accuracy.

In this work, a ML model is proposed for the automatic detection of eye patterns
that are registered using EOG, as a non-invasive and comfortable method for capturing
eye patterns based in BTS language.

2 Methodology

In order to identify eye patterns using a ML algorithm, the methodology described in
Fig. 1 were followed.

Fig. 1. Diagram of methodology

2.1 Words and Phrases Selection

A total of 10 phrases and words are chosen from the 50 patterns included in the BTS
language. The selection process entails evaluating both the communicative intent and the
complexity of the movement associated with each pattern. Specifically, the 10 patterns
with the highest weights are chosen for further analysis (see Fig. 2).

It is important to mention that among the 50 language patterns, 18 require feedback
from the receiver in order to effectively communicate the needs expressed by the sender.
Out of the selected patterns due to their communicative intention, three require feedback:
“I feel like eating” requires the receiver to indicate ormention food options, “I’m in pain”
requires them to point out body parts, and “danger” requires them to indicate potential
risky situations, so that the sender can respond with a single blink for “yes” or double
blink for “no”.
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Fig. 2. Phrases and words selected. Images were taken from [4]. In the upper left part the ocular
pattern is described, in the center its graphic representation and in the lower right part the phrase
or word that represents.

2.2 Data Acquisition

EOG recordings are obtained from a cohort of 20 participants, each replicating the
aforementioned set of 10 movement patterns associated with the selected words and
phrases. All subjects selected were free from any impediments that could hinder the
replication of visual motion patterns, comprising an equal distribution of 10 women and
10 men aged between 18 and 50 years.

The EOG data was captured using the Natus XLTEK EEG 32 system. The recording
setup incorporates the following configuration parameters: a sample rate of 256 Hz, a
time base of 60 mm/s, 3 channels for EOG measurements, a sensitivity of 100 µV/cm,
and a bandpass filter ranging from 0.5 to 35 Hz [11–13].

For the recording of the selected EM patterns, the registration of three channels is
required: two vertical corresponding to the right eye and left eye, and a horizontal one,
placing the electrodes as shown in Fig. 3. Gold cup surface electrodes with conductive
paste are used.

In order to record each pattern, a training video is presented, demonstrating the
movements to be performed at a consistent rhythm of one count per second. This process
is repeated until the participant can replicate the movements without visual guidance,
relying solely on the auditory count.

The videos begin with a four-second period of rest time, accompanied by the sound
of a bell indicating the start of the recording. Subsequently, the timer begins, guiding
the participant in performing the EMs.

All patterns begin and end with the gaze fixed on a reference point in front of the
subject. The participant is instructed to refrain from making any EMs outside of the
trained movement pattern.

Each participant individually performs the 10 movement patterns selected, resulting
in a total of 200 records for the dataset at the end of the data acquisition process.
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Fig. 3. Distribution of the seven electrodes to record the EMs of the three channels involved:
right (red electrodes), left (blue electrodes), and lateral (green electrodes), as well as the reference
(black electrode).

2.3 Conditioning and Data Characterization

After obtaining the recorded motion patterns, a zero-phase band-pass filter ranging from
0.5 to 30 Hz is applied to them. The filtering process utilizes a Kaiser window with a
20 dB attenuation [14].

It works with each channel separately, and with the addition and multiplication of
these channels, thus having five signals. For each of these, the average, variance, standard
deviation, RMS value [15], number of peaks (defining a threshold of the mean plus 1.75
times the standard deviation), and distance between peaks are calculated, as well as the
difference between the highest and lowest voltage of each channel [16] and the number
of samples of the recording.

In order to reduce the number of features and to minimize the computational cost of
the ML algorithm, a correlation matrix was calculated to assess the linear relationship
between features and eliminate those that present a high correlation [17]. Initially, a cor-
relation threshold of 0.7 was proposed for feature selection according to [18]. However,
testing the model with a slightly constrained threshold of 0.8 resulted in improved per-
formance. This approach aimed to balance between feature reduction and maintaining
predictive accuracy. Thus a total of 19 features were selected that had a correlation of
less than 0.8.

2.4 Generation and Evaluation of the Classification Model

To train the algorithm, the “Classification Learner” Matlab toolbox [19] was utilized,
specifically employing the decision tree (DT) model. The DT is a non-parametric model
that employs non-recursive binary partitioning to predict the class towhich a case belongs
based on its attributes [20]. It was decided to use this model because it’s descriptive,
easy to implement, and its computational cost is lower than other algorithms.

The training dataset for the DT model comprises the 19 aforementioned features,
extracted from each of the 200 records associated with the 10 selected EM patterns.
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The performance evaluation during training was assessed using a 5-fold cross-
validation approach to find a model that suffers neither from excessively high bias nor
from very high variance [21]. Also, confusionmatrices were used to assess performance.
The model was trained 10 times, always using the same conditions.

3 Results and Discussion

One of the products derived of this study is a database comprising the characterization of
10 distinct patterns of EMs executed by 20 individuals. This database allows the training
of ML algorithms, enabling further advancements in the field.

The ML model generated shows very promising results, with an average of 83.4%
correct predictions (see Fig. 4) after having trained 10 times. The patterns that achieved
100% correct predictions were “I want to sleep” and “danger”, while the patterns “I’m
not okay” and “I’m in pain” had a regular performance (81% and 82.5%). Unlike the
other patterns, “yes” (blink) and “Toilet” (up) require minimal muscle activation (i.e.,
the signals have more frequently lower SNR compared to others acquired for different
words), the model misclassify them, making them the worst performing patterns, with
53% and 65%, respectively.

Fig. 4. Confusion matrix of the generated model.

Regarding the features considered by the DT algorithm to classify the patterns (see
Fig. 5), the most relevant one is the length, which corresponds to the number of samples
in the record.

Other important features include variance, the number of peaks, the mean, and the
distance between peaks, especially of the horizontal channel. It is worth noting that all
the considered features correspond to the characterization of separate channels, although
the database also contained characterization of the sum and multiplication of the three
channels. It is important to note that we expected that the sum andmultiplication of these
signals could provide more differentiable patterns that could help in the classification of
these signals; however, the algorithm did not consider these signals in order to classify
the words.
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Fig. 5. Decision tree. HC is the horizontal channel, RC is the right channel and LC is the left
channel. Numbers meaning: 1) Yes, 2) No, 3) I want to sleep, 4) Water 5) Toilet 6) I feel like
eating 7) I’m not OK 8) Breathlessness 9) I’m in pain 10) Danger.

Considering the works mentioned in the state of the art, the present study provides an
alternative form of communication based on EOG, similar to [6–9], with the advantage
that it can be utilized by individuals with both motor and speech disabilities; it is built
upon a universal language with simple patterns, eliminating the need for a monitor in
front of the person. Furthermore, by not relying on images [10], it can be employed in
any environment regardless of lighting conditions.

The generated model can be used by different individuals since the dataset used for
training includes records from various people, unlike the datasets from [8] and [9], which
are models trained for each user. Although slightly lower than the average accuracy of
[9], no pattern is discriminated against even if it exhibits a lower accuracy. The DT
was chosen because, in comparison with the algorithms used in [9], it allows for the
observation of the most important attributes in pattern classification.

It should be noted that a direct comparison with the state of the art is not feasible, as
each study adopts a distinct approach, which are integrated into this research.

4 Conclusions and Future Work

Based on the analysis of the current state-of-the-art and the results obtained, the proposed
method for the acquisition and characterization of records represents a viable alternative.
Unlike image processing-based methods [10], EOG does not require additional equip-
ment such as a camera and does not require environmental control such as lighting or
distance management. In addition, it offers comfort to the user since the electrodes are
superficial and do not cause discomfort.

Thus, the 10 selected EM patterns of the BTS language were successfully recorded
withEOGand efficiently classified using aMLalgorithmwith 83.4%correct predictions.
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As part of our future work, we are focusing on enhancing the results and user acces-
sibility. Specifically, we are currently designing a real-time EM acquisition device that
aims to serve as a comprehensive interpretation or communication system. Our goal is
to ensure the stability of the recorded signals and improve the sensitivity of the device
to accurately detect the movement patterns associated with the language. Additionally,
we plan to explore alternative algorithms that leverage different signal characteristics,
allowing us to expand the classification of words in the language.
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Instituto Politécnico Nacional No. 2580, Barrio la Laguna Ticomán, 07340 Ciudad de
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Abstract. Third-dimensional human anatomical models have been used
to better understand the human body. However, one of their most impor-
tant uses is the personalization of any type of treatment. 3D human mod-
els of bones from the lower extremities are crucial for visualization, treat-
ment planning, and orthotic and prosthetic design. Nonetheless, this 3D
models must be compatibles with any modeling software, like those work-
ing with the finite element method. Therefore, a methodology to generate
3D anatomical models compatible with CAD systems was proposed. A
couple of sets of Computed Tomography (CT) images in DICOM (Digital
Imaging and Communications in Medicine) format was used. To reduce
the computational cost, different optimization algorithms were imple-
mented. A Gaussian low-pass filter was implemented for bone segmen-
tation, and the thresholding method was applied. Morphological opera-
tions to eliminate sparse pixels, gaps and to generate smooth edges were
performed. The Marching Cubes algorithm was used to generate a three-
dimensional mesh. The 3D model scale was adjusted by the metadata in
the DICOM files. The 3D model surfaces were smoothed by a Gaussian
filter applied to the segmented images and an averaging filter used on the
model’s vertices. To verify the dimensions of the reconstructed model,
they were compared with those obtained from a model reconstructed in
InVesalius 3.1. Approximately, it took 1.95 min to generate the exported
3D model in a CAD-compatible STL file.
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1 Introduction

Recently, targeted personalised therapies have been increased for different types
of diseases, such as treatments for bone cancer, [1]. Using computational mod-
eling and numerical methods such as the finite element method (FEM), it is
possible to predict the outcome of patient-specific treatments, [2,3]. To make
a highly realistic prediction using computational modeling, a 3D reconstruc-
tion of the patient must be generated. Therefore, the development of a three-
dimensional anatomical model from medical images such as computed tomogra-
phy (CT) or magnetic resonance imaging (MRI) is a crucial task for the devel-
opment of patient-specific treatments. Although several studies, [4–6] focus on
three-dimensional reconstruction, they do not solve some problems present in
DICOM images.

Cardentey et al. [7] offer a general noise reduction approach, excluding CT
patient bed noise. Their focus is noise analysis during acquisition, with threshold-
ing segmentation improvement options. Devisivasankari et al. [8] suggest GPUs
for parallel computing-based brain structure segmentation. GPU use is con-
strained to devices with dedicated GPUs, potentially impractical.

Lorca et al. [9] reconstructed a 3D anatomical model from DICOM images.
Although focused on skull CT images, they discussed generating a bone model
of a lower extremity using semi-automatic threshold-based segmentation. The
study evaluated clustering algorithms (K-Means and Fuzzy C-Means) and noted
their sensitivity to initial centroid choice, affecting convergence time to a local
minimum. Manual centroid initialization restricts algorithm use, and tomo-
graphic noise prevents noise-free segmentation.

Generating a segmentation without noise means eliminating any artifact or
artifice that is defined as a distortion, addition or error in an image. More-
over, it is not correlated to the anatomical region studied [10]. Therefore, this
work presents noise-free, semi-automatic creation of 3D bone models for lower
extremities. In-convex areas harmful to treatment planning were eliminated.
Additionally, the model is CAD-compatible for FEM computational modeling.

2 Materials and Methods

To generate the three-dimensional models of a bone segment from a lower
extremity by using CT images, the work strategy described in Fig. 1 was fol-
lowed.

2.1 Volume Creation .npy File

To enhance DICOM image portability, two image sets were encoded into a
Python-compatible .npy file. These files stores the images in a three-dimensional
matrix array, enabling quick access for subsequent steps. The volume, repre-
sented by the matrix array OS = (OSi,j,k), maintains a constant number of
slices (k) while the dimensions of rows (i) and columns (j) vary.
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Fig. 1. Flowchart followed to generate a 3D bone segment from lower extremities.

2.2 Effective Area Clipping

To minimize the processing time in subsequent steps, the working area was
optimized by focusing just on the regions of interest (RoI) within the images,
specifically those areas with tissues. To generate just the 3D model of the RoI,
the Derivative and Gaussian Clipping methods were implemented.

Gaussian Clipping Algorithm: In the image sets (OS), relevant tissues were
concentrated in the center. Information quality diminishes towards the image
edges due to noise from the patient’s bed in the tomography. To exclude unde-
sired regions, the RoI location is represented by a 2D probability distribution
function using a Gaussian bell-shaped surface. Adjusting mean and standard
deviation parameters aligns the Gaussian shape with the image, enabling selec-
tivity control and width adjustment. This effectively eliminates surrounding
regions of the RoI.

To visualize a grayscale image from OS in 3D, a coordinate plane (XY
domain) is formed using its row count (M) and column count (N). Each pixel
represents a point on this plane. The grayscale intensity level determines the
height (Z coordinate) of each point, based on image data. The algorithm utilizes
a single image Im, computed by identifying the maximum grayscale levels using
Eq. 1.



Three-Dimensional Anatomical Model 261

Im(i, j) = max{(OSi,j,n)}, for n = 0, . . . , s − 1, (1)

where the max function identifies the largest shade of gray present in the vector
OSi,j,n, and n is the number of slices in the original sets with s equal to 481 for
both sets.

As a result, an image of M ×N , where the value in each pixel is the maximum
value found in the volume OS according to each location (i, j) of all the slices, was
generated. Since this image has negative values, a normalization was performed.
The image Im is the input to the Gaussian clipping algorithm, and consists of
a projection of each pixel onto a Gaussian curve f parameterized according to
Eq. 2.

f(x, y, σx, σy) =
1

2πσxσy
exp

(
−1

2

[
(x − M

2 )2

σ2
x

+
(y − N

2 )2

σ2
y

])
. (2)

Surface f is characterized by σx (standard deviation in columns) and σy

(standard deviation in rows), controlling curve selectivity for RoI. M and N
represent row and column counts. Discrete vectors x and y range from 0 to
M − 1 and N − 1 respectively. Normalizing image Im scales the largest value
to 1. Projection of Im onto f is achieved through point-to-point multiplication,
resulting in the surface fp.

Data within the 85th percentile were chosen to keep the RoI; this helps to
avoid removing the tissue of interest. The result was a new region that ignores
the structures farthest from the center of the image, called Igm. This process
was applied to an image derived from the OS to identify the RoI boundaries;
therefore, it was necessary to select that region on the entire original set. It
was implemented by a derivative clipping algorithm that generates a new set of
smaller slices.

Derivative Clipping Algorithm: Implemented to determine RoI limits from
the OS, a sum of rows and columns in Igm generated epithelial-based silhou-
ettes. Silhouettes underwent normalization and saturation, with values above
a 5% threshold indicating RoI boundaries. To locate minimum silhouette val-
ues, consecutive numerical derivatives were applied, considering positive values.
Peaks caused by noise were mitigated by locating points above 60% of the maxi-
mum silhouette value. A correction factor α widened the interval, avoiding tissue
loss. Extracting RoI from OS resulted in a new 3D matrix, CS.

2.3 Background Unification

CT images encoded with 12 or 16 bits exhibit negative pixel values due to vary-
ing object densities. In this context, tissues denser than water (0 UH) were
processed, adhering to the Hounsfield scale (UH) guidelines, [11]. Consequently,
an adjustment of image intensities becomes imperative, as demonstrated in the
subsequent process.
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1. Translation of each negative value to zero: The negative values in the
background of the images CS are removed, this new set was called CST .

2. Average image acquisition: From CST a single image (Ia) was calculated,
by averaging all the slices. The OTSU algorithm was applied to the image. It
separates the tissue tones from the remaining background and noise by using
a threshold value according to its histogram.

3. Intensity scaling: A condition was applied to CST , i.e. every value less
than the threshold defined by the OTSU algorithm was replaced by this gray
intensity, the result was called CSO.

4. Translation of each value to zero: All the intensities in CSO were tra-
versed so that the minimum absolute value of the volume is 0, resulting in
the new set called CSB .

2.4 Gaussian Filter

CT scans frequently exhibit high-frequency noise, [12]. This noise should be
mitigated to prevent distortion in image interpretation. Accordingly, a low-pass
filter was employed in the spatial domain, applying a standard deviation of 0.25
to CSB in accordance with the 2D Gaussian equation (Eq. 3).

G(x + i, y + j) =
1

2πσ2

1∑
i=−1

1∑
j=−1

exp
(

−
[
(x − i)2 + (y − j)2

2σ2

])
· I(x + i, y + j),

(3)
where G(i, j) is a filtered image, according to standard deviation σ; i, j ∈
{−1, 0, 1}. The image I(x + i, y + j) is a 3 × 3 neighborhood as to x ∈ [1,M − 2]
and y ∈ [1, N − 2]. This process was applied to each image in the CSB set to
generate a new set of filtered images called CSG. The proposed segmentation
process was implemented to each image set by using these filtered images.

2.5 Segmentation

The images set CSG was divided into three regions to develop the tissue seg-
mentation: 1) proximal zone corresponding to cortical bone, 2) articular area
composed by the knee and comprising spongy bone and 3) distal area composed
by cortical bone. Equation 4 was implemented to generate a semiautomatic seg-
mentation based on the thresholding technique, [4,13].

H(x, y) =

{
1 if G(x, y) ≥ Tk, k = 1, 2, 3
0 otherwise,

(4)

where H(x, y) is a binary image, the result of segmentation according to a thresh-
old defined by zones (Tk), k is the zone number, G(x, y) is an image belonging
to CSG.

Figure 2 shows the methodology and the morphological operations used to
segment each region of CSG corresponding to sets 1 (Fig. 2a) and 2 (Fig. 2),
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generating a segmented binary set SS. The morphological operations were part
of the post-processing applied to the SS.

Fig. 2. Flowchart for bone segmentation. Zones divided for segmentation thresholds,
followed by tailored morphological operations per tissue characteristics. a) image set 1
and b) image set 2.

2.6 Post-processing

Binary morphological operations eliminated unconnected points from the patient
bed and bone texture, [14]. The three-dimensional structuring element was
adjusted based on the area, small object size, and holes. These post-processing
operations enhanced bone regions, filling gaps, and reducing noise. Additionally,
segmentation edges were smoothed.
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2.7 3D Model and Scale Adjustment

To generate the three-dimensional model, the Marching Cubes algorithm (MC)
was used. It is a technique to generate a three-dimensional model from scalar data
in a volume, i.e. the scalar values are converted into a polygonal representation
(triangle mesh), that approximates the desired surface [15]. The input to the MC
algorithm was SS, while the output was the three-dimensional array with all the
vertices of the mesh (V ), with XY Z positions. This V array was scaled by using
three metadata in the DICOM files: Slice Thickness (address [0×0018, 0×0050]),
Spacing Between Slices (address [0×0018, 0×0088]) and Pixel Spacing Attribute
(address [0×0028, 0×0030]). The first two values were used to correct the image
size in the Z direction of V , while the last one has the distance between each
pixel in each XY plane.

To adjust the size in the Z-direction called Vz the Eq. 5 was used.

Lz =

{
G · s , if G = D

G + D(s − 1) , if G �= D,
(5)

where Lz is the original height of the bone, G is the thickness of each slice, D
the space between the slices and s the number of slices in the study.

Equations 6 and 7 were used to calculate the scaling factor rz, it depends on
Lz. This factor adjusts the values of the vertices matrix in its Z direction (V z).
As a result, a vertices matrix Vrz adjusted in Z is obtained; its dimensions are
in mm.

rz =
Lz

maxz {Vz} − minz {Vz} . (6)

and
V rz = Vz · rz . (7)

Model scaling in X and Y directions was achieved using Pixel Spacing meta-
data, represented by the two-element vector [Lx,Ly]. Lx indicates the space
(mm) between rows, the distance measured between each center of the pixel.
Ly is the space between columns. Due to the algorithm automatically sets row
and column spacing to the value of unit, it is possible to perform a rescaling
by multiplying Vx and Vy volume information. Therefore, Eqs. 8 and 9 were
implemented.

V rx = Vx · Lx (8)

and
V ry = Vy · Ly, (9)

where V rx and V ry represent the actual length and width of the bone, respec-
tively, also measured in mm.
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2.8 Smoothing

To remove surface imperfections, a Gaussian filter was applied to the binary
volume, this helps to generate a smooth mesh in the final exporting 3D solid
model. Finally, the averaging algorithm was applied to eliminate either possible
disconnections or peaks. This filter is described by Eq. 10.

vi =
vi +

∑
n∈N vn

|N | + 1
, (10)

where vi is the current vertex that is smoothing, N is the set of vertices adjacent
to the vertex vi, and |N | is the number of vertices in N .

3 Results

Two DICOM CT image sets were included in the study. Images were origi-
nally 16-bit encoded, MONOCHROME2 photometric interpretation. Original
size: 512 × 260 for both sets, totaling 481 slices. Processes in Python 3.9.6 on
an 8 GB RAM DELL laptop, AMD Ryzen 5 2500U processor with Radeon Vega
Mobile Gfx at 2.00 GHz. Used libraries: NumPy 1.25.0, scikit-learn 1.3.0, PyM-
Cubes 0.1.4, and os 3.11.4 for OS interaction.

3.1 Effective Area Clipping

The algorithms described in Sect. 2.2 demonstrated that it is possible to eliminate
areas without tissue information by using a Gaussian surface as well as the
numerical derivative method.

The application of both algorithms for the RoI selection helps to reduce
approximately 50.40% and 65.58% the proportion of rows and columns with
respect to the OS for set 1 and 2, respectively. This indicates that the cumulative
computational cost in each process was reduced due to focus over the RoI.

Figure 3 depicts the identification of the RoI for set 1. Figure 3a) shows the
projection of Igm on Gaussian surface on a yellow-black color scale, in addi-
tion to the visualization of the f bell parameterized on a magenta-cyan color
scale. The algorithm weighted the central regions more heavily, shifting the noise
to levels below 15%. The resultant image was the input to the derivative clip-
ping algorithm. The RoI boundaries were calculated with the derivative clipping
algorithm, Fig. 3b) shows the silhouette formed by moving in the direction of the
image rows Igm and the boundaries marked with the green line. Likewise, the
sum in the column direction is shown in Fig. 3c); the green colored lines spanned
a larger interval due to the modulation of the widening factor α.

Figure 4 shows the result of the Gaussian clipping algorithm in grayscale for
set 1; Fig. 4a) represent a slice of the original set, Fig. 4b) is the Im set and the
boundaries marked in red in Fig. 4c) correspond to RoI.
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Fig. 3. Identification of the RoI for set 1. a) Projection of Im on a Gaussian surface,
b) the obtained row boundaries, c) the obtained column boundaries.

Fig. 4. RoI extraction for set 1. a) Original image, b) Image Im, c) RoI for the whole
set.

3.2 Background Unification and Gaussian Filter

Once the OS region of interest was found and extracted, the slices were cleaned.
Therefore, the background was unified and a low-pass filter was applied. These
process were applied to both image sets. Therefore, Fig. 5 shows the adjustments
unification, Fig. 5a) shows the effect of cropped at OS for set 1, while Fig. 5b)
shows the result of the unification algorithm with the effect of the Gaussian filter.
Figure 5c) shows the original image of the set 2, while Fig. 5d) shows the image
cropped to the area of interest and the background unification by applying the
Gaussian filter with a σ value of 0.25.
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Fig. 5. Adjustment to the set OS for set 1 and 2, a) slice 0 of set 1 clipped and b) slice
0 of set 1 with uniform background and filtered with σ = 0.25, c) original slice of set
2 and d) slice clipped and background unification.

3.3 Segmentation and Post-Processing

Figure 6 and Fig. 7 depicts three shots corresponding to each of the previously
established regions of set 1 and 2, respectively. In Figs. 6a, d and g, slices 100,
230 and 300 are shown cropped, adjusted and low pass filtered, respectively,
according to Eq. 3 for set 1. The second column shows the results from the
segmentation, according to the selected thresholds, applying a threshold of 890
for slice 100 (Fig. 6b), 800 for slice 230 (Fig. 6e) and 675 for slice 300 (Fig. 6h).
These binary images depict isolated points: patient bed, muscle tissue, and bone’s
porous structure. The third column (Figs. 6c, f and i) displays outcomes post
morphological operations. These operations eliminate unconnected entities, unify
regions, and smooth segmentation edges.
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Finally, Fig. 7 shows the results of applying the processing steps according to
Fig. 2b) to the image set 2. It shows that by modifying some hyper-parameters
it is possible to segment bone tissue.

3.4 3D Model and Scale Adjustment

Using these binary images, it was possible to create the three-dimensional recon-
struction by using the Marching Cubes algorithm present in the PyMCubes pack-
age. However, as an intermediate process, it was required to implement another
Gaussian filter, but this time to the binary images. This operation was performed
through the same library. The result was a solid with no sharp edges or cavities,
as can be seen in Fig. 8a), b), c) and d) for set 1, and in Fig. 8e), f), g) and h),
for set 2.

3.5 Smoothing

Finally, a smoothing process was performed to these models by applying an
Averaged algorithm. The results were surface without prominent spikes or inci-
sions, as observed in Fig. 9a), b), c) and d), and Fig. 9e), f), g) and h), for set 1
and 2, respectively. These surfaces are exported as an .STL file compatible with
CAD systems.

Table 1 shows a comparison of the reconstructed model dimensions (length,
width and height) with those from the 3D models generated by InVesalius 3.1,
which was used to manually segment and reconstruct the anatomical models.
A maximum discrepancy of 1.24 mm was observed in the length of model 1.
Consequently, all the errors can be considered negligible.

Table 2 shows the execution time of the whole 3D reconstruction, from loading
the set to the generation of the smoothed 3D model exported in an .STL file for
both sets.
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Fig. 6. Image set 1 segmented by zones using threshold-based approach and morpho-
logical operations applied per tissue traits. a) Slice 100, d) Slice 230, g) Slice 300,
b) Segmentation (threshold: 890), e) Segmentation (threshold: 800), h) Segmentation
(threshold: 675), c), f), e) display images after morphological noise reduction.

Table 1. Comparison of dimensions of 3D models

Model

set 1

(mm)

Model set 1 with

InVesalius 3.1 (mm)

error

model

1

(mm)

Model

set 2

(mm)

Model set 2 with

InVesalius 3.1 (mm)

error

model 2

(mm)

Length 105.52 106.76 1.24 79.36 80.43 1.07

Width 82.22 83.00 0.78 80.81 81.79 0.98

Height 299.08 300.01 0.93 299.13 300.03 0.9
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Table 2. Process execution times

Process Time (sec) Set 1 Time (sec) Set 2

Load set 2.8 2.58

Gaussian clipping 3.5 0.36

Derivative clipping 0.75 0.01

Background unification 1.6 1.45

Zone 1 segmentation 48 3.66

Zone 2 segmentation 2.5 4.52

Zone 3/1 segmentation 3.0 1.16

Zone 3/2 segmentation 2.4 2.01

Save .npy file 0.3 0.58

3D model 14.2 16.76

Smoothing 37.8 16.95

Export .STL file 0.5 0.86

Total 116.85 50.9

Fig. 7. Image set 2 segmented into zones using threshold-based approach; morpho-
logical operations applied per tissue traits. a) Slice 100, d) Slice 230, g) Slice 300,
b) Segmentation (threshold: 910), e) Segmentation (threshold: 690), h) Segmentation
(threshold: 698), c), f), e) display images after morphological noise reduction.
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Fig. 8. Views of a three-dimensional reconstruction model using the Marching Cubes
algorithm for the set 1 and 2. a), e) side view, b), f) front view, c), g) back view and
d), h) isometric view.
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Fig. 9. Views of the smoothed 3D bone model of set 1 and set 2. a), e) side view, b),
f) front view, c), g) back view and d), h) isometric view.

4 Conclusions

In this study, a DICOM-based image processing technique for segmenting bone of
a lower limb and generates its three-dimensional anatomical models is described.
To ensure a realistic 3D reconstruction, the metadata related to the model dimen-
sions were used. Moreover, the dimensions were corroborated by using InVesalius
3.1. Due to the physiology and shape of the bone, a global threshold was ineffec-
tive. Therefore, different thresholds were chosen according to the reconstructed
region. In addition, the possibility to modify the threshold and post-processing
hyper-parameters results in noise-free segmentation. This methodology is repli-
cable for different sets of CT images with the aforementioned characteristics. By
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using a Gaussian filter as well as the averaging technique, a three-dimensional
model without either prominences or valleys was generated. Consequently, a
smoothed mesh was generated.

Manual segmentation is strongly related to the abilities of the operator, it
could take from 20 min to 120 min to create a 3D model, [6]. Therefore, one of the
main achievements was the reduction of computational cost due to the selection
of the RoI. A maximum total process execution time of 1.95 min was achieved;
it depends on the images sizes. It is demonstrated that processes optimization
completely reduce latency time in all subsequent processes. Moreover, the 3D
model reconstructed can be exported as .STL files, to be compatible with CAD
systems. These 3D models can be used in multiple biomedical design processes
and in the patient-specific treatment planning, such as those required in ablation
treatments for bone tumors. The perspectives of this study are focused on the
segmentation of the remaining tissues (muscle, fat, and skin) in the CT studies.
Therefore, the hyper-parameters of the proposed algorithms must be modified
due to the different densities of the tissues.
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Abstract. Heart rate variability (HRV) is commonly assessed using linear meth-
ods; however, there is increasing evidence of potential nonlinear aspects in HRV.
This study aimed to investigate nonlinear dynamics in Junior High School students
with and without math anxiety. We hypothesized that there would be differences
in the irregularity and nonlinearity of RR fluctuation time series between students
with andwithoutmath anxiety. The study encompassed two stageswith a sample of
34 first-grade students: an exam stage (EXAM) conducted during the examination
period and a regular class day stage (NO EXAM). The Abbreviated Mathematics
Anxiety Scale (AMAS) and the multiscale entropy (MSE) of the RR time series
were assessed in both stages. Our findings indicated a decrease in the irregularity
and nonlinearity of the RR time series in students during the EXAM stage com-
pared to the NO EXAM stage. Additionally, we observed that the AMAS scores
were higher in the EXAM group compared to the NO EXAM group. These results
suggest that math anxiety may impact specific nonlinear characteristics of the car-
diovascular system andmay be associatedwithmodifications in cardiac autonomic
function. Future investigations should explore alternative entropy-based methods
to examine HRV in students experiencing different anxiety-inducing situations.

Keywords: Heart Rate Variability · Nonlinear Dynamics · Math Anxiety

1 Introduction

Regardless of educational level, mathematics provokes negative feelings and symptoms
in most students. Among the negative symptoms are anxiety, frustration, and anger
[1]. Math anxiety (MA) refers to the negative feelings (fear, tension, or apprehension)
that individuals experience when they are faced with situations involving mathematical
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tasks [2]. This psychological condition can affect people of all ages and proficiency
levels in mathematics. According to the Organization for Economic Co-operation and
Development (OECD), 75% of Mexican students have exhibit MA [3].

MA is negatively associated with math achievement; anxiety reduces performance
by affecting the process of information acquisition and retrieval [4]. Several studies
have suggested that this psychological condition affects working memory and attention
capacity [2, 4, 5], leading to a vicious cycle between poor math performance and MA
[4]. Some physiological manifestations related toMA have also been reported, including
decreased testosterone levels on exam days in young adults [6]; rapid breathing during
anxiety episodes [7]; and a decreased heart rate variability (HRV), specifically a low
parasympathetic activity under stress conditions in children [8].

Most of the studies have explored how MA is related to math performance and
cognitive processes using standardized psychological tests and questionnaires; others
have explored the association between MA and linear indexes of HRV to associate the
anxiety level with heart rate regulation [8, 9]. Linear indexes to explore autonomic
changes in diverse cardiac pathologies are widely used. However, growing evidence of
potential nonlinear characteristics in HRV may provide insight into how HRV evolves
under different clinical circumstances, adding to the body of predictive knowledge and
enhancing conventional time- and frequency-domain analysis [10]. For example, Mul-
tiscale entropy is a significant predictor of mortality or heart transplant in congestive
heart failure patients [11].

The objective of this study was to longitudinally (pre and post analysis) compare
the irregularity and nonlinearity of RR fluctuation time series using an entropy-based
method in JuniorHigh School students, both in the presence and absence ofmath anxiety.
We hypothesized that there would be differences in the irregularity and nonlinearity of
RR fluctuation time series between Junior High School students with and without math
anxiety.

2 Methods

The study obtained approval from the Research Ethics Committee of the School of
Medicine at the Autonomous University of the State of Mexico (approval number:
001.2023). The participants comprised 34 first-grade students, aged between 12 and
14 years, from a Junior High School in the State of Mexico. Both boys and girls were
included.

The study comprised two longitudinal stages. The first stage (EXAM) occurred
during the examination period, where the math test served as a task associated with
academic anxiety. The participants completed the Abbreviated Mathematics Anxiety
Scale (AMAS). Subsequently, they assumed a supine position for recording two ten-
minute electrocardiograms (ECGs), sampled at 200 Hz using the Ganglion Board (Open
BCI, New York, United States of America). Following the recording, the participants
promptly returned to the classroom to complete the corresponding math test. The second
stage (NO EXAM) occurred within the first week after a 14-day spring break period.
During this stage, the participants also answered the AMAS scale, and their ECGs were
recorded. Once their participation concluded, they returned to the classroom.
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The AMAS scale, developed by Hopko et al. (2003), is a widely recognized and
psychometrically validated measure of math anxiety [12]. Participants indicated their
anxiety levels in response to statements presented in the questionnaire, scored on a
Likert-type scale from 1 to 5. The final score ranges from 9 to 45 points, with higher
values indicating greater levels of math-related anxiety. The established cut-off point
was 16 points, determined based on the questionnaire responses, with scores below 16
points classified as “low math anxiety” according with the AMAS scale.

The Multiscale Entropy (MSE) algorithm was used to calculate the level of nonuni-
formity or unpredictability of a time series at different scales. Each data point of a
coarse-grained time series is estimated using the following Eq. (1) [13].

y(τ )
j = 1

τ

∑jτ

i=(j−a)τ+1
xi, 1 ≤ j ≤ N/τ (1)

where τ means the scale factor (τ = 1 to 20), N/τ is the size of each coarse-grained
signal for 1 ≤ j ≤ N/τ , xi is an element in the initial time series and j is an element in
the created time series [13].

Using the IterativeAmplitudeAdjusted Fourier Transform (iAAFT)method adjusted
to 100 iterations, 200 RR time series were generated for each participant in both EXAM
and NO EXAM stages. Subsequently, the MSE was calculated for all the resulting
signals, with a value of r set to 0.15 and m to 2. The null hypothesis of linear dynamics
was assessed for each signal. If the MSE value of the original RR signal was lower than
the 5th percentile of theMSE pool generated from 200 randomly created signals, the null
hypothesis of linear dynamics was refused, indicating that the initial signal exhibited
nonlinearity.

To examine the normality of the data, the D’Agostino & Pearson test was conducted
on the results of both stages. If the data met the normality assumption, a paired t-test
was utilized to compare the AMAS results between the EXAM and NO EXAM stages.
Conversely, a Wilcoxon test was employed if the data did not satisfy the normality
assumption. Furthermore, a Wilcoxon test or a paired t-test was employed to compare
the MSE results of the original RR time series at the EXAM and NO EXAM stages
for each scale. The data were reported as mean ± SEM to illustrate homogeneous data.
Additionally, a chi-square test was performed to compare the percentages of nonlinearity
among the 200 generated RR time series.

3 Results

Figure 1 presents the AMAS scores for the EXAM and NO EXAM stages, revealing
average scores of 25.7 ± 5.7 and 24.23 ± 5.59 points, respectively. A significant dif-
ference (p < 0.05), identified by a Wilcoxon test, is observed between two stages with
higher scores in the EXAM stage.

In Fig. 2a, significant differences in theRR time series are shown (p< 0.05) for scales
τ = 8, τ = 10 and τ = 12. Figure 2b presents the percentage of nonlinear surrogate RR
signals at different time scales in both stages (EXAM and NO EXAM). A significant
difference, identified by a chi-square test, is observed in scale τ = 13. Notably, students
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Fig. 1. Abbreviated Mathematics Anxiety Scale (AMAS) scores are represented by the black bar
for the EXAM stage and the gray bar for the NO EXAM stage, both assessed on a school day. *(p
< 0.05) differences between EXAM and NO EXAM stages by a Wilcoxon test.

M
ea
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re

Fig. 2. a) The graph illustrates the Mean ± SEM of Multiscale Entropy (MSE) for each scale
range scale range, on the y-axis shows MSE and on the x-axis scales 1 to 20. The analysis was
conducted on RR time series from 34 students, comparing their data before taking the math test
(EXAM, represented by blue circles) and on a regular school day (NO EXAM, represented by
black circles). b) The graph presents the percentage of nonlinear surrogate RR time series obtained
by MSE, utilizing the null hypothesis of linear dynamics for discrimination. A comparison was
made between the data collected before the math test (EXAM, represented by blue circles) and
on a regular school day (NO EXAM, represented by black circles). Statistical significance was
determined as follows: *p< 0.05 indicates a significant difference betweenEXAMandNOEXAM
based on a paired t-test, while+ p< 0.05 indicates a significant difference based on a chi-squared
test.

exhibited a lower percentage of nonlinear series before taking the math test (EXAM)
compared to measurements on a regular school day (NO EXAM) for these scales.

In Fig. 3, the time scales were divided into short and long-time scales grouped from
1 to 5 beats and 6 to 20 beats respectively. Notably, within the short category, the EXAM
stage exhibits a lower percentage of nonlinear series than the NO EXAM stage. This
difference is statistically significant, as determined by a chi-square test.
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Fig. 3. The bar graph illustrates the percentage of nonlinear dynamics given byMSE, categorized
into two scales: short (1 to 5 beats) and long (6 to 20 beats). The bars represent the EXAM stage
(open bars) and the NO EXAM stage (gray bars). In particular, the open bars in the short scale are
significant (*), indicating differences in the pooled percentage of nonlinear dynamics as determined
by a chi-square test (p < 0.05).

4 Discussion

We confirmed that junior high school students showed a significant increase in the mean
score on the AMAS test in the EXAM stage compared to the NO EXAM stage, as shown
in Fig. 1. Some authors suggest that math anxiety may increase when tasks inMathemat-
ics must be solved immediately, as is the case with an exam. Additionally, we observed
higher irregularity in the heart rate fluctuations in the NO EXAM stage, as indicated
by the Multiscale Entropy (MSE) in Fig. 2a, compared to the EXAM stage. Further-
more, the percentage of nonlinear series was higher in the NO EXAM stage than in the
EXAM stage, as shown in Fig. 2b. Figure 3 displays a significant difference in the short
time scale between the EXAMandNOEXAM stages, suggesting a linearization of HRV
dynamics due to sympathetic hyperactivity as an effect of concomitant vagal withdrawal,
while over a longer time period, there is no difference in the modulation of peripheral
resistances by the parasympathetic system, which contributes to heart rate nonlineari-
ties in both the EXAM and NO EXAM stage [14]. Our findings suggest that students’
math anxiety does not lead to cardiac complications; however, it does exhibit a similar
behavior that can be linked to autonomic dysregulation, causing alterations in heart rate
dynamics, which can be perceived through their nonlinear characteristics (MSE) [15].
Psychobiological theories propose that emotional dysregulation experienced during anx-
iety inducing situations can be assessed by measuring resting vagal activity and HRV
reductions attributed to the parasympathetic system. Thus, there could be a relationship
between vagal responses to anxiety and nonlinear cardiac measures [16]. Other studies
on adolescents have also shown that highly anxious individuals exhibit lower entropy of
heart rate fluctuations than their less anxious counterparts. Therefore, these complexity
measures might help identify adolescents at risk of any disorder of the anxiety field and,
with this, take actions to manage anxiety [15, 16].

This study compared the stage before the exam (EXAM)with a regular class day (NO
EXAM), and we observed that students exhibited decreased percentage of nonlinearity,
as measured byMSE, before taking the exam. This finding is coherent with other studies
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that utilize nonlinear methods such asMSE, which suggest that impaired cardiac control
affects the distribution of nonlinear HRV dynamics [14].

Currently, conditions of altered cardiac control andmultiscale nonlinearity are rarely
used, it is often assumed thatHRV is nonlinear, however,methods are not often employed
to substantiate this claim [14]. It is important to have knowledge of the nonlinear dynam-
ics because it could be associatedwith the autonomic function and the pathophysiological
state (related to the unpredictability and complexity of the signal) [14]. These methods
would bemore clinically relevant to provide a better interpretation complementing infor-
mation given by traditional methods that may sometimes not be sufficient to understand
the complexity of heart dynamics [17]. Psychological analysis through questionnaires
such as the AMAS in conjunction with nonlinear analysis broadens the research land-
scape to obtain more complete results that lead to a better understanding of the effects
of math anxiety.

The justification for the distinctiveness of this study lies in its focus on evaluating
math-related anxiety in an academic setting. In contrast to other works [18], this study
examines the specific anxiety experienced in relation to mathematics and how it impacts
HRV. Additionally, other works [18] calculates both linear and nonlinear indices, but it
does not investigate the percentage of nonlinearity in HRV as this study does. Conse-
quently, this study introduces a novel approach by evaluating the level of nonlinearity
in HRV, which offers a deeper understanding of the relationship between anxiety and
HRV. Furthermore, this study’s evaluation of HRV across short and long-time scales is
an additional distinctive factor.

Future research will use the percentage of nonlinearity using different entropy-based
methods to examine HRV because of potential clinical utility as it provides insights
into how math-related anxiety influences HRV across different temporal contexts. The
observation of varying HRV patterns over different time scales could lead to refined
nuanced conclusions regarding the interplay between anxiety and HRV.

5 Conclusion

In conclusion, this study examined nonlinear dynamics in the heart rate variability (HRV)
of Junior High School students with and without math anxiety. The results suggest that
math anxiety may influence specific nonlinear features of the cardiovascular system.
We found that the RR fluctuation time series exhibits higher nonlinearity and irregular
behavior during regular class days. Conversely, before taking the mathematics exam, the
reduced nonlinearity of the RR time series is speculated to be influenced bymath anxiety,
as indicated by the psychological test results. It is suggested that this anxiety may cause
subtle cardiac autonomicmodifications. Nonlinear analysis of the RR signal can indicate
changes in heart rate regulation in anxiety-inducing situations. Further research should
explore the potential of nonlinear analysis in assessing heart rate dynamics concerning
math anxiety. This type of study is important to recognize the psychophysiological
behavior of mathematics anxiety in Junior High School students in order to provide
strategies for its management and thus improve their academic performance.
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Abstract. Diagnosing several lung diseases is challenging and usually requires
various methods and tests, including a patient’s clinical history, auscultation,
spirometry, pulmonary function tests, and other methods using more special-
ized medical devices. For its part, the pulmonary auscultation with the mechanic
stethoscope represents an early approach to the disease. However, it is highly
subjective. Therefore, acquiring and analyzing respiratory sounds through mobile
computerized devices, such as smartphones, has been an attractive alternative for
the estimation of physiological parameters, including respiratory rate (RR). This
study explored the estimation of RR performed completely on a single smart-
phone device, from the tracheal sound acquisition, signal conditioning and pro-
cessing, and results report. To this end, a mobile application was developed for the
Android system, and acquisitions were made in ten (N = 10) healthy volunteers
while breathing at different metronome RR. The results obtained with the app
were compared with the ones obtained from a respiratory reference signal. Mean
absolute errors of 0.06, 0.18, 0.66 and 0.54 bpmwere found for RR of 6, 12, 18 and
24 bpm, respectively. The promising results point out to test the mobile-developed
system in breathing maneuvers that include temporal changes in RR.
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1 Introduction

Manyyears ago, theWorldHealthOrganization ranked cardiorespiratory diseases among
the top ten causes of death worldwide, independently of the income level of the coun-
tries. A vital sign that allows their detection and monitoring is respiratory rate (RR).
Among simple methods used to estimate RR are human observation and palpation, as
well as auscultation using a mechanical or digital stethoscope [1]. The latter allows the
respiratory acoustic signals to be amplified and filtered, which facilitates their hearing
that sometimes cannot be achieved through the classical mechanical stethoscope. This
study focused on respiratory tracheal sounds (TS) whose vibrations are originated in the
trachea and upper lung and transmitted through the surrounding tissue up to the neck
surface and its vicinity, where they are heard, analyzed, and related to physiological
characteristics that represent health or disease. Therefore, TS and RR are relevant to
learn about the respiratory system [2].

Computerized respiratory sound analysis systems (CORSA) have helped overcome
traditional auscultation’s limitations, making it possible to acquire, store, reproduce,
analyze, and display information on various respiratory sounds, including TS. Nowa-
days, CORSA systems have begun to permeate clinical settings, and commercialmedical
devices currently exist, e.g., the MASIMO Rainbow equipment, which allows the esti-
mation of RR using an acoustical approach based on TS [3]. Alternatively, efforts have
recently been made to use smartphones to develop mobile CORSA systems (mCORSA),
given the characteristics of ubiquity,mobility, and cost-effective sensors of these devices.
This approach has allowed the implementation of digital signal processing algorithms
on smartphones to facilitate the application of CORSA systems in different locations,
without traveling to more specialized sites, and even to perform the acquisition and
analysis of respiratory sounds directly at the patient’s bedside [4].

Our research group has made some efforts regarding RR estimation from TS and the
development ofmobile applications (apps) for TS analysis. In a first effort, the estimation
of RRwas performed offline, i.e., the smartphone-acquired TSwas analyzed on a regular
computer, not in the mobile device itself [5]. In a posterior effort, an mCORSA system
allowing the acquisition, processing, and display of results was developed to detect
adventitious respiratory sounds [4]. In a recent effort, a mobile app was implemented
to compute the Shannon entropy (SE), which quantifies the uncertainty of a stochastic
signal of a previously uploaded file, sound or not, to the app [6]. It has been reported that
the SE of TS provides a surrogate signal of the normalized respiratory airflow, providing
the rationale for using them to estimate RR [7]. Hence, the development of an mCORSA
system that allows RR estimation directly from TS acquired by the smartphone device
was pending for our research group.

In this study, we addressed the end-to-end estimation of RR on a single smartphone
using a tracheal sounds approach which, to the best of our knowledge, has not been
addressed yet. We developed a mobile app to govern the acquisition of TS using an
acoustical sensor attached to the smartphone. The app computes the RR based on the
power spectral density (PSD) of the SE of the acquired TS. The results are displayed
right on the mobile device. Tests were made with metronome breathings maneuvers
while considering the RR derived from a piezoelectric respiratory band as a reference.
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2 Methodology

2.1 Hardware

An acoustical sensor was employed to acquire TS, as described in our previous study [4].
Briefly, the sensor comprises a subminiature electretmicrophone (BT-2159000,Knowles
Electronics, IL, USA) encapsulated in a plastic bell and connected to the 3.5 mm audio
input of the smartphone. Regarding the smartphone, the Huawei Y6 2018 (Huawei,
Shenzhen, China), which has 2.0 GB of RAM and runs an Android 8.0 operating system,
was used. The mCORSA system was governed by the mobile app, whose design and
implementation are described below.

2.2 Mobile App

The app was developed in Android Studio Flamingo 2022.2.1 (Google, CA, USA) using
Java (Oracle Corp., CA, USA). The app oversaw the setting, starting, and stopping of
the TS acquisition stage, as well as performed the digital signal processing required
to estimate RR from the acquired sounds. Hence, the design and implementation were
divided into two main parts: 1) the graphical user interface (GUI) and 2) the internal
digital signal processing of the TS.

Fig. 1. Main Flow of activities of the developed mobile app.

Several activities were implemented regarding the GUI, as shown in Fig. 1. First, the
user can select a patient (volunteer) from an existing list in the main activity. In the add
patient activity, the user is prompted to introduce the patient’s data, including first and
last name, age, and gender. Subsequently, the user can select among different breathing
maneuvers and the location of the acquired signal. The neck location was always used
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in this study, as only TS was acquired. Finally, the user can start recording the TS by
clicking an acquisition signal button. After the acquisition is finalized and saved, the
acquired data is displayed if not discarded. If the user selects an existing patient from
the list, the app uploads its available data and recordings. Finally, the user can choose
the “analyze signal” activity to perform the data analysis, resulting in the visualization
of the TS, its normalized SE signal, its PSD, and the corresponding estimated RR.

TS is acquired using the aforementioned acoustic sensor, where the corresponding
electrical signal is digitized at a sampling frequency of 10 kHz and 16 bits-per-sample, to
comply with Nyquist sampling theorem and international CORSA guideline recommen-
dations. The TS is bandpass filtered using a digital FIR filter with a Hamming window
of 500 samples and 100 and 3000 Hz cutoff frequencies. The filtered TS are normalized
between 0 and 1, resulting in the signal x1[n] of the block diagram in Fig. 2. The files
in this stage correspond to the raw audio signal and the text file with the amplitudes
obtained from the TS. The block diagram shown in Fig. 2 expands the “analyze signal”
activity block from Fig. 1.

Fig. 2. Block diagram of the digital signal processing performed by the mobile app.

First, the SE signal of the acquired and preprocessed TS, x1[n], is estimated following
the method described in our previous work [4, 5]. Briefly, TS is divided into successive
windows of 25 ms with 50% overlap, and the probability density function (pdf) is cal-
culated for each window using the Parzen window method with a Gaussian kernel. The
SE value of each window is assigned to its midpoint, resulting in the time series y1[n] in
Fig. 2. To achieve a uniform sampling frequency adequate for RR estimation accordingly
to Nyquist sampling theorem, as well as to focus on the RR frequency range, y1[n] is
interpolated using cubic splines at 10 Hz and filtered with an IIR Butterworth lowpass
filter with a cutoff frequency of 2 Hz. To facilitate the subsequent signal processing, the
SE signal is reversed, normalized between 0 and 1, itsmean (DC component) is removed,
and filtered again with an IIR Butterworth high pass filter with a cutoff frequency of
0.05 Hz, resulting in the time series y2[n].
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After computing the processed SE signal, the RR is obtained via the frequency
corresponding to the peak of the PSD of the SE signal. To this end, the PSD is estimated
with the Welch periodogram method, using a Hamming window of 10 s, with 50%
overlap between consecutive windows, and NFFT = 512 frequency bins.

Once all the calculations are completed, the TS signal, the SE signal, the PSD of the
SE, and the corresponding RR are displayed in the mobile app. Finally, the related text
files are stored for possible export to external programs like MATLAB or Python. It is
worthmentioning that, in this study, the resulting text files with information about the SE
signal, its PSD, and its corresponding peak frequency, i.e., estimated RR, were exported
to MATLAB R2023a (The MathWorks, MA, USA) only for comparison purposes with
the respiratory reference, i.e., no more signal processing was performed outside the
developed mobile app.

2.3 Data Acquisition

Data from ten (N = 10) respiratory healthy volunteers were acquired, with ages rang-
ing from 19 to 23 years old, seven women and three men. Before the acquisition, the
experimental protocol was explained to the volunteers, and their informed consent to
participate in the study was obtained according to the Declaration of Helsinki.

To acquire the TS, the acoustic sensor was placed on the lateral surface of the neck,
as shown in Fig. 3, using a two-sided adhesive ring. Simultaneously, the respiratory
reference and ECG signals were acquired using the Biosignal Plux wireless system
(PLUX Wireless Biosignal, Lisboa, Portugal), using a sampling frequency equal to
1000 Hz. It is worth mentioning that the ECG signal was not used in this study, but it
was acquired for its future use by our research group when developing and comparing
different RR estimation methods. The respiratory reference signal was acquired using a
piezoelectric respiratory band, while the ECG was acquired following a configuration
that emulated DI by placing three adhesive Ag/AgCl electrodes on the thoracic area.

Fig. 3. Experimental setting showing a volunteer during the signal acquisition stage.
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For this study, data from fixed RR maneuvers were acquired. To this end, each
volunteer was instructed to perform four different metronome breathing maneuvers,
each at a fixed RR equal to 0.1, 0.2, 0.3, and 0.4 Hz, equivalent to 6, 12, 18, and 24
breaths-per-minute (bpm). Each recording at a given fixed RR lasted one minute. Visual
metronome feedback was provided to the volunteers through a display placed in front
of them to facilitate them following the required breathing rhythm.

2.4 Data Analysis

The mCORSA-based RR estimates were compared to the ones obtained from the refer-
ence piezoelectric sensor. The reference RR estimates were automatically computed via
the PSD of the respiratory reference signal by searching for the frequency corresponding
to its maximum peak. Data analysis included descriptive statistics, boxplots, computing
absolute errors (AE), in bpm and normalized percent, as well as Bland-Altman anal-
ysis and non-parametrical statistical tests using two-sided Wilcoxon signed-rank tests,
considering a 5% significance level.

3 Results and Discussion

Screen captures of the implemented mobile app for the estimation of RR from TS are
displayed in Fig. 4, where it can be seen the GUI developed for the “add patient” activity
(left panel), for the “sound recording” activity (central panel), and the “results display”
activity (right panel). The app lets us quickly introduce the patient’s information and
validate the data. The app allows the user to start and stop the recording of TS, as well as
to save or discard the acquisition. After performing all the digital signal processing, from
the TS to the RR estimation, the app displays several signals, including the TS alone,
the TS together with its corresponding SE signal, and the PSD of the SE together with
the detected maximum PSD peak and the frequency peak (RR estimate). It is possible
to observe that, for the example shown in Fig. 4, the volunteer was asked to breathe at
12 bpm, and the calculated peak frequency using the app was 0.195 Hz, corresponding
to a RR equal to 11.70 bpm.

The RR estimation results obtained for all volunteers are summarized in Table 1 for
each metronome maneuver, where RRref denotes the RR reference values based on the
piezoelectric respiratory band, and RRapp indicates the RR estimated values computed
with the developedmCORSA system.AE represents the absolute error of the estimate, in
bpm units and normalized units, concerning the reference value. Each value is presented
as mean± standard deviation, median, and (minimum, maximum). It was found that the
higher AE was 1.2 bpm, corresponding to 6.41% of the reference fixed RR of 18 bpm.

Figure 5 shows the normalized AE for each of the four metronome maneuvers (M1–
M4), where it can be noted that data does not follow a normal distribution. No statisti-
cally significant differences were found between the median of RR estimates from the
mCORSA system and those from the piezoelectric reference sensor, at the 5% signifi-
cance level, for all maneuvers. A statistically significant bias of −0.27 bpm was found,
and the 95% limits-of-agreement (LoA) were -1.07 and 0.53 bpm.
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Fig. 4: Screenshots of the developed mobile app for RR estimation using TS. Left: Add patient
activity. Center: Sound recording activity. Right: Results display activity.

The obtained results in this study are comparable to previous efforts reported in the
literature, e.g., the bias and LoA were found to be 0.11 and−1.41 to 1.63 bpm in a study
employing smartphone-acquired TS [5]. In contrast, the median error was less than 1%
in a study using smartphone-acquired nasal sounds [6], but our system has the advantage
of performing an end-to-end RR estimation in the smartphone.

Table 1: Results obtained for the metronome breathing maneuvers (N = 10).

Metronome
breathing (bpm)

RRref (bpm) RRapp (bpm) AE (bpm) AE (%)

6 5.76 ± 0.19
5.82
(5.22, 5.82)

5.82 ± 8.7x10–16
5.82
(5.82, 5.82)

0.06 ± 0.190
0.00
(0.00, 0.60)

1.15 ± 3.63
0.00
(0.00, 11.49)

12 11.88 ± 0.29
11.70
(11.70, 12.30)

11.70 ± 1.7x10–15

11.70 (11.70,11.70)
0.18 ± 0.29
0.00
(0.00, 0.60)

1.46 ± 2.39
0.00
(0.00, 4.48)

18 18.18 ± 0.189
18.12
(18.12, 18.72)

17.52 ± 3.5x10–15
17.52
(17.52, 17.52)

0.66 ± 0.19
0.60
(0.60, 1.20)

3.62 ± 0.98
3.31
(3.31, 6.41)

24 24.06 ± 0.19
24.00
(24.00, 24.60)

23.76 ± 0.58
23.40
(23.40, 24.60)

0.54 ± 0.19
0.60
(0.00, 0.60)

2.25 ± 0.79
2.50
(0.00, 2.50)

Values presented as mean ± standard deviation, median, (minimum, maximum).
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Besides the promising results of this study, some limitations should be addressed in
future studies. First, the sensor is sensitive to other sounds coming from the respiratory
tract, and for this reason the volunteers were asked not to swallow or talk during the
acquisitions. Second, the sample size is small, and we are trying to increase it. Third, the
piezoelectric sensor used as a reference is not as good as respiratory bands based on an
inductive sensor, but unfortunately the latter is not available in our laboratory. Finally,
more breathing maneuvers should be explored, including spontaneous breathing and
abrupt changes in RR, where incorporating time-frequency analysis, e.g., the spectro-
gram, would be helpful to contend with the time-varying nature of the corresponding
respiratory rates.

Fig. 5. Results of RR estimation via mCORSA system. Left: Boxplot of the absolute error for
each metronome maneuver (M). Right: Bland-Altman graph.

4 Conclusions

The end-to-end estimation of respiratory rate using a smartphone-based system for tra-
cheal sound analysis was explored in this study, obtaining results comparable to the ones
reported in the literature formetronome breathing. It is worthmentioning that the record-
ings of this study were performed in a regular classroom, with the associated acoustical
noise from the environment, pointing out the feasibility of extending the RR estimation
beyond clinical or research settings.
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Abstract. Stress can cause cardiovascular alterations and maladaptive reactions.
Stress management techniques such as controlled breathing could be helpful to
decrease the physiological alterations caused by prolonged stress levels. With the
use of transfer entropy (TE), we can assess the interactions between the cardiovas-
cular and cerebral systems and assess whether these interactions are affected by
the application of controlled breathing. In this study, a test protocol was conducted
consisting of the stages of rest, first cognitive task (mental arithmetic + Stroop),
controlled breathing, second cognitive task (mental arithmetic + Stroop), and
recovery. The goalwas to evaluate changes in TE betweenmaneuvers in 17 healthy
volunteers. The results showed that most interactions were from brain to heart in
both cognitive tasks and that the sympathetic pathway was the most affected. In
addition, a higher number of significant interactions from the heart to the brain
in the second cognitive task after applying controlled breathing, specifically from
the vagal part. This suggests that controlled breathing is indeed influencing task,
but further training in the breathing technique is needed to find possible significant
differences between the tasks.

Keywords: Cognitive Tasks · Controlled Breathing · Transfer Entropy

1 Introduction

Any stimulus, whether physical or mental, that disrupts in homeostasis and triggers its
readiness to confront or escape a threat is considered a stressor [1]. However, when it
occurs frequently or for a prolonged period, it can lead to alterations in cardiovascu-
lar responses, favoring the development of hypertension, endothelial dysfunction, and
atherosclerosis. It can also cause maladaptive reactions including depression, anxiety,
and cognitive impairment [1, 2].

Due to the physiological changes associatedwith stress, various systems are involved
in this process. First, the hypothalamus integrates information from sensory and visceral
pathways, activating two classical stress pathways known as the hypothalamic-pituitary-
adrenal (HPA) axis and the sympathetic-adreno-medullary (SAM) axis [3].
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Given the significant consequences of chronic stress, it is important to employ
stress management techniques such as controlled breathing, which has been reported
to decrease cortisol levels during a sustained attention task after undergoing controlled
breathing training [4].

This study includes controlled breathing as a biofeedback signal. Controlled breath-
ing involves maintaining a low and controlled respiratory frequency, which enhances
respiratory sinus arrhythmia. By stimulating the baroreflex, deep breathing helps to
decrease the elevated heart rate during periods of stress [5].

Therefore, the most common techniques for analyzing cognitive tasks response are
time and frequency domain analysis. By applying a mental arithmetic task using elec-
trocardiogram (ECG) and electroencephalogram (EEG) signals, sympathetic activity is
only activated in the later stages of the mental arithmetic task [6]. Coherence analysis
using EEG has revealed enhanced connectivity within interhemispheric areas in the δ

and θ bands [7]. However, the techniques do not reveal the type of interaction between
the cardiovascular and cerebral systems. Therefore, an alternative is the use of transfer
entropy (TE), as an index that indicates the flow of information and its direction [8].

A study employing TE analyzed a cardiovascular network and a cerebral subnetwork
during the application of stressors like mental arithmetic and sustained attention [8].
The findings indicated that mental arithmetic led to an increase in TE in the δ band and
bidirectional RR interval. Additionally, an increase in TE from RR intervals to the β

band was observed [8]. Conversely, sustained attention showed connections from the α

band to RR intervals and from RR intervals to the θ band in a unidirectional manner
[9]. Furthermore, when cortical regions were used in a cognitive task factor study, it was
found that TE increased from the parietal to frontal region [10].

In this study, the Stroop test and mental arithmetic were used as cognitive task. The
Stroop test can induce an increase in sympathetic activity [11]. On other hand, mental
arithmetic has been shown to correlate with elevated cortisol levels, which is considered
a biological indicator of stress. Therefore, both tasks are considered effective cognitive
stressors [12].

This study aims to examine the interactions between the cardiovascular and cerebral
systems when responding to cognitive task, and to determine if controlled breathing has
an impact on these interactions.

2 Methodology

2.1 Database

The data were obtained from a database with ECG and EEG signals of 17 volunteers,
9 males and 8 females, with an age of 21.82 ± 1.38 years. The data was acquired
using a board Cyton of OpenBCI® with software version OpenBCI GUI v3.3.0. The
ECG signal was recorded through the CM5 lead, and EEG signals were recorded using
unipolar leads F3/F4, C3/C4 and P3/P4, based on International System 10–20. Both
signals were sampled to 250 Hz [13].
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The signals were acquired during a test protocol, which consisted in 5 stages: rest,
mental arithmetic+ Stroop (first cognitive task), controlled breathing, mental arithmetic
+Stroop (second cognitive task) and recovery. Each stage had a duration of 5min, except
rest and recovery stageswhich had a duration of 3min (Fig. 1). All stageswere conducted
with the participants remaining seated, with their hands resting on knees, and their open
eyes [13]. The participants provided their written consent to take part in the study.

Fig. 1. Test Protocol Diagram

The cognitive stimulus involved mental arithmetic tasks through a combination of
sums of random numbers alternating with the Stroop test, where the participants identi-
fied the hue of the word as opposed to the actual word, each stimulus had a duration of
2 s and were alternated randomly. The stressor stimulus was presented to the volunteers
through an interface, which displayed the math operation or word in the center of screen,
with the possible answers in each lower corner; the participants provided their answer
by closing their left or right hand corresponding to the considered correct answer. For
the controlled breathing, a frequency of 6 breaths per minute was used, where the starts
and end of inhalation and exhalation was indicated to participants [13].

All volunteers were non-smokers, without obesity, and without a permanent medical
prescription. Moreover, they had been requested not ingesting alcohol or coffee 12 h
prior to the recording. In addition, for female participants, the recordings were taken
during the follicular phase of the menstrual cycle to reduce the variations caused by
hormonal changes.

2.2 Data Preprocessing

The EEG and ECG signals were preprocessed using MATLAB® software. The RR
intervals of the ECG signal were obtained [14], and subsequently, an adaptive filter
[15] was used for artifact correction, which was manually verified for accuracy. For the
EEG signal, the independent component analysis (ICA) method [16] was employed for
artifact removal, and the signal was filtered using a FIR bandpass filter with a Kaiser
window, ranging from 1 to 100 Hz.

From the artifact-free signals, the coupling between the RR interval signal and EEG
signal was performed. The RR interval signal was resampled at 4 Hz, and subsequently,
the complete ensemble empiricalmode decompositionwith adaptive noise (CEEMDAN)
techniquewas applied. This approach offers a precise reconstruction of the original signal
and improved signal separation by selecting only the necessary intrinsic mode functions
(IMFs) that do not contain Gaussian noise caused by the ensemble empirical mode
decomposition (EEMD) technique, which is used within the CEEMDAN method [17].
The IMFs containing their power spectrum within the high-frequency (HF) and low-
frequency (LF) ranges, corresponding to the range of 0.15–0.4 Hz and 0.04–0.15 Hz,
respectively, are selected. Subsequently, the selected IMFs for each band, LF and HF,
are considered to reconstruct the signal.
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For the coupling of the EEG signal, the power spectral density (PSD) is calculated
for each maneuver in 2-s windows, with a sliding window of 0.25 s. The area under
the corresponding bands is obtained for each window: δ (1–4 Hz), θ (4–8 Hz), α (8–
12 Hz), β (12–30 Hz), and γ (30–70 Hz), and with this process four values per second
are obtained [18].

2.3 Transfer Entropy (TE)

TE determines how much the history of one process, X, influences the transition proba-
bilities of another process, Y, and quantifies this relationship, and it is given by Eq. (1),

where y
dy
t and xdxt are dimensional delay vectors, dy and dx are dimensions in y and x,

and t is a discrete time index [19].
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Before computingTE, it is essential to reconstruct the state space of the rawdata. This
was done using Takens’ embedded delay to map the scalar time series into trajectories in
a possibly high-dimensional state space. The mapping uses delay coordinates to form a
collection of vectors or points within a space of higher dimensions according to Eq. (2)
[19].

xdt = (x(t), x(t − τ), x(t − 2τ), .., x(t − (d − 1)τ )) (2)

The success of this process relies on the characteristics of the parameters associated
with it dimension d and delay τ. To estimate these parameters, the false nearest neigh-
bors (FNN) criterion [20] and the average mutual information (AMI) [21] are used,
respectively.

After, the joint probability in Eq. (1) is estimated using an adaptive partition with
the Darbellay-Vajda (DV) algorithm. The DV method allows for adaptively adjusting
the bin size according to the uniform distribution of data within a specific subregion of
the data space [22].

Surrogate data generated through random permutation were used to confirm that
the coupling determined by TE originates from the signal’s dynamics [23]. The null
hypothesis is the absence of transfer information, which is rejected if the original value
of TE is greater than the 95th percentile of the respective surrogate data [22].

2.4 Statistics Analysis

TheLilliefors test was used to verify if the ET results follows a normal distribution. Com-
parisons between maneuvers and acquisition channels were performed using a one-way
analysis of variance (ANOVA 1) or Kruskal-Wallis test, depending on the data distribu-
tion. Comparisons were made for each combination of selected IMF’s corresponding to
LF andHFwith each of the EEG signal rhythms, including δ, θ , α, β and γ . Additionally,
a post hoc test based on the Bonferroni test was conducted. Significant differences were
considered at a p < 0.05.
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3 Results and Discussions

Results showed in Fig. 2 to Fig. 3 consider only the interactions that passed the surrogate
data test in at least 8 signals for each maneuver, where none of the interactions were
rejected, since although some subjects were rejected, all interactions met the condition
to be considered.

Figure 2 shows the significant TE results for each channel between rest, first cognitive
task, controlled breathing and second cognitive task maneuvers, in the direction of brain
rhythms to IMFLF .

As observed in the comparison between rest and the first cognitive task, the pre-
dominant interactions are β → IMFLF and δ → IMFLF , decreasing during the first
cognitive task. This means that information flux from brain to sympathetic cardiac acti-
vation diminished, this could be associated to the increase in β and δ during cognitive
tasks [7]. In the second cognitive task there are also a significant decrease in δ → IMFLF

in the central and right frontal channels with respect to rest stage. The p-values in the
comparison δ → IMFLF vs rest were higher in the first cognitive task in comparison
with the second cognitive task, suggesting that there was a greater decoupling in the first
cognitive task compared to the second. This change in p-value could be influenced by
the controlled breathing stage.

On the other hand, the interactions β → IMFLF , δ → IMFLF and γ → IMFLF

increase during controlled breathing in comparison with the first cognitive task at least
in three channels. Meanwhile, in the comparison between controlled breathing and the
second cognitive task, the predominant interaction is β → IMFLF that decrease during
the second cognitive task.

The significant differences of TE in the direction of brain rhythms to IMFHF are
showed in Fig. 3. As can be observed, there is only one interaction in the comparison
between rest and first cognitive task. This could be because during cognitive task is
expected a more sympathetic activation and a less vagal participation. In the comparison
between first cognitive task and controlled breathing, interactions γ → IMFHF and
α → IMFHF predominate, showing an increase during controlled breathing, while the
interactions α → IMFHF and θ → IMFHF decrease during second cognitive task
with respect to controlled breathing. This means that information flux from brain to
vagal cardiac activation diminished, this could be associated to the increase in α during
controlled breathing stage [24]. However, in comparison with the second cognitive task,
it includes interactions with the θ index, which can also be linked to the increase of
this index during the controlled breathing stage. Therefore, the comparison with the
second cognitive task encompassesmore elements thatmay be associatedwith controlled
breathing, where a higher vagal activity is observed [25].
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Fig. 2. Significant interactions from brain rhythms to IMFLF , where� vs-first cognitive task and
♦ vs-second cognitive task

Finally, in the comparison between rest and controlled breathing, it can be observed
that all the interactions are directed towards IMFHF , this result could be influenced by
the respiratory sinus arrhythmia (RSA) since this phenomenon is highlight with slow
respiratory frequency, suggesting an increase in vagal activity.

On the other hand, the number of interactions in the direction of IMFLF to brain
rhythms is reduced compared to the interactions from brain rhythms to IMFLF , since
the former represent 10.52% of the total significant interactions, and the latter 48.68%
of the total significant interactions. In contrast, interactions in the direction of IMFHF

to brain rhythms correspond to 11.84% of the total significant interactions, while those
directed from IMFLF , represent 10.52%.
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Fig. 3. Significant interactions from brain rhythms to IMFLF , where � vs-1st cognitive task, ♦
vs-2nd cognitive task and ◯ vs-rest

4 Conclusions

In this study, the flow and interactions of the cerebral and cardiovascular systems were
analyzed when applying cognitive tasks, and whether these interactions are affected
by applying controlled breathing before a cognitive task, using TE. Significant differ-
ences were found in the test protocol. However, no significant differences were observed
between the tasks. Nonetheless, it was observed that when controlled breathing is applied
before a cognitive task, the interactions in the second cognitive task change compared to
the first cognitive task. In the second cognitive task, a vagal influence can be observed,
which is not present in the first cognitive task. Additionally, there is a greater number of
interactions directed from the heart, suggesting that controlled breathing did influence
the cognitive task. A controlled breathing training could help to increase the effect of
this strategy tomanage the physiological responses to stress. As a future perspective, this
breathing training could be incorporated in a new experimental protocol. Furthermore,
it is important to isolate external stimuli as much as possible to avoid interference with
the measurements and potential alteration of the interactions.
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Abstract. Gait disorder have several causes such as neurological problems, aging,
or orthopedic problems. A gait disorder affects directly on the lifestyle of a person
and one of the options is the use of orthoses when is prescribed, specifically, the
Knee-Ankle-FootOrthosis (KAFO) is commonly used for patients that suffer from
quadricepsweakness, poliomyelitis, leg contractions, leg deformity or leg fracture,
among others. In our previouswork, we proposed aKAFOwith an automated knee
lock-release system and now, we add a new feature that implements a connection
of the KAFO with the cloud to facilitate the remote monitoring. In this report we
show the biomechatronic system connected to the cloud and the trials.

Keywords: KAFO · Orthosis · IoT Monitoring · Rehabilitation · gait cycle

1 Introduction

Lower limb disorders and gait disorders affect the person’s lifestyle, for example they
can suffer falls, joint problems, back problems, and restrict their independence [2, 5].
Therefore, people with gait problems may need orthoses to compensate some physical
functions that are lost temporarily or permanently [7]. In this work, we are adding
functions to a previous development [1], which is a KAFO prescribed in patients with
quadriceps weakness, poliomyelitis, leg deformity or leg fracture. In our previous device
there is an automatic knee lock-release system which allows flexion during gait, but we
decided to connect our KAFO to the web server with the purpose of remote monitoring
and medical assessment in real time, by using Internet of things (IoT) [8, 9].

Related works are few, for example, in 2021, Chanchotisatien’s and co-workers
developed anAnkle Foot Orthoses (AFO)with IoT to keep a track of the patient recovery
phase [2]. With this device, the physician can see the patient gait pattern, using sensors
to capture the angular velocity and acceleration, other to capture the loads in the foot,
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and one more to detect the temperature and humidity [2]. In Ab Wahid’s [3] research,
they developed an AFO, for rehabilitation within the hospital and the purpose was to
change the position of the foot of the patient while the patient was immobilized in the
hospital bed to avoid muscle atrophy and muscle shortness [3]. With this technology,
the patient can move the foot using a mobile app that they developed, that is linked to
the device, to prevent muscle atrophy and shortness in the patient. Finally, in Chetan’s
[4] approach, the device is a knee brace that helps elder people to sit or to stand up,
the person can control the device using a mobile app, and select either assistance to sit
down, or to stand up, but the data is not sent to a web server, nor can be considered as a
clinic orthosis.

For this reason, we propose to use a Knee-Ankle-Foot Orthosis with connection to
the web and demonstrate its advantages. For this device, the advantages would be the
possibility to visualize data in graphs in real time (minimum time delay), store data
for subsequent clinical assessment or data analytics (e.g., deep learning or machine
learning) and notifications for the user and the medical provider, given than compliance
to the treatment enhances the improvement of the pathological condition. We believe
that these innovative features improve the functionality of the orthosis improving the
life quality of the patient.

2 Methodology

2.1 Materials and Methods

For this project, we continue using the KAFO developed in previous work, which fol-
lowed all the proper steps to be denominated a clinical orthosis [1], and we reprogramed
the system capable of release the knee articulation using an inertial sensor (see Fig. 1)
to a Wi-Fi capable board.

Fig. 1. Automated KAFO orthoses approach [1]
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For this system modification, we proposed a ESP8266 board, and it was redesigned
the housing of the electronic components (see Fig. 2).

Fig. 2. Case assembly visualization in SolidWorks (2020)

2.2 Circuit Description

The ESP8266 board works with 5 V and required a voltage regulator, the inertial sensor
(MPU6050) is connected to I2C pins. For the power control, it was used a transistor
(2N222) to send a signal to relay, which controls the electromagnetic lock (release of
the knee joint). In the heel of the KAFO it was placed a pressure sensor, so it can detect
when the patient steps on the floor. The ESP8266 board needs two signals at the same
time so it can send a signal to activate the electromechanical lock. One signal is the angle
obtained through the gyroscope, and the second signal comes from the pressure sensor.

Once the electromechanical lock has been activated, the knee joint is unlocked,
allowing the patient to bend the leg, and when the lock is off, it gets locked, keeping the
leg straight. In the Fig. 3 we can see how our circuit is connected and organized.

2.3 Arduino Program

The board also uses Arduino IDE, first all the sensor values are obtained and stored, for
example, the angular position of the gyroscope, and the pressure in the heel, and with
both variables, decide whether send a signal to the mechanism or not. The flowchart in
Fig. 4 shows the implemented logic, where “Gy” stands for the incoming values from the
Gyroscope in the Y-axis, and “PS” stands for the pressure value read from the pressure
sensor, which range of values goes from 0 to 100.

The loop in the code is measuring the incoming values from the Gyroscope and from
the pressure sensor. Once it gets the data, it enters in the conditional statements, checking
whether they are true or not, and depending on that, what part of the code should run
next. When the patient is standing, the sensor is at 175° approximately, and when the
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Fig. 3. Circuit design showing all the used components.

Fig. 4. Flowchart showing the logic implemented in the Arduino code.

Fig. 5. Swing phase in the gait cycle, referring to the black leg [6].
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patient is in the swing phase from the gait cycle, the sensor will get values higher than
210° in the Y axis (in the Fig. 5 we can see the swing phase in the gait cycle).

In the Fig. 6 below, shows when the patient is standing, the gyroscope value in the
Y-axis is of 175°. The interval where the leg needs to be straight is 175°–210° in the
extension, and 130°–175° in the flexion.

Fig. 6. Y-axis range value where the electro mechanic lock must remain off.

This means that in this stage, the patient needs to bend its leg so it can keep walking
naturally. The board will now check on the other variable, the pressure sensor, and see
what values it is receiving. Since the leg of the patient is in the swing phase at this point,
the pressure sensor will not receive a signal, sending a zero value to the board. The board
will be waiting for these two conditions to occur, so it can send a signal from the D5 pin
so it can unlock the electromechanical lock.

While this is happening, the code also connected the board to AmazonWeb Services
(AWS) IoT Core via the MQTT protocol, in the set-up part of the code. The code stores
the value from the Y axis obtained from the gyroscope and attached it to a Json payload
with the time variable, measured using the Millis function. Then the Json payload is sent
to the IoT Core so it can be stored in the database and graphed.

2.4 IoT Monitoring System

The Fig. 7 shows the different stages in the IoT monitoring system and the tools are used
from the Amazon Web Services (AWS) IoT Core.

As shown, the process starts when the ESP8266 board sends the data to the AWS IoT
Core through a Json payload which has the Y value and the time stored in it, using the
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Fig. 7. Diagram showing the stages in the IoT monitoring system.

MQTT communication protocol. The board sends 100 Json payloads for every second.
In the Arduino program we used the libraries “ESP8266WIFI”, “WifiClientSecure”,
“PubSubClient”, and “ArduinoJson” to be able to connect to the Amazon Web Services
(AWS) IoT core and send the data.

Once the payload is received in the IoT Core, there will be three actions waiting to
occur. On one action, the data will be sent to the S3 bucket, and it will be stored in a
key file. The disadvantage of this service is that the data will be overwritten, and we will
only see the last data received. Although this is useful for our static server which will
be pulling the data constantly and refreshing the graph plotting the new data.

On the second action, the data will be sent through the Kinesis Firehose action. With
this service, the data will be able to concatenate in a file. The resulting file will be stored
in the S3 bucket with all the data stored there unlike the key file created in the first action
which only stores the last data received. This resulting file from the Kinesis Firehose
can be downloaded as a text file so we can analyze the data.

On the third and last action, we activated theAWSSimpleNotification Service (AWS
SNS). This function will be waiting for a variable to trigger the service, and once the
service is triggered, it will send an email with a message that we can specify. For this
prototype, we sent an email indicating that the patient is using the orthoses, as we can
see in the Fig. 8.

For this prototype, the code will send a signal when it first connects to the IoT Core,
andwhen this happens the email will be sent to any email account that wewant to specify
in the AWS SNS.

2.5 Testing

After the modifications to the instrumented KAFO, the code, and configure the AWS
server, the test with the orthoses were run. In the test, the orthoses send 3500 Json
payloads, which we stored in the server. As we said previously, we were sending 100
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Fig. 8. Screenshot from the cellphone main screen with the email notification telling us that the
patient is using the orthoses.

Json payloads for every second, meaning that the test lasted 35 s. In this test the prototype
could send data, store it (for further analyses or comparation), graph it in real time, and
send the email notification (see Fig. 8). In the Fig. 9 a user is wearing the orthosis and
evaluating it walking straight on a line around the laboratory.

Fig. 9. Testing of the KAFO orthosis. a) standing up, and b) in the swing phase of the gait cycle.
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3 Results

From the gait cycle test, we were able to graph all the gathered data, specifically in two
types of graphs. One graph is the one made on real time while doing the test and the
other we do it with all the data stored in the AWS s3 bucket. For the second graph we
downloaded the data and graph it in excel. In the Fig. 10 we can see the comparison
between both graphs on the second interval 27–29 where we can realize that they are
slightly different. On this time interval we can see that both graphs are almost the same,
except for some parts where we lost data (e.g., second 27.6–27.8 where there is a flat
line), but as we can see from the graph made from the data stored on the cloud (green
one), the data was in fact sent by the device and stored, the problem comes with the
server which did not plot the whole data on real time, having this data loss.

Fig. 10. Comparison graph between the made on real time (blue one) and the one made with the
data stored in AWS, downloaded, and graphed in Excel (green one). Both graph comparisons are
in the same time interval (second 27 to 30), in a) both are in the same position so we can see the
difference in the lines. In b) we displaced downward the real time graph, so now we can see them
individually(Colour figure online).

In the Fig. 11, the interval between the second 34.2 to 34.7, in the blue line (the
graph made on real time) we can see a straight line, and in the green line (the one made
on excel) we can see movement of the patient. This means that in 0.5 s, the graph didn’t
plot the line showing the values, therefore we lost 50 values in that time interval. As
we stated before, we can see from the graph obtained from the data stored in the cloud
(AWS) that the data was stored in its entirety, however due to server conditions the graph
made on real time is showing incomplete data. We think that the quality of the website
that our team developed affected the performance, since it is not a professional server,
it is more related to a Alpha testing (first phase of a software testing).

On the other hand, in the test we were able to see the orthoses functionality and see
how the system is working during the gait cycle. The system allowed the user to unlock
the knee during the gait cycle to be able to bend it and lock it when the user needed to
keep the leg straight in the stance phase, independently to the missing data.
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Fig. 11. As same in Fig. 10, we see the comparison between the 2 graphs made, one in real time
and one downloading all the date stored in AWS. In this case, the Interval of the graphs is from
the second 33 to 35(Colour figure online).

4 Conclusions

The main objective was to adapt a previously tested KAFO with an automated knee
lock-release system to a remote monitoring system that can assess the patient’s gait and
if he stops using the orthosis. The lock-release systems use data gathered by a gyroscope
sensor (MPU6050) and a pressure sensor. We observe that the instrumented KAFO still
perform normally, and that the system was modified so it can send data to a database in
real time using IoT, which give advantages e.g., data visualization in graphs, data stored
for further analysis and simple notification system use, such as email messages when
the orthosis is being used, so the physician or physical therapist can monitor the patient
treatment. The loss of data visualization was occasional (up to 25% for the case of the
Fig. 11) and the loss as we discussed in the results, was due to problems with the server
and the quality of itself. For future work, remains to minimize data loss due to external
factor such as internet speed or remote failures, that includes to have a custom server for
data storage and improve our website where we will visualize the graphs obtained from
the gait cycle.
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Abstract. The simultaneous detection of different heart signals provides informa-
tion about cardiovascular health but typically involves attaching multiple sensors
to the body, which can lead to discomfort during long-term measurements. In this
work, we propose a different approach to simultaneously detect the phonocardio-
gram (PCG) and seismocardiogram (SCG). It relies on using two piezoelectric
films implemented in a single portable chest-worn device, reducing the number
of devices attached to the body. Besides, since these sensors do not require any
power supply, the power consumption is considerably reduced. This innovative
approach offers a potentially more comfortable alternative for long-term appli-
cations, reducing user discomfort. Because both signals have different frequency
components, both sensors were strategically coupled to a stethoscope membrane
using a custom-built case. The device was tested on a healthy volunteer. It was able
to simultaneously detect the PCG with an SNR higher than 34 dB and the SCG
with an SNR higher than 62 dB. The electronic circuitry was battery-supplied, and
its current consumption was lower than 65 uA. The possibility of establishing a
client/server connection via sockets was also demonstrated, which allows sending
of data to the cloud/fog where intelligence algorithms could be implemented.

Keywords: Chest-worn device · Phonocardiogram · Seismocardiogram

1 Introduction

The genesis of the phonocardiogram (PCG) and the seismocardiogram (SCG) comes
from the precordial vibrations, which have infrasound and audible components [1].
Regarding the PCG, this signal can offer insights into both the cardiac valve dynamics
and arterial blood pressure (ABP) by examining different aspects of the waveform [2,
3]. The recording of heart sounds is commonly done by using microphones of differ-
ent technologies [4]. However, alternatives based on accelerometers [5], Lead Zirconate
Titanate (PZT) [6], and PolyvinylideneDifluoride (PVDF) piezoelectric sensors [7] have
also been proposed. On the other hand, the SCG is the recording of the vibrations of the
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body produced by the heartbeat [8] and provides information on the mechanical activity
of the heart. SCG can be detected by piezoelectric accelerometers, MEMS accelerom-
eters, triaxial gyroscopes, and laser vibrometers [9]. Systems based on accelerometers,
gyroscopes, and microphones must deal with noise problems and high current consump-
tion since they have embedded preprocessing stages, including amplifiers and resistors.
Even so, the small size of current microphones and accelerometers makes them ideal
for implementation in wearable systems with a low form factor, which results in a more
comfortable system for long-term measurements.

The simultaneous detection of cardiac signals helps to estimate other physiological
parameters [10]. Assessing the temporal relationship between a proximal signal and a
distal signalmakes it possible to estimate the systolic blood pressure (SBP)without using
a cuff. The pulse arrival time (PAT), pulse transit time (PTT), and pulse wave velocity
(PWV) [11] are commonly analyzed using electrocardiogram (ECG), photoplethysmo-
gram (PPG) [12, 13], seismocardiogram (SCG) [14], ballistocardiogram (BCG) [15]
and phonocardiogram [16] signals and have been used to develop portable devices for
cuffless and continuous detection of ABP. The problem with these approaches is that
some systems require many sensors attached to the body, which causes discomfort to
the subject in long-term monitoring. To tackle this, some devices have been proposed
that use the correlation between the PTT and the systolic blood pressure for continuous
ABP measurement using a minimum number of sensors. Devices that detect ECG and
PPG signals at the bicep and ear or only at the bicep [17], a watch-based device that
measures single-lead ECG, tri-axial SCG, and multi-wavelength PPG [18], and a single
chest-worn device the measures the PPT using SCG, and PPG [19], have been proposed.

This work proposes a new approach to simultaneously detect PCG and SCG sig-
nals from a single point on the thorax. A similar proposal has been presented in [20],
using a single CM-01B contact microphone to simultaneously detect respiration, SCG,
and heart sounds. Each signal was extracted from the raw data by filtering, which can
lead to signal distortion. The CM-01B sensor has an embedded field effect transistor
(FET), a source of noise that degrades the Signal-to-Noise Ratio (SNR) of the signals
and consumes 100 µA. Since the signal must be amplified, the total consumption of this
system increases, which reduces the system’s autonomy. A more sophisticated sensor
based on an encapsulated accelerometer contact microphone that uses nano-gap trans-
ducers has also been proposed for detecting cardiopulmonary signals [5]. However, this
sensor requires a high-precision fabrication technique. In this work, two commercials
shielded PVDF (Polyvinylidene fluoride) piezoelectric film sensors are used, which do
not require a power supply and reduce the contribution of electromagnetic interference.
The two piezoelectric film sensors are attached to a stethoscope membrane using a
custom-built case for portability. To the best of our knowledge, using these kinds of
sensors to simultaneously detect the PCG and the SCG is a novelty approach that has yet
to be proposed. So, the goal of this work is twofold: a new approach for sensing the infra-
sound and audible precordial vibrations, and to design a low-power electronic circuit for
PCG and SCG detection with high SNR to simplify (in the future) the signal processing
algorithms for estimating others cardiovascular parameters. The findings from this study
serve as the foundation for creating a portable system that uses the temporal correlation
between PCG and SCG signals to estimate the SBP at a single point on the chest.
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2 Materials and Methods

2.1 Sensor Coupling

Two sensors were used to simultaneously detect PCG and SCG at a single point on the
thorax: one was exclusively for PCG, while the other was for SCG. For each signal,
the sensor used was the piezoelectric film sensor SDT1-028K from TE Connectivity,
which has a capacitance of 2.78 nF, a minimum electrical impedance of 1 M�, and a
maximum of 10 M�. When it is not attached to any surface, its resonance frequency is
up to 10 MHz [21], and the frequency response can be limited by the low-pass response
of the signal conditioning stages [7]. In this scenario, the frequency response can be
adjusted to detect the frequency components of the S1 and S2 sounds of the PCG, which
are in a bandwidth of 100 to 200 Hz and 50 to 250 Hz, respectively. If the sensor is
attached to a surface, the bandwidth of the system is limited because the surface acts as
a mechanical low-pass filter. Even so, the frequency response is still sufficient to detect
the SCG [7], whose bandwidth ranges from 0 to 25 Hz. Both sensors were coupled to
a Littmann® stethoscope membrane using a custom-built case (Fig. 1a), which allows
the PCG sensor to be placed without direct contact with the membrane and the SCG
sensor to be in direct contact with the stethoscope membrane. The case was designed in
SolidWorks and 3D printed with resin. The coupling of the sensors to the stethoscope
membrane is shown in Fig. 1b.

PCG sensor

SCG sensor

Base

Stethoscope

membrane

(a) (b)

Fig. 1. Sensor coupling: (a) SolidWorks design, (b) 3D printed prototype.

2.2 Signal Acquisition

The circuits for the simultaneous detection of PCG and SCG signals consist of a charge
amplifier that transforms charge variations from the sensor to an output voltage, an
amplifier that adjusts the signal amplitude and the cutoff frequency, and a DC servo loop
circuit to null DC components at the output.

The PCG detection circuit (Fig. 2a) was designed to work in a frequency range of
34 to 600 Hz, with a total gain of 55 dB, to observe as many frequency components of
the S1 and S2 sounds as possible. The low-pass frequency response of the system was
limited by the gain-bandwidth product of the amplifier (OA2) at a gain of 40 dB. The
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high-pass response was limited by the charge amplifier (OA1), which has a sensitivity of
2.12 mV/pC. The SCG detection circuit (Fig. 2b) works in a frequency range of 3.3 Hz
to 34 Hz with a total gain of 35 dB. The low-pass frequency response of the system
was limited by RYC4, while the high-pass response was limited by the charge amplifier
(OA4), which has a sensitivity of 2.12mV/pC. Both detection circuits were implemented
using the operational amplifier TLV2322 from Texas Instruments and were supplied by
a single 3.7 V/1000 mAh Lithium-Ion battery.

The auscultation point selected was the pulmonary valve located in the second inter-
costal space to the left of the sternum. This auscultation point was chosen because, in
previous tests, it was the point where a greater amplitude of both signals was obtained.
The ECG (lead II) was also detected using the AD8232 Single Lead Heart Rate Monitor
(Analog Devices). The signals were simultaneously acquired at 1 kSa/s using a National
Instruments USB 6341 data acquisition system controlled by an algorithm developed in
LabVIEW. The signals acquisition was performed following the CEI-2023–1-853 mea-
surement protocol approved by the UACJ ethics committee. The protocol consisted of
detecting the PCG, SCG, and ECG signals from a healthy adult volunteer who remained
seated during the process (Fig. 2c) and gave his/her informed consent to participate in
the procedure.

(a)

(c)

C1

R1

RA RB 

R2

C2

-

+

-

+

-

+

STD1-028K

VO

VCC/2

VCC/2

OA1

OA2

OA3

AD8232

PCG and SCG

NI DAQ USB 

6341
Laptop

(b)

C3

R3

RX RY 

R4

C5

-

+

-

+

-

+

STD1-028K

VO

VCC/2

VCC/2

OA4

OA5

C4

OA6

Fig. 2. (a) Designed circuit for PCG detection, (b) designed circuit for SCG detection, (c) Setup
for detecting the PCG, SCG, and ECG simultaneously.
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A server/client link via TCP/IP sockets connection was implemented to demonstrate
the ability of the device to send the acquired signals to the cloud/fog. For this, the signals
were acquired using the ESP32 microcontroller, and via TCP/IP sockets connection, the
corresponding data to each signal was sent and saved in a local computer, as shown in
Fig. 3.

SCG

PCG

ESP32

Client Server

Socket

Connection

Fig. 3. Client/server connection.

3 Results

The voltage noise spectral density of the circuits of Fig. 2a and 2b are depicted in
Fig. 4a and Fig. 4b, respectively. The output noise root mean square (RMS) voltage of
the PCG circuit is about 1.4 mV, and of the SCG circuit is about 50 µV. The current
consumption of both circuits working together was lower than 65 µA (240 µW). With
these characteristics, the system was able to detect the signals with an SNR higher than
34 dB for the PCG and higher than 62 dB for the SCG.
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Fig. 4. Voltage noise spectral density of the circuit used for detecting the PCG (a) and the SCG
(b).

Figure 5 shows the PCG and the SCG simultaneously detected and compared with
the Lead II ECG as a reference. The S1 and S2 of the PCG were detected by the sensor
that was not attached to the surface of the membrane. The sensor attached to the surface
of the membrane detected the infrasound chest vibrations that give rise to SCG. When
measuring with the SCG sensor, themotion artifacts can have a significant impact, which
can cause signal distortion; this is because the sensor is located near the chest wall. To get
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accurate results, it is crucial to ensure that the subject stays still during the measurement
process. By analyzing the PCG and SCG signals displayed in Fig. 5, it becomes feasible
to estimate the time correlation between S1 and S2 of the PCG and the main waves
of the SCG, which could be an alternative method for estimating SBP using a single
chest-worn device.
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Fig. 5. Raw signals of the PCG (upper trace) and SCG (middle trace) detected with circuits shown
in Fig. 2. ECG (bottom trace) detected with the AD8232. All signals are from the same subject
and were acquired simultaneously.

Figure 6 shows the PCG and SCG signals acquired with the ESP32 microcontroller
and sent via socket connection to a local computer. This demonstrates the possibility
of sending information to the cloud/fog without degrading the signal quality. With this
approach, artificial intelligence algorithms could extract signal features using fewer
hardware resources, which reduces power consumption significantly.

Fig. 6. FCG and SCG signals acquired using the microcontroller and sockets connection.
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4 Conclusions

A different approach has been proposed to simultaneously detect the PCG and SCG,
which was implemented in a portable and low-power chest-worn device. It relies on
using two commercial piezoelectric films, reducing the number of devices attached to
the body and the power consumption. The electronic circuitry was battery-supplied, and
the total current consumption was lower than 65 uA, making it feasible for long-term
measurements. Regarding the PCG, the SNR was higher than 34 dB, making it possible
to detect the S1 and S2. For the SCG, the SNR was higher than 62 dB, allowing it
to detect the main waves of the signal. The quality of the detected signals simplifies
the processing algorithms to detect signal features, which helps estimate, for example,
systolic blood pressure. The feasibility of using piezoelectric sensors to detect both
signals was demonstrated. However, it must be considered that the coupling of each
sensor on the thorax plays an important role due to the different frequency components
of each signal. Using piezoelectric sensors helps reduce the power consumption that
usually goes to sensors such as microphones and accelerometers. However, it should be
noted that these sensors are more prone to movement artifacts. The results obtained in
this study are the starting point for developing a portable system that makes it possible to
estimate systolic blood pressure by taking measurements at a single point on the thorax.
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Abstract. Intra-abdominal pressure (IAP) measurement methods vary
in mechanisms, risks, and associated costs. In this study, it was intended
to design and test a novel IAP acquisition system based on a simulation
of the Kron’s method, as well as to compare it with lectures from a
column graduated in cmH2O, taken as reference. A total of 46 samples of
IAP were simulated and acquired, through a bladder simulation system,
by placing different levels of pressure in a manual press on a sealed
bag of water which, in turn, transmitted a pressure to our device to be
compared with the graduated column. The data analysis included linear
regression and Bland-Altman, in which, a Pearson correlation coefficient
r = 0.99, a bias of 0.16 cmH2O and 95% limits of agreement between
−0.444 and 0.758 cmH2O were found. Also, the obtained results were
compared with those of similar devices, denoting fairly close correlation
coefficients, and a notable improvement in the bias obtained for our
device. Even considering its limitations, the results seem promising and
appear to suggest that the proposed device meets its main functionality
and is strengthened by different available advantages compared to other
devices currently in clinical use.

1 Introduction

The World Society of the Abdominal Compartment Syndrome (www.wsacs.
org) defines intra-abdominal pressure (IAP) as the pressure within said cav-
ity, expressed in mmHg, which must be measured without the intervention of
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abdominal muscle contractions and with a transducer set to zero at level from
the mid-axillary line, returning values between 5 and 7 mmHg in critically ill
adults [1,6].

A significant increase in IAP triggers complications in different organs, inside
and outside of the abdominal cavity [2]. Values greater than or equal to 12
mmHg (16 cmH2O) are considered cases of intra-abdominal hypertension (IAH),
from this value on, it is classified as grade 1 for 12 mmHg ≤ IAP ≤ 15 mmHg
(20 cmH2O), grade 2 for 15 mmHg < IAP ≤ 20 mmHg (27 cmH2O), grade
3 for 20 mmHg < IAP ≤ 25 mmHg (34 cmH2O), and grade 4 for IAP > 25
mmHg. Sustained high IAP could evolve in abdominal compartment syndrome,
which is a sustained IAP greater than 20 mmHg and it is associated with organ
dysfunction or failure.

Monitoring the IAP is of great relevance during clinical practice, since it is a
safe, precise, economical, and fast procedure to clinically diagnose IAH [4]. The
IAP is usually estimated based on the current pressure in the urinary bladder,
using a Foley manometer connected to an end of a urinary catheter. In this way,
it is possible to intermittently measure the value of the pressure while the urinal
flow is temporarily prevented [5]. Some systems use a needle to measure the
pressure, while others use a column of fluid to do it mechanically.

For a given patient, the results of IAP measurement depend on the position
of the zero point and the experience of the healthcare personnel carrying out the
measurement, in addition to the obstruction of the flow of urine and the risk of
urinary infections [3].

A popular procedure to measure IAP, is the indirect Kron’s method, which
consists of infusing 25 ml of saline solution to the patient’s bladder via a Foley-
type catheter, which is also connected to a column graduated in cmH2O, being
the volume adjustable. Its main drawbacks include a cumbersome preparation as
well as the risk of contamination, making it more expensive compared to other
methods or devices [1].

As an alternative to Kron’s method, the use of pressure measurement devices
at the base of the bladder has been proposed. These devices have common areas
for improvement in terms of their design and signal transduction, e.g., reduc-
ing leaks on their hermetic sealing membranes, blockage of their catheters by
residues, long stabilization time periods and high implementation costs [5]. For
this reason, several studies of devices designed with similar technology and pur-
poses, focused on improving the areas mentioned above, have been carried out
and have shown positive results [1,7].

To overcome the mentioned areas of improvement, in this study, we propose
the design and testing of a novel IAP measuring device based on the bladder
pressure. To this end, in vitro experiments were performed, in which the mea-
surements of the device were compared to the Kron’s method connected to a
graduated column, as described in Sect. 2. The results and their interpretation
are presented in Sects. 3 and 4, respectively.
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2 Materials and Methods

2.1 Device Design and Implementation

A novel device to continuously monitor the IAP based on the indirect method
of the bladder was developed. This device prototype, shown in Fig. 1, consists of
an encapsulation of three outer parts, and two inner ones, as well as the signal
acquisition electronic system that is positioned in the upper part (Fig. 1, label A),
which is manually calibrated, and the system inlet in the lower part, hermetically
separated by a latex membrane (Fig. 1, label D) preventing contact between both
chambers, thus avoiding contamination or infections of the patient’s urinary
tract, by exposure to microorganisms in the area.

Fig. 1. Designed scheme and real device used in vitro tests. A: Location of the elec-
tronic transducer. B: Push heel. C: Push cylinder. D: Dividing membrane between the
entrance and transducer chamber. E: Calibration screw.

The design of the device (Fig. 1) was implemented in such a way, the fluid
(simulating bladder fluid) enters the bottom of the encapsulation and pushes
the latex membrane (Fig. 1, label D), which in turn fills with fluid and pushes
a cylinder-shaped part (Fig. 1, label C), that at its other end is shaped like a
heel (Fig. 1, label B), that enters in contact with a force sensor (Fig. 1, label
A) that is part of the signal acquisition electronic system, which transduces the
push of the heel, due to IAP, into a force, by Pascal’s Principle. Then, this force
is transduced into an electronic signal, and subsequently, by means of a cubic
regression relating the voltage read by a force sensor and a value shown in the
graduated column, the pressure relationship can be obtained. The DF0-40 force
sensor (Leanstar, Jiangsu Province, China) was selected for its measurement
range within 500 g, and an almost instantaneous response time (<1 ms), which



324 A. Soto et al.

are of great relevance for a continuous reading of data. The signal belonging
to the simulated IAP is processed by first going through a calibration stage,
explained in Sect. 2.2, then through a coupling stage, using an inverting amplifier
circuit supplied at 3.3 V, and a negative input voltage of −1 V, according to
the recommendations of the manufacturer, and thus passing to an amplification
stage with 2.5 as an amplification factor. Finally, the pressure value is calculated
using a cubic regression, with voltage as input and a pressure ratio as output,
and displayed in cmH2O, using a PIC18F4553-I/P microcontroller (Microchip
Technology Inc., Arizona, United States). The stages of the data acquisition
process are shown in Fig. 2.

Fig. 2. Electrical scheme of the signal acquisition electronic system.

The different components of the package were designed using the 3D CAD
(Computer-Aided Design) software SolidWorks 2019 version (SolidWorks Corp,
Suresnes, France). The device prototype was manufactured in Acrylonitrile Buta-
diene Styrene (ABS plastic) by 3D printing, reducing manufacturing times with
minimal costs.

2.2 Data Acquisition

The implemented system for in vitro tests, shown in Fig. 3, was based on
the Kron’s method connected to a graduated column, where saline solution is
instilled into the patient’s bladder and measurements are made during respi-
ratory expiration or at clinically relevant events. Therefore, for in vitro data
collection, water was placed in a sealed bag (Fig. 3, label A), which served to
simulate the subject’s bladder, this was placed in a manual press (Fig. 3, label
B) to generate the different levels of simulated IAP. This mechanism was con-
nected to a system of three-way stopcock valve connector (Fig. 3, label C) to
the designed device (Fig. 3, label D) and to a column graduated from 0 to 45
cmH2O (0 to 33 mmHg) (Fig. 3, label G), which worked as the known reference.
The discharge duct (Fig. 3, label H) serves to release liquid from the entire sys-
tem if required. Finally, the reading of the measurement after processing (Fig. 3,
label E) was shown on the display of the device (Fig. 3, label F).
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Fig. 3. Schematic and real setup of the system used for in vitro tests. A: Bag of water.
B: Hand press. C: Three-way stopcock valve connector. D: Designed transducer. E:
Signal processing circuit. F: Display. G: Water column (reference system). H: Collec-
tion bag.

To obtain the relationship between the voltage measurements made by the
electronic transducer and the graduated column, i.e., to calibrate the device,
the manual press was placed at a specific pressure, measured by means of the
graduated column (0 cmH2O was considered as reference). The device has a
screw at the top (Fig. 1, label E), which exerts a variable pressure on the sensitive
area of the sensor as it is inserted or extracted from the encapsulation, pressing
on the external side against the flat part of the calibration screw, and on the
internal side against the heel (Fig. 1, label B) mentioned in Sect. 2.1. In this way,
by placing a pressure level on the graduated column, the calibration screw was
turned to adjust a reference voltage. Finally, the voltage delivered by the device
at said pressure was recorded (in the initial calibration process 0 cmH2O at
0.54 V was selected). It should be noted that the three-way stopcock valves were
open to form a closed system between the bag, device and column only. Once
this measurement was made, the process was repeated, changing the pressure in
the press.

Six sets of data pairs were taken as follows. On each cmH2O of the column,
the voltage was registered, each one denoting an average of 200 V readings, every
1.5 s, waiting around 10 s for each measurement to stabilize, three sets were taken
upwards and three downwards, covering a range from 0 to 45 cmH2O, resulting in
0.54 to 2.5 V, obtaining a total of 276 data. The average of the six measurements
on each cmH2O was used on a regression analysis, from which a cubic polynomial
equation was obtained. It is worth mentioning that other polynomial regression
orders were explored (Sect. 3). However, a cubic regression was selected and the
corresponding equation was used to calculate the equivalent of the voltage on
cmH2O, which was shown on the display of the developed device. Finally, a series
of new measurements were carried out to evaluate the accuracy of the designed
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device and the calibration approach, taking a reading at each cmH2O on the
above mentioned range (0 to 45 cmH2O) of simulated IAP. The simulation, and
corresponding measuring, of the IAP value was randomly set during this new
series.

2.3 Statistical Tests

After device calibration using the cubic polynomial obtained via regression, a
linear regression analysis was performed between both methods, the designed
device and the graduated column, in which the Pearson correlation coefficient
was found. A Blant-Altman analysis was also implemented, from which the mean
of differences, called bias, the standard deviation and the upper and lower 95%
limits of agreement (LoA) were calculated.

3 Results

Regression analysis was performed to determine the relation between the voltage
obtained by the signal acquisition system and the pressure measured by the water
column. A lineal regression, a quadratic regression, and a cubic regression were
performed, obtaining a Pearson correlation coefficient and a sum of residuals of
r = 0.9937 and −0.0277 cmH2O, r = 0.9942 and 0.0386 cmH2O, and r = 0.9953
and 0.0144 cmH2O respectively. The result of the polynomial regression analysis
of third order was selected, as shown in Fig. 4, from which Eq. 1 was obtained.

IAP (cmH2O) = −8.6837volts3 + 37.58volts2 − 20.19volts + 0.8485 (1)

After applying the previous equation to calibrate the device lectures in volts
to IAP pressures in cmH2O, a high correlation was found, as seen in Fig. 5.A,
between the graduated column and the designed device with Eq. 1 uploaded,
with a Pearson correlation of r = 0.9997. Regarding the Bland-Altman analysis,
shown in Fig. 5.B, a bias equal to 0.16 cmH2O and 95% LoA between −0.444 and
0.758 cmH2O were found. The bias was statistically significant different from a
zero bias (p = 0.0012) considering 0.05 as the level of significance.

Figure 5.C shown the residuals from the lineal regression between the gradu-
ated column and the designed, while their corresponding histogram is shown in
Fig. 5.D. Normality test was performed on these residuals and it was found that
they are normally distributed, confirming the validity of the linear regression
modeling.
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Fig. 4. Device’s calibration equation. The blue squares represent the collected data,
each one is an average of the 6 measurements done on each cmH2O, while the green
solid line represents the cubic polynomial model. (Color figure online)

4 Discussion

The cubic polynomial Eq. 1 was the correct selection to make the conversion to
cmH2O, since it better represents the relation between the independent vari-
able (voltage) and the dependent variable (cmH2O) of our method, since from
a statistical point of view, it can be observed that the new test of pressure mea-
surements made by the designed device have a high correlation with those of the
reference system, i.e., the graduated column.

The Bland-Altman analysis, Fig. 5.B, made evident the presence of a sta-
tistically significant bias of 0.16 cmH2O in the measurements of the designed
device, but as it is a systematical error and it remained constant throughout the
measurement range explored, it can be corrected by extracting its value from
the measurement. It is expected to obtain results with high correlation and a
bias closer to zero, being the accepted criteria of research and validation for a
novel IAP method of less than 1 mmHg (1.36 cmH2O) and less than 2 mmHg
(2.71 cmH2O) and 4 mmHg (5.44 cmH2O) for the bias and LoA respectively,
according to the World Society of the Abdominal Compartment Syndrome.

When comparing the obtained results with those from similar devices and in
vitro experiments, one can see that our method stays at its level and presents
some advantages over them, with a high correlation and a lower bias. We can
see the advantages of our method with its lower systematical error, comparing
it with another similar device [1], where the Pearson correlation coefficient was
of r = 0.99 and the bias of 0.36 cmH2O (0.27 mmHg).

In a recent study, another continuous measurement device was reported [7],
where preclinical tests were carried out to validate their proposed device using
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Fig. 5. IAP measurements of designed device. A: Lineal regression. B: The solid black
line denotes the bias, while the green dashed lines denote the 95% limits of agreement
(LoA). C: Residuals plot from the lineal regression. D: Histogram of residuals, the
red line represents the normal distribution obtained from the estimated media and
variance.

the water column graduated in cmH2O, in a range similar to ours, from 0 to
35 mmHg. They found a high correlation coefficient of Pearson (r = 0.99),
furthermore, their Blant-Alman analysis showed a bias of 0.16 cmH2O (0.12
mmHg), equal to ours. We can consider a good robustness of our device in
reproducing the measurements of the gold standard method, denoting that the
devices reported in the previously mentioned studies were subsequently used in
clinical trials.

Besides high correlation with the reference system, the designed device has
other advantages, it does not need recalibration before a subsequent new set of
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measurements since it remained during the test, also it does not need to know
the exact volume for reproducibility as the results were based on the pressure
of the water column, because in the laboratory where this study is carried out,
an electronic instrument for reference pressure measurements is not available.
In addition, since the main body of the device is manufactured by 3D printing,
it facilitates reproducibility for in vitro studies by different research groups, as
well as making changes to the original prototype and testing them in a matter of
hours, contemplating a more appropriate manufacturing technique for possible
future clinical implementation, such as the machining.

In comparison with Kron’s method, the main advantage of the designed
device is that by having a membrane between the fluid and the signal acquisi-
tion system it reduces the probability of the patient contracting a urinary tract
infection. It also presents the opportunity to show the results directly in mmHg,
in contrast with Kron’s method in which the conversion must be done manually,
reducing the time and effort consumption of healthcare personnel. Furthermore,
it has an easiest result reading, since instead of the user determining the level of
the water on the graduated column, the value is displayed directly on the device.

5 Conclusions

The designed device has important statistical results for the in vitro experiment;
it is accurate in its measurements and has the potential to be improved in the
future to be of aid in the diagnosis process of IAH.

6 Future Work

The device has its drawbacks that open the opportunity for future improve-
ments. One of them is the redesign of its calibration system, because the one
currently implemented is very sensitive, which causes the calibration process to
be longer and more difficult, as well as more inaccurate at setting the zero. A bad
calibration could cause inaccurate readings that would result in a misdiagnosis.
Another area of opportunity to be explored in the future is the stability of the
reading, as currently, the device takes approximately 10 s to measure a pressure
value and get a stable reading, that doesn’t fluctuate and is close to the value
shown on the reference system.
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Abstract. When a piezoelectric material is subjected to compressive stress, elec-
tric charges are induced on the surface producing an electric field Ee and a voltage.
When there are free charges (electrolyte), these move towards charged surfaces
forming the electric double layer (EDL), producing a field Ei in opposite direc-
tion and which reduces the output voltage. The EDL can store large amounts of
energy. Amodel is presented that allows to predict the shape of the output profiles.
Numerical values of various parameters were estimated to support these results.

Keywords: HAp · collagen · glucose · chemical capacitance · voltage profiles

1 Introduction

The piezoelectric effect is the property that certain materials have to generate electric
charge in response to a mechanical action [1, 2]. When a mechanical stress is applied to
a piezoelectric material, there is a shift of the centers of charge, positive and negative
[3], which gives rise to an electric field Ee = neqe

εA . In presence of an electrolyte, the ions
move towards the charged surfaces forming the electric double-layer (EDL) [4, 5] and
the electric field Ei = niqi

εA . From the biological point of view, the piezoelectric effect
is fundamental since all materials that form the human body are piezoelectric: HAp,
collagen, etc., [6, 7]. It is possible to say that the piezoelectric effects are a fundamental
property not only for the proper functioning of the human body and the preservation
of life, but of all biological systems [8]. All parts of the body act as sensors, detecting
actions of different intensities suffered in the body: it is possible to detect a wide variety
of actions with different intensities, from severe which endanger the integrity of the
body, to extremely small like a very small touch with a feather, or a hair on the face.
How is that the body can detect such small actions?; this will be discussed.

Another essential constituent for the proper functioning of the body is the electrolyte
since it is the electrical conduction system that allows the transport of ions; it performs
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many important task in the body. The electrolyte fills the entire body, including the inte-
rior of cells. The significant ions in the electrolyte are: Na+, K+, Ca2+, Mg2+, HPO42−.
In addition to have the ability of electric conduction, a voltage source is required to
supply the energy for the conduction; this is provided by the piezoelectric effect. The
ions moved by Ee form a double-layer structure which controls the properties of the
output signals; this is important because they affect the characteristics of signals that
reach the brain who analyzes their shape and intensity and executes the correct actions.
Double-layer structures are important because they can store large amounts of energy,
maintaining very intense electric fields inside; this will be elucidated when the amount
of energy stored in this type of systems is estimated.

1.1 Ionic Transport

Electric charges are induced on the surface of piezoelectric material in very short times
when mechanical actions are exerted on it. The resulting net field and the voltage are
ET = Ee – Ei and V = Ve – Vi; τi is the time required for ions to reach EDL; ET and
τi control the shape of the output signals. The arrival of ions at EDL gradually reduces
the output voltage leading to a decaying profile; however, the ionic transport is modified
by the blocking effect: high concentration of ions around the moving ion blocks their
movement reducing transport: the ionic transport depends on concentration. The arrival
time τi can be obtained by equating the electric force with the viscous force and solving
for the velocity, and the inverse is:

τi ∼
(
niRi

qi

)
(1)

The blocking effect was introduced as ni; qi, and Ri, are the charge and size of the
ions.

An electrolyte in the presence of a charged surface produces a double-layer (DL)
[9]. It is known that the accumulation of ions in a finite volume requires considerable
amounts of energy due to the enormous repulsive force between charges: there is a
minimum distance dmda one charge can approach another that is, there is a maximum
charge concentration allowed. The ions move towards the surface trying to be as close as
possible to the charged surface due to the attraction with the induced charge; when dmda
is reached in the layer closest to the surface (Stern layer) the filling stop; the remaining
ions are accommodated in the second layer filling it to reach dmda, and so on; these layers
will gradually form a diffuse and no-uniform structure with a thickness λ. The induced
charge stabilizes EDLby a strong attraction force FDL and very small separation distance,
the Stern thickness λSL which is in the range [0.3–0.8] nm; this force accommodate large
number of ions in a very tight and ordered manner, resulting in a structure that can store
high amounts of energy and charges in small volumes (A λ). λ and κ = λ−1 are given
by [10].

λ =
√

εkT

noq2
and κ = (λ)−1 =

√
noq2

εkT
(2)
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Numerical λ values have been reported for different valences and dilute conditions
[10]; these are in the range [2.5 × 10–10–10–8] m, and for κ [108–4 × 109] m−1. The
induced charge is superficial and EDL is a very thin layer both separated by a distance
λSL; the attractive force FDL between these layers is intense and depends quadratically
on κ, i.e., FDL~κ2. . The charged surface and DL have opposite sign forming a special
capacitor called double-layer capacitor (DLC). The potential ψ and charge density are
strong in DL but decay rapidly with the distance [11]:

ρ(x) = ρ−x/λ
o e = ρ−κx

o e (3a)

� = �oe
−x/λ = �oe

−κx (3b)

1.2 Numerical Evaluation of Energy and Other Parameters

To estimate numerically several parameters, some values have to be assigned to vari-
ous basic physical quantities within their experimental ranges [10]; this estimation will
provide an idea of orders of these quantities: λ is in the range [2.5 × 10–10−1.0 ×
10–8] then it is assigned the value λ = 10–9 m; κ is in the range [108−4 × 109] m−1

then it is assigned the value κ = 109 m−1; ψo is in the range [10–100] mV then ψo
= 0.05 V; the area will be chosen of 2 × 2 cm2 then A = 4 × 10–4 m2; the dis-
tance d = 1 mm = 0.001 m; the dielectric permittivity of acetonitrile is ε = 3.32 ×
10–10 F/m; λSL is in the range [0.3–0.8] nm then λSL = 5 × 10–10 m; Co = εA/d
= 1.33 × 10–10 F. The charge on the DL is QDL = ∫λ

0 ρ(x)Adx = 0.64ρoAλ and
the superficial charge σDL = QDL/A = 0.64ρo λ = 1.6 × 10–2 C/m2; this superficial
charge corresponds to an area occupied of 10 nm2 per ion in a tight packing situation:
σ = 1 ion

10 nm2 = 1.6×10−2 C
m2 ; then ρo = 1.57 σκ = 2.51 × 107 C/m3. The force between

charged surfaces FDL = ε
2AE

2 = A
2εσ

2 = A
2ερ

2
oλ

2 ≈ 3.74 × 102N this force stabilizes
both charged layers and it is responsible for the tight packing of charges. The energy U
depends on E2, U = ε

2 ∫ E2 dVol; for UDL the integral was evaluated from 0 to λ, while
for Uelec from λ to d − λ; UDL = 1.427 × 10–7 J and Uelec = 2.257 × 10–8 J; the results
show that 92.1% of the energy is in the DLCs, and 7.9% in the electrostatic. The energy
density in both DLCs is: uDL = 8.3 × 105 J/m3 and uelec = 0.56 × 105 J/m3. For the
electric field E = − d�

dx the average value is reported: <E>DL in the range [0 − λ] and
<E>elec in the range [λ − (d – λ)]: <E>DL = 1.368 ψo ψ = 6.84 × 107 V/m; this
value can be compared with that obtained from E = ψo/λ = 5 × 107 V/m, as can be
seen these values are close. The DLC is given by CDL = εA κ = 1.33 × 10–4 F and
Celec = εAd = 1.33 × 10–10 F. All these values are reported in Table 1. Based on these
estimates it is possible to say that the double layer capacitor stores large amounts of
energy and charge, with intense electric fields in its interior. This is a very appropriate
system to have supercapacitors and store large amounts of energy and charge in very
small volumes.

1.3 Shape of the Voltage Profiles

Induced charges qe produces Ee and Ve at t = 0. EDL produces Ei, which reduces the
output signal ET =Ee –Ei andV=Ve –Vi. The ions deposit rate decreases as the number
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Table 1. Estimated values of some parameters

Energy Density
(J/m3)

Electric Field
(V/m)

Capacitance (F) Charge Density
(C/m3)

Dark uo = 0 E0 = 0 CT = 1.33 × 10–10 ρo = 0

Light; C1 u1 = 4.15 × 105 E1 = 6.84 ×
107

C1 = 1.33 × 10–4 ρo1 = 2.5 × 107

Light; C2 u2 = 0.56 × 105 E2 = 0.45 ×
106

C2 = 1.33 × 10–10 ρo2 = 0

Light; C3 u3 = 4.15 × 105 E3 = 6.84 ×
107

C3 = 1.33 × 10–4 ρo1 2.5 × 107

Total uT = 8.30 × 105

Attraction Force between Double Layers FDL = 3.74 × 102 N

of deposited ions increases (dqi/dt) ~ (qo − qi) because the arriving ions have to overcome
the field of already deposited ions; solving this equation and since Vi is proportional to
qi, Vi = Vo

(
1 − e−t/τ

)
and the output voltage V = Vo − Vi = Voe−t/τ + VDC is a

decaying exponential; because there is more than one type of ions, two exponentials are
required:

V = Vo1e
−t/τ1 + Vo2e

−t/τ2 + VDC (4)

1.4 Chemical Capacitance Cµ

A capacitor is a device that stores energy in the electric field in a region of space located
by metallic objects. Inside a piezoelectric material with an electrolyte, there are two
DLCs, and one electrostatic capacitor Celec (Fig. 3); DLCs store most of the energy with
a diffuse delimitation of the electric field. DLCs contribute to Chemical Capacitor Cμ

which is defined as Cμ = e2
(

∂ni
∂μi

)
where ni is the number density of ions and μi the

internal chemical potential. Because ni(μ) = noieμ/kT, then, Cμ = εκ2 = ελ−2, i.e., Cμ

is proportional to κ2, the most important characteristics of DL. The dependence of Cμ

with the voltage was calculated using an expression for the chemical potential for ions
in a DL [11]:

�μj = μj − μo = − z2j q
2
i

4πε

(
κ

1 + κa

)
and κ =

(
μo − μj

)
[
β − a

(
μo − μj

)] (5)

Where β = zjqe2/4πε. Using Eq. 5b, the fact that ψ is small ψ = ψκo [1 − x + …],
because the voltage is V= ψo − ψ, and writing the Boltzmann Distribution Law as:

ni = n′
oie

+( qi
kT

)
V (6)
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is obtained for Cμ

Cμ = Coμe
+(qe/kT)V (7a)

The logarithm of Eq. 7a:

Ln Cμ = b + mV (7b)

This is a straight line where b=Ln(Com) and m = qe/kT. Equations 7a–7b are the
same as those obtained by Bisquert et al. [12].

Fig. 1. Voltage profiles of a) HAp-30%C and b) 100%C samples, for H and Rmodes. Both curves
in Fig b were fitted using Eq. 4.
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Fig. 2. Voltage profiles of HAp-Collagen samples at different HAp content: 70, 80, 90%.

1.5 Glucose and Chemical Capacitance

Glucose is the primary energy source of living organisms. It is a very active small
molecule with five hydroxyls, four secondaries, and one primary which can react with
HAp and collagen. High glucose levels in blood produce undesired effects: diabetic foot,
neuropathies, etc.

Fig. 3. Schematic diagram showing: a) the ions in the electrolyte and b) the migration toward the
charge surface to form the EDL.

Glucose affects the structure of the HAp, interrupting the crystal growth by blocking
the exposed functional groups and reducing its piezoelectric response: glucose avoids
the deposit of Ca2+ and HPO4

2− ions on HAp, preventing its growth:[
HAp

]
-OH + HO-CH2 − [Glucose] → [

HAp
]
-O-CH2 − [Glucose] + 2H2O (8)
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Fig. 4. Effect of the addition of 9% glucose on the output voltage in HAp-C samples.

Fig. 5. Effect of increasing glucose from 0 to 9% on the crystal size of HAp.

The reaction with glucose prevents the addition of, for example, Ca2+ to continue
growth of the HAp. The crystallite size was reduced from 22 to 10.2 nm when glucose
concentration was increased to 9% (Fig. 5). The increment in glucose drastically reduces
the amplitude of the output voltage (Fig. 6): for HAp inHmode the intensity was reduced
from 88.8 to 4.8 mV when glucose was increased from 0 to 3%. In all cases (Fig. 4),
there is a reduction in voltage when glucose is increased but a lower scale.

As mentioned, there is a considerable amount of energy stored in DLC; this energy
can be recovered in situations of low or no stress: rest, sleep, etc.; during exercise or
physical work, a large amount of energy is consumed coming essentially from food;
however, part of the energy consumed by the exercise is stored in the DLCs. During
sleep, the body recovers part of the energy stored in DLCs and uses it for soft and hard
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(bone) tissue restoration purposes; in the electrolyte, there is an abundance of Ca2+ and
HPO4

2− ions because these ions serve as a mineral reserve to maintain and restore bone
tissue.

Fig. 6. Voltage amplitudes Vo1 and Vo2 as a function of [%G].

Fig. 7. Dependence of Ln (Cμ/Cμo) as a function of [%G].

As mentioned, DLC can store large amount of energy; however, this energy can only
be recovered in a specific charge and discharge voltage window; this is controlled by
decomposition voltage of the electrolyte: electrolysis occurs at low voltages in aqueous
solutions (1.5 V) and higher for organic solvents (3 V). To have a supercapacitor at
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high voltages operation and/or at high stored energy, as required at industrial level a
bank of small supercapacitors stacked in series is a possible option. For n identical DLC
capacitors Ci in series, the total capacitance is 1

C = ∑n
1

1
Ci

= n
Ci
, i.e., C = Ci

n . Using
this expressions, the total energy UT and voltage VT are [13]:

UT = 1

2
CV2 = 1

2

(
Ci

n

)
(nVi)

2 = n Ui andVT = nVi (9a)

Both quantities, energy and voltage, increase linearly with the number of capacitors
in the stack. Even though this looks easily feasible, there are several technological
problems that need to be solved. Possibly the most difficult of these is related to making
and stacking n small identical DLC: these small DLCs have to identical and wit the same
internal resistance. When a stack of DLCs is overloaded, capacitors with high resistance
and low capacitance are at risk of decomposition and gas production; similar problems
occur in batteries made by stacking voltage cells.

2 Experimental

2.1 Materials

HApwas synthesizedby the co-precipitationmethod as reported elsewhere [14]; the reac-
tants were: calcium nitrate tetra-hydrated (Ca(NO3)2:4H2O), di-ammonium phosphate
((NH4)2HPO4), ammonium hydroxide (NH4 OH) (all from Aldrich Co); an aqueous
solution at 20% of collagen was obtained from Eclat Laboratory. Glucose was obtained
from Dextrosa Anidar (d-glucose) by Golden Bell, code 27740. HAp-C samples were
prepared at different collagen concentrations: 0, 10, 15, 20, 25, and 30%. Glucose was
added to HAp and collagen at concentrations: 0, 3, 6, and 9%. The powder samples
were mixed with 20% of polyurethane as agglutinant. Two compression modes were
used: hold (H) and release (R); in H mode the voltage was measured with the maximum
stress applied (26.5 kPa), while in R mode the stress was removed while the voltage was
measured.

2.2 Characterization Techniques

HAp crystal size determination was made using a Rigaku diffractometer model Ultima
IV operating at 30 mA and 40 kV and the crystallite size determination was performed
using JADE v8.1. The voltages as a function of time were obtained using a digital
multimeter USB Steren model MUL605 equipped with data communication software to
PC. The multimeter has a resolution of 0.01 mV in the 0–60 mV range with an accuracy
of ± (0.5%) and an input impedance of 10 M� . All samples were moistened for 15 s
in a distilled water fog produced by a commercial ultrasonic humidifier (Homedics
model UHE-WB01); the moistened disks were placed immediately between electrodes
to reduce evaporation and for electrical determination.
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3 Results and Discussion

In Figs. 1a–1b show typical voltage profiles of the samples HAp-30%C and 100%C; in
Fig. 1a, the H profile is followed by R profile; it is in this way that the voltage profiles
were obtained, first applying and then removing the applied stress; in Fig. 1b the profiles
are shown separately and both were fitted using Eq. 4; from this figure it is possible to
observe that the H profiles are more intense and of short duration (175 mV and 30s) than
the R ones (63.57 mV and 70 s). The H profiles are related to acute situations that can
represent potential damage to the body; in this case, the brain analyzes very carefully the
characteristics of the piezoelectric signal to take the most appropriate actions to protect
the body. The R profiles are signals obtained after stress has been removed; then, these
signals correspond to a healing situation and they are of low intensity and large duration;
in this case, the brain pays less attention since they represent a low risk.

During HAp synthesis, some Ca2+ and HPO4
2− ions remain unreacted in the elec-

trolyte; the effect of the ions concentration (70, 80, and 90% HAp) on the profiles are
shown Fig. 2. The arrival time, τi ~ (niRi/qi), is linear with concentration due to blocking
effect: high concentration (90%) means low velocity and high τi values; on the other
hand, low concentration (70%) means high velocity and low τi values.

Figure 4 shows the effect of an increase in glucose on HAp and collagen; glucose
drastically reduces the voltage from 88 to 1.8 mV for HAp, and from 20 to 7.6 mV for
collagen for H mode; for R mode the reductions are moderated. A reduction in voltage
corresponds to a loss in sensitivity; patients with high local glucose concentrations show
loss of sensitivity, mainly in legs and feet. An analysis of piezoelectric signals allows an
early, local, and non-invasive diagnosis of glucose levels in different body parts.

Figure 5 shows a plot of the crystal size as a function of glucose concentration. The
main reduction, from 22 to 10.5 nm, occurs when glucose reaches 1%. Equation 8 shows
the blocking reaction produced by glucose on the hydroxyl groups of HAp, preventing
the reaction with Ca2+ and HPO4

2−. This reduction in the crystallite size is linked to the
reduction in the voltage and, therefore, to the loss of sensitivity.

It was obtained a relationship between Cμ and V (Eq. 7a), Cμ = Coμe+(qe/kT)V

which is the same as the reported by Bisquert et al. [12]; additionally, these authors
report profiles at different temperatures from 0 to 60 °C, where the slope is the same
as that obtained here: q/kT. Figure 4 shows a voltage reduction from 88.8 to 4.8 mV
when glucose was incremented from 0 to 9% (V = 0.0888–(0.084/9)[%G]), but Eq. 7a
provides a relationship between Cμ and V: Cμ

Cμo
= e(q/kT)V , and because q/kT = 38.6

Cs2/m2kg, Ln(Cμ/Cμo ) = 3.43 – 0.36[%G] (Fig. 7) or

Cμ = C ′
μ0e

−α[%G] (10)

where α = 0.36, C′
μo = 30.82 Cμo, , and [%G] is the percentage of glucose; Eq. 10

is plotted in Fig. 7. The role of glucose is reduce the chemical capacitance Cμ and,
consequently, the energy stored in DLC.

Figure 6 shows a dependence of Vo1 and Vo2 for different glucose concentrations
for HAp and collagen in H mode; it is possible to observe a reduction in amplitudes
when the glucose concentration is increased; particularly when glucose reaches 3%
there is a large reduction in Vo1 and Vo2 for HAp and collagen: Vo1 of HAp was reduced
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from 88.8 to 4.8 mV when glucose reaches 3%; this concentration can be considered
as the threshold for local diagnosing diabetes. When there is excess glucose in the
body, it is not distributed homogeneously in the body, but it is concentrated in certain
specific places. Piezoelectric profiles make it possible to determine the effect of a local
concentration of glucose in the body. This is possibly the biggest difference between
this technique and standard techniques such as the standard glycosylated hemoglobin
tests (GHT); this measure the average blood glucose throughout the whole body. In the
case of piezoelectric signals, 3% of glucose is a local threshold concentration; for this
reason, the levels measured by GHT are lower with respect to the obtained here. This
value of 3% glucose has been also obtained experimentally in laboratory animals: the
glucose uptake in mice skeleton in vivo is reported as the percentage of glucose injected
dose per gram of tissue weight: %GID g−1; these determinations were made in the tibia
and femur and the average value was 3.5 ± 0.38% GID g−1 [15]. This value is pretty
close to that obtained here for the percentage of glucose added per gram of HAp. 3.0%
GAg−1; this threshold value is similar to that obtained in [15].

4 Conclusions

The expression for the arrival time τi reported in Eq. (1)was verified for different samples
at different concentrations; its effect is observed in Fig. 2; the ions concentrationmodifies
the shape of the output profiles. A simple model was used to explain the shape of output
profiles; this is because the time required to induce a charge on the surfaces is very short.
It was determined the amount of energy and charge stored in DLCs: practically all the
energy is stored in DLC and practically nothing in the electrostatic capacitor. Analytical
relationships between Cμ and the output voltage V and glucose concentration [%G]
were obtained.
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Universidad La Salle Chihuahua, Ingenieŕıa Electromédica, Prolongación Lomas
de Majalca #11201, Labor de Terrazas, Chihuahua, Mexico

hectorderi1@gmail.com

Abstract. It is important to verify the correct use electrical outlets
in hospitals, since medical equipment must be available to staff and
patients. Different institutions in Chihuahua city mention that the use
of electrical outlets isn’t only used for medical equipment, sometimes
the staff prioritizes outlets use for mobile devices or household appli-
ances, which presents a risk to patients when requiring emergency med-
ical equipment use. Due to this problem, an intelligent device was devel-
oped to control the electrical outlet use specifically for medical devices,
called Health Switch, which is an outlet that controls electrical power
cuts, preventing mishandling when trying to connect another type of
device that stops the equipment operation in question, thus preventing
any possible accident within the facility. In addition, it is observed that
by state of Mexico and attention level, there is a 16.8 million MWh
consumption in electrical energy, 18.9 million MWh in fossil energy and
12.7 million tons of CO2 emission per year. This device allows on and off
control through a mobile application, making electricity consumption,
working time and productivity of the medical center more efficient.

Keywords: medical equipment · socket · energy · electrical ·
microcontroller · healthcare institutions

1 Introduction

According to the Directorate of Health Information of the Ministry of Health
in Mexico, total public and private health care spending in Mexico amounts to
1,589,016.04 pesos (MXN) per year[1]. An analysis of operating costs and energy
consumption, based on the information collected from each medical unit in the
representative sample, provides a projection of costs at the national level and by
state, with energy information for each type of equipment:

1. Power supply.
2. Refrigeration.
3. Lighting.
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4. Sanitary hot water.
5. Heating.
6. Air conditioning.
7. Steam.
8. Motors.
9. Pumping system.

10. Compressor system.
11. Medical equipment.
12. Small variable loads.

According to data from the Mexican Secretariat of Energy (SENER), the
total energy cost in the health sector represents 4 percent of the total operating
expenditure in the health sector [2]. The charges for energy consumed according
to the Federal Electricity Commission (CFE) [3] are as follows:

1. 0.843 pesos for each of the first 75 (seventy-five) kilowatt-hours.
2. 1.018 for each of the next 65 (sixty-five) kilowatt-hours.
3. 2,983 for each additional kilowatt-hour.

The energy impact of the health sector in Mexico, based on energy billing,
average data, and UAM by state and level of care, is 16.8 million MWh in
electrical energy, 18.9 million MWh in fossil energy, and the emission of 12.7
million tons of CO2 per year.

Table 1 shows the Maximum installed power per area (M.I.P.A.) the Energy
consumption per area (E.C.A.), and the Cost per area (C.A.) of care within
the medical unit. The emergency room is the area with the highest energy con-
sumption with 20 percent of the total, as it is designed to attend to patients
arriving in critical condition at any time, so medical equipment, lighting, and
air conditioning, among others, must be in uninterrupted operation.

Table 1. Energy consumption by Area.

Area M.I.P.A.(kW) E.C.A.(kW) C.A.(MXN)

Medical Office 95 71,471 112,898

Emergency 64.5 136,093 214,979

Hospitalization 123.8 156,080 246,552

Specialties 81.1 84,273 133,121

Laboratories 101 167,532 264,640

Imaging 344.2 278,000 439,141

Totals 809.6 893,449 1,411,331
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Table 2. Measured and rated power by device category and specific make/model in
each.

Category Spot measurements: standby, average, peak (W) Rated power (W)

Airway Clearance 12, 233, 235 500

Anesthesia Unit 153, 302, 342 1440

Aspirator A 12, 20, 40 60

Aspirator B NA, 115, 119 240

Autotransfusion 63,153, 75 NA

Bed A 20, 447, NA NA

Bed B 30, 94, NA NA

Circulatory Assist NA, 4, 10 50

Computer-Infosys NA, 24, 47 50

Defibrillator NA, 29, 31 130

EEG NA, 142, 143 NA

Exam Chair or Table 25, 150, 271 600

Exerciser NA, 3, 6 NA

Hemodialysis Unit A 67, 87, 131 600

Hemodialysis Unit B NA, 48, 51 NA

Hemodialysis Unit C 83, 504, 1574 1840

Humidifier A 12, 16, 147 185

Humidifier B NA, 8, 10 NA

Humidifier C NA, 40, 45 NA

Incubator-Infant 30, 308, 619 1035

Meter A 6, 16, 16 55

Meter B NA, 7, 10 NA

Microscope 185, 602, 648 NA

Monitor-Patient A 8, 52, 53 145

Monitor-Patient B 2, 18, 19 NA

Monitor-Patient C 8, 38, 39 156

Monitor-Patient D 2, 5, 8 6

Monitor-Patient E NA, 17, 17 161

Monitor-Patient F NA, 49, 52 47

Monitor-Patient G 4, 37, 42 NA

Phototherapy 2, 42, 44 180

Positive Airway A 2, 126, 183 360

Pump A NA, 8, 8 60

Pump B NA, 193, 195 372

Pump C 7, 16, 18 14

Pump D 3, 41, 22 150

Pump E NA, 15, 30 120

Pump F NA, 57, 96 120

Scanning System 13, 945, 996 NA

Scopes 80, 250, 276 NA

Smoke Evacuation 56, 876, 882 NA

Tester A NA, 7, 7 NA

Tester B 168, 568, 1026 1920

Ventilator A NA, 119, 207 NA

Ventilator B NA, 58, 66 135

Ventilator C + UPS NA, 35, 80 800

Ventilator D + UPS 71, 92, 194 800

Ventilator E + UPS NA, 100, NA 800

Ventilator F + UPS 34, 164, 220 863

UPS NA, 95, 109 660

Warmer-Lab A 1, 22, 94 NA

Warmer-Lab B 1, 19, 92 450

Warmer-Patient A NA, 650, NA 792

Warmer-Patient B 46, 688, 826 1000

Water Purification A 4, 127, 272 570

Water Purification B 41, 132, 258 NA
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There are comparisons of the actual measurements of the devices with their
rated powers, including measurements of consumption in standby mode, in nor-
mal operation, and at peak consumption whenever possible. Table 2 shows the
device categories, measurements, and corresponding power ratings. In general,
the rated power is usually higher than the operating and peak power, but the
difference varies depending on the equipment category and device brand [4].

The results of the energy consumption of some equipment of the medical unit
are presented in Table 2, these are related to the types of equipment (E), the
annual operating hours (A.O.H), the hours in which the equipment remains con-
nected in standby representing a percentage of between 7 to 11 percent even when
they are in an idle state, as well as the annual energy consumption (A.E.C.),
and the annual energy cost (A.E.C.)[2].

Table 3. Energy consumption per equipment.

E A.O.H. A.E.C. (kW) A.E.C. (MXN)

Boilers 1,456 168,258 204,259

Centrifuges 1,602 39,268 70,904

Medical Gases 730 8,432 15,224

X-Ray 759 16,846 30,149

Equipment 2,172 106,810 152,478

Totals 6,719 339,614 473,284

According to data from the Mexican Ministry of Energy (SENER), in most
of the country’s medical centers, those responsible for the Medical Care Units
(UAM) do not provide their staff and users with any awareness training in
energy-saving and efficiency measures, nor in preventive and corrective main-
tenance operations to improve the conditions of the facilities and maintain con-
sumption levels, as well as rational energy levels [2].

Another of the main problems that usually occur in medical units is the
poor management of electrical outlets intended explicitly for medical equipment,
which can be a major obstacle at the time of requiring the use of the device,
presenting a possible consequence to the health of patients, especially when it is
life support, as well as delays in consultation and treatment times.

Worldwide, more than 135 million deaths are registered each year due to
cardiovascular causes, with coronary heart disease as the main cause of cardiac
arrest. International literature considers that between 0.4–2 percent of patients
admitted to a hospital and up to 30 percent of those who die require cardiopul-
monary resuscitation techniques [5]. That is why it is of great importance to
make good use of specific power outlets for medical equipment, for example,
defibrillators, which are vital equipment for cardiopulmonary resuscitation with
an 80 percent survival rate when used [6], which has a battery life of 1.5 h and
needs up to 4 h to reach its maximum capacity [7], so that if it is disconnected
it will not be possible to use it in an emergency of vital importance.
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Power factor refers to the effectiveness of a load in utilizing the current
supplied by the system. It is represented as the ratio of the actual power (P),
which is measured in kilowatts (kW), to the power output (S), which is measured
in kilovolt-amperes (kVA):

Power Factor = P
S

In this project, relays were used to allow the passage of electric current, so the
power factor of the devices is not modified, unlike the triacs which do influence
the power factor.

In order to enrich the research, several tests and calculations were performed
on different equipment, as mentioned below.

A harmonic is a sinusoidal component of a periodic wave or a quantity having
a frequency that is an integer multiple of a fundamental frequency. Harmonic
currents are generated by residential and industrial loads with non-linear char-
acteristics. Depending on the method of operation, these sources will produce
harmonics at a constant or variable level.

Additionally, the Fourier series can represent a distorted signal, which can
be calculated using the following formulas:

a) Percentage of the nth Harmonic Distortion:

Dn = |An|
|A1|

b) Total Harmonic Distortion in percent:

THD =
√

D2
2 + D2

3 + D2
4... x100

Applying these formulas when testing medical equipment and devices in daily
use, the following results are obtained:

1. THD in centrifuge: 4.8 percent.
2. THD in electrostimulator: 3.98 percent.
3. THD in computer: 3.43 percent.

Due to these developments, the project aims to address both issues, devel-
oping a smart device programmed to perform automatic power cuts depending
on the consumption of electronic devices, discriminating the current values of
devices that are not within the established parameters, for example, household
appliances and non-medical devices, making their use impossible, with the pur-
pose of assigning the use of the switch only to certain medical equipment, as well
as through a mobile application manipulate the on and off of medical equipment
saving electrical energy and decreasing waiting times for medical care. The use
of these smart switches implemented within hospitals or medical centers is of
utmost importance when it comes to automating processes and keeping track of
the energy consumed.

Another problem in the rehabilitation and therapy area is the use of equip-
ment that requires preheating to reach the appropriate temperature conditions
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for the treatments to be performed, therefore, it is necessary to turn them on in
advance prior to the consultation.

For example, the Parabath paraffin heater consumes 120W to heat its resis-
tance between 52◦ - 57◦ in a time of 30 min [8], or a Chattanooga compressor
has a temperature range between 30◦ to 80◦ taking one hour to reach this tem-
perature and consuming 1000W to achieve it [9]. Due to the aforementioned,
it is more susceptible that the consultation hours are delayed or that the staff
chooses to keep the equipment on despite not being used for long periods of time
in order not to have economic losses because a therapy session is between 700
MXN to 1250 MXN [10], consequently there is higher energy consumption and
even possible affections to the equipment and risks due to overheating.

To solve the above problem, a switch was created using the ESP32
microcontroller[11], and an Android application [12] to control the on and off of
the equipment, as well, make efficient the use of the electrical socket for medical
equipment.

Ways of control:

1. Remote control through the designed application.
2. Automatic control generated by power outages of devices that have a con-

sumption outside the established parameters.

The remote control is given by the mobile application through Bluetooth
connection, changing the high and low states according to the selected. Similarly,
you can set specific names for each of the inputs of the outlet. The control in
its automatic way looks for the switch to discriminate the values outside the
parameters captured by the SCT-013 sensor [13], to prevent the flow of current,
therefore it will be impossible to operate the device connected to that input.

2 Materials and Methods

Health switch is composed of three main elements:

1. Electronic Tablet.
2. Microcontroller Operating Algorithm.
3. Mobile Application.

2.1 SCT-013

The SCT-013 sensor works as a transformer, where the current flowing through
the cable to be measured acts as the primary winding, which consists of a single
turn. Inside, the sensor has a secondary winding that can have up to more than
2000 turns, depending on the model. With this sensor, it is possible to measure
currents in the range of 0 to 100 A, and its internal load resistor produces a
voltage output with a ratio of 100A/1V. It is used in this case to measure the
amperage demanded from the equipment to the outlet and, in this way, to cut
off if the values are outside the established parameters.
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2.2 Electronic Tablet

The Bluetooth connection, BLE protocol, is between the microcontroller and the
mobile device.

A voltage follower is placed on the analog inputs in order to avoid fluctuations
of the sensor signal. For switching on and off, the 2N4401 transistors provide the
gate function for the connection of the relays that will be the system switches.

Finally, the relay is connected to a protection system between its coil and the
necessary sockets between the socket and the board track, since a high voltage
is conducted on it (Fig. 1).

Fig. 1. Eagle Electronic Tablet Designs

2.3 Microcontroller Operating Algorithm

The program for the ESP32 microcontroller has the following functions: Generate
automatic current cuts from the evaluation of the parameters acquired by an
SCT013 sensor. Analyze and compare the commands received from the mobile
application and the value of the current consumed by the equipment in real time.

The libraries EmonLib.h [14] for the use of sensors, and BluetoothSerial.h [15]
for Bluetooth communication between the mobile device and the microcontroller
are used.

In the first instance, the Bluetooth BLE protocol is used in the application,
protocol by which the communication with the ESP32 is established. As well as
the ports and storage variables are also given high.
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Then in the main loop the current parameters are set, assigning a value, one
or zero, to the storage variables depending on the sensed current.

In the second part of the code, the char values are received from the
application, making a comparison between the data received from the applica-
tion and the values of the storage variables. As long as the values from both
sources are met, the devices can be switched on or off by the application.
However, if the connected devices are out of the programmed current range,
the switch function will not be enabled, only the cut-off action. The code is
available for download at the following link: https://drive.google.com/file/d/
15EiNdRgh0KmowDp-Py9Sd4ot-AJ0hN2a7/view?usp=sharing

2.4 Application in App Inventor

App Inventor allows programming based on blocks, carrying out a large number
of functions such as: control, logic, text, lists, mathematics, among others [16].

Fig. 2. a) Start-up screen 1. b) Blocks programmed to perform functions on screen 1.

Figure 2 shows screen 1, which corresponds to the login interface, for which
it is necessary to enter a user name and password.

https://drive.google.com/file/d/15EiNdRgh0KmowDp-Py9Sd4ot-AJ0hN2a7/view?usp=sharing
https://drive.google.com/file/d/15EiNdRgh0KmowDp-Py9Sd4ot-AJ0hN2a7/view?usp=sharing
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Fig. 3. a) Screen 2. Bluetooth connection and Inputs to choose. b)Blocks programmed
to perform functions on screen 2.

Figure 3 shows screen 2, where first the wireless connection is made via Blue-
tooth with the microcontroller, enabling the options of each socket individually
or simultaneously from the sockets; the characters corresponding to the options
selected in the application are transmitted to send them to the char variables of
the microcontroller code. Specifically, characters“A” and “C” send a logical one
to the microcontroller, “B” and “D” transmit a logical zero, while “E” sends a
logical one to the conditional variables (data) of both sockets and “F” transmits
two logical zeros to the same variables.

However, the switch function does not only depend on the char characters,
but the programmed current parameters must also be met.
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3 Results

To validate the performance of the device, various household appliances, mobile
equipment and different medical equipment were used.

Fig. 4. Paraffin outside the allowed ranges.

In Fig. 4, the paraffin maker was tested by programming the corresponding
ranges of current consumption in the socket so that the device does not comply
with the parameters, and therefore the automatic cut-off function is performed
despite being connected to the socket, in addition to preventing the medical
device from being turned on from the mobile application.

Fig. 5. Paraffin within established ranges.
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On the contrary, in Fig. 5 the acceptable current consumption conditions
were adjusted again so that the relay continues to allow the passage of the
current demanded by the parafinder, thus enabling the operation of the on and
off buttons of the mobile application.

Fig. 6. Heating outside the allowed ranges.

Figures 6 and 7 show how the operating principle is the same with a household
appliance. It should be emphasized that the parameters are adjusted according to
the current demand for each piece of equipment and the purposes for which it is
to be used. For example, preventing the use of personal use devices (cell phones,
computers, coffee makers, etc.) in sockets exclusively for medical equipment or
including connection to Brain-Computer Interfaces [31–33].

Fig. 7. Heating within the established ranges.
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Figure 8 analyzes the behavior of a computer, electrostimulator and autoclave
implementing the designed device, obtaining the same response as in the previous
tests.

a)Laptop b)Electrostimulator c)Centrifuge

Fig. 8. Current test

4 Conclusions

The developed project, and under the conditions in which it is found, can be
a viable solution to the possible negligence of the personnel for the incorrect
use of outlets designated to medical devices in particular, this by means of the
analysis of the current consumed by the connected devices when they are sensed
and compared with the parameters established in the programming code of the
microcontroller, to exercise the functions of automatic cut-off and switch.

There are improvements that can increase its accuracy and reliability, reduc-
ing risks for the patient and optimizing work times. Among the improvements
is Wi-Fi communication to cover a greater connectivity distance.

On the other hand, once the code was completed and the tests corresponding
to the current cuts were performed, it was identified that the SCT-013 sensor
is capable of measuring the amount of current consumed by the equipment,
however, being a basic use sensor, it is recommended to use it exclusively for
testing and for applications such as those desired, so it is recommended to be
replaced by industrial use sensors such as the Hall effect, in addition, changing
the sensors would reduce the size of the prototype, providing, along with its
operation, greater aesthetics and presentation.
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Abstract. Wearable systems, such as watch/wristband systems must deal with
power consumption and power line interference problems without compromising
the form factor of the device and the signal-to-noise ratio (SNR). In this study, we
present a preliminary design of a wrist-worn device that simultaneously detects
ECG and cardiac pulse. Unlike the systems currently available in the market,
the cardiac pulse is measured by detecting the magnetic disturbance caused by
the blood flow in a localized magnetic field, eliminating the need to use optical
sensors, which demand higher currents. The device’s circuitry was implemented
using surface mount technology (SMT) on a 43.5 x 32.5 mm 4-layer PCB. With
these dimensions, the contribution of electromagnetic interferences was lower
than 42.5 µV when the device was used in an office setting. The main current
consumption was lower than 500 µA, and the SNR was higher than 68 dB for the
ECG and higher than 55 dB for the pulse signal, enabling a clear identification
of the different waves of the detected signals. The aim is to simplify the signal
processing algorithms in such a way that several features of the detected signals
can be easily identified using fewer hardware resources.

Keywords: ECG · Cardiac Pulse · Wrist-Worn device

1 Introduction

Monitoring of physiological variables in non-hospital settings has become common
today. This practice reduces costs in health systems and allows information on the sub-
ject’s health status to be obtained during their daily activities. Wearable technology has
become popular among consumers [1] since there are systems that provide information
on heart rate, breathing, mental health, and physical activity, among others [2, 3].
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Themost commonwearable systems are smartwatches or bracelet-type devices since
they can be worn comfortably for long periods. The most popular are the Apple Watch
(Apple), Galaxy Watch (Samsung), ScanWatch (Withings), Sense (Fitbit) [4], and the
WHOOP band (WHOOP Inc.) [5]; most of these systems detect various physiological
signals, from which they indirectly estimate other parameters, such as blood pressure,
blood oxygenation, respiration, stress, and sleep disorders, to name a few. Among the
signals that are most detected with these systems are the electrocardiogram (ECG) and
the photoplethysmogram (PPG). Regarding the ECG, detection is usually done using two
dry electrodes, allowing the detection of a single ECG lead (usually lead-I) [6]. However,
in the case of the AppleWatch, studies have been carried out where the primary function
of such a device has been extended to measure multiple leads (not simultaneously) [7].
Optical sensors (LEDs and a photodiode) are often used to detect PPG. These sensors
are in contact with the skin, making it possible to detect changes in blood volume in
peripheral arteries.

ECG sensing using two dry electrodes fits very well into the wearable paradigm.
However, it is challenging from the electronic design point of view since the contribution
of power line interference (60Hz),VEMI, depends on the imbalance of the impedances of
the electrodes (�ZE), the common mode impedance (ZC) of the front end, the common-
mode rejection ratio (CMRR) of the system, and the isolation impedance (Z ISO) [8], that
is:

VEMI = ip
ZB

ZC + 2(ZB + ZISO)

(
�ZE + ZC

CMRR

)
(1)

where ip is the power line displacement current flowing through the body, and ZB is the
patient-ground impedance.

Regarding the detection of PPG, the use of LEDs implies a high-power consump-
tion (tens of mW) [9], which considerably reduces the autonomy of the system. How-
ever, there are strategies to reduce the consumption of LEDs, the best known is to
use a switched-mode power supply [10], but it requires a greater number of electronic
components that make electronics bulky.

In this work, a preliminary study is presented focused on the design of a
watch/bracelet-type device capable of simultaneously detecting the ECG and the car-
diac pulse signal. The aim is to design a low-power electronic circuitry capable to detect
two biosignals with high SNR and with a remarkable immunity to power line inter-
ferences. To achieve this, a printed circuit board (PCB) was designed to guarantee the
signals’ integrity. For the ECG detection circuit, those aspects of the electronic design
that allow reducing the contribution of line interference and the loading effect with the
electrode-skin impedance were also addressed, such as a system with high differential
input impedance (ZD), and ZC, a high CMRR, and a high Z ISO. Strategies to reduce elec-
tronic noise in the system and maintain low current consumption were also discussed.
Themethod proposed by Phua et al. [11] will be implemented to detect the cardiac pulse.
This method detects the disturbance caused by blood on a localized magnetic field. To
achieve this, a permanent magnet and a magnetic sensor were placed over a (large-size)
artery. This technique requires simple circuits which leads to a lower consumption. This
proposal was already presented by Méndez-Lira et al. [12], where it was possible to
simultaneously detect the ECG and the cardiac pulse. However, the system consumed
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over 10 mA and was developed at the breadboard level, which is far from the ideal
design and implementation considerations for a wearable system. The main goal of the
proposed system is to track and assess in the future the cardiovascular health, including
the automatic detection of the long QT syndrome.

2 Materials and Methods

2.1 ECG Detection Circuit

Figure 1 shows the circuit used for detecting the ECG by two dry electrodes. The front
end relied on a fully differential ac-coupling network to achieve a high CMRR and to
eliminate the half-cell potential from the electrodes. The input impedance behaves as
an inductor, so a high input impedance is ensured at the power line frequency without
using very high-value resistors [13]. This reduces the loading effect between the front
end and the contact impedance of the dry electrodes, which, according to previous tests,
is about 80 k� for our custom-built electrodes. The front end has a unity gain, so the
instrumentation amplifier (IA) fixed the overall gain. This means that the high gain of the
IA amplifies the voltage noise of the front end. To reduce the output noise of the circuit,
the noise voltage of the front end must be low. The operational amplifier (OpAmp)
used was the LMP2234, a quad micropower amplifier (Texas Instruments) with a noise
voltage of 60 nV/

√
Hz @ 1 kHz and current consumption of 34 µA. The IA was the

INA826 (Texas Instruments), a rail-to-rail amplifier with a CMRR = 104 dB, a noise
voltage of 18 nV/

√
Hz@ 1 kHz, and a current consumption of 200µA. The ECG circuit

was tested in two scenarios: 1) using a TechPatient CARDIO V4 patient simulator (HE
Instruments LLC, FL, USA), configured to generate an ECG signal of 1 mV amplitude
at 72 bpm. 2) Measuring the lead-I ECG of a volunteer.

Fig. 1. Electronic circuit for detecting de ECG using two dry electrodes.
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2.2 Cardiac Pulse Detection

Magnetic Field Source
The detection of the cardiac pulse is based on themeasurement of the disturbance caused
by the blood flow on a focusedmagnetic field. To generate this field, a circular (Diameter
= 15 mm) neodymium magnet of 130 mT was used and placed over the radial artery.

Sensor
A TMR2001 (Multi Dimension) tunnel-type magnetoresistive sensor was used to mea-
sure the magnetic disturbance. It is a full Wheatstone bridge with a sensitivity of
80 mV/V/mT, an output impedance of 63 k� , and consumes 16 uA. To detect the
magnetic disturbance, the sensor was placed over the radial artery at a distance of 5 mm
from the magnet.

Electronic Circuit
Figure 2 shows the circuit used to detect the cardiac pulse. The differential output of
the TMR2001 sensor is connected to the input of this circuit. The front end consists of
an IA coupled in ac by a symmetric network that guarantees a high CMRR [14]. With
this configuration, zero errors from the sensor in the presence of the constant magnetic
field of the magnet are eliminated. The input impedance of this system is 1 M�, which
reduces loading errors when connected to the magnetic sensor. The IA is the AD627
(Analog Devices, MA, USA); it has a current consumption of 60µA and a noise voltage
of 38 nV/

√
Hz. This circuit was also tested on the same volunteer.

Fig. 2. Electronic circuit for detecting de cardiac pulse.

2.3 Printed Circuit Board Design

All electronic circuits were implemented using surface mount technology (SMT). In
addition to the circuits in Figs. 1 and 2, a battery charging circuit that uses a Micro-B
SMD USB connector, a 3.3 V voltage regulator circuit, and a 1.65 V reference voltage
were also included. Although we are working with low-frequency signals, the PCB
design seeks to guarantee the integrity of the signal for the subsequent integration of
digital circuits and wireless transmission systems. For this, a 4-layer PCB was designed
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with dimensions of 43.5mm× 32.5mm. The top layer (Fig. 3a) contains all the circuitry.
The inner layer 1 (Fig. 3b) is a ground plane with no segmentations, which helps reduce
the impedance and the mutual inductance between circuits. This is very useful when
working with digital systems. The ground plane was placed close to the top layer to
reduce the path of return currents and reduce induced noises. The inner layer 2 (Fig. 3c)
is the power plane. This plane was divided into three parts: a) the one that handles the
supply voltage (V in) coming from the USB port, b) the battery voltage VBAT, and the
supply voltage of the active circuits (VCC). This prevents noise from the several power
supplies from being scattered throughout the circuitry. Finally, the bottom layer (Fig. 3d)
was used to trace some signal paths. However, this layer will be used to implement the
microcontroller and wireless data transmission circuitry in the near future. Separating
the analog and digital circuitry into different layers reduces crosstalk problems.

2.4 Power Supply and Data Acquisition System

All circuits were powered by a 3.7 V/250 mAh Lithium Polymer (LIPO) battery. The
POKIT Pro (POKIT) system was used for data acquisition, which can be configured as
a portable multimeter, oscilloscope, and data logger. To record the signals, the POKIT
Pro was configured as an oscilloscope and acquired the signals at a sampling rate of 1
kSa/s. The signals were displayed on a mobile device with Android, and later the data
was downloaded in .csv format.

GND

VCC

VBAT

Vin

(a) (b) (c) (d)

Fig. 3. Design of the 4-layer PCB: a) Top layer, b) Inner layer 1 (Ground Plane), c) Inner layer 2
(Power Plane), and d) Bottom layer.

2.5 Volunteer

To be eligible for participation in the present study, subjects needed to be adults without
diagnosed cardiac disease. Individuals of both genders could participate, while pregnant
women and children were excluded. Following these criteria, one of the authors of the
present work, who provided informed consent, was the test volunteer.

3 Results

The ZD of the ECG circuit was 3.2 G�, and ZC was 1.8 G�. Considering the contact
impedance of the dry electrodes used, the loading error was lower than 0.002%. The
total CMRRwas about 80 dB, and the bandwidth was limited between 0.5 Hz and 40 Hz,
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with a total gain of 60 dB, approximately. Regarding the cardiac pulse circuit, the total
gain was about 50 dB, the CMRR was 70 dB, and the bandwidth was limited between
0.1 Hz and 10 Hz.

The PCB manufactured with all the implemented circuits is shown in Figs. 4a and
4b. The dimensions of the board allowed it to be incorporated into a custom-built case
where two dry Ag-AgCl electrodes were also incorporated. In Figs. 4c and 4d, the device
worn on the wrist of the volunteer is shown. To detect the ECG, the user must touch
electrode 1 using a finger (e.g., index finger) of the hand that does not wear the device.
Electrode 2 contacts the skin of the wrist that wears the device; in this way, lead-I is
obtained. Figure 4d shows the TMR2001 sensor and the magnet placed on the radial
artery, making it possible to detect the disturbance that causes the passage of blood to
the localized magnetic field.

The overall consumption was less than 500 µA. Considering the battery capacity
(250 mAh), the autonomy of this system measuring continuously (worst case) would
be 500 h. However, this autonomy will be reduced by incorporating the microcontroller
and the wireless data transmission system.

Fig. 4. a) Top layer of the PCB with all the electronic components assembled, b) Bottom layer
of the PCB, the LIPO battery, and TMR2001 sensor, c) the custom-built case where de PCB was
included, d) the TMR2001 sensor and the magnet placed near the radial artery.

Figure 5 shows the signals obtainedwith the developed device. The upper trace shows
the result obtained with the patient simulator. All ECG waves are clearly depicted and
without distortion. The middle trace shows the lead-I obtained from the volunteer, where
a larger noise contribution is observed. This is due to electrode-skin contact because the
skin was not prepared before the test. Even so, the SNR of the signal was higher than
68 dB, and the ECG waves could be distinguished, allowing the estimation of intervals
and amplitudes of interest using simple signal processing algorithms. Considering the
dimensions of the PCB ground plane, CISO was estimated according to [15]; in our case,
CISO ≈ 1.4 pF (Z ISO @ 60Hz≈ 1.9 G�). Assuming�ZE = 5 k�, ZC = 1.8 G�, CMRR
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= 80 dB, and using the values proposed in [16], that is: CB ≈ 200 pF (ZB @ 60Hz ≈
13 M�) and ip = 100 nA, from (1), VEMI = 42.5 µV when the device was used in an
office, which implies a very low contribution from the power line interference. The lower
trace displays the cardiac pulse signal obtained by measuring the magnetic disturbance
of the blood. The signal had an SNR> 55 dB,where the systolic and diastolic amplitudes
and the dicrotic notch are clearly shown.

Fig. 5. Cardiac signals detected with the proposed device: From the patient simulator (upper
trace), Lead-I ECG from a volunteer (middle trace), and cardiac pulse signal from a volunteer
(bottom trace).

4 Conclusions

The preliminary design of a device capable of simultaneously detecting ECG and cardiac
pulse was presented. The current consumption of the systemwas lower than 500µA, and
it was able to detect signals with an SNR greater than 55 dB. Thanks to the dimensions
of the electronic circuitry, the interference contribution was lower than 42.5 µV. This
suggests that the designed systemcanbe implemented in awearable device and is suitable
for use in regular spaces where electromagnetic interferences are normally present. With
this preliminary design, it is possible to develop a wearable system where simple signal
processing algorithms can be implemented in such a way that it is possible to assess and
track the cardiovascular health of a subject in non-hospital settings.
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Abstract. Heart failure in dogs and cats is a relatively common disorder that
affects animals of all ages. There are different cardiac pathologies that are sus-
ceptible to developing this condition, so it is important to identify and intervene
quickly [1]. Cardiac arrhythmia occurs when the electrical impulses of the heart do
not function properly, resulting in irregular heartbeats that can be too fast (tachy-
cardia) or too slow (bradycardia). In cats, visible symptoms are unlikely to occur,
but if present, they may include palpitations, chest pain, fainting, dizziness, and
evenmyocardial infarctions. Therefore, detecting heart problems in cats often hap-
pens when the disease is already advanced and may be difficult to treat or require
specialized tests that can cause stress to the patient. The aim of this project is to
develop a preventive monitoring vest for the physiological variables of cats, as a
means to detect potential heart issues before they become severe. It is important to
note that our vest does not predict the progression of cardiac arrhythmia treatment.
The Heart monitoring vest (MAC) for cats and dogs serves as a tool for detecting
an arrhythmia before a regrettable consequence occurs, the vest can be used if
the veterinarian detects any anomalies in their physiological variables, with the
intention of assisting veterinarians in diagnosing this condition. It should be noted
that the vest is designed for cats but can also be used by dogs.

Keywords: Arrhythmia · heart attacks · stress · preventive

1 Introduction

The temperature, pulse, and heart rate in dogs, as well as in cats, are vital to know
in order to determine any anomalies in the health of our pet, especially regarding the
heart. Without a doubt, continuous monitoring of physiological variables in dogs and
cats entails a significant investment of time and money, particularly for the acquisition
of devices capable of efficient monitoring. Therefore, this document will discuss the
possible complications and the method that will be used as a monitoring tool designed
to be used non-invasively in clinical practices in cats and dogs, in order to provide an
accessible tool for veterinarians as well as for the owners of these animals. Arrhythmia
is one of the most revealing symptoms of heart disease in cats. It is essentially an
irregularity in the pattern of heartbeats. Sometimes, detecting an arrhythmia is not easy
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because studying the heart rhythm of our pet is not common. For timely detection of a
heart disease or heart murmur, it is advisable for the veterinarian to examine the animal’s
heart once a year.

Cats can also suffer from heart diseases, although it is more difficult to detect in them
due to their calm lifestyle and well-known talent for sleeping [2]. The main objective of
our project is to create awareness and thus achieve early detection of arrhythmias and
prevent regrettable consequences, not only assisting veterinarians but also pet owners
involved.

Electrocardiography is a tool used in patients with signs of heart disease to assess
the electrical activity of the heart and diagnose cardiac pathologies in a non-invasive
manner. Heart diseases are quite common in dogs and cats, particularly in older dogs
and cats [3]. Symptoms may include coughing, fatigue, shortness of breath, weight loss,
and syncope, which refers to fainting episodes [4]. It is true that the lifespan of our pets is
relative, and we cannot magically extend it. However, if we want to enjoy their company
during that time, they must be healthy [5]. Therefore, it is important to be alert in order
to identify health problems in cats and inform a veterinarian as soon as possible.

2 Methodology

2.1 Materials

1) ECGModule AD8232: amodule that allows us to collect real electrocardiogram data.
2) MLX9014 temperature sensor: used to measure the body temperature of the feline.

It is chosen for having a non-contact infrared sensor.
3) MAX30102 oxygen saturation sensor: used for blood oxygen saturationmeasurement

(SpO2), and heart rate (H.R).
4) Piezoelectric Sensor: for measuring respiratory rate (R.R.).
5) Bluetooth module: Responsible for transmitting the information and it has the

following feature: wireless connection with a range of 10 m.
6) Thonny Software andHardware IDE: Compatible with the sensors, Python high-level

programming language. Given previous experience, two Raspberry Pi Pico boards
are used.

7) ECG patches.
8) Vest (made of high elastic polyester fabric, lycra, and nylon).

2.2 Methods

The vest was studied with 7 cats under different conditions fromApril to July 2023 in the
city of Tuxtla Gutiérrez, Chiapas. There were a total of 4 male cats and 3 females. One of
the cats had a respiratory disease, two cats were anesthetized, one was of advanced age,
and two were shaved. The measurements were taken starting from 1 year of age. Addi-
tionally, the vest was also tested on 4 dogs of different breeds, 3 males and 1 female. One
of the dogs had a cardiac disease. To validate this project, measurements were initially
taken from the cats or dogs using biomedical equipment such as an infrared thermometer,
vital signs monitor, and pulse oximeter to measure some of the physiological variables
of the project. Next, the preparation of the cat or dog was done, including the fitting of
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our vest. If the cat was going to be shaved or anesthetized, these circumstances were
noted to check if the vest detected changes in the signal. The physiological signals of
the cat or dog were acquired, processed, and transmitted via Bluetooth. The signal and
measurements were visualized in an Android application called MAC, created specifi-
cally for this project. Temperature measurements were recorded at intervals of 10 min,
and the mode was calculated to perform a paired T-test correlation (a method used to test
if the mean between pairs of measurements is equal to zero [6]) to analyze the obtained
error range.

3 Results and Discussion

The Heart monitoring vest (MAC) Fig. 1 and Fig. 2.; is adjustable to fit medium-sized
cats up to small-medium-sized dogs. It houses sensors that, through the Android Studio
application, allow observation of temperature, heart rate, respiratory rate, and oxygen
saturation parameters. The application is integrated with a menu that includes the elec-
tronic ID card for the cat or dog (Fig. 3. A), which can be edited later. It also features
a medication tracking section and a parameters section that includes an ECG, allowing
real-time visualization of the signal on a graph (Fig. 3. B). Additionally, it displays the
values obtained on the Raspberry Pi device via Bluetooth. Our application includes an
alarm system that activates when the parameters are outside the established range.

In the View of the vest from the inside the following list of components can be
observed (Fig. 1):

1.  Green ECG lead. 

2.  Red ECG lead. 

3. MAX30102 Sensor.

Fig. 1. View of the vest from the inside.

In the Exterior view of the vest. The following list of components can be observed
(Fig. 2):

1.  Board O.  

2.  Board E.  

3.  Piezoelectric sensor.  

Fig. 2. Exterior view of the vest.

BoardOcontains the circuit formeasuring oxygen saturation,whileBoardE contains
the circuit for measuring temperature, respiratory rate, and ECG.
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The mobile application designed for the device includes the following (Fig. 3):

a. View of the main menu of our application
b. In this image, you can observe the graph of the signal obtained from the ECG and the

one processed via Bluetooth

Fig. 3. a) Main menu of the application, b) ECG graph obtained via Bluetooth.

The tests were conducted on 5 cats of different ages and conditions, the data can
be seen in Table 1. Additionally, tests were also performed on 4 medium-sized dogs,
yielding the following results, the data can be seen in Table 2:

Weobtained results indicating that our circuit has a lower range of errorwhen the cat’s
fur is shaved in the areas of the leads, the data can be seen in Table 3. Additionally, we
found that it detects value changes very well when the cat is in a normal or anesthetized.

From Fig. 4. The result of the method yielded an error range greater than 0.07 °C
when compared to the measurements of the infrared thermometer. It was concluded that
the error range is acceptable, considering that safety standards state that a thermometer
has a margin of error of + −1 °C.

From Fig. 5., the result of the method yielded an error range greater than 2 rpm
when compared to the measurements of a veterinary vital signs monitor used to measure
respiratory rate. It was concluded that the error range is acceptable, considering that the
accuracy of the vital signs monitor is 1 rpm.

From Fig. 6., the result of the method yielded an error range greater than 2 bpm
when compared to the measurements of a pulse oximeter used to measure heart rate. It
was concluded that there is room for improvement in this measurement, as most pulse
oximeters have a margin of error of 1 bpm.

From Fig. 7, the result of the method yielded an error range greater than 2% when
compared to the measurements of a pulse oximeter used to measure oxygen saturation.
It was concluded that the error range is acceptable, considering that safety standards
state that an oximeter has a margin of error of 0.28 + - 3.1%.
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Table 1. Measurement Results in Cats - Part One.

NAME SALEM
ZÁRATE

NUEVE NUEVA CERO

AGE 3 years old 9 years old 8 years old 1 years old

SPECIES Felis silvestris
catus

Felis silvestris
catus

European
domestic cat

Felis silvestris
catus

SIZE Large Large Small Mediumsized

FUR Low Shaved Abundant Shaved

GENDER Male Male Female Male

TEMPERATURE
38 °C− 39 °C)

38.5° 38.45° 38.96° 38.69°

ECG Some noise Noiseless Noise Noiseless

RESPIRATORY
RATE (20 A 42
RPM)

61 rpm 30 rpm 42 rpm 34 rpm

HEART RATE
(140–200 BPM)

189 bpm 154 bpm 176 bpm 180 bpm

OXYGEN
SATURATION (95
A 100%)

96% 92% 98% 96%

CONDITIONS Cat with feline
asthma

Anesthetized and
shaved

Normal Shaved

VEST Yes Yes Yes Yes

3.1 Discusion

The Heart Monitoring Vest (MAC) in cats and dogs is a functional monitoring system
to assess the cardiac status of the patient in real time. It does not predict the progress of
cardiac arrhythmia treatment. The obtained results indicate that temperature, pulse, and
heart rate in both dogs and cats are limited. This is done with the purpose of detecting
any anomalies in the health of our pets, particularly regarding the heart. Therefore, it is
of utmost importance to remain vigilant in identifying health problems in our pets. This
is why a vest is designed to monitor cardiac arrhythmias in cats using an ECG circuit. To
visualize the monitoring of physiological variables such as Oxygen Saturation (SpO2),
Heart Rate (HR), Respiratory Rate (RR), and Temperature (T). All these variables are
analyzed and sent in real time via Bluetooth to an Android mobile device. The device
features visual alarms to ensure that the patient is not disturbed.

Currently, there are various devices and techniques that assist in monitoring vital
signs in animals, such as apneamonitors, 3-channelHolter devices.[8], chest auscultation
techniques, rectal thermometers for body temperature readings, pulse oximeters, among
others. It is important to mention that these techniques and devices are not very specific
or reliable, and are designed solely for the measurement of a physiological variable.
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Table 2. Measurement Results in Cats - Part Two.

KITTY
CASTILLO

NUEVA NUEVE SILVESTRE MISH

8 YEARS OLD 8 years old 9 years old 2 years old 4 years old

FELINE
ANGORA

European
domestic cat

Felis silvestris
catus

Felis silvestris
catus

Feline Maine
Coon

SMALL Small Large Small Large

ABUNDANT Abundant Shaved Low Abundant

FEMALE Female Male Male Female

38.96° 36.57° 37.47° 38.02° 38.4°

NOISE Interferences Noiseless Noiseless Some noise

28 RPM 25 rpm 65 rpm 33 rpm 42 rpm

163 BPM 129 bpm 174 bpm 186 bpm 190 bpm

95% 90% 96% 97% 98%

NORMAL Anesthetized Normal and
Shaved

Normal Normal

VEST Yes Yes Yes Yes

Table 3. Measurement Results in Cats - Part Two.

NAME POLO GIS ALBERTO TOBY ESPINOSA MOLY

AGE 2 años 5 años 4 años 6 años

SPECIES Pit bull dog Dog Maltese dog Pug dog

SIZE Medium-sized Medium-sized Medium-sized Medium-sized

FUR Low Low Abundant Low

GENDER Male Male Male Female

TEMPERATURE
(37.5 °C- 39 °C)

37.68° 37.97° 36.3° 38°

ECG Noiseless Noiseless Noiseless Noise

RESPIRATORY
RATE (10 A 40 RPM)

35 rpm 39 rpm 39 rpm 22 rpm

HEART RATE (60 -
180 LPM)

175 bpm 173 bpm 182 bpm 80 bpm

OXYGEN
SATURATION (90 A
100%)

94% 98% 96% 92%

CONDITIONS Normal Normal Stressed Heart disease



Heart Monitoring Vest (MAC) for Cats and Dogs 371

Fig. 4. Paired T-test statistical method results (temperature).

Fig. 5. Paired T-test statistical method results (temperature).

Fig. 6. Paired T-test statistical method results (heart rate).

In addition, there are non-invasive portable devices to acquire physiological sig-
nals for canines in real time, where the acquired physiological variables are heart rate,
respiratory rate, and temperature. Based on these analyzed signals, the actual physical
condition of the animal is determined [9].
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Fig. 7. Paired T-test statistical method results (oxygen saturation).

The advantages of this device compared to other existing devices are that, in addition
to being portable, easy to handle and non-invasive, this device helps us monitor multiple
physiological parameters in real time and automatically, without the need to use other
equipment for measurement. It also alerts us when heart rate and respiratory parameters
are outside the normal range. This allows us to know when bradycardia (slow heart rate)
or tachycardia (fast heart rate) is occurring.

4 Conclusions

Regularly bringing our pets for monitoring enables the detection of diseases in early
stages. This is something we should be aware of if we want to provide optimal quality
of life for the animal. Some technical considerations of each component are relevant
in the design of each stage in the development of this project, due to the information
processing needs for each of the sensors.

Two low-cost and compact Raspberry Pi Pico computers were used, each configured
to connect with a specific set of sensors. One of them is configured to obtain SpO2
values, while the other processes information from temperature, respiratory rate, and
ECG sensors. Both devices send the gathered information to the mobile device through
Bluetooth communication. The acquisition of values. The software used for the design of
the mobile application was Android Studio. The vest design includes pockets that house
two boxes containing our electronic circuits. Additionally, the vest is made of flexible
and compact material. It is equipped with a rechargeable battery, making it portable with
a duration of approximately 8 h. This type of battery was chosen for its current storage
capacity of 10000 mA.

Some improvements for the vest include addingmore piezoelectric sensors to expand
the acquisition of information for heart rate and thus provide better results. Due to
the instability and slightly higher error range of the heart rate data obtained from the
MAX30102 sensor, it is recommended to use another sensor specifically for heart rate
measurement.
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Abstract. This article presents the development of an IoT-enabled control and
data logging interface for the modified Wii Balance Board (mWBB) v1.0. The
objective was to enhance usability and functionality for geriatric balance assess-
ment. Hardware modifications, firmware programming, and a user-friendly web-
based interface were employed. Preliminary testing on healthy older subjects
demonstrated the feasibility and accuracy of the platform in measuring Center
of Pressure (CoP) signals. Preliminary results showed successful integration of
IoT capabilities, enabling wireless communication, real-time data transmission,
and remote access to balance data. The mWBB v1.0 represents a cost-effective
and accessible solution for balance assessment in elderly populations. The devel-
oped interface allows professionals to easily register subject data, initiate tests,
and visualize comprehensive results. The platform’s IoT integration expands its
potential applications in research, clinical practice, and IoT-driven healthcare
systems. Future directions include exploring additional balance metrics, inves-
tigating different populations, and integrating advanced data analysis techniques,
with the intent to further analyze geriatric results in subsequent research. The
mWBBv1.0 and its interface provide a valuable tool for enhancing balance assess-
ment in the elderly, offering opportunities for remote monitoring and personalized
interventions.

Keywords: IoT-enabled interface · Geriatric balance assessment · Center of
Pressure (CoP)

1 Introduction

Confronting global aging trends, the risk of falls among the elderly has emerged as a
significant public health concern. According to the World Health Organization (WHO),
adults over 65 years old experience the highest number of fatal falls. As it is estimated
that over 30% of seniors living in the community experienced a fall, and this proportion
increases to 50% for those in residential care facilities [1]. Moreover, the population
pyramid is gradually inverting worldwide, with countries like Japan, Italy, and Germany
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already having more than 20% of their population aged 65 or over [1, 2]. In Mexico, the
population growth rate in that age group is expected to increase. Although the country
currently has a predominantly young population, data project that by 2030 the proportion
of older people will increase to 14.9%. A complete transition to an aging population
is expected, representing approximately 25% of the entire population at older ages [3].
These statistics underscore the growingneed to develop research focusedon the diagnosis
and care of the problem of elderly falls.

A fall significantly reduces a person’s quality of life, shortens their lifespan, and
impacts not only their physical but also their mental health. The ripple effect extends to
caregivers, often family members, affecting their mental health as well [4]. Indeed, the
economic burden of managing falls is high, with the US alone spending approximately
$50 billion annually [5].

Determining fall risk and implementing preventive measures could mitigate this
public health problem. Interventions can focus on improving the skills and senses needed
to prevent falls, such as muscle mass, vision, and balance [4]. On the other hand, current
clinical methods for assessing fall risk, which rely on functional tests of gait, strength,
balance, posture, physical examinations, and questionnaires, are often time-consuming,
require the intervention of specialists and expensive equipment, and people tend to show
resistance to taking preventive measures due to lack of time, knowledge, or resources
[6]. In addition, the accuracy, performance, and predictive validity of these instruments
have been questioned due to their lack of precision [7].

In addition to the clinical methods, numerous studies have led to various techno-
logical attempts to assess the risk of falling. These include image analysis techniques,
wearable inertial sensors, and force platforms, the latter being considered as the golden
standard. However, these solutions often come with drawbacks like high costs, complex
setup and usage, and privacy concerns, limiting their widespread adoption [8].

In this context, amodifiedWiiBalanceBoard (mWBB)wasproposed as a reliable and
low-cost force platform. The initial version (mWBB v0.0) although effective, required
numerous improvements, particularly in terms of usability and data acquisition. The
specifics of mWBB v0.0, its design, validation, and application in balance assessment
in the elderly population are detailed in previous work [9–11].

In this paper, a revised version, the mWBB v1.0, is proposed to overcome these
challenges. Focusing primarily on the design, construction, and preliminary testing, it
provides a platform for subsequent in-depth geriatric analysis. The device is designed
to be user-friendly, requiring the individual to simply stand on it like a bathroom scale.
The current version measures the Center of Pressure (CoP), calculates several indices
according to Prieto [12], and applies a statistical model [11] to provides a balance
alteration assessment in just 60 s. Moreover, mWBB v1.0 is enhanced with Internet of
Things (IoT) capabilities, allowing it to send the results to a national database linked to the
National Institute of Geriatrics, thus contributing to the integration of a comprehensive
national information source for future specialized analyses.
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2 Methodology

The methodology follows a Design Science Research (DSR) approach and is divided
into two main sections. The first one is “Design Criteria”, which explains the reasoning
behind the design choices made for the development of the mWBB v1.0, focusing on
the requirements to improve the data acquisition and transmission capabilities. The
second one is “Integration process”, where the specific changes made to the electronic
components of the mWBB v1.0 and programming logic are detailed.

2.1 Design Criteria

Thedesignprocess for themWBBv1.0was heavily influencedbyprofessional healthcare
feedback and the areas of technical improvement of the mWBB v0.0. The primary
requirements were derived from the need to gather the data more effectively, transmit
it to a database, and increase the user-friendliness of the device. The mWBB v0.0 had
incorporated a 16 × 2 LCD display to show the test results. However, considering the
new IoT capabilities, this was deemed unnecessary as the device could now connect to
any smart device like a computer or a smartphone, from which the application could
be controlled, and results could be viewed. Detailed descriptions of the mWBB v0.0,
including its design and validation, can be found in [9–11].

2.2 Integration Process

Hardware Modifications
The hardware redesign of mWBB v1.0 involved both the removal of components and
the establishment of direct communication with the analog-digital converters (ADCs).
Figure 1 Shows the diagramdepicts the specific changesmade to the originalWiiBalance
Board and how the different electronics components are interconnected in mWBB v1.0,
providing a clearer view of the system’s improved architecture.

Fig. 1. (Left, a)) The electronic diagram of the redesigned mWBB v1.0 system, showing the con-
nections between the different components. (Right, b)) A photograph indicating the modifications
made to the original Wii platform PCB
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The specific changes in the mWBB components from version 0.0 to version 1.0 are
itemized in Table 1. Each row corresponds to a different component of the mWBB, and
the columns compare the components of the two versions.

Table 1. Comparison of components between mWBB version 0.0 and mWBB version 1.0

Component Version 0.0 Version 1.0

Sensor platform Wii Balance Board® Wii Balance Board®

Display for messages Liquid Crystal Display
(LCD), 16 × 2 characters

OLED technology, 128 x 64
pixels

Voice module and speaker APR9600 Voice Integrated
Circuit and buzzer

Only buzzer

Microcontroller dsPIC30F6014A (8 kB
RAM)

ESP32 DevKitV1 (520 kB
RAM)

Memory module MicroSD® Adapter MicroSD® Adapter

Internal time control DS1307 RTC Module 3231 RTC Module

Interface buttons 3 push buttons for time and
date adjustment

Removed

LED indicators (state of an
evaluation)

RGB LED Removed

A comparative illustration of the mWBB v0.0 and the redesigned mWBB v1.0 with
the changes is provided in Fig. 2. The new design emphasizes a minimalist hardware
architecture with essential peripherals for a more streamlined, user-friendly experience.

Fig. 2. Comparison between the mWBB v0.0 (Left), and the mWBB v1.0 (Right)

Firmware
The firmware section outlines the key elements of the programming executed on
the ESP32 microcontroller for the mWBB v1.0. The firmware was developed using
Visual Studio Code (version 1.73.0) with the PlatformIO extension (Core 6.1.5, Home
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3.4.3) for the Espressif ESP32 Dev Module utilizing the 5.2.0 framework. Figure 3.
Shows a schematic representation of the organization and partitioning of the ESP32
microcontroller firmware.

Main.cpp
void setup()
void loop()

Balance.hpp
CoP trajectory filtering

CoP trajectory MQTT publica�on

esp32_mq�.hpp
MQTT protocol connec�on

MQTT subscrip�on of CoP data

esp32_server.hpp
Asynchronous Web server 

ini�aliza�on
POST-GET requests

esp32_websocket.hpp
Web Socket communica�on

ini�aliza�on
Sending pa�ent data, CoP by 

Web Socket

esp32_wifi.hpp
Connec�ng to WiFi network

AP mode ini�aliza�on

funciones.hpp
Auxiliary func�ons

se�ngs.hpp
Variable ini�aliza�on

se�ngsSave.hpp
Saves ESP32 configura�on in 

SPIFFS memory

se�ngsRead.hpp
Retrieves the latest ESP32 
configura�on from SPIFFS 

memory at system startup.

se�ngReset.hpp
Deletes the last ESP32 

configura�on in SPIFFS memory 
and updates it to factory 

se�ngs.

Fig. 3. Organization and partitioning of the mWBB v1.0 firmware

The primary program (main.cpp) is divided into two sections. The first is the “void
setup ()”, where the communication protocols, the Serial Peripheral Interface Flash File
System (SPIFFS), the peripheralmodules, and the calibration for themWBBv1.0 sensors
are initialized. The second section, “void loop ()”, maintains the Wi-Fi connection,
updates user and CoP metrics data, and keeps the mWBB v1.0 device data current on
the web server via the WebSocket protocol.

To conduct a balance test, a user request is made via the interface. If the user’s weight
(over 20 kg threshold) is detected on the platform, the ESP32 starts recording sensor
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information at a consistent 50 Hz sampling rate for 2 min. Once complete, an alarm is
triggered until the user steps off the platform. The signal from the mWBB v1.0 sensors
is processed to calculate the CoP trajectories according to [13], filtered by an Infinite
Impulse Response (IIR) digital filter of order 7 Butterworth topology with 5 Hz cutoff
frequency, and stored locally on a MicroSD card (two separate.txt files are created for
each balance test conducted, one for raw data and one for filtered CoP data) and then
sent to the server, which returns the results of the 78 CoP metrics reporting by [12] to
the ESP32 for display on the interface.

The ESP32 also handles user requests, such as initiating a balance test, Wi-Fi setup,
MQTT server connection, and changing user/password and device identifier, using its
second core. All these requests are executed via POST and GET methods.

Designed with user interface upgrades, a broader range of communication protocols,
and expanded CoP metrics, the ESP32’s firmware caters to enhanced performance and
usability compared to its predecessor.

User Interface
The user interface consists of web pages stored in the ESP32’s SPIFFS memory. These
pages,written inHTML,CSS, and JavaScript, are retrieved by theESP32’s asynchronous
server and displayed on Wi-Fi-connected devices. Figure 4. Illustrates the communica-
tion logic between the ESP32 microcontroller and its user interface, as well as the files
involved for the main actions.

Fig. 4. Connections between web files and user interface

A JavaScript file (scripts.js) handles the logic and WebSocket communication
between the web pages and the server. The web page “test.html” allows healthcare pro-
fessionals to register patient data, download test history, initiate balance test and view
its results as CoP metrics and statokinesigrams. The “index.html” page provides device
information and displays the status of Wi-Fi and MQTT connections. The “wifi.html”
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page simplifiesWi-Fi configuration, enabling easy network connection or “Access Point
mode” for local data storage. The “mqtt.html” page manages the MQTT connection,
allowing users to control the service. The “manage.html” page provides access to device
information, including serial numbers, and allows for resetting and changing user creden-
tials. In case of accessing a non-existing web address, the “404.html” page is displayed,
with a return button to navigate back to “index.html”.

Server Connection and Configurations
This section presents the data architecture and data pipeline between mWBB v1.0 and
remote server. The microcontroller ESP32 acts as the data flow manager, initiating the
asynchronous web server upon device activation. Bilateral communication via Web-
Socket protocol allows the ESP32 to receive sensor data, perform balance tests, and
update the user interface. An overview of the data architecture and flow is depicted in
Fig. 5.

Fig. 5. Connections between web files and user interface

As previously stated, once a balance test is completed, the ESP32 filters and sends
the sensor signals to the remote server throughMQTT protocol. A Python script running
on the remote server processes the data, calculating the 78 metrics of the CoP [12]
and generating statokinesigram plot images. The server manages a database containing
person information, CoP metrics, and CoP trajectory data.

The communication between the ESP32 and the Python script is facilitated by the
EMQXMQTT broker (www.emqx.io), an open-source solution. To configure the server,
the EMQX broker needs to be installed and executed on the remote server.

The remote server is based on DELL PowerEdge M630 equipment with LINUX
UBUNTU 20.04 operating system, which is located at National Institute of Geriatrics.
It hosts the necessary files for the interface to function, including backend system and
MQTT Broker.

http://www.emqx.io
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Accessing the mWBB v1.0 control interface is possible from any location with a
stable internet connection. The server setup allows users to interact with the interface,
view test results, and manage device configurations.

3 Experimental Results

Preliminary testing of the mWBB v1.0 was conducted on four healthy older subjects
to assess its functionality and evaluate the obtained signals. Each subject performed a
balance test using the platform. Figure 6. Shows an image of one of the subjects using
the mWBB v1.0 platform.

Fig. 6. Subject performing a balance test using the mWBB v1.0 platform

During the test, the platform captures signals from its sensors, which are processed
to calculate CoP trajectory data in the medial-lateral plane (CoPx) and anteroposterior
plane (CoPy) directions, then filtered and stored in separate txt files, and finally, 78 CoP
metrics are calculated based on temporal, frequency, and hybrid measurements [12].
The literature shows that some of these metrics are predictors of falls [11, 14] and are
also related to recurrent falls [15], intrinsic factors of falls [16] and the Berg Balance
Scale [17]. All the CoP indicators are displayed in the user interface together with the
statokinesiograms, which are graphs generated from the correspondence rule of the CoP
displacement values, as shown in the Fig. 7. This figure illustrates a comparative analysis
between two balance tests for the same subject, one with open eyes and the other with
closed eyes. The graphic on the right displays a greater displacement of CoPx and a
similar displacement for CoPy, indicative of poorer balance control with eyes closed. As
seen from this analysis, the subject’s balance becomes more unsteady when the eyes are
closed, consistent with expectations. This observation is instrumental in understanding
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the patient’s ability to maintain balance under different sensory conditions, and it serves
as an assessment tool for potential balance alteration and fall risk.

Fig. 7. Signals obtained in a balance test using themWBBv1.0 platform. The larger displacement
in CoPx with eyes closed, as compared to eyes open, indicates poorer balance control in the tested
subject.

In accordance with Prospeni’s work [18] and based on the information shown in the
statokinesiograms, the person evaluated presents balance alteration and fall risk, since
their CoP displacements excursion with values greater than 10 mm. These preliminary
tests showed the ability of the mWBB v1.0 to measure balance and assess fall risk. And
based on the reliability, ease of use and validation reported for the mWBB v0.0 [9–11],
it is expected that the signals obtained can provide valuable information for analysis
and validation of the current version device performance to be used as a promising
longitudinal balance assessment tool in older adults.

4 Discussion

The Wii Balance Board is a system designed for entertainment purposes that was intro-
duced in 2010 to the biomedical field for the evaluation and training of human balance
[19], mainly because of its ability to measure CoP at low cost compared to laboratory-
grade force platforms. However, its main limitations were unstable sampling frequency
(time jitter) and data loss, which detracts from signal quality [20]. In response to this
technical problem, the mWWB v0.0 version was developed, which incorporated hard-
ware adaptations [10] that allowed a stable sampling frequency at 50Hz, while achieving
a valid and reliable balance evaluation [9, 10]. In addition, the mWBB v1.0 also includes
a user interface and IoT connectivity to improve usability, increase its processing and
storage capabilities.

In order to better understand the technical specifications of the newly redesigned
mWBB v1.0 system, Table 2 presents a detailed overview of the device’s general techni-
cal characteristics. These specifications provide important insight into the functionality,
operation, and capacity of the mWBB v1.0 system.

The cost of the mWWB v1.0 has been reduced by 20% compared to the v0.0 proto-
type [10], thanks to a series of strategic modifications. The primary factor contributing



A Low-Cost, IoT-Connected Force Platform 383

Table 2. General technical characteristics of the mWBB v1.0 system

Characteristic Specification

Weight (including battery) 3.5 kg

Dimensions 30 cm × 48 cm × 7.9 cm

Measurement range of CoP displacement 142.2 mm (Mid-lateral plane), 136.6 mm
(Anteroposterior plane)

CoP indices calculated 78

Maximum supported weight 150 kg

Storage MicroSD® class 10 card of 4 GB - 64 GB

Sampling frequency 50 Hz

Power supply 4 AA batteries

Time for stabilometric evaluation 2 min (divided into 2 tests of 1 min separated by
10 s, it can be used to perform tests in different
conditions such as open vs. closed eyes.)

Resolution 1/100 mm

Autonomy in power supply 48 h (constant use)

to this cost reduction is the adoption of a more affordable ESP32 microcontroller, cou-
pled with the exclusion of peripherals like the APR9600 Voice Integrated Circuit. As a
result, the mWBB v1.0 is now priced at approximately $30 USD, and this cost could be
further diminished through mass production or by utilizing an external manufacturing
base, independent of Nintendo®. This proposal presents a highly promising and cost-
effective IoT solution for evaluating balance in older adults, particularly when compared
to commercial platforms that carry exorbitant price tags upwards of $2,900 USD [21].

While the technical specifications and cost-efficiency of the mWBB v1.0 are essen-
tial, its primary application lies in evaluating the risk of falls and balance alteration
among the elderly population. The stable sampling frequency, precise CoP measure-
ment, and enhanced usability make it an effective tool for assessing balance control,
a key factor in fall risk. Coupled with its low cost, the mWBB v1.0 offers a practical
solution for widespread screening and prevention, particularly in resource-limited set-
tings. Future research will further explore its clinical efficacy in various populations and
settings, potentially integrating it with comprehensive fall prevention programs.

5 Conclusion

In this article, we presented the development of themWBBv1.0 control and data logging
interface, transforming it into an IoT device. The integration of these improves the
usability, functionality and connectivity of the platform.

ThemWBBv1.0 offers a user-friendly interface andwireless communication, allow-
ing for remote monitoring and data analysis. Preliminary testing on healthy subjects
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demonstrated its feasibility and accurate measurement of CoP signals. This work con-
tributes to the field of geriatric balance assessment by providing an accessible and
cost-effective solution that leverages IoT technology.

The unique design and IoT capabilities of mWBB v1.0 position it as a promising
tool in the field of geriatric balance assessment, with potential applications in fall risk
evaluation and prevention. Through accurate CoP signal measurement and the possi-
bility of real-time data transmission and analysis, it can offer healthcare providers and
researchers deeper insights for developing personalized interventions that may proac-
tively address fall risks in the elderly. Its affordability facilitates broader adoption, which
could positively influence how fall risks are managed across various healthcare settings.

The mWBB v1.0 opens up new opportunities for remote monitoring, longitudinal
and cross-sectional studies, and personalized interventions in balance assessment. Its
modular design and IoT capabilities enable real-time data transmission, cloud-based
storage, and remote access to balance data.

Future research can explore new balance metrics, investigate different population
groups, and integrate advanced data analysis techniques using the mWBB v1.0. Its
versatility and adaptability make it a valuable tool for research, clinical practice, and
IoT applications.

In conclusion, the mWBB v1.0 control and data logging interface, as an IoT-enabled
device, represents a significant advancement in geriatric balance assessment. Its user-
friendly interface, wireless connectivity, and cost-effectiveness make it a valuable tool
for improving balance assessment and management in elderly populations.
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Abstract. In the past few decades, advancements have been made in the develop-
ment of biosensors for the detection and analysis ofDeoxyribonucleicAcid (DNA)
and genes. The objective of this study was to explore Electrical Bioimpedance
Spectroscopy (EBiS) for DNA concentration. EBiS patterns in the complex plane
for different concentrations of salmon sperm DNA were obtained, and analyzed
to identify potential sensitivity parameters for characterization and calibration
curves design. According to the results, characteristic EBiS patterns are associ-
ated to the analyte vehicle and its parameters change as a function of the present
DNA concentration. It seems possible to determine DNA concentration frommea-
suring reactance (X) and resistance (R) at frequencies centered around 200 and 5
kHz, respectively. Exploration of X and R parameters at such frequencies seems
pertinent to design calibration curves to estimate DNA concentration of 73 to
1200 ng/µL in a sample. Further studies are warranted to confirm the observations.

Keywords: Bioimpedance · DNA · Biosensor

1 Introduction

The need for a simple and inexpensive technique for DNA quantification and gene detec-
tion, especially for less developed countries, is convenient and highly useful. Use cheaper
tools for DNA analysis is a task in which work worldwide continues, several biosensors
have been developed to examine various analytes, the size of which includes individual

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
J. de J. A. Flores Cuautle et al. (Eds.): CNIB 2023, IFMBE Proceedings 96, pp. 386–391, 2024.
https://doi.org/10.1007/978-3-031-46933-6_40

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-46933-6_40&domain=pdf
http://orcid.org/0009-0003-5335-2122
http://orcid.org/0009-0007-0280-9670
http://orcid.org/0009-0000-9689-1191
http://orcid.org/0009-0008-4292-9623
http://orcid.org/0009-0002-2629-322X
http://orcid.org/0000-0003-1969-1342
http://orcid.org/0000-0003-1602-8617
http://orcid.org/0000-0001-9691-9035
http://orcid.org/0000-0003-0355-9195
http://orcid.org/0000-0003-0882-1439
https://doi.org/10.1007/978-3-031-46933-6_40


Multifrequency Bioimpedance Characterization of DNA Concentration 387

ions, small molecules, nucleic acids, proteins, and entire viruses or bacteria [1]. Lab
on a chip technology is an important challenge to create minimal systems for label
free DNA quantification. Multifrequency bioimpedance measurements such as Electri-
cal Bioimpedance Spectroscopy (EBiS) is a minimal invasive and simple technique to
explore electrical properties of biological materials, and have shown potential value as
an emerging technique to detect gene expression as well as total DNA quantification [2].

DNA molecule has a natural electronegative charge condition [3], thus DNA con-
centration could be associated intrinsically to its electrical properties expressed as EBiS
measurements. Studies indicate a relationship of DNA concentration with the magnitude
and phase of EBiS in a given frequency bandwidth for the detection of the presence of
DNA in the content of a sample. Where currents injected at multifrequency in the region
of lesser dispersion of the gamma band generate a relaxation effect of the dipole in a
water molecule allowing the interaction with a DNAmolecule due to its electronegative
charge. The described interaction behaves as a function of DNA concentration and can
be correlated with changes in volumetric impedance, being of great importance for DNA
detection [4, 5]. Sensitivity observedmight depend on the genetic material concentration
as well as its base pair length (molecular weight) [6].

In this work multifrequency bioimpedance patterns in the complex plane are used to
explore DNA concentration, and to identify sensitivity parameters for further calibration
curves design, this in order to determine the viability of the development of a DNA
biosensor device by means of EBiS measurements. With this new development, a saving
of time, reduction of expensive equipment and expenses of consumables is foreseen.

2 Methodology

2.1 Experimental Design

EBiS spectra were measured in five total DNA samples at different concentrations, as
well as in Mili-Q water as vehicle reference. Resistance (R) and reactance (X) results
were obtained at every frequency and Nyquist plots were drawn. An electrophoresis
assay was developed for qualitative characterization of DNA concentrations, in addition,
DNAsamples concentrationswere quantified throughUV-Vis Spectrophotometry. Every
measurement was developed in triplicate. The block diagram of the experimental design
is shown in Fig. 1.

2.2 DNA Procedure

Sampleswere prepared from commercially availableDeoxyribonucleic acid sodium salt,
from salmon sperm, Sigma-Aldrich, reference: D1626, No. Cat: 438545-06-3 (Sigma-
Aldrich Quimica S de RL de CV, Toluca, México). A master solution was prepared by
dissolving the soluteMilli-Qwater (Milli-Q® IQ7003/7005Water Purification Systems)
at initial concentration adjusted to 1200 ng/µL, then; lineal dilutions were obtained in a
final volume of 50µL (1:2, 1:4, 1:8 and 1:16). A qualitative test was performed to assess
the presence of DNA at each concentration by electrophoresis using an agarose gel, then,
finalDNAconcentrationsweremeasured by the use of theNanoDrop Spectrophotometer
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Fig. 1. Block diagram of the experimental design, assays were developed in triplicate.

2000 (Thermo Fisher Scientific - Waltham, MA USA) in triplicate assays. The 260/280
optical density rate was used to determine the purity and concentration of DNA, which
was within acceptable values (1.8 to 2.0) [7]. Table 1 shows the initial and diluted DNA
concentration in ng/uL as well as purity ratios 260/280.

2.3 Bioimpedance Measurements

A system to measure EBiS in 2 uL volume samples was implemented through the use
10x10 mm gold film microelectrodes in an interdigitated array (200 um line width and
50 um spacing), and embedded on a glass surface (Fig. 2). EBiS measurements were
developed by the use of the bioimpedance analyzer Sciospec ISX-3 (Sciospec Scientific
Instruments GmbH, Leipziger, Bennewitz, Germany) in a frequency bandwidth from
100 Hz to 10 MHz at 126 steps distributed on a logarithmic scale with a maximum

Fig. 2. Interdigitated arraymicroelectrodes consisting of a gold film embedded on a glass surface.
EBiS measurements were performed on 2 µL DNA drop.
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voltage of 100 mv. ScioSpec programming and data storage was done using a computer
(HP mini 110-1150LA PC, HP Inc.).

3 Results

3.1 DNA Dilutions

Figure 3 shows the electrophoresis assay for the five DNA concentrations. Qualitative
decrease in fluorescence as a function of DNA dilution is evident. Table 1 shows the
DNA concentration values in ng/µL and the absorbance rates found for each dilution.
The purity of the DNA was confirmed by the optical density ratio 260/280 in the range
greater than 1.8 nm.

Fig. 3. Electrophoresis assay for five DNA concentrations. Diminished fluorescence as a function
of DNA dilution is evident. Figure 3 Electrophoresis assay for five DNA concentrations. Dimin-
ished fluorescence as a function of DNA dilution is evident. The base pairs (bp) can be seen on
the left side.

3.2 Bioimpedance Spectra

Figure 4 shows the Nyquist plot for DNA dilutions andMilli-Q water as contrast. A rela-
tionship between changes of theEBiSpatterns in the complex plane and the concentration
of DNA is evidenced. Milli-Q water curve has similar pattern for DNA samples.



390 N. N. Gómez-González et al.

Table 1. Final concentrations in ng/µL and absorbance index for five DNA dilutions samples.
Data are shown in mean values and standard deviation (triplicate assays).

Sample Concentration A260
mean

A280
mean

260/280
meanmean (ng/µL)

DNA 1:1 1224.06 24.60 13.00 1.89

StdDev 1.50 0.07 0.03 0.01

DNA 1:2 581.30 16.99 9.07 1.87

StdDev 5.48 0.42 0.23 0.01

DNA 1:4 302.66 17.07 9.24 1.88

StdDev 5.06 0.31 0.66 0.01

DNA 1:8 151.00 16.87 9.12 1.85

StdDev 2.70 0.52 0.28 0.00

DNA 1:16 73.43 8.43 4.59 1.84

StdDev 4.15 0.44 0.23 0.00

Fig. 4. Bioimpedance Nyquist plot for Milli-Q water and five DNA dilutions. Every point is the
mean value of three R and X measurement at its corresponding frequency.

4 Discussion

The interaction ofwatermolecules andDNAat frequencies below the gamma band could
be correlated with changes in bioimpedance, based on this foundation, in the present
study, DNA samples were analyzed and their impedance spectra in the complex plane
were observed. Nyquist plots show similar curves with apparent different analytical
parameters accordingly DNA concentration, it seems the fundamental frequency of the
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semicircle observed is centered around 200 kHz,where the reactance values are inversely
proportional to the DNA concentration. In addition, an interesting inflexion point is
evident around 5 kHz where resistance values seems decrease as DNA concentration
increase. Exploration of reactance and resistence parameters at such frequencies seems
pertinent to design calibration curves to estimate DNA concentration. Further studies are
warranted to confirm the observations. Milli-Q water curve has similar pattern for DNA
samples, it seems the observed characteristic patterns are associated to the analyte vehicle
and the quantity DNA change the curve parameters. Despite having obtained consistent
results, new measurements are required to corroborate the information obtained.

5 Conclusions

Characteristical EBiS patterns are associated to Milli-Q water as analyte vehicle, and its
parameters change as a function of DNA concentration. It seems possible to determine
DNA concentration in the range of 73 to 1200 ng/µL from measuring reactance and
resistance at frequencies centered around200 and5kHz, respectively, sensitivity analysis
for reactance and resistance at such frequencies seems pertinent to design calibration
curves to estimate DNA concentration.
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Abstract. In this work, we present the design of a thermal block and the heat
transfer simulation for the integration of a DNA biosensor based on PCR. The
thermal block contains the PCR tubes which needs to be heated and cooled in
order to catalyze the Polymerase Chain Reaction for genetic amplification. The
simulation is comparedwith thermographic images from an experiment performed
with the integrated system.Even though there areminimal error in the temperatures
of the simulation and the thermographic images, the design resulted adequate for
the application.

Keywords: Thermal Block · PCR · Heat Transfer Simulation · COMSOL ·
Genetic Amplification

1 Introduction

One of themost revolutionary advances inmolecular biology, which has been introduced
into a vast variety of areas of medicine, among other disciplines, is the Polymerase Chain
Reaction discovered by Karl Mullis in 1983 and which earned him the Nobel Prize of
Chemistry in 1993. PCR is an enzymatic reaction catalyzed by thermal cycling with
specific temperature steps to amplify a specific DNA sequence; this technique has been
used in a wide variety of genomic analysis applications. In sum, the reaction is carried
out by repeating temperature cycles consisting of 3 stages: DNA denaturation, which is
carried out at around 95°C; the alignment of the primers, which is carried out around
60°C; and elongation by DNA Polymerase, which occurs around 70°C [1]. Each PCR
reaction requires containing the template DNA, the primers, nucleotides, the reaction
buffer with the MgCl2 enzyme cofactor and the DNA polymerase. The aforementioned
reagents are mixed in a container, usually but not limited to PCR tubes, and processed in
the thermal steps described. Initially, thermocycling was done manually by introducing
the PCR samples into individual and separate thermal baths; the user introduced the PCR
tubes to a first thermal bath previously set at the denaturation temperature and kept it
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for the time defined for this stage. Subsequently, the PCR tube was removed and placed
in another pre-set thermal bath at the alignment temperature, and so on, repeating the
process as many times as defined [1]. Of course, this process was tedious and susceptible
to human errors since users had to remain standing for hours and pending to complete the
process, so technology had the challenge of solving these problems. Therefore, devices
were introduced that automated the thermocycling process. On the one hand, there were
instruments that did not change the heating and cooling scheme, but rather automated
the change of the thermal bath by means of robotic arms that submerged and removed
the PCR tubes in the predisposed baths.

On the other hand, the development of thermal cyclers was not limited to automating
the manual tasks carried out by the user within the laboratory. Rather, scopes were
made that changed the management of thermal energy introduced into the samples so
that thermal baths were no longer used, but temperature control systems with different
operating principles and actuators. The challenges to overcome were the high reaction
volumes, high energy consumption and low reaction efficiency due to slow temperature
transitions as well as poor thermal stability in the reaction stages. Next, some of the
different scopes of thermal cyclers developed over time with the aim of overcoming
these obstacles described in a bibliographic review article published by Sailaja V. et al.
[2] will be mentioned.

The idea that was shared was that the miniaturization of thermocycling equipment
could overcome the obstacles mentioned above because it would solve the reaction vol-
ume issue, that is, it would reduce the volume of reagents needed for a single assay.
Similarly, reducing the size of the thermal mass allowed for faster transitions due to
the reduction in thermal capacitance introduced by the thermal blocks used to transfer
temperature from the actuators to the sample. The first miniaturized thermal cyclers
appeared in 1993, designed with micro-engineered chemical reactors with integrated
heaters [2]. D.S. Lee and colleagues used an infrared heater and water shock to heat and
cool, respectively, the sample placed inside capillary tubes, reporting [3]. Other scopes
used a tungsten lamp as the heat source and forced air convection as the cooling mech-
anism, reporting temperature ramps of up to 65 C/s and 80 C/s for heating and cooling,
respectively [3]. They also reported the evaluation of the use of natural convection and
forced convection for sample temperature management, reporting a performance of 2
C/s and 6 C/s, respectively. Lagally et al. They used an integrated microfluidic device
consisting of sub-microliter volume PCR chambers; used nitrogen flow on top of the
device for cooling and thin-film heaters below the PCR chambers for heating, reporting
cooling and heating ramps around 10 C/s [4]. Niu et al. developed a PDMS (poly-
dimethylsiloxane) glass device for PCR, using a zigzag-shaped Platinum heater and a
forced convection cooling fan; reporting heating ramps of 10 C/s and cooling ramps of
4.6 C/s [5].

These achievements overcame some of the obstacles that arose for the development
of PCR devices (thermal cyclers). However, they introduce other obstacles to the use and
development of these technologies, such as sample handling, the complexity of device
design due to temperature management systems that were based on the movement of flu-
ids (flow) either gaseous or liquids, which also hinders their portability, and the energy
consumption that the actuators represented. The development of thermal cyclers was
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not limited to miniaturization, but efforts were focused on the use of different actuators
that allowed thermal control in an efficient and simple manner. Thermoelectric Cooling
(TEC) systems have become popular in thermocycler designs due to their convenient fea-
tures of having nomoving parts, compact size and light weight, their ability to cool below
temperature environment, precise temperature control, high reliability, acoustic noise-
free operation, operation in any orientation, and that are friendly to the environment [2].
Today, a large part of commercial thermal cyclers includes Peltier modules (TEC-based
actuators) in their designs, although they report being energy-intensive designs (between
200 and 1000 Watts) intended primarily for high-resource laboratories. On instruments
such as the Agilent SureCycler 8800, Bio-Rad C1000, Eppendorf Mastercycler Pro,
Life Technologies GeneAmp 9700, Roche Lightcycler 96, and Thermo Scientific Ark-
tik, manufacturer literature indicates maximum temperature ramps in the range of 1.5
to 5 C/s and precision of ±0.25°C. Some companies have improved temperature ramps
by optimizing the designs of the thermal blocks that contain the samples, such as the
Bio-Rad S1000 with temperature ramps between 2.5–6 C/s, with power consumption
of 700 W. Other companies have changed the thermal block material by seeking higher
thermal conductivity and lower thermal mass using silver thermal blocks such as Eppen-
dorf Mastercycler Pro S with temperature ramps of 4.5–6 C/s and power consumption
of 950 W. Companies such as Thermo Scientific Piko have improved their ramps tem-
perature ranges between 4.5–5 C/s by reducing system size and reaction volumes. Chai
Technologies company optimized the temperature ramps of its OpenPCR instrument
at 1 C/s with relatively low power consumption of 180 W by reducing the number of
samples introduced for a single assay, which decreases block size and thermal mass.
Companies such as Cepheid SmartCycler and Streck Philisa improved the performance
of their thermal cyclers to ranges of 2.5–10 C/s with power consumption of 350 W and
12–15 C/s, respectively, by redesigning the PCR tubes to improve the ratio surface-
volume of the samples, favoring the conduction of temperature in the samples. Others
have improved their speeds at the expense of energy consumption and portability, such
as the Idaho Technology company with a convective cycling design, now included in the
Roche Lightcycler 2.0 system and the Rotor-GeneQ system, demonstrating temperature
ramps between 15–20 C/s in standard sample volumes (between 0.1 and 0.5 mL) and
1.9–3.6 C/s in capillary volumes, with power consumption of 800 W [2]. So, designs
with Peltier modules present different ways to optimize the characteristics of a thermal
cycler.

In this work, the design of a thermal block is reported as a part of the thermocycler
module integrated in the design of a DNA biosensor based on PCR and bioimpedance
measurements, whose implementation is documented in [6]. Thiswork aims to document
the design process of the thermal block and the multiphysics simulation in which it was
supported during the design process.
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2 Methods

2.1 Thermal Block Design

As previously mentioned, in order to catalyze the polymerase chain reaction, it is neces-
sary to subject the sample to thermocycling that involves heating and cooling the sample
in a wide range of temperatures that can go from room temperature, or even lower than
this, up to 100°C. To do this, a thermal block was designed with a geometry such that the
PCR tubes, which contain the sample, could be placed in and that the external surface
of the PCR tubes is in full contact with the thermal block to optimize heat transfer from
the actuators towards the sample. Aluminum was selected as the block material due to
its good thermal conductivity (around 209 W/mK [7]) and its cost. To define the dimen-
sions of the block, the geometry of the PCR tubes was measured and based on these,
the block was designed in a computer-aided drawing software, looking for the largest
possible contact surface with the actuators without the dimensions were unnecessarily
large, because we are looking for rapid heat transfer. A hole for the LM35 temperature
sensor was contemplated at the bottom, in the center of the block with a given height
so that the sensor would sit symmetrically in the center of the two samples. To sustain
the pressure exerted from inside the PCR tubes due to the evaporation of the sample, a
lid made of the same material as the block was designed, held by a screw to the bottom
part of the thermal block, with holes designed to fit with the top of the PCR tubes. In
addition, one of the holes was drilled to allow the connection with the electrodes and
perform the bioimpedance measurements, since it is a thermal block integrated into a
DNA biosensor, as previously mentioned. The final external dimensions of the thermal
block are depicted in milimeters in Fig. 1.

Fig. 1. Thermal block design with its external dimensions in milimeters.
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The thermocycling system was designed using thermoelectric cooling technology
(TEC) modules as actuators because they are systems that do not contain moving parts,
do not emit acoustic noise, are friendly to the environment, have a compact structure,
are small in size and allow precise temperature control, according to the data sheet of the
TEC modules used [8]. TEC1–4905 Peltier modules were selected, with dimensions of
25 mm× 25 mm× 4 mm, maximum voltage of 6.8 V, maximum current of 5.3 A. One
Peltier was placed on each side of the thermal block with the side to be heated in contact
with the thermal block, according to the direction of the electric current. In addition,
a heatsink and a fan whose speed is controlled by a PWM signal were placed on each
external side of the Peltiers, to dissipate the heat accumulated on the external side of the
Peltiers to the environment whenever the sample cools; since the side in contact with the
thermal block will cool down and the external side will heat up. It is important that the
heat dissipation is efficient, otherwise the heat accumulated on the hot side will start to
heat the cold side and the temperature control will not work properly.

2.2 Heat Transfer Simulation

In order to assess whether the proposed heat block design was suitable for the intended
application, a heat transfer versus time simulation was performed to see if the heat
block design would allow heat transfer from the peltiers to the samples in a uniform and
efficient way. For this, the multiphysics simulation software COMSOL Multiphysics
was used.

To define the geometry of the simulated system, the 3D models of the different
components thatmake up the physical systemwere imported, these being the Peltiers, the
thermoblock, the sample containers and the sample itself. Figure 2 shows the assembled
thermoblock system with PCR tubes containing 25 µl of water simulating the PCR mix.
The materials of each one of the components were assigned from the COMSOL library,
being alumina for the Peltiers, aluminum for the thermoblock, polypropylene for the
sample containers and pure water for the samples; In addition, an air bubble surrounding
the entire system was considered to simulate more realistic conditions and not neglect
the energy losses to the environment that would occur in a real scenario. Because the
materials were selected from the COMSOL library, physical properties such as thermal
conductivity, heat capacity, thermal diffusivity, and density of each component material
are already taken into account. The finite element mesh was automatically performed
from the COMSOL software selecting the element size as extra fine; The element size
parameters were 0.007m asmaximum element size, 0.0003m asminimum element size,
1.35 for the maximum element growth factor, curvature factor of 0.3, and resolution for
narrow regions of 0.85. As initial condition of the system, the ambient temperature was
considered, at 25°C. The first step of the simulation consisted of defining the temperature
of the Peltiers at 95°C, corresponding to the denaturation temperature in a PCR assay,
thus evaluating the heat transfer from an initial state to the temperature of the first stage
of the assay. by PCR; For the second simulation step, the Peltier temperature was defined
at 60°C, corresponding to the alignment temperature in a PCR assay and the last result
of the first simulation step was used as the initial condition, and, for the third step of
the simulation, the temperature of the Peltiers was defined at 72°C, corresponding to
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the elongation temperature in a PCR assay, and the last result of the second step of the
simulation was considered as the initial condition.

Fig. 2. 3D model of the block assembled with the PCR tubes containing 25 µl of pure water
simulating the sample.

3 Results

Figures 3, 4 and 5 show the temperature of the thermal block after 40 s elapsed in each
step of the simulation. For the figures, 3 types of COMSOL results were integrated in
one single image, the first one shows the surface temperature of each domain, a second
one that shows the temperature of a cut or defined plane to be able to observe the loss
of energy to the environment and a third result that places the annotation of a specific
data. For the latter, it was defined that the annotation of the temperature was made at a
given point, that point was located in the center of the water domain (simulating the PCR
sample) to evaluate the temperature of the sample in the elapsed time. All three types of
results were integrated in one image, each figure was obtained in such way (Figs. 3, 4
and 5).
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Fig. 3. Step 1 of the simulation with 95°C defined as the peltier’s temperature. Surface temper-
ature, temperature of a defined plane and an annotation for the sample temperature re integrated
in the image. The annotation corresponds to the average of the temperature of the water domain
(sample).

Fig. 4. Step 2 of the simulation with 62°C defined as the peltier’s temperature. Surface temper-
ature, temperature of a defined plane and an annotation for the sample temperature re integrated
in the image. The annotation corresponds to the average of the temperature of the water domain
(sample).
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Fig. 5. Step 3 of the simulation with 72°C as the peltier’s defined temperature. The annotation
corresponds to the average temperature of the water domain (sample).

In addition, a probe was defined that averages the temperature of the water domain
(PCR sample) to plot it against time and to be able to evaluate the heat transfer perfor-
mance from the peltiers to the sample. Figure 6 shows the average temperature of the
water sample over the whole simulation.

Fig. 6. Plot of the average temperature of the water domain (sample) against time.
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In order to compare the simulation with the real thermal block (fabricated around
from the computer-aided design files), thermographic images of the thermal block were
taken in operation with the thermal cycler, but without lid and PCR tubes, with the
support of a camera. Fluke TI25 Infrared. In addition, the same simulation described
above was carried out with a 3D model suitable for the conditions of the thermographic
images (without cap and PCR tubes). Figure 7 shows the images obtained from the
simulation (left side) and the thermographic images (right side).

Fig. 7. Comparison of the images obtained from the simulation (left) with those obtained with
the thermographic camera.
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4 Discussion

From Figs. 3, 4 and 5, we can see that the temperature is distributed symmetrically from
the peltiers, located on the sides of the thermal block, towards the sample. The heating
of the thermal block is uniform and conducted efficiently. From the annotation, we can
see that the sample is heating up to the defined temperatures with a slight error in the
order of decimal places (around 0.2°C for the initial step at 95°C, 0.4°C for the second
step at 62°C and 0.1°C for the third step at 72°C). This error is also observed in the
comparison figures of the images obtained from the simulation and the images obtained
from the thermographic camera (see Fig. 7), which resulted in 0.5°C for the first step at
95°C and 0.1°C for the second and third step at 62°C and 72°C, respectively. This error,
which we consider to be insignificant, may be due to the assumptions that the simulated
model contemplates, such as zero energy losses by radiation (reasonably neglected), the
ambient temperature of the simulation was different from the ambient temperature of the
real conditions of the experiment. In the simulation, the air is stagnant (without flowing)
and the experiments were carried out with the laboratorywindows open, so air flow could
have occurred. This could explain that in the thermographic images, the environment of
the thermal block is observed in a strong blue color, indicating a temperature close to
25°C (room temperature). Also, the infreared temperature measurements from metallic
objects can be difficult because of the emissivity of aluminum, or any metallic shiny
object, is dependent on the surface finish of the object.

From the graph of the average temperature of the water domain, we can observe a
heat transfer from an overdamped system, this is expected because the temperatures of
the peltiers in each step of the simulation were defined in a fixed way, that is, it does not
change with respect to time or the temperature of the system in contact. This is a big
difference with the conditions of the real experiment, because the temperature control,
reported by Ames et al. in [6], the temperature control system has as feedback the tem-
perature read by the LM35 sensor, located symmetrically in middle and at the height
of the samples. This means that the temperature of the peltiers could be reaching tem-
peratures above the defined temperature in each step of the simulation. Data suggested
by the temperature values also reported in Ames et al. [6]. This could also explain the
temperature error observed in the results of this work.

However, we consider that the differences in temperature and heat transfer time are
negligible, since the errors are minimal and the samples reach the desired and required
temperatures to catalyze the polymerase chain reaction and cause the desired genetic
amplification, as reported in [9]. Confirming that the thermal block design is suitable for
the application for which it was designed.

5 Conclusion

In this work, the design of a thermal block is reported. Such thermoblock is integrated
in a DNA biosensor based on the Polymerase Chain Reaction and relative bioimpedance
measurements documented in a previous work. The computer aided design of the block
and a heat transfer simulation carried out in order to evaluate the design of the block
and whether the heat transfer would be uniform and efficient, in the sense of bringing
the sample to the desired temperatures, were reported.
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Discrepancies were found in the values obtained in the simulation and in the real
experiments, in terms of temperature and heating time, which may be due to the dif-
ferences in environmental conditions between the simulation and the experiments, and
to the difference in the temperature control system of the real system with the defined
temperatures of the simulations. However, these differences are not critical and can be
neglected, since the temperatures reached by the sample are very close to the desired and
necessary temperatures to catalyze the polymerase chain reaction and cause the desired
genetic amplification, confirming that the design is suitable for the intended application.
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Abstract. Biosensors on the basis of label-free and non-functionalization princi-
ples have been studied in the last decade. In particular, sensors for total Deoxyri-
bonucleic Acid (DNA) and Genes, a necessary technology within molecular biol-
ogy assays, have so far represented a major technological challenge. The objec-
tive of this study was to explore Magnetic Induction Spectroscopy (MIS) for
DNA detection. The inductive phase measurements were obtained for five dif-
ferent DNA concentrations (1:1, 1:2, 1:4, 1:8 and 1:16), and analyzed to identify
its potential value as a non-invasive tool for DNA quantification. According to
the results, integration of the inductive phase curve in the frequency range of 1 to
10MHz correlates with statistical significance toDNAconcentration (R= 0.9723,
P < 0.05). Sensitivity analysis for such integrated parameter seems pertinent for
calibration of Magnetic Induction Spectroscopy measurements to estimate DNA
concentrations. Further studies are warranted to confirm the observations.

Keywords: Magnetic · Induction · DNA · Biosensor

1 Introduction

Deoxyribonucleic Acid (DNA) quantification is a necessary technique within molecular
biology assays, and emerging easy-access technologies for such purpose have been stud-
ied [1]. Electrical Bioimpedance (EBI) measurements is a technique that could utilizes
electrical properties of DNA and has shown correlate highly with DNA concentration
[2, 3]. Bioelectrical measurements by electromagnetic induction with non-contact elec-
trical coils are considered as a valuable alternative to contact electrode measurement
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[4] and [5]. Magnetic Induction Spectroscopy (MIS) is a new technique to determine
the electrical properties of biological materials without contact with the sample. Several
studies have been developed to show the feasibility of MIS as non-invasive monitoring
technique [6] and [7].

Our study relates to the use of MIS for measuring different DNA concentrations.
We are particularly interested in using the inductive phase occurring through magnetic
induction as a means to detect the presence and quantity of total DNA. To the best of
our knowledge multifrequency inductive phase as a measure of DNA concentration was
not studied before. In this study we explore the use of MIS for DNA detection. Multifre-
quency inductive phase measurements were obtained for different DNA concentrations,
and analyzed to identify its potential value as a non-invasive tool for DNA quantification.

2 Methodology

2.1 Experimental Design

MIS measurements were developed in five total DNA samples at different concentra-
tions, as well as in Mili-Q water as vehicle reference. Inductive phase was obtained at
every frequency and Bode plots were drawn. An electrophoresis assay was developed for
qualitative characterization of DNA concentrations, in addition, DNA samples concen-
trations were quantified through UV-Vis Spectrophotometry. Data were analyzed trough
a non-parametric correlation statistical test using the Excel 2021 (18.0) with a statistical
significance p < 0.05. Figure 1 shows a block diagram of the experimental design.

Fig. 1. Block diagram of the experimental design.

2.2 DNA Procedure

Sampleswere prepared from commercially availableDeoxyribonucleic acid sodium salt,
from salmon sperm, Sigma-Aldrich, reference: D1626, No. Cat: 438545-06-3 (Sigma-
Aldrich Quimica S de RL de CV, Toluca, México). A master solution was prepared by
dissolving the solute in Milli-Q water (Milli-Q® IQ 7003/7005 Water Purification Sys-
tems) at initial concentration adjusted to 1.2 mg/ml, then; lineal dilutions were obtained
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in a final volume of 50 uL (1:1, 1:2, 1:4, 1:8 and 1:16). An electrophoresis was carried out
on agarose gel to evaluate qualitatively the presence and integrity of DNA at every con-
centration, then, final DNA concentrations were measured by the use of the NanoDrop
Spectrophotometer 2000 (Thermo Fisher Scientific - Waltham, MA USA) in triplicate
assays. DNA concentration and purity was determined by examining the optical density
260/280 ratio, which was within acceptable values (1.8 to 2.0) [8]. Table 1 shows the
initial and diluted DNA concentration in ng/uL as well as purity ratios 260/280.

2.3 MIS Measurements

An inductive spectrometer was designed to measure MIS in DNA samples. The system
uses a direct digital synthesizer Keysight, model 2567 B (Keysight Inc. Santa Rosa, CA,
USA) coupled to an arrangement of inductor-sensor cooper coils coaxially centered and
geometrically disposed around a polypropylene PCR tube as container, and to induce
magnetic fields in a total volume of 50 uL at eight magnetic field frequencies (0.005,
0.02, 0.05, 0.10, 0.20, 1, 2 and 10 MHz). An electronic circuit was designed on the basis
of the integrated chip AD8302 (Ana-log Devices Inc. Wilmington, MA USA) to detect
the inductive phase in the sensor-coil with respect to the inductor-coil. Signals were
digitalized trough an USB data acquisition (DAQ) devices with 8 analog inputs, 16-bit
resolution, and 100 kS/s sample rate (Measurement computing Inc. Norton, MA, USA).
A personal PC was used to program the system and store the data.

3 Results

3.1 DNA Dilutions

Figure 2 shows the electrophoresis assay for the five DNA concentrations. Qualitative
decrease in fluorescence as a function of DNA dilution is evident. Table 1 shows the
DNA concentration values in ng/µL and the absorbance rates found for each dilution.
The purity of the DNA was confirmed by the optical density ratio 260/280 in the range
greater than 1.8 nm.

3.2 MIS Spectra

Figure 3 shows the MIS spectra for inductive phase in final DNA dilutions. Spectrum
for Milli-Q water sample is included. Inductive phase patterns show an inflexion point at
1 MHz, and a relation MIS spectra slopes at subsequent frequency regarding DNA con-
centration is evident. Figure 4 shows a zoom of theMIS spectra in the range 1 to 10MHz
to highlight the correlation of the spectra’s slopes with respect DNA concentration. As
a first approach to a sensitivity analysis, integration of the inductive phase curve from
1 to 10 MHz was estimated (see Fig. 5). A Spearman correlation test of the inductive
phase-integration values in the range 1 to 10MHz regarding DNA concentration showed
a coefficient correlation of R = 0.9723 with statistical significance (p < 0.05).



406 J. E. López-Madrigal et al.

Fig. 2. Electrophoresis assay for five DNA concentrations. Diminished fluorescence as a function
of DNA dilution is evident. Molecular ladder in the witness lane (left side) are in pb.

Table 1. Final concentrations in ng/uL and absorbance ratio for five DNA dilutions samples. Data
are shown in mean values and standard deviation.

Sample Concentration A260
Mean

A280
mean

260/280
meanmean (ng/µL)

DNA 1:1 1224.06 24.60 13.00 1.89

StdDev 1.50 0.07 0.03 0.01

DNA 1:2 581.30 16.99 9.07 1.87

StdDev 5.48 0.42 0.23 0.01

DNA 1:4 302.66 17.07 9.24 1.88

StdDev 5.06 0.31 0.66 0.01

DNA 1:8 151.00 16.87 9.12 1.85

StdDev 2.70 0.52 0.28 0.00

DNA 1:16 73.43 8.43 4.59 1.84

StdDev 4.15 0.44 0.23 0.00

4 Discussion

Milli-Q water curve has similar pattern than DNA samples, it seems the observed char-
acteristic patterns are associated to the analyte vehicle and the quantity DNA change the
curve parameters, particularly in the inflexion point observed at 1 MHz. MIS sensitivity
seems evident in the range 1 to 2 MHz, at such frequencies the interaction of the water
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Fig. 3. MIS (inductive phase) spectra in five DNA concentrations. Spectrum for mQ (Milli-Q
water) sample is included. Data are shown in mean value and standard error.

Fig. 4. Zoom of MIS (inductive phase) spectra in five DNA concentrations in the range 1 to
10 MHz. Spectrum for mQ (Milli-Q) sample is included. Data are shown in mean value and
standard error.

dipole with electronegative charge of DNA molecule could be relevant, and volumetric
conductivity reflects inductive phase changes, indeed inductive phase has the potential
for being a non-invasive method for detecting DNA concentrations in the range of 73
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Fig. 5. Integration of the inductive phase curve in the range 1 to 10 MHz for five DNA concen-
trations. Data are shown in mean value and standard error. Significative statisticallly correlation
inductive phase-integration vs DNA concentration was found (R = 0.9723, P < 0.05).

to 1200 ng/µL. Obviously, this is a preliminary study and much research remains to
demonstrate the observations.

5 Conclusions

MIS measurements show technical feasibility for non-invasive detection of total DNA.
Integration of the inductive phase curve in the frequency range of 1 to 10MHz correlates
to DNA concentration with statistical significance (R= 0.9723, P<= 0.05), thus sensi-
tivity analysis for such parameter seems pertinent for calibration of MIS measurements
to estimate DNA concentration.
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