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Abbreviations 

AA Adipic acid 
BS β-sitosterol 
BW Beeswax 
CB Cocoa butter 
CLW Candelilla wax 
CM Commercial margarine 
CRW Carnauba wax 
DG Diglycerides 
EC Ethylcellulose 
ERCA Esterified rice flour with citric acid 
FAP Fatty acid profile 
GO γ-Oryzanol 
HF Hard fat 
HFM High-fat margarine 
HIU High intensity ultrasound 
HO Hazelnut oil 
HOSO High oleic sunflower oil 
HPMC Hydroxypropyl methylcellulose 
LC Lecithin 
MG Saturated monoglycerides 
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MUFA Monounsaturated fatty acids 
O/W Oil-in-water 
OBC Oil binding capacity 
PGE Polyglycerol esters 
PS Phytosterols 
PUFA Polyunsaturated fatty acids 
RBW Rice bran wax 
SFA Saturated fatty acids 
SFC Solid fat content 
SFW Sunflower wax 
SLW Shellac wax 
SMS Sorbitan monostearate 
SSL Sodium stearyl lactate 
STS Sorbitan tristearate 
TFA Trans fatty acids 
UFA Unsaturated fatty acids 
UMG Unsaturated monoglycerides 
VOO Virgin olive oil 
W/O Water-in-oil 
XG Xanthan gum 
ΔE Total color differences with respect to the control 

26.1 Introduction 

Advances in the knowledge of the harmful effects of some food components on 
health are driving the demand for healthier food products from different sectors of 
society. Fats are key ingredients in a wide variety of foods, performing some 
technological and sensory functions in defining desirable food properties, contrib-
uting to their flavor, lubricity, texture, stability, and shelf life and to consumer satiety 
[1–3]. Traditional, stable, and relatively inexpensive fatty products used to obtain 
these characteristics, such as butter, margarines, and shortenings, are mainly com-
posed of saturated fatty acids (SFA) or mixtures of SFA and industrially produced 
trans fatty acids (TFA) [4–6]. However, overconsumption of both SFA and TFA has 
been claimed to cause some serious health concerns [3, 7–10]. Therefore, recom-
mendations by international organizations emerged to eliminate TFA provision 
through food [11], as well as to decrease SFA consumption to values of at most 
10% of total energy needs [12]. In addition, consumers are increasingly expected to 
demand not only healthy and natural food but also ethical and sustainable food 
production systems, according to the United Nations Sustainable Development 
Goals [13]. 

To meet these demands, the need for lower fat or improved quality products led 
industries and scientists to search for ingredients that could replace TFA and at least



reduce SFA use. However, this involves a major development and innovation effort 
in the research and industry sectors to mimic the functionalities that hard fats 
(HF) provide to each of the different products where they are used. As has been 
introduced in previous chapters, this requirement has been addressed, among other 
proposals, through the structuring of vegetable oils with a high content of unsatu-
rated fatty acids (UFA). For this purpose, various gelling agents or structurants have 
been tested—waxes, HF, lecithin (LC), ethylcellulose (EC), phytosterols (PS), 
saturated monoglycerides (MG), and diglycerides (DG), or emulsifiers with bio-
polymers, including proteins and polysaccharides—requiring different preparation 
methodologies. Therefore, over almost the last decade, some oleogel-based systems 
have demonstrated their promising applicability as substitutes for fats conventionally 
used in a variety of foods, which can be grouped into broad categories (Fig. 26.1). 
Replacement proposals were initially moderate and focused mainly on spreadable 
products. This trend was changing and currently the most evaluated reformulations 
are also based on bakery and meat products. Additionally, new technological 
applications have been emerging lately. 
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Fig. 26.1 Trend over time of different categories of oleogel-based system food applications. Bars 
represent the annual data and solid line denotes their tendency. Data were collected from Scopus-
Elsevier by searching oleogels or organogels food applications (including each of the specified 
applications) (update to February 17, 2023) 

Nevertheless, these systems have still limited commercial-level implementation 
in the food industry due to some technological challenges arising from process 
adaptation or consumer sensory demands [4, 14]. In addition, the requirement to 
use ingredients suitable for human consumption has to be met. For instance, 
although there are some doubts about the food use of certain wax types, legislation 
is moving positively in this regard [15, 16].
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Fig. 26.2 Fatty acid distribution—SFA, TFA, PUFA, and MUFA to saturated, trans, polyunsat-
urated, and monounsaturated fatty acids, respectively—in some commercial fats and oleogel-based 
systems. MG saturated monoglycerides, HOSO high oleic sunflower oil, O oleogel, RBW rice bran 
wax, SMS sorbitan monostearate, SO sunflower oil. (Data were collected from different sources 
[14, 16–24]) 

In nutritional terms, replacing all or part of the HF with oleogel-based systems 
significantly impacts the lipid profile of food products, and this will be determined 
not only by the composition of that system (base oil and other added compounds 
such as structurants and emulsifiers) but also by the substitution level [14]. Particu-
larly, oleogel lipid profile will be close to that of the base oil used, especially when it 
is relatively low in structurant. Thus, oleogel-based materials using oils high in 
monounsaturated fatty acids (MUFA)—MUFA >50%, such as high oleic varieties 
of sunflower and safflower, canola, hazelnut, peanut, and olive oils—or oils high in 
polyunsaturated fatty acids (PUFA)—PUFA >50%, such as corn, flaxseed, sun-
flower, soybean, and walnut oils—have an improved fatty acid profile (FAP) 
compared to the fats they are intended to replace, as can be observed in Fig. 26.2. 

In view of the abovementioned, this chapter explores progress in research carried 
out to evaluate the suitability of oleogel-based systems for their application in 
different food products, focusing especially on lipid profile improvement, but also 
including other functional or technological issues. Also, it attempts to highlight the 
challenges faced by the food industry in making oleogel applications effective and 
the prospects for the future.
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26.2 Spreadable Products 

A variety of fatty products are usually ingested as breakfast spreads or manufactured 
as spreadable products to be post-processed into other foods. These products con-
tribute undesirable levels of SFA and TFA to the diet, which makes oleogel-based 
systems an attractive replacement option. A large number of them have been 
evaluated as alternative spreads, mainly as margarine or shortening substitutes 
(Table 26.1). 

Margarine is commonly used as a breakfast product or as an ingredient in 
cooking and baking preparations, being a butter substitute in many recipes. It is 
formed by uniformly dispersing small water droplets in a highly saturated fat phase, 
thus constituting a stable solid form of a water-in-fat emulsion. Developing stable 
water-in-oil (W/O) emulsion-based products with reduced SFA and without TFA is 
the main constraint to overcome. Different oleogel-based systems have been used to 
emulate margarine, with variations in the components and their proportions and in 
the preparation method—emulsions from pre-formed oleogels or directly from the 
molten materials. Although some product differences have been assigned to the 
preparation method [29], no systematic comparison between both methodologies 
was found to justify those results. 

Waxes from different origins have been the most evaluated structurants for 
margarine production. Considering that sunflower wax (SFW), rice bran wax 
(RBW), and candelilla wax (CLW) efficiently structured soybean oil even at low 
concentrations, the corresponding oleogels were tested in a high-fat (80%) margarine 
(HFM) [27]. Among them, SFW-based margarines were the best option, having 
comparable firmness to margarines formulated using a mixture of hydrogenated and 
conventional soybean oil, a commercial margarine (CM), and some spreads. It is to 
be noted that the UFA:SFA ratio was improved from 2.5–4.5 to 6 using SFW 
oleogels. Similar texture results were obtained using other 13 oils [28]. Final product 
properties were also modified by using waxes or oils from different suppliers, 
origins, or processing, probably related to minority component presence in dissimilar 
proportions. Promising results were reported using SFW and RBW to structure hemp 
seed oil [31]. Using 3 wt% wax in emulsions was enough to achieve commercial 
spread firmness. However, stick margarine firmness was not obtained even with 7 
wt% wax. Similarly, an oleogel with 10 wt% beeswax (BW) was satisfactorily used 
to replace palm and hydrogenated palm oil in the formulation of a medium-fat 
margarine (70% fat)—with 28% SFA and 80% TFA reductions—[26]. Although 
the oleogel-based product had lower solid fat content (SFC) and higher melting point 
than the control, rheological and textural characteristics were similar. Rapeseed oil 
was successfully gelled by shellac wax (SLW) and used to formulate emulsifier-free 
W/O emulsions at different water:oil proportions [46, 48]. Acceptable spreadable 
properties were obtained when emulating HFM (Fig. 26.3a1), achieving 80% SFA 
and 40% PUFA reductions and a 158% MUFA increase. However, emulsion 
stability was difficult to maintain when dealing with low-fat (<60%) products. 
Additionally, emulsifiers and cold storage were used to favor textural and
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Table 26.1 Oleogel applications in spreadable products 

Food 
product 

Gelator (wt% in system)/ 
oil 

Replaced fat (wt% 
replacement) 

Margarine Oleogel MG (12)/vC-loaded corn Margarine fat (100) [25] 

Oleogel BW (2.5–10)/n.s Palm oil, partially 
hydrogenated palm olein 
oil (100) 

[26] 

Oleogel SFW, RBW, CLW (2– 
6)/soybean 

CM fat (100) [27] 

Oleogel SFW (3, 5, 7)/variousa Margarine fat (100) [28] 

Oleogel CLW:BW (0–7:7–0)/ 
soybean 

Monocomponent wax 
oleogel (100) 

[29] 

W/O 
emulsion 

BW (7)/corn Margarine (100) [30] 

W/O 
emulsion 

SFW, RBW (3–7)/hemp 
seed 

Margarine (100) [31] 

W/O 
emulsion 

MG:LC (22:8)/palm 
olein 

CM (100) [32] 

W/O 
emulsion 

MG:DG:TG (31.2:42.3: 
26.5)/tigernut 

CM, butter (100) [33] 

W/O 
emulsion 

CLW:ICF:MG (3.3:6.1: 
2.2)/HOSO 

CM (100) [34] 

W/O 
emulsion 

CLW:FHPO:UMG (0.4– 
1:0.6–1.3:0.3–0.8)/ 
soybean 

Margarine (100) [35] 

Mayonnaise O/W 
emulsion 

SFW:Tween20:SMS20 
(1.5:2:0.05)/variousb 

Mayonnaise (100) [36] 

Shortening Oleogel MG (10.8, 12.4)/HOSO Low-fat CM (100) [37] 

Oleogel MG (6.6, 8.2)/HOSO Low-fat CM (100) [38] 

Oleogel BW, SFW (3, 7, 10)/ 
olive 

Breakfast margarine 
(100) 

[39] 

Oleogel RBW (5)/rice bran Margarine, beef tallow 
(100) 

[21] 

Oleogel RBW:SMS (2–5:1–3)/ 
sunflower 

Vanaspati fat (100) [23] 

Oleogel EC:TMS (4:1)/palm 
stearin:soybean (23:77) 

Shortening (100) [40] 

Spread Oleogel MG (3, 7, 10)/pome-
granate seed 

CM fat (100) [41] 

Oleogel MG, CRW (3, 7, 10)/ 
VOO 

Breakfast CM fat (100) [42] 

Oleogel BW, SFW (5)/VOO, HO Breakfast CM fat, butter 
(100) 

[43] 

Oleogel BW, SFW, SLW (1, 3, 
5)/n.a 

Tahini emulsifier (100) [44] 

Oleogel SFW (10)/VOO n.s [45] 

Oleogel SLW (6)/rapeseed n.s [46] 

Oleogel WSW (8)/VOO n.s [47]
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rheological properties and stability of margarines based on BW-corn oil oleogels— 
diminishing 56% SFA and increasing 26% PUFA—[30]. Although some differences 
in thermal properties were detected between reformulated and commercial products, 
sensory properties were not examined to confirm or correct the reformulation.
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Table 26.1 (continued)

Food 
product 

Gelator (wt% in system)/ 
oil 

Replaced fat (wt% 
replacement) 

W/O 
emulsion 

BW, CLW, RBW, SFW, 
HCO (0.5–2)/peanut 
butter 

Peanut butter (100) [16] 

W/O 
emulsion 

SLW (5.5)/rapeseed n.s [48] 

W/O 
emulsion 

EC:MG (7:0.5, 7:1)/high 
oleic safflower 

Spread CM (100) [49] 

Chocolate 
spread 

Oleogel MG, BW, PW (5)/ 
pomegranate 

Palm oil (50) [50] 

Oleogel SLW (6.8)/rapeseed: 
palm 

Oil binder (100), palm oil 
( 27) 

[48] 

W/O 
emulsion 

MG (20)/corn Oleogel (45, 50, 55) [51] 

Emulsion-
templated 
oleogel 

HPMC:XG (1.62:0.97)/ 
sunflower, olive 

Coconut fat (50, 100) [52] 

Dispersion Cellulose fibers (5–40)/ 
rapeseed 

Palm oil (100) [53] 

a Almond, canola, corn, flaxseed, grapeseed, olive, peanut, pumpkin seed, safflower, sesame, 
soybean, sunflower, and walnut 
b Groundnut, sunflower, soybean, sesame, mustard, rice bran, coconut, and palm 
BW beeswax, CLW candelilla wax, CRW carnauba wax, DG diglycerides, EC ethylcellulose, FHPO 
fully hydrogenated palm oil, HCO fully hydrogenated cottonseed oil, HO hazelnut oil, HOSO high 
oleic sunflower oil, HPMC hydroxypropyl methylcellulose, ICF interesterified commercial fat, LC 
lecithin, MG saturated monoglycerides, n.a not applicable, n.s not specified, PW propolis wax, RBW 
rice bran wax, SFW sunflower wax, SLW shellac wax, SMS sorbitan monostearate, TG triglycerides, 
TMS triglyceryl monostearate, UMG unsaturated MG, vC vitamin C, VOO virgin olive oil, XG 
xanthan gum, W/O water-in-oil, WSW whale spermaceti wax 

MG have also been used to prepare oleogels for margarine production. After 
complete fat content replacement of HFM with an MG-corn oil oleogel, lower values 
of firmness, SFC, and TFA were obtained in comparison with commercial butters 
[25]. However, oleogel-based margarine had the highest values of adhesiveness, 
spreadability, and UFA content. Interestingly, although the appearance of the 
oleogel-based margarine was visually more translucent than that of the butters, 
consumers rated all samples with high appearance scores declaring their willingness 
to try or even buy that product. 

Some structurants have been tested in combination, either in binary or 
multicomponent mixtures. However, a few of these systems have been evaluated 
in margarine formulations, finding that some of their important properties could be 
tailored by structurant proportions. CLW-BW oleogels were able to form HFM with
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Fig. 26.3 Appearance of spreadable products elaborated with different oleogel-based systems: (a) 
margarines from (a1) shellac wax oleogel into a high-fat emulsion, reproduced from [46] with 
permission from The Royal Society of Chemistry, and tigernut glycerolysis product stored at 
refrigerated conditions for (a2) 1 week and (a3) 10 months after sample preparation, reproduced



improved or similar textural characteristics compared to that obtained using only one 
wax type [29]. These binary wax-based margarines had lower melting points and 
residual SFC at near body temperature, thereby yielding products with features 
closer to CM. However, other properties required a CLW:BW ratio reduction. An 
HFM was also formulated using a mixture of CLW, MG, and an interesterified 
commercial fat in high oleic sunflower oil (HOSO) [34]. Although differences in 
microstructures and melting curves were detected between the reformulation and 
CM, the former yielded a softer product of similar color but more resistant to 
temperature fluctuations than CM. Even with a high unsaturation proportion, the 
oleogel-based margarine showed acceptable oxidative stability. However, this 
reformulated margarine could not reach the sensory scores assigned to CM, poten-
tially due to a residual waxy taste. Surprisingly, consumer intention to buy them was 
similar, suggesting that other attributes should be considered when looking for 
relationships between product properties and consumer reactions. Low-fat (35%) 
and middle-fat (60%) margarines were also reformulated with CLW and unsaturated 
monoglycerides (UMG) in soybean and fully hydrogenated palm oil [35]. Marga-
rines with lower water content showed higher hardness and thermal stability and 
lower spreadability. Oleogelation made it possible to obtain different margarines 
with improved PUFA (3–21%), reduced SFA (10–33%), and practically TFA free. 
MG and LC, besides water, were studied to produce a low-fat margarine with 
CM-like mechanical properties [32]. An optimized product was obtained with 
respect to its structural properties, but using a high structurant proportion (30 wt% 
LC + MG) and 28 wt% water. Thus, although palm oil content was reduced (�24%), 
SFA increased �43% because of reformulation. An EC-MG gelled W/O emulsion 
had higher elasticity and thermal stability than a conventional emulsion (without EC) 
or EC-MG oleogel [49]. Its ability to maintain MG at the droplet interface could be 
responsible for increased emulsion stability at higher MG concentrations. In com-
parison to low-fat CM, the gelled emulsions had lower elasticity. Therefore, higher 
concentrations of mixed emulsifiers could be a promising strategy to reach CM 
elasticity, without adding high proportions of SFA or using TFA.
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Promising oleogels resulted from the products obtained by unsaturated oil enzy-
matic glycerolysis [33]. This oleogel type showed satisfactory results to substitute 
palm and hydrogenated oils in margarine production—plasticity similar to CM and 
butter and high storage emulsion stability (Fig. 26.3a2, a3)—highly improving UFA

⁄�

Fig. 26.3 (continued) from [33] with permission from Elsevier; (b) mayonnaises from 
(b1) commercial product and (b2) SFW oleogel-based emulsions and (b3) its application on 
bread, reprinted with permission from [36] Copyright (2021) American Chemical Society; (c) 
spreads using oleogels from (c1) beeswax (BW)-hazelnut oil (HO), (c2) BW-virgin olive oil 
(VOO), (c3) sunflower wax (SFW)-HO, and (c4) SFW-VOO, reproduced from [43] with permis-
sion from The Royal Society of Chemistry; and (d) chocolate pastes using water:oleogel-based 
emulsions at ratios of (d1) 0:100, (d2) 45:55, (d3) 50:50, and (d4) 55:45, reproduced from [51] with 
permission from Elsevier.



(110%). It also exhibited a more suitable melting curve than that usually achieved by 
wax-based oleogel margarines.
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Mayonnaise is based on an oil-in-water (O/W) emulsion with a large proportion 
of oil, which has a characteristic highly viscous and shear-thinning behavior. 
Looking for conventional mayonnaise alternatives, oleogel-based emulsions were 
prepared using different vegetable oils structured with SFW and some emulsifiers 
[36]. Although each oil contributed its own characteristic color to the emulsions 
formed, all presented a visual mayonnaise-like appearance. Varying oil unsaturation 
degree significantly affected the product strength, SFC, and oil binding capacity 
(OBC), while not affecting its microstructure. As the unsaturation degree increases, 
OBC increases, making emulsions of highly unsaturated oils capable of substituting 
commercial mayonnaise (Fig. 26.3b). 

Shortening is considered any fat that, at room temperature, remains solid and is 
generally used to make a wide variety of food products. Oleogels are usually 
presented as a direct healthier replacement for shortenings, although achieving 
their specific properties is a challenge. In addition to improving FAP, different 
oleogels have been tested to prevent the formation of water-containing systems. 
This last point confers oleogels a great advantage in terms of their chemical and 
physicochemical stability. MG-HOSO oleogels were produced to resemble the 
properties of a low-fat CM [37, 38, 54]. Both processing conditions and MG 
concentration (without exceeding control SFA) were optimized to achieve the 
desired properties, which were maintained unchanged for at least 3 weeks. Oleogels 
from BW or SFW were formulated to mimic breakfast margarine [39]. Although BW 
oleogel had thermal properties closer to those of the control, using different concen-
trations of each wax allowed to reach target textural properties—which remained 
stable for at least 3 months. RBW-rice bran oil oleogels have also been successfully 
formulated as substitutes for baking margarine and even beef tallow [21]. These 
products were used in a digestibility assay, showing that although the oleogel-based 
diet—highly enhanced in FAP—did not have anti-obesity effects, it did provide 
some other health benefits, confirming the postulates used in favor of oleogels. RBW 
was also used in combination with sorbitan monostearate (SMS) to structure sun-
flower oil as a low-saturated fat substitute for vanaspati, a popular fat in some 
countries [23]. Oleogel-based vanaspati, presenting nearly 40% SFA reduction, 
had rheological properties similar to commercial samples, but not some thermal 
properties. 

Spreads are usually pastes that can be applied and adhere properly to food 
surfaces. Oleogel-based spreads have been widely formulated using virgin olive 
oil (VOO), based on the benefits that its consumption can bring not only for its FAP 
but also for its minority components. MG-VOO oleogels showed higher OBC and 
thermal properties closer to breakfast CM than carnauba wax (CRW)-VOO oleogels, 
both generating major UFA increments [41, 42]. However, some margarine textural 
properties were not achieved by any of the oleogels, nor with MG oleogel which 
retained control SFA level. Sensory properties and consumer acceptance of oleogels 
from VOO or diacetyl-enriched hazelnut oil (HO) and two types of waxes were 
evaluated as spreadable fats [43]. Both types of oleogels showed acceptable



appearance and sensory attributes, regardless of the wax type used. Although the 
sample’s visual appearance was quite remarkable (Fig. 26.3c), more than half of the 
consumers expressed their intention to buy these substitutes. 
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Spices added to oleogels provide antioxidant bioactive compounds. SFW was 
used to structure VOO enriched with thyme and cumin spices [45]. Spices did not 
affect gel formation, gel thermal stability, or gelation time, but generated interme-
diate shear-stable oleogels. Moreover, whale spermaceti wax-VOO oleogels 
enriched with ground red pepper and turmeric allowed the obtention of spread-
type products with satisfactory quality indexes [47]. As expected, VOO and spices 
contributed to the oleogel color and aromatic profile; however, the spice-enriched 
oleogels were liked by consumers. 

Through gelling, waxes have been highly efficient in improving oil separation in 
some products. For instance, to reformulate tahini paste, SFW, SLW, and BW were 
tested as oil stabilizers compared to the commercially used emulsifier, hydrogenated 
palm stearin [44]. Using SFW and SLW, oil migration was significantly reduced and 
products similar to the control were obtained, even with improved FAP. Liquid oil in 
peanut butter spreads is also usually stabilized by a high-SFA material. OBC, 
firmness, and 6-month oil stabilization were improved by wax oleogelation, mainly 
with SFW [16]. 

Chocolate spreads are constituted by a continuous phase of commonly solid fat— 
such as cocoa butter (CB), palm oil, or coconut oil—into which another phase is 
dispersed. Reformulation of chocolate spreads lowering their SFC can be especially 
challenging, as saturated fats significantly support some of the most important 
properties required in this type of product—creamy texture, glossy appearance, 
taste, flavor, and mouth-melting behavior—[51]. A chocolate spread was 
reformulated by replacing oil binder and palm oil with SLW-rapeseed oil oleogel, 
obtaining a storage stable oleogel-based paste and reducing SFA by �24% 
[48]. Oleogels produced from pomegranate seed oil and MG, BW, or propolis wax 
were also used to reformulate chocolate spreads partially replacing palm oil and, 
therefore, lowering SFA by at least 39% [50]. Product mechanical parameters were 
modified depending on the structurant used, with the lowest and highest values 
found for propolis wax and MG, respectively. However, paste storage caused 
hardness to vary, tending toward more similar values. Additionally, oleogels from 
olive or sunflower oil and hydroxypropyl methylcellulose (HPMC) and xanthan gum 
(XG) were used to reformulate chocolate spreads [52]. Total coconut butter replace-
ment led to inhomogeneous materials, while structures similar to the control were 
obtained by partial replacement—even strongly reducing SFA. Moreover, when 
sunflower oil oleogels were used in partial replacement, a sensory evaluation similar 
to the control was reached. A bamboo fiber-rapeseed oil dispersion—without heating 
or emulsifying—was used to produce a chocolate spread with good rheological 
properties, high thermal stability, and healthier nutritional qualities than the palm 
oil-based spread [53]. 

The expected mouth-melting behavior of chocolate pastes can be difficult to 
achieve when high proportions of oleogels are used in reformulations. In this 
context, a gelled W/O emulsion from an MG-corn oil oleogel was used to formulate



low-fat spreads [51]. By using a 45:55 water:oleogel-based emulsion, an acceptable 
product was obtained, with good sensory scores and rheological and textural prop-
erties similar to an oleogel-based chocolate paste (Fig. 26.3d). 
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26.3 Bakery Products 

Fat content reduction is a crucial aspect in bakery product formulation, considering 
all the characteristics that fats provide to these products during baking, storage, and 
consumption. Among others, hardness, fracturability, spread ratio, fat migration, and 
surface color are important product quality attributes because they impact consumer 
acceptability and willingness to purchase. Table 26.2 shows several examples of 
different oleogel-based systems proposed for the reformulation of bakery products 
by substituting traditionally used shortenings and margarines. 

Fat and water have an important role in the development of gluten tridimensional 
structure in bakery products. However, not all of these products require the same 
gluten net strength. Some bakery goods are characterized as short-dough products— 
cookies and biscuits—while other products need extended gluten network 
building—such as bread. Therefore, not only fat/water proportion but also fat type 
and its distribution in dough must be carefully selected and generated to obtain the 
desired properties [77, 88]. When baking products based on conventional fats, it is 
necessary to provide a relatively high SFC to ensure proper dough lubrication, 
aeration, and hardness and consequently to generate areas strong enough to contain 
air bubbles during cooking to finally obtain products with appropriate characteristics 
[77, 78, 85, 87, 88]. Different behaviors have been reported using oleogel-based 
systems instead of conventional fats. The presence of emulsifiers in the fat phase has 
been recognized as a key factor to adequately disperse this phase on the dough 
hydrophilic ingredients, not only disturbing gluten formation but also increasing 
starch gelatinization temperature and prolonging gas retention time [77]. 

Biscuits and cookies, usually with about 25% fat, should be formulated from 
smooth, uniform, and plastic doughs [78]. During ingredient mixing, initial emulsi-
fied creams from sugar and commercial fats are typically harder than those from oils 
and oleogels, but after flour inclusion, the desired dough properties can be reached. 
However, oil-based creams present difficulties in achieving appropriate air entrap-
ment and adhesion during mechanical working, generating hard cookies [78, 87, 
88]. When oil was previously structured, cookie dough hardness approached that 
obtained with shortenings, while dough extensibility decreased. Compared to the 
oil-based system, oil structuring by CRW or CLW improved dough air-holding 
capacity and cookie spread ratio. Nevertheless, shortening-based cookie properties 
were not fully achieved by replacing shortening with oleogels with up to 5 wt% 
waxes [88], but they were reached by partial replacement with CLW oleogel while 
improving FAP [87]. Additionally, a certain waxy aroma was reported after cooking, 
which could be a negative factor for consumers and, therefore, deserves to be 
evaluated [88]. Moreover, oil-based biscuits have shown fat migration, which was



System Gelator (wt% in system)/oil Reference

(continued)
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Table 26.2 Oleogel applications in bakery products 

Food 
product

Replaced fat 
(wt% 
replacement) 

Bread Oleogel MG, RBW (10)/soybean Shortening 
(100) 

[55] 

Oleogel SSL (9)/sunflower Margarine 
(100) 

[56] 

Oleogel EC:TMS (4:1)/palm stearin: 
soybean 

Shortening 
(100) 

[40] 

Bun Emulsion-templated 
oleogel 

HPMC:XG (1.6:1)/sunflower, 
olive 

Margarine 
(100) 

[57] 

Sweet 
bread 

Oleogel CLW (10)/rice bran Butter 
(25, 50, 
75, 100) 

[58] 

Oleogel, O/W emulsion MG (2.7, 5)/sunflower Palm oil 
oleogel, 
emulsion 
(100) 

[59] 

Cake Oleogel BW, SFW (5), BW:SFWh 
(2.5:2.5)/canola 

Palm fat 
(100) 

[60] 

Oleogel CLW (5)/canola Butter 
(25, 50, 
75, 100) 

[61] 

Oleogel BW (10)/sunflower Shortening 
(15, 30, 
45, 60, 
80, 100) 

[62] 

Oleogel CRW (10)/canola Shortening 
(25, 50, 
75, 100) 

[63] 

Oleogel RBW, BW, CLW (10)/ 
sunflower 

Shortening 
(100) 

[64] 

Oleogel MG:BW (7:3, 3:7, 5:5, 10:0, 0: 
10)/HOSO 

Margarine 
(100) 

[65] 

Oleogel CRW:AA (2:4, 6:0)/soybean Shortening 
(50) 

[66] 

Oleogel EC:AA (2:4, 6:0)/soybean Shortening 
(50) 

[67, 68] 

Oleogel BS:GO (3.2:4.8), SSAP (12)/ 
menhaden, SL 

Shortening 
(100) 

[69] 

Oleogel, W/O emulsion CRW (5)/cotton seed, HOSO, 
blend fat 

Shortening 
(100) 

[70] 

W/O emulsion SLW (5.5)/rapeseed Margarine 
(100) 

[48] 

O/W emulsion oleogel Canola proteins (8)/canola Shortening 
(100) 

[71] 

O/W emulsion oleogel OSA-KGM (6)/peanut Margarine 
(100) 

[72] 

O/W emulsion oleogel XG:GG (1.7:1.7)/sunflower [73]
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Table 26.2 (continued)

Food 
Replaced fat 
(wt% 
replacement) 

Shortening 
(25, 50, 
75, 100) 

O/W emulsion oleogel Gelatin:BLP (2.2:0.4)/soybean Margarine 
(100) 

[74] 

Foam-templated oleogel MG (0–10)/soybean Butter (50) [75] 

Foam-templated oleogel Protein:XG (3.1:0.03)/canola Shortening 
(100) 

[76] 

Cookie Oleogel MG, SSL (3–15), PGE, SMS 
(9–18)/corn 

Shortening 
(100) 

[77] 

Oleogel MG (5), CLW (2, 3), RBW 
(2), BW (5), EC (8)/high oleic 
rapeseed 

Palm oil 
(100) 

[78] 

Oleogel MG, BS (10), MG:BS (5:5)/ 
soybean 

Shortening 
(100) 

[79] 

Oleogel MG, CRW (10), BS:BW (2: 
8), BS:LC (12.8:3.2)/ 
sunflower 

Margarine 
(100) 

[80] 

Oleogel BW, SFW, RBW, CLW (8)/ 
olive, soybean, flaxseed 

Margarine 
(100) 

[81] 

Oleogel BW (6)/sunflower Oil (100) [82] 

Oleogel BW (6)/sunflower HF (100) [83] 

Oleogel BW, CLW, CRW (n.s)/TML Shortening 
(100) 

[84] 

Oleogel BW, SFW (5)/hazelnut Shortening 
(100) 

[85] 

Oleogel CLW (3, 6)/canola Shortening 
(100) 

[86] 

Oleogel CLW (3, 6)/canola Shortening 
(30, 60, 100) 

[87] 

Oleogel CRW, CLW (2.5, 5)/sunflower Shortening 
(100) 

[88] 

Oleogel RBW (3–9)/soybean Shortening 
(100) 

[89] 

Oleogel RBW, BW, CLW, CRW (3, 5, 
7, 9)/corn 

Shortening 
(100) 

[90] 

Oleogel EC (1.5)/MCT Liquid oil 
(100) 

[91] 

Oleogel RBW:BF (4.5:0.5, 5.5:0.5)/ 
sunflower 

Butter (100) [92] 

Oleogel, O/W emulsion ERCA:BW (0–15:2)/soybean Shortening 
(50) 

[93] 

Oleogel, emulsion-
templated or foam-
templated oleogel 

MG, BW, RBW, HPMC, SSL 
(6)/corn 

Shortening 
(100) 

[94] 

Oleogel, W/O emulsion RBW (9)/rice bran [95]
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Table 26.2 (continued)

Food 
Replaced fat 
(wt% 
replacement) 

Margarine 
(100) 

Bigel CRW (5)/canola Shortening 
(25–100) 

[96] 

Bigel BW (5)/canola Shortening 
(100) 

[97] 

Foam-templated oleogel MG (0–10)/soybean Butter (50) [75] 

Emulsion-templated 
oleogel 

TPE (3)/camellia Butter 
(25, 50, 
75, 100) 

[98] 

Emulsion-templated 
oleogel 

LC: Inulin (2:19)/VOO Butter 
(20, 40, 50) 

[99] 

Emulsion-templated 
approach + crosslinking 

Chitosan: Vanillin (1:3)/canola Shortening 
(100) 

[100] 

Cracker Oleogel MG, RBW (10)/soybean Shortening 
(100) 

[55] 

Muffin Oleogel MG (6.6, 8.06)/HOSO CM (100) [38, 101] 

Oleogel CLW (10), CLW:MG (7.5: 
2.5), CLW:BC (10:0.02), 
CLW:MG:BC (7.5:2.5:0.02)/ 
sunflower 

Shortening 
(100) 

[102] 

Oleogel CLW, SFW, BW (5)/rapeseed Shortening 
(100) 

[103] 

Oleogel CLW (8)/grape seed Shortening 
(25, 50, 
75, 100) 

[104] 

Foam-templated oleogel HPMC (4)/sunflower Shortening 
(25, 50, 
75, 100) 

[105] 

Puff 
pastry 

O/W emulsion MG:SFA (9:1.8)/sunflower CM (100) [106] 

O/W emulsion MG:CB (3:10)/VOO CM (100) [107] 

Tart 
pastry 

Oleogel EC:MG (12:0, 6:6, 0:12)/avo-
cado:olive (1:1) 

Butter, 
shortening 
(100) 

[108] 

AA adipic acid, BC β-carotene, BF bamboo fiber, BLP bayberry leave proanthocyanidins, BS 
β-sitosterol, BW beeswax, CLW candelilla wax, CM commercial margarine, CRW carnauba wax, 
EC ethylcellulose, ERCA esterified rice flour with citric acid, GG guar gum, GO γ-oryzanol, HF 
hard fat, HOSO high oleic sunflower oil, HPMC hydroxypropyl methylcellulose, LC lecithin, MCT 
medium chain triglycerides, MG saturated monoglycerides, n.s not specified, OSA-KGM biopoly-
mer from octenyl succinic anhydride and Konjac glucomannan, O/W oil-in-water, PGE 
polyglycerol esters, SFA saturated fatty acids, SFW sunflower wax, SFWh sunflower wax hydroly-
sate, SL structured lipids, SLW shellac wax, SMS sorbitan monostearate, SSAP sucrose stearate/ 
ascorbyl palmitate, SSL sodium stearyl lactate, TG triglycerides, TML Tenebrio molitor larvae, TMS 
triglyceryl monostearate, TPE tea polyphenol ester, VOO virgin olive oil, W/O water-in-oil, XG 
xanthan gum



significantly diminished by using oleogels [78]. Other studies have reported that 
cookies made with MG, BW, RBW, CLW, SFW, or SMS oleogels have shown 
hardness more similar to commercial fat-based products than those with CRW, 
sodium stearyl lactate (SSL), or polyglycerol esters (PGE) oleogels, even with 
similar SFA reduction [77, 78, 80, 81, 84–86, 90, 94].
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Cookie textural properties depended strongly on the components structuring the 
oleogel—purity and composition—rather than on oleogel or dough properties 
[82, 83]. For instance, oleogels from unfractionated BW and different fractionated 
BW provided some variation in cookie hardness and organoleptic properties com-
pared to those obtained with oil and butter. With little change in cookie appearance 
and spread ratio, RBW-corn oil oleogels, regardless of the use of crude or refined oil, 
also were suitable for replacing cookie fat [89]. Nevertheless, the use of unrefined oil 
in oleogels generated harder cookies [79, 89]. Although important differences have 
been described between the properties of oleogels based on different types of oils 
and structurants and the corresponding cookie dough properties, final cookie prop-
erties have not been affected in the same way. For instance, different wax oleogel-
based systems led to cookies with comparable quality attributes to commercial 
fat-based cookies [81, 84]. In addition, CLW oleogels were the most similar to 
palm oil, but MG oleogels produced biscuits more similar to the control product 
[78]. Moreover, the inclusion of fibers in RBW oleogels reduced dough firmness 
positively impacting cookie texture parameters and approximating butter-based 
cookie properties [92]. However, differences in recipes and technological parame-
ters, as well as component quality used, may have led to some of the reported 
differences in the indicated behaviors. 

Looking for more generalized trends to guide cookie reformulation from a 
theoretical framework, the hardness of cookies reformulated with wax oleogels 
was more inversely related to SFC and β′ crystalline form in the corresponding 
oleogels, in addition to their rheological parameters, than to crystal size [90]. Fur-
thermore, when other emulsifiers were used (MG, SSL, PGE, and SMS), softer 
cookies were produced from high-viscosity oleogels using structurants with higher 
hydrophilic-lipophilic balance values, reflecting their greater ability to withstand 
processing conditions [77]. However, the hardness of these cookies was driven 
neither by the amount of crystals or SFC nor by the type of crystalline material in 
the oleogels, nor by their viscoelasticity, even during heating. This is a very 
interesting result that should be taken into account when considering oleogel for-
mulation optimization, since increasing structurant concentration usually increases 
oleogel hardness, but this will not necessarily favor final cookie properties. 

Cookie structure of similar hardness to that based on shortening proved to be of 
homogeneous porosity [77, 94]. Additionally, the increased cookie brightness has 
been related to a higher oleogel SFC, postulating that the mobility of some browning 
reaction reagents could be hindered by the higher SFC. Moreover, the generation of 
more fluid doughs during preparation tended to produce cookies that were more 
differentiated from conventional fat ones [94]. Some significant total color differ-
ences with respect to the control (ΔE) have also been found between reformulated 
and traditional cookies (ΔE > 3), indicating that consumers would perceive such a



change [78, 80, 94]. However, cookies reformulated with MG, RBW, SFW, and BW 
oleogels scored comparable or even higher than shortening-based cookies in terms of 
surface color or overall acceptability [85, 94]. Moreover, cookie dimensions and 
spread ratio were not modified after reformulating the recipe by replacing 50 and 
100% of margarine with an emulsion from RBW oleogel [95]. However, less hard 
doughs and cookies and lighter colored cookies were obtained as fat replacement 
increased. 
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Multicomponent oleogels using β-sitosterol (BS)-BW and BS-LC produced 
doughs with hardness more similar to a margarine-based dough, in comparison to 
MG or CRW oleogel [80]. However, not only were these differences not maintained 
after baking, but also these structurant combinations generated cookies with a 
different hardness than conventional ones. Nevertheless, similar or improved cookie 
properties were produced using BS-MG oleogels instead of shortening—even 
diminishing 30% SFA—regardless of using crude or refined soybean oil [79]. 

Bigels in which oleogels were produced from canola oil and CLW or BW showed 
great potential to replace conventionally used cookie fat [96, 97]. Although some 
differences in cookie hardness and color have been detected due to fat replacement 
(Fig. 26.4a1–a3), improvements in FAP and starch digestibility were remarked 
[96]. Moreover, emulsion-templated approaches were tested as total or partial sub-
stitutes for commercial fats or oils [98, 100]. By replacing oil with a low-vanillin 
content oleogel (without emulsifier), the spread ratio, hardness, and ΔE of cookies 
were diminished, resembling shortening-cookie properties [100]. Those oleogel 
structures probably interact with proteins and starch in a more butter-like than 
oil-like manner, providing techno-functional properties more similar to a commer-
cial fat—although FAP was notably modified, lowering SFA by 20–80% and 
increasing UFA by 90–370%. Varying some structurant characteristics, such as the 
fatty acid chain length of polyphenol ester, modified oleogel properties more signif-
icantly than those of cookies [98]. In contrast, fat replacement level was strongly 
reflected in some product properties, generating harder doughs and cookies with 
higher break strength and lower overall quality scores as butter replacement was 
increased [98, 99]. Additionally, when HPMC emulsion-based or foam-templated 
oleogels were used instead of shortening, harder cookies were obtained, resulting in 
low consumer acceptance [94]. Some product texture properties were raised by 
increasing the amount of MG in an HPMC-MG oleogel, which corresponded to 
the formation of more compact structures (Fig. 26.4a4–a6) generated by reduced 
dough aeration [75]. However, no differences in spread ratio or overall appearance 
were observed when esterified rice flour with citric acid (ERCA)-BW oleogels were 
used, although a 28% UFA increase was achieved [93]. 

Medium chain triglycerides-EC oleogels obtained through high intensity ultra-
sound (HIU) gelation were introduced in cookie formulation [91]. HIU-based 
oleogels allowed to obtain cookies with good texture and not as hard as those 
produced with non-HIU oleogels. Sensory scores and overall acceptability were 
improved by using HIU-based oleogels. 

Crackers and breads, although typically require low fat content (<10%), still 
need the properties that fats provide [55, 56]. MG and RBW oleogels were shown to
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Fig. 26.4 Appearance of 
bakery products elaborated 
with different oleogel-based 
systems compared with a 
control product: (a) cookies 
from (a1) commercial 
shortening, candelilla wax 
oleogel-based bigel with 
(a2) 50% and (a3) 100% fat 
replacement, reproduced 
from [96] with permission 
from Elsevier, and from 
50% fat and 50% 
hydroxypropyl 
methylcellulose (HPMC)-
saturated monoglycerides 
(MG) oleogels with 
(a4) 0 wt% MG, (a5) 4 wt% 
MG, and (a6) 10 wt% MG, 
reproduced from [75] with 
permission from Elsevier; 
(b) breads from 
(b1) margarine and (b2, b3) 
oleogels from two different 
sodium stearyl lactates, 
reproduced from [56] with 
permission from Elsevier; 
(c) puff pastries from 
(c1) commercial laminating 
margarine and (c2) MG: 
saturated fatty acid-dried 
emulsion, reproduced from 
[106] with permission from 
John Wiley and Sons; (d) 
cakes from 50% fat and 50% 
HPMC-MG oleogels with 
(d1) 0 wt% MG, (d2) 6 wt% 
MG, and (d3) 8 wt% MG, 
reproduced from [75] with 
permission from Elsevier; 
and (e) muffins from 
(e1) margarine, 
(e2) unstructured oil, and 
(e3) optimized MG oleogel, 
reproduced from [38] with 
permission from John Wiley 
and Sons
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be acceptable options to replace shortening in these formulations [55]. MG oleogel 
was postulated as a retardant of starch gelatinization and retrogradation and as a 
crumb softener, leading to a better performance than RBW oleogel and commercial 
shortening during bread but not for cracker production. However, lubrication and 
gluten network development were similar in the three lipid-based systems and, 
therefore, in the final product appearance. In low-fat bread doughs, water absorption 
was not modified by the type of fat used [55], although it was in doughs with higher 
lipid amounts [55, 109]. An EC-triglyceryl monostearate oleogel-based shortening 
also displayed superior properties to a commercial fat for producing softer breads 
with higher specific volume [40]. Breads formulated with SSL oleogels achieved a 
similar general appearance to those formulated with margarine (Fig. 26.4b) o  
sunflower oil, even with some textural property differences and a 30% reduction 
in SFA compared to margarine-based breads [56].
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Also, it has been shown that oleogelation can greatly affect the final characteris-
tics of sweet bread, in which 12–19% fat is used. Butter replacement with up to 75% 
CLW oleogel led to obtaining breads with specific volume and hardness similar to 
the control, even reducing SFA from 71 to 35% [58]. Moreover, palm oil substitu-
tion by sunflower oil or by the corresponding MG oleogel was detrimental to 
bread specific volume, but the use of an MG hydrogel resulted in a product with 
quality characteristics comparable to those of the control, although both gels implied 
a reduction of �80% SFA [59]. This fact evidenced that MG interacted in different 
ways depending on the phase or interface in which they are found, going from the 
generation of an inhomogeneous lipid distribution and the corresponding lower 
leavening effect by the MG oleogel to a better interaction with the preparation 
ingredients—water, starch, and gluten—by the MG hydrogel. 

Baked or steamed buns were also reformulated by substituting margarine with 
oleogels based on HPMC and XG [57]. Although implying a great FAP improve-
ment, no differences were detected in crumb structure, bun shape, texture, sensory 
attributes, or lipid digestibility. 

Puff pastries are laminated doughs that require high fat content (�37%) to be 
properly mechanized to reach rheological fat-dough equilibration. Laminating CM 
was fully replaced by high internal phase O/W emulsion produced with MG-SFA, 
achieving satisfactory performance during laminating and baking and a good final 
appearance (Fig. 26.4c)—with �7% SFA reduction—[106, 107]. Although an 
increased oiliness in the mouth was detected, product friability was satisfactorily 
maintained. Other emulsion formulations based on olive pomace oil, PS, and 
different gelators—BW, saturated triglycerides, or MG—were postulated as possible 
alternatives for puff pastry fat [110]. Although acceptable approximations were 
achieved between the BW emulsion and the commercial product, the final product 
functionality remains to be tested. 

Cakes, with a characteristic spongy structure due to air entrapment, are usually 
made with 10–25% butter or margarine. When conventional cake fats were replaced 
by some wax oleogels, batters with lower viscosity and less shear-thinning behavior 
were obtained, which affected batter aeration [63, 64]. Cake porosity and specific 
volume decreased using wax oleogels instead of shortening, resulting in harder cakes



with higher chewiness [64]. Exceptionally, BW oleogel-based cakes maintained a 
similar specific volume to the control although doubling in hardness [64], while 
CLW oleogels increased cake specific volume reducing hardness [61]. Crumb 
structures with homogeneously distributed fine air cells were obtained using short-
ening and BW oleogels [64]; however, less amorphous areas and more hydrated and 
short-range crystallized starch networks were reported using CLW oleogels 
[61]. Nevertheless, a consumer health problem could be introduced due to the 
proposed substitution, since the in vitro starch digestibility increased with 
it. Although total substitution can reduce cake SFA by �70%, partial replacement 
might be a better option for maintaining cake properties. Oils structured with 
CRW—as oleogel or emulsion—were also used to partially replace a high-fat 
material in cakes [70]. In general, UFA increment did not affect batter’s rheological 
behavior nor cake’s textural and sensory properties. Gelled emulsions produced 
batters with higher consistency and cakes with greater aeration than oleogel-based 
cakes; however, the latter had the highest overall acceptability by consumers. Full 
margarine replacement with SLW oleogel-based emulsions also showed that, while 
the batter exhibited unfavorable properties compared to the control, the cake had 
acceptable texture and sensory characteristics [48]. 
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Oleofoams from wax oleogels were used to replace palm fat in cakes 
[60]. Although some waxes such as SFW showed a good ability to generate oleogels, 
this was not transferred to the behavior of oleofoams nor to those of oleogel-based 
batters. The different behaviors were related to the varying arrangement of wax 
crystals in air interphase or bulk oil. However, only minor differences were found in 
cakes, being BW oleogel the preferred to diminish oil migration. Moreover, although 
sensory results did not show that cakes were much different, oleogel-based cakes got 
higher scores. 

A gluten-free batter for producing aerated products was reformulated using BW 
oleogel co-crystallized with a commercial cake shortening [62]. Full replacement 
produced batters with reduced air-holding ability and cakes with lower porosity and 
specific volume. However, similar properties to control cakes were obtained with 
partial replacement. 

Oleogels from MG and BW were also used as margarine replacers [65] and as a 
result of a higher moisture retention capacity, reformulated cakes with higher 
porosity and dimensional values than the control were obtained. After sensory 
analyses, an MG-BW-HOSO-based cake was preferred even over control. More-
over, the shelf life of this reformulated cake was extended, diminishing its oil 
migration. Binary systems from different gelators reinforced with adipic acid 
(AA) have been used to improve cake properties. Acceptable texture profile, color, 
and organoleptic properties were obtained by 50% shortening substitution with 
CRW-AA or EC-AA oleogels, making these results better than those obtained 
without the reinforcement [66, 67]. Moreover, the partial substitution with EC-AA 
oleogel resulted in cakes with greater oxidative stability [68]. Some acceptable 
results were obtained when using oleogels from PS or sucrose stearate/ascorbyl 
palmitate blends to replace shortening in a low-fat cake recipe, improving cake
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oxidative stability compared with oil-based cake but not reaching that of shortening 
one [69]. 
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Polymer-stabilized O/W emulsion-based oleogels have been used to replace 
commercial fats or oils. Full replacement of margarine, peanut oil, or shortening 
resulted in softer and spongier cakes with higher adhesiveness [71, 72]. Moreover, 
the non-uniform pore distribution in oil-based cakes could be partially overcome by 
using oleogels [72]. Although cake texture was nearly maintained when shortening 
was partially or even totally substituted with a gum emulsion-based oleogel, sensory 
analysis showed that the 75% replacement-based cake was preferred over the control 
[73]. Along with the search for improvements in emulsion stability and shelf life, 
e.g., by using antioxidant compounds, reformulation effects on final product prop-
erties must be considered. By using an optimized emulsion-based oleogel including 
polyphenols, oil oxidation was retarded and batter and cake properties more similar 
to margarine-based than oil-based products were obtained [74]. 

Foam template-based oleogels were used to partially replace commercial butter in 
a low-gluten cake, achieving improved hardness and chewiness but showing no 
major effect on the final product appearance (Fig. 26.4d) [75]. Increasing MG 
content resulted in higher dough density and lower cohesiveness and resilience 
cakes. Moreover, cakes prepared using protein foam-based oleogels were harder 
than shortening-based cakes, although similar to oil-based ones, probably because 
oil and protein oleogel could not avoid the starch-protein adhesion and thus product 
staling [76]. Adding another structurant may help to overcome this issue. In addition, 
the cake color was modified by oleogel ingredients, although they were at low 
concentrations ensuring maintenance of healthy oil composition. 

Muffins or cupcakes are a special baked cake type. An optimized MG oleogel 
proved to be an effective replacement for CM, not only from measured properties but 
also due to sensory analysis and consumer acceptance (Fig. 26.4e)—with 68 and 
100% SFA and TFA reduction, respectively—[38, 101]. By increasing the shorten-
ing replacement level with HPMC foaming-templated or CLW oleogels, batter spe-
cific gravity tended to increase and muffin air cells were bigger, closer, and not 
evenly distributed [102, 104, 105]. However, muffin specific volume was not 
modified with up to 50 or 25% replacement depending on the used system, ensuring 
an improvement in the UFA:SFA ratio of at least 42%. In addition, when shortening 
was replaced with MG-enriched CLW oleogels, muffins with similar porosity and 
improved textural characteristics with respect to CLW oleogels were produced 
[102]. The addition of β-carotene in CLW-MG oleogels did not adversely affect 
muffin structural characteristics; however, muffin color changed, and its oxidative 
stability was improved. 

By replacing shortening with different wax oleogels in a gluten-free muffin 
recipe, water content, physical parameters, and textural properties were not signif-
icantly affected, although dough specific gravity was slightly increased and muffin 
porosity modified [103]. Muffin crust color changed depending on the wax used 
(ΔE < 6) and lipid fraction was modified, diminishing �40% SFA and increasing 
45% UFA.
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Tart pastries need solid fats to form properly. Oleogels from EC, MG, or EC-MG 
were used to replace butter and palm shortening [108]. MG oleogels and control fats 
produced doughs with similar firmness. However, MG oleogel-based tart had lower 
hardness than the control. On the other hand, EC oleogel-based dough and tart were 
the firmest and most hard. However, combining EC and MG was a successful 
strategy to improve textural properties and dough workability. 

26.4 Confectioneries 

The quality of chocolate, fillings, and related confectioneries is significantly affected 
by the fat phase. Therefore, its substitution is the main challenge facing the confec-
tionery market due to changes in thermal properties and oil migration that occur 
during storage. In this regard, different oleogel-based systems have been proposed as 
fat replacers (Table 26.3), offering promising results. 

Cocoa butter constitutes a main ingredient in confectionery due to its fat or 
triglyceride composition—high in SFA—resulting in unique physical and sensory 
characteristics of final products. CB equivalents are needed, not only because of 
excessive fat consumption but also because it is the most expensive confectionery 
ingredient. Against this background, HPMC structured HOSO to develop an 
emulsion-templated oleogel with a healthier FAP to be used as a partial or complete 
CB substitute [111]. Oleogel incorporation resulted in a significant effect on hard-
ness, which decreased as oleogel quantity increased in the system, probably due to 
the difference in SFC, i.e., SFA contributed more solidity. Although OBC was also 
affected by the substitution, very high values were still obtained (>93%), showing 
that strong networks had been formed. Among the reformulated systems, similar 
rheological and textural characteristics to CB were obtained with 50% replacement. 

Chocolate is globally consumed primarily for its sensory stimulation and excite-
ment potential. However, because it is composed mainly of CB or milk fat—both 
responsible for hardness, temperability, and melting point—it is a high-calorie 
product containing up to 40% SFA [126]. Consequently, fat replacers for healthier 
chocolate formulations that maintain the desirable physicochemical and sensorial 
properties are required. Recently, MG-palm oil oleogels combined with some 
healthy sweeteners—maltitol, tagatose, and palm sugar—were tested as CB 
replacers to prepare heat-stable and bloom-resistant chocolate [113]. As a result of 
the reduced CB content, all reformulated products were significantly less hard. The 
50:50 sucrose:palm sugar oleogel-based chocolate presented the polymorphic struc-
ture required in this type of product (β crystals) to provide stable crystal networks. In 
turn, it improved the shape-retention capability, maintained high bloom resistance, 
and displayed higher melting enthalpy compared to the pure CB chocolate. More-
over, this reformulated chocolate showed the highest overall acceptability, with no 
waxiness by fast mouth fusion. Three oleogels structured by MG, EC, or BS-LC 
were used to reformulate dark chocolate with total or partial substitution of CB 
[114, 115]. Incorporating oleogels resulted in chocolates with soft texture, shear-
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thinning behavior, and a high degree of unsaturation [115]. The polymorphic form 
and thermal properties were similar to the traditional chocolate. However, the 
different gelation mechanisms of the three kinds of oleogels resulted in variations 
in some physicochemical properties of reformulated products. For 50% replacement, 
EC oleogel-based chocolate had the highest hardness, which was attributed to higher 
SFC and particle-particle interactions. Nevertheless, MG oleogel was the only one 
that could form a solid-like chocolate with total CB replacement. Furthermore, these 
oleogels improved chocolate bloom stability during different storage conditions, 
even with reduced saturation levels [114]. While an incipient bloom was detected at 
1 day of cold storage (Fig. 26.5a1–a4), this was reversed with longer storage time 
obtaining non-significant differences between samples. Furthermore, under fluctu-
ating temperatures, oleogel-based chocolates exhibited bloom-delaying properties.
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Table 26.3 Oleogel applications in confectionery products 

Food 
product 

Replaced fat (wt 
% replacement) 

Cocoa 
butter 

Emulsion-
templated 
oleogel 

HPMC (1)/HOSO CB (50, 60, 
70, 80, 100) 

[111] 

Oleofoam CB (15, 22, 30)/HOSO CB (70, 78, 85) [112] 

Chocolate Oleogel MG (10)/palm CB (30) [113] 

Oleogel MG, EC (10), BS:LC (8:2)/corn CB (50) [114] 

Oleogel MG, EC (10), BS:LC (8:2)/corn CB (50, 100) [115] 

Oleogel BS: Stearic acid (2.4:9.6), BS:GO 
(4.8:7.2), BS:LC (9.6:2.4)/corn 

CB (50) [116] 

Foam-
templated 
oleogel 

HPMC (2)/sunflower CB (30, 50, 
70, 100) 

[117] 

Emulsion-
templated 
oleogel 

HPMC (0.5–2)/HOSO CB (50) [118] 

Filling 
creams 

Oleogel MG (10)/HOSO Beef fat (100) [119] 

Oleogel BW (1.5–3.5)/rice bran Palm oil (17, 33, 
50) 

[120] 

Oleogel CRW (6)/pumpkin seed CB (100) [121] 

Oleogel MG (3, 6), STS:LC (3:3, 4:4, 5:5)/ 
soybean 

Filling 
fat/coating fat 
(100) 

[122] 

Oleogel MG:CLW (10:0, 4:6, 0:10)/canola Shortening 
(100) 

[123] 

Oleogel MG:CLW:HF (0.35–1.40:0.35– 
1.05:0.35–1.75)/soybean, HOSO 

Shortening 
(100) 

[124] 

Oleogel BS:GO (5:5, 12.5:12.5)/sunflower n.a [125] 

BS β-sitosterol, BW beeswax, CB cocoa butter, CLW candelilla wax, CRW carnauba wax, EC 
ethylcellulose, GO γ-oryzanol, HF hard fat, HOSO high oleic sunflower oil, HPMC hydroxypropyl 
methylcellulose, LC lecithin, MG saturated monoglycerides, n.a not applicable, STS sorbitan 
tristearate



Due to fat bloom formation, dark chocolate showed bigger hardness changes during 
storage than oleogel-based chocolates, which remained thermally and polymorphi-
cally stable. Similarly, other binary oleogels from BS combined with γ-oryzanol 
(GO), stearic acid, or LC were investigated to replace CB in dark chocolate 
[116]. Although some properties differed between the three oleogels, reformulated 
chocolates exhibited the required β crystals, as well as similar characteristics as that 
of dark chocolate.
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Fig. 26.5 Appearance of confectioneries elaborated with different oleogel-based systems com-
pared with a control product: (a) chocolates from (a1) cocoa butter, (a2) MG oleogels, (a3) BS-LC 
oleogels, and (a4) EC oleogels, all stored at 4 °C for 1 day, reproduced from [114] with permission 
from Elsevier, and from (a5) cocoa butter and hydroxypropyl methylcellulose (HPMC) oleogel with 
(a6) 0.5 wt% HPMC, (a7) 1.5 wt% HPMC, and (a8) 2 wt% HPMC, reproduced from [118] with 
permission from Elsevier, under the terms of the Creative Commons CC-BY 4.0 license; and (b) 
filling creams from (b1) commercial fat and variable amounts of saturated monoglyceride oleogel 
(b2) 26%, (b3) 30%, and (b4) 40%, reproduced from [119] with permission from John Wiley 
& Sons 

In addition to oleogels, other replacement systems based on HPMC were 
addressed to reformulate chocolates. For instance, a foam-templated approach was 
tested as a partial or total CB substitute [117]. Despite some differences in properties



between oleogel-CB blends, these differences diminished when other ingredients 
were added to oleogel-based chocolate formulations. All reformulated products 
presented an improved FAP, proportionately to CB replacement. Nonetheless, a 
sensory analysis indicated that HPMC oleogel could replace CB up to 70%, although 
a technological perspective would suggest a replacement level of 50%. Other HPMC 
oleogels obtained by emulsion-templated approach were developed to produce a 
healthier chocolate with lower fat content and optimum sensory properties 
[118]. Oleogel-based chocolates had a similar appearance to CB-based ones 
(Fig. 26.5a5–a8), but softer texture related to the structurant amount in the oleogel. 
Furthermore, texture and flavor were negatively impacted by the highest HPMC 
concentration, while more similar sensory properties to those of the control were 
achieved with the lowest proportions of cellulose. To summarize, the majority of 
research has concentrated primarily on dark and milk chocolate reformulations, 
while those for white, compound, and ruby chocolate should also be examined to 
determine how low-calorie ingredients affect their properties. 
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Filling creams represent an important ingredient in different food products, such 
as cookies and filled chocolates. Based on their composition—large amounts of fat 
and sugar—they are considered unhealthy products and their consumption is 
concerning. As a result, it is becoming increasingly important to replace or reduce 
the use of HF in these formulations maintaining the required physical and organo-
leptic properties. In light of this, an MG oleogel was tested as a fat material in filling 
creams for sandwich cookies [119]. Creams prepared with variable oleogel amounts 
resulted in a significant impact on final properties and appearance (Fig. 26.5b). 
Increasing oleogel concentration, softer creams with higher adhesiveness than the 
control were obtained, improving cookie adhesion. Wax oleogels have also been 
proposed to replace filling cream fats. Up to 17% replacement was possible with BW 
oleogels, maintaining high OBC and significantly lowering SFA content 
[120]. Incorporating lucuma powder into a CRW oleogel resulted in creams with 
lower saccharose levels without affecting OBC and water activity, ensuring physical 
and microbiological stability [121]. In a model praline system, MG oleogels 
displayed better migration-delaying properties than STC-LC oleogels [122]. Addi-
tionally, these oleogels were fully melted at body temperature, not causing waxiness. 
Moreover, multicomponent oleogels have been used in filling production aiming to 
obtain a healthier product [123, 124]. For instance, a reduction of at least 53% in 
SFA and 100% in TFA was achieved with some MG-CLW-HF oleogels, as well as 
good technological properties [124]. 

26.5 Meat-Based Products 

Meat product final quality is greatly affected by the amount and/or composition of 
the animal fat employed, as it contributes to textural characteristics—tenderness, 
palatability, juiciness—as well as flavor and physical appearance. Nonetheless, 
excessive consumption may be harmful to human health due to its high SFA,



TFA, and cholesterol content [127, 128]. Hence, proper strategies are needed to 
produce reformulated low-fat meat products with healthier FAP maintaining con-
sumer acceptance. This section assesses the development of a range of meat products 
whose natural fat profile has been modified with different oleogel-based systems, as 
shown in Table 26.4. 
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Burgers are the most popular fast food across genders and cultures, containing 
between 20 and 25% animal fat. Different oleogels have been proposed as fat 
replacers for burger formulations, achieving improved FAP. Oxidative stability 
and hardness of BW oleogel-based patties were lower compared to the control 
[130, 131], while using EC oleogels enhanced textural properties, although it also 
reduced oxidative stability [129]. Moreover, sensory analysis revealed high ratings 
for BW oleogel-based burgers, opposite to EC-SMS ones, which scored below 
neutral [131]. Patties with some acceptable characteristics were obtained using EC 
and CRW oleogels reinforced with AA, even significantly better than those formu-
lated with non-reinforced oleogels [66, 67]. Additionally, GO-BS-linseed oil 
oleogels did not alter burger texture while improving its nutritional profile 
[132]. Overall, lower fat replacement products were accepted by consumers, despite 
a marked preference for the control. 

Reformulated hamburgers with foam-based oleogels were softer, having an 
enriched FAP due to a � 65% SFA reduction [134]. Recently, bigels using EC 
oleogels have shown great potential in a meat product [135]. Compared to the 
control, bigel-based burgers showed improved cooking properties and sensory 
analysis scores. However, lipid oxidation increased with bigel incorporation, 
which could be improved by adding antioxidants or other structurants. 

Meatballs consist of ground meat rolled into a ball with other ingredients. A 
healthier meatball was designed based on the partial replacement of beef fat with 
CRW oleogels, negatively affecting their textural properties [139]. Oxidative stabil-
ity was affected not only by the amount of fat substitution but also by the type of oil 
used in the oleogel, improving by raising the MUFA:PUFA ratio. Meatballs with 
25% sunflower oil oleogel substitution scored significantly higher than the control in 
some characteristics and overall acceptability. 

Meat batters are made of water, fat, and protein, and thus they are considered 
emulsions. Consequently, fat and moisture stabilization is essential to the manufac-
ture of these products. Total fat substitution in meat batters has been studied by 
different replacement systems. Healthier FAP was achieved with structured canola 
oil systems—kappa-carrageenan emulsions or EC oleogels—by decreasing SFA and 
the n-6/n-3 ratio and increasing PUFA [140]. Reformulated products showed similar 
color and texture to the control while reducing lipid oxidation. Additionally, oleogel-
based batters showed better matrix stability than emulsion-based ones, with a more 
uniform microstructure and no fat losses. Multicomponent oleogels from soybean oil 
also decreased lipid oxidation, but no effects on texture were observed 
[141]. Although reformulated batters were darker and less red, products were 
accepted. Moreover, cellulose-based oleogels significantly increased PUFA while 
keeping total fat content close to control levels.
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(continued)
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Table 26.4 Oleogel applications in meat-based products 

Food 
product 

Replaced fat (wt% 
replacement) 

Burgers Oleogel EC (10)/sesame Animal fat 
(25, 50) 

[129] 

Oleogel BW (10)/rapeseed Beef fat (100) [130] 

Oleogel BW (11), EC:SMS (11:3.67)/ 
olive:linseed:fish (44.39:37.87: 
17.4) 

Pork backfat (100) [131] 

Oleogel EC:AA (2:4)/soybean Flank and shank 
fat (50) 

[67] 

Oleogel CRW:AA (2:4)/soybean Bovine fat (50) [66] 

Oleogel GO:BS (4.8:3.2)/linseed Pork backfat 
(25, 75) 

[132] 

Oleogel GO:BS (n.s)/linseed n.a [133] 

Foam-
structured 
oleogel 

HPMC (4)/canola Beef tallow 
(50, 100) 

[134] 

Bigel EC (10)/sunflower Animal fat (25, 50, 
75) 

[135] 

O/W 
emulsion 

Pork skin (20)/olive Bovine backfat 
(100) 

[136] 

O/W 
emulsion 

Prosella® (6.7)/olive Pork fat (100) [137] 

O/W 
emulsion 

Sodium alginate: Carrageenan: 
Glycerol monostearate (1:1:1)/ 
olive 

Beef backfat 
(33.3, 66.6, 100) 

[138] 

Meatballs Oleogel CRW (7.5)/sunflower, sunflower: 
black cumin seed (90:10, 80:20) 

Beef fat (25, 50, 
75) 

[139] 

Meat 
batters 

Oleogel EC (12), EC:MG (12:1.5, 12:3)/ 
canola 

Beef fat (100) [140] 

Oleogel EC:Avicel RC-591:α-cellulose 
(7.37:1.815:1.815)/soybean 

Pork backfat (100) [141] 

O/W 
emulsion 

Kappa-carrageenan (1.5, 3)/ 
canola 

Beef fat (100) [140] 

Meat 
sauces 

Oleogel MG (0.5, 2.5), LC (2.5)/olive: 
sunflower (80:20) 

Olive: Sunflower 
(100) 

[142] 

Oleogel MG, fatty alcohols (0.5, 2.5)/ 
olive:sunflower (80:20) 

Olive: Sunflower 
(100) 

[143] 

Pâté Oleogel BW (8)/linseed Pork backfat 
(30, 60) 

[144] 

Oleogel BW (9.12)/linseed Pork backfat 
(60, 100) 

[145] 

Oleogel BW (11)/olive:linseed:fish 
(44.39:37.87:17.4) 

Pork backfat 
(60, 100) 

[146] 

Oleogel EC (14), EC:MG (12–14:1.5–3)/ 
canola 

Pork fat (100) [147] 

Oleogel EC:MG (12:3)/canola Lard (20, 40, 
60, 80, 100) 

[148]
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Table 26.4 (continued)

Food 
product 

Replaced fat (wt% 
replacement) 

Oleogel EC:SMS (11:3.67)/olive:linseed: 
fish (44.39:37.87:17.4) 

Pork backfat 
(60, 100) 

[146] 

Salami Oleogel EC:MG, EC:SOSA (6–14: 
3), EC:LC (8–12:1)/canola 

Pork and beef fat 
(50) 

[149] 

Sausages 

Bologna Oleogel MG (5)/sunflower, HOSO Pork backfat 
(25, 50, 75, 100) 

[150] 

Oleogel RBW (2.5, 10)/soybean, high 
oleic soybean 

Pork backfat (100) [151] 

O/W 
emulsion 

Pork skin (37.5)/HOSO Pork backfat 
(25, 50, 75, 100) 

[152] 

Breakfast Oleogel EC (8–14), EC:SMS (8–14:1.5– 
3)/canola 

Pork backfat (100) [153] 

Fermented Oleogel MG (15)/olive Pork backfat (50) [154] 

Oleogel BW (10)/olive:chia (80:20) Pork fat (80) [155] 

Oleogel BW (8), GO:BS (4.8:3.2)/linseed Pork backfat 
(20, 40) 

[156] 

O/W 
emulsion 

Soy protein isolate: Gelatin (10: 
3)/olive:chia (80:20) 

Pork fat (80) [155] 

O/W 
emulsion 

Kappa-carrageenan: Polysorbate 
80 (1.5:0.12)/linseed 

n.a [157] 

Frankfurter Oleogel BW (8)/linseed Pork backfat 
(25, 50) 

[158] 

Oleogel RBW (2.5, 10)/soybean Pork backfat (100) [159] 

Oleogel EC (10)/canola Beef fat (100) [160] 

Oleogel MG:PS (15:5)/sunflower Pork backfat (50) [161] 

Oleogel EC (8, 10, 12, 14), EC:SMS (8– 
14:1.5–3)/canola 

Beef fat (100) [162] 

Oleogel EC:SMS (8:1.5, 8:3, 10:1.5)/ 
canola 

Beef fat (20, 40, 
60, 80) 

[163] 

Oleogel, 
O/W 
emulsion 

GO:PS (3:7, 6:4, 6:14, 12:8)/ 
sunflower 

Pork backfat (50) [164] 

Sucuk Oleogel SFW, BW (10)/flaxseed Beef tallow fat 
(100) 

[165] 

Thai sweet Oleogel RBW (2)/rice bran Pork backfat 
(25, 50, 75) 

[166] 

Venison W/O 
emulsion 

Soy protein concentrate (0.1)/ 
olive 

High-fat pork 
meat (15, 25, 
35, 45, 55) 

[167] 

AA adipic acid, BS β-sitosterol, BW beeswax, CRW carnauba wax, EC ethylcellulose, GO 
γ-oryzanol, HOSO high oleic sunflower oil, HPMC hydroxypropyl methylcellulose, MG saturated 
monoglycerides, n.a not applicable, n.s not specified, PS phytosterols, RBW rice bran wax, SFW 
sunflower wax, LC lecithin, SMS sorbitan monostearate, SOSA stearyl alcohol/stearic acid
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Meat sauce stabilization is a relevant issue due to the difficulty of structuring oil 
phases. Oleogelation can improve system quality and organoleptic properties as 
gelators structure the oil phase into a semi-solid gel network linking solid particles, 
thus preventing or delaying separation [14]. Taking this into account, MG and LC 
oleogels were tested as replacers for liquid oil in meat suspensions [142]. Both exert 
a stabilizing action on the sauces, although MG oleogels reduced phase separation 
more effectively than LC. Even with the lowest MG concentration, a stabilized sauce 
with similar rheological properties to those of the control was obtained. Likewise, 
MG or fatty alcohol oleogels were used in meat suspensions to improve their 
stabilities—being fatty alcohols more efficient than MG, even at low 
concentrations—[143]. Moreover, both oleogels enhanced meat sauce mechanical 
stress resistance without altering their consistency. 

Pâté is a highly appreciated spreadable meat product known for its flavor and 
smooth texture, containing 17–50% animal fat [128]. BW oleogels were tested to 
replace pork backfat in liver pâtés, obtaining products with optimal FAP. Pâté 
stability, sensory parameters, and texture were not significantly affected by substi-
tution with an olive, linseed, and fish oil oleogel [146]. Conversely, when a linseed 
oil oleogel was used, a decrease in hardness and adhesiveness was observed 
[144]. Fat replacement significantly increased lipid oxidation [146], which could 
be compensated by antioxidant incorporation [145]. Other reformulated pâtés made 
from EC or EC-MG oleogels exhibited higher oil loss than the control, possibly due 
to the formation of larger fat globules [147]. Also, they all had similar sensory 
hardness, oiliness, juiciness, and cohesiveness as the control. Overall, the 12:3 EC: 
MG oleogel-based pâté demonstrated the best performance in achieving similar 
characteristics to the control, while also successfully reducing SFA. By substituting 
up to 60% pork fat with this binary system, the final product demonstrated good oil 
retention and improved textural properties, without modifying sensory properties 
and color [148]. An EC-SMS oleogel prepared using a lipid mixture of olive, linseed, 
and fish oils was also tested, yielding products not significantly different from the 
control in technological behavior and physicochemical properties, except lipid 
oxidation [146]. Additionally, although all samples were rated near neutral, sensory 
parameters showed a negative effect. 

Salami, a coarse ground meat product, has large fat particles that play a crucial 
role in their appearance, texture, and mouthfeel; hence, its replacement without 
product destabilizing is a challenge. Fat partial replacement with different canola 
oil oleogels—from EC-MG, EC-LC, or EC-stearyl alcohol/stearic acid—was pro-
posed [149]. Structuring canola oil led to a microstructure with fat globules similar to 
the control. Specifically, EC-LC oleogels produced larger gelled oil particles that 
effectively bind to the protein matrix. Texture parameters were not affected in most 
formulations. 

Sausages consist of ground meat and non-meat ingredients which contribute to 
the quality, taste, and aroma of the final product. Several types of sausage are 
available, including fresh, smoked, cured, and cooked [128]. Bologna sausages 
have been reformulated with oleogel-based systems from different gelators. MG 
oleogels were used to replace pork fat, resulting in sausages that were easier to slice



than the control, possibly due to a more compact product structure as the amount of 
pork fat was reduced [150]. Despite some modified textural properties, most replace-
ments produced stable emulsions that were sensorially accepted by consumers with 
increments in UFA. Oleogels formulated with soybean or high oleic soybean oil and 
RBW were also tested to totally replace pork backfat [151]. Sausage quality and 
organoleptic properties were not affected by the oil type, except for FAP, which was 
improved by the high oleic type resulting in products with lower n-6/n-3 ratios. In 
addition, no sensory differences were detected in terms of aroma, flavor, texture, and 
moistness, but the color of the control was more intense. Oleogel-based bologna 
sausages had fewer and larger lipid globules than unstructured oil-based ones, more 
closely resembling pork fat sausages. Stable batters were obtained with the use of 
oleogels instead of control fat, observing water separation for the sausages 
containing oil without structurant [150, 151]. 
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Breakfast sausages were reformulated using oleogels from canola oil structured 
with EC or EC-SMS to totally replace pork backfat [153]. SMS incorporation 
improved hardness values being similar to those of control. However, sensory 
hardness could not be matched by oleogels, and therefore samples were generally 
less sensory juiciness and oiliness, while the replacement with ungelled canola oil 
had comparable values to the control. 

Fermented sausages have been produced with different oleogel-based systems to 
evaluate the effects of pork backfat replacement. An MG-olive oil oleogel showed 
promising results by replacing 50% fat [154]. Reformulated sausages were sensory 
acceptable and microbiologically safe, with an enhanced FAP by reducing �19% 
cholesterol and �17% SFA and increasing �9% MUFA. Similarly, two oleogels 
from BW or GO-BS and linseed oil were tested as replacers [156]. Gelator type and 
replacement level led to significant differences in various physicochemical and 
mechanical properties as well as consumer acceptability—probably due to modifi-
cations generated in the drying process from different initial water contents. Sausage 
nutritional profile was improved with oleogel incorporation achieving the greatest 
reductions in SFA with the highest level of replacement. However, oleogel-based 
sausages revealed lower sensory acceptance than the control. 

Not only oleogels but also emulsions were tested to replace the fat in this type of 
sausages. The ability of wax oleogels and emulsion gels formulated with a mixture 
of olive and chia oils to replace fat was studied [155]. Both replacement strategies 
enriched FAP with decreased SFA and increased PUFA. Sausage oxidative stability 
and their microbiological and technological properties were not affected using 
oleogel or emulsion, except for hardness (oleogel < emulsion � control). 
Reformulated sausage sensory attributes scored similarly, but lower than control. 
Besides, the lipid source affected the cross-sectional appearance, perfectly 
distinguishing the animal fat in the meat matrix of the control product, whereas the 
presence of oleogel or emulsion in the reformulated products was less discernible 
(Fig. 26.6a). To preserve product quality, a linseed oil emulsion added with a natural 
antioxidant extract was used [157]. The extract could enhance sausage physico-
chemical properties and prolong their shelf life, even using a high-PUFA oil.
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Fig. 26.6 Appearance of meat-based products formulated with different oleogel-based systems 
compared with a control product: (a) low-fat fermented sausages from (a1) animal fat and with 80% 
fat replacement using wax (a2) oleogel and (a3) emulsion, reproduced with permission from [155] 
under the terms of an open access Creative Commons CC BY 4.0 license; and (b) sucuk sausages 
from (b1) animal fat, (b2) beeswax oleogel, and (b3) sunflower wax oleogel, reproduced from [165] 
with permission from Elsevier 

Frankfurter sausages have also been successfully manufactured with a variety of 
oleogel-based systems. For instance, BW-linseed oil oleogels were tested to replace 
backfat significantly improving sausage FAP by reducing SFA and cholesterol 
content and balancing the n-6/n-3 ratio [158]. Although some physicochemical, 
mechanical, and sensory properties were unfavorable, all reformulations scored 
positively and received acceptance; however, the control received the highest 
acceptability. Fat total replacement was evaluated using RBW-soybean oil oleogels, 
significantly reducing frankfurter flavor [159]. Gelator concentration affected prod-
uct quality, but not enough to distinguish their texture from that of the control. 
Another monocomponent oleogel—EC-canola oil—was investigated to totally 
replace fat, resulting in products with improved texture compared to those made 
with ungelled oil and similar chewiness and hardness to the control [160]. 

Fat partial replacement was also studied using binary oleogels from PS and a high 
MG content, resulting in sausages with a PUFA-rich and SFA-low lipid profile 
[161]. Although some differences in texture were found between oleogel-based 
frankfurters and the control, sensory analysis indicated that reformulated products
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were generally accepted. Furthermore, frankfurter reformulation substituting 100% 
beef fat with EC or EC-SMS oleogels showed the possibility of tailoring textural and 
sensory sausage properties [162]. Without SMS addition, lower sensory hardness 
than that for ungelled oil was obtained. When an 8:1.5 or 8:3 EC:SMS ratio was 
used, hardness was similar to the fat control, while higher EC concentrations resulted 
in a significant increase in this parameter. Likewise, the same binary system was 
used to reformulate frankfurters based on the partial replacement of beef fat 
[163]. Sausage containing 10:1.5 EC:SMS oleogel had the most similar parameters 
to the control. In addition, juiciness and oiliness increased as replacement levels 
increased, while smokehouse and water losses decreased. The use of GO-PS-sun-
flower oil oleogels or their emulsions was also assessed to partially replace pork 
backfat [164]. Compared to the control, oleogels did not affect any sausage textural 
parameters, while emulsions reduced chewiness, hardness, and gumminess. Further-
more, all treatments had similar acceptance, except for some emulsion-based 
sausages. 
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Sucuk sausages were reformulated with flaxseed oil oleogels from BW or SFW to 
replace 100% fat [165]. Some color variations were observed, which could be due to 
differences in fat sources used (Fig. 26.6b). Oleogel-based sausages had lower 
textural and sensory properties and consumer acceptance than the control, but 
an 17% increase in PUFA and essential fatty acids. 

Thai sweet sausage formulation was redesigned with a RBW-rice bran oil oleogel 
to replace the traditional fat, resulting in a product with improved FAP and some 
changed final characteristics [166]. For 75% replacement, softer sausages with the 
lowest cholesterol level were obtained, while the highest overall acceptance was 
reached with 50% replacement. 

Venison sausages were reformulated by replacing high-fat pork meat with an 
emulsion from olive oil and soy protein [167]. During ripening, all replacements 
showed satisfactory physicochemical characteristics and acceptable levels of lipol-
ysis and lipid oxidation. Although all emulsion-based sausages were accepted by 
consumers, those containing no more than 25% emulsion were preferred. 

26.6 Dairy Products 

Different reformulations studied to decrease SFA in dairy-based products—and/or to 
simulate them as vegan products—are presented in Table 26.5. 

Cheese, being recognized as a great protein source, is usually formulated with a 
high content of saturated fats, whether of dairy or vegetable origin [168]. Both fat 
content and composition affect important cheese properties such as flavor, rheology, 
texture, and appearance [170]. Therefore, the replacement of high SFA feedstock 
with oleogel-based systems can drastically impact product quality and consumer 
acceptance. CRW oleogels were tested as palm oil full replacers in the production of 
a low SFA cheese mimic, obtaining an increase in product elasticity, hardness, and
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chewiness and at least 85% SFA reduction [168]. In addition, oleogel color was 
transferred to the final product, generating slightly darker structures. 
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Cream cheese is a fresh, fermented, unripened spreadable product with a high 
moisture and HF (�30%) content and a whitish base color. RBW or EC oleogel-
based cream cheesees were successfully structured showing microstructures with 
similar fat globule size to a full-fat commercial sample and, consequently, were 
similar in hardness, spreadability, and stickiness [170]. Also, a 25% reduction in 
total fat and a 120% increase in UFA were achieved. RBW was preferred to EC as 
the structurant of high oleic soybean oil instead of the regular type. Although no or 
little differences were detected between texture and mouthfeel of an RBW oleogel-
based cream cheese and a control, flavor intensity and bitterness were rated as 
stronger, warranting some additional reformulation corrections. Additionally, the 
whole reformulation process had a protective effect against oxidation [169]. 

A cheese product based on commercial fat partial replacement with RBW or SFW 
oleogel was proposed [171]. Structural differences in the shapes of fat globules and 
their connections were associated with possible differences in protein interactions 
with SFA and UFA. However, increasing wax content favored a better oil

Table 26.5 Oleogel applications in dairy-based products 

Food 
product 

Replaced fat (wt% 
replacement) 

Cheese Oleogel CRW (3, 6, 9)/canola Palm oil (100) [168] 

Cream 
cheese 

Oleogel RBW (10)/high oleic 
soybean 

Commercial cream 
cheese fat (100) 

[169] 

Oleogel RBW, EC (10)/high oleic 
soybean, soybean 

Commercial cream 
cheese fat (100) 

[170] 

Processed 
cheese 

Oleogel RBW, SFW (5, 10)/soybean Commercial cheese 
fat (41.8) 

[171] 

Ice cream Oleogel RBW (10)/HOSO Milk fat (100) [172] 

Oleogel RBW, CLW, CRW (5, 7, 
10)/HOSO 

Milk fat (100) [173] 

Oleogel EC:UMG, EC:MG-DG (10: 
3)/HOSO 

Coconut fat (100) [174] 

W/O emulsion Hydrolyzed collagen:PS (5: 
23.75)/n.s 

Milk fat cream 
(50, 100) 

[175] 

O/W emulsion Whey protein (46.03)/LC-
added high oleic palm oil 

Milk fat cream 
(100) 

[176] 

O/W emulsion PS:GO (0.128–0.384:0.192– 
0.576)/sunflower 

Milk cream (100) [177] 

Vegan 
cream 

Oleogel CLW (3)/rapeseed:linseed 
(1:1) 

Milk fat, palm oil 
(100) 

[178] 

Emulsion-
templated 
oleogel 

Basil seed gum:Soy protein 
(1:0, 2:1)/n.s 

Fat (100) [179] 

CLW candelilla wax, CRW carnauba wax, DG diglycerides, EC ethylcellulose, GO γ-oryzanol, 
HOSO high oleic sunflower oil, LC lecithin, MG saturated monoglycerides, n.s not specified, PS 
phytosterols, RBW rice bran wax, SFW sunflower wax, UMG unsaturated monoglycerides



structuration, reaching rheological and texture properties similar to control. More-
over, although reformulated products had similar total fat content, an � 30% SFA 
reduction was obtained.
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Ice cream is a frozen colloidal structure composed of air bubbles, fat globules, ice 
crystals, and an unfrozen whey phase, as well as sugar compounds [175]. A semi-
solidified emulsion is required to achieve the fat coalescence necessary in the 
whipping and freezing processes, which leads to air bubble stabilization and, 
subsequently, to the appropriate overrun and melt resistance. Ice-cream fat—being 
6–16% of product—is usually high in SFA, which is recognized as responsible for 
contributing to the freezing and melting behavior expected in ice cream [180]. In 
addition, high SFA content provides a smooth ice-cream texture and serves as an 
aroma carrier [172, 173, 175]. Therefore, the challenge is to maintain the ice-cream 
structure by replacing HF with vegetable oils, allowing the formation of a suitable 
colloidal oil network and inhibiting droplet coalescence. Oleogels from HOSO and 
EC or waxes, added with UMG or MG-DG, were tested as solid fat replacers. To 
avoid oil overheating during EC system emulsification, a pre-made oleogel method 
was successfully applied [174]. Although UMG favored the slow melting of wax 
oleogel-based ice creams due to their fat globule aggregation capability [172, 173], 
they destabilized EC oleogel-based emulsified structure [174]. However, small and 
stable globule sizes were obtained using MG-DG in the EC oleogel emulsification 
[174]. Although oil drop coalescence decreased with EC inclusion, the overrun 
could not be improved to reach the expected control value. On the other hand, the 
use of RBW instead of CLW or CRW improved some properties of oleogel-based 
ice creams, probably due to differences in wax crystallization in oil droplets 
[173]. Thus, RBW oleogels could favor ice-cream reformulations with 10 and 
15% fat. 

A gelled system with PS and hydrolyzed collagen was used to replace ice-cream 
fat, resulting in whiter creams (ΔE < 6) with physical properties of similar or 
improved quality compared to the control, probably due to an enhanced protein 
network formation [175]. Thus, a promising option was obtained to decrease SFA 
content, even including healthy compounds such as PS and collagen. Additionally, 
PS-GO oleogel-based emulsions were adequate options to replace milk cream 
[177]. Increasing PS-GO content improved ice-cream quality characteristics com-
pared to unstructured oil-based ice cream and showed similar or even better param-
eters than those of the control. Additionally, not only SFA was highly diminished 
(�80%), but also the incorporation of PS and GO could be beneficial to offer a 
healthier product. 

Aiming to obtain an adequate ice-cream base from whey protein and LC, 
composition and process parameters for emulsion formation were optimized 
[176]. The use of LC-added high oleic palm oil, instead of coconut or soybean oil, 
and the structurant-oil system microfluidization generated the most suitable struc-
tures. Reformulated ice cream presented viscosity and some texture properties 
similar to those of the control, although SFA content was significantly reduced. 

Vegan creams from stable high UFA oleogels were formulated not only to replace 
milk fat but also to reduce SFA commonly provided by palm oil [178]. Soy-based



emulsion physicochemical properties were not substantially modified by processing 
conditions nor by fat phase. CLW oleogel and milk fat generated emulsions with 
similar rheological and physical instability parameters, but different from those of 
dairy cream. However, palm oil-based emulsion was the most structurally unstable. 
Additionally, oleogels produced by using polysaccharides-protein Pickering emul-
sions were tested as fat replacers in low-fat (5–15%) vegan cream formulations 
[179]. Appearance and texture attributes of reformulated creams were rated at 
acceptable values, being the lowest fat level the most similar to the control. 

26 Edible Applications 639

26.7 Other Food Applications 

In addition to mimicking the performance of solid fats as food ingredients, structur-
ing oils with high UFA content has also been explored to provide technological 
functions, such as shelf-life prolongation of ready-to-eat foods, quality improve-
ments of fried foods, and development of tailor-made foods through 3D printing, 
among others (Table 26.6). 

Coatings are restricted-permeability films usually used to protect perishable foods 
from different external agents. Among the various coating options, edible films stand 
out for their reduced waste generation and consumer acceptance. W/O emulsions 
formulated using vinegar and MG-sorbitan tristearate (STS) oleogels were used to 
coat roasted eggplants by immersion and subsequent freezing [182]. Coating effi-
ciency was related to film wettability and greasiness, improving with 
increasing STS:MG ratio, although a high MG amount was needed to enhance 
emulsion consistency. Film appearance was semitransparent and did not change 
with the freezing process. Essential oil-enriched EC-MG oleogel-based emulsions 
were applied by spraying over sausages [183]. Antibacterial protection was demon-
strated only for low and medium viscosity EC emulsion-based films, which 
improved sausage edibility by 100 and 220% or 66 and 166% compared with 
untreated products or control (unstructured oil-based film), respectively. 

Additionally, films can be used to improve packaging technological aspects. In 
this sense, a BW oleogel-oil bilayer structure was used to promote yogurt sliding out 
from its container [181]. The oleogel layer on the base material enabled subsequent 
oil adhesion and, consequently, appropriate oil layer formation, which greatly 
improved viscous liquid product sliding (Fig. 26.7a). Moreover, this effect was 
maintained during long-term storage, without affecting product aroma and stability. 

Frying mediums are usually preferred with minimum PUFA and middle or high 
SFA. CRW oleogels from canola or soybean oils were tested as frying mediums for 
different products such as chicken breast [184], flour-based snacks [185], and instant 
noodles [186]. In all cases, sample fat content was reduced by at least 16% when 
frying in structured oil rather than free oil, regardless of the structurant level used. 
This effect could be attributed to changes induced in the surface texture of the fried 
product, generating smaller pores by frying in oleogel than in oil and, therefore, 
achieving lower oil retention capacity in the final product. Oxidative stability was



System Gelator (wt% in system)/oil Reference

maintained or improved with respect to controls. Although there were some differ-
ences in color and appearance (Fig. 26.7b), all snacks were generally well accepted 
by consumers [185]. 
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Table 26.6 Oleogel technological functions 

Food 
application 

Replaced fat (wt 
% replacement) 

Coating Oleogel BW (10)/sunflower n.a [181] 

Oleogel MG:STS (0.6–11:0.6–11)/olive:sun-
flower (27.0:62.0, 28.7:65.8) 

n.a [182] 

O/W 
emulsion 

EC:MG (1.2:2)/cinnamon essential Cinnamon essen-
tial oil (100) 

[183] 

Deep fry-
ing 
medium 

Oleogel CRW (5, 10)/canola Canola oil (100) [184] 

Oleogel CRW (5, 10, 15)/soybean Soybean oil 
(100) 

[185] 

Oleogel CRW (5, 10)/soybean Soybean or palm 
oil (100) 

[186] 

Gummies Oleogel Stearic acid (10)/canola n.a [187] 

Foams Oleogel MG:PS (3–10:0–10)/canola n.a [188] 

Noodles Oleogel CLW (10)/soybean n.a [189] 

3D printing 
material 

Oleogel BW (2–25)/sunflower n.a [190] 

Oleogel MG:PS (10–20:20–50)/HOSO n.a [191] 

Oleogel MG:PS (10:20)/HOSO n.a [192] 

Oleogel EC:PEG (11:1–5)/MCT n.a [193] 

Oleogel PS:LC (6–28:4–20)/sunflower n.a [194] 

BW beeswax, CLW candelilla wax, CRW carnauba wax, EC ethylcellulose, HOSO high oleic 
sunflower oil, LC lecithin, MCT medium chain triglycerides, MG saturated monoglycerides, n.a 
not applicable, n.s not specified, PEG polyethylene glycol monostearate, PS phytosterols, STS 
sorbitan tristearate 

The use of oleogels in other applications, such as foams [188], noodles [189], 
gummies (Fig. 26.7c) [187], and inks for 3D printing [190–194] has contributed 
positively to some product characteristics, demonstrating the wide range of options 
available for their usage. 

26.8 Conclusions 

Although a step behind oil structuring, during the last years, the application of 
oleogel-based systems in some goods has advanced significantly, with particular 
emphasis on replacing HF to improve FAP, but also applied to maintain or improve 
some physicochemical, structural, or sensory characteristics of foods and even their 
containers. Additionally, oleogel-based systems have the advantage of serving as 
carriers of other nutritional compounds, which is enhanced with greater versatility 
when such systems are formed by simultaneous hydrophobic and hydrophilic



phases—as emulsion, templated-based, or bigel systems. Therefore, current appli-
cations will continue to be evaluated as feedback to improve system formulation— 
with a high expectation on gelling using multicomponents—and processing. Gen-
erally, with an appropriate choice of gelling system and fat substitution level, 
formulations could be tailored to meet specific raw material and/or other end-use 
requirements and maintain the desired mechanical properties. However, at this point, 
it is important to emphasize that not all property differences found between struc-
tured oils and control fats are transmitted to reformulated foods. The effect of 
oleogel-based system incorporation on food properties depends not only on lipid 
replacement level and oleogel structuring system but also on several factors, such as 
specific formulation and raw materials—type and purity—even their interactions, 
replaced fat, total lipid content, processing and storage conditions, and temperature
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Fig. 26.7 Appearance of products of different oleogel-based system technological applications: (a) 
packaging with (a1, a2) unstructured oil and (a3, a4) coating from beeswax oleogel, reproduced 
from [181] with permission from Elsevier; (b) products fried in (b1) soybean oil and carnauba wax 
(CRW) oleogels with (b2) 5 wt% CRW, (b3) 10 wt% CRW, and (b4) 15 wt% CRW, reproduced 
from [185] with permission from Elsevier; and (c) gummies from stearic acid oleogel-based systems 
enriched with (c1, c2) doum juice and (c3, c4) orange juice, reproduced from [187] with permission 
from Springer-Nature under the terms of the Creative Commons CC BY 4.0 licence



at which the products are consumed and tested. This makes predicting general trends 
extremely challenging, so it is suggested to look for the best conditions for each 
particular formulation.
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While an active evaluation of oleogel-based system applications in the food 
sector has been demonstrated throughout this chapter, there are some gaps that 
have yet to be explored in sufficient depth. Instrumentally measured values, although 
very valuable as a guide for experimentation, do not always have the ability to reflect 
consumer behavior or preference. Consequently, the optimization of oleogel-based 
system properties must consider the effect of their incorporation into the target 
product, even including sensorial and digestibility analysis and structural and chem-
ical stability studies during storage to confirm goal achievement. In general, oleogels 
and emulsions have been widely studied as fat substitutes in almost all food 
categories presented here. However, other system applications could offer advan-
tages not yet examined. In addition, some of them deserve specific studies, such as 
microbiology stability in those where water activity is increased. Also, with a rather 
limited approach yet, the growing demand for vegan, gluten-free, and/or lactose-free 
foods makes it necessary to evaluate HF substitution in the corresponding products. 
Promising results are expected to assist food industries in adopting oleogel-based 
systems as fat replacers or for developing health-beneficial products. Additionally, 
based on the current knowledge, new applications may emerge. 
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