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Abstract. Statistical Shape Modeling (SSM) is a quantitative method
for analyzing morphological variations in anatomical structures. These
analyses often necessitate building models on targeted anatomical regions
of interest to focus on specific morphological features. We propose an
extension to particle-based shape modeling (PSM), a widely used SSM
framework, to allow shape modeling to arbitrary regions of interest.
Existing methods to define regions of interest are computationally expen-
sive and have topological limitations. To address these shortcomings, we
use mesh fields to define free-form constraints, which allow for delimiting
arbitrary regions of interest on shape surfaces. Furthermore, we add a
quadratic penalty method to the model optimization to enable compu-
tationally efficient enforcement of any combination of cutting-plane and
free-form constraints. We demonstrate the effectiveness of this method
on a challenging synthetic dataset and two medical datasets.

1 Introduction

Statistical Shape Modeling (SSM) is a widespread method used to analyze shape
variation across 3D anatomical samples within a population. These analyses
are crucial in detecting common morphological pathologies and advancing the
understanding of different diseases by studying the form-function relationships
between anatomies [2,5–8,13,16–18,21]. While building SSMs, certain biomed-
ical and clinical applications require a focus on specific anatomical regions of
interest (ROIs) to tailor the analysis to precise morphological features (e.g. [1–
4,11,14–16]). Such applications might require excluding certain surface aspects,
modeling certain regions in isolation, or a mix of these. ROI definition with-
out altering the input shape has been achieved using constraints, mathematical
delimiters that restrict model construction to certain surface areas [11]. Our
approach focuses on redesigning the constraint application method to improve
its functionality, flexibility, and efficiency during SSM construction.

To construct such SSMs, two distinct families of shape representations can be
used to allow for statistical analysis, deformation fields and landmarks. Whereas
the former encodes implicit transformations between cohort samples and a pre-
defined (or learned) atlas, the latter uses explicit landmark points spread on
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shape surfaces that correspond across the population [19,20]. We focus on the
latter approach given its extensive use due to its simplicity, computational effi-
ciency, and interpretability for statistical analysis [19,22]. Although landmarks
used to be manually placed on specific anatomical features of interest, the mod-
ern convention uses dense automatically-placed landmarks obtained through
computational methods, such as minimum description length (MDL) [12], and
particle-based shape modeling (PSM) [9,10]). We utilize PSM, an efficient and
robust entropy-based optimization method that creates a system of dense land-
marks or particles, which conform to all population shape surfaces while main-
taining correspondence across them.

A previous attempt to constrain PSM particle distributions uses geometric
primitives in the form of spheres or cutting planes to exclude regions [11]. This
exclusion is achieved by projecting virtual particles onto these geometric prim-
itives (represented as parametric constraints), relying on the entropy objective
to repel landmark particles away from these areas. Such an approach has the
advantage of not altering input surfaces, which can otherwise distort morphol-
ogy or necessitate manual expert-driven reprocessing of data. However, it falters
when arbitrary regions of interest cannot be expressed via geometric primitives,
limiting the topologies to be modeled. It also exhibits poor scaling due to it
requiring an additional set of projected virtual particles per constraint. Thereby,
to address these shortcomings in the existing literature, we propose the use of
the quadratic penalty method in the optimization to allow the simultaneous
and scalable application of cutting-plane, spheres, other primitive constraints, as
well as a proposed method of defining arbitrary surface constraints, or free-form
constraints (FFCs). This method provides both flexibility in the definition of
constraints to define ROIs and scalability with large-scale or heavily constrained
populations without the need to reprocess data.

2 Method

The aforementioned automatic landmark placement methods take in a popula-
tion of I− shapes S = {Si}Ii=1 (binary segmentations, meshes, or n-dimensional
contours), and obtain particles P = {Pi}Ii=1 where the i−th shape point distri-
bution model (PDM) is denoted by J−particles Pi = [pi,1,pi,2, · · · ,pi,J ], where
pi,j ∈ R

3. Such particles are obtained by optimizing an objective f(P), which
give

f(P) = H(P) −
J∑

j=1

H(Pi), (1)

where H is an estimation of the differential entropy. The particles enable quan-
tifying subtle differences and computing shape statistics (e.g., by performing the
principal component analysis (PCA) on corresponding particles) by providing a
population-specific anatomical mapping across the given cohort.
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We constrain each shape Si by Mi−inequality constraints in the form
gi,m(p) ≤ 0, where gi,m(p) is a differentiable function. These parametric con-
straints can be in the form of cutting planes or spheres as showcased in [11]
(by using the equations of planes or spheres), other parametric delimiters, or
free-form constraints, which allow arbitrary surface region definition. These con-
straints limit the distribution of particles to regions that satisfy the inequality, a
region more easily demarcated using parametric constraints in some anatomies,
and/or free-form surface-painting in others.

In this section, we describe the use of a quadratic penalty method to allow
efficient and simultaneous enforcement of an arbitrary number of parametric
constraints, and the use of signed mesh vector fields to build free-form constraints
that allow arbitrary surface region isolation. We will also showcase a friendly
graphical interface to define these constraints.

2.1 Quadratic Penalty for Efficient Constrained PDM Construction

We define an extended objective function to express this constrained optimiza-
tion problem in an unconstrained form. For each constraint function in the form
gi,m(p) ≤ 0, we add a quadratic penalty term g+i,m(p) = max(0, gi,m(p)) to the
optimization objective, yielding

F (P) = f(P) +
I∑

i=1

Mi∑

m=1

J∑

j=1

g+i,m(pi,j). (2)

We optimize this objective function using a Gauss-Seidel gradient descent
scheme, with the second term preventing particles from violating constraints,
hence restricting their movement exclusively to feasible regions. This method
scales linearly with respect to the number of particles per shape, whereas the
virtual particle model [11] scales quadratically.

2.2 Free-Form Constraints

We express free-form constraints in the same form gi,m(p) ≤ 0 for each shape
Si by attributing a distance and gradient field onto each vertex of a mesh Mi.
Any feasible region on the surface of Mi can be delineated by a set of surface
boundaries Bi = [Bi,1,Bi,2, · · · ,Bi,B ], which are represented as vertex loops on
the mesh surface. A distance field query for a particle p, denoted Md

i (p), pro-
vides the signed geodesic distance to the closest constraint boundary Bi,∗ from
the projection of p onto Mi, illustrated in Fig. 1 (b). Similarly, a gradient field
query, denoted Mg

i (p), would provide the gradient direction, shown in Fig. 1 (c).
Ultimately, the mesh Mi together with its fields Md

i and Mg
i , can approximate

the distance and first-order gradients over near-surface points, effectively simu-
lating a differentiable function gi,m(p). When integrated into the aforementioned
penalty method 2.1, this approach can enforce arbitrary surface constraints.
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Fig. 1. (a) Constrained particle distribution on a sphere, where yellow illustrates the
feasible region of the constrained area where particles are allowed to be distributed, the
gray is the infeasible region where if particles were to be there, they would be violating
the constraint. (b) Distance field Md

i (p) of signed geodesic distances to the surface of
every mesh vertex. (c) Gradient field Mg

i (p) on the mesh surface at every mesh vertex
represented using white arrows and the blue surface as the feasible region. (Color figure
online)

2.3 Graphical Interface Tool

We include a graphical interface tool that can define cutting planes and FFCs
and can roughly propagate these to all shapes in the population. Cutting planes
are defined by prompting 3 points that the user can pick that are on the shape
surface, and can be copy-pasted into all other shapes. FFCs are defined using a
“painting” tool that can define included and excluded areas with an adjustable
brush size. This tool allows precise and arbitrarily customizable definition of
constraints. An FFC on a single shape can be propagated to others using defor-
mation parameters computed from image registration. This functionality is also
included. All the graphical interface functionality is illustrated in Fig. 2.

3 Results

We demonstrate our results by integrating our method into an open-source
implementation of the particle-based shape modeling (PSM) framework, Shape-
Works [9], and produce SSMs from three datasets. The first is a synthetic dataset
of ellipsoids that vary between values of 10, 20, 30, and 40, in each of their three
major axes, totaling 64 ellipsoids. These ellipsoids are constrained by a free-form
boundary that divides each ellipsoid into upper and lower halves by a full period
of a sine wave projected onto the surface, providing a challenging but uniformly
delimited population of shapes. Figure 3 shows a few examples and the modes of
variation from the SSM. The constraints have the desired effect, and the modes
of variation meet expectations as they mimic the variation in the three major
axes.

The second is a dataset of 25 computerized tomography (CT) femurs, where
the region of interest is the proximal femur sans the lesser trochanter (femoral
head, neck, and greater trochanter). For each shape, we use a cutting plane
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Fig. 2. (a) The constraint panel shows the constraints that have been defined and the
tools to define the constraints. (b) Cutting-plane constraints are defined by ctrl-clicking
3 points on the shape surface. (c) Constraints can be flipped or applied to all other
shapes via the right-click menu. (d) FFCs are defined with a painting tool with different
brush sizes and options to customize included and excluded areas. We show how the
painting of excluded areas of different sizes applied to a segmentation of a left atrium.

Fig. 3. (a) Sample ellipsoids from the dataset with feasible regions in yellow and
restricted regions in grey. (b) The first three modes of variation in the dataset, which
show the variation in corresponding major axes. (Color figure online)
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constraint to exclude the shaft and a free-form constraint to exclude the lesser
trochanter. Figure 4 illustrates a few examples and the first two modes of vari-
ation. We observe that a cutting plane allows a more straightforward exclusion
of the shaft whilst the FFC precisely excludes the lesser trochanter. The con-
straints restrict the movement of particles to the feasible region as expected, and
the modes of variation meet expectation as well.

Fig. 4. (a) Example of defined constraints. The feasible region is shown in yellow and
the constrained region in grey. (b) The first two modes of variation in the dataset.
Notice that particles are excluded from the lesser trochanter. (Color figure online)

The third dataset comprises 21 segmentation of left atria models obtained
from MRIs. The pulmonary veins represent the area of greatest variation both
in anatomical structure (e.g. number of veins, common veins, etc.) as well as
greatest variability in segmentation by expert observers (e.g. length into vein
to segment). While the position of veins may be important from a shape mod-
eling perspective, their exact shape is not particularly relevant to LA shape
morphology. Thus, we paint a free-form constraint exclusion area around the
veins. Figure 5 showcases some examples of the shape and the first three modes
of variation. The models meet expectations.

4 Conclusion

We demonstrate a flexible and more scalable approach to define regions of inter-
est in fully-groomed shapes for landmark-based statistical shape modeling by
allowing arbitrary definition of surface constraints via FFCs and incorporating
mixed constraint types into the optimization. This significantly improves the
usability of PSM methods, obviating the need for reprocessing datasets. Future
work includes the automatic propagation of constraints to the entire cohort given
manual definitions on certain representative shapes.
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Fig. 5. (a) Example of defined constraints where the left atrium (in yellow) segmen-
tations have the pulmonary veins excluded (in grey). (b) The first three modes of
variation in the dataset. Notice how the pulmonary vein areas remain hollow. (Color
figure online)
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