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Abstract A graph-of-words is a graph representation of natural language text based 
on proximity in the linear text reading order: the vertices are the words, and edges 
are induced by . k left and right neighbours of the words. Vertices representing same 
or similar words are then contracted. We propose graphs-of-words where edges are 
instead induced on paths in the syntax trees (we investigate both dependency and 
constituency trees). We discuss some properties, advantages, and disadvantages of 
classic and new graphs-of-words on texts extracted from literature, as well as from 
a technical Q&A database. 

1 Introduction 

Natural language is human-specific, ambiguous, and often ungrammatical; its under-
standing is usually subjected to context knowledge. It is opposed to formal language, 
which is computer-specific, unambiguous, and must be grammatically perfect to be 
meaningful: its pragmatics are formally defined by the effect it has on an electronic 
or mechanical system. In this paper we use formal language constructs to instruct 
computers to deal with natural language text. More precisely, we focus on a very 
specific and well-known task in Natural Language Processing (NLP), i.e. that of key-
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word extraction: given a text in natural language, output .K keywords that a human 
would find the most pertinent for the text. This obviously poses the issue of empir-
ical verification: since different humans would have different preferences, how do 
we determine what keywords are “best”? In this paper we resort to ground truths put 
together by a restricted number of humans (see Sect. 3). 

The most established method for extracting keywords from natural language text 
is probably based on ranking functions (see e.g. [ 14]) based on frequency of words 
in documents with respect to a set of documents called corpus [ 11]. The main appli-
cation is automatic document indexing or summarization [ 12]. 

This paper replaces the concept of word frequency in documents with that of 
vertex degrees in graphs that represent the text. Methodologically speaking, the main 
contribution is a comparison between different graph representations of text. One of 
the graph representations we consider is derived from constituency syntax trees (see 
Sect. 1.3, which, to the best of our knowledge, has never been previously considered 
for this purpose). 

1.1 Ranking Functions for Text 

The earliest cornerstone of information retrieval in text is perhaps the TF-IDF ranking 
function. It consists of the product of two other functions: Term Frequency (TF) 
and Inverse Document Frequency (IDF) [ 15]. We shall limit our introduction to 
the functions we actually used in our computational experiments. In the following 
formulæ, we let . C be a corpus (i.e., a set) of text documents, .D be a document in . C , 
and . t be a term (i.e., a word) in . D. Then: 

.tf(t, D) = |(v ∈ D | v = t)| (1) 

.TF(t, D) = 1 + ln(1 + max(0, ln(tf(t, D)))) (2) 

.IDF(t,C) = ln(|C| + 1)
∑

D∈C tf(t, D)
(3) 

are the basic building blocks for two well-known ranking functions. These are: 

.TFIDF(t, D,C) = TF(t, D) IDF(t,C)

1 − b + ( b|D|∑
P∈C |P|/|C|

) (4) 

.BM25(t, D,C) = (k1 + 1)tf(t, D) IDF(t,C)

k1
(
1 − b + ( b|D|∑

P∈C |P|/|C|
)) + tf(t, D)

, (5) 

where .b = 0.5 and .k1 = 1.2. We aim at replacing .TF with the weighted degree 
.tw(t, D) of a word vertex . t in a graph .G(D) representing a document, namely:
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.tw(t, D) =
∑

v∈NG(D)(t)

dtv (6) 

.TWIDF(t, D,C) = tw(t, D) IDF(t,C)

1 − b + b
( |D|∑

D∈C |P|/|C|
) , (7) 

where .duv is the weight of the edge .{u, v} in the graph .G(D), and .b = 0.75. The  
weights of the constants is taken from [ 16]. For unweighted graphs .G(D) we have 
.duv = 1 for all edges .{u, v}. 

1.2 Graph-of-Words 

Graphs can be used to summarize and extract keywords from a text in natural language 
[ 13]. In general, these graphs encode syntactical and sometimes semantic information 
on the edges, that represent relations on the words inferred from the text. Here we 
look at a purely syntactical construction proposed in Rousseau’s Ph.D thesis [ 16] 
under the name graph-of-words. 

In a graph-of-words (gow), the vertices are labeled by the words. The edges inci-
dent to each node are induced by the proximity of the words that are left and right of 
the node word in the linear text reading order. For example, in the sentence “Com-
puters are close to understanding natural language”, the words “are” and “to” are .1-
proximal to “close”, and the words “computers” and “understanding” are.2-proximal 
to “close”. In a gow with proximity parameter. 2, the node labelled by “close” would 
be adjacent to the vertices labelled by “computers”, “are”, “to”, “understanding”. 

Note that, if a word occurs more than once in a text, this construction creates 
separate vertices referring to each occurrence. Moreover, the resulting graph would 
be a simple chain of embedded cliques, where almost every vertex has the same 
degree. This motivates a last contraction step in the construction of gows: if two or 
more vertices represent different occurrences of the same word, they are contracted 
to a single node. This last step is sometimes interpreted more broadly, for example by 
contracting vertices having same lemmatized word (i.e. the stem of the word without 
the desinences). An important pre-processing step to a useful gow is the removal of 
stop-words: words that are very frequent in most texts, but do not carry keyword-
status information. Typically, stop-words are articles, auxiliary verbs or particles, 
prepositions, conjunctions, common adverbs, and so on. An example of a gow is 
given in Fig. 1. We note that gows of proximity . k have at least .2k adjacencies. 

1.3 Syntax Trees 

In the framework of formal languages, syntax trees are the trace of a parsing algo-
rithm for the sentences of the language. They also provide the mechanism by which
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Fig. 1 A graph-of-word with proximity. 2 of the sentence “if two or more nodes represent different 
occurrences of the same word, they are contracted to a single node”. Edges are weighted by the text 
distance between the two word vertices, but this weighting is not essential. The node with largest 
degree is labelled by the word “nodes” (in the above graph, the two nodes corresponding to “nodes” 
and “node” were contracted) 

computers assign semantics to high-level programs, or, in other words, execute code 
[ 6, 10]. Parsing algorithms use a formal grammar in order to drive a recursive anal-
ysis of a formal language sentence. The grammar consists of a set of rules of the 
form 

. tag −→ comp11 . . . comp1n1 | . . . | comph1 . . . comphnk ,

which requires that a phrase tag be decomposed in one of . h ways, each of which 
consists of a certain number of components, which can themselves be phrase tags 
or words. The grammar includes rules for each of the component tags down to the 
words, which are part of a given vocabulary. Each sentence input is assigned an 
initial tag, e.g. . S for “sentence”. The parser resolves tags recursively in terms of the 
component tags prescribed by the grammar rules, for as long as there are relevant 
rules that apply. In so doing, the parser produces a syntax tree. If the parser stops 
before all tags are resolved into constant words, the sentence does not conform to the 
grammar rules (this is how interpreters and compilers flag syntax errors). Otherwise, 
the recursive parsing process can also assign executable machine code to each of the 
constant words (which may be loops, tests, assignments), and then compose the code 
into an executable program (this is how interpreters and compilers turn a high-level 
language program into a set of actions performed by the CPU). 

Noam Chomsky is credited with the popularization of syntax trees applied to nat-
ural languages [ 1], where the sentence tag. S is usually mapped to the decomposition 
.NP VP: i.e., a sentence corresponds to a noun phrase and a verb phrase. These two 
tags are then recursively decomposed until the words are reached. Since natural lan-
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Fig. 2 The constituency tree for the same sentence as in Fig. 1. The tags are: S (sentence), SBAR 
(subordinate sentence), NP (noun phrase), VP (verb phrase), QP (quantificational phrase), PP 
(propositional phrase) 

Fig. 3 The dependency tree for the same sentence as in Fig. 1. The arcs are usually labeled by the 
dependency tag of a child node to its parent node, not shown here because they are not used in this 
paper 

guage is not formal, in general there may be many possible recursive decompositions, 
all leading to a different meaning, without an obvious way to choose between them. 
Chomsky’s trees are called constituency trees (see Fig. 2 for an example). 

Dependency trees are different types of trees originally introduced to linguistics 
by Louis Tesnière. The root of the tree is the main verb of the sentence, which has 
subject and main complement as child nodes. Each noun node has articles, adjectives, 
adverbs as child nodes (see Fig. 3 for an example). 

Our interest in syntax trees is that they provide a binary relation on words alter-
native to linear text order proximity. For dependency trees, this order is natural. For 
constituency trees, the words in a sentence appear as leaf nodes. In both cases, since 
(undirected) trees are connected, each word is adjacent to any other word by means
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of the shortest path between the corresponding nodes. This allows us to define a 
natural edge weight equal to the length of the shortest path. 

Contributions of this paper. In this paper we present gows based on different syn-
tactical relations:.k-proximity, dependency, constituency. While.k-proximity [17] and 
dependency-based gows [ 3] are not new, to the best of our knowledge, constituency 
trees were never used to construct gows so far. We computationally evaluate gows 
of these different types on several counts. 

2 Graph-of-Words Construction Algorithms 

By a sentence we mean a string that a human could correctly transform into a valid 
syntax tree. A phrase is a sub-string of a sentence, which appears as a sub-tree of the 
sentence’s syntax tree. Sentences are also assumed to be equivalent to lists of tokens, 
where each token can be either a word or a punctuation symbol. Notation-wise, for 
a sentence . s we let . si be the . i th token of . s for every .i ≤ |s|, which is the number of 
tokens of . s. 

All our gow construction algorithms have three main phases: 

1. generation of a binary relationship on words; 
2. projection over important words (and removal of non-important ones: typically 

these includes punctuation and stop-words); 
3. contraction of like words (typically words with the same lemmatization, or with 

a similar meaning according to an existing vocabulary or encyclopedia [ 2]). 

2.1 Proximity Gows 

In proximity gows the two phases (generation, projection) may be carried out in either 
order, but changing the order yields different weights (usefulness of edge weights 
in proximity gow is doubtful, though [ 16]). For a string of . n tokens, the generation 
phase is as follows. Initially, .V = {s1, . . . , sn} and .E is empty. Then we add edges 
.{si , si−h} and .{si , si+h} for all .1 ≤ h ≤ k and for all .h < i < n − h. 

The projection phase, if carried out before generation, simply removes the tokens 
deemed unimportant from the sentence. s. The new list of tokens. s ' is then subjected 
to the generation phase. Otherwise projection re-arranges edges incident to removed 
token vertices: we iteratively replace pairs of edges .({v, u}, {u,w}) incident to a 
removed vertex . u by means of an edge .{v,w} with weight .dvw = dvu + duw. Note  
that the removal process may add an edge .{v,w} involving a removed vertex: this 
edge will be part of a replaced pairs later in the iteration. 

Proposition 1 Let .G = (V, E) be the the .k-proximity graph obtained from the sen-
tence .s = (s1, . . . , sn) by performing generation first, then projection; and . H =
(U, F) be obtained by projection then generation. We have .G = H.
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Proof We have.V = U because projection removes the same vertices whether carried 
out before or after generation. Let us now consider an edge.{u, v} ∈ E , where. u = si
and .v = s j for some .i < j . If  . j − i ≤ k in the original sentence . s then projection 
either leaves . j − i invariant or makes it smaller, so .{u, v} ∈ F . Assume now that 
. j − i = k + 1. This means that there is an index . h with .i < h < j such that .sh is a 
removed node. Then, after generation, there must be an edge pair . ({si , sh}, {sh, s j })
in the graph that is replaced by a single edge.{si , s j }: obviously, since .sh is removed 
first in . H , this edge is also in . F . By induction, the same holds for any value of 
. j − i > k. The argument showing that edges in .F must also be in .E is similar. ∎

Given a weighted graph .G = (V, E, d) where .V is a set of tokens of a string . s, 
the contraction in. G of a subset.R ⊂ V s.t..|R| ≥ 2 is as follows: (i) a representative 
.r ∈ R is chosen; (ii) in all edges .{v, u} ∈ E with .v /∈ R and .u ∈ R the symbol . u is 
replaced by. r , with.dvr = dvu + dur ; (iii) all edges in the induced subgraph.G[R] are 
removed from. E ; (iv) all vertices in . R except from. r are removed from. V . 

Corollary 1 Before contraction, the token graph .G = (V, E) constructed by gen-
eration and projection has .|V | − 2k vertices (from the .(k + 1)-st to the .(n − k)th) 
having the same node degree .2k. 
Proof By Proposition 1, the graph.G = (V, E) can be constructed by projection first 
and then generation. Therefore this graph is a.k-proximity graph, where the. i th vertex 
has degree .2k for all .k < i ≤ n − k. ∎

Corollary 1 shows that the contraction step is essential to yielding proximity gows 
with range of different vertex degrees. This feature is important insofar as our aim is 
to look at word ranking functions based on vertex degrees in gows rather than word 
frequencies in documents. 

2.2 Dependency 

A dependency tree is by definition a tree graph over the sentence tokens. The gen-
eration of dependency trees from sentences is carried out by either Probabilistic 
Context-Free Grammar (PCFG) parsers [ 9] or appropriately trained neural networks 
[ 5]. 

Projection and contraction are the same as for proximity-based gows. We note 
that the projection step on dependency trees has a weak impact on connectivity, 
since most of the important tokens are naturally set at nodes closer to the root than 
non-important ones. 

2.3 Constituency 

A constituency tree is a tree graph over sentence tokens as well as syntax tags. In 
this sense, constituency trees can be seen as “liftings” from dependency trees. To
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a given constituency tree, one can retrieve the corresponding dependency tree 1 [ 7]. 
Vice-versa, there may be more than one constituency tree corresponding to a given 
dependency tree [ 18]. Existing algorithms aim at finding the smallest corresponding 
constituency tree. 

The generation of constituency trees from sentences is carried out by either PCFG 
parsers (see https://nlp.stanford.edu/software/srparser.html) or appropriately trained 
neural networks (see https://pypi.org/project/benepar/). 

Because constituency trees have more nodes than just tokens from the given sen-
tence, a preliminary projection step is necessary to remove all of the non-token nodes. 
This is different from the projection step in proximity and dependency gows, because 
the impact on connectivity when removing grammatical tag nodes is considerable. 
We therefore defined a more connectivity-aware variant of projection: (i) for any 
pair .(u, v) of leaf nodes (word tokens) in the constituency tree . T of the sentence . s, 
compute the shortest path .u → v in . T having length . l, and add the edge .{u, v} with 
weight .duv = l to the graph; (ii) remove all arcs adjacent to at least one non-leaf 
node; (iii) remove all non-leaf nodes. This preliminary projection step transforms 
the constituency tree into a graph on the word tokens from the sentence . s. 

We note that the most efficient algorithm for computing shortest paths in trees 
is by means of the Lowest Common Ancestor (LCA) of the origin and destination 
nodes. This yields a linear-time shortest path algorithm. 

Projection and contraction are the same as for proximity-based gows. 

3 Computational Experiments 

Our benchmark aims at establishing advantages and disadvantages of different types 
of gows in keyword extraction tasks. We consider two corpora: a literary one, and 
a technical one. We extract keywords from documents in these corpora using the 
following rank functions: .TFIDF and .BM25 using term frequency, and .TWIDF on 
.k-proximity, constituency tree, and dependency tree based gows (see Sect. 1.1). 

Our code is written in Python 3.10. For dependency and constituency syntax trees 
we made use of spaCy 3.4.4 [ 5] and benepar 0.2.0 [ 8]. Graphs were encoded and 
handled in NetworkX [ 4] 2.8.6. Experiments were obtained on an Apple M1 Max 
CPU with 64GB RAM and MacOS 12.6.3. See http://www.github.com/leoliberti/ 
syntaxGraphOfWords to access the code and the corpora. 

3.1 The Literary Dataset 

The literary corpus contains 18 short documents extracted from various literary work, 
each consisting of a single paragraph. The lexical and grammatical quality of these

1 See https://github.com/wenkokke/dep2con. 
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Table 1 Comparative results on a set of paragraphs from various literary sources, from which we 
extracted the three highest-rank keywords with various methods. We report the number of keywords 
given by each method that is in the list of three keywords in the ground truth 

Instance TermFreq Graphs-of-words 

Source kw TFIDF BM25 .1-prox .4-prox con dep 

1177 b.C. 3 1 1 1 2 0 1 

Crossings 3 1 1 1 1 0 0 

The golden bough 3 1 1 0 0 0 0 

Illuminating Eco 3 0 0 0 0 0 0 

The island of the day before 3 1 1 1 2 1 1 

The library of Babel 3 0 0 0 0 0 1 

Media stories: Malvinas 3 1 1 1 1 1 0 

Neverwhere 3 2 2 1 1 0 1 

Nothing 3 0 0 0 0 0 0 

Paine 3 0 0 0 0 0 0 

Foucault’s Pendulum 3 0 0 0 0 0 0 

The perks of being a wallflower 3 1 1 1 1 0 0 

Quantum computing since Democritus 3 0 0 0 0 0 0 

Richard III 3 1 1 1 1 0 1 

The seventh function of language 3 0 0 0 0 0 0 

Walden 3 1 1 0 0 0 0 

When the sleeper wakes 3 1 1 1 1 0 0 

Wisdom 3 0 0 0 0 0 1 

Total 54 11 11 8 10 2 6 

excerpts is perfect. The ground truth is a set of three keywords per document. These 
keywords were established by the authors of this paper before obtaining the compu-
tational results (we admit nonetheless to a considerable risk of personal bias in our 
ground truth). 

The keywords extracted automatically from the literary corpus are the 3 topmost 
ranking ones according to the values of term frequency and graph degree rank func-
tions. In Table 1 we report the number of keywords guessed by the automatic methods 
that are part of the set of keywords in the ground truth. 

We see from Table 1 that term frequency based ranking methods are better than 
gow-based methods. Amongst the latter, .4-proximity gows yield the best perfor-
mance. We also note that the two term frequency based rankings have exactly the 
same performance.
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3.2 The Technical Dataset 

The technical corpus consists of 449 documents, each of which is a client question 
to technical support. The corresponding ground truth was collected by one of the 
authors of this paper (NB) in the course of his work at OneTeam. The questions are “as 
asked”, with the normal amount of lexical quirks and ungrammatical phrases. These 
documents are short (.8.6 words on average). We therefore restricted .k-proximity 
to .k = 1, otherwise the central word in the sentence would have ended up having 
an abnormally high vertex degree in the .k-proximity gow. The average number of 
keywords per document in the ground truth is.2.4, but the maximum is. 5: we therefore 
allowed the extraction of up to . 5 keywords (the gows often had fewer than five 
vertices, however). 

In Table 2 we present comparative statistical distributions on the success scores 
of each method on documents with a certain number of ground truth keywords. Each 
entry has the format .x@y to mean that a given method was able to find . y correct 
keywords. x times, when ranking the docs documents having.|GT| keywords in their 
ground truth. The total.9 + 238 + 143 + 36 + 3 = 428 falls short of the total of. 449
documents since 21 documents had no keywords. Moreover, the marginal sums do 
not match docs because we did not print the number of times methods found zero 
correct keywords (it suffices to subtract the marginal sums from docs). 

Table 2 Comparative statistics on the technical corpus. Under “Input” we report the number (docs) 
of documents having.|GT| keywords in the ground truth. Each data entry.x@y in row (.|GT|, docs) 
and method-indexed column means that the corresponding method found . y out of .|GT| ground 
truth keywords in. x documents 

Input Ranking method 

.|GT| docs TermFreq Graphs-of-words 

TFIDF BM25 .1-proximity Constituency Dependency 

1 9 6@1 6@1 6@1 6@1 6@1 

2 238 111@1 111@1 115@1 115@1 113@1 

14@2 14@2 14@2 14@2 15@2 

3 143 41@1 41@1 41@1 43@1 42@1 

76@2 76@2 77@2 76@2 77@2 
1@3 1@3 1@3 1@3 1@3 

4 36 17@1 17@1 17@1 17@1 17@1 

6@2 6@2 6@2 6@2 6@2 

0@3 0@3 0@3 1@3 0@3 

1@4 1@4 1@4 0@4 1@4 

5 3 3@1 3@1 3@1 3@1 3@1 

Total 428 276 276 281 282 281
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In this experiment we find that gows are more effective at keyword extraction 
than term frequency. Constituency tree based gows are marginally better than other 
gows. We also note, again, that the two term frequency based methods attain equal 
performance levels. 

4 Conclusion 

We looked at graphs-of-words constructed using syntax trees, and their performance 
in extracting keywords from text. There is no clear dominance of term frequency 
versus graph-of-words rankinds. Graph-of-words scored better with short ungram-
matical sentences, term frequency in literary texts. In the future, we may apply this 
technique to structures such as “knowledge graphs”, which can be obtained by map-
ping the words in the text into structured knowledge sources. 
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