
Learning Hierarchical Robot Skills
Represented by Behavior Trees

from Natural Language

Kaiyi Wang1,2, Yongjia Zhao1,2(B), Shuling Dai1,2, Minghao Yang3,
Yichen He4, and Ning Zhang1,2

1 State Key Laboratory of Virtual Reality Technology and Systems,
Beihang University, Beijing, China
zhaoyongjia@buaa.edu.cn

2 Jiangxi Research Institute, Beihang University, Jiangxi, China
3 Institute of Automation, Chinese Academy of Sciences, Beijing, China

4 Institute of Intelligent Information Processing, Beihang University, Beijing, China

Abstract. Learning from natural language is a programming-free and
user friendly teaching method that allows users without programming
knowledge or demonstration capabilities to instruct robots, which has
great value in industry and daily life. The manipulation skills of robots
are often hierarchical skills composed of low-level primitive skills, so they
can be conveniently represented by behavior trees (BTs). Based on this
idea, we propose NL2BT, a framework for generating behavior trees from
natural language and controlling robots to complete hierarchical tasks in
real time. The framework consists of two language processing stages, an
initial behavior tree library composed of primitive skill subtrees, and a
BT-Generation algorithm. To validate the effectiveness of NL2BT, we
use it to build a Chinese natural language system for instructing robots
in performing 3C assembly tasks, which is a significant application of
Industry 4.0. We also discuss the positive impact of real-time teaching,
visual student models, and the synonymous skill module in the frame-
work. In addition to the demonstrated application, NL2BT can be easily
migrated to other languages and hierarchical task learning scenarios.

Keywords: Embodied Interaction · Learning from Language · Natural
Language Programming · Behavior Tree Generation

1 Introduction

In daily life and industrial production, programmers compose primitive skills
(pre-programmed lowest-level skills) of robots into hierarchical skills to achieve
various complex robot tasks. However, this can be difficult for users who do not
have programming knowledge. Inspired by human social education, interactive
task learning (ITL) [15] has been proposed to enable users to teach tasks to
robots conveniently. The interaction can be accomplished through demonstra-
tion or natural language, but the former is problematic for people with motor

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
M. Sellami et al. (Eds.): CoopIS 2023, LNCS 14353, pp. 366–383, 2024.
https://doi.org/10.1007/978-3-031-46846-9_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-46846-9_20&domain=pdf
https://doi.org/10.1007/978-3-031-46846-9_20


Learning Hierarchical Robot Skills Represented by BTs from Language 367

disabilities or those who need to teach fine skills. Therefore, in this paper, we
focus on teaching robots skills from natural language.

Fig. 1. An example of learning hierarchical skills represented by behavior trees from
natural language. (a) The user decomposes high-level skills into low-level primitive
skills through dialogue. (b) The learned hierarchical skills are represented and exe-
cuted through behavior trees. (c) The robot completes manipulation tasks based on
the behavior trees. The example given here is transferring a SIM card from the material
box to the platform, then to the phone, and finally inserting it into the slot.

An application of learning from language is for assembly robots in Indus-
try 4.0, such as the 3C (computer, communication, and consumer electronics)
assembly robots. With the dramatically increasing demand for 3C products, it
is an inevitable trend to use robots to assemble them automatically and intel-
ligently. Many skilled workers have little knowledge of robot programming, but
they are proficient in the assembly process, so it is a promising way for them to
teach assembly tasks using language. The agents are regarded as students with
primitive skills, and with step-by-step instructions from human teachers, they
can organize primitive skills into hierarchical high-level manipulation skills.

The existing language-based teaching methods for robot manipulation tasks
can be divided into two categories: one is based on end-to-end models, and the
other is based on interactive task learning. The former focuses on how to perform
a task better, without establishing a hierarchical composition structure of the
task, which leads to large training loads and low interpretability. Our idea is the
latter, which teaches robot tasks through one-shot learning. Despite the impres-
sive results achieved by existing ITL works, there is still a lack of a universal
and portable method for representing and generating hierarchical manipulation
skills. To address the above issues, we propose NL2BT, a framework for learning
behavior trees (BTs) from language and using them to control robots to perform
hierarchical skills (see Fig. 1). The main contributions are as follows:

1. An NL2BT framework which enables robots to learn hierarchical skills rep-
resented by behavior trees from natural language. It allows users without
programming knowledge or demonstration abilities to instruct robots.

2. A generic primitive skill subtree structure that includes execution condition,
skip condition and action to ensure efficient execution and logical correctness.

3. A BT-Generation algorithm that generates BTs from semantic information
and uses “Blackboard” to achieve parameter mapping for hierarchical skills.



368 K. Wang et al.

4. A system for learning 3C assembly tasks from Chinese language that validates
the framework.

The remainder of the paper is structured as follows: The related work is intro-
duced in Sect. 2. In Sect. 3, we describe the details of the proposed framework.
In Sect. 4, we conduct extensive experiments to validate the effectiveness of the
NL2BT framework and discuss the impacts of important components. Finally,
we conclude the work and outline directions for future work in Sect. 5.

2 Related Work

2.1 Language-Based Imitation Learning

In recent years, many works focus on language-based imitation learning for robot
manipulation skills. Stepputtis et al. [25] propose a model for language-based
control of articulated robotic arms, Mees et al. [21] provide a public bench-
mark for instruction following robots, and Google Robotics also proposes the
Language Table [20]. They all combine language, vision, and motor to train end-
to-end models for robot control, and achieve inspiring results. This shows us a
promising future for language-driven robots. However, the end-to-end model is
more suitable for learning primitive skills. If used for hierarchical skills, it can
result in large data collection and labeling workloads, large training costs, poor
interpretability, low reliability, and user customization failure. In contrast, ITL
can solve these problems and is more suitable for learning hierarchical skills.

2.2 Interactive Task Learning

ITL is an emerging research topic and its ideas can be seen in many works. She
et al. [24] propose a framework for robots to learn high-level actions through
dialogue. They adopt combinatory categorial grammar for language processing,
and propose a three-layer action representation to execute robot movements.
Chai et al. [3] use the tree structure to represent the grounded task. Petit
and Demiris [23] use instructions to teach a robot to perform hierarchical hand
actions. They extract semantic information according to predefined templates,
learn protoactions by mapping semantic information and joint values, and use
them to compose high-level actions. ITL can also be applied to software agents.
SUGILITE [16,17] combines instructions with demonstrations to build a conver-
sational assistant on Android. They use a grammar-based executable semantic
parser [18] for language understanding and perform tasks with scripts generated
by recorded actions. Although these works have achieved impressive results, they
have not proposed a general representation and generation method for hierar-
chical skills that can be widely used and easily ported in ITL systems. Besides,
pre-trained language models can be utilized to achieve more robust language
understandings. We also notice the existing works that use large language mod-
els (LLM) to implement robot tasks, such as ChatGPT for Robotics [26] and
SayCan [1]. However, unlike their works, we focus on enabling humans to serve as
teachers, so that the robot’s behavior fully follows step-by-step instructions with-
out relying on the reasoning of the agent itself, thereby ensuring interpretability.



Learning Hierarchical Robot Skills Represented by BTs from Language 369

2.3 Behavior Trees in Robot Manipulation

Finite state machines (FSMs) [8], And-Or graphs [19], semantic graphs [28], and
behavior trees [7] are used to represent tasks in robotic manipulation. Among
them, BTs have received increasing attention [5]. They are similar to FSMs, but
offer advantages in terms of readability, modularity, and real-time performance,
making them superior to FSMs for practical applications [6]. Colledanchise and
Natale [5] provide a case example of using behavior trees to implement robotic
tasks, illustrating the effectiveness of BTs in the representation and execution of
robot manipulation skills. French et al. [11] propose an algorithm to learn BTs
from demonstrations and validate it with a household cleaning task. However,
learning from demonstration can be problematic for users with motor impairment
or who need to teach fine tasks. Cao et al. [2] use LLM to generate behavior trees,
but do not represent them as executable forms such as XML files or code, so
they cannot be directly used to perform actual robot tasks.

3 Approach

3.1 System Overview

Fig. 2. Architecture of the NL2BT framework and the system built based on it.

As shown in Fig. 2, we propose an NL2BT framework and build a system for
learning 3C assembly tasks from Chinese natural language based on it. The user
interface (UI) allows users to provide natural language inputs and get agent’s
replies. Both voice and text inputs are allowed and the iFLYTEK Open Plat-
form [13] is used for speech recognition. The agent’s reply is generated based on
processed semantic information (I ′, S) and predefined reply templates. In the
framework, the text t goes through two processing stages. In the first stage, a
JointBERT model [4] is used to obtain the preliminary intent I and slots S. In
the second stage, the existing BT library is queried to check if the skill is already
learned or has a possible synonymous skill in the library to obtain the final intent



370 K. Wang et al.

I ′. Then (I ′, S) is used as input of BT-Generation algorithm to generate behav-
ior trees, and the updated BTs can be visualized and executed in real time.
Finally, the nodes of the running behavior tree communicate with the robot to
perform the skills. In addition to the demonstrated application, NL2BT can be
easily migrated to other languages and scenarios (details are given in Sect. 5).
Next, we will introduce the implementation of the framework.

3.2 Natural Language Processing

As shown in Fig. 3, JointBERT [4] is leveraged for language processing. We
collect 8015 utterances used in the 3C assembly tasks and annotate their intents
and slots in BIO format. We use a multilingual BERT [9] model as the pre-
trained model and fine-tune it with the labeled data.

Fig. 3. Intent classification and slot filling for natural language understanding.

The classes of slot S and intent I used are shown in Fig. 4. Intents I are divided
into Skill Instruction (“move to the flexible cable”), Completion (“you have suc-
cessfully assembled the cable”), and Positive/Negative Answer (“yes” or “no”).
The slot categories extract important semantic information such as skill names,
target objects, destinations, and directions from the utterances.

Fig. 4. Classes of slots and intents used in our system.



Learning Hierarchical Robot Skills Represented by BTs from Language 371

With the fine-tuned JointBERT model in Processing Stage I, a preliminary intent
and slots are given. However, a secondary processing stage is still required before
generating behavior trees. When a user inputs a skill instruction, the agent
queries the BT library. If it is a learned skill existing in the library, it can be
directly executed, so the intent I ′ is subdivided into “Call Skill”; otherwise, the
agent should request instructions from humans, which means “Learn Skill”.

In addition, due to the diversity of language expressions, different skill names
may correspond to the same skill composition, which we call “synonymous skills”.
For example, “pick up a box” and “grab a box” may have the same decomposed
primitive skills. To avoid redundant and repetitive teaching, when the agent
receives an unlearned skill name, it compares it with all skill names in the BT
library. If a synonymous skill is found, the intent I ′ is set to “Confirm Synonym”,
and the agent will ask the user to confirm whether it is a real synonymous skill. To
find synonymous skills, a synonymous skill module is designed. A common idea to
capture the similarity between words is to calculate the cosine similarity between
their word embeddings. In [27], they provide a Chinese Synonyms toolkit based
on Word2Vec [22] similarity. However, in addition to the words themselves, we
believe that contextual information can also be helpful in synonym judgment,
so we use BERT to obtain word embeddings. According to [14], phrase-level
information is captured mostly in the lower layers of BERT and gets diluted
in the higher layers. Besides, the lower layers capture surface features, which is
helpful for judging synonymous skills, especially in Chinese, because the skill
names containing the same characters are likely to have similar meanings.

The specific method for judging synonymous skills is shown in Fig. 5. The
input is an instruction t1 containing an unlearned skill name and a constructed
comparison instruction t2. The construction method of t2 is to replace the
unlearned skill in t1 with each skill name in the BT library (candidate skill).
RA and RB are word embeddings of the unlearned skill name and candidate
skill name respectively. The cosine similarity between them is calculated as
follows.

Fig. 5. Method for finding synonymous skills. t1 is the input instruction, t2 is a con-
structed instruction that replaces the unlearned skill with candidate skills from the BT
library.



372 K. Wang et al.

similarity score = θ < RA, RB >=
(RA · RB)
‖RA‖‖RB‖ (1)

We construct 200 pairs of data to test the synonymous skill module. As shown in
Fig. 6, the best F1 scores using BERT are all higher than that using Word2Vec.
Moreover, when using the first layer of BERT, high F1 scores can be obtained
over a large threshold range, indicating that the cosine similarity difference
between synonymous and non-synonymous skills is large, so the results are more
reliable. According to the result, the first layer of BERT and a threshold of 0.465
are selected for the synonymous skill module in our system.

Fig. 6. F1 scores for synonymous skill judgment of each model.

After the above two processing stages, the slots S and intent I ′ are obtained for
the agent’s reply (templates are shown in Table 1) and BT generation.

Table 1. The agent reply templates based on the intent I ′ and slots S.

Intent I ′ Reply Template

Learn Skill I haven’t learned the [B-skill] [I-skill] skill, you can start
teaching me now

Call Skill Executing the [B-skill] [I-skill] skill.

Completion [B-skill] [I-skill] is learned.

Confirm Synonym Synonymous skills detected: [B-skill] [I-skill]
and {candidate}. Do you mean ...?

Answer (pos & neg) OK, ...

UNK Sorry, I don’t understand.



Learning Hierarchical Robot Skills Represented by BTs from Language 373

Fig. 7. (a)Structure of primitive skill subtrees. (b)An example of the primitive skill.

3.3 Primitive Skill Subtree

Complex hierarchical skills are composed of primitive skills. In our 3C assembly
tasks, the primitive skills include two types of MoveTo (MoveTo1 [destination]
and MoveTo2 [direction]), OpenPump, and ClosePump, where MoveTo1 includes
a rotation process to align with the object. To compose behavior trees efficiently,
we propose a generic structure of primitive skill subtrees. Four standard BT
nodes used in it are shown in Table 2.

Table 2. Standard node types used in the primitive skill subtree.

Node Type Symbol Description

Sequence
Route ticks to its children from left to right until
anyone returns Failure.

Fallback
Route ticks to its children from left to right until
anyone returns Success.

Condition Check a proposition when it receives ticks.

Action Execute a command when it receives ticks.

Figure 7(a) shows the generic structure of the primitive skill subtree, which serves
as the leaf nodes of the generated behavior trees. Each primitive skill has its
action, execution condition, and skip condition. The execution condition refers to
the condition that must be met to execute the action. As for the skip condition,
when it is met, the following action node will be skipped. An example of the
primitive skill “MoveTo1 [des]” is given in Fig. 7(b). When ticks are sent to its
Sequence node, it checks whether the destination [des] exists in the environment.
If not, the Sequence node stops sending ticks to the Fallback node and the
move action cannot be executed. Otherwise, it continues to check whether the
robot end effector is already at [des]. If not, the end effector moves to [des],



374 K. Wang et al.

otherwise, the move action does not need to be executed. The primitive skill
subtree structure ensures correct execution logic, avoids system failures with
execution conditions, and improves efficiency with skip conditions. Primitive
skills used in 3C assembly tasks are shown in Table 3 and the initial behavior
tree library is composed of these primitive skill subtrees stored in XML format.

Table 3. Primitive skills used in 3C assembly tasks.

Action Parameter Execution Cond. Skip Cond.

MoveTo1 destination Have [des] At [des]

MoveTo2 direction / /

OpenPump / Pump Ready AlreadyOpen

ClosePump / Pump Ready AlreadyClose

3.4 Behavior Tree Generation

The slots S and intent I ′ are obtained in Sect. 3.2, and an initial BT library with
primitive skill subtrees is built in Sect. 3.3. Then hierarchical skills represented
by behavior trees can be generated based on them. Despite the 7 intents I ′

given in Fig. 4, only the intents of Learn Skill, Call Skill, and Completion will
be used to generate the behavior trees. We illustrate this in detail in Fig. 8.
A BT-Generation algorithm (Algorithm 1) is proposed to generate executable
behavior trees from processed semantic information.

Fig. 8. Illustration of the Processing Stage II.



Learning Hierarchical Robot Skills Represented by BTs from Language 375

Algorithm 1. BT-Generation.
Require: tree, intent, skill, params
Ensure: tree
1: function Main(tree, intent, skill, params)
2: Stack.init()
3: root ← tree.getroot()
4: main seq ← root.find(‘MainBT’).find(‘Sequence’)
5: while input do
6: GenerateTree(intent, skill, params, root,main seq)
7: end while
8: end function
9:

10: function GenerateTree(intent, skill, params, root,main seq)
11: if intent = teach new skill then
12: new tree ← root.AddSub(“BT”, “ID= skill”)
13: seq node ← new tree.AddSub(“Sequence”)
14: for param ∈ params do
15: seq node.AddSub(“SetBlackboard”,
16: “key = param”, “value = {param.type}”)
17: end for
18: if Stack.is empty() then
19: grand seq ← main seq
20: else
21: grand seq ← Stack.peek()
22: end if
23: AddElement(grand seq, params)
24: Stack.push(seq node)
25: else if intent = call existing skill then
26: if Stack.is empty() then
27: seq node ← main seq
28: else
29: seq node ← Stack.peek()
30: end if
31: AddElement(seq node, params)
32: else if intent = complete teaching then
33: Stack.pop()
34: end if
35: tree.write()
36: end function
37:
38: function AddElement(seq n, params)
39: for p ∈ params do
40: if p not in seq n.findall(‘SetBlackboard’).key then
41: seq n.AddSub(“SetBlackboard”, “key = p”, “value = p”)
42: end if
43: end for
44: seq n.AddSub(‘SubTree’, ‘ID = skill name’, params)
45: end function



376 K. Wang et al.

Fig. 9. A case study of parameter generalization. (a) Dialogue for teaching a “transfer”
skill; (b) A “transfer” subtree generated from the first teaching in XML format; (c)
Dialogue for calling the existing “transfer” skill; (d) BT for performing the “transfer”
skill; (e) BT visualization, where (1)–(4) explains the parameter passing in Eq. (2).

Algorithm 1 illustrates how to update the BT library based on different intents.
“AddSub” is a factory function used to create a child element of a certain ele-
ment. Its first parameter is a tag, indicating the type of data being created,
and the remaining parameters are attributes represented as key-value pairs. It
is worth noting that, as shown in lines 15 and 41, we add “Blackboard”, which
implements port remapping between the subtree and the main tree, with differ-
ent “key”s and “value”s to record input params. In this way, the learned skills
allow parameter generalization. The “transfer” skill is taken as an example to
illustrate this feature. In Fig. 9(a), a user teaches the robot a “transfer” skill,
the object of which is a flat flexible cable (FFC), and the destination is a plat-
form. The “transfer” subtree generated from the dialogue is shown in Fig. 9(b),
where “ffc” and “platform” are stored as Blackboard keys instead of constant
parameters. Their values are the variables that {object} and {des} denote when
the skill is called later. When the “transfer” skill is used again, as shown in
Fig. 9(c), its object and destination change into a SIM card and a phone. These
two parameters are recorded as the values of “object” and “des”, see Fig. 9(d).
As can be seen from Fig. 9(e), the parameter of the first primitive skill subtree
move#1 is “des = ffc” from the first teaching, but the argument for execution is

des
(1)
= ffc

(2)
= {object} (3)

= sim card
(4)
= sim card (its location) (2)



Learning Hierarchical Robot Skills Represented by BTs from Language 377

In this way, “transfer the SIM card to the phone” is decomposed into “move to
the SIM card”, “open the pump”, “move to the phone”, and “close the pump”. In
other words, when the agent learns how to “transfer A to B”, it no longer needs
step-by-step instructions for “transfer C to D”. The BT-Generation algorithm
implements the generalization of parameters.

To summarize NL2BT, the agent processes the natural language input in two
stages and then updates the behavior trees in XML format in real time. After
each update, BTs are visualized using Groot [10] to ensure that the human
teachers can view the tree structures and running status, which we call the
“student model”, as shown in Fig. 10.

Fig. 10. Using Groot for visual student models in NL2BT. Users can view the existing
BT library (left) and the running main tree (right). Colors of the main tree nodes
indicate the execution status, orange for Running, green for Success, red for Failure.
(Color figure online)

4 Experiment and Result

To validate NL2BT, we build a system for learning 3C assembly tasks from
Chinese natural language based on it. We recruit 10 volunteers and introduce
them to the functions, usage, and some considerations of the system. Volunteers
use our system to teach 3 different 3C assembly tasks to the robotic arm in
the virtual environment. Each volunteer teaches in the order of front camera
assembly task (Task 1), FFC assembly task (Task 2), and SIM card assembly
task (Task 3), which gradually increase in complexity. In Task 1, the robotic arm
simply sucks the front camera from the material box and places it in the front
camera slot of the phone. In Task 2, the robotic arm first sucks the FFC from
the box and releases it to the platform, and then transfers it from the platform
to the assmebly position of the phone. In Task 3, the robotic arm also transfers
the SIM card to the platform first, then to the SIM card slot of the phone, and
it also needs to push the card into the slot with the pushing board attached to



378 K. Wang et al.

the manipulator end. Two experiments are conducted. In the first experiment
(see Sect. 4.1), we set up three different teaching modes to analyse the effects
of real-time teaching and visual student models. In addition, we also validate
the usefulness of the synonymous skill module in the second experiment (see
Sect. 4.2) and conduct subjective surveys on all volunteers (see Sect. 4.3).

4.1 Impact of Real-Time Teaching and Visual Student Model

Five volunteers are asked to teach assembly tasks using three different teaching
modes shown in Table 4. In the same teaching mode, the skills taught in the previ-
ous tasks can be used in the subsequent tasks. Real-time teaching means that the
user can always observe the assembly environments, and each language instruc-
tion controls actions of the robotic arm in real time. None-real-time teaching
means that the language dialogue and robot execution are two separate steps,
in which users first generate the BT for the complete assembly process using
natural language and then use the generated tree to perform the whole task.
Teaching with (without) student model means that the existing BT library and
the running status of the main tree are (aren’t) visualized.

Table 4. Three different teaching modes.

Teaching Mode Real-time Student model

Mode 1 ✗ ✗

Mode 2 ✓ ✗

Mode 3 ✓ ✓

The teaching time of 3 different modes is shown in Fig. 11. In order to reduce
the impact of users’ familiarity, the teaching order of three modes is random for
each user. The result shows that the teaching time of Mode 1 is the shortest,
because there are fewer context switches between conversations and skill execu-
tions. Besides, users take more time to observe the world environment and robot
states while real-time teaching. We also find that when the student model is pro-
vided in Mode 3, the teaching time is reduced compared with Mode 2, because
the user can obtain the current execution status not only from the environment,
but also the visualized running BT. In this way, the efficiency of real-time obser-
vation is improved. In addition, although Task 3 is more complicated, the average
teaching time of it using Mode 2 and 3 is shorter than that of Task 2, because of
the use of learned hierarchical skills. We also find that in complicated tasks with
more actions, such as Task 2 and 3, the standard deviation of teaching time is
large, and users who are good at teaching and using hierarchical skills complete
the teaching much more efficiently.



Learning Hierarchical Robot Skills Represented by BTs from Language 379

Fig. 11. Average teaching time of 3 teaching modes. Mode 1E refers to the execution
time in Mode 1, and Mode 1T refers to the time of human-robot language interaction.

Success rates and numbers of generated hierarchical skills using different teaching
modes are shown in Table 5. High success rates demonstrate the effectiveness
of NL2BT. Real-time teaching (Modes 2 and 3) has significantly higher success
rates, as users can make timely adjustments based on the environment and robot
states to ensure successful execution of tasks. Besides, when teaching in real time
and being able to visualize the behavior tree library (Mode 3), users prefer to
teach and use more hierarchical skills.

Table 5. Success rates and numbers of hierarchical skills of different teaching modes.
hier. is short for hierarchical skills.

User Mode 1 Mode 2 Mode 3

success hier. success hier. success hier.

1 3/3 5 3/3 4 3/3 5

2 1/3 4 3/3 4 3/3 6

3 2/3 4 3/3 5 3/3 5

4 2/3 4 3/3 5 3/3 5

5 2/3 3 2/3 6 3/3 6

total 66.7% 20 93.3% 24 100% 27

In summary, NL2BT is a feasible and effective framework for learning from nat-
ural language. Non-real-time teaching without student models takes less time,
but the success rate is lower and fewer hierarchical skills are taught, indicating
poor teaching effectiveness. In contrast, real-time teaching takes longer time,
but greatly improves the success rate by enabling users to make timely adjust-
ments in a dynamic environment. Furthermore, the student model informs users



380 K. Wang et al.

of learned skills and running status, allowing them focus more on the agent’s
unlearned skills and improve the teaching efficiency. Therefore, real-time teach-
ing and student model are essential for improving the effectiveness and efficiency
of learning hierarchical skills using the NL2BT framework.

4.2 Impact of the Synonymous Skill Module

In Sect. 4.1, to better explore the impact of real-time teaching and the visual
student model, the BT library is only shared among the same user in the same
teaching mode, and the synonymous skill module is excluded. Table 5 shows a
total of 71 hierarchical skills are taught. Apart from 45 (5 volunteers * 3 modes
* 3 tasks) top-level skills and 10 skills with the same names as others, there are
16 hierarchical skills with only four different composition structures, indicating
that many synonymous skills are taught. In this experiment, we add these four
skill subtrees to the initial BT library and invite 5 new volunteers to teach 3
tasks using the Mode 3, with and without the synonymous skill module. The
average teaching time and the number of stored subtrees are shown in Table 6.

Table 6. Average teaching time and number of stored trees. w/o Syn. denotes teaching
without synonymous skill module, and w/ Syn. denotes teaching with it.

Task w/o Syn. w/ Syn. decreased by

Average Teaching Time 1 111.96 82.66 26.17 %

2 238.37 202.89 14.88%

3 300.92 209.24 30.47%

Number of Stored Subtrees 1 11 8 27.27%

2 14 9 35.71%

3 16 10 37.5%

Table 6 illustrates that the synonymous skill module helps reduce the teaching
time and the number of stored subtrees. In other words, it improves teaching
efficiency and maintains a BT library with less storage and memory usage.

4.3 Subjective Feedback

We request that all volunteers evaluate the system’s usability and usefulness
using a 7-point Likert scale [12] (ranging from “strongly disagree” to “strongly
agree”) based on the statements 1–5 listed in Table 7. Additionally, volunteers
participating in Sect. 4.2 are asked to rate an extra statement (statement 6).

We also conduct interviews with volunteers to gather their opinions on real-
time teaching, visual student models, and the synonymous skill module. In gen-
eral, all agree that these features contribute positively to the framework. To
be specific, real-time teaching increases users’ confidence in using the system.



Learning Hierarchical Robot Skills Represented by BTs from Language 381

Table 7. Average scores on system’s usability and usefulness on a 7-point scale.

Num Statement Score

1 I learn to use this system very quickly 6.6

2 The interaction process is simple and easy to understand 6.2

3 All functions in this system are well organized and integrated 5.9

4 I feel confident using the system 6.1

5 Visual behavior tree library is helpful during my teaching process 6.7

6 I find teaching with the synonymous skill module is more efficient 6.4

Additionally, when users couldn’t recall the exact name of a skill that they have
taught, they could provide a vague name and rely on the synonymous skill mod-
ule to suggest candidate skill names. This reduces the need for frequent querying
of the BT library and minimizes context switching. One of the participants also
mentions that the synonymous skill module and the visual BT library comple-
ment each other well. Without the module, the library acts as a teaching manual,
requiring users to use the exact skill names to teach efficiently. However, with the
module, the BT library becomes a convenient aid for users to determine whether
the candidate skills given are true synonymous skills they need. This is helpful
for efficient teaching, particularly when numerous skill subtrees are stored in the
BT library in the future.

5 Conclusion and Future Work

In this paper, we present NL2BT, a framework for generating behavior trees
automatically from natural language and using them to control robots to perform
hierarchical tasks. The framework consists of two language processing stages, an
initial BT library with primitive skill subtrees, and a BT-Generation algorithm.
We develop a Chinese-language system using NL2BT and validate it with 3C
assembly tasks in the virtual environment. We also analyse the positive impact
of real-time teaching, visual student models, and the synonymous skill module.
They improve the success rate and teaching efficiency, reduce memory usage,
and receive better user feedback.

While we develop the system for Chinese users, the NL2BT framework can
be easily migrated to task learning systems in any language that can be pro-
cessed by BERT. Furthermore, the framework can be adapted to other scenarios
where hierarchical skills are taught using natural language. The system develop-
ers only need to fine-tune the language model with their text dataset, find the
best hyperparameters (the layer and threshold) for the synonymous skill mod-
ule, and modify the primitive skills for their own tasks. Therefore, the NL2BT
framework has broad application and development prospects.

This paper presents a generic and portable framework for learning hierarchi-
cal skills represented by behavior trees from natural language. Future work will



382 K. Wang et al.

focus on improving and perfecting each part of the framework. For example, nat-
ural language generation models can be used to obtain more flexible agent replies,
and the best learning methods for primitive skills will be explored. Additionally,
the current framework only allows for one intent and skill per input instruction.
In future work, we will extend it to support multiple intents and skills using
large language models.

Acknowledgments. This research was supported by the National Key Research &
Development Program of China (No.2018AAA0102902). We would also like to thank
the Institute for Artificial Intelligence, Tsinghua University, for providing equipment
and data support.

References

1. Ahn, M., et al.: Do as i can, not as i say: grounding language in robotic affordances.
arXiv preprint arXiv:2204.01691 (2022)

2. Cao, Y., Lee, C.: Robot behavior-tree-based task generation with large language
models. arXiv preprint arXiv:2302.12927 (2023)

3. Chai, J.Y., Gao, Q., She, L., Yang, S., Saba-Sadiya, S., Xu, G.: Language to action:
towards interactive task learning with physical agents. In: IJCAI, pp. 2–9 (2018)

4. Chen, Q., Zhuo, Z., Wang, W.: Bert for joint intent classification and slot filling.
arXiv preprint arXiv:1902.10909 (2019)

5. Colledanchise, M., Natale, L.: On the implementation of behavior trees in robotics.
IEEE Rob. Autom. Lett. 6(3), 5929–5936 (2021)

6. Colledanchise, M., Ögren, P.: How behavior trees modularize hybrid control sys-
tems and generalize sequential behavior compositions, the subsumption architec-
ture, and decision trees. IEEE Trans. Rob. 33(2), 372–389 (2016)

7. Colledanchise, M., Ögren, P.: Behavior Trees in Robotics and AI: An Introduction.
CRC Press, Boca Raton (2018)

8. De Rossi, G., et al.: Cognitive robotic architecture for semi-autonomous execution
of manipulation tasks in a surgical environment. In: 2019 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pp. 7827–7833. IEEE (2019)

9. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: Bert: Pre-training of deep bidirec-
tional transformers for language understanding. arXiv preprint arXiv:1810.04805
(2018)

10. Faconti, D.: Groot (2018). https://github.com/BehaviorTree/Groot
11. French, K., Wu, S., Pan, T., Zhou, Z., Jenkins, O.C.: Learning behavior trees from

demonstration. In: 2019 International Conference on Robotics and Automation
(ICRA), pp. 7791–7797. IEEE (2019)

12. Hinkin, T.R.: A brief tutorial on the development of measures for use in survey
questionnaires. Organ. Res. Methods 1(1), 104–121 (1998)

13. IFLYTEK: Iflytek open platform (2021). https://www.xfyun.cn
14. Jawahar, G., Sagot, B., Seddah, D.: What does BERT learn about the structure

of language? In: ACL 2019–57th Annual Meeting of the Association for Computa-
tional Linguistics (2019)

15. Laird, J.E., et al.: Interactive task learning. IEEE Intell. Syst. 32(4), 6–21 (2017)
16. Li, T.J.J., Azaria, A., Myers, B.A.: SUGILITE: creating multimodal smartphone

automation by demonstration. In: Proceedings of the 2017 CHI Conference on
Human Factors in Computing Systems, pp. 6038–6049 (2017)

http://arxiv.org/abs/2204.01691
http://arxiv.org/abs/2302.12927
http://arxiv.org/abs/1902.10909
http://arxiv.org/abs/1810.04805
https://github.com/BehaviorTree/Groot
https://www.xfyun.cn


Learning Hierarchical Robot Skills Represented by BTs from Language 383

17. Li, T.J.J., Mitchell, T., Myers, B.: Interactive task learning from GUI-grounded
natural language instructions and demonstrations. In: Proceedings of the 58th
Annual Meeting of the Association for Computational Linguistics: System Demon-
strations, pp. 215–223 (2020)

18. Liang, P.: Learning executable semantic parsers for natural language understand-
ing. Commun. ACM 59(9), 68–76 (2016)

19. Liu, C., et al.: Jointly learning grounded task structures from language instruction
and visual demonstration. In: Proceedings of the 2016 Conference on Empirical
Methods in Natural Language Processing, pp. 1482–1492 (2016)

20. Lynch, C., et al.: Interactive language: talking to robots in real time. arXiv preprint
arXiv:2210.06407 (2022)

21. Mees, O., Hermann, L., Rosete-Beas, E., Burgard, W.: Calvin: a benchmark for
language-conditioned policy learning for long-horizon robot manipulation tasks.
IEEE Rob. Autom. Lett. 7(3), 7327–7334 (2022)

22. Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed repre-
sentations of words and phrases and their compositionality. In: Advances in Neural
Information Processing Systems, vol. 26 (2013)

23. Petit, M., Demiris, Y.: Hierarchical action learning by instruction through inter-
active grounding of body parts and proto-actions. In: 2016 IEEE International
Conference on Robotics and Automation (ICRA), pp. 3375–3382. IEEE (2016)

24. She, L., Yang, S., Cheng, Y., Jia, Y., Chai, J., Xi, N.: Back to the blocks world:
learning new actions through situated human-robot dialogue. In: Proceedings of
the 15th Annual Meeting of the Special Interest Group on Discourse and Dialogue
(SIGDIAL), pp. 89–97 (2014)

25. Stepputtis, S., Campbell, J., Phielipp, M., Lee, S., Baral, C., Ben Amor, H.:
Language-conditioned imitation learning for robot manipulation tasks. Adv. Neu-
ral. Inf. Process. Syst. 33, 13139–13150 (2020)

26. Vemprala, S., Bonatti, R., Bucker, A., Kapoor, A.: Chatgpt for robotics: design
principles and model abilities. Microsoft Auton. Syst. Robot. Res 2, 20 (2023)

27. Wang, H., Hu, Y.: Synonyms (2017). https://github.com/chatopera/Synonyms
28. Welschehold, T., Abdo, N., Dornhege, C., Burgard, W.: Combined task and

action learning from human demonstrations for mobile manipulation applications.
In: 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pp. 4317–4324. IEEE (2019)

http://arxiv.org/abs/2210.06407
https://github.com/chatopera/Synonyms

	Learning Hierarchical Robot Skills Represented by Behavior Trees from Natural Language
	1 Introduction
	2 Related Work
	2.1 Language-Based Imitation Learning
	2.2 Interactive Task Learning
	2.3 Behavior Trees in Robot Manipulation

	3 Approach
	3.1 System Overview
	3.2 Natural Language Processing
	3.3 Primitive Skill Subtree
	3.4 Behavior Tree Generation

	4 Experiment and Result
	4.1 Impact of Real-Time Teaching and Visual Student Model
	4.2 Impact of the Synonymous Skill Module
	4.3 Subjective Feedback

	5 Conclusion and Future Work
	References


