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DE Degree of esterification 
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DSC Differential scanning calorimetry 
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HMWG High molecular weight gelator 
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HPMC Hydroxypropyl methyl cellulose 
HSP Hansen solubility parameter 
LMWG Low molecular weight gelator 
MC Methylcellulose 
MCT Medium chain triacylglycerol 
MG Monoglyceride 
SC-CO2 Supercritical carbon dioxide 
TAG Triacylglyceride 
USES Ultrasound-enhanced electrospinning 
WPI Whey protein isolate 

4.1 Introduction 

Oleogels are edible, semi-solid, self-supporting, often anhydrous lipid-based mate-
rials. They belong to the class of fat mimetics and have been developed to substitute 
solid fats (at room temperature) such as palm oil, coconut oil, lard, tallow, butter, and 
margarine in food products, possibly without jeopardizing their structure, appear-
ance, and sensory attributes [1, 2]. As described in Chaps. 2 and 3, excessive 
consumption of solid fats which contain saturated fatty acids has been associated 
with deleterious effects on human health, like cardiovascular diseases, diabetes type 
2, cancer, and onset of obesity [3, 4]. To reduce the risk factors associated with 
saturated fats, their substitution with liquid oils containing unsaturated fatty acids is 
recommended. However, direct substitution in food products is not possible, as it can 
result in the loss of the structure provided by solid fats, which plays a vital role in 
food’s sensorial attributes and physical appearance [1]. Oleogels can overcome this 
problem because their texture and appearance are tailorable and vary from an opaque 
spreadable lipid gel like margarine to an elastic or brittle translucent/transparent 
material like silicone or rubber, and usually, they contain more than 70% of edible 
liquid oils. Oil is converted to oleogels using structuring/gelling molecules called 
oleogelators (or organogelators). The term oleogel is typically used as a synonym for 
organogel, even though the latter term refers to any gel containing an organic solvent 
that can be either edible like vegetable, marine, and animal oils, or non-edible like 
acetone and hexadecane; oleogels contain only edible oils, being more appropriately 
considered a subclass of organogels. 

Oleogels can be obtained using small molecules or (bio)polymers. In the first 
case, the oleogelators are called low molecular weight gelators (LMWGs), whereas 
in the second case, the term used is high molecular weight gelators (HMWGs). 
Examples of LMWGs are monoglycerides, fatty alcohols, fatty acids, waxes from 
plant and animal origin, plant sterols and their esters, and mixtures thereof [1]. On 
the other hand, proteins, polysaccharides, and their chemically derived counterparts, 
like cellulose, methylcellulose, ethylcellulose, xanthan gum, carrageenans, chitosan, 
chitin, and milk proteins are examples of HMWGs used to fabricate oleogels 
[1, 5]. A list of the most studied gelators can be found in Table 4.1 (Sect. 4.2).

https://doi.org/10.1007/978-3-031-46831-5_2
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To successfully obtain an oleogel, one needs to understand the physical form and 
physico-chemical properties of the gelators. For example, an important factor to 
consider is the balance between solubility and insolubility of the gelator in the 
solvent (oil, in this case). When there is balance, oleogels can be formed, whereas 
imbalances lead the gelator to precipitate or to fully solubilize, generating in both 
cases unstructured oils [60]. The majority of LMWGs and some HMWGs can be 
dissolved in oils at temperatures above their melting or glass transition temperature, 
and during cooling, they self-assemble forming a network that entraps the oil and 
gels the system [1]. We refer to this case as a hot direct method. However, even if the 
gelator is insoluble in oil, it can still be used for oleogel preparation. For example, 
the majority of HMWGs are insoluble in oil but soluble in water, ethanol, or aqueous 
solutions. Therefore, these gelators can be solubilized in molecular form or dispersed 
as aggregates. Usually, they are added in a solvent other than oil to fabricate 
structures used as templates, where oil is retained or absorbed to form an oleogel. 
In this pre-oleogel stage, we can find hydrogels, emulsions, foams, fibers, or 
encapsulated lipids. Hydrogels are usually converted into solvent-gels 
(by exchanging the water phase with an organic solvent, via a stepwise solvent 
substitution) or aerogels (using for example supercritical carbon dioxide drying) 
before being further converted into an oleogel [61, 62]. On the other hand, emulsions 
(with or without droplet crosslinking) and foams are dried before being converted 
into an oleogel [63, 64]. Fibers obtained through electrospinning are cut through wet 
milling/shearing before being converted into an aerogel and then to an oleogel, or 
directly used in oil to form oleogels [66–68]. Finally, encapsulated lipids are 
obtained by coating solid lipid droplets with biopolymers and then melted in oil to 
obtain during cooling an oleogel structured through a hybrid network composed of 
biopolymers and solid lipids [68]. Therefore, any methods where a second solvent 
(like water) is necessary to solubilize or disperse gelators, but it is removed before 
obtaining the final oleogel, are called indirect methods. Finally, there are some cases 
where gelators are insoluble both in oil and water and can be used as particles. If the 
particles can structure the oil by direct dispersion at, or below room temperature, we 
refer to this method as a cold direct method [69]. Whereas, if the particles do not 
possess any ability to structure the oil after dispersion, but a secondary liquid like 
water at low concentration needs to be added to the dispersion to obtain an oleogel 
but cannot be removed from the system, we refer to semi-direct methods [70]. 

This chapter aims to provide a comprehensive review and discussion of the 
different classes of gelators, their properties, and give some insights on their 
production methods, followed by a description of the oleogelation strategies and 
their current classification, along with some observations of their advantages and 
disadvantages. The chapter concludes with the proposal of new classification devel-
oped in our research group based on thermal treatment, electrical energy, and time 
required to form oleogels.
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4.2 Production of Oleogelators 

A non-exhaustive list of the most studied gelators is presented below, along with a 
brief description of their extraction/production methods and some of their properties 
(Table 4.1). The properties reported in the table may be of interest to the reader for 
understanding the methods described in Sect. 4.3 or when considering new research 
paths or industrial applications. For example, the degree of esterification (DE) is a 
facet specifically relevant for polysaccharides, as their gelling properties depend on 
the percentage or degree of esterified carboxyl groups [40, 71, 72]. Other properties 
such as the molecular weight of a gelator will affect the physical characteristics of a 
gel, as well as their interaction with different solvents and their time-dependent 
reactions with other materials in the system. Understanding the temperature depen-
dence of a gelator’s structure and its phase change (melting, crystallization, glass 
transition temperatures) is of great value, especially when considering the resulting 
oleogel’s application, the limitations of temperature-labile compounds, or the sen-
sory performance of the oleogel in food products. 

During the early stages of experimentation and product development, it is 
recommended to familiarize oneself with the technical data sheet of the selected 
ingredients. Data sheets are commonly provided by the manufacturer and will aid the 
researchers, providing helpful information. 

4.3 Oleogelation Methods 

Among the available structuring agents for edible oils, a distinction can be made 
according to the type of strategy that is necessary for their dispersion in oil. In this 
section, we discuss the different oleogelation methods, grouping them into three 
categories: (1) addition of one or more gelators to oil—direct methods, (2) addition 
of gelators to a secondary solvent, typically water, that needs to be removed from the 
system to obtain an oleogel—indirect methods, (3) addition of gelators to oil that, 
not being able to structure oil themselves, require the presence of a secondary liquid 
at a low concentration to obtain an oleogel—semi-direct methods. 

4.3.1 Direct Methods 

The first developed and most studied oleogelation method involves the direct 
addition of the gelators to the oil, drawing inspiration from the traditional oil 
structuring method of having a colloidal network of triacylglyceride crystals, as 
present in most fat products that are available to the consumer [60]. Certain gelator 
molecules have the ability of crystallizing/self-assembling in the oil, allowing it to 
become semi-solid at room temperature. These gelators are typically LMWGs and 
can be added to the oil either as a single component or in mixtures, being addressed
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multi-component gelators. Up to date, the only HMWG which can structure oil 
through direct dispersion is ethylcellulose, due to the polarity of most HMWGs not 
being compatible with unsaturated fatty acid-rich oils. There are two types of direct 
oleogelation strategies: the hot direct method and the cold direct method.
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4.3.1.1 Hot Direct Method 

The hot direct method is a process in which the mixture of the oil with the gelator is 
heated to a temperature above the melting point of the gelator (or in the case of 
ethylcellulose, above its glass transition temperature), under constant agitation, to 
ensure full dissolution (usually 10–30 min). This is followed by a cooling phase, 
below the gelation transition temperature, in which the thermoreversible three-
dimensional continuous network is formed, trapping the oil within the gel structure. 
The mechanical properties of the oleogel can be affected not only by the type of oil 
[73] and the type of gelator [51] and the ratio between them, but also by factors such 
as the cooling rate [74], and the mixture ratio when using multi-component gelators 
[75], among other factors. If an insufficient amount of gelators is used, or when the 
combination of gelators is incompatible and fails to work together, a gel is not 
obtained, but rather a viscous liquid or a dispersion of crystals in oil. The temper-
ature at which the oleogel should be prepared depends highly on the type of gelator. 
For instance, monoglycerides usually require 70–80 °C heating. Waxes are a range 
of gelators with very different properties when retrieved from different sources and 
whose composition is highly variable, requiring heating in the 50–90+ °C range. 
Multi-component systems of β-sitosterol and γ-oryzanol require a heating phase of 
up to 80–90 °C [76]. Wang et al. [76] published a comprehensive review of the 
textural and rheological properties of LWMG-based oleogels, providing a useful 
knowledge pool about the preparation and properties of this type of oleogels. 
Ethylcellulose, as extensively explored in Chap. 7, requires a heating stage of 
above 140 °C to be dissolved in oil. 

In order to structure oil, the gelator molecules that can be used via the hot direct 
method must first self-assemble through highly specific noncovalent interactions 
into primary particles through precipitation and/or crystallization (“bottom-up” 
nanofabrication) [77]. This phenomenon is followed by the assembly of individual 
molecules into supramolecular structures like crystal lattices, liquid crystals, 
micelles, bilayers, fibrils, and agglomerates, forming 3D networks capable of 
entraining the oil, resulting in a semi-solid material [78]. Typically, the 
intermolecular forces that drive aggregation are non-covalent, such as hydrogen-
bonding, π–π stacking, dipole-dipole, and London dispersion forces [79]. These 
interactions stabilize the clusters and lead to the formation of a continuous network, 
which is influenced by anisotropic growth of supramolecular structures and aniso-
tropic diffusion of molecules or clusters of molecules [78]. The balance between 
solubility and insolubility is the most important requirement and the key to obtaining 
a gel. To clarify, for a material to be used as a gelator, there must be a suitable 
balance between its affinity to the solvent (edible oil) and enough insolubility in the

https://doi.org/10.1007/978-3-031-46831-5_7


solvent so that self-organization and assembly between gelator molecules are trig-
gered (solubility limit of the gelator) [78]. The hot direct method relies on the 
interaction between solvent–gelator and gelator–gelator, as they play a central role 
in the formation of oleogels. Achieving optimal gelation seems to be the result of an 
optimal solvent-to-gelator ratio, although the direct effects of the solvent on the 
physical properties of the final oleogel are not well understood [79]. In general, a 
weak solvent–gelator interaction results in the prevalence of gelator–gelator inter-
actions, which may lead to the formation of a continuous network, which is essential 
for the formation of an oleogel. Imbalances in this interaction can lead to the 
formation of other types of systems, i.e., solutions or precipitates. The ability of a 
LMWG to gel a solvent has mostly been empirically explored, generally with a trial-
and-error approach being used, which results in several failed trials. 
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Therefore, it is important to understand the interactions between the gelator and 
the solvent and reach an equilibrium of solubility and insolubility. The term “solu-
bility parameter” was first coined by Hildebrand and Scott, in an attempt to predict 
solubility relations [80, 81]. The Hildebrand solubility parameter is a measure of the 
cohesive energy density of a substance, which is the energy required to separate the 
molecules in a material from each other. As such, the difference in solubility 
parameters for solvent–solute combinations is important in determining the solubil-
ity of the system. If the Hildebrand parameters of a solute and the solvent are similar, 
then the substance is likely to be soluble in that solvent. Adversely, if the Hildebrand 
parameters of the solute and the solvent are dissimilar, then the solute is likely to be 
insoluble in that solvent [82]. A limitation of the Hildebrand parameter is that it is 
unable to quantify the specific intermolecular interactions, which is part of the reason 
why the Hansen solubility parameters (HSP) were developed. These measure the 
total cohesive energy of a species as the sum of three individual energetic compo-
nents (i.e., dispersion interactions, dipole–dipole interactions, and hydrogen–bond-
ing interactions). In the same way as the Hildebrand parameter, the cohesive energy 
densities describe the ability of the solvent to solubilize the solute, or in this case, 
they describe the ability of a certain oil to solubilize a gelator, because they quantify 
the intermolecular forces that are required to overcome the gelator–gelator and oil– 
oil interactions. This equilibrium can be studied through the HSP and conveniently 
shown using the Hansen space, which allows for the visualization of the three 
fundamental intermolecular forces: dispersion, polar, and hydrogen bonding 
[83, 84]. If the HSP values of two compounds are close together in the HSP space, 
then the gelator is likely to be soluble in the oil. Some studies have been conducted 
using 12-hydroxystearic acid (12-HSA) and its derivatives as gelators, with an 
assessment of the impact of the hydroxyl group position in the formation of 
hydrogen bonds, as well as some other gelators [77, 79, 86–88]. These studies 
have helped to understand the gelation behavior of these compounds, by predicting 
their solubility in certain solvents. In addition, researchers have used these param-
eters to optimize known gelation systems, identify new ones, and develop tailored 
materials for the target applications [88, 89]. 

The diversity of forces acting on both gelators and solvents makes it difficult to 
accurately predict the outcome of a gelator–solvent combination. Though the use of



HSP can come up as a suitable way of predicting gelation behavior, other efforts are 
being made toward this goal. An interesting study by Cuello et al. [90] has proposed 
a Big Data solution to uniformize the existing data about LMWG and enhance the 
way knowledge is stored in this field. The authors collected data from heterogeneous 
sources and combined them into a unique, homogeneous platform, to allow the 
unification of current and newly obtained sources, as well as providing computing 
solutions to try and unravel the relationships between solvents and gelators. They 
demonstrated that the platform can be used to identify and characterize the key 
factors that influence the behavior of these gelators in food systems, and can provide 
insights on their future use. Essentially, this would be an application of data science 
and engineering to analyze and predict the most valuable cases to try in a laboratory 
setting, drifting away from the empirical approach that can overly consume time and 
resources. 
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4.3.1.2 Cold Direct Method 

The cold direct method is carried out at ambient temperature or below, requiring only 
agitation for the dispersion of the gelator. The fact that it takes place at room 
temperature constitutes an advantage in comparison to the hot direct method, since 
temperature-induced oil oxidation is avoided. The method was first introduced by 
Patel et al. [91], who prepared oil dispersions of fumed silica by mixing hydrophilic 
colloidal silica particles with sunflower oil, followed by shearing the dispersion 
using a high-speed homogenizer, at room temperature. Oleogels were successfully 
formed at a concentration of 10 and 15% fumed silica, resulting in a 3D network 
based on the fractal aggregation of silica particles and consequent entrapment of oil. 
In contrast, hydrophobic fumed silica in oil exhibited low gelling behavior in oil, 
possibly due to the decrease in hydrogen bonding sites [92]. Since hydrophilic 
fumed silica has low solubility in oil, the attractive forces between silica particles 
are the drivers for the formation of the network and oil entrapment with minimal 
leakage [93]. 

Another approach explored the use of mercerized cellulose in the gelation of 
rapeseed oil [69]. Dispersions of cellulose powders from different botanical sources 
were prepared, with mass concentrations ranging from 5 to 40% in rapeseed oil. The 
dispersions were manually stirred for 2 min at room temperature. The intent of the 
authors when using such a wide concentration range was to conduct an empirical 
attempt at unveiling the critical value at which the dispersion exhibits solid-like 
behavior. It was concluded that though oleogelation critically depends on the 
cellulose content of the vegetable powders, the minimum gelling concentration 
and the textural properties are mainly governed by the size of the cellulose fibers, 
regardless of the botanical source.
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4.3.2 Indirect Methods 

Most food-approved polymers are inherently hydrophilic and are therefore unable to 
directly structure oil. Materials such as proteins and polysaccharides are regularly 
used in food applications and generally do not constitute an issue regarding legisla-
tion, depending on the specific type of protein or polysaccharide being used and its 
source. Indirect oleogelation methods are beneficial because they allow hydrophilic 
and amphiphilic polymers to be applied in oil structuring applications, usually 
starting out with water-rich systems and involving a series of procedures to remove 
water from the system. 

4.3.2.1 Emulsion-Templated Methods 

The indirect oleogelation strategies that start with the preparation of an emulsion are 
often grouped into the category of emulsion-templated methods. 

Original Emulsion-Templated Method 

The first indirect oleogelation approach was developed by Romoscanu and 
Mezzenga [63]. The authors suggested the application of a percolating 3D network 
of proteins for transforming oil into an elastic solid, without chemical modification. 
This method kicks off with the preparation of a monodisperse oil-in-water emulsion, 
where the oil droplets are stabilized by a cross-linked protein monolayer adsorbed at 
their interface. The procedure involves pumping the oil phase in the form of droplets 
from a pressurized tank into a β-lactoglobulin solution of 1% (w/w) that is coflowing 
via a glass capillary, creating a controlled environment. Due to the constant charac-
teristics of the flow and break-off of the droplets, this method allows the fabrication 
of emulsions with a very high degree of monodispersity; however, there is the 
drawback of having a low output rate due to the sequential creation of the droplets. 
The emulsion is then left for one hour to complete protein adsorption onto the 
interface, and a washing procedure follows, with the aim of removing unadsorbed 
protein from the system. The cross-linking of the adsorbed β-lactoglobulin is then 
performed: this can be achieved either thermally, through the acceleration of cross-
linking kinetics by keeping the emulsion at 80 °C for 10 min, or chemically, using 
glutaraldehyde. When applying chemical cross-linking with glutaraldehyde, the 
emulsion is poured into the same volume of 1% (w/w) glutaraldehyde, to avoid 
interparticle cross-linking. Another washing procedure follows to remove 
nonreacted glutaraldehyde, similar to the removal of unadsorbed protein. At this 
stage, there is the addition of a small amount of glycerol to increase its chemical 
potential and safeguard any internal stresses that can happen during the drying 
phase. This takes place at room temperature, where the emulsion is allowed to dry 
until the totality of the water has evaporated from the system, resulting in a fully



transparent oleogel. The final structure resembles that of a dried foam, with a protein 
bilayer acting as the walls and the air being replaced by the chemically unmodified 
oil. The analysis of the oleogel’s microstructure reveals a polyhedral arrangement 
with sizes comparable to the droplet size in the emulsion, as depicted in 
(Fig. 4.1) [63]. 
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Fig. 4.1 Optical micrographs of an emulsion template (24 μm droplet radius) and a resulting 
two-layered thin film of gel exhibiting a polyhedral structure. (Figure reproduced from [63] with 
permission from the American Chemical Society) 

While the original method for preparing oleogels using emulsion templating was 
a breakthrough in the field, it has some disadvantages due to the use of chemically 
cross-linked proteins. Such proteins face many hurdles in being accepted for use in 
food products, including concerns about their safety, potential adverse effects on 
human health, and their impact on food texture and flavor [94]. Thermal cross-
linking has comparable issues and also exhibits very slow cross-link kinetics, 
resulting in longer processing times and increased energy costs. Additionally, the 
cross-linking reaction can be difficult to control, and the complexity of the method 
made other authors shift to different approaches. Therefore, the method has under-
gone further developments with a focus on eliminating cross-linkers, leading to 
newly developed emulsion-templated methods, which are now more commonly 
cited as the reference, compared to the original emulsion-templated method here 
described. 

Modified Emulsion-Templated Method 

Unveiling the potential of cross-linked proteins for oil structuring by Romoscanu 
and Mezzenga [63] was the necessary foundation to discover what hydrophilic and 
amphiphilic polymers really have to offer in the structuring of hydrophobic oils. The 
procedure of using an emulsion template for the preparation of oleogels was later 
adopted and modified by Patel et al. [64], using the combination of a surface-active 
and a non-surface-active polysaccharides to generate oleogels. First, the authors 
attempted to establish a stable oil-in-water emulsion using only one surface-active 
polysaccharide (hydroxypropyl methyl cellulose—HPMC—or methylcellulose—



MC), with the results exhibiting a large droplet size and oil separation phenomena 
upon drying. On the other hand, a non-surface-active polysaccharide like xanthan 
gum was unable to stabilize the emulsion on its own, owing to its non-surface-active 
nature. However, the combination of one of the cellulose derivatives (HPMC or MC) 
with xanthan gum enhanced emulsion stability, exhibiting a more uniform droplet 
size with smaller droplets. These emulsions were prepared by dispersing oil in an 
HPMC or MC solution using a high-speed homogenizer followed by the addition of 
xanthan gum solution under continuous shearing. The emulsions were then oven-
dried at temperatures between 50 °C and 80 °C until complete removal of water. The 
dried samples were then briefly sheared for 30 s to obtain an oleogel sample, which 
consisted of clusters of tightly packed oil droplets in oil continuous medium, with 
over 97% (w/w) of oil. The study investigated both the cellulose derivative type and 
its grade, observing their effect on the rheology of the emulsions, where lower 
viscosity polymer solutions resulted in stronger gels. This type of functionality 
was associated with the ability that the polysaccharides have to increase the stiffness 
of the interface, and hence contribute to the overall consistency of the emulsion (and, 
later, of the oleogel). This approach resulted in oleogels with a unique microstruc-
ture, featuring tightly packed oil droplets and no signs of oil leakage, as well as 
interesting rheological properties, such as high storage modulus, shear sensitivity, 
good thixotropic recovery, and thermostability. 
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While the use of polysaccharides provides advantages in terms of using GRAS 
ingredients, incorporating other biopolymers such as proteins has been acknowl-
edged as advantageous. This is because proteins are label-friendly and have well-
known additional health benefits that consumers value. Patel et al. [95] continued the 
work by modifying the original method by Romoscanu and Mezzenga [63], with the 
aim of using proteins and developing an alternative that does not require 
crosslinking. Instead, this alternative methodology by Patel et al. [95] benefits 
from the strong molecular complexes that result from protein–polysaccharide inter-
actions at the interface. This was achieved by combining gelatin and xanthan gum, 
two edible natural materials that are commonly used in the food industry and are 
known for establishing hydrophobic interactions and non-Coloumbic interactions 
with the involvement of –NH and –OH groups. The oleogels were obtained by 
homogenizing sunflower oil in a gelatin solution, followed by the immediate addi-
tion of xanthan gum solution, under continuous shearing. The drying of the emulsion 
was carried out through both oven-drying and freeze-drying (FD), followed by a 
short step of shearing to create an oleogel (Fig. 4.2). 

Once again, the stiffened interfacial membranes provide the oil droplets with 
better stability against stresses that the emulsion faces while drying. This kind of 
system was obtained by other authors using protein-polysaccharide complexes or 
multi-polysaccharide complexes, and in some cases, such a stable interface was 
already obtained by using proteins only. Tavernier et al. [96] first achieved an 
efficient structuring of oil using only unmodified proteins (soy protein isolate), and 
further attempts using 2% sodium caseinate also proved to be successful 
[97, 98]. However, the interactions between proteins and polysaccharides and the



parameters that need to be fulfilled to achieve a sufficiently stable interface are still 
not fully elucidated [99]. 
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Fig. 4.2 Visual representation of the modified emulsion-templated method using protein-
polysaccharide stabilization, through a combination of photographs depicting the result of each 
step of the process and sketches depicting the microstructure of the samples. Liquid oil is used to 
prepare a 60% (w/w) oil-in-water emulsion (step 1), followed by the removal of water through 
oven-drying or freeze-drying (step 2), and further shearing of the dried product (step 3), resulting in 
the formation of an oleogel. (Figure reproduced from [95] under the open access article as ACS 
AuthorChoice) 

Microcapsule-Templated Approach 

The type of oleogels that are originated by LMWGs versus the type of oleogels that 
are originated by polymers is significantly different in terms of properties that they 
confer to food products. For example, LMWGs components that form crystalline 
conformations tend to result in oleogels with mouthfeel and processing properties 
that are more resemblant to fats. Adversely, polymeric gelators can provide other 
interesting textural properties such as firmness and consistency [68]. Coming up 
with a way that can combine these types of properties into one single oleogel has 
been attempted via direct strategies using multi-component gelator systems such as 
ethylcellulose-glycerol monoleate, [100], stearyl alcohol-stearic acid-ethylcellulose 
[101], and via indirect strategies using Pickering emulsions stabilized by zein– 
stearate complexes [102]. However, most of these attempts encompass harsh or 
energy-intensive processing (namely, heating at high temperatures or FD), which is 
not beneficial nor sustainably feasible in terms of process scaling-up and further 
commercialization. Thus, an effort was made by Patel [68] to execute a new 
approach using coated crystalline microcapsules to fabricate oleogels where both 
fat crystals and polymer sheets cooperate in providing structure to the system 
(Fig. 4.3). Microcapsules were prepared using palm stearin, a common hard stock 
fat; the procedure starts with the development of an oil-in-water emulsion stabilized 
by MC and an immediate dilution of the emulsion in ice-cold water to trigger 
immediate solidification and creaming of the oil droplets, coated with methylcellu-
lose. These microcapsules were then recovered and dried at mild temperatures 
(30–32 °C). The microcapsules were then dispersed in oil for the preparation of



oleogels; the dispersion was heated up to 70 °C, leading to the melting of the 
capsules and the dispersion of the capsule coats as polymer strands. The system 
was then cooled down to room temperature, forming a network of crystallized palm 
stearin and MC strands. When compared to an oleogel structured using only palm 
stearin, the microcapsule approach presented advantages such as a controlled crys-
tallization of palm stearin in discrete spherical units, as opposed to uncontrolled 
growth and aggregation characteristic of pure palm stearin oleogels. 
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Fig. 4.3 Visual depiction of the oleogel preparation process, represented through a combination of 
photographs, sketches, and polarized light microscopy images (a–c). The comparison showcased in 
the figure is between two types of oleogels: one prepared from unprocessed palm stearin, on the left 
(a left, b left, and c), and the other from palm stearin capsules made using an emulsion that 
contained 10% (w/w) oil phase, on the right (a right, b right, and d). The crystal structures in (b) 
left are representative of palm stearin crystals, whereas (b) right shows the same crystals and MC 
strands. (Figure reproduced from [68] with permission from Elsevier) 

Oleosome-Templated Approach 

Oleosomes are microbodies that can be found abundantly in oleaginous seeds and 
fruits, essentially being naturally pre-emulsified oil. Functionally, they are important 
for lipidic storage, serving as an energy source and protection against environmental 
stresses. Structurally, they consist of oil droplets that are encapsulated and stabilized



by a unique protein/phospholipid membrane [103]. These can provide an excellent 
medium for forming gel-like structures; despite that, there are very few applications 
of oleosomes in the oleogel field. 
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Mert and Vilgis [104] first explored this possibility by extracting natural 
oleosome structures from oil-bearing plant materials (particularly, hazelnut) and 
stabilizing them with xanthan gum or pectin. These hydrocolloids were used first 
for the stabilization of natural oleosome suspensions using an electrostatic deposi-
tion technique, that has been shown to improve aggregation stability of emulsion 
droplets when exposed to environmental stresses such as dehydration. Then the 
water was driven off the system via FD, obtaining a dry product that was further 
sheared, until a gel structure was obtained [104]. The driving force behind the 
establishment of this type of oleogel is the complexation between the oleosin pro-
teins that are present in the oleosome membrane and the polysaccharides, following 
the trend of other similar oleogelation systems that have been mentioned earlier in 
this section (4.3.2.1). This could be considered a more sustainable and economic 
option, considering the use of natural oil bodies that do not have to be artificially 
fabricated but instead extracted from oleaginous plants. The electrostatic interactions 
between oleosomes and polysaccharides have been studied in systems containing 
soybean oleosomes, sodium alginate, and xanthan gum, to further understand said 
interactions and amplify their application in the oleogel field [105]. 

4.3.2.2 Foam-Templated Method 

During the same period that the modified emulsion-templated method was devel-
oped, the same research group explored the development of an alternative method. 
Patel et al. [106] reported for the first time a foam-templated approach using a water-
soluble polymer and low-temperature processing. The foam template is turned into a 
porous cryogel via FD to remove water, resulting in a material with excellent oil 
sorption properties. Cellulose derivatives such as HPMC or MC can be very 
intuitively suitable candidates for this kind of approach: these derivatives are 
synthesized by substituting the hydroxyl group of cellulose with hydroxyl propyl 
or methyl groups. This imbues the molecules with a certain degree of hydrophobic-
ity, conferring them an amphiphilic character and a certain degree of surface activity, 
which makes it easy to incorporate air into the HPMC solution [107]. 

The method developed by Patel required the preparation of an HPMC solution 
first, by dissolving it in water in a concentration of 1–2% and overnight mixing. The 
solution was further processed using a high-speed homogenizer operating at 
11,000 rpm; this process aerates the system and results in an aqueous foam, 
presenting an average bubble size of less than 150 μm. The obtained foam was 
then subjected to FD, originating a porous cryogel. The oleogel formation ensues, by 
absorbing high, weighted quantities of sunflower oil into the dried cryogels and 
allowing the system to rest overnight. At this stage, as the cryogel was formed only 
by HPMC and without the use of any crosslinking, the oil was expected to flow 
through the entire structure and hence be quickly absorbed, but not tightly bind to the



structure, having a high risk of oozing out with minimal pressure. As such, the 
material was then sheared at 11,000 rpm using a high-speed homogenizer to obtain 
oleogels and prevent the release of oil (Fig. 4.4). This way, the polymer sheets were 
uniformly dispersed in the oil-continuous phase, physically trapping the oil, and 
preventing leakage. The weight of the added oil was calculated at about 98–99 times 
the weight of the cryogel. Later approaches used this foam-templated method as a 
guideline and focused on broadening the range of gelators suitable for this kind of 
methodology to include proteins. So far, a combination of gelatin and xanthan gum 
[108] and a combination of pea/faba protein and xanthan gum [109] have been 
successfully used to prepare oleogels through a foam template. These two studies 
have in common the fact that a polysaccharide was necessary to improve foam 
stability. Another study with rice bran protein successfully resulted in oleogels 
[110]; this approach required a pH adjustment step to adjust surface activity and 
allow for a faster adsorption on the interface. 
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Fig. 4.4 Sequential photographs of the foam-templated method stages: (a) 1% (w/w) 
hydroxypropyl methylcellulose (HPMC) (4000 cps) solution; (b) aqueous foam formed by aerating 
HPMC solution; (c) porous cryogel obtained by removal of water by freeze-drying; and (d) 
comparative pictures of sunflower oil on the left and organogel (with 98% (w/w) oil) formed 
using the cryogel on the right. (Figure reproduced from [106] with permission from the Royal 
Society of Chemistry) 

The advantage of the foam-templated method is that high temperature is not 
needed, which could lower the risk of lipid oxidation and non-desired flavors. 
However, it is a method that consumes high amounts of energy and time, due to 
the FD process. 

4.3.2.3 Hydrogel-Templated Method 

Solvent Exchange Method 

After the potential of proteins was revealed through the emulsion-templated method 
with crosslinking, as described above, de Vries et al. [62] further developed the 
applicability of proteins as sole gelators for oil structuring via a solvent exchange



procedure. First, a heat-set protein hydrogel was created using whey protein isolate 
(WPI) powder; they were prepared by heat denaturation of the proteins, using a 
temperature-controlled water bath at 85 °C for 30 min. The gels were then allowed to 
cool down to room temperature and stored overnight at 4 °C. The exchange of water 
retained in the protein matrices for sunflower oil was made following a stepwise 
approach, using an intermediate solvent. For the intermediate solvent, tetrahydrofu-
ran (THF) or acetone was used, considering that they are miscible both with water 
and sunflower oil. The hydrogel was cut into cylindrical pieces that were placed onto 
mesh metal buckets and then immersed for 8–12 h into the next solvent under 
continuous stirring of the solvent, and so forth. The succession of immersions 
goes from a solution of 30% (v/v) intermediate solvent in water, proceeding with 
50% (v/v), 70% (v/v), and two subsequent immersions in 100% (v/v) intermediate 
solvent, following the above-mentioned stepwise approach. After the full replace-
ment of the water with the intermediate solvent, a similar stepwise approach was 
applied using solutions of 30% (v/v), 50% (v/v), and 70% (v/v) sunflower oil in 
intermediate solvent and 100% (v/v) pure sunflower oil, to reach full substitution of 
the intermediate solvent with oil. The result oleogels were removed from the mesh 
metal buckets and blotted dry with tissue paper (Fig. 4.5). Up to 91% (w/w) oil could
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Fig. 4.5 On top, the appearance of 15% WPI hydrogels (left) and respective oleogels (right) after 
the solvent exchange. (Reprinted from [62] with permission from the American Chemical Society). 
On the bottom, (a) the appearance of heat-set WPI aggregates after centrifugation; (b) dispersion of 
freeze-dried protein aggregates in sunflower oil; and (c) resultant protein aggregate-based oleogels 
obtained through a solvent exchange method. (Reprinted from [111] with permission from Elsevier)



be incorporated into the system with a residual amount of water (under 1% (w/w)), 
which exhibited a Young’s modulus above the respective hydrogels by 2 orders of 
magnitude.

4 Oleogel Preparation Methods and Classification 97

However, the research group acknowledged that the preparation method, though 
effective, had limited flexibility to alter the rheological properties of the final protein 
oleogels. The oleogels were much stiffer and more brittle than the original gelling 
system (hydrogel). In an attempt to create a system that allowed for better tuning of 
its rheological properties, they decided to extend their previous work and explore the 
possibility of using protein aggregates of colloidal size to structure oil, while 
comparing them to their hydrogel counterparts [111] (Fig. 4.5). 

This alternative process developed by de Vries et al. [111] starts with the 
preparation of a protein stock solution of 4% (w/w) WPI. The mixture was then 
refrigerated overnight to ensure that the protein was fully hydrated and the pH was 
adjusted to 5.7 the next day using a 1 M HCl solution. The solution was heated at 
85 °C for 15 min to denature the protein, resulting in a weak gel, which was easily 
broken into smaller pieces. These pieces were homogenized using a high-speed 
homogenizer for 3 min at 13,000 rpm. The protein aggregates were collected by 
centrifugation and washed twice with demineralized water to remove any remaining 
soluble protein. For preparation of the oleogels, the WPI aggregates were dispersed 
in acetone and then centrifuged to collect the pellet containing the protein. This 
process was repeated once more using acetone to ensure water removal and twice in 
sunflower oil. The resulting pellet was diluted with sunflower oil, and excess acetone 
was allowed to evaporate overnight. The mixture was then centrifuged to increase 
the concentration of protein aggregates and form a gel. An alternative method of 
dispersing the protein in oil was also tested using FD. The resulting powder was 
dispersed in oil and centrifuged to increase protein concentration. As opposed to the 
first approach, instead of using a protein backbone to structure oil, the proteins are 
viewed as building blocks to the system rather than a fixed network. This study 
found that efficient network formation was achieved through hydrophilic interac-
tions between the aggregates, even when in a hydrophobic oil medium. Typically, 
the network formation of colloidal particles depends on both particle–particle and 
particle–solvent interactions, as explored in Sect. 4.3.1. Therefore, it must be 
considered that changes at the level of the solvent can manipulate the network 
formation and its resulting rheological properties. Further works focused on using 
this protein aggregate-solvent exchange while varying the polarity of the oil, 
establishing a relationship between the polarity of the oil and the gel strength [112]. 

Aerogel-Templated Method 

The aerogel-templated method was first described by Manzocco et al. [61]. In this 
method, a hydrogel made of κ-carrageenan was converted to an alcohol gel via a 
stepwise solvent substitution (water to ethanol), using the approach described by de 
Vries et al. [62] and in the previous section. The obtained alcohol gel was then dried 
under a continuous flow of supercritical carbon dioxide (SC-CO2)  at  11  ± 1 MPa and 
45 °C. After 8 h SC-CO2 drying, a monolith aerogel was obtained. Subsequently, the



aerogel was soaked in sunflower oil which diffused inside the aerogel porous 
structure and an oleogel was formed. Carbon dioxide transits from liquid or gas to 
a supercritical fluid above 31.1 °C and 73.8 bar (or 7.38 MPa), giving it low viscosity 
and high diffusivity like gasses and high density like liquids. These properties make 
supercritical fluids excellent and versatile solvents. Upon returning to ambient 
pressure, CO2 transits to a gas state, leaving the material that has been in contact 
with, without any traces. The κ-carrageenan aerogel obtained by Manzocco et al. 
[61] was able to absorb a mass of oil between two and four times its original mass, 
leading to an oleogel composed of around 20–25% biopolymer and the remaining 
fraction of sunflower oil. These oleogels were characterized by high firmness 
(between 100 and 300 N upon compression) due to the dense and compact aerogel 
structure, and their oil holding capacity was between 60% and 80% (expressed oil 
upon centrifugation compared to the original oil mass in the oleogel). 
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From this original work, the same research group has published a series of articles 
demonstrating that the properties of oleogels obtained with SC-CO2 dried aerogels 
can be greatly tailored. Indeed, by adding lettuce as a filler into κ-carrageenan gels, 
one can reduce the firmness of the resulting oleogel and increase the mass of 
absorbed oil up to 15 times the mass of the initial aerogel [113]. The same authors 
showed that fresh-cut salad waste-based aerogels, cellulose aerogels, as well as WPI 
aerogel particles can be used to form an oleogel [115–117]. In the latter case, the 
resulting oleogel contained 15% particles and 85% sunflower oil and resulted in a 
moldable material with rheological properties that are typical of a gel [115] 
(Fig. 4.6). Finally, these authors also demonstrated that oleogels structured through 
protein aerogel particles one can steer oil and protein digestibility [117]. Particles of 
aerogels made of starch were recently employed by Alavi and Ciftci [118] to obtain a 
moldable oleogel. The addition of chitosan to starch prior to forming an aerogel 
improved considerably the oil structuring ability and the mechanical properties of 
the resulting system. 

Although SC-CO2 drying is a great tool to obtain aerogels for oleogel preparation, 
the need for specialized and tailor-made equipment, as well as long processing times 
for the aerogel preparation (48 h to one week to replace water with ethanol to obtain 
an alcohol gel and 8 h of drying to obtain an aerogel), led researchers to look for 
alternative aerogel production methods like FD. Even if there is still a debate on the

Fig. 4.6 Oleogels obtained with freeze-dried (FD-1) and supercritical CO2 dried (SCD-1) whey 
protein aerogel particles dispersed in sunflower oil. The composition of FD-1 is 31% particles and 
69% oil, and that of SCD-1 is 15% particles and 85% oil. (Figure reproduced from [115] with 
permission from Elsevier)



definition of aerogels based on the preparation technique [119], in this paragraph, we 
consider porous materials as defined by Smirnova and Gurikov [120] as aerogels, 
regardless of the preparation method. In FD, water-based gels/materials are directly 
converted into porous materials after a drying step under vacuum at low temperature 
(usually -20 – -60 °C for 24–72 h), preceded by the freezing of the original 
material (usually at -80 °C to promote the formation of small ice crystals, which 
lead to smaller pores during drying). Some studies highlighted that if the same 
hydrogel is used for FD and SC-CO2 drying, the structure of the resulting aerogels 
is more collapsed in FD aerogels, leading to mechanically weaker oleogels or 
showing a lower ability to absorb oil [114, 115] (Fig. 4.6).
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However, these limits can be solved by improving the structure of the starting 
hydrogel. On this topic, Zhao et al. [121] added carboxymethyl chitosan (CMCS) to 
WPI to form heat-set modified hydrogels, which were subsequently FD to form an 
aerogel. The presence of up to 0.75% CMCS in the aerogel led to the formation of 
oleogels (after immersion of aerogel for 6 h in soybean oil) which were able to 
absorb oil up to five times the mass of the initial aerogel and retain more than 96% of 
the initial oil upon centrifugation. In addition, the oleogel obtained had better 
oxidative stability and high astaxanthin bioaccessibility compared to bulk oil. In 
another study, Chen and Zhang [122] developed aerogels by applying FD to 
hydrogels composed of alginate/soy protein conjugates obtained through the 
Maillard reaction. Oleogels were obtained by immersing the aerogel for 6 h in 
corn oil, which was able to absorb oil at 10.9 times its initial mass and retain 40% 
of it upon centrifugation. Finally, Li and Zhang [65] developed oleogels by dispers-
ing gelatin-based aerogels in camellia oil. Aerogels were obtained through FD of 
either gelatin hydrogels or short gelatin electrospun nanofibers in water. However, 
we report here data related to the first case, whereas data related to oleogels obtained 
using electrospun nanofibers will be discussed in the following section. The authors 
showed that all the studied characteristics and properties of the oleogels were 
dependent on the concentration of gelatin in the starting hydrogel. In particular, 
aerogels were able to absorb a mass of oil comprised between 20 and 100 times their 
initial mass and retain between 30% and 60% of the initial oil upon centrifugation. 
Moreover, the obtained oleogels showed thixotropic recovery between 76% and 
94%, and a free fatty acid release during in vitro digestion between 40% and 60%. 

4.3.2.4 Electrospun Nanofiber-Templated Method 

The last indirect method developed for oleogel production we present in this chapter 
is based on electrospun nanofibers. Electrospinning is an electrohydrodynamic 
process where micro- and nanofibers are drawn out from an electrified polymer 
solution and dried during their travel to a grounded collector. A typical 
electrospinning setup consists of a high-voltage power source, a syringe pump, a 
spinneret (typically a needle with a blunt tip), and a conductive collector [123]. How-
ever, needleless electrospinning devices are also emerging [124]. Different food 
grade high molar mass biopolymers like zein, gelatin, whey protein, starch, cellulose 
derivatives, carrageenans, alginate, pullulan, dextran, chitin, and chitosan, to name a



few, have been electrospun forming nanofibers with diameters in the range of few 
hundreds of nm (generally below 1 μm) [123, 126–128]. Biopolymers used in 
electrospinning do not need to possess any emulsifying, foaming, and thickening 
properties like those used in the other indirect methods, making the production of 
electrospun-based oleogels a more versatile indirect method for oil structuring. 
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Most of the research on developing oleogels from electrospun nanofibers is on the 
structuration of castor oil for lubrication purposes [66, 129–131]. In these works, the 
electrospun nanofibers were obtained by applying an electric field of 0.4–1.5 kV/cm 
and using solutions containing mixtures at different concentrations and ratios of 
Kraft lignin and cellulose acetate, and of polyvinylpyrrolidone and Kraft lignin 
[128, 130]. Electrospun nanofibers were dispersed at a concentration of 5–30% 
(w/w) in castor oil using gentle mixing. The resulting oleogels showed rheological 
and tribological properties dependent on the concentration of the nanofibers in the 
oleogel and the composition of the nanofiber. However, in general, the obtained 
oleogels showed rheological and tribological properties like commercially available 
lubricating greases made from metallic soaps and mineral oils [66, 129–131]. 

On the other hand, to the best of our knowledge, the only published example of 
edible oleogels obtained using electrospun nanofibers was recently published by Li 
and Zhang [65]. The authors developed gelatin-based electrospun nanofibers using 
an electric field of around 1.3 kV/cm applied to gelatin in an acetic acid solution. 
Following, nanofibers were added to liquid tert-butanol at different concentrations 
and homogenized using a high-speed homogenizer to reduce their length. The 
solvent was then removed using FD. The final system was an aerogel formed by 
short electrospun nanofibers, which were immersed in camellia oil and formed an 
oleogel. Although this method is the result of the application of two indirect methods 
and could be classified as a hybrid method, here we decided to group it in this 
category since the main structure of the oleogel is given by the nanofibers. The 
authors proved that oil absorption and retention, as well as rheological properties and 
digestion profiles of oleogels, were correlated with the concentration of nanofibers 
dispersed in tert-butanol before forming the aerogels. More specifically, aerogels 
were able to absorb a mass of oil between 60 and 125 times their initial weight and 
retain between 60% and 80% oil upon centrifugation, which exhibited better oil 
absorption and retention compared to aerogels obtained using gelatin hydrogel as a 
starting system for aerogel production (more details in the previous paragraph). On 
the other hand, the oleogel obtained using nanofibers showed a thixotropic recovery 
between 36 and 79% and a release of free fatty acids during in vitro digestion 
between 40 and 50%. 

Although electrospinning is a promising technology to obtain nanofibers for oil 
structuration, it is still affected by some limitations such as possible blockages in the 
spinneret, residual solvents in the nanofibers, and long processing times [131]. To 
overcome these problems a novel open-surface needle-free electrospinning device 
featuring one or multiple focused ultrasonic transducers, namely ultrasound-
enhanced electrospinning (USES) has been developed [132–135]. We recently 
developed a new, cold method to obtain oleogels using a mat of USES nanofibers. 
The nanofibers were formed using a standard polymer, polyethylene oxide. After 
dispersing the nanofibers in oil and subjecting the mixture to cryo-milling, oleogels



could be formed in rapeseed, walnut, and flaxseed oils at nanofiber concentrations 
above 10%. The oleogels were formed by a jammed dispersion of nanofiber mat 
fragments, exhibited excellent thixotropic recovery, and the stiffness of the oleogel 
was proportional to the nanofiber concentration and the unsaturation level of the 
fatty acids composing the oil [67]. 
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4.3.3 Semi-Direct Method 

The semi-direct oleogelation method is a recently developed technique that uses 
gelators or particles that can be dispersed in oil but require a secondary liquid to form 
an oleogel. The term “semi-direct” was chosen because this method features char-
acteristics of both direct and indirect methods: direct addition of gelators or particles 
to oil, and the use of a secondary liquid like water. However, unlike in the indirect 
methods, the water cannot be removed from the system, or the self-supporting 
structure of the oleogel is lost. Therefore, in the semi-direct method, oleogels are 
formed by mixing the particles and the two liquids. Currently, there is only one type 
of method that can be classified as “semi-direct,” i.e., capillary suspensions. In this 
method, insoluble particles are first added to the oil at concentrations ranging from 
10% to 50–60%, forming an oil-particle dispersion. Water or aqueous solution is 
then added, usually, in the concentration range of 2–20% of the final system and an 
oleogel is formed upon mixing. Capillary suspensions are a particular case of ternary 
particle–liquid–liquid systems. Indeed, depending on the relative ratio among parti-
cles and liquids, other systems like Pickering emulsions, bigels (bicontinuous gels), 
spherical agglomerates, and granular materials, can be obtained (Fig. 4.7) [135]. 

Fig. 4.7 On the left, a ternary diagram of particle–liquid–liquid systems depicting estimated areas 
of stability for different states based on the relative volume fractions. On the right, a schematic 
representation of each state depicted in the ternary diagram. Capillary suspensions occupy the 
perimeter of the ternary diagram, where one of the secondary liquids appears as a minor phase 
across various particle volume fractions. (Figure reproduced from [135] with permission from 
Elsevier)
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The formation of liquid bridges among particles in capillary suspensions results 
in the structuring of the system through capillary forces. The strength of these forces 
is influenced by the dimension of the particles, their distance, the interfacial tension 
between the two fluids in contact with the particles, and the three-phase wetting 
angle that the secondary liquid forms against the solid surface in presence of the bulk 
liquid [135, 136]. Capillary suspensions comprise two different states: pendular and 
capillary, which depend on the wettability of the particles with respect to the two 
immiscible liquids used in the ternary system. In particular, the pendular state refers 
to ternary systems where the secondary liquid preferentially wets the particles that 
are dispersed in a non-preferentially wetting liquid. The secondary liquid binds 
individual particles together forming pendular bridges (Fig. 4.7). In the examples 
reported below, most of the oleogels are formed through capillary suspensions in the 
pendular state, since the particles are mainly hydrophilic and are dispersed in oil, 
where water is used as a secondary liquid. On the other hand, capillary state refers to 
systems where particles are dispersed in a bulk liquid that preferentially wets them, 
and a secondary liquid that does not preferentially wet the particles is added to the 
system. The secondary liquid fills the gaps among particles forming clusters that are 
kept together by the capillary forces from the bulk liquid (Fig. 4.7) [135, 137]. The 
capillary suspension states can be differentiated based on the saturation (S) level of 
the wetting liquid, expressed as the ratio of the volume of wetting liquid to the total 
liquid volume of the system. In the capillary state, the S value approaches unity, 
while in the pendular state, it is close to zero. Regardless of the capillary suspension 
state, a transition from a liquid-like unstructured suspension to a gel-like material is 
always observed [135]. 

One of the earliest studies on edible oil structuring through capillary suspensions 
was described by Hoffmann et al. [136]. In this study, the authors used starch 
granules and cocoa particles at 30–35% volume fraction and 10–30% water to 
structure sunflower oil. The rheological properties of the system were dependent 
on particle and water volume fractions, and the addition of glycerol to water 
increased gel strength. However, the order of secondary liquid addition did not 
influence the rheological behavior of the system, leading to similar results whether 
the water was added to the starch-oil suspension, or it was absorbed onto the dry 
starch granule surface. In another early study on oil structuration, Mustafa et al. [70] 
used particles derived from agri-food waste such as tomato peels and spent coffee 
grounds to structure peanut oil. By using a 25% volume fraction of particles in oil 
and adding 17–57% volume fraction of water relative to the oil using a high-speed 
homogenizer, a transition from a dispersion to a semi-solid gel-like material was 
observed. The hydrophilic character of the particle surface led to the establishment of 
capillary bridges upon water addition, arranging the particles into a three-
dimensional network that entrapped the oil phase. The authors demonstrated that 
the resulting material stiffened with increasing water content (up to a certain point) 
and with decreasing particle size through high-pressure homogenization [70]. 

Following these first studies on the use of capillary bridges in oil structuring, 
other recent works showed the effectiveness of proteins, cellulose particles, and 
fibers in semi-direct oleogelation methods, although proteins and fibers have been



typically used in indirect methods, whereas cellulose particles have been used in hot 
and cold direct methods [69, 138]. In particular, hydrophilic modified zein particles 
(size of ~200 nm), heat-set whey protein isolate particles, cellulose particles with an 
average size of 25 μm, particles from fiber-rich fractions of yellow pea such as 
epidermal pea cell wall (average size of 20 μm) and pea hull (average size of 300 μm) 
were used to structure soybean, sunflower, algal, castor, and medium chain 
triacylglycerol (MCT) oils [140–142]. In general, 10% to 40% particles were 
dispersed in oils, followed by the addition of water at concentrations between 2% 
and 30% and the system was mixed using ball milling, high shear mixing, or 
magnetic stirring. Eventually, all systems formed oleogels at an oil-water-particle 
ratio that allowed a capillary suspension in the pendular state to be formed. When 
full pendular bridging (also called funicular state) among particles was formed, i.e., 
each particle was interconnected with neighbor particles through water bridges and 
participated in network formation, stiff oleogels were produced [139]. Oleogel 
rheological properties could be further modulated by modifying ionic strength, 
solid content, and pH of the secondary liquid [139, 140]. 
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Finally, as seen from the above examples, the selection of particles and liquids is 
fundamental to obtain an oleogel through capillary suspensions and to be able to 
tailor its rheological properties. On this topic, Jarray et al. [142] introduced a new 
approach that can predict the formation of capillary suspensions in the pendular state 
and their rheological properties using the HSP computed from molecular dynamics 
simulations. The authors elucidated through simulations and experimental work that 
the gel strength of capillary suspensions obtained with hydrophilic silica particles 
arises from the intermolecular interactions of its components, where the interfacial 
tension between the bulk and secondary liquid drives the gel strength up to a certain 
limit, after which the secondary liquid–particle polar interactions and hydrogen bond 
formation play a major role. The approach proposed by Jarray et al. [142] could 
potentially be extended to any particles. Furthermore, by using the HSP theory, one 
can select the proper secondary liquid, which can lead to the formation of capillary 
suspensions and calculate the resulting gel strength, reducing the need for extensive 
experimental work. 

4.4 New Classification of Oleogels 

As discussed in Sect. 4.3, oleogel preparation methods can involve water or other 
solvents, heating and cooling cycles, drying procedures, and gelators with different 
molecular weights. However, the difference among oleogelation methods can also 
be explained by taking into consideration (a) heat energy that the oil is subjected to, 
(b) the overall electrical energy consumed by all devices during oleogelation, and 
(c) overall oleogelation time. These three factors are imperative in oleogel produc-
tion since they are important criteria affecting oxidative and/or storage stability of 
the oleogels, as well as their sustainability, upscaling ability, and overall production 
cost. To make use of the benefits of oleogels in society, their production must be



scaled up from the laboratory to an industrial level. Achieving this requires contex-
tualizing the classification of oleogel preparation methods within an industrial 
framework. However, the conventional classification of oleogels based on either 
the molecular weight of the gelators (LMWGs vs. HMWGs) or the oleogelation 
methods (direct, indirect, and semi-direct), does not provide pertinent information 
for industrial applications. 
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In a recently published article [143], we discussed the importance of these three 
industrially relevant factors—overall heat, electrical energy, and time—in obtaining 
a new classification system for oleogel preparation methods. To this aim, we 
calculated these three parameters for 216 laboratory-conducted oleogelation cases 
retrieved from the literature. The overall heat that the oil is subjected to during 
oleogelation was calculated by integrating the time-temperature (TT) profiles. The 
overall electrical energy consumption was calculated by summing the electrical 
consumption of all devices used during oleogel preparation. The overall time was 
calculated by summing the time necessary for every single action during oleogel 
preparation. Each oleogel preparation procedure was then plotted in a 3D space 
where the three axes corresponded to heat, electrical energy, and time. Each oleogel 
preparation case was distributed in a different position within the scatter plot and 
different groups were visible. By applying the K-means clustering algorithm 
followed by the scree plot analysis, we were able to determine an optimal number 
of clusters. From this clustering, we developed a new oleogel classification where 
each oleogel preparation case (type of method, gelator concentration, etc.) was 
assigned to a new class based on its level of input: low, medium, or high 
(Fig. 4.8). The low-input approaches require low inputs (heat, electrical energy, 
and time), and are the optimal cases in terms of oxidative stability, sustainability, and 
industrial relevance. The medium-input approaches need a medium amount of at 
least one input, thereby making them potentially unattractive; however, they can still 
be considered when other options from the low-input approaches are not applicable. 
The high-input approaches require a high amount of at least one input. These 
methods are currently the least attractive ones. 

Our new classification challenges the commonly held belief that oil subjected to 
hot direct methods undergoes more severe thermal cycles and higher heat exposure 
than those processed via indirect methods. For example, the emulsion-templated 
approach using oven-drying (a common indirect method) subjects the oil to higher 
heat treatment than some hot direct methods. Instead, we propose that oleogelation 
methods should be evaluated on a case-by-case basis. 

The results of our novel classification also highlighted that scaling up 
oleogelation requires considering additional aspects that usually were not considered 
in the laboratory-conducted oleogelation cases, such as proper control of the cooling 
rate, as it significantly affects the heat energy that the oil is subjected to. The cooling 
rate is also a crucial factor in achieving consistency in physical properties (e.g., 
minimum gelation concentration, melting temperature, melting enthalpy, yield 
stress, solid phase content, and oil binding capacity) of oleogel during scale-up 
[144]. A constant surface area-to-volume ratio was recently suggested to be a key 
factor in scaling up oleogel production. By keeping the ratio constant, authors



proved that a uniform heat dissipation could be achieved, leading to homogeneous 
gels with consistent physical properties (comparing small and large oleogel 
batches) [144]. 
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Fig. 4.8 Schematic visualization of a novel oleogel classification to high-, medium-, and low-input 
methods based on the overall heat, electrical energy consumption, and time input for each oleogel 
preparation method. EC and LMWGs stand for ethylcellulose and low molecular weight gelators, 
respectively 

It should be noted that the sustainability and feasibility of oleogelation 
approaches depend on the commercial availability of the gelators or ingredients 
that are required in the methods. For example, a semi-direct oleogelation approach 
may be challenging to be scaled up if the microparticles used in the method are not 
commercially available or if preparing them requires a high energy input. However, 
when microparticles are commercially available, this method requires very low



inputs, and therefore can be considered a gentle and sustainable way to produce 
oleogels at large scale in the food industry. Moreover, various factors beyond the 
technical aspects of oleogelation must also be taken into account when considering 
an industrial-scale aim. These factors may include the cost and availability of 
gelators, as well as the capital and operating costs associated with different 
oleogelation approaches. The health implications of the gelators, the physicochem-
ical and viscoelastic properties of the resulting oleogels, possible regulatory barriers, 
and logistics and transportation expenses should also be accounted for when 
selecting an oleogelation approach [145]. Therefore, a low-input oleogel preparation 
method will not necessarily lead to an oleogel that can be used in all food applica-
tions at any production level. Obtaining an oleogel that is applicable across many 
food categories still remains a significant challenge. Nonetheless, our novel classi-
fication system can potentially help in understanding the effects of different methods 
on the oxidative stability, sustainability, and industrial viability of the oleogel. It also 
provides a fresh perspective and tool to facilitate the transition of oleogel preparation 
from lab to industrial scale. 
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4.5 Conclusions 

In this chapter, oleogel preparation methods developed until early 2023 were 
reviewed and described giving the reader a full overview of the topic. The develop-
ment of the oleogel preparation methods was initially inspired by traditional oil 
structuring techniques and solid fats present in nature. The first methods to be 
developed were straightforward and intuitive, involving the direct addition of 
gelators, oil-soluble compounds that can directly structure oil based on solvent– 
solvent, solvent–particle, and particle–particle interactions. These early works suc-
cessfully discovered most of the regularly used gelators in the field, establishing the 
foundation of oleogel research. As the potential of oleogels became apparent, 
researchers began to explore new methods based on the development of one or 
more intermediate stages before obtaining an oleogel, including hydrogels, emul-
sions, foams, aerogels, fibers, and particle dispersions. These efforts have led to 
breakthroughs aimed at (i) broadening the range of gelators to increase consumer 
acceptability, (ii) addressing the disadvantages of previous oleogelation methods, 
and (iii) tailoring oleogel properties envisioning specific applications. In this chapter, 
a new classification of oleogels based on industrially relevant parameters has also 
been discussed, in an attempt to bring the benefits of oleogels a step closer to society. 
The research on oleogels is still ongoing and new methods are expected to emerge in 
the future. 
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