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Preface 

The Cologne-Twente Workshop (CTW) on Graphs and Combinatorial Optimization 
is an established workshop series initiated by Ulrich Faigle in 2001, which was the 
time he moved from Twente University to the University of Cologne. After several 
CTW editions in Twente and Cologne, the workshop was also held in different loca-
tions in Italy, France, Germany, the Netherlands, and Türkiye. Having been initially 
set up by discrete applied mathematicians, CTW still follows the mathematical 
tradition. 

In this CTW2023 edition, we implemented again two submission tracks: standard 
papers of at most 12 pages and traditional CTW extended abstracts of at most 4 
pages. This volume collects the standard papers that were accepted by CTW2023. 
The papers underwent a peer-review process performed by a Program Committee 
consisting of 30 members and 19 CTW steering committee members. PC members 
came from Austria, France, Germany, Italy, The Netherlands, Türkiye, Ukraine, UK, 
and the USA. We received 33 submissions of which 15 (45.5%) were accepted for 
publication in this volume. The chapters of this volume present works on graph 
theory, discrete mathematics, combinatorial optimization, and operations research 
methods, with particular emphasis on coloring, graph decomposition, connectivity, 
distance geometry, mixed-integer programming, machine learning, heuristics, meta-
heuristics, math-heuristics, and exact methods. Applications are related to logistics, 
production planning, and scheduling. 

The scientific program of CTW2023 included presentations of the 15 standard 
papers in this volume, of 10 extended abstracts, and 4 plenary invited lectures. As usual 
for the CTW, extended abstracts were subject to a high acceptance level, allowing also 
papers containing preliminary results with a particular focus on work presented by 
young researchers. Those traditional CTW extended abstracts were published in an 
internal publication and on the conference’s website at www.ctw2023.de. 

We thank all PC members for their hard reviewing work performed to select the 
papers and to improve their quality. 

Following the CTW tradition, a special issue of Discrete Applied Mathematics 
(DAM) journal dedicated to this workshop and its main topics of interest will be 
edited.

vii

https://www.ctw2023.de


viii Preface

This CTW edition also featured invited plenary speakers. Four well-known 
researchers accepted our invitation: Prof. Peter Gritzmann (Technische Universität 
München) spoke about “Diagrams, clustering, and coresets, and their application to 
the representation of polycrystals”, Prof. Janny Leung (University of Macau) gave 
insights into the complex nature of “Sports Scheduling”, Prof. Anne Remke (Univer-
sität Münster) gave an overview of “Optimizing different flavours of nondeterminism 
in hybrid automata with random clocks”, and Prof. Maximilian Moll (Universität 
der Bundeswehr München) chose the topic “Exploring Solutions to the Interdiction 
Problem: Network Optimization in Operations Research, Machine Learning and 
Quantum Computing”. 

We would like to thank the Associazione Italiana di Ricerca Operativa (AIRO) for 
hosting this volume in its AIRO Springer series. Also, last but not least, we would 
like to thank our organizing team for their dedicated work in making this workshop 
possible. 

Munich, Germany 
July 2023 

Andreas Brieden 
Stefan Pickl 

Markus Siegle
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The Algorithmic Complexity 
of the Paired Matching Problem 

Ruben F. A. Verhaegh 

Abstract We introduce a new matching problem originating from industry called 
the Paired Matching problem. The objective in the problem is to find a maximum 
matching of minimum cost in a bipartite graph. This is complicated by a non-trivial 
definition of cost, which is expressed based on a pairing of the vertices in one partite 
set. We prove that the problem is NP-complete even under further restrictions. We 
also study the parameterized complexity of the problem and give an exact algorithm 
for it using kernelization. In doing so, we show that the problem can be solved 
efficiently even on large inputs, as long as a given one of the partite sets is small. 

1 Introduction 

Background and motivation. The field of matching theory studies and explores 
matchings (sets of pairwise vertex-disjoint edges) and their properties, which are 
relevant for a plethora of applications. Some of the most fundamental matching 
problems, such as the Maximum Matching problem and the Minimum Weight 
Perfect Matching problem, have long been known to be solvable in polynomial 
time [ 4], while many other matching problems however have been proven to be NP-
complete, including the Exact Weight Perfect Matching problem [ 10], the 
Induced Matching problem [ 11] and the Rainbow Matching problem [ 7]. 

We introduce and study a new matching problem. Its origins and relevance lie 
in pick-and-place machines that are used in electronics assembly to place electri-
cal components on printed circuit boards. Recently, a company from the Eindhoven 
Brainport area designed an upgrade to one of their machines, such that it could pick 
and place two of these components at the same time. With this upgrade also comes 
a new optimization problem: which pairs of components should be handled simul-

This work is based on a Masters thesis [ 12]. 

R. F. A. Verhaegh (B) 
Eindhoven University of Technology, Eindhoven, The Netherlands 
e-mail: r.f.a.verhaegh@tue.nl 
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2 R. F. A. Verhaegh

taneously to minimize the time spent? This optimization problem can be formulated 
as the following problem. 

Minimum Paired Matching (MPM) 

Given: A bipartite graph .G = (P + T, E) with “people vertices” .P and “task ver-
tices” . T , where  the  .|P| = 2n people vertices are partitioned into ordered pairs 
.(a1, b1), (a2, b2), . . . , (an, bn). Also given are a constant.c ∈ R≥0, and a function 
. f : T × T → R≥0

Objective: Determine the minimum cost of a matching with cardinality.|T | in.G or conclude 
that no such matching exists in. G. Each people pair.(ai , bi ) contributes separately 
to the cost of a matching .M and the total cost of the matching is the sum of all 
these contributions. The contribution of a pair.(ai , bi ) is as follows: 

• If neither.ai nor.bi is matched to a task by. M , their contribution to the 
cost is . 0. 

• If exactly one of. ai and. bi is matched to a task by. M , their contribution 
to the cost is . c. 

• If .ai is matched to task .t1 ∈ T and .bi is matched to task .t2 ∈ T , then 
their contribution to the cost is given by . f (t1, t2). Note the possible 
asymmetry in the definition of . f , meaning that . f (t1, t2) might not 
equal . f (t2, t1). 

We define the Paired Matching problem (PM) to be the corresponding decision 
problem in which an additional parameter.d ∈ R≥0 is added to the input. Rather than 
finding the minimum cost of a matching with cardinality.|T | in the graph, the objective 
is then to determine whether such a matching exists with cost at most . d. 

For the practical application in electronics manufacturing, one may think of the 
tasks in this definition as electrical components and think of the people as machine 
parts to pick and place these components. Then, the cost to be minimized represents 
the total time spent to complete the assembly for a given choice of assigning electrical 
components to machine parts. 

Despite the practically motivated origins of the problem, there are some deep links 
between PM and other better known matching problems, in particular to the Exact 
Matching problem [ 10]. Although not part of this paper, the relation between PM 
and existing literature is explored further in the master thesis this work is based on 
[ 12]. 

Our contribution. In Sect. 2, we consider the Paired Matching problem from 
the perspective of classical complexity theory: we prove the decision problem 
PM to be NP-complete and make some notes on the implications this has on the 
(in)approximability of the optimization problem MPM. 

In Sect. 3, we shift our focus to the parameterized complexity of PM. By exploit-
ing a kernelization technique presented by Bodlaender, Jansen and Kratsch [ 1], we 
give an exact algorithm that solves a PM instance . I with .|T | task vertices in time
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.2O(|T |3)|I |O(1). Hence this algorithm shows that large instances with a small number 
of task vertices can be solved efficiently. 

Parameterized complexity of other matching problems. As briefly mentioned 
above, PM is closely related to the Exact Matching problem. This problem itself 
has also been studied from the perspective of parameterized complexity theory. In 
[ 8] for example, parameterized algorithms for it were developed when considering 
the independence number or bipartite independence number of the graph to be the 
parameter. Another common choice of parameter for graph problems is, if applicable, 
the size of the solution whose existence needs to be determined. Since the objective 
in the Exact Matching problem is to determine the existence of a specific type 
of perfect matching, this size is always polynomial in the input size, making the 
solution size an uninteresting parameter to consider for EM. 

Many other matching problems however ask for matchings that are not neces-
sarily perfect and problems like the Rainbow Matching problem [ 6] and 3-
Dimensional Matching problem [ 5] admit efficient parameterized algorithms 
when parameterized by the solution size. Contrarily, the Induced Matching prob-
lem is an example of a matching problem for which it has been proven that such 
algorithms are unlikely to exist [ 9]. 

Notation. Throughout the paper, we use standard graph notation. Any notation not 
defined here can be found in the book Parameterized Algorithms by Cygan et al. [ 3]. 
Although our results are presented in such a way that familiarity with the field of 
parameterized algorithms is not required, the book may also also be a good reference 
for readers unfamiliar with the field to provide additional background and motivation. 

2 Classical Complexity 

We start this section by proving PM to be NP-complete in Theorem 1. Afterwards, 
we discuss the implications of the theorem for the approximability for MPM. 

Before proving the NP-hardness of PM, briefly note that the problem is contained 
in NP: the cost of any matching in a PM instance can be computed in polynomial 
time, so a solution to the problem may be verified in polynomial time as well. Now 
to prove that the problem is also NP-hard, we provide a polynomial time reduction 
from 3OCC-SAT, a variant of the well-known SAT problem which asks to determine 
the satisfiability of a Boolean formula in conjunctive normal form. The 3OCC-SAT 
problem poses an extra restriction on the input by requiring that every variable occurs 
at most three times.
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3-Occurence Satisfiability (3OCC-SAT) 

Given: A Boolean formula .F in conjunctive normal form (CNF) on the variables . X =
{x1, x2, . . . , xn} such that every variable occurs at most three times 

Objective: Determine whether.X admits a truth assignment that satisfies. F . 

Although many variants of the SAT problem limit the clauses to contain no more 
than three literals, remark that clauses in 3OCC-SAT instances are allowed to be 
arbitrarily large. Now, given the NP-completeness of the SAT problem [ 2], it is not 
hard to convince ourselves of the NP-completeness of 3OCC-SAT as every CNF 
formula can be rewritten to an equivalent one in which no variables occur more than 
three times [ 13]. Hence, we can use this problem to prove Theorem 1. 

Theorem 1 Let .c1, c2 ∈ R≥0 be any two constants such that .0 ≤ c1 < c2. Then any 
3OCC-SAT instance can be reduced to an equivalent PM instance in which .c = c1, 
. f only takes values .2 · c1 and .2 · c2 and .d = c1 · |T |. Hence, PM is NP-complete, 
even when . c and . f are integer valued and bounded by a constant. 

Proof Let .F be a 3OCC-SAT instance, where .F is a formula with clauses 
.C1,C2, . . . ,Cm using the variables.X = {x1, x2, . . . , xn}. Let.li,1, li,2, . . . , li,|Ci | be 
the occurrences of literals of the .i-th clause. We reduce .F to an equivalent PM-
instance .(G, c, f, d) and we start by constructing the graph .G = (P + T, E). First, 
the set . T will be constructed as the union of two sets .T1 and . T2. 

For every clause.Ci we add a vertex.vi to. T1. For every occurrence.li, j of a literal 
we add two vertices .p+

i, j and .p
−
i, j to . P , representing a true or false assignment 

of the variable in .li, j respectively. These two vertices form a pair in . P . If  .li, j is a 
positive variable we connect .p+

i, j and. vi . If .li, j is a negated variable we connect . p
−
i, j

and . vi . Remark that this construction thus creates multiple people pairs for literals 
occurring multiple times. 

By finding a matching in this graph which matches all vertices in. T1, we are deter-
mining an assignment of the variables in .F which satisfies all its clauses. However, 
not every such matching in .G necessarily corresponds to a valid truth assignment of 
the variables in . X : we might try to set a variable to true to satisfy one clause and 
at the same time set it to false to satisfy another clause. Hence, we need to expand 
our graph to prevent situations like these. We can only encounter this problem for 
variables that occur both positively and negatively in the formula, so we expand our 
reduction based on the following two cases: 

• Suppose .xh is a variable that occurs twice in . F : once positively in the literal . li1, j1
and once negated in the literal .li2, j2 . We then add a vertex .sh to the set .T2 and 
connect .p+

i1, j1
and .p−

i2, j2
to . sh . See Fig. 1a for an example. 

• Suppose .xh is a variable that occurs three times in .F and suppose that it occurs 
positively in the literals.li1, j1 and.li2, j2 and that it occurs negated in the literal.li3, j3 . 
We then add two vertices .sh,1 and .sh,2 to . T2. We connect both .p+

i1, j1
and .p+

i3, j3
to 

.sh,1 and we connect both .p
+
i2, j2

and .p−
i3, j3

to .sh,2. See Fig. 1b for an example. For
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(a) The direct neighborhood of the ver-
tices representing the literals that oc-
curs in if it occurs once positively and 
once negatively. 

(b) The direct neighborhood of the ver-
tices representing the literals that oc-
curs in if it occurs twice positively and 
once negatively. 

Fig. 1 The structure created for variables that occur two or three times in. F

variables that occur once positively and twice negated, we can simply swap the. +
and .− signs in this step. 

For variables that occur only in positive form or only in negated form, we skip this 
step as there is only one assignment for such a variable that allows it to satisfy clauses. 
The problematic situation explained above, where it is simultaneously assigned true 
to satisfy one clause and false to satisfy another, is therefore not applicable to these 
variables. 

By taking .T = T1 ∪ T2 we have now finalized the construction of . G = (P +
T, E). Now  let .c1 and.c2 be any two given constants with .0 ≤ c1 < c2. We let . c and 
. f depend on these two constants by taking .c = c1 and taking . f to be given by: 

. f (t1, t2) =
(
2c1 if t1, t2 ∈ T2
2c2 otherwise.

Finally, we take .d = c1 · |T |, to complete our construction of the PM instance 
.(G, c, f, d). Observe that this reduction can be done in polynomial time. To prove 
that it is also correct we show that .F is a YES-instance if and only if .(G, c, f, d) is 
a YES-instance. 

.(⇒) Suppose that .F is a YES-instance for 3OCC-SAT. Then there is a truth assign-
ment .T : X → {true, false} of the variables in .X that satisfies . F . In particular, it 
satisfies each clause individually. We will use this assignment to construct a matching 
.M that covers every vertex in .T and which has a cost of . d. We construct it as the 
union of two matchings .M1 and .M2. .M1 is used to cover the vertices in .T1 and can 
be seen as actually encoding the truth assignment .T into . G. .M2 is used to cover the 
remaining vertices at a low enough cost. First we construct .M1. 

Consider the clause.Ci and consider a literal.li, j that satisfies it under assignment 
. T . If there are multiple literals satisfying the clause, we can pick any arbitrary one
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of them. If .li, j is a positive variable, we include .{p+
i, j , vi } in .M1. If .li, j is a negated 

variable, we include.{p−
i, j , vi } in.M1. By construction, whichever edge we add, exists 

in . G. Doing this for every clause .Ci ensures that every vertex in .T1 is covered by 
.M1. Furthermore, the vertices in .T1 do not have any shared neighbors so none of the 
edges of .M1 coincide, meaning it is indeed a matching. 

We continue by constructing a matching .M2 which covers the vertices in .T2 and 
none of the vertices already covered by.M1. Consider a variable.xh that occurs more 
than once in . F , both positively and negated. We distinguish two cases: 

• Suppose.xh occurs twice in. F : once positively in.li1, j1 and once negatively in.li2, j2 . 
If .xh is set to true in . T , we know that .li2, j2 cannot be used to satisfy .Ci2 , which 
in turn means that we did not cover .p−

i2, j2
with .M1. Hence, we can add . {p−

i2, j2
, sh}

to .M2. By construction, this edge exists. Similarly, if .xh is instead set to false in 
. T , we add.{p+

i1, j1
, sh} to.M2. Again, this edge exists and does not coincide with an 

edge from.M1. 
• Suppose.xh occurs three times in. F . Assume for now that it occurs twice positively 
in .li1, j1 and .li2, j2 and once negated in .li3, j3 . If  .xh is set to true in . T , we know 
that .li3, j3 cannot be used to satisfy .Ci3 , which in turn means that we did not cover 
.p−

i3, j3
with .M1. Because .p

+
i3, j3

does not have any neighbors in . T1, this vertex was 
also not covered by.M1. Hence we can add the edges.{p+

i3, j3
, sh,1} and. {p−

i3, j3
, sh,2}

to .M2. By construction, these edges exist. 
If .xh is instead set to false in . T , we know that .li1, j1 cannot be used to satisfy. Ci1
and .li2, j2 cannot be used to satisfy .Ci2 . This in turn means that neither .p+

i1, j1
nor 

.p+
i2, j2

was covered by.M1. Hence, we can add the edges.{p+
i1, j1

, sh,1} and. {p+
i2, j2

, sh,2}
to .M2. By construction these edges exist. 
If .xh were to occur once positively and twice negated in . F , we can simply swap 
the .+ and .− signs in this step. 

If we do this for every variable that occurs both positively and negated, we ensure that 
every vertex in .T2 is covered by .M2. Moreover, we have done so without covering 
vertices already covered by .M1. Combining this with the fact that .M1 and .M2 are 
both matchings, we get that .M := M1 ∪ M2 is also a matching. .M then covers all 
vertices in .T = T1 ∪ T2. 

Finally, we determine the cost of . M . Note that most pairs in .P have only one 
edge matched by. M , therefore each contributing.c = c1 to the total cost of. M . In our 
construction, the only pairs in. P of which both vertices are matched by.M correspond 
to variables that occur three times. In fact, every such variable has only one literal 
.li, j whose corresponding vertex pair even has edges connected to both vertices at 
all. There are only two cases in which both these vertices are matched by. M : if.li, j is 
a positive variable which is set to false in the satisfying assignment .T or if .li, j is a 
negated variable which is set to true in. T . In these cases, the corresponding vertices 
.p+

i, j and.p−
i, j are both matched to a vertex in. T2, meaning that together they contribute 

.2c1 to the cost of. M . So for every edge in.M it can be said that it contributes.c1 to the 
cost of. M , meaning that its cost is.c1 · |T | = d. Hence,.(G, c, f, d) is a YES-instance.
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.(⇐) Suppose that .(G, c, f, d) is a YES-instance. Then there exists a matching . M
in.G = (P + T, E) which has cost at most .d = c1 · |T | and covers all vertices in. T . 
We partition the matching into .M = .M1 ∪ M2 such that .M1 contains all the edges 
covering.T1 and.M2 contains all the edges covering. T2. We show that there exists an 
assignment .T of the variables .x1, . . . , xn such that .F is satisfied. 

For every edge .{p+
i, j , vi } ∈ M we assign the variable in the literal .li, j to true 

and for every edge .{p−
i, j , vi } ∈ M we assign the variable in the literal .li, j to false. 

Any possible remaining variables may receive an arbitrary assignment. Because . M
matches every vertex in. T and in particular in. T1, every clause of. F is satisfied by this 
assignment: if .{p+

i, j , vi } ∈ M (and therefore in . G), then by construction .Ci contains 
the positive literal .li, j meaning that it can be satisfied by setting the corresponding 
variable to true. Likewise, if .{p−

i, j , vi } ∈ M (and therefore in . G), then by construc-
tion.Ci contains the negated literal .li, j meaning that it can be satisfied by setting the 
corresponding variable to false. So this assignment indeed satisfies . F . It remains 
to show that this is a valid assignment, i.e.: there is no variable which is set to true 
and false to satisfy multiple clauses. 

This problem could of course only happen for a variable .xh which occurs at least 
once positively and at least once negated. We distinguish two cases: 

• Suppose .xh occurs twice in . F : once positively in .li1, j1 and once negated in .li2, j2 . 
This implies the presence of a vertex.sh ∈ T which only has the vertices.p+

i1, j1
and 

.p−
i2, j2

as neighbors. Since .sh is by definition covered by . M , we know that at least 
one of these two neighbors must be connected to .xh in .M and because .M is a 
matching, this particular vertex is not also used to satisfy its corresponding clause. 
Hence, at most one of the literals.li1, j1 and.li2, j2 is used to satisfy its corresponding 
clause meaning that .xh does not get assigned both true and false. 

• Suppose .xh occurs three times in . F . Assume for now that it occurs twice 
positively in .li1, j1 and .li2, j2 and once negated in .li3, j3 . We will prove that if 
.{p−

i3, j3
, vi3} ∈ M (in which case we assign .xh to false to satisfy clause .Ci3 ) it  

holds that.{p+
i1, j1

, vi1}, {p+
i2, j2

, vi2} /∈ M . This implies that.xh is not set to true and 
false simultaneously to satisfy multiple clauses. 
So suppose that .{p−

i3, j3
, vi3} ∈ M . Because .sh,2 is by definition matched in . M , but  

apparently not to.p−
i3, j3

, it must instead be matched to its only other neighbor:.p+
i2, j2

. 
Because .p+

i2, j2
is then already matched to a vertex other than .vi2 by .M and .M is a 

matching, we know that .{p+
i2, j2

, vi2} /∈ M . 
To show that also .{p+

i1, j1
, vi1} /∈ M , we first argue that .{p+

i3, j3
, sh,1} /∈ M . If this  

edge were to be in . M , then the pair .(p+
i3, j3

, p−
i3, j3

) would contribute .2c2 to the cost 
of.M by the definition of. f . Since.M has size.|T | and a cost of at most.c1 · |T |, pairs 
in. P cannot contribute more than.c1 to the cost per matched vertex in them without 
exceeding the cost of . d . Hence, .{p+

i3, j3
, sh,1} cannot be in .M as it would make the 

pair .(p+
i3, j3

, p−
i3, j3

) contribute .c2 > c1 to the cost of .M per matched vertex. So we 
establish that .{p+

i3, j3
, sh,1} /∈ M . This implies that .{p+

i1, j1
, sh,1} ∈ M , because .sh,1
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must be matched by .M and.p+
i1, j1

is its only other neighbor, which in turn implies 
that .{p+

i1, j1
, vi1} /∈ M because .M is a matching. 

This shows that.xh is not set to true and false simultaneously in our assignment. 
An analogous argument can be made in case .xh occurs once positively and twice 
negated in . F . 

This proves that our assignment is indeed valid and satisfies . F , meaning that . F
is a YES-instance for 3OCC-SAT.  ∎

The additional constraints posed by Theorem 1 under which PM is still NP-
complete, also have implications for the approximability of MPM. 

Corollary 1 Unless P=NP, MPM cannot be approximated in polynomial time to 
within a multiplicative factor of the optimal solution. 

Proof By taking .c1 = 0 in Theorem 1, we obtain a restriction to the input of PM in 
which we always have .d = 0. An algorithm that approximates MPM within some 
multiplicative factor of the optimal solution would return. 0 if and only if the optimal 
solution is . 0, so this approximation algorithm could also be used to solve any PM 
instance under this restriction. Since Theorem 1 states that this restricted version of 
PM is still NP-complete, such an approximation algorithm cannot run in polynomial 
time unless .P = NP.  ∎

Of course, any optimization problem in which the optimal solution is . 0 can be 
solved exactly using an approximation algorithm. Approximating such problems is 
therefore just as hard as solving them exactly. However, even if we require . c and . f
to be positive in MPM, thereby avoiding the trivial case from above where .d = 0, 
we find the problem to be hard to approximate [ 12]. 

3 Solving Large Instances with Few Task Vertices 

In this next section, we consider the parameterized complexity of PM, where our 
parameter of choice is .|T |, the number of task vertices in an instance. We develop 
an algorithm for PM based on kernelization, a popular technique for developing 
parameterized algorithms. A complete definition and explanation of the concept can 
be found in the book by Cygan et al. [ 3], but the high level idea is to reduce an 
instance . I of a problem to an equivalent instance .I ' of the same problem whose 
size depends only on the parameter associated with the original instance. I . Here, we 
say that the two instances are equivalent when they can be answered with the same 
YES/NO answer. 

When the reduction can be executed in time that is polynomial in the original 
input size .|I |, we call it a kernelization. Remark that any follow-up algorithm that 
is run on the newly created, yet equivalent instance.I ' has a running time depending 
only on the parameter associated with . I , rather than the size of . I .
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We first show that a kernelization exists for PM with respect to.|T | in Proposition 1 
and explain in Corollary 2 how it can be used to solve large PM instances with few 
task vertices efficiently. 

The kernelization is based on the observation that it does not matter to which 
people pair a task is assigned. It only matters which other task vertex gets connected 
to the same pair, if any. This means that we could remove all people pairs from an 
instance for which it holds that for any solution covering that pair, there also exists 
another solution of the same cost which does not cover that pair. A key ingredient to 
prove the correctness of the kernelization will be a formalization of this idea as given 
by the following result from Bodlaender, Jansen, and Kratsch [ 1, (Theorem 2)]. 

Lemma 1 Let .B = (X + Y, E) be a bipartite graph and let .M ⊆ E be a maximum 
matching in . B. Let .XM ⊆ X be the set of vertices in .X that are covered by . M. Then 
for each .Y ' ⊆ Y , if there exists a matching .M ' in .B that covers . Y ', then there exists 
a matching .M '' in .G[XM ∪ Y ] that covers . Y '. 

We continue by using it to show the following result: 

Proposition 1 Any PM instance .(G, c, f, d) with .G = (P + T, E) can be reduced 
in polynomial time to an equivalent PM instance.(G ', c, f, d) in which.G ' has. O(|T |2)
vertices and .O(|T |3) edges. 
Proof Let .(G = (P + T, E), c, f, d) be a PM instance. We will construct a graph 
.G ' = (P ' + T ', E ') with .O(|T |2) vertices and .O(|T |3) edges such that . (G, c, f, d)

is a YES-instance if and only if .(G ', c, f, d) is a YES-instance. Figure 2 shows the 
kernelization for an example input. 

Before constructing.G ', we first construct an auxiliary bipartite graph. B = (X +
Y, E '') from. G. For every pair.(ai , bi ) in. P we add a vertex. xi to. X . We construct. Y as 
the union of two sets .Y = Y1 ∪ Y2. For every vertex .t j ∈ T we add a vertex .y j to . Y1
and for every pair of distinct vertices.t j1 , t j2 ∈ T we add the vertices.y j1, j2 and.y j2, j1 to 
. Y2. We add an edge between every .xi ∈ X and.y j ∈ Y1 for which either . {ai , t j } ∈ E
or.{bi , t j } ∈ E . We also add an edge between every.xi ∈ X and.y j1, j2 ∈ Y2 for which 
.{ai , t j1}, {bi , t j2} ∈ E . This concludes the construction of . B. 

An interesting observation to make is that every matching.MG in. G can be encoded 
in .B as a matching .MB . Given any .MG , we could construct a corresponding .MB in 
which: 

• The presence of an edge between some .xi ∈ X and some .y j ∈ Y1 would indicate 
that .MG leaves one vertex of .(ai , bi ) unmatched, while matching the other to 
.t j ∈ T . 

• The presence of an edge between some.xi ∈ X and some.y j1, j2 ∈ Y2 in.MB would 
indicate that .ai and .bi get matched to .t j1 and .t j2 respectively by .MG . 

Now that we have constructed our auxiliary graph . B, we continue by finding 
a maximum matching .M in it and we use this matching to construct the graph 
.G ' = (P ' + T ', E '). To this end, let .XM ⊆ X denote the set of vertices in.X that are
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Fig. 2 Kernelization applied to an example graph. Figure 2a shows an example graph. G. Figures 2b 
and c depict the auxiliary graph. B and respectively show its construction and a maximum matching 
in it. They are drawn on a gray background to avoid confusion between the three different graphs 
depicted (. G, . B and.G '). Figure 2d shows the resulting graph. G '

covered by. M . Then.G ' is obtained from.G by removing all people pairs .(ai , bi ) for 
which .xi /∈ XM . 

Because.|Y | = O(|T |2), we also have that.|XM | = |M | = O(|T |2), which in turn 
means that.|P '| = O(|T |2). Since.T ' = T , this gives us that.G ' has.O(|T |2) vertices 
and therefore .O(|T |3) edges. 

This concludes the kernelization. First note that all steps of the kernelization (con-
structing .B from . G, finding a maximum matching in .B and removing people pairs 
from .G to obtain .G ') can be done in polynomial time. Now to show that this pro-
cedure is indeed a valid kernelization for PM, it remains to show that it provides a 
correct reduction. 

To this end, we show that .(G, c, f, d) is a YES-instance if and only if . (G ', c, f, d)

is a YES-instance. Clearly, if .(G ', c, f, d) is a YES-instance, then so is .(G, c, f, d), 
since.G ' is obtained from.G by only removing people vertices. Then every matching 
in .G ' also exists in . G, since .G ' is a subgraph of . G. Moreover, since no task vertices 
were removed from .G to obtain .G ', a matching that covers all task vertices in . G '
also does so in . G.
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Suppose now that.(G, c, f, d) is a YES-instance, meaning that there is some matching 
.MG in .G of cost .d∗ ≤ d. If .MG only contains edges that are also present in .G ', then 
this matching also exists in .G ', making .(G ', c, f, d) trivially a YES-instance. So 
suppose.MG does not exist in.G '. Then we will construct a matching.MG ' in.G ' with 
the same cost . d∗. 

To this end, we take a look at the graph . B. Although .B was just an auxiliary 
graph to construct .G ' (and is therefore not part of our resulting PM instance), it will 
be useful in constructing the matching .MG ' . As explained above, the matching . MG

in .G could be encoded in .B as some matching .MB . Let  .Y ' ⊆ Y denote the set of 
vertices in . Y that are covered by this .MB . Each vertex in .Y ' represents an ordered 
combination of either one or two vertices that are matched to the same pair of people 
vertices by .MG . 

Consider now again the maximum matching .M in .X from before and the set 
.XM of vertices in .X covered by . M . By Lemma 1, there exists a matching .M '' in 
.B[XM ∪ Y ] covering all the vertices in . Y '. We use this matching .M '' to construct 
.MG ' . We do the following for every edge .e ∈ M '': 

• If . e has endpoints .xi ∈ X and .y j ∈ Y1, then we add either .{ai , t j } or .{bi , t j } to 
.MG ' , depending on which of these edges is present in .G '. We know that at least 
one of these edges is present in .G ', because . e exists in . B and .xi ∈ XM . 

• If . e has endpoints .xi ∈ X and .y j1, j2 ∈ Y2, then we add the edges .{ai , t j1} and 
.{bi , t j2} to .MG ' . Because . e exists in . B, both these edges are present in .G and 
because .xi ∈ XM , this edge also exists in .G '. 

Because .M '' covers the same vertices in . Y as .MB does, this construction of . MG '

leads to a matching in .G ', which matches the same combinations of vertices to 
the same pair of people vertices as .MG did in . G. Not only does this make .MG ' a 
valid matching in .G ', but it also has the same cost .d∗ as .MG , making .(G ', c, f, d) a 
YES-instance.  ∎

Of course, performing just the kernelization on a PM instance does not yet yield 
an answer to the problem. Combining it with a brute-force algorithm however, yields 
an exact algorithm for the problem as follows. 

Corollary 2 Any PM instance.I = (G, c, f, d)with.G = (P + T, E) can be solved 
in time .2O(|T |3) · |I |O(1). 

Proof Let .I = (G, c, f, d) be a PM-instance with .G = (P + T, E). To solve it in 
the desired running time, the first step would be to perform the kernelization from 
Proposition 1. This takes .|I |O(1) time and yields an equivalent instance. (G ', c, f, d)

in which .G has .O(|T |2) vertices and .O(|T |3) edges. 
The second step is to solve the new instance using a brute-force algorithm. A very 

naive way in which this can be done is to iterate over all .2O(|T |3) subsets of edges in 
.G ' and checking whether they are a matching such that all task vertices are covered 
at a cost of at most . d. Doing this can of course be done in .|I |O(1) time, so the total 
time spent by this procedure is .2O(|T |3) · |I |O(1).  ∎
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4 Conclusion and Discussion 

In this paper we have seen the introduction of the Paired Matching problem and 
explored its algorithmic complexity. Further exploration thereof has been done in 
the master thesis this work is based on [ 12], but plenty of open questions related to 
the problem remain. 

While we have seen the problem to be NP-complete, not much is known about 
special cases of the problem being solvable in polynomial time. Some NP-complete 
graph problems become polynomial time solvable on planar graphs for example and 
one could investigate whether the same is true for PM. Another restriction of PM 
that could be considered is obtained by requiring the cost function. f to be constant. 

It could also be interesting to see whether improvements can be made to the algo-
rithm presented in Corollary 2. Either of its two parts can be tackled. First, one could 
see whether the kernelization can be improved to yield an even smaller instance. If 
not, it may be possible to prove that any kernelization of PM must yield instances 
whose size are at least cubic in the number of task vertices, just like the kerneliza-
tion we have provided in Proposition 1. Secondly, it could be investigated whether 
the follow-up algorithm could be improved over the naive brute-force algorithm 
presented here. 
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Edge Contraction and Forbidden 
Induced Subgraphs 

Hany Ibrahim and Peter Tittmann 

Abstract Given a family of graphs . H , a graph .G is .H-free if any subset of . V (G)

does not induce a subgraph of .G that is isomorphic to any graph in . H . We present 
sufficient and necessary conditions for a graph .G such that .G/e is .H-free for any 
edge. e in.E(G). Thereafter, we use these conditions to characterize.2K2-free,.C4-free, 
.C5-free, and split graphs. 

1 Introduction 

A graph. G is an ordered pair.(V (G), E(G))where.V (G) is a set of vertices and. E(G)

is a set of .2-elements subsets of .V (G) called edges. Thus, any graph in this paper is 
simple. The set of all graphs is . G. The degree of a vertex . v, denoted by .deg(v), is  
the number of edges incident to . v. We denote the maximum degree of a vertex in a 
graph .G by .Δ(G). We call two vertices adjacent if there is an edge between them, 
otherwise, we call them nonadjacent. Moreover, the set of all vertices adjacent to a 
vertex . v is called the neighborhood of . v, which we denote by .N (v). On the other 
hand, the closed neighborhood of . v, denoted by .N [v], is  .N (v) ∪ {v}. Generalizing 
this to a set of vertices . S, the neighborhood of . S, denoted by .N (S), is defined by 
.N (S) := U

v∈S N (v) \ S. Similarly the closed neighborhood of. S, denoted by.N [S], 
is .N (S) ∪ S. Moreover, for a subset of vertices . S, we denote the set of vertices in . S
that are adjacent to . v by .NS(v). Furthermore, we write . v is adjacent to . S to mean 
that .S ⊆ N (v) and . v is adjacent to exactly . S to mean that .S = N (v). 

A set of vertices . S is independent if there is no edge between any two vertices 
in . S. We call a set . S dominating if .N [S] = V (G). A subgraph .H of a graph .G is a 
graph where.V (H) ⊆ V (G) and.E(H) ⊆ E(G). An  induced graph.G[S] for a given 
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set.S ⊆ V , is a subgraph of.G with vertex set. S and two vertices in.G[S] are adjacent 
if and only if they are adjacent in . G. Two graphs .G, H are isomorphic if there is a 
bijective mapping . f : V (G) → V (H) where .u, v ∈ V (G) are adjacent if and only 
if . f (u), f (v) are adjacent in. H . In this case we call the mapping. f an isomorphism. 
Two graphs that are not isomorphic are called non-isomorphic. In particular, an 
isomorphism from a graph to itself is called automorphism. Furthermore, two vertices 
.u, v are similar in a graph .G if there is an automorphism that maps . u to . v. The  set  
of all automorphisms of a graph.G forms a group called the automorphism group of 
. G, denoted by Aut(. G). The complement of a graph. G, denoted by. Ḡ, is a graph with 
the same vertex set as .V (G) and two vertices in .Ḡ are adjacent if and only if they 
are nonadjacent in . G. 

The independence number of a graph. G, denoted by.α(G), is the largest cardinality 
of an independent set in. G. In this thesis, we write singletons.{x} just as . x whenever 
the meaning is clear from the context. A vertex . u is a corner dominated by . v if 
.N [u] ⊆ N [v]. Let  .H be a set of graphs. A graph .G is called .H-free if there is no 
induced subgraph of.G that is isomorphic to any graph in. H , otherwise, we say.G is 
.H-exist. 

By contracting the edge between. u and. v, we mean the graph constructed from. G
by adding a vertex. w with edges from. w to the union of the neighborhoods of . u and 
. v, followed by removing. u and. v. We denote the graph obtained from contracting. uv

by .G/uv. If . e is the edge between . u and . v, then we also denote the graph .G/uv by 
.G/e. Further, we call .G/e a .G-contraction. Finally, for notions not defined, please 
consult [ 2]. Additionally, we divide longer proofs into smaller claims, and we prove 
them only if their proofs are not apparent. 

For a graph invariant . c, a graph . G, and a .G-contraction . H , the question of how 
.c(G) differs from .c(H) is investigated for different graph invariants. For instance, 
how contracting an edge in a graph affects its .k-connectivity. Hence, the intensively 
investigated ([ 13]) notion of.k-contractible edges in a.k-connected graph. G is defined 
as the edge whose contraction yields a.k-connected graph. Another instance is in the 
game Cops and Robber where a policeman and a robber are placed on two vertices 
of a graph in which they take turns to move to a neighboring vertex. For any graph. G, 
if the policeman can always end in the same vertex as the robber, we call.G cop-win. 
However, .G is .CECC if it is not cop-win, but any .G-contraction is cop-win. The 
characteristics of a .CECC graph are studied in [ 5]. 

A further instance is the investigation of the so-called contraction critical edges, 
with respect to independence number. That is an edge. e in a graph. G where. α(G/e) ≤
α(G), studied in [ 18]. Furthermore, the case where . c is the chromatic and clique 
number, respectively, has been investigated in [ 7, 16, 17]. 

In this article, we investigate the graph invariant .H -free for a given set of graphs 
. H . In particular, we present sufficient and necessary conditions for a graph .G such 
that any .G-contraction is .H-free. 

Let .H be a set of graphs. The set of elementary (minimal) graphs in . H , denoted 
by.elm(. H), is defined as.{H ∈ H : if.G ∈ H and.H is.G-exist, then. G is isomorphic 
to .H}. From the previous definition, we can directly obtain the following.
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Proposition 1 Let .H be a set of graphs. Graph .G is .H-free if and only if G is 
.elm(H)-free. 

We call an .H-free graph . G, strongly .H-free if any .G-contraction is .H-free. 
Furthermore, an .H-exist graph .G is a critically .H-exist if any .G-contraction is 
.H-free. If we add any number of isolated vertices to a strongly .H -free or critically 
.H -exist graph, then we obtain a graph with the same property. Thus, from this section 
and forward, we exclude graphs having isolated vertices unless otherwise stated. 

We conclude directly the following. 

Proposition 2 Let .H be a set of graphs and .G be a graph where .G is neither 
critically .H-exist nor .H-free but not strongly .H-free. The graph .G is .H-free if and 
only if any .G-contraction is .H-free. 

Given a graph .G and a set of graphs . H , we call .G .H-split if there is a .G-
contraction isomorphic to a graph in . H . Furthermore, .G is .H-free-split if .G is 
.H-split and .H-free. Moreover, the set of all .H-free-split graphs, for a given . H , is  
denoted by .fs(H). 

Proposition 3 Let.H be a set of graphs and. G be a.H-free graph. Then. G is strongly 
.H-free if and only if .G is .fs(H)-free. 

Proof Assume for the sake of contradiction that there exists a strongly.H-free graph 
.G with an induced .H-free-split subgraph . J . Consequently, there is an edge . e in . J
such that .J/e induces a graph in . H . As a result, .G/e is .H-exist, which contradicts 
the fact that .G is strongly .H-free. 

In contrast, if .G is an .H-free but not a strongly .H-free, then there is a set . U ⊆
V (G) such that there is an edge .e ∈ E(G[U ]) where .G/e is .H-exist. Let .U be a 
minimum set with such a property. Thus .G[U ] is .H-free-split. ∎

From Propositions 2 and 3, we deduce the following. 

Theorem 1 Let .H be a set of graphs and .G be a .fs(H)-free graph where .G is not 
critically .H-exist. The graph .G is .H-free if and only if any .G-contraction is .H-free. 

Theorem 1 provides a sufficient and necessary condition that answers the ques-
tion we investigate in this article, however, it translates the problem to determining 
characterizations for critically .H-exist and .H-free-split graphs for a set of graphs 
. H . In Sects. 1.1 and 1.2, we present some properties for these families of graphs. 

1.1 The H-Split Graphs 

Let .H be a graph with .v ∈ V (H) and .NH (v) = U ∪ W . The  .splitting(H,v,U,W) is 
the graph obtained from .H by removing . v and adding two vertices . u and .w where 
.NH (u) = U ∪ {w} and.NH (w) = W ∪ {u}. Furthermore, .spli t ting(H, v) is the set 
of all graphs for any possible .U and. W . Moreover, .spli t ting(H) is the union of the 
.spli t ting(H, v) for any vertex .v ∈ V (H). Given a set of graphs . H , . spli t ting(H)

is the union of the splittings of every graph in . H .
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Theorem 2 For a graph .G and a set of graphs . H , .G is an .H-split if and only if 
.G ∈ spli t ting(H). 

Proof Let .G be an .H-split. Hence there is a graph .H ∈ H such that .G is .H -split. 
Thus, there are two vertices .u, w ∈ V (G) such that .G/uw is isomorphic to . H . Let  
.x := V (G/uw) − V (G), then.NG/uw(x) = (NG(u) ∪ NG(w)) \ {u, w}. As a result, 
.G ∈ spli t ting(H, x). Consequently, .G ∈ spli t ting(H). 

Conversely, let .G ∈ spli t ting(H). Hence there is a graph.H ∈ H such that . G ∈
spli t ting(H). Thus, there are two adjacent vertices.u, w ∈ V (G) such that. G/uw ∼=
H . Thus, .G is .H-split. ∎

For a set of graphs.H and using Theorem 2, we can use.spli t ting(H) to construct 
all .H-split graphs, consequently .H-free-split graphs. 

Proposition 4 In a graph  . G, let  .u, v ∈ V (G). If  . u is similar to . v, then . spli t ting
(G, u) = spli t ting(G, v). 

By the previous proposition, for a graph . H , the steps to construct the .H -free-split 
graphs are: 

• Let . π be the partition of .V (H) induced by the orbits generated from.Aut (H); 
• for every orbit .o ∈ π , we choose a vertex .v ∈ o; and 
• construct .spli t ting(H, v). 

The proofs of Propositions 5 to 8 are direct. Thus, we skip them and leave them 
for the interested reader. 

Proposition 5 Let .G be a graph, . v a vertex in .V (G) where .NG(v) = U ∪ W. If  
.U = NG(v) or .W = NG(v), then .spli t ting(G, v,U,W ) is not .G-free-split. 

Proposition 6 Let .G be a graph and . v a vertex in .V (G). If  .deg(v) = 1, then 
.spli t ting(G, v) contains no .G-free-split graph. 

Proposition 7 If .G is a path, then .spli t ting(G) contains no .G-free-split graph. 

Proposition 8 If .G is a .Cn for an integer .n ≥ 3, then the .G-free-split is .Cn+1. 

1.2 Critically H-Exist Graphs 

Theorem 3 Let .G be a graph and .H be a set of graphs. If .G is a critically .H-exist, 
then for any .S ⊆ V (G) such that .G[S] is isomorphic to a graph in . H , the followings 
properties hold: 

1. .V (G) \ S is independent and 
2. there is no corner in .V (G) \ S that is dominated by a vertex in . S.
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Proof 1. For the sake of contradiction, assume there is a.S ⊆ V (G) such that.G[S] is 
isomorphic to a graph.H ∈ H but.V (G) \ S is not independent. Hence, there are 
two vertices.u, v ∈ V (G) \ S where. u and. v are adjacent. Consequently,. G/uv[S]
is isomorphic to . H , which contradicts the fact that .G is a critically .H-exist. 

2. Since .V (G) \ S is independent, the neighborhood of any vertex in . V (G) \ S
is a subset of . S. For the sake of contradiction, assume that there is a corner 
.u ∈ V (G) \ S that is dominated by .v ∈ S. However, .G/uv[S] is isomorphic to a 
graph .H ∈ H , which contradicts the fact that .G is a critically .H-exist.

∎
Corollary 1 Let .G be a critically .H-exist graph for a set of graphs . H . If  . S is a 
vertex set that induces a graph in. H , then no vertex in.V (G) \ S is adjacent to exactly 
one vertex, two adjacent vertices, three vertices that induce either .P3 or .C3, or a  
vertex with degree .|V (G)| − 1. 

Let .G be a graph with adjacent vertices .u, v, and .{w} := V (G/uv) \ V (G). We  
define the mapping . f : 2V (G) → 2V (G/uv) as follows: 

. f (S) =
(
S if u, v /∈ S,

(S ∪ {w}) \ {u, v} otherwise.

Let . S be a vertex set such that .G[S] is isomorphic to a given graph . H . We call an 
edge .uv, .H -critical for . S if .G/uv[ f (S)] is non-isomorphic to . H . Furthermore, we 
call the edge .uv .H -critical in .G if for any vertex subset . S that induces . H , .uv is 
.H -critical for . S. 

Theorem 4 Let .G be a graph and .S ⊆ V (G) where .H is the graph induced by . S in 
. G. For any edge .uv ∈ E(G), .uv is .H-critical for . S if and only if 

1. .u, v ∈ S or 
2. .u ∈ V (G) \ S, .v ∈ S, and . u is not a corner dominated by . v in the subgraph 

.G[S ∪ {u}]. 
Proof 1. If .u, v ∈ S, then .| f (S)| < |S|. Thus, .G/uv[ f (S)] is non-isomorphic to 

. H . 
2. Let .u ∈ V (G) \ S, .v ∈ S, and . u is not a corner dominated by . v in the sub-

graph .G[S ∪ {u}]. Additionally, let .w ∈ NS(u) but .w /∈ NS(v). In  .G/uv, let  
.x := V (G/uv) \ V (G). Clearly, . x is adjacent to any vertex in .NS(v) ∪ {w}. 
Hence, the size of .G/uv[ f (S)] is larger than that of .G[S]. Thus, . G/uv[ f (S)]
is non-isomorphic to . H . 

Conversely, if none of the conditions in the theorem hold, then one of the following 
holds: 

1. both . u and . v are not in . S, or  
2. .u ∈ V (G) \ S,.v ∈ S, and. u is a corner dominated by. v in the subgraph.G[S ∪ {u}]. 
In both cases, .G[S] ∼= G/uv[ f (S)] ∼= H . Consequently, .uv is not .H -critical 
for . S. ∎
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In the following Section, we present examples on using Theorem 1 by using it to 
characterize the special graph classes .2K2-free, .C4-free, .C5-free, and split graphs. 

2 Special Graph Classes 

2.1 The .2K2-Free Graphs 

Different graphs families are.2K2-free graphs; for instance split, pseudo-split, thresh-
old, and co-chordal graphs. Various graph invariants were studied for .2K2-free 
graphs, please consult [ 3, 4, 6, 8, 10]. The class of .2K2-free graphs has been char-
acterized in different ways, see [ 14, 19]. 

We call an edge.uv in a graph.G almost-dominating if .V (G) \ N [{u, v}] induces 
edgeless graph. 

Proposition 9 A graph .G is .2K2-free if and only if any edge in .E(G) is almost-
dominating. 

Lemma 1 Let .G be a graph with a unique subset .S ⊆ V (G) such that .G[S] induces 
.2K2. If every edge. e in.E(G) is. e is.2K2-critical for. S, then. G is a critically.2K2-exist. 

Proof Let .H be a .G-contraction. Every edge . e in .E(G) is .2K2-critical for . S, then 
.V (G) \ S is independent set. Furthermore, every vertex in .V (G) \ S is adjacent to 
at least two nonadjacent vertices in . S. In  . H , let  .u ∈ V (G) \ f (S) and .v ∈ f (S). If  
.u, v are adjacent, then .uv is almost-dominating. Let .u ∈ f (S), then .uv is almost-
dominating. Hence, every edge in .H is almost-dominating. Thus, .G is a critically 
.2K2-exist. ∎

It is not hard to identify the .2K2-split graphs. 

Proposition 10 The graphs .P2 ∪ C3 and .P2 ∪ P3 are the only .2K2-split graphs. 

Clearly, both .P2 ∪ C3 and .P2 ∪ P3 are .2K2-exist. Thus, the following corollary fol-
lows directly. 

Corollary 2 There is no .2K2-free-split graph. 

Proposition 11 The graphs in Fig. 1 are the only critically .2K2-exist graphs. 

Proof Through this proof, we assume that .G is a critically .2K2-exist graph with 
.S = {r, s, t, u} such that .G[S] is isomorphic to .2K2, where .rs and .tu are edges 
in . G. By Theorem 3, we note that .V (G) \ S is independent. Thus, any vertex in 
.V (G) \ S is adjacent to vertices only in . S. By Corollary 1, if  .v ∈ V (G) \ S, then 
neither .|N (v)| = 1 nor . v is adjacent to exactly two adjacent vertices. 

Claim 11.1 If.v,w ∈ V (G) \ S such that.|N (v)| = |N (w)| = 2while. N (v) ∩ N (w)

= φ, then .G is isomorphic to .H1. ∎
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1 2 3 4 

5 6 

Fig. 1 Critically.2K2-exist graphs 

Proof W.l.o.g., let .N (v) = {r, u} and .N (w) = {s, t}. We will show that . V (G) =
S ∪ {v,w}. For the sake of contradiction, assume that there is a vertex.x ∈ V (G) \ S. 
Thus,. x is adjacent to at least one vertex in. S. W.l.o.g., let. x be adjacent to. r . In.G/r x , 
. f ({s, u, v, w}) induces .2K2, which contradicts the fact that .G is a critically .2K2-
exist. ∎

Claim 11.2 If .v,w, x ∈ V (G) \ S such that .|N (v)| = |N (w)| = 2, . |N (x)| = 3
while .N (v) = N (w), then .N (v) ⊂ N (x). ∎

Proof W.l.o.g., let.N (v) = N (w) = {r, u}. For the sake of contradiction and w.l.o.g., 
assume .N (x) = {r, s, t}. In  .G/rw, . f ({s, u, v, x}) induces .2K2, which contradicts 
the fact that .G is a critically .2K2-exist. ∎

Claim 11.3 If .v,w, x ∈ V (G) \ S such that .|N (v)| = |N (w)| = 2 while . |N (v) ∩
N (w)| = 1 and .|N (x)| = 3where .N (v) ∩ N (w) ∩ N (x) = φ, then .G is isomorphic 
to .H4. ∎

Proof W.l.o.g., let.N (v) = {r, u},.N (w) = {r, t}, and.N (x) = {s, t, u}. For the sake 
of contradiction, assume that there is a vertex .y ∈ V (G) \ S. Hence, . y is adjacent 
to at least one vertex in . S. If  . y is adjacent to . s (or . u), then . f ({r, t, v, x}) induces 
.2K2 in .G/sy (or .G/uy), which contradicts the fact that .G is a critically .2K2-exist. 
Moreover, if . y is adjacent to . t , then . f ({r, u, w, x}) induces .2K2 in .G/t y, which 
contradicts the fact that .G is a critically .2K2-exist. ∎

Claim 11.4 If .v,w, x ∈ V (G) \ S such that .|N (v)| = |N (w)| = 2 while . |N (v) ∩
N (w)| = 1 and .|N (x)| = 3, then either .N (v) ∪ N (w) = N (x) or . N (v) ∩ N (w) ∩
N (x) = φ and .G is isomorphic to .H4. ∎
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Proof By Claim 11.3, if  .N (v) ∩ N (w) ∩ N (x) = φ, then .G is isomorphic to .H4. 
If .N (v) ∪ N (w) = N (x), then we are done. As a result, and w.l.o.g, let . N (v) =
{r, u} and.N (w) = {r, t}. Assume for the sake of contradiction that.N (x) = {r, s, t}. 
However, . f ({s, u, v, x}) induces .2K2 in .G/rw, which contradicts the fact that .G is 
a critically .2K2-exist. ∎
Claim 11.5 If .v,w ∈ V (G) \ S such that .|N (v)| = |N (w)| = 3, while . N (v) ∩
N (w) consists of two nonadjacent vertices in . S, then .G is isomorphic to .H3. ∎
Proof W.l.o.g., let .N (v) = {r, t, u} and.N (w) = {r, s, t}. For the sake of contradic-
tion, assume that there is a vertex .x ∈ V (G) \ S. If  . x is adjacent to . r (or . t), then 
. f ({s, u, v, w}) induces.2K2 in.G/r x (or.G/t x), which contradicts the fact that .G is 
a critically .2K2-exist graph. Thus, .N (x) = {s, u}, however, . f ({s, t, v, x}) induces 
.2K2 in .G/rw, which contradicts the fact that .G is a critically .2K2-exist. ∎
Claim 11.6 If .v,w, x ∈ V (G) \ S such that .|N (v)| = |N (w)| = 3, while . N (v) ∩
N (w) is two adjacent vertices in . S, then .|N (x)| /= 2. ∎
Proof W.l.o.g., Let .N (v) = {r, t, u} and .N (w) = {s, t, u}. W.l.o.g and for the sake 
of contradiction, assume that .N (x) = {r, u}. However, . f ({r, t, w, x}) induces . 2K2

in .G/uv, which contradicts the fact that .G is a critically .2K2-exist. ∎

By Claims 11.1 to 11.6, the possible critically.2K2-exist graphs are those presented 
in Fig. 1 whose proofs of being critically .2K2-exist for .H1, .H2, .H3, and .H4 are 
straightforward. 

Claim 11.7 The graph .H5 in Fig. 1 is a critically .2K2-exist. ∎
Proof Graph .H5 in Fig. 1 is isomorphic to a graph .G that contains a vertex subset 
.S = {r, s, t, u}, where .G[S] is isomorphic to a .2K2 and .rs, tu ∈ E(G). Moreover, 
.V (G) = S ∪ W ∪ X ∪ Y , such that .N (w ∈ W ) = {r, s, t}, .N (x ∈ X) = {r, s, u}, 
.N (y ∈ Y ) = {r, s, t, u}, and .|W |, |X |, |Y | ≥ 0. 

We note that . S is the only vertex set inducing .2K2 in . G. Moreover, every edge 
in .E(G) is .G[S]-critical for . S. Thus, and by Lemma 1, .H5 in Fig. 1 is a critically 
.2K2-exist. ∎
Claim 11.8 Graph .H6 in Fig. 1 is a critically .2K2-exist. ∎
Proof Graph .H6 in Fig. 1 is isomorphic to a graph .G that contains a vertex subset 
.S = {r, s, t, u} where .G[S] is isomorphic to a .2K2 and .rs, tu ∈ E(G). Moreover, 
.V (G) = S ∪ W ∪ X ∪ Y ∪ Z , such that .N (w ∈ W ) = {s, t}, .N (x ∈ X) = {s, u}, 
.N (y) = {s, t, u}, .N (z) = {r, s, t, u}, and .|W |, |X |, |Y |, |Z | ≥ 0. 

We note that . S is the only vertex set inducing .2K2 in . G. Moreover, every edge 
in .E(G) is .G[S]-critical for . S. Thus, and by Lemma 1, .H6 in Fig. 1 is a critically 
.2K2-exist. ∎

By Claims 11.7 and 11.8, the proof is complete. ∎
By Theorem 1, Corollary 2, and Proposition 11, we obtain the following. 

Theorem 5 Let .G be a graph that is non-isomorphic to any graph in Fig. 1. The 
graph .G is .2K2-free if and only if any .G-contraction is .2K2-free.
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2.2 The .C4-Free Graphs 

The .C4-split graphs can be easily recognized as follows: 

Proposition 12 The graphs in Fig. 2 are the only .C4-split graphs. 

The remaining graphs presented in Fig. 2 are obviously .C4-exist, which immedi-
ately provides the following result. 

Corollary 3 .C5 is the only .C4-free-split graph. 

Proposition 13 The graphs in Fig. 3 are the only critically .C4-exist graphs. 

Proof Through this proof, we assume that .G is a critically .C4-exist graph with 
.S = {r, s, t, u} such that.G[S] is isomorphic to.C4 where. r and. t are adjacent to both 
. s and . u. By Theorem 3, we note that .V (G) \ S is independent. Thus, any vertex in 
.V (G) \ S is adjacent to vertices only in . S. By Corollary 1, if .v ∈ V (G) \ S, then . v

is nonadjacent to exactly: one vertex, two adjacent vertices, or three vertices. 
Let .v ∈ V (G) \ S such that .|N (v)| = 2. W.l.o.g, assume that .N (v) = {r, t}. Let  

.w ∈ V (G) \ S, however, if .w is adjacent to . s (or . u), then in .G/sw, . f ({r, t, u, v})
induces .C4, which contradicts the fact that .G is a critically .C4-exist. Thus, if . v ∈
V (G) \ S such that .|N (v)| = 2, then .G is isomorphic to a graph in .H1. 

Let .v,w, x ∈ V (G) \ S such that .|N (v)| = |N (w)| = 4. Hence, .|N (x)| = 4, 
however, in .G/rv, . f ({s, u, w, x}) induces .C4, which contradicts the fact that . G
is a critically .C4-exist. Thus, if there is a vertex outside . S that is adjacent to every 
vertex in . S then .G is isomorphic to either .H2 or .H3. 

Consequently, the possible critically.C4-exist graphs are those presented in Fig. 3 
whose proofs, of being critically .C4-exist, are straightforward, which completes the 
proof. ∎

By Theorem 1, Corollary 3, and Proposition 13, we obtain the following. 

1 2 3 4 

Fig. 2 .C4-split graphs 

1 2 3 

Fig. 3 Critically.C4-exist graphs
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Fig. 4 .C5-split graphs 

1 2 3 4 

Theorem 6 Let .G be a .C5-free graph that is non-isomorphic to any graph in Fig. 3. 
The graph .G is .C4-free if and only if any .G-contraction is .C4-free. 

2.3 The .C5-Free Graphs 

It is not hard to identify the .C5-split graphs as follows. 

Proposition 14 The graphs in Fig. 4 are the only .C5-split graphs. 

The remaining graphs presented in Fig. 4 are obviously .C5-exist, which immedi-
ately provides the following result. 

Corollary 4 .C6 is the only .C5-free-split graph. 

In similar way to the proof of Proposition 13, we can obtain the following: 

Proposition 15 The graphs in Fig. 5 are the only critically .C5-exist graphs. 

By Theorem 1, Corollary 4, and Proposition 15, we obtain the following. 

Theorem 7 Let .G be a .C6-free graph that is non-isomorphic to any graph in Fig. 5. 
The graph .G is .C5-free if and only if any .G-contraction is .C5-free. 

2.4 Split Graphs 

Split graphs were introduced in [ 9] and were characterized as follows: 

Theorem 8 [ 9] A graph .G is split if and only if .G is .{2K2,C4,C5}-free. 
Thus, we call a graph that is .{2K2,C4,C5}-exist non-split graph. Additionally, split 
graphs have been characterized in [ 9] as chordal graphs whose complements are also 
chordal. Furthermore, it was characterized by its degree sequences in [ 11]. Moreover, 
further properties of split graphs are studied in [ 1, 12, 15]. 

By Theorems 1, 5, 6, and 7, we obtain: 

Theorem 9 Let .G be a graph that is non-isomorphic to any graph in Fig. 6. The 
graph .G is split if and only if any .G-contraction is split.
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1 2 3 

4 5 

6 

Fig. 5 Critically.C5-exist graphs 

The class of split graphs is a closed class under edge contraction. The definition of 
a split graph implies that by contraction of an arbitrary edge in a split graph leads 
to another split graph. So the contribution of Theorem 9 is in listing the critically 
non-split graphs.
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1 2 3 

4 5 6 7 

Fig. 6 Critically non-split graphs 
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Exact Approaches for the Connected 
Vertex Cover Problem 

Manuel Aprile 

Abstract Given a graph . G, the Connected Vertex Cover problem (CVC) asks to 
find a minimum cardinality vertex cover of .G that induces a connected subgraph. 
This paper describes some approaches to solve the CVC problem exactly. First, 
we give compact mixed-integer extended formulations for CVC: these are the first 
formulations proposed for this problem, have a small number of extra variables and 
can be easily adapted to variations of the problem such as Tree Cover. Second, 
we describe a simple branch and bound algorithm for the CVC problem. Finally, 
we implement our algorithm and compare its performance against our best extended 
formulation: contrary to what usually happens for the classical Vertex Cover problem, 
our formulation outperforms the branch and bound algorithm. 

1 Introduction 

Given a graph.G = (V, E), a subset of vertices.C ⊆ V is a vertex cover of. G if every 
edge of .G has at least one endpoint in . C . The problem of finding a vertex cover of 
minimum cardinality in a graph is equivalent to finding a maximum stable set (or a 
maximum clique in the complement graph) and is one of the best studied problems 
in theoretical computer science. In this paper we study one of the most popular 
variants of the minimum Vertex Cover (VC) problem, where we aim at finding a 
minimum connected vertex cover (CVC): i.e., we additionally require the subgraph 
.G[C] induced by . C to be connected. We call this the CVC problem. 

The CVC problem has applications in wireless network design, where one aims 
at placing relay stations on the network so that they cover all transmission links (the 
edges of the network) and are all connected to each other. 

Similarly to the VC problem, the CVC problem is NP-hard [ 16] and admits a 
polynomial-time 2-approximation algorithm [ 25]. On the other hand, the CVC prob-
lem is NP-hard even if the input graph is restricted to be bipartite [ 14]: this is sur-
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prising as Vertex Cover is polynomially solvable for bipartite graphs, as, thanks to 
the famous König–Egeváry Theorem, it amounts to finding a maximum matching. 

The CVC problem has received attention especially from the point of view of 
parameterized algorithms [ 17, 23] and approximation algorithms [ 10, 13, 25]. An 
aspect that did not receive much attention is that of solving the CVC problem in 
practice: moreover, prior to this paper there were no mathematical programming 
formulations for the problem. Such formulations are usually easy to implement and 
are flexible to the addition of extra constraints to the problem, an advantage for real-
world applications. Different from the CVC problem, there is a wealth of methods 
for solving the VC problem, the most effective being branch and bound algorithms 
(see [ 27] for a survey), and there are many linear and non-linear formulations for VC 
and the related maximum clique and maximum stable set problems [ 5, 20, 24]. 

A key feature of the CVC problem that we exploit in this paper is that its con-
straints can be modelled as linear constraints from two polytopes: the vertex cover 
polytope and the spanning tree polytope. Both are well-studied polytopes for which 
a large number of extended formulations is known [ 5, 6, 8, 15, 21, 26]: those are 
formulations where extra variables are used, other than the variables of the original 
polytope, in order to limit the number of inequalities. 

In this paper we aim at partially filling the gap between VC and CVC by proposing 
mixed-integer extended formulations for the CVC problem. Our main contribution is 
a mixed integer formulation for the CVC problem with a relatively small number of 
variables (linear in the number of edges of the input graph). The formulations we pro-
pose also lend themselves to modelling related problems as the Tree Cover problem 
[ 9] (see Sect. 5). As an additional contribution, we also describe a simple branch and 
bound algorithm for CVC, by modifying a standard algorithm for the maximum sta-
ble set problem. Finally, we perform numerical experiments to compare the various 
approaches. In our experiments, the proposed mixed-integer formulation solves the 
problem much faster than the branch and bound algorithm. This is interesting since, 
for the general Vertex Cover problem, combinatorial algorithms usually outperform 
linear formulations. 

The paper is organized as follows: this introduction terminates with Sect. 1.1, 
which gives some basic terminology and notation; in Sect. 2 we give our formulations 
for CVC and prove their correctness; the branch and bound algorithm is described in 
Sect. 3; numerical experiments are given in Sect. 4; finally, we conclude with some 
further research directions in Sect. 5. 

1.1 Preliminaries 

Throughout the paper we let .G = (V, E) be a connected graph. This is natural 
because, ignoring exceptions such as isolated vertices, only connected graphs admit 
connected vertex covers. Given a set .U ⊆ V , we let  .G[U ] = (U, E(U )) be the 
subgraph induced by . U , where .E(U ) = {(u, v) ∈ E : u, v ∈ U }. Set .U is stable if 
the .G[U ] does not contain any edge. Clearly, a subset .U ⊆ V is a vertex cover if
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and only if its complement .V \U is stable. Hence, solving the CVC problem is 
equivalent to finding the maximum stable set . S such that the graph .G \ S obtained 
by removing . S is connected. Finally, a subgraph of .G is a spanning tree of .G if it is 
a tree and contains all vertices of . G: we usually identify a spanning tree with a set 
of edges .F ⊆ E . 

For sets .U ⊆ A, we denote by .χU ∈ {0, 1}A the incidence vector of . U , which 
satisfies .χU

v = 1 if and only if .v ∈ U . We will use incidence vectors for subsets of 
vertices, edges, or arcs in directed graphs. For a vector.x ∈ R

A, we often write. x(U )

to denote .
∑

u∈U xu . 

2 Mixed-Integer Programming Formulations 

A compact integer formulation of the Vertex Cover problem is well known: it suffices 
to use a variable .xv for each node . v of our graph . G, and ask that .xu + xv ≥ 1 for 
each edge.uv of. G. On the other hand, it is not trivial to come up with a formulation 
for CVC, and we do not know any formulation that only uses node variables. The 
reason behind this difficulty is that imposing connectedness in an induced subgraph 
is a difficult constraint to model. Notice that a graph is connected if and only if it 
admits a spanning tree. Hence to model connectedness we resort to the spanning 
tree polytope of . G, denoted by .STP(G), defined as the convex hull of the incidence 
vectors of all the spanning trees in. G. The basic idea that underlies all the formulations 
in this section is to add edge variables to the node variables, and to impose that such 
edge variables model a spanning tree in the subgraph induced by our vertex cover. 
We first propose the following formulation, based on the classical linear description 
of .STP(G) given by Edmonds [ 12]. 

. Pstp =
{
x ∈ {0, 1}V | ∃ y ∈ [0, 1]E :

xu + xv ≥ 1 ∀(u, v) ∈ E (1) 

.y(E(U )) ≤ |U | − 1 ∀∅ /= U ⊆ V (2) 

.y(E) = x(V ) − 1 (3) 

.yuv ≤ xu, yuv ≤ xv ∀(u, v) ∈ E
}
. (4) 

Lemma 1 Let .G = (V, E) be a connected graph. Then .C ⊆ V is a CVC if and only 
if .(χC , y) ∈ Pstp for some .y ∈ R

E . 

Proof If. C is a CVC, then fix any spanning tree. F of.G[C]. Then.χC clearly satisfies 
Constraints (1); moreover, setting .y = χ F can be easily seen to satisfy Constraints 
(2), (3), (4). 

On the other hand, assume that .(χC , y) ∈ Pstp. Then .C ⊆ V is clearly a vertex 
cover. Moreover, (4) implies .ye = 0 for each .e ∈ E \ E(C), hence the projection . y'
of . y to variables .E(C) is in the spanning tree polytope of .G[C], due to constraints
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(2), (3) (notice that .x(V ) − 1 = |C | − 1). The spanning tree polytope of .G[C] is 
then non-empty, therefore .G[C] is connected. ∎

The description above has an exponential number of constraints. There are well 
known extended formulations of size .O(n3) for the spanning tree polytope of an 
.n-vertex graph [ 21, 26], and smaller extended formulations for special classes of 
graphs [ 8, 15]. Therefore, we would like to turn any formulation for the spanning 
tree polytope into a formulation for CVC. This can be done by going through the 
forest polytope of . G, .STP↓(G), defined as the convex hull of incidence vectors 
of forests of . G. The same proof of Lemma 1 shows that a correct formulation 
for CVC can be obtained by replacing Constraints 2 in .Pstp with .y ∈ STP↓(G). 
Finally, it is well-known that one can obtain a formulation of .STP↓(G) from one 
of.STP(G), since.STP↓(G) = {x ∈ [0, 1]E : ∃y ∈ R

E : x ≤ y, y ∈ STP(G)}. While 
this approach does reduce the size of our CVC formulation from exponential to poly-
nomial, it still yields too many extra variables to be practical. In the next section, we 
address this issue. 

2.1 A Smaller Mixed-Integer Formulation 

We now give a smaller formulation for the CVC problem, which makes use of a 
mixed-integer formulation for .STP(G) with a small number of additional variables. 
We start by giving the formulation for .STP(G), which builds on natural ideas that 
can be found, for instance, in [ 22]. Rather than spanning trees in undirected graphs, 
we focus on arborescences in directed graphs. Given our graph. G, we simply bidirect 
each edge obtaining the directed graph.D = (V, A). Now, fix a “root” vertex.r ∈ V . 
Recall that an .r -arborescence of .D is a subset of arcs .F ⊆ A such that, for every 
.v ∈ V \ {r}, .F contains exactly one directed path from. r to . v. Clearly, a description 
of the .r -arborescences of .D gives a description of the spanning trees of .G by just 
ignoring the orientations (i.e. setting .yuv = zuv + zvu for each edge .uv). Moreover, 
since arborescences are rooted in. r , we do not need arcs that point to. r , and we simply 
delete them. Recall that .δ−(v) denotes the set of arcs of .A pointing to . v. Consider 
the following formulation: 

. Qr =
{
z ∈ {0, 1}A | ∃ d ∈ R

V :
z(δ−(v)) = 1 ∀v ∈ V \ {r} (5) 

.dv ≥ n · (zuv − 1) + du + 1 ∀(u, v) ∈ A (6) 

.dr = 0 (7) 

.z(A) = |V | − 1
}
. (8) 

Lemma 2 Let .D = (V, A) be a directed graph, and .r ∈ V such that .δ−(r) = ∅. 
Then.F ⊆ A is an.r-arborescence of.D if and only if.(χ F , d) ∈ Qr for some.d ∈ R

V .
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Proof First, given an .r -arborescence . F , set  .dv to the length of the (unique) path 
from. r to . v in . F , for each .v ∈ V . It is easy to check that all constraints are satisfied 
by .(χ F , d). 

On the other hand, let .(z, d) ∈ Qr , with .z = χ F . We first show that . F , after  
ignoring orientations, does not contain cycles: suppose by contradiction that . C ⊆
F is a cycle with vertices .v1, . . . , vk , where for each .i = 1, . . . , k, .vivi+1 ∈ C or 
.vi+1vi ∈ C (where the sum is modulo. k). For any.uv ∈ C , we have that . dv ≥ du + 1
by (6): this implies that . C cannot be a directed cycle. In particular, if . v is the vertex 
of .C with .dv minimum, then there are two arcs of .C pointing to . v: but this is in 
contradiction with Constraint (5), if .v /= r , and with .δ−(r) = ∅ otherwise. 

Now, we have .|F | = |V | − 1 by (8). This, the absence of cycles, and Constraint 
(5), guarantees that .F is an .r -arborescence of . D. ∎

One could turn .Qr into a formulation for the forest polytope of .G and obtain a 
formulation for the CVC problem, as described in the previous section. However, it 
is not clear how to do this without adding additional variables: the issue is the choice 
of the root . r , which does not need to be connected to the other vertices in a forest. 
Instead, we are able to limit the number of variables by exploiting the fact that, for 
any edge.uv of. G, at least one of.u, v has to be picked in our vertex cover. Hence, we 
choose a “main” root vertex . r , and another root . r1, adjacent to . r , that we can use as 
a root when . r is not in our vertex cover. We consider the following directed version 
.D = (V, A) of our graph .G = (V, E): fix  .r, r1 ∈ V with .rr1 ∈ E , turn every edge 
.vr ∈ E into a directed arc from . r to . v, turn every edge .vr1 ∈ E with .v /= r into a 
directed arc from.r1 to . v, and bidirect each other edge. Notice that, in . D, . δ−(r) = ∅
and .δ−(r1) = {r}. Now, consider the following formulation: 

. Parb(r, r1) =
{
x ∈ {0, 1}V ∃ z ∈ {0, 1}A, d ∈ R

V :
xu + xv ≥ 1 ∀(u, v) ∈ A, (9) 

.z(δ−(v)) = xv ∀v ∈ V \ {r, r1} (10) 

.dv ≥ n · (zuv − 1) + du + xv ∀(u, v) ∈ A (11) 

.dr = 0 (12) 

.z(A) = x(V ) − 1 (13) 

.zuv ≤ xu, zuv ≤ xv ∀(u, v) ∈ A
}
. (14) 

Theorem 1 Let .G = (V, E) be a connected graph, let .r, r1 ∈ V with . (r, r1) ∈ E
and construct the directed graph .D = (V, A) as described above. Then .C ⊆ V is a 
CVC if and only if .(χC , z, d) ∈ Parb(r, r1) for some .z, d. 

Proof First, let .C ⊆ V be a CVC. We distinguish three cases. 

1. .r ∈ C, r1 /∈ C . Let. F be any.r -arborescence of.D[C], and set.x = χC ,.z = χ F ,. dv

equal to the distance between. r and. v in. F for.v ∈ C , and.dv = 0 for.v /∈ C . Notice 
that .0 ≤ dv ≤ n − 1 holds for all .v ∈ V . Now,.(x, z, d) can be checked to satisfy 
all constraints of .Parb(r, r1): we only discuss Constraints (11). Let .(u, v) ∈ A. If
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.(u, v) /∈ F , the corresponding constraint is.dv ≥ −n + du + xv , which is trivially 
satisfied for any.u, v as.dv is non-negative and the right-hand side is non-positive. 
Hence, suppose .(u, v) ∈ F , hence .xv = 1. Then the constraint is .dv ≥ du + 1, 
which is satisfied at equality by our choice of . d. 

2. .r1 ∈ C, r /∈ C . We proceed similarly as in the previous case, choosing an .r1-
arborescence.F of .D[C] and setting.z = χ F , .dv equal to the distance between. r1
and . v in .F for .v ∈ C , and .dv = 0 for .v /∈ C . Then .(x, z, d) can be checked to 
satisfy all constraints exactly as before. 

3. .r, r1 ∈ C . Let. F be an.r -arborescence of.D[C] containing the arc.rr1 (notice that 
such an arborescence always exists). Set .z = χ F , and set . d as in the first case. 
Again, one checks that all constraints are satisfied. 

Now, let .(χC , z, d) ∈ Parb(r, r1), with .z = χ F . In order to show that .G[C] is 
connected, we just need to show that. F does not contain any cycle. We use the same 
argument as in the proof of Lemma 2, which we repeat for completeness. Assume 
that. F contains a cycle. C .. C cannot be a directed cycle due to Constraints (11), hence 
. C contains a vertex . v with two incoming arcs. Constraint (10) implies that .v = r or 
.v = r1, but this contradicts the fact that .δ−(r) = ∅, .δ−(r1) = {r}. ∎

3 A Branch & Bound Algorithm 

In this section we describe a naive branch & bound algorithm to solve the CVC prob-
lem. For simplicity we follow the standard framework of branch & bound algorithms 
for the maximum stable set problem, see for instance [ 27]: instead of looking directly 
for a minimum vertex cover, we look for a stable set .S∗ of maximum size. The only 
difference with the classical setting is that we impose that .S∗ is feasible, where we 
call feasible a stable set . S such that .G \ S is connected. 

We now give an informal description of the algorithm, referring to Algorithm 1 
for the pseudocode. To avoid recursion, a stack is used to store the nodes explored by 
the algorithm. Each node consists of a pair.(S,U ), where. S is a feasible stable set and 
.U is a set of candidate nodes that can be added to. S. The idea is to explore the search 
space of all possible nodes while keeping a record of the best solution found so far, 
denoted by.S∗: at each step, the current node.(S,U ) of the stack is either branched on, 
or pruned if we realize that it cannot produce a stable set larger than.S∗. The pruning 
step is based on greedy coloring, as in the classical algorithm for the maximum stable 
set problem, exploiting the fact that any proper coloring of the complement of a graph 
gives an upper bound on its maximum stable set: in particular, the maximum stable 
set that the node can produce has size at most.|S| + α(G[U ]) ≤ |S| + χ(Ḡ(U )), and 
the latter term is estimated as the numbers of colors used in a greedy coloring (see 
Line 6). Branching is also performed as in the classical algorithm, but with a crucial 
difference: we select a vertex.v ∈ U and create nodes.(S,U \ {v}) and.(S ∪ {v},U '), 
where .U ' ⊆ U \ {v} is obtained by removing from .U all the neighbors of . v and all
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the cut-vertices 1 of .G \ (S ∪ {v}) (see Line 11). This ensures that we only consider 
feasible stable sets. 

Algorithm 1 Pseudocode of a basic branch & bound algorithm for CVC. Following 
the classical framework for maximum stable set algorithms, the algorithm finds 
the largest stable set S∗ in G such that G \ S∗ is connected, and then outputs the 
corresponding vertex cover. 

Input: A connected graph G = (V , E) 
Output: A minimum-size CVC of G 

1: S∗ ← ∅  
2: C ← cut-vertices of G 
3: A ← [(∅, V \ C)] 
4: while A non-empty do 
5: (S, U ) ← pop(A) 
6: while U non-empty and |S∗| < |S|+ greedy_color( Ḡ[U ]) do 
7: v ← pop(U ) 
8: Append (S, U ) to A 
9: S ← S ∪ {v} 
10: C ← cut-vertices of G \ S 
11: U ← (U ∩ N̄ (v)) \ C 
12: if |S| > |S∗| then 
13: S∗ ← S 
14: end if 
15: end while 
16: end while 
17: return V \ S∗ 

We now argue that our algorithm is correct: most importantly, we need to show 
that removing cut-vertices as described above is enough to find the largest feasible 
stable set. 

Theorem 2 Let .G = (V, E) be a connected graph. Then Algorithm 1 on input . G
outputs a minimum CVC of . G. 

Proof Equivalently, we will show that the set .S∗ output by the algorithm is the 
maximum feasible stable set of . G. We say that a node .(S,U ) contains a feasible 
stable set .S' if .S ⊆ S' ⊆ U . 

First, we claim that the starting node .(∅, V \ C) contains all feasible stable sets, 
where . C are the cut-vertices of . G. Indeed, if . u is a cut-vertex of . G, and . S a feasible 
stable set, . S cannot contain . u: if  .u ∈ S, we must have that .G \ {u} consists of two 
connected components .G1, .G2, and . S contains the vertices of .G1 without loss of 
generality. But since.G is connected, there is at least an edge between. u and a vertex 
of .G1, a contradiction. 

Now, it suffices to show that, whenever we branch on a node .(S,U ) obtaining 
two new nodes, any feasible stable set .S' contained in .(S,U ) is contained in one of

1 A vertex. v of a connected graph.G is a cut-vertex if its deletion disconnects. G. 
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the new nodes. This implies that any feasible stable set is explored by the algorithm 
at some step, and concludes the proof. 

The new nodes created are.(S,U \ {v}) and.(S ∪ {v},U '), where.U ' is defined in 
Line 11. Clearly, if.v /∈ S', then.S' is contained in node.(S,U \ {v}) and we are done. 
On the other hand, if .v ∈ S', we only need to show that .S' ⊆ U '. This follows since 
.S' cannot contain any neighbor of . v, or any cut-vertex of .G \ (S ∪ {v}), where the 
latter is proved by using the same argument as for the starting node. ∎

We conclude the section with some improvements to Algorithm 1 that can be 
implemented to increase performance (see next Section for the implementation 
details). 

• Computing a strong upper bound reduces the number of branch and bound nodes, 
at the price of longer running time for each node: for bipartite graphs, instead of 
resorting to a coloring bound we can directly compute the size of a maximum 
(usually unfeasible) stable set in the current subgraph, resulting in much better 
bounds and shorter total running time. 

• On the other hand, for general graphs we find that is better to spend less time on 
the upper bound computation: instead of recomputing a greedy coloring at each 
execution of Line 6, keeping the same coloring for several steps reduces the total 
running time. 

• Russian Doll Search: to slightly restrict the number of visited nodes, we order the 
vertices as .v1, . . . , vn by decreasing degree and call the algorithm. n times: at step 
. i , we include node. i on our starting set . S and restrict the set .U to vertices. v j , with 
. j > i , that are not neighbors of . vi . 

4 Numerical Results 

We now compare the performance of our formulation.Parb and our branch and bound 
algorithm on a benchmark of random graphs. We remark that the CVC problem 
is most interesting in graphs where the solution of CVC is strictly larger than the 
minimum vertex cover (we call such graphs interesting): if this is not the case one 
could just use the state of the art methods for finding the minimum vertex cover, 
and check that it induces a connected subgraph. This poses challenges to forming a 
benchmark of interesting graphs, as for instance the standard DIMACS benchmark 
[ 19] does not contain interesting graphs as far as we could check. Hence we resorted 
to sparse, random graphs. In particular, half of our graphs are Erdős–Rényi random 
graphs with density equal to.0.05; the others are bipartite random graphs, with density 
ranging from.0.1 to.0.5. We remark that bipartite graphs often seem to be interesting, 
which makes sense intuitively as each part of the bipartition forms a (possibly sub-
optimal) vertex cover that is not connected: for instance, in the complete bipartite 
graph .Kn,n , a minimum vertex cover has size . n, while a minimum connected vertex 
cover has size .n + 1. Moreover, as mentioned in the introduction, bipartite graphs
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are one of the simplest graph classes for which the VC problem is polynomial and 
CVC is NP-hard, which makes them good candidates for studying the differences 
between the two problems. 

The graphs are produced with the functions fast_gnp_random_graph() and bipar-
tite.random_graph() from the Networkx package [ 18], and the name of the graph 
indicates the random seed: for instance,.Gi is the random graph on 100 vertices with 
density 0.05 created by seed. i . Some of the seeds are missing since we only consider 
connected graphs. The experiments are run on a processor Intel Core i5-4590 (4 
cores) clocked at 3.3 GHz with 4 GB RAM. Algorithm 1 is coded in Python, version 
3.7, and Networkx functions articulation_points() and greedy_color() are used to 
perform Lines 10 and 6 respectively. We refer to [ 3] for the code for Algorithm 1 and 
for producing the formulation .Parb. 

As for the implementation of formulation .Parb, it is also done in Python 3.7 and 
Gurobi 9.0.3 is used as MIP solver. Default parameters are used, and the results are 
averaged over three runs to account for the performance variability of the solver. 

Table 1 indicates the results for random graphs, and Table 2 for bipartite graphs. 
Columns .VC , .CVC indicate the sizes of the minimum vertex cover and connected 
vertex cover respectively. The columns B&B t, B&B n indicate the running time (in 
seconds) and the number of nodes of Algorithm 1, and similarly for.Parb t and.Parb n. 

It is evident from this comparison that solving the CVC problem with our formu-
lation .Parb is much faster than with Algorithm 1, by a factor of one up to three order 
of magnitudes for some of the instances. Algorithm 1 does not finish in the time 
limit (one hour) for one of the bipartite graphs of density 0.2. Clearly, this might 
be partially due to the naive implementation of Algorithm 1, which is not optimized 
for speed: for instance, in Line 10 one does not have to recompute all cut vertices 
every time, but could restrict the computation to a single connected component of 
an appropriate subgraph of . G. However, implementing this using the appropriate 
functions of Networkx actually further slows down the algorithm, as more infor-

Table 1 Results for random graphs of low density (0.05) 

Name 
(seed) 

.|V | .|E | VC CVC B&B t B&B n .Parb t .Parb n 

.G1 100 252 58 60 65.6 23138 0.2 1 

.G2 100 247 55 56 6.4 435 0.1 1 

.G3 100 232 56 57 12.7 1742 0.2 1 

.G4 100 238 58 59 17.9 2296 0.4 191 

.G7 100 257 56 59 21.1 2700 0.3 14 

.G9 100 254 58 60 100.3 21846 0.2 1 

.G13 100 260 58 59 56.2 18766 0.3 7 

.G16 100 263 56 58 18.1 3620 0.2 1 

.G24 100 234 58 58 11.2 1788 0.2 1 

.G25 100 264 61 61 28.6 4789 0.5 158
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Table 2 Results for random bipartite graphs. The density of each graph is written in its name, with 
the random seed in brackets 

Name 
(seed) 

.|V | .|E | VC CVC B&B t B&B n .Parb t .Parb n 

.G0.1(1) 100 255 49 54 11.1 6635 0.1 1 

.G0.1(4) 100 242 50 57 863.4 818251 0.23 1 

.G0.2(0) 100 483 50 57 1h+ 2mln+ 2.7 393 

.G0.2(1) 100 497 50 56 1314.9 999252 2.3 338 

.G0.3(0) 100 753 50 55 1137.1 723409 4.2 88 

.G0.3(1) 100 753 50 55 1266.4 874949 4.3 166 

.G0.4(0) 100 1007 50 54 354.5 210209 3 1 

.G0.4(1) 100 977 50 53 69.6 39614 2.1 1 

.G0.5(0) 100 1254 50 53 73.5 38685 3.9 1 

.G0.5(1) 100 1231 50 53 50.0 26071 5.4 1 

mation needs to be carried by each node. Hence, obtaining a faster version of the 
algorithm would require more advanced data structures and tools. But we believe 
this would not be enough to match the speed of .Parb: a major limit of the algorithm 
is that the bound used in the pruning phase (Line 6) is the same as for the classical 
vertex cover problem, i.e. does not take connectivity into account. Finding a better 
bound that is specific to the CVC problem is a non-trivial challenge, that we leave 
as an open problem. On the other hand, since Gurobi solves .Parb using a very small 
number of branching nodes, it would seem that the bound of the linear relaxation of 
.Parb is reasonably tight. This suggests the idea of taking the best of both worlds and 
integrating a bound based on.Parb into a combinatorial branch and bound algorithm. 

5 Conclusion 

The CVC problem brings together two of the most natural concepts in graph theory: 
stable sets and vertex covers on one hand, connectedness and spanning trees on 
the other. This paper approaches the problem from a modeling perspective, giving 
exact mixed-integer formulations for solving the problem, and compares them with 
a simple branch and bound algorithm. We believe that further work needs to be done 
in both directions: while we focused on modeling the connectivity requirement, 
better formulations could be found by using tighter formulations of the vertex cover 
problem; on the other hand, finding a faster branch and bound algorithm is fascinating 
challenge, as it is unclear how to tailor the branching and pruning steps to the CVC 
problem. We conclude by mentioning some extensions of CVC that could be of 
interest.
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The Tree Cover problem [ 9] is closely related to the CVC problem: given a 
graph with non-negative weights on the edges and numbers .k, w one asks to find a 
connected vertex cover of size at most. k whose induced subgraph admits a spanning 
tree of weight at most. w. It is easy to see that our formulations given in Sect. 2 can be 
adapted to model the Tree Cover problem, and exploring this further is an interesting 
research direction. 

A natural generalization of the CVC problem considers hypergraphs instead of 
graphs [ 13]. We remark that deciding whether a hypergraph contains a spanning tree 
is NP-hard [ 1], hinting that the hypergraph version of CVC might be significantly 
harder than the graph version. However, we believe that our formulations can be 
extended to the hypergraph setting, and intend to investigate further in the future. 

Finally, a different direction of research would be to generalize the connectivity 
constraint in the CVC problem to a matroid constraint, i.e. requiring that the edges 
of the subgraph induced by our vertex cover are full-rank sets of a given matroid. 
To the best of our knowledge, problems of this kind have not been studied before. 
Modelling such problems with mixed-integer formulations would be a promising line 
of inquiry, as there are several extended formulations for special matroid polytopes 
[ 2, 4, 7, 11]. 
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Rigidity of Frameworks on Spheres 

John Hewetson and Anthony Nixon 

Abstract Consider the rigidity of bar-joint frameworks in 3-dimensional space that 
are constrained to lie on a union of spheres. It is well known that rigidity on a 
single sphere is equivalent to Euclidean rigidity and this equivalence extends to the 
case where the spheres are concentric. We consider the case when the spheres have 
distinct centres and give coloured sparsity conditions, analogous to the Euclidean 
case, necessary for a generic framework on the union of two spheres with different 
centres to be rigid. We show that these conditions are not sufficient in general and 
add additional conditions which we prove are sufficient in a special case. 

1 Introduction 

A bar-joint framework .(G, p) is the combination of a finite, simple graph. G = (V, E)

and a map .p : V → R
d . The framework is rigid if the only edge-length preserving 

continuous deformations of the vertices arise from isometries of .Rd . In general it is 
NP-hard to determine the rigidity of a given framework [ 1], however for ‘generic’ 
frameworks one can linearise and consider the equivalent notion of infinitesimal rigid-
ity [ 2]. Infinitesimal rigidity has been studied intensely in recent decades. Notably, 
when .d ≤ 2 there is a precise combinatorial characterisation [ 7, 12] which leads to 
efficient deterministic algorithms [ 8]. However, when .d ≥ 3 fundamental questions 
remain open [ 5, 14]. 

A natural question is what happens when .Rd is replaced by a, perhaps smooth, 
.d-dimensional manifold. The case of the unit sphere centred at the origin,.Sd , is well  
understood. In particular, due to work going back to Pogorelov [ 4, 11, 13], infinites-
imal rigidity is now well understood as a projective invariant and hence infinitesimal 
rigidity in .Rd is equivalent to infinitesimal rigidity on .Sd . This equivalence breaks 
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down for.d-manifolds which ‘support’ isometry groups of smaller dimension. How-
ever, a number of recent papers have studied rigidity for .2-manifolds such as cylin-
ders, surfaces of revolution, and surfaces arising from the more general context of 
linearly constrained frameworks [ 3, 9, 10]. Previous research has focused on either 
irreducible manifolds with a single connected component, or the mild extension to 
‘concentric’ surfaces. One such example is concentric spheres, where the isometry 
group has the same dimension as any one of its irreducible components. 

In this article we consider the reducible case proper by considering the rigidity 
of frameworks in .R

3 where the vertices lie on the union of two spheres with distinct 
centres. Since the dimension of the isometry group of a single sphere is different to 
that of the isometry group of such a union of spheres, the required number of con-
straints varies depending on whether a (sub-)framework is supported on one or both 
spheres. We use 2-(vertex)-coloured graphs to model such frameworks and analyse 
appropriate classes of ‘coloured sparse’ graphs. The multiple sparsity requirements 
lead to additional cases to check and substantial complications. One difficulty is the 
existence of various types of ‘flexible circuit’ (see Remark 1 below). It turns out that 
the problem is already non-trivial when exactly one vertex lives on the second sphere 
and our main result precisely characterises this case. 

In Sect. 2 we introduce formal definitions, express infinitesimal rigidity as a matrix 
rank condition, and give coloured sparse graph counts necessary for infinitesimal 
rigidity. Then we show that certain operations on frameworks on a pair of non-
concentric spheres preserve infinitesimal rigidity. Our main result is proved, via a 
recursive construction of the relevant coloured graphs, in Sect. 3. 

2 Rigidity on Non-concentric Spheres 

Let .Sd
c denote the .d-dimensional unit sphere centred at the point .c ∈ R

d . For nota-
tional convenience we will use. S to denote the union.S

2
(0,0,0) ∪ S

2
(3,0,0). 

1 Throughout, 
unless stated otherwise, .G will be a finite, simple graph with vertex set . V , edge set 
.E and .χ : V → {r, b} will be a 2-colouring of the vertices of .G (with colours red 
and blue). The resulting ordered pair .(G, χ) is a 2-coloured graph, and we denote 
this object .Gχ . For  .i ∈ {r, b}, let  .Vi = {v ∈ V : χ(v) = i}. A  2-coloured subgraph 
.Hχ of .Gχ is a subgraph .H of .G equipped with the colouring .χ |V (H). A bar-joint 
framework on . S, .(Gχ , p), is the combination of a 2-coloured graph .Gχ and a reali-
sation, of. G, .p : V → R

d such that .p(v) ∈ S
2
(0,0,0) for all .v ∈ Vr and. p(v) ∈ S

2
(3,0,0)

for all .v ∈ Vb. Throughout we will always assume that . p is chosen in this way. That 
is, it will be assumed that . χ and . p are compatible in the sense that every .v ∈ Vr is 
mapped to .p(v) ∈ S

2
(0,0,0) and every .u ∈ Vb is mapped to . p(u) ∈ S

2
(3,0,0)

The frameworks.(Gχ , p) and.(Gχ , q) on. S are: equivalent if. ||p(vi ) − p(v j )||2 =
||q(vi ) − q(v j )||2 for all .viv j ∈ E ; and congruent if .||p(vi ) − p(v j )||2 = ||q(vi ) −

1 Rigidity is invariant under both isometries and global dilations; we choose to work with unit radius 
spheres with the specified centres purely for convenience. 
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q(v j )||2 for all .vi , v j ∈ V . Note that .(G, p) and .(G, q) are congruent if and only if 
there exists an isometry . ι of .R3 such that .ι(q) = p. The framework .(Gχ , p) on . S is 
.S-rigid if there exists a neighbourhood of . p such that every equivalent framework 
.(Gχ , q) on. S, with. q in that neighbourhood, is congruent to.(Gχ , p). We refer to non-
.S-rigid frameworks as.S-flexible. Moreover,.(Gχ , p) is minimally .S-rigid if. (Gχ , p)
is .S-rigid and .((G − e)χ , p) is .S-flexible for any .e ∈ E . 

For a given framework on . S, .(Gχ , p), let  .Q(p) denote the field extension of 
.Q by adjoining the coordinates of (the image of) . p. Then .(Gχ , p) is .S-generic if 
.td[Q(p) : Q] = 2|V |. In other words the coordinates of .p satisfy the polynomial 
equations defining the component of . S the relevant point lives on but no other alge-
braic dependency. For generic frameworks it is standard to consider a linearisation 
through the Jacobian derivative matrix. We take the same approach and define the 
rigidity matrix for a framework on . S, .(Gχ , p), to be the .(|E | + |V |) × 3|V | matrix 

. 

(
R3(G, p)
S(Gχ , p)

)

where .R3(G, p) is the usual 3-dimensional rigidity matrix and .S(Gχ , p) is a block 
diagonal matrix in which the 3-tuple in the row and columns for .v ∈ V is a normal 
vector to. S at the point.p(v). We denote this matrix.RS(Gχ , p). Borrowing language 
from matroid theory we say that a 2-coloured graph .Gχ is .S-independent (resp. .S-
dependent) if .RS(Gχ , p) has linearly independent (resp. dependent) rows for some 
(and hence all) generic . p. Moreover .Gχ is an .S-circuit if .RS(Gχ , p) has linearly 
dependent rows but deleting any single row of .RS(Gχ , p) results in a matrix with 
linearly independent rows. 

Let .Gχ = (V, E)χ be a 2-coloured graph. When .|Vb|, |Vr | ≥ 2 then there is 
exactly one isometry that preserves . S; this congruence is the rotation about the line 
determined by the centres of the two spheres. However, if .Vb = {x} then a second 
isometry exists, namely rotation about the line determined by .p(x) and the centre 
of the ‘red’ sphere, and preserves congruence. Moreover, if .Vb = ∅ then all three 
rotational isometries of the red sphere exist and preserve congruence. 

Let .Gχ = (V, E)χ be a 2-coloured graph, we may then define the function . f :
P(V ) \ ∅ → Z by 

. f (U ) =

⎧⎪⎨
⎪⎩
3 if U ⊆ Vr or U ⊆ Vb,

2 if U ⊂ Vr , Vb and |U ∩ Vr | = 1 or |U ∩ Vb| = 1,

1 if |U ∩ Vr |, |U ∩ Vb| ≥ 2.

We say that .(Gχ , p) is infinitesimally .S-rigid if . rank RS(Gχ , p) = 3|V | − f (V )

or .G ∼= K1 and minimally infinitesimally .S-rigid if it is infinitesimally .S-rigid and 
the rows of .RS(Gχ , p) are linearly independent. It follows immediately from [ 12] 
that when . f (V ) = 3 this rank can be achieved. It is not difficult to construct small 
examples where the other maximum possible ranks can be achieved. Figure 1 illus-
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Fig. 1 A realisation of .K2 on two spheres. The three dotted lines represent axes of three rota-
tional motions that result in congruent frameworks. This framework is.S-rigid even though it is not 
infinitesimally.S-rigid 

trates how the number of vertices of each colour affects the number isometries of. R3

that preserve . S, and hence why the count . f (U ) depends on . χ . 
For .S-generic frameworks one may use the inverse function theorem to deduce 

the following analogue of a key theorem of Asimow and Roth [ 2] (see also [  9] for  
the irreducible manifold case). 

Proposition 1 Let .(Gχ , p) be an .S-generic framework on at least 5 vertices. Then 
.(Gχ , p) is .S-rigid if and only if it is infinitesimally .S-rigid. 

Since the rank of the rigidity matrix is maximised at any.S-generic point,.S-rigidity 
depends only on the underlying 2-coloured graph and hence we say that.Gχ is.S-rigid 
if some (and hence any) .S-generic framework .(Gχ , p) on . S is .S-rigid. 

To see the necessity of the lower bound on the number of vertices, consider . K2

(see Fig. 1), .K3, and .K4. Regardless of the colouring assigned by . χ , any complete 
2-coloured graph is .S-rigid. However: .(K2)χ is infinitesimally .S-rigid if and only if 
.χ is monochrome; .(K3)χ is infinitesimally .S-rigid if and only if .χ assigns all the 
vertices of.K3 the same colour; and.(K4)χ is infinitesimally.S-rigid if and only if one 
colour is assigned to at most one vertex. 

Let.G = (V, E) be a graph and take.∅ /= X ⊆ V . Let.iG(X), or.i(X) if the graph is 
clear from the context, denote the number of edges in the subgraph of. G induced by. X . 
A 2-coloured graph.Gχ is.(2, f )-sparse if for all.X ⊆ V such that.|X | ≥ 2,. iG(X) ≤
2|X | − f (X). .Gχ is .(2, f )-tight if it is .(2, f )-sparse and .|E | = 2|V | − f (V ). 

Proposition 2 Let .Gχ be minimally infinitesimally .S-rigid on at least 2 vertices. 
Then .Gχ is .(2, f )-tight. 

Proof As.Gχ is infinitesimally.S-rigid,.|E | ≥ 2|V | − f (V ). Suppose. i(X) > 2|X | −
f (X) for some .X ⊆ V with .|X | ≥ 2. Since .rank RS(Gχ [X ], p|X ) ≤ 3|X | − f (X), 

.RS(Gχ [X ], p|X ) has linearly dependent rows, contradicting the fact that .Gχ is min-
imally infinitesimally .S-rigid. Thus .Gχ is .(2, f )-sparse and hence .(2, f )-tight. ∎

The remainder of this article will consider the converse question. That is, given a 
.(2, f )-tight graph is it .S-rigid? We first illustrate one reason this is challenging. It is 
immediate from Proposition 2 that .S-circuits admit different behaviour to standard
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(a) (b) (c) 

Fig. 2 a the double banana graph which satisfies the Maxwell conditions for 3-dimensional rigidity 
but is not rigid. b A 2-coloured graph that is.(2, f )-tight but not.S-rigid. c An augmentation of (a) 
that models the constraints under the two spheres models of the coloured graph in (b). The green 
vertices represent the fixed centres of the two spheres and the dashed edges to the green vertices 
represent the constraints that the red/blue vertices must move on the given sphere 

Fig. 3 Illustration of the 0- and 1-extension operations 

rigidity models. Specifically a flexible .S-circuit is a graph that is both .S-flexible 
and an .S-circuit. Somewhat surprisingly, flexible .S-circuits exist. For contrast, in 
the well studied 2-dimensional Euclidean rigidity (or equivalently for rigidity on the 
2-sphere) all circuits are rigid. The following example shows the well known double 
banana graph (see Fig. 2) can easily be disguised as a flexible .S-circuit. 

Remark 1 Let.Gχ be the coloured graph consisting of two copies of.K4 that intersect 
in exactly one vertex, which is the unique blue vertex of .Gχ (see Fig. 2b). We may 
consider the corresponding ‘linearly constrained’ framework (see [ 3]), depicted in 
Fig. 2c, which has two additional vertices located at the centers of the two spheres. 
This framework clearly contains the ‘usual’ double banana (Fig. 2a) and admits the 
same infinitesimal motion. Moreover, it is easily checked that .Gχ is .(2, f )-sparse, 
with. f (V ) = 2, and hence the converse to Proposition 2 is false. Further note that one 
may adapt the example by careful replacement of one, or both, of the .K4 subgraphs 
with larger graphs to create infinite families of such examples in both the . f (V ) = 2
and . f (V ) = 1 cases. 

The existence of flexible .S-circuits makes characterising .S-rigidity challenging. 
For that reason we focus on, and resolve, the case where . f (V ) = 2. Note that this 
case is rich enough to contain the flexible .S-circuits described in Remark 1. 

We conclude this section by deriving two ways to build .S-rigid coloured graphs. 
To that end,.G ' is said to be obtained from a graph.G by a 0-extension if. G = G ' − v

for a vertex .v ∈ V (G ') of degree . 2, or by a  1-extension if .G = G ' − v + xy for a 
vertex .v ∈ V (G ') of degree . 3 where . x and . y are neighbours of . v. These operations 
are illustrated in Fig. 3. The converse operations will be referred to as 0-reduction 
and 1-reduction respectively.
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Lemma 1 Let .Gχ be infinitesimally .S-rigid on at least 2 vertices and let .G ' be 
obtained from .G by a 0-extension. If .χ '|V = χ and . f (V (G ')) = f (V ) then .G '

χ ' is 
infinitesimally .S-rigid. 

Proof Let .G ' be formed by adding. v and.vv1, vv2. Set .p' = (p, p'(v)) and observe 
the following block form for the rigidity matrix of .(G '

χ ' , p'): 

. RS(G
'
χ ' , p') =

(
RS(Gχ , p) 0

∗ T

)
.

Here .T is a .3 × 3 matrix whose entries are determined by . p'. In particular, 
.(G '

χ ' , p') is infinitesimally .S-rigid if and only if .T is invertible. It is easy to check 
this holds for any non-collinear triple .p(v1), p(v2), p(v) and hence it holds for . 
.S-generic . p'. ∎

Lemma 2 Let .Gχ be infinitesimally .S-rigid on at least 2 vertices and let .G ' be 
obtained from .G by a 1-extension that deletes the edge .v1v2 and adds a new vertex . v

with .N (v) = {v1, v2, v3}. If  .χ '|V = χ , . f (V (G ')) = f (V ) and .v, v1 ∈ Vr then . G '
χ '

is infinitesimally .S-rigid. 

Proof If.v2 ∈ Vr then we place.p'(v) on the great circle of.S(0,0,0) through the points 
.p(v1) and.p(v2). It is easy to check that the complete graph on.v1, v2, v is a minimally 
dependent set. If .v2 ∈ Vb then we place .p(v) on the intersection of .S(0,0,0) and the 
unique line determined by.p(v1) and.p(v2) (generically this intersection necessarily 
contains a point distinct from.p(v1)). It is again easy to check that the complete graph 
on .v1, v2, v is a minimally dependent set. Hence in both cases we may use the fact 
that 0-extension preserves infinitesimal .S-rigidity when .p(v), p(v1), p(v3) are not 
collinear to show that .(G + v + {v1v, v3v})χ ' is infinitesimally .S-rigid. Now by the 
minimality of the dependent set on .v1, v2, v we may remove the edge .v1v2 and add 
the edge .v2v without altering the rank of .RS(Gχ , p). This shows that .(G '

χ ' , p'), and 
hence .G '

χ ' , is infinitesimally .S-rigid. ∎

3 Rigidity of Nearly Monochrome Graphs 

A 2-coloured graph.Gχ is monochrome if every vertex has the same colour and nearly 
monochrome if it is not monochrome but there exists .v ∈ V such that . (G − v)χ
is monochrome. The classical characterisation of rigidity on the 2-sphere [ 12, 13] 
resolves the case when.Gχ is monochrome. In this section we consider the case when 
.Gχ is nearly monochrome and hence one of the spheres contains exactly one vertex 
of the graph. In this case the combinatorial conditions simplify to. iG(X) ≤ 2|X | − 2
for all .X ⊆ V , and .iG(X) ≤ 2|X | − 3 for all .X ⊆ Vr with .|Vr | > 1. 

For a graph .G and .v ∈ V we will use .dG(v), .NG(v), and .NG[v] to denote the 
degree, neighbourhood, and closed neighbourhood respectively of . v in . G. Further-
more, for .X,Y ⊆ V we use .dG(X,Y ) to denote the number of edges of the form.xy
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such that .x ∈ X \ Y and .y ∈ Y \ X . In each case we may drop the subscript if the 
graph is clear from the context. We will repeatedly use the equality 

.iG(X) + iG(Y ) + dG(X, Y ) = iG(X ∪ Y ) + iG(X ∩ Y ). (1) 

Given a 2-coloured graph .Gχ , we say that .∅ /= X ⊆ V is . f -critical (in .Gχ ) if  
.iG(X) = 2|X | − f (X). If .Gχ is .(2, f )-sparse then a 1-reduction of .Gχ is said to be 
admissible if the resulting 2-coloured graph is.(2, f )-sparse. The next lemma shows 
that . f -critical sets are the main ‘blockers’ to admissible 1-reductions in.(2, f )-tight 
graphs. Vertices of degree 3 shall be referred to as nodes. We say that a node. v ∈ Vr

with .N (v) = {x, y, z} is: type 1 if .N (v) ⊆ Vr and type 2 if .|N (v) ∩ Vb| = 1. The  
other type of node possible in a nearly monochrome graph is a node .v ∈ Vb with 
.N (v) ⊆ Vr ; we avoid working with such nodes. 

The proof of the next lemma is standard and hence omitted. For the proof and 
additional details on subsequent results in this section see [ 6, Chap. 5]. 

Lemma 3 Let .Gχ be a 2-coloured graph, suppose . v is a node of .G and let . N (v) =
{x, y, z}. If  .Gχ is .(2, f )-sparse then .(G − v + xy, χ |V \{v}) is not a .(2, f )-sparse 
2-coloured graph if and only if .xy ∈ E or there exists an . f -critical set .Z ⊆ V such 
that .{x, y} ⊆ Z. Further, if such a set . Z exists and . v is type 1 or type 2 then .z /∈ Z. 

Given that.Gχ is.(2, f )-sparse and. v is a node of. G,. v is admissible if at least one of 
the 1-reductions of.Gχ at. v result in a.(2, f )-sparse 2-coloured graph. To understand 
this, the remainder of this subsection consider interactions between . f -critical sets. 

Lemma 4 Let .Gχ be .(2, f )-sparse and take .∅ /= X, Y ⊆ V . If  .X and .Y are . f -
critical in .Gχ and .|X ∩ Y | ≥ 2 then .d(X, Y ) = 0, .X ∪ Y is . f -critical in .Gχ and 
either 

1. . f (X ∪ Y ) = 1, . f (X) = 2 = f (Y ), . f (X ∩ Y ) = 3, and .X ∩ Y is . f -critical in 
.Gχ , or  

2. . f (X ∪ Y ) = 1, . f (X) = 2 = f (Y ) = f (X ∩ Y ), and .G[X ∩ Y ] ∼= K2, or  
3. . f (X ∪ Y ) = min{ f (X), f (Y )}, . f (X ∩ Y )} = max{ f (X), f (Y )}, and .X ∩ Y is 

. f -critical in .Gχ . 

Proof As .Gχ is .(2, f )-sparse, and .X and .Y are . f -critical in .Gχ , it follows from 
Eq. (1) that . f (X) + f (Y ) ≥ f (X ∪ Y ) + f (X ∩ Y ) + d(X, Y ). Note that, by the 
definition of . f , 

. f (X ∩ Y ) ≥ max{ f (X), f (Y )} ≥ min{ f (X), f (Y )} ≥ f (X ∪ Y ). (2) 

Let.D = min{ f (X), f (Y )} − f (X ∪ Y ). If.D = 2 then. f (X ∪ Y ) = 1 and. f (X) =
3 = f (Y ). However as .X ∩ Y /= ∅ this contradicts the definition of . f . Hence . D ∈
{0, 1}. 

Suppose instead that .D = 1, so  . f (X ∪ Y ) ≤ 2. If  . f (X ∪ Y ) = 2 then . f (X) =
3 = f (Y ) and, as in the previous paragraph, we have a contradiction. Therefore 
. f (X ∪ Y ) = 1 and .min{ f (X), f (Y )} = 2. If  .max{ f (X), f (Y )} = 3 then, as .|X ∩
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Y | ≥  2 and .min{ f (X), f (Y )} = 2, it follows that . f (X ∪ Y ) = 2, a contradiction. 
Therefore . f (X) = 2 = f (Y ), and so . f (X ∩ Y ) ∈ {2, 3}. If  . f (X ∩ Y ) = 3 then it 
follows that .d(X, Y ) = 0 and then Eq. (1) implies that  .X ∪ Y and .X ∩ Y are both 
. f -critical in.Gχ . Alternatively, if . f (X ∩ Y ) = 2 then, as. f (X ∪ Y ) = 1,. |X ∩ Y | =
2. It follows from Eq. (1) that .d(X, Y ) = 0 and so .i(X ∪ Y ) = 2|X ∪ Y | − 1 and 
.i(X ∩ Y ) = 2|X ∩ Y | − 3. That is, .X ∪ Y is . f -critical in .Gχ and .G[X ∩ Y ] ∼= K2. 

Finally suppose that .D = 0, so  . f (X ∪ Y ) = min{ f (X), f (Y )}. It now follows 
from Eq. (2) that .d(X, Y ) = 0 and . f (X ∩ Y ) = max{ f (X), f (Y )}. Consequently, 
Eq. (1) implies that both .X ∪ Y and .X ∩ Y are . f -critical in .Gχ . ∎

Lemma 5 Let .Gχ be .(2, f )-sparse and take .∅ /= X, Y ⊆ V . If  .X and .Y are . f -
critical in .Gχ , .|X ∩ Y | = 1, . f (V ) ≥ 2 and .d(X, Y ) ≥ 1 then . f (X ∪ Y ) =
min{ f (X), f (Y )},.d(X, Y ) = 1,.X ∪ Y is. f -critical in.Gχ , and. max{ f (X), f (Y )} =
3. 

Proof As.Gχ is.(2, f )-sparse, and.X and. Y are. f -critical in.Gχ and. |X ∩ Y | = 1 ≤
d(X, Y ) it follows from Eq. (1) that 

. f (X) + f (Y ) ≥ f (X ∪ Y ) + f (X ∩ Y ) + d(X, Y ) ≥ f (X ∪ Y ) + 2 + 1. (3) 

Let.D = min{ f (X), f (Y )} − f (X ∪ Y ). If.D = 1 then, as. f (V ) ≥ 2,. f (X ∪ Y ) =
2 and . f (X) = f (Y ) = 3. However, as .X ∩ Y /= ∅ this contradicts the definition of 
. f . Hence.D = 0, so. f (X ∪ Y ) = min{ f (X), f (Y )}. It now  follows  from  Eq.  (3) that 
.d(X, Y ) = 1 and .max{ f (X), f (Y )} = 3. Consequently, Eq. (1) implies that  . X ∪ Y
is . f -critical in .Gχ . ∎

Similar considerations give the following result, see [ 6, Chap. 5] for the proof. 

Lemma 6 Let .Gχ be .(2, f )-sparse and take .∅ /= X, Y, Z ⊆ V . If  .X, Y and .Z are 
. f -critical in .Gχ , .|X ∩ Y | = |X ∩ Z | = |Y ∩ Z | = 1, .X ∩ Y ∩ Z = ∅ and . f (V ) ≥
2 then . f (X) + f (Y ) + f (Z) ≥ 8, . f (X ∪ Y ∪ Z) = min{ f (X), f (Y ), f (Z)}, . X ∪
Y ∪ Z is . f -critical in .Gχ , .d(X ∪ Y, Z) = 0, and .d(X ∩ Z , Y ∩ Z) = d(X, Y ). 

Lemma 7 Let .Gχ be .(2, f )-sparse, suppose .v ∈ V is a node, and let . N (v) =
{x, y, z}. If  . f (V ) ≥ 2, and . v is type 1 or type 2, then . v is non-admissible if and 
only if . v is type 2 and either (i) .G[N (v)] ∼= K3, or (ii) .G[N (v)] = (N (v), {xz, yz}), 
and there exists .Z ⊆ V such that .N [v] ∩ Z = {x, y}, . f (Z) = 3, and . Z is . f -critical 
in .Gχ . 

Proof If . v is type 2 and (i) or (ii) hold then Lemma 3 implies that . v is non-
admissible. On the other hand, let us suppose that . v is non-admissible. Let . H =
(N (v), {xy, xz, yz}) and let .F = E(H) \ E . We deal with both types of . v simulta-
neously, and proceed by considering .i(N (v)). 

If.i(N (v)) = 0 then let.F = {e1, e2, e3}. As. v is non-admissible, Lemma 3 implies 
there exist .U1,U2,U3 ⊆ V such that, for .i ∈ {1, 2, 3}, the endpoints of .ei are in . Ui

and .Ui is . f -critical in .Gχ . As . f (V ) ≥ 2, Lemmas 4 and 6 together imply that there 
exist.i, j ∈ {1, 2, 3} such that.i /= j and.Ui ∪Uj is. f -critical in.Gχ , or.U1 ∪U2 ∪U3
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is . f -critical in .Gχ . However, as . v is type 1 or type 2 this contradicts Lemma 3. If  
.i(N (v)) = 1 then let .F = {e1, e2}. As  . v is non-admissible, Lemma 3 implies there 
exist .U1,U2 ⊆ V such that, for .i ∈ {1, 2}, the endpoints of .ei are in .Ui and .Ui is 
. f -critical in .Gχ . As.d(U1,U2) ≥ 1 and. f (V ) ≥ 2, Lemma 4 and Lemma 5 together 
imply that .U1 ∪U2 is . f -critical in .Gχ . However, as . v is type 1 or type 2 and . Gχ

is .(2, f )-sparse this contradicts Lemma 3.If .i(N (v)) = 2 then let .F = {e}. As  . v is 
non-admissible, Lemma 3 implies there exists .U ⊆ V such that the endpoints of . e
are in .U and.U is . f -critical in .Gχ . As .Gχ is .(2, f )-sparse and. v is type 1 or type 2, 
Lemma 3 implies .|U ∩ N (v)| = 2. Consequently, 

. i(U ∪ N [v]) ≥ i(U ) + 5 = (2|U | − f (U )) + 5 = 2|U ∪ N [v]| − ( f (U ) − 1),

As.Gχ is .(2, f )-sparse it follows that . f (U ) ≥ f (U ∪ N [v]) + 1. So, as . f (V ) ≥ 2, 
it follows that. f (U ) = 3 and. f (U ∪ N [v]) = 2. Therefore. v is type 2 and (ii) holds. 
If .i(N (v)) = 3 then, as .Gχ is .(2, f )-sparse, . v is type 2 and (i) holds. ∎

A nearly monochrome graph .Gχ is .(2, f )-cut-sparse if it is .(2, f )-sparse and 
every .(2, f )-tight subgraph of .Gχ with at least three vertices is 2-connected. .Gχ is 
.(2, f )-cut-tight if it is .(2, f )-cut-sparse and .(2, f )-tight. 

Lemma 8 Let.Gχ be nearly monochrome and.(2, f )-cut-sparse. Suppose.v ∈ V is a 
node and.N (v) = {x, y, z}. If the 1-reduction of.Gχ at. v adding.xy is admissible then 
it is non-feasible if and only if there exist.W1,W2 ⊆ V such that.N (v) ∩ W1 = {x, y}, 
.W1 ∩ W2 = {v ∈ V : f (V \ {v}) > f (V )}, .i(W1) = 2|W1| − 3, .W2 is . f -critical in 
.Gχ , and .d(W1,W2) = 0. 

Proof Let .G '
χ ' denote the 2-coloured graph resulting from the 1-reduction of . Gχ

at . v adding .xy. Suppose there exist such sets .W1 and .W2. Then .W1 and .W2 are . f -
critical in .G '

χ ' . As  .G '
χ ' is .(2, f )-sparse, Eq. 1 implies .W1 ∪ W2 is . f -critical in .G '

χ ' . 
So .G '[W1 ∪ W2]χ ' is a .(2, f )-tight 2-coloured subgraph of .G '

χ ' and.|W1 ∪ W2| ≥ 3. 
However it is not 2-connected and therefore the 1-reduction is not feasible. 

Conversely, suppose the 1-reduction is not feasible. Then there exists. U ⊆ V (G ')
such that .|U | ≥ 3, .U is . f -critical in .G '

χ ' and there exists a cut-vertex, . u, of  
.G '[U ]. As  .U is . f -critical in .G '

χ ' and . u is a cut-vertex of .G '[U ] we note that 
. f (U ) = 2. Let  .H1, . . . , Hn denote the components of .G '[U \ {u}]. It follows  from  
Eq. 1 that for all .1 ≤ i ≤ n, .V (Hi ) ∪ {u} is . f -critical in .G '

χ ' and . f (V (Hi ) ∪
{u}) = 2. Moreover, as . f (V ) = 2, .{u} = {w ∈ V : f (V \ {w}) > f (V )}. As  . Gχ

is.(2, f )-cut-sparse, there exists.1 ≤ i ≤ n such that.{x, y} ⊆ V (Hi ) ∪ {u}. We may  
suppose that .{x, y} ⊆ V (H1) ∪ {u}. Then .(V (H1) ∪ {u}) ∩ (V (H2) ∪ {u}) = {u}, 
.iG(V (H1) ∪ {u}) = 2|V (H1) ∪ {u}| − 3, .V (H2) ∪ {u} is .(2, f )-critical in .Gχ and 
.dG(V (H1) ∪ {u}, V (H2) ∪ {u}) = 0. ∎

We next show that, at every admissible vertex, there exists some feasible reduction. 
See Fig. 4 for an example. 

Lemma 9 Let.Gχ be nearly monochrome and.(2, f )-cut-sparse and suppose. v ∈ V
is a node. Then . v is feasible if and only if . v is admissible.
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Fig. 4 The three possible 1-reductions of.Gχ at. v demonstrate distinct outcomes. The 1-reduction 
adding .uy is non-admissible, the 1-reduction adding .ux is admissible but non-feasible, and the 
1-reduction adding.xy (resulting in.Hψ) is feasible 

Proof If . v is feasible then clearly . v is admissible. On the other hand, let us sup-
pose that . v is admissible. Let .Vb = {u}. Let  .H = (N (v), {xy, xz, yz}) and let 
.F = E(H) \ E . We present only the case when .i(N (v)) = 1. The other cases use 
similar analysis and can be found in [ 6, Chap. 5]. Let .F = {e1, e2}. As  . v is admis-
sible we may suppose, without loss of generality, that the 1-reduction of .Gχ at . v
adding .e1 is admissible. Suppose there exist .W1,W2 ⊆ V such that . N (v) ∩ W1 =
{endpoints of e1}, .W1 ∩ W2 = {u}, .i(W1) = 2|W1| − 3, .W2 is . f -critical in .Gχ and 
.d(W1,W2) = 0. There are two cases. Firstly, suppose there exists .U ⊆ V such that 
.U ∩ N [v] = {endpoints of e2} and .U is . f -critical in .Gχ . Then Eq. 1 implies 

. i(W1 ∪U ) ≥ 2|W1 ∪U | + 2|W1 ∩U | − (2 + f (U ) + i(W1 ∩U )).

Note that, as .W1 ∩U /= ∅ and . f (V ) = 2 = f (W1), . f (U ) = f (W1 ∩U ). If  . |W1 ∩
U | ≥ 2 then, as .Gχ is .(2, f )-sparse, it follows that 

. i(W1 ∪U ) ≥ (2|W1 ∪U | − 2) + (2|W1 ∩U | − f (W1 ∩U )) − i(W1 ∩U ) ≥ 2|W1 ∪U | − 2

and so.W1 ∪U is.(2, f )-critical in.Gχ . Then. i(W1 ∪U ∪ {v}) = 2|W1 ∪U ∪ {v}| −
1, a contradiction. Hence .|W1 ∩U | = 1. Thus .i(W1 ∪U ) ≥ 2|W1 ∪U | − f (U ). 
Hence.i(W1 ∪U ∪ {v}) ≥ 2|W1 ∪U ∪ {v}| − ( f (U ) − 1). As. f (V ) ≥ 2 it follows 
that.W1 ∪U ∪ {v} is. f -critical in.Gχ ,. f (U ) = 3,.i(W1 ∪U ) = 2|W1 ∪U | − f (U ), 
and .d(W1,U ) = 1. If  .W2 ∩U /= ∅ then Lemma 4 implies .(W1 ∪U ∪ {v}) ∩ W2 is 
. f -critical in .Gχ . This implies .dG[(W1∪U∪{v})∩W2](w) ≥ 2, a contradiction. If . W2 ∩
U = ∅, Eq.  1 implies .(W1 ∪U ∪ {v}) ∪ W2 is . f -critical in .Gχ and . d(W1 ∪U ∪
{v},W2) = 0. So . u is a cut-vertex of .G[W1 ∪U ∪ {v} ∪ W2], a contradiction. 

Alternatively, suppose there exist .U1,U2 ⊆ V such that .U1 ∩U2 = {u}, . N (v) ∩
U1 = {endpoints of e2}, .i(U1) = 2|U1| − 3,.U2 is . f -critical in.Gχ and. d(U1,U2) =
0. Then Eq. 1 implies that . i(W1 ∪U1) ≥ (2|W1| − 3) + (2|U1| − 3) + 1 − i(W1 ∩
U1) = 2|W1 ∪U1| + 2|W1 ∩U1| − (5 + i(W1 ∩U1)). As  .Gχ is .(2, f )-sparse, it 
follows that . i(W1 ∪U1) ≥ (2|W1 ∪U1| − 3) + (2|W1 ∩U1| − 2) − i(W1 ∩U1) ≥
2|W1 ∪U1| − 3. Hence .i(W1 ∪U1 ∪ {v}) ≥ 2|W1 ∪U1 ∪ {v}| − 2. It follows that 
.W1 ∪U1 ∪ {v} is . f -critical in .Gχ , .i(W1 ∪U1) = 2|W1 ∪U | − 3, and . d(W1,U ) =
1.As.|W2 ∩U2| ≥ 1and.Gχ is.(2, f )-cut-sparse,.|W2 ∩U2| ≥ 2. Therefore Lemma 4
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implies .W2 ∩U2 is . f -critical in .Gχ . As .(W2 ∩U2) ∩ (W1 ∪U1 ∪ {v}) = {u}, Eq.  1 
implies .(W1 ∪U1 ∪ {v}) ∪ (W2 ∩U2) is . f -critical in .Gχ . However, then . u is a cut-
vertex of .G[(W1 ∪U1 ∪ {v}) ∪ (W2 ∩U2)], a contradiction. ∎

Theorem 1 A nearly monochrome graph .Gχ on at least 2 vertices is minimally 
infinitesimally .S-rigid if and only if .Gχ is .(2, f )-cut-tight. 

Proof The necessity of the .(2, f )-tight count with . f (V ) = 2 was proved in Propo-
sition 2. Suppose.Gχ is minimally infinitesimally.S-rigid and has a .(2, f )-tight sub-
graph .Hχ , with .|V (H)| ≥ 3, which is not 2-connected. Then . f (V (H)) = 2 and . H
is the union of two.(2, f )-tight subgraphs intersecting in a single vertex. u. It follows  
that .Hχ is .S-dependent, as in Remark 1, a contradiction. 

For the sufficiency we proceed via induction on .|V |. The base case is any nearly 
monochrome.(K4)χ . It is not hard to show that.RS((K4)χ , p) has full rank for any.S-
generic . p. So we may suppose .Gχ /= (K4)χ . Suppose .Gχ is .(2, f )-cut-tight. There 
exists .v ∈ V of minimum degree with . f (V \ {v}) = f (V ). Note that .d(v) ∈ {2, 3}. 
.(G − v)χ is a nearly monochrome subgraph of.Gχ and hence is.(2, f )-cut-sparse. If 
.d(v) = 2 then .i(V \ {v}) = i(V ) − 2 = 2|V \ {v}| − 2, so  .(G − v)χ is .(2, f )-cut-
tight and we can complete the proof using Lemma 1. 

Alternatively suppose .d(v) = 3, and, for .i ∈ {1, 2}, let  
.Wi = {w ∈ V : w is a type i node of Gχ }. Let .Vb = {u}. Then 

. 4|V | − 4 = 2|E | ≥ 3(|W1| + |W2|) + d(u) + 4(|V | − (|W1| + |W2| + 1)).

Hence .|W1| + |W2| ≥ d(u) ≥ |W2|. If  .W1 = ∅ then .d(u) = |W2| and so Lemma 7 
implies that for all .w ∈ W2, . w is admissible or .G[N (w)] ∼= K4. In the latter case, as 
.G ≅ K4 and.Gχ is.(2, f )-cut-tight, this leads to a contradiction. Hence.W1 /= ∅ and 
so, by Lemma 7, there exists an admissible node of.Gχ . Now Lemma 9 implies there 
exists a feasible node of .Gχ and so we can complete the proof using Lemma 2. ∎

4 Concluding remarks 

Well known graph orientation type algorithms (e.g. [ 8]) can be easily adapted to 
prove that we can determine whether a graph is .(2, f )-cut-tight in polynomial time 
and hence determine generic rigidity for nearly monochrome graphs. 

Motivated by Theorem 1 we provide an additional necessary condition for .S-
rigidity in the more general case. To do this we augment the definition of.(2, f )-cut-
tight. Given a .(2, f )-tight graph .Gχ we say that .Gχ is .(2, f )-cut-tight if any cut-
vertex. v (if any exist) of any.(2, f )-tight subgraph.Hχ of.Gχ gives rise to components 
of .H − v that are all not monochromatic. 

Proposition 3 If .Gχ is minimally infinitesimally .S-rigid on at least 2 vertices then 
.Gχ is .(2, f )-cut-tight.
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Proof By Proposition 2, .Gχ is .(2, f )-tight. Suppose .Hχ is a .(2, f )-tight subgraph 
of .Gχ , with .|V (H)| ≥ 3, and there exists a cut-vertex, . v, of .H such that .H − v has 
a monochrome component. Then . f (V (H)) ∈ {1, 2} and .H is the union of (at least) 
two .(2, f )-tight subgraphs intersecting in the single vertex . v. Since .Hχ is .(2, f )-
tight,. v is coloured differently from the monochrome component of.H − v. It follows 
that .Hχ is .S-dependent, as in Remark 1, a contradiction. ∎

It is tempting to conjecture that every .(2, f )-cut-tight graph is .S-rigid. In the 
remaining case, when. f (V ) = 1, Lemmas 1 and 2 can be used to verify that statement 
for a large family of.(2, f )-cut-tight graphs. However a full resolution seems beyond 
presently available techniques. The conjecture would be resolved by characterising 
.S-independence for an arbitrary 2-coloured graph .Gχ . We conclude the paper by 
noting that combining the recursive construction of [ 7] with Lemma 1 and a stronger 
version of Lemma 2 shows that if .G is .(2, 3)-sparse then .Gχ is .S-independent (for 
any . χ ). This shows that the difficult part of the conjecture is dealing with ‘dense’ 
coloured subgraphs. 
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Managing Time Expanded Networks: 
The Strong Lift Problem 

José-L. Figueroa, Alain Quilliot, Hélène Toussaint, and Annegret Wagler 

Abstract Time Expanded Networks, built by considering the vertices of a base 
network all over some time space, are powerful tools for the formulation of problems 
that simultaneously involve resource assignment and scheduling. Still, in most cases, 
deriving algorithms from those formulations is difficult. We implement here a generic 
Project and Lift decomposition scheme while solving the Strong Lift issue, which 
consists in turning a solution defined on the base network into a solution of the whole 
problem with identical cost. 

1 Introduction 

A Time Expanded Network (TEN) .NTIME (see [ 6]) is derived from a network . N =
(X, A) and a time space TIME according to the following construction: vertices 
of .NTIME are the copies .(x, t) of the vertices . x of .N at the different instants . t of 
TIME. An arc  of .NTIME is either an active arc .

(
(x, t), (y, t + δ(t))

)
, where .δ(t) is 

the time required to traverse the arc .(x, y) of.N while starting at time. t , or a  waiting 
arc.

(
(x, t), (x, t ')

)
with.t < t ', which expresses some kind of standby in. x from time 

. t to time . t '. Note that TIME may be discrete or continuous. 
TENs are powerful tools for modeling problems which simultaneously involve 

routing, scheduling, and synchronization mechanisms. The notion was first intro-
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duced by Ford and Fulkerson [ 6] in order to show how problems involving both 
routing and scheduling could be cast into the network flow framework. It next gave 
rise to dynamic networks and flow over time models, where flow values may be tra-
jectories. A trajectory means here a function from the time space TIME onto real 
or integer numbers, subject to constraints like continuity or Lipchitz inequalities. 
In the years 1990/2000, there were important contributions about algorithm design 
and applications of these notions to evacuation planning (see [ 1, 5, 7]). Insights 
were brought about the link between the TEN framework and the network flow over 
time models. More recently, some authors tried to combine the TEN framework 
with the improvement of the Mixed Integer Linear Programming (MILP) libraries 
in order to directly address some transportation problems (see [ 2, 3, 8]). Finally, we 
recently described the Project/Lift decomposition scheme at the core of the present 
contribution, and addressed the Project issue through Branch-and-Cut (see [ 4]). 

The TEN construction does not provide us with natural algorithmic solutions. The 
fact is not only that the size of a TEN.NTIME increases very fast with the size of the 
time space TIME, but also that trying to control this size through rounding tends 
to induce uncontrolled error propagation. So, our purpose here is to bypass those 
difficulties by implementing the following Project /Lift decomposition scheme: We 
first solve (Project step) a projection of our problem set onto the base graph . N , and 
next try (Lift step) to turn this projected solution into a full feasible solution defined 
on the TEN.NTIME. Since we formerly addressed the Project issue (see [ 4]) we focus 
here on the Lift issue. We address it in the “strong” way that means while imposing 
that the projection of the lifted solution is exactly equal to the projected solution. 

In order to make our methods easier to understand and to perform numerical 
experiments, we refer inside this paper to a model related to the management of an 
item relocation process involving a set of carriers. 

The paper is organized as follows. In Sect. 2, we present a TEN model for our 
reference problem together with the projected model which derives from this TEN 
model. In Sects. 3–4, we address the Strong Lift issue and perform some numerical 
experiments. 

2 A Reference TEN Relocation Model 

We consider here a transit network .N = (X, A), together with a distinguished vertex 
.Depot . Every  arc  .a = (x, y) of .N is provided with a time value .T(x,y) and with a 
cost value .C(x,y). We use the following notations: 

• We set .T = (T(x,y) : (x, y) ∈ A) and .C = (C(x,y) : (x, y) ∈ A). For any path . π
from.x ∈ X to.y ∈ X , we denote by.LT (π) its length in the sense of T. We do the  
same with C. For any pair of vertices .(x, y) we denote by .DT (x, y) the shortest 
path distance induced by T from. x to. y, and by.DC(x, y) the shortest path distance 
induced by C from. x to . y.
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Fig. 1 The transit network.N = (X, A) used in Example 1 

• Let .U be some subset of . X . We set  .∂−
N (U ) = {(x, y) ∈ A : x /∈ U, y ∈ U }, 

.∂+
N (U ) = {(x, y) ∈ A : x ∈ U, y /∈ U }, .∂N (U ) = ∂−

N (U ) ∪ ∂+
N (U ), and . A(U ) =

{(x, y) ∈ A : x ∈ U, y ∈ U }. We simplify these notations in case of a singleton 
.{x} by writing .∂−

N (x), .∂+
N (x) and .∂N (x) instead of .∂−

N ({x}), .∂+
N ({x}) and .∂N ({x}), 

respectively. 

Items are located inside the network and must be relocated, within a discrete time 
horizon .{0, 1, . . . , Tmax} by a fleet of identical carriers with capacity .Cap. We are  
provided with an integral balance vector.b = (bx , x ∈ X) such that.

∑
x∈X bx = 0. A  

value.bx > 0means that. x is an excess vertex and that.bx items must be removed from 
. x ; a value.bx < 0 means that. x is a deficit vertex and that.−bx items must be brought 
to. x . The  Item Relocation Problem (IRP) consists in scheduling the carriers in such a 
way they perform this relocation process while meeting the time horizon and carrier 
capacity requirements and while minimizing a hybrid cost .α · c1 + β · c2 + γ · c3, 
where .c1 is the number of active carriers, .c2 is their running cost in the sense of . C, 
.c3 is the time that items spend moving inside the carriers, and . α, . β, . γ are scaling 
coefficients. We allow preemption, which means that carriers may exchange items 
during the process. 

Example 1 The network.N = (X, A) depicted in Fig. 1 shows two carrier routes. [1

and.[2. Note that two items are transferred from the carrier in.[1 to the carrier in. [2

at the vertex . x , and we have that .c1 = 2, .c2 = 10, and .c3 = 32. . ∎

2.1 A TEN Relocation Commodity Flow Model 

In order to cast the IRP into the TEN framework (see [ 8]), we first derive from the 
transit network .N = (X, A) its time expansion .NTmax = (XTmax , ATmax) according to 
.Tmax. The vertex set .XTmax is the set of all pairs .(x, t), .x ∈ X , .t ∈ {0, 1, . . . , Tmax}, 
augmented with two distinguished vertices .source and.sink. The arcs .a ∈ ATmax are 
classified as follows, together with their carrier cost .Ĉa , and their item cost . Îa :
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• input-arcs .a = (
source, (x, 0)

)
, .x ∈ X , with . Îa = 0 and .Ĉa = 0; 

• output-arcs .a = (
(x, Tmax), sink

)
, .x ∈ X , with . Îa = Ĉa = 0; 

• waiting-arcs .a = (
(x, t), (x, t + 1)

)
, .x ∈ X , .t ∈ {0, . . . , Tmax − 1}, 

with . Îa = Ĉa =0; 
• active-arcs .a = (

(x, t), (y, t + T(x,y))
)
, .(x, y) ∈ A, .t ∈ {0, . . . , Tmax − T(x,y)}, 

with . Îa = γ · T(x,y) and .Ĉa = β · C(x,y); 
• backward-arc .a = (sink, source), with . Îa = 0 and .Ĉa = α. 

Now we formalize the IRP as a 2-commodity flow model on .NTmax . 

TEN IRP Formulation. Compute two nonnegative integral.ATmax -indexed vec-
tors H and h (for carriers and items, respectively) such that: 

• H and h satisfy flow conservation at any vertex of .XTmax ; (E1)  
• for any active-arc .a = (

(x, t), (y, t + T(x,y))
)
: .ha ≤ Cap · Ha ; (E2)  

• for any input-arc .a=(
source, (x, 0)

)
, .x /= Depot : 

.Ha = 0; .ha = max(bx , 0); (E3)  
• for any output-arc .a =(

(y, Tmax), sink
)
, .y /= Depot : 

.Ha = 0; .ha =max(−by, 0); (E4) 
• the global cost .Cost (H, h) = ∑

a∈ATmax

(
Ha · Ĉa + ha · Îa

)
is minimized. 

(E1) expresses the circulation of carriers and items inside. N . (E2) ensures that any 
item moving between two vertices. x and. y is contained into some carrier. Constraints 
(E3) and (E4) characterize initial and final states. 

Figure 2 shows the construction of the TEN.NTmax = (XTmax , ATmax) associated to 
the network .N = (X, A) of Fig. 1 and .Tmax = 6. It turns the solution of Example 1 
into a 2-commodity flow vector (H, h). 

2.2 The Projected IRP Model 

A flow vector H being given on .NTmax = (XTmax , ATmax), we define its projection F 
on .N by setting, for any arc .(x, y) of . N : .F(x,y) = ∑Tmax

t=0 H(x,t),(y,t+T(x,y)). We define 
the projection f of h exactly the same way, and we call (F, f) the  projection of (H, 
h) on the network . N . 

F and f must be such that: 

• F satisfies flow conservation at any vertex of . X ; (E5.1)  
• for any vertex . x of . N : .

∑
a∈∂+

N (x) fa − ∑
a∈∂−

N (x) fa = bx ; (E5.2)  
• for any arc . a of . N : . fa ≤ Cap · Fa ; (E6)  

Those constraints are not enough to characterize F and f : They do not forbid sub-
tours and they do not provide us with a well-fitted
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Fig. 2 The routes and schedules from Example 1 viewed as a 2-commodity flow on the TEN 
.NTmax = (XTmax , ATmax ). a Carrier flow vector H. b Item flow vector h 

estimation of the carrier number . c1. In order to enhance our projected model, we 
first notice as in [ 4] that the quantity .

∑
a∈A Ta · Fa provides us with the global time 

that carriers spend running inside . N . Since the whole process must be performed in 
no more than.Tmax time units, we need at least .[(∑a∈A Ta · Fa)/Tmax] carriers. As a 
consequence, (F, f) should minimize the projected cost: (E7)  

.PCost(F, f) .= α ·
(∑

a∈A Ta ·Fa
)

Tmax
+ β · ( ∑

a∈A Ca · Fa
) + γ · ( ∑

a∈A Ta · fa
)
. 

Similarly we notice that for any .U ⊂ X \ {Depot}, the time carriers spend at 
the border or inside .U is equal to .

∑
a∈∂N (U )∪A(U ) Ta · Fa . For any carrier . q this 

time must not exceed .Tmax. Since the number of carriers that serve the vertices of 
.U is .

∑
a∈∂−

N (U ) Fa , we deduce that F must satisfy the following Extended Subtour 
constraint: 
.Tmax ·

( ∑
a∈∂−

N (U ) Fa
)

≥ ∑
a∈∂N (U )∪A(U ) Ta · Fa . (E8)  

One may check that (E8) can be separated in polynomial time (see [ 4]). This allows 
us to set the following projected model which can be handled by Branch-and-Cut:
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Projected Item Relocation Problem (PIRP). Compute on the network . N =
(X, A) two nonnegative integral vectors .A-indexed F and f such that: 

• F satisfies flow conservation at any vertex of . X ; (E5.1)  
• for any vertex .x ∈ X , .

∑
a∈∂−

N (x) fa − ∑
a∈∂+

N (x) fa = bx ; (E5.2)  
• for any arc .a ∈ A, . fa ≤ Cap · Fa ; (E6)  
• for any .U ⊆ X \ {Depot}, .Tmax ·

∑

a∈∂−
N (U )

Fa ≥
∑

a∈∂N (U )∪A(U )

Ta · Fa; (E8) 

• Minimize .α ·
(∑

a∈A Ta ·Fa
)

Tmax
+ β · ( ∑

a∈A Ca · Fa
) + γ · ( ∑

a∈A Ta · fa
)
. 

(E7) 

3 The  Strong Lift Issue 

The former section raises in a natural way the following Lift issue: How can we derive 
from a feasible PIRP solution (F, f) an efficient TEN IRP (H, h) while applying the 
following decomposition scheme? 

Project/Lift Decomposition Scheme. 

1. Solve the PIRP model and get a projected solution (F, f). 
2. Turn (i.e., lift) (F, f) into a “good” solution (H, h) of the TEN IRP model. 

3.1 The Strong Lift Model 

The most natural way to formalize this Lift issue consists in asking (H, h) to be such 
that its projection onto .N is exactly (F, f). This leads us to set the following Strong 
Lift Problem: 

Strong Lift Problem SLIFT(F, f). Compute a feasible IRP solution (H, h) in  
such a way that: 

• the projection of H (respectively, h) on the transit network .N is equal to F 
(respectively, f); 

• the cost value .Cost(H, h) is smallest possible.

-
If (H, h) is a feasible solution of SLIFT(F, f) then the difference between .Cost(H, 
h) and .PCost(F, f) only reflects the difference between the true number of carriers 
H.(sink,source) and its approximation .(

∑
a∈A Ta · Fa)/Tmax as expressed in the PIRP 

Model.



Managing Time Expanded Networks: The Strong Lift Problem 59

3.2 A Necessary Condition for the Feasibility of the Strong 
Lift Problem: Enhancing the PIRP Model 

A PIRP solution (F, f) may not always be liftable. So we should try to reinforce this 
projected model in order to enhance the probability that (F, f) becomes liftable. We 
intend to do it in such a way that (F, f) becomes “partially” liftable, that means that 
there exists a feasible TEN IRP solution (H, h) such that the projection of h is f. In  
order to set this in a formal way, we need to introduce the notion of a feasible path. 

• A feasible path (seen as a set of arcs) of.N is any path. π from an excess vertex. x to 
a deficit vertex . y whose length .LT (π) in the sense of the time matrix T satisfies: 
.DT (Depot, x) + LT (π) + DT (y, Depot) ≤ Tmax. We associate, with any such 
feasible path, a flow vector f. π which transports one item from . x to . y along the 
path . π . We denote by .∏FP the set of feasible paths. 

• A flow vector f is feasible-path-decomposable if and only if it can be written as f 
.= ∑

π∈∏FP λπ f. π , with .λπ ∈ R+ for all .π ∈ ∏FP . 
• We say that an .A-indexed vector w is a Path Feasibility vector if, for any feasible 
path . π , we have .

∑
a∈π wa ≥ 0. 

An item starting from an excess vertex. x can be transported to some deficit vertex 
. y along path. π only if. π is a feasible path. It follows that a solution (F, f) of the  PIRP 
Model may be lifted into a feasible IRP solution (H, h) only if f is feasible-path-
decomposable. This leads us to the following necessary condition for the feasibility 
of the Strong Lift Problem. 

Theorem 1 The Strong Lift Problem SLIFT(F, f) admits a feasible solution if and 
only if, for any Path Feasibility vector w, the following inequality holds: 
.
∑

a∈A fa · wa ≥ 0. (E10) 

Proof Necessity is straightforward from the above explanation. As for the suffi-
ciency, we get it by noticing that (E10) is nothing more than a formulation of Farkas 
lemma in the case of vector f and the vector collection. {f.π , π ∈ ∏FP}: A flow vector 
f is feasible-path-decomposable if and only if it belongs to the cone defined by the 
collection . {f.π , π ∈ ∏FP}, that means (Farkas lemma) if and only if for any vector 
w whose scalar product .

∑
a∈A f.πa · wa ≥ 0 with any vector f. π is nonnegative, then 

the scalar product .
∑

a∈Af.a · wa is also nonnegative. 

The latter result suggests us to enhance our projected model with the following 
Feasible Path constraint: 

• For any Path Feasibility vector w: .
∑

a∈A fa · wa ≥ 0. (E10) 

One easily checks that separating (E10) may be performed in practice through 
a simple column generation process. It follows that the resulting augmented PIRP 
may be handled through Branch-and-Cut.
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Fig. 3 A PIRP solution (F, f) on.N = (X, A) that satisfies (E10) but cannot be lifted 

Remark 1 (E10) is not a sufficient condition for (F, f) to be liftable. Figure 3 
shows that even if we impose the Feasible Path constraints, a PIRP solution 
(F, f) cannot always be viewed as the projection of a feasible solution (H, h) of  IRP 
TEN. The carrier follows the route.(Depot, y, x, z, y, Depot), but cannot transport 
any item from. z to . x . In fact, it is known that computing (H, h) from (F, f) in such a 
way that (F, f) is the projection of (H, h) with identical cost value, is NP-Hard [ 3]. 

4 A MILP Formulation of the Strong Lift Problem 

Let us recall that our strong version of the Lift Problem is about the search of an 
IRP solution (H, h) whose projection on the network .N is exactly the solution (F, 
f) obtained through resolution of the projected PIRP model. So let us consider a 
feasible (optimal) solution (F, f) of the  PIRP model. We denote by . Q(F) the  sum  
.
∑

x∈X
(
(
∑

a∈∂−
N (x) Fa) · (

∑
a∈∂+

N (x) Fa)
)
, and by. S(F) the  sum.

∑
a∈A Fa . We are going 

to show that it is possible to set an exact MILP formulation of the Strong Lift Problem, 
which involves .2 · Q(F) decision variables, together with . Q(F) .+3 · S(F) rational 
load and time variables. 

The idea is that solving the Strong Lift Problem basically means determining what 
happens “inside” the vertices of the transit network . N : More precisely, a vertex . x
being given, we want to know along which arc.a' a given carrier (respectively, item) 
which arrives into . x along some arc . a is going to leave . x , and at which time. 

4.1 Solving the Strong Lift Problem in an Exact Way 

In order to formalize this idea, we construct a network .Strong(N , F. ). 

• With any arc .a = (x, y) ∈ A such that .Fa ≥ 1, we associate the set .Copy(a) of 
.Fa copy-arcs.am ,.m = 1, . . . , Fa , with respective origin vertices.p = (x, a,m,+), 
and respective destination vertices .q = (y, a,m,−). It follows that, at the same 
time we create those copy-arcs, we also create copy-vertices .p = (x, a,m,+) and
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.q = (y, a,m,−), which respectively correspond to the carriers which leave. x and 
to the carriers which arrive into . y. We denote by .X∗ the resulting vertex set and 
by.Copy(A) the set of all copy-arcs. For any such vertex.p = (y, a,m, ε), we set  
.x(p) = y and .ε(p) = ε, and, for any vertex . y of . N , we set:  

– .X∗(y) = {p ∈ X∗ such that x(p) = y}; 
– .X∗Plus(y) = {p ∈ X∗ such that x(p) = y, ε(p) = +}; 
– .X∗Minus(y) = {p ∈ X∗ such that x(p) = y, ε(p) = −}; 
– .CopyIn(y) = {a ∈ Copy(A) with destination in X∗Minus(y)}; 
– .CopyOut (y) = {a ∈ Copy(A) with origin in X∗Plus(y)}. 

• We complete the arc collection. {am, a = (x, y) such that Fa ≥ 1,m = 1, . . . , Fa}
by middle-arcs .u = ((x, a,m,−), (x, a',m ',+)) which, for any vertex . x of . N , 
connect any copy-vertex .(x, a,m,−), where . a has destination. x , .m = 1, . . . , Fa , 
to any copy-vertex.(x, a',m ',+), where. a' has origin. x ,.m ' = 1, . . . Fa' . We denote 
by.Middle the set of all middle-arcs created that way, and, for any. x , we denote by 
.Middle(x) the set of the middle-arcs. u whose origin may be written.(x, a,m,−). 
Notice that .Middle(x) defines a complete bipartite graph on .X∗(x). For any 
vertex .p = (x, a,m,+), we denote by .I n(p) the set of middle-arcs . u whose 
destination is. p, and, for any vertex.p = (x, a,m,−), we denote by.Out (p) the set 
of middle-arcs. uwhose origin is. p. For any vertex. x of. N , we set. MiddleOut (x) =U

p∈X∗Minus(x) Out (p), and .MiddleIn(x) = U
p∈X∗Plus(x) I n(p). 

We denote by .Strong(N , F. ) the resulting network (see Fig. 4), which contains 
.2 · S(F) vertices, . S(F) copy-arcs, and . Q(F) middle-arcs. 

To set up our SLIFT(F, f) model, we use the following variables: 

Fig. 4 Constructing the graph .Strong(N , F. ). a A set of arcs in a network .N together with their 
corresponding F flow values. b The arcs and vertices in the graph .Strong(N , F. ) that are created 
from the arcs, vertices, and flow values in (a). To avoid a cumbersome drawing we have not depicted 
the arcs in the set.Middle
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• Z.= (Zu, u = ((x, a,m,−), (x, a',m ',+)) ∈ Middle), with.{0, 1} values, where 
.Zu = 1 means that the carrier which arrives at vertex . x along copy-arc .am keeps 
on along arc .a'm '

. 
• z .= (zu, u = ((x, a,m,−), (x, a',m ',+)) ∈ Middle), with rational values: . zu
may be kept integral and so may be viewed as the number of items which arrive 
at vertex . x along arc .am and which are transferred to arc .a'm '

. 
• .l = (lu, u = ((x, a,m,−), (x, a',m ',+)) ∈ Middle), with .{0, 1} values: where 

.lu = 1 means that .zu /= 0. 
• z.∗ = (z∗

am , am ∈ Copy(A)) with rational values: similarly as for . z, .zam shall cor-
respond to the number of items transported along arc .am ; 

• t .= (tp, p = (x, a,m, ε) ∈ X∗)with rational nonnegative values:. tp stands for the 
time when a carrier arrives (in case .ε = −) or leaves (in case .ε = +) in  . x along 
arc .am . 

MILP model SLIFT(F, f). Compute on the network.Strong(. N , F) two 0–1 vec-
tors.Middle-indexed Z and. l; one nonnegative integral vector.Middle-indexed 
z; one nonnegative integral vector .Copy(A)-indexed z. ∗; and one rational non-
negative vector .X∗-indexed t, such that: 

• For any copy-vertex .q = (x, a,m, ε) of .Strong(. N , F), with .x /= Depot : 
.
∑

u∈MiddleI n(q) Zu = 1 = ∑
u∈MiddleOut (q) Zu . (E11.1) 

• For any copy-vertex .q = (Depot, a,m,+): .
∑

u∈MiddleI n(q) Zu ≤ 1. (E11.2) 
• For any copy-vertex .p = (Depot, a,m,−): .

∑
u∈MiddleOut (p) Zu ≤ 1. 

(E11.3) 
• For any middle-arc . u: .zu ≤ Cap · lu . (E12.1) 
• For any copy-arc .am : .z∗

am ≤ Cap. (E12.2) 
• For any vertex .q = (y, a,m,−): .z∗

am ≥ ∑
u∈MiddleOut (q) zu . (E13.1) 

• For any vertex .p = (x, a,m,+): .z∗
am ≥ ∑

u∈MiddleI n(p) zu . (E13.2) 
• For any vertex . x of . N : 

.
∑

u∈CopyIn(x) z
∗
u = ∑

u∈MiddleOut (x) zu + max(−bx , 0). (E14.1) 
• For any vertex . x of . N : 

.
∑

u∈CopyOut (x) z
∗
u = ∑

u∈MiddleI n(x) zu + max(bx , 0). (E14.2) 
• For any arc .a = (x, y) of . N : .

∑
u∈Copy(a) z

∗
u = fa . (E15) 

• For any copy-arc .(p, q) = (
(x, a = (x, y),m,+), (y, a = (x, y),m,−)

)
: 

.tq ≥ tp + T(x,y). (E16) 
• For any middle-arc.u = (q = (x, a,m,−), p = (x, a',m ',+)), the implica-
tion .

(
(Zu = 1) ∨ (lu = 1)

) ⇒ tp ≥ tq holds, equivalent to: . Zu + tq−tp
Tmax

≤ 1

and .lu + tq−tp
Tmax

≤ 1. (E17) 

Objective function Maximize .
∑

u∈Middle(Depot) Zu . (E18)

-
The meaning of those constraints becomes clear from the proof of Theorem 2.
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Theorem 2 Solving the above MILP model SLIFT(F, f), which involves .2 · Q(F) 
decision variables Z and . l, together with . Q(F) .+3 · S(F) rational variables z, z. ∗
and t, also solves the Strong Lift Problem related to (F, f) in an exact way. 

Proof This result derives from the fact that we require the projection of H onto 
network .N to be exactly equal to F. More precisely, since the Strong Lift Problem 
explicitly requires the projection of H onto the transit network .N to be equal to F, 
we see that the routes followed by the carriers are completely determined by the way 
we assign a carrier entering into a vertex . x along some copy-arc .am onto another 
copy-arc.a'm '

leaving. x (in case.x = Depot , we may assign a “null” arc, that means 
consider that the carrier ends its trip into .Depot with the arc .am). Decision vector 
Z, together with matching constraints (E11.1–E11.3) express the way carrier routes 
distribute themselves inside any vertex . x . As for the items, we first notice that once 
Z has been computed, z and z. ∗ come as the solution of a Min-Cost Flow problem. So 
SLIFT(F, f) behaves as if both vectors were imposed to be integral. Since any item 
move from. x to. y must be covered by some carrier, any item arriving to some vertex 
.xi along some copy-arc .am will have either to remain in . x as part of the negative 
deficit.bx or keep on along another copy-arc.a'm '

leaving. x . Constraints (E13.1 - E15) 
express the way items are going to distribute themselves while traversing this vertex 
. x . Deriving an  IRP solution (H, h) from a PIRP solution (F, f) and from vectors 
Z, . l, z, z. ∗, becomes possible if we are able to embed the vertices of the .Strong(F, 
f) graph into the Time Expanded Network .NTmax , that means if we can compute a 
vector t which meets constraints (E16, E17). It follows that any feasible solution 
of the Strong Lift Problem may be turned into a feasible solution of SLIFT(F, f) 
and conversely. We conclude by noticing that the value of the objective function 
.
∑

u∈Middle(Depot) Zu is merely the difference between the value .
∑

x F(Depot,x) and 
the number of carriers, while the other components of the cost IRP function are the 
same for (H, h) and (F, f). It follows that solving SLIFT(F, f) makes us minimize 
the number of carriers involved into the lifted solution (H, h) whose projection onto 
.N is exactly (F, f). 

4.2 Numerical Experiments 

We performed several numerical experiments, whose purpose is to estimate the fea-
sibility of the Strong Lift Model and the gap between the number of vehicles obtained 
after resolution of this model and its approximation according to the PIRP model. 
We ran those experiments on a computer with a 2.3 GHz Intel Core i5 processor and 
16 GB RAM, while using the C++ language (compiled with Apple Clang 10) and 
the CPLEX12.10 MILP library. 

No standardized benchmarks exist for the generic IRP. So we built instances as 
follows: The station set. X is a set of. n points inside a.100 × 100 grid, the set of arcs. A
consists of. m arcs generated randomly, the time matrix T.= (T(x,y), (x, y) ∈ A) corre-
sponds to the rounded Euclidean Distance and the cost matrix
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C.= (Ca, a ∈ A) to the Manhattan Distance. Each vertex . x but .Depot is assigned 
a .bx value in .{−10, . . . , 10}, the capacity .Cap belongs to .{2, 5, 10, 20}, the time 
horizon limit.Tmax is the product.λ · (max(x, y)∈A T(x, y))with.λ ∈ {4, 5, 6, 8, 9}. The  
scaling coefficients . α, . β, . γ are chosen in such a way that the values of cost com-
ponents .α · number of carriers, .β · carrier ride cost and .γ · items ride time become 
comparable. The first nine columns of Table 1 summarize those characteristics. 

The same Table 1 displays the output values of the SLIFT(F, f) MILP.  Column  
PIRP corresponds to the optimal value (with respect to the objective function (E7)) 
of the projected PIRP model, VPIRP shows the estimated number of carriers (related 
to PIRP), and TPIRP the related running time (in seconds). The column SL displays 
the optimal value of SLIFT(F, f), VSL the related number of carriers, and TSL 
indicates the related CPU time (in seconds). Missing values are indicated by a hyphen 
symbol–, and correspond to PIRP solutions (F, f) for which the corresponding 
SLIFT(F, f) MILP is infeasible. 

We see that solving SLIFT(F, f) can be done in a reasonable computing time. 
But we also see that in many cases this model happens to be infeasible. This means 
that we should accept, while dealing with the Lift issue, a deterioration of the cost 
induced by the projected model. We shall address this requirement in a future work. 
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.k-Slow Burning: Complexity and Upper 
Bounds 

Michaela Hiller, Arie M. C. A. Koster, and Philipp Pabst 

Abstract The graph burning problem studies the speed at which information can 
spread in graphs across their edges. We discuss a recently introduced variant of the 
problem, .k-slow burning, in which every burning vertex can only ignite up to . k of 
its neighbours in each step of the burning process. We consider the complexity of 
computing the corresponding graph parameter, the.k-slow burning number.bs(k,G). 
We prove .NP-hardness on multiple graph classes, most notably the class of graphs 
of radius 1, where normal graph burning is solvable in polynomial time. Furthermore, 
we show that among all connected graphs on. n vertices, the burning number of the star 
graph, .bs(k, Sn−1), is maximal for .k ∈ {1, 2} and asymptotically maximal for fixed 
.k ≥ 3. This observation leads to a generalisation of the burning number conjecture 
in regard to .k-slow burning. 

1 Introduction 

The notion of graph burning was introduced as a model for contagion in social net-
works [ 3] and has since been the subject of extensive research. Topics of interest 
include the computational complexity of the problem (e.g., [ 1, 12]), approximation 
algorithms (e.g., [ 5, 7, 9]) and upper bounds for the associated graph parameter, the 
burning number .b(G). An overview of results can be found in [ 2]. Graph burning 
is carried out as a step-wise process on an undirected graph .G = (V, E), |V | = n, 
where in every step first, every burning vertex spreads the fire to its entire neighbour-
hood, before second, a new source of fire is ignited. If.(v1, . . . , vt ) is a sequence, such 
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that, when choosing.vi as the. i th source of fire, .G can be burned within. t time steps, 
it is called a burning sequence for . G. The aim is to choose the new sources of fire 
in a way that minimises the length of a burning sequence. The minimum number of 
steps necessary to ignite every vertex in .G is denoted by the burning number, .b(G). 

The central open question within the area of graph burning is given by the burning 
number conjecture [ 3], which states that .b(G) ≤ [√n] for all connected graphs . G
on . n vertices. This conjectured upper bounds is reached for paths .Pn and cycles . Cn

on. n vertices. There are numerous results either proving upper bounds close to. [√n]
(e.g., [ 6, 15]) or showing the conjecture to hold for certain classes of graphs, such as 
spiders or .p-caterpillars, .p ≤ 2 [ 7, 12], however the conjecture itself remains open. 

Graph burning is placed alongside a multitude of other problems studying the 
spread of information across networks. One of the oldest such problems is the (min-
imum time) .k-broadcasting problem [ 11, 16], where, starting from a single vertex, 
some information is distributed across a graph. Here, in each time step every informed 
vertex spreads the information to up to . k of its neighbours. However, in contrast to 
the second step in graph burning, no new sources of information are chosen in sub-
sequent time steps. Thus, in order to minimise the number of time steps needed to 
inform the entire graph, an optimal broadcast protocol has to optimise the order in 
which every vertex informs its neighbours once it is informed itself. The problem is 
.NP-hard in general [ 8] and polynomially solvable on trees [ 10]. 

For certain applications neither the graph burning model nor .k-broadcasting is 
realistic. E.g., consider some political party campaigning for voters. In every time 
step, the party can hire a new campaigner, represented as a source of fire in the 
graph burning model. However, it is unrealistic to assume that this campaigner can 
convince all of their acquaintances within a single time step. Instead, we assume in 
our generalised model that they can only influence up to. k of their acquaintances per 
time step, as in .k-broadcasting. 

To formalise this behaviour, in [ 2, 14] it was suggested to study a variant of the 
graph burning problem,.k-slow burning, that forms a midpoint between graph burning 
and .k-broadcasting. Here, in every time step, first every burning vertex spreads the 
fire to up to. k of its neighbours (as for.k-broadcasting) before second a new source of 
fire is chosen (as for graph burning). We define the terms .k-slow burning sequence 
and .k-slow burning number, denoted by .bs(k,G), analogously as for normal graph 
burning. This leads to the following decision problem. 

k- slow Burning 

Input: A Graph G, an integer k and a time bound t . 
Question:Does bs(k, G)  t hold? ≤
In order to minimise the length of a .k-slow burning sequence, we have to opti-

mise the choice of neighbours in the first step as well as the choice of new sources of 
fire in the second step of the process. This observation suggests that .k-slow burning 
combines difficulties of both graph burning and .k-broadcasting. As .k-slow burning 
and graph burning coincide for .k ≥ Δ(G) (the maximum degree of . G), this variant 
generalises normal graph burning.
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Our Results. The aim for this work is to contrast .k-slow burning (for some fixed 
. k) with graph burning, focusing on two main aspects of the problem, complexity 
and upper bounds, in Sects. 2 and 3, respectively. Due to the page limit, some of the 
proofs will be omitted. 

Complexity. Graph burning is known to be .NP-hard, even for very simple graph 
classes such as path forests and spider graphs [ 1]. To match both of these results for.k-
slow burning, we will use a very similar reduction as for normal graph burning to show 
hardness for path forests, before then connecting this path forests components in a 
suitable way to show.NP-hardness for spiders. By also showing.NP-hardness of the 
problem when restricted to graphs of radius 1, we will find a class of graphs on which 
.k-slow burning is hard, whereas normal graph burning is solvable in polynomial time. 
Finally, we will see that even the subproblem of checking a potential.k-slow burning 
sequence for correctness, while trivial for normal graph burning, is still .NP-hard. 
The latter two results verify our observation in the preceding paragraph that .k-slow 
burning seems to be harder than normal graph burning. 

Upper Bounds. In an attempt to find an analogy for the burning number conjecture 
in regard to .k-slow burning, we study upper bounds for the .k-slow burning number 
on connected graphs. Here, the .k-slow burning number of the star graph .Sn−1 on . n
vertices, .bs(k, Sn−1), plays a critical role for discussing upper bounds. For . k = 1, 2
we will show, that indeed .bs(k,G) ≤ bs(k, Sn−1) holds for all connected graphs . G
with . n vertices. While this is no longer true for .k ≥ 3, we can still show. bs(k,G) ≤
bs(k, Sn−1) + f (k) for some error term . f (k) that does not depend on . n and that 
satisfies . f (k) = Θ(k). 

2 Complexity 

In this section, we will prove .NP-hardness of .k-slow burning on several different 
graph classes. We will start by showing hardness on path forests, which is known to 
be.NP-hard for normal graph burning from [ 1]. This result immediately implies the 
.NP-hardness of .k-slow burning for .k ≥ 2 on path forests, as .k ≥ Δ(G). For .k = 1, 
we will use an analogous reduction from a variant of the 3-Partition problem as for 
normal graph burning. This variant is known to be strongly .NP-hard due to [ 13]. 

Distinct 3- Partition (D3P) 

Input: A Set A = {a1, ..., a3n} of pairwise distinct integers ai ∈ N and a 
natural number B s.t. n · B = ∑3n 

i=1 ai and B/4 < ai < B/2 for all i . 
Question:Can A be partitioned into triples (b(i ) 

1 , b
(i) 
2 , b

(i) 
3 ), i = 1, ..., n s.t. 

b(i ) 
1 + b(i ) 

2 + b(i ) 
3 = B for all i? 

In our reduction we will need the .1-slow burning number of the path .Pn . 

Lemma 1 Let .Pn be the path on . n vertices. We have . bs(1, Pn) = [√
n − 3/4 +

1/2
]
. 

The proof is analogous to the one for normal graph burning in [ 4].
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Theorem 1 .1-slow burning is .NP-hard, even when restricted to path forests. 
Proof Let .(A := {a1, . . . , a3n}, B) be an instance of D3P. W.l.o.g., we assume. B =
O(poly(n)), which is possible since D3P is strongly.NP-hard. Also, for sufficiently 
large values of . n we have .1 /∈ A. We define .M := max A and . Y := {2, 3, . . . , M} \
A. We construct a path forest .P consisting of . n paths .P (i)

2B−6 of length .2B − 6, one 
path.P2y−2 of length.2y − 2 for each.y ∈ Y as well as one additional isolated vertex. 
We will prove that the D3P-instance is solvable iff .bs(1, P) ≤ M . 

First, assume that the instance of D3P is solvable and thus there exists a partition 
of. A into. n triples.(b(i)

1 , b(i)
2 , b(i)

3 ), i = 1, . . . , n, that all sum to. B. Then we can cover 
.P (i)

2B−6 with . 3 paths of lengths .2b(i)
1 − 2, 2b(i)

2 − 2 and .2b(i)
3 − 2, i.e., with burning 

neighbourhoods of sizes .b(i)
j . Doing so, only the paths of length .2y − 2, .y ∈ Y and 

the isolated vertex remain. These paths correspond to burning neighbourhoods of 
sizes .y ∈ Y and . 1 respectively. As .A ∩ Y = ∅ and .1 /∈ A we used every burning 
range exactly once and thus .bs(1, P) ≤ M . 

Conversely, assume that .P can be burned in at most .M rounds. Note, that in this 
case we already have .bs(1, P) = M as .P is a subgraph of .P|V (P)| with 

. |V (P)| = (2B − 6)n +
( ∑

y∈Y
2y − 2

)

+ 1 =
( 3n∑

i=1

2ai − 2

)

+
( ∑

y∈Y
2y − 2

)

+ 1

=
( M∑

i=2

2i − 2

)

+ 1 = M2 − M + 1

and thus.bs(1, P) ≥ bs(1, PM2−M+1) = M by Lemma 1. Also, all burning neighbour-
hoods have to be disjoint, since otherwise we can only burn less than. M2 − M + 1 =
|V (P)| vertices. 

Next, note that in order to burn a path of length .2B − 6, we need to use at 
least 3 burning ranges as otherwise we can burn at most . (2b1 − 2) + (2b2 − 2) <

(2(B/2) − 2) + (2((B/2) − 1) − 2) = 2B − 6 vertices. Since there are . |Y | + 1
other paths, each needing at least one burning range, we need a minimum of 
.3n + |Y | + 1 = M burning ranges in total. This also implies, that we have to use 
exactly 3 burning ranges for each path of length .2B − 6 and exactly one burning 
range for every other path. This means, that we have to use the burning range . y to 
cover the path of length.2y − 2 for each.y ∈ Y and burning range. 1 for.P1. This way, 
only the burning ranges .a1, . . . , a3n remain to cover the . n paths of length .2B − 6. 
This induces a partition of . A into triples by choosing.(b(i)

1 , b(i)
2 , b(i)

3 ) as exactly the 3 
burning ranges used to cover .P (i)

2B−6. ∎

This reduction is very similar to the one used for normal graph burning in [ 1]. 
Here, .P consists of . n paths of length .2B − 3 and one path each of length .2y − 1, 
.y ∈ Y := {1, . . . , M} \ A. Note, that if the constructed instance of (.k-slow) burning 
.(P, t) is solvable, we always have .bs(1, P) = M (and never .bs(1, P) < M).
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2.1 Connecting the Paths 

To show.NP-hardness on spider graphs we will use a similar approach as in [ 1] and 
connect the components of the path forest .P from Theorem 1 to a spider graph . S
with central vertex . v in a way, which ensures that in order to burn . S in .t + 1 steps 
(a) we have to choose. v as our first source of fire and (b) upon removing the burning 
neighbourhood of . v only a subgraph of the path forest .P remains. Together with 
Theorem 1 this proves .NP-hardness on spider graphs. 
Theorem 2 Let .k ≥ 1 be fixed. .k-slow burning is .NP-hard, even when restricted to 
spider graphs. 

Proof For this proof, we will identify path forests and spider graphs .G with the list 
of lengths of their paths (legs), writing.G = [l1, . . . , lm]. Let. (P = [p1, . . . , pm], t)
be the instance of .k-slow burning on path forests constructed in the reduction for 
Theorem 1 for .k = 1 or in [ 1] for .k ≥ 2 respectively. We construct the spider graph 
(sketched in Fig. 1 for .k = 1) 

. S = [p1, . . . , pm, 1, . . . , 1
, ,, ,

k

, 2, . . . , 2
, ,, ,

k

, . . . , t, . . . , t
, ,, ,

k

]

and show that .bs(k, S) ≤ t + 1 iff .bs(k, P) ≤ t . 
By. v, we denote the central vertex of . S. We will show that . S can never be burned 

in time if . v is not part of the burning neighbourhood of the first source of fire. For 
this, note that 

Fig. 1 .Uv is marked red. We search for a set of paths to embed them into.Q ∈ P . Starting from. v, 
4 vertices in.Q have been burned. Thus, we look at a path of length 4 in.S∗ − P . This path contains 
2 burned vertices, so we consider a path.P2. As this path is completely unburnt, we can embed.P2, 
as well as the unburnt parts of.P4 and.Q in.S −Uv into.Q
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. |V (S)| = |V (P)| + 1 +
(

k
t∑

j=1

j

)

=
(

(1 + ∑t
j=2 2 j − 2) + ∑t

j=1 j, k = 1,

t2 + 1 + k
∑t

j=1 j, k ≥ 2.

(1) 

In the burning neighbourhood containing . v we can ignite one vertex in the first step 
and .k(t∗ − 1) vertices in step .t∗ ≥ 2. Every other burning neighbourhood of size . t∗
is a path and thus we can burn. 1 vertex for.k = 1 and.t∗ = 1, at most.2t∗ − 2 vertices 
for .k = 1 and .t∗ ≥ 2 and at most .2t∗ − 1 vertices for .k ≥ 2. Hence, if . v lies in the 
burning neighbourhood of size . t∗, we can burn at most 

.

((
1 + ∑t+1

j=2(2 j − 2)
) − (2t∗ − 2) + (

1 + ∑t∗−1
j=1 j

)
, k = 1

(t + 1)2 − (2t∗ − 1) + (
1 + k

∑t∗−1
j=1

)
, k ≥ 2

(2) 

vertices in total. This is equal to .|V (S)| iff .t∗ = t + 1. Also, to achieve equality 
between (1) and (2), the number of vertices in each burning neighbourhood has to 
be maximal, so the burning neighbourhood of size .t + 1 containing . v has to be of 
size .1 + k

∑t
j=1 j . To achieve this we have to choose. v as our first source of fire for 

.k ≥ 2 or. v has to be one of the first two burning vertices for.k = 1. In the latter case, 
w.l.o.g. we can also assume. v to be the first source of fire. 

Thus, we burn. v as our first source of fire and fix some arbitrary, maximal, burning 
neighbourhood.Uv (of size.t + 1) of. v. Consider the path forest.P∗ induced by. S −Uv

as a subgraph of. S and denote by.S∗ the path forest that remains after deleting. v from 
. S. Because we choose .Uv to be maximal, we have .|P∗| = |P|. We claim, that . P∗
can always be embedded as a subgraph into .P and will construct this embedding 
algorithmically. To do so, we look at every path .p∗ of length . l∗ in .P separately and 
find a set of unmarked paths .Sp∗ = {p1, . . . , pm} of lengths .{l1, . . . , lm} in .P∗ such 
that.l1 + · · · + lm = l∗. After this, we mark the paths.p1, . . . , pm . If.p∗ is part of.P∗, 
we choose.Sp∗ = {p∗} and we are done. Otherwise, some number of vertices.n1 out of 
.p∗ have already been burned. We add the unburnt subpath of .p∗ to.Sp∗ and continue 
to look at one of the. k paths of length.n1 in.S∗ − P . Again, if this path is completely 
unburnt, we add it to .Sp∗ and we are done. If this is not the case, we continue in the 
same way by adding the unburnt part of the path to .Sp∗ and searching for a path of 
length. n2, where.n2 denotes the number of burnt vertices in the new path. We proceed 
to do this until we find an unburnt path. We repeat this process for all paths .p∗ ∈ P . 
This approach is demonstrated in Fig. 1. To prove the correctness of this approach, 
we have to show that we always find enough paths of suitable length. We look for 
a path of length .l∗ if and only if exactly .l∗ vertices of some other path were burned 
starting from . v. As  .Uv is maximal, this only happens . k times. This means, because 
.S∗ − P contains exactly . k paths of length . l∗, that we can always find an unmarked 
path of suitable length. 

This proves the claim and therefore we have .bs(k, P∗) ≥ bs(k, P), which means 
that it is optimal to choose .Uv in a way such that .S −Uv = P . This means that 
.bs(k, S) = t + 1 iff .bs(k, P) = t , which concludes the proof. ∎
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2.2 .k-Slow Burning is Harder Than Graph Burning 

So far we have only considered graph classes where normal graph burning is known 
to be.NP-hard. We want to find a class of graphs, where.k-slow burning is.NP-hard 
while normal graph burning is solvable in polynomial time. For this, we will look 
at classes . C, where the radius of all graphs is bounded by some constant . c. In this  
case we have.b(G) ≤ c + 1 for all .G ∈ C and thus we can simply check all burning 
sequences of length at most .c + 1. This is easily possible in polynomial time. In 
contrast to that, .k-slow burning is hard, even when restricted to graphs of radius 1. 
To prove this, we will use a reduction from the .k-broadcasting problem. 

Minimum Time k- Broadcasting 
Input: A Graph G, an integer k and a time bound t . 
Question: Is a k-broadcast on G starting from an optimal source of information 

v possible in t time steps, i.e., does 
minbk(G) := minv∈V bk(v, G) ≤ t hold? 

Note that the source of information is already informed before the first step of the 
broadcasting process, whereas for .k-slow burning the first source of fire is ignited 
during the first time step. For .k = 1 this problem is .NP-hard according to [ 8]. The 
reduction can easily be adjusted to also hold for .k ≥ 2 and to show hardness on 
planar graphs. 

Theorem 3 Let .k ≥ 1 be fixed. .k-slow burning is .NP-hard, even when restricted to 
graphs of radius 1. 

Proof Let .(G, t) be an instance of .k-broadcasting. We extend.G by adding an inde-
pendent set .I = {w1, . . . , w|I |} of size .(t + 1)(k + 1) − 1 to .G and connect all ver-
tices in . I as well as in .V (G) to some new vertex . v. The resulting graph .G∗ clearly 
has radius 1. We show that .minbk(G) ≤ t holds iff .bs(k,G∗) ≤ t + 2. 

First, assume that.minbk(G) ≤ t holds with.minbk(G) = bk(x,G) for some vertex 
.x ∈ V (G). Then,.(v,w1, . . . , wt+1) forms a.k-slow burning sequence of length. t + 2
for .G∗. To burn down  .G∗ in .t + 2 steps, we spread the fire from . v to . x as well as 
.k − 1 vertices in . I in round 2 and to . k vertices in . I in each subsequent round. This 
way we ignite exactly .(k − 1) + tk vertices in . I starting from . v and choose . t + 1
vertices in. I as sources of fire. This means, because of.(k − 1) + (t + 1) + tk = |I |, 
that . I is burned in time. Also, starting from round . 3, we can replicate the behaviour 
from the .k-broadcast on .G to ignite every vertex in .V (G) by round .t + 2. 

Conversely, assume that .bs(k,G) ≤ t + 2. Clearly, we can assume that the first 
source of fire does not lie in . I . Out of the .(t + 1)(k + 1) − 1 vertices in . I we can 
ignite a maximum of .k + 1 each round - one as a source of fire and . k coming from 
. v. As we have to ignite  all  .(t + 1)(k + 1) − 1 vertices within rounds .2, . . . , t + 2, 
we have to ignite at least . k vertices in . I in round. 2. Thus, . v has to be the first source 
of fire and in rounds .2, . . . , t + 2 we can ignite only one vertex . x in .V (G) coming 
from. v. By assumption, we have.bs(k,G) ≤ t + 2, so, if the fire spreads to. x in round 
. t∗, . x can ignite .G within rounds .t∗ + 1, . . . , t + 2. If we copy this behaviour as a 
broadcast-protocol on.G starting from. x , we get . minbk(G) ≤ bk(x,G) ≤ (t + 2) −
(t∗ + 1) + 1 ≤ t . ∎
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2.3 Checking Burning Sequences 

Whereas checking whether a given sequence .(v1, . . . , vt ) works as a burning  
sequence for a given graph is trivial for normal graph burning, this is not the case 
for .k-slow burning. Using a reduction from .k-broadcasting we will show that this 
subproblem is in fact .NP-hard for arbitrary graphs. 
Theorem 4 Given a fixed integer .k ≥ 1, a graph .G and a sequence of vertices 
.(v1, . . . , vt ), it is  .NP-hard to decide, whether .(v1, . . . , vt ) is a suitable burning 
sequence for . G, even when restricted to planar graphs. However, this problem is 
solvable in polynomial time when restricted to trees. 

Proof Let .(G, t, v1) be an instance of .k-broadcasting for some planar graph . G. We  
extend.G by adding. t isolated vertices .{v2, . . . , vt+1} and denote the resulting graph 
by .G∗. Clearly, .G∗ is planar and a .k-broadcast on .G starting from.v1 in . t time steps 
is possible iff .(v1, . . . , vt+1) is a possible burning sequence for .G∗. This proves the 
.NP-hardness on planar graphs. ∎

In contrast to this result, when restricting ourselves to trees, checking whether a 
potential.k-slow burning sequence is feasible is possible in polynomial time by using 
a polynomial time algorithm for .k-broadcasting on trees [ 10]. The exact algorithm 
and proof of correctness will be omitted here. 

3 Upper Bounds 

The burning number conjecture, stating .b(G) ≤ [√n] for all connected graphs . G
on . n vertices, is the central open question within the field of graph burning, with 
numerous papers either proving the conjecture for certain classes of graphs (such as 
Hamiltonian graphs, 2-caterpillars or spiders) or proving upper bounds close to.[√n]. 
In this section, we will look at the question of finding upper bounds for .bs(k,G) for 
fixed values of . k. Similar to normal graph burning, for this purpose we only need to 
consider trees, as 

. bs(k,G) = min{bs(k, T ) | T spanning tree of G}.

When discussing upper bounds for.bs(k,G), the star graph.Sn−1 on. n vertices fulfills a 
critical role. To burn down.Sn−1, it is clear that it is optimal to choose the central vertex 
. v as the first source of fire. In every subsequent step, except for the last step, if there 
are less than .k + 1 non-burning vertices left, the fire spreads to exactly .k + 1 of the 
outer vertices:. k vertices can be ignited by. v and one additional vertex can be chosen 
as a new source of fire. Using this observation we get.bs(k, Sn) = [(n + k)/(k + 1)]. 
Seeing that on.Sn the number of vertices burned largely remains constant during each 
step of the burning process, it seems reasonable to assume that.bs(k, Sn) is close to the 
upper bound for.bs(k,G) among all connected graphs. G, at least for large values for. n.
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The cases .k = 1 and .k = 2. During the 1- or 2-slow burning process on . Sn , we can 
burn exactly 2 or 3 vertices in each step of the burning process, respectively. If for 
an arbitrary tree . T we can find 2 (respectively, 3) vertices to be burned in every step 
of the process, this proves that.bs(k, Sn) indeed marks an upper bound for the.1- and 
2-slow burning number on connected graphs. 

Theorem 5 Let .G be an arbitrary connected graph with . n vertices. For . k ∈ {1, 2}
we have 

. bs(k,G) ≤ bs(k, Sn) =
[
n + k

k + 1

]

.

Proof Let .T be a tree, .k ∈ {1, 2} and .tmax = [(n + k)/(k + 1)]. By  .BNt∗(v1) we 
denote the set of all vertices burned starting from the first source of fire .v1 after . t∗
steps. It suffices to show that we can choose .v1 and .BNtmax (v1) in a way such that 
.|V (G) \ BNtmax (v1)| ≤ tmax − 1. 

Case .k = 1: Choose .v1 arbitrarily. In each of the time steps . t∗ ∈ {2, . . . , tmax }
we can extend the subtree formed by .BNt∗−1(v1) by one arbitrary vertex. Thus, we 
have .|BNtmax (v1)| = tmax which leads to 

. n − |BNtmax (v1)| = n −
[
n + 1

2

]

=
|
n − 1

2

|

≤ tmax − 1.

Case .k = 2: We choose .v1 to be a .1/2-separator of . T , i.e., in a way, that each 
of the components .C1, . . . ,Cm in .T − {v1} satisfies .|Ci | ≤ |T |/2. Using a greedy 
approach, we can partition the indices.1, . . . ,m into two sets.I1 and.I2 in a way, that 
we have 

. 
n − 1

3
|T | ≤

∑

i∈I j
|Ci | ≤ 2(n − 1)

3
|T |, j = 1, 2.

By .Tj , j = 1, 2, we denote the subtree of .T induced by .{v1} ∪ U
i∈I j Ci . This way 

we have .|Tj | ≥ tmax , j = 1, 2, so in every subsequent step of the burning process 
.t∗ ∈ {2, . . . , tmax } we can extend .BNt∗(v1) ∩ Tj , j = 1, 2 by one vertex each and 
thus we get .|BNtmax (v1) ∩ Tj | = tmax which (because of .T1 ∩ T2 = {v1}) leads to 
.|BNtmax | = 2tmax − 1. If we choose .Btmax (v1) in this way, we get 

. n − |BNtmax (v1)| = n −
(

2

[
n + 2

3

]

− 1

)

≤
[
n + 2

3

]

− 1.

The last inequality holds because of .3[(n + 2)/3] − 2 ≥ (3n + 6)/3 − 2 = n. ∎

Asymptotic Upper Bounds for .k ≥ 3. For larger values of . k, the burning number 
of the star graph is no longer always the worst case. For example, taking .k = 3 and 
.n = 5 we get.bs(3, S4) = 2 < 3 = bs(3, P5). However, we can show, that after some 
preparation phase consisting of at most . f (k) rounds (for some suitable function 
. f ) we can burn at least .k + 1 vertices in each subsequent step. Thus, for fixed . k, 
.bs(k, Sn−1) forms an asymptotic bound for .bs(k,G) on all connected graphs . G.
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Theorem 6 Let .k ≥ 3 be fixed and .G be a connected graph with . n vertices. Then, 

. bs(k,G) ≤
[

n

k + 1

]

+ f (k)

holds for some function . f satisfying . f (k) ≤ 2k − 3. 

Proof We assume.k < n as otherwise the theorem is trivial. To prove the bound for 
. f (k) for an arbitrary tree. T , we use a similar approach as for the case.k = 2. First, in 
a preparation phase, we iteratively choose .1/2-separators . S in . T in a way ensuring 
that all components in the forest .T − S are sufficiently small. In the first .|S| rounds 
of the burning process, we only ignite all vertices in. S. To obtain an upper bound for 
.|S| we make use of the following lemma. ∎

Lemma 2 Let .1 ≤ Z ∈ R be arbitrary and let .T be a tree. We choose .c ∈ N0 in a 
way such that .cZ ≤ |V (T )| ≤ (c + 1)Z holds. Then there exists some set . S ⊂ V (T )

such that each component in .T − S has at most . Z vertices and such that .|S| = 0 for 
.c = 0 and .|S| ≤ 2c − 1 otherwise. 

The proof of this lemma uses a simple induction over . c and will be omitted 
here. By using the lemma with .Z = n/k ≥ 1 we obtain a set of vertices . S such that 
.|S| ≤ 2k − 3 and every component.Ci in the forest.F := T − S contains at most. n/k
vertices. In the first.|S| rounds of the burning process we only ignite all vertices in. S. 
We denote the components of .T − S by .C1, . . . ,Cm , their orders by .ni := |Ci | and 
we assume.[n/k] ≥ n1 ≥ . . . ≥ nm . Furthermore, in each of the components we fix 
some root . ri that is adjacent to at least one vertex in . S. We have to burn  .T − S in 
.[n/(k + 1)] rounds. 

To do so, we fix the set of remaining sources of fire,.M = {w1, . . . , w[n/(k+1)]}, in  
a way that ensures every component in .(T − S) − M contains at most . [n/(k + 1)]
vertices. In.T − S there are at most. k components.Ci that contain more than. n/(k + 1)
vertices, as otherwise .T − S would have to contain at least . (k + 1)((n/(k + 1)) +
1) > n vertices in total. Thus, we have to remove at most. k[(n/k) − (n/(k + 1))] ≤
[n/(k + 1)] vertices, which ensures the existence of a suitable set of sources of fire 
. M . We choose the vertices in .M in a way that (a) all components in .T − S remain 
connected and (b) the root . ri of every component in .T − S is not chosen as a source 
of fire as long as there are still other unburnt vertices in . Ci . 

We denote the remaining forest .T − S − M as .F[n/(k+1)]. For descending . j =
[n/(k + 1)], . . . , 1 we construct the graph .Fj−1 by removing one vertex in each of 
the . k largest components of .Fj or one vertex out of every component if there are at 
most. k components remaining. Via induction over. j = [n/(k + 1)], . . . , 0, we show  
that .Fj satisfies the following two properties: 

1. Every component in .Fj contains at most . j vertices. 
2. Either it was possible to burn . k vertices in every round of the burning process, 

starting from round .|S| + 1 or .Fj contains at most . k components.
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As this means .F0 is the empty graph and because we can clearly obtain .Fj from 
.Fj+1 within one round of the burning process, this will prove the upper bound for 
.bs(k, T ). We start by looking at the base case . j = [n/(k + 1)]. We have shown (1) 
previously and for (2) there is nothing to show as we are exactly in round . |S| + 1
of the burning process. Now, assume. j < [n/(k + 1)] and that both properties have 
been shown to hold for larger . j . 

By this assumption, in .Fj+1 every component contains at most . j + 1 vertices. If 
.Fj+1 contains at most . k components we can burn one vertex in each component and 
the remaining graph still has at most . k components containing .≤ j vertices each. 
Thus, (1) and (2) both hold. Otherwise, by induction, it was possible to remove . k
vertices staring from . S in each of the previous rounds . |S| + 1, . . . , |S| + [n/(k +
1)] − j . .Fj+1 cannot contain more than . k components with exactly . j + 1 vertices, 
as otherwise .T − S − M would have to contain 

. (k + 1)( j + 1) + k

([
n

k + 1

]

− j

)

≥ k + j + 1 + kn

k + 1
> n −

[
n

k + 1

]

≥ |T − S − M |

vertices, which is a contradiction. Hence, after igniting one vertex each in the . k
largest components of .Fj+1, every component in the resulting forest .Fj contains at 
most . k vertices. Thus, (1) holds. As we removed . k vertices in order to construct . Fj

from.Fj+1, (2) is also true. This proves the theorem. 
We compare the .k-slow burning number of paths and star graphs on . n vertices 

for .k ≥ 3 and to do so maximise . bs(k, Pn) − bs(k, Sn−1) = √
n − (n/(k + 1)) +

O(1). The function.gk(n) := √
n − (n/(k + 1)) reaches its maximum for. n = ((k +

1)/2)2. In this case we have .gk(n) = (k + 1)/4 = Ω(n). This means that the bound 
for. f (k) from Theorem 6 already has the correct magnitude, i.e., we necessarily have 
. f (k) = Θ(k). 

4 Concluding Remarks 

We have proven.NP-hardness on path forests, spider graphs and graphs of radius 1. 
Also, an analogous approach as in [ 12] can be used to show hardness on caterpillars of 
maximum degree 3 as well. Out of our three results, the last is the most notable, as for 
the class of graphs of radius 1 normal graph burning is possible in polynomial time. 
Together with our observation that checking a potential.k-slow burning sequence for 
correctness is hard, this indicates that .k-slow burning is in fact harder than normal 
graph burning. Natural follow-up questions would be to discuss the complexity on 
other graph classes where normal graph burning is known to be easy, such as split 
graphs and cographs, or to discuss the parameterised complexity of the problem. 

In an attempt to find an analogy to the well known burning number conjecture, we 
then studied upper bounds for the .k-slow burning number. Whereas the conjectured 
upper bound of .[√n] holds with equality for paths for normal graph burning, for 
.k-slow burning the star graph.Sn−1 appears to be critical for studying upper bounds.
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We could prove, that .bs(k,G) is indeed maximal on star graphs for .k ∈ {1, 2} while 
for .k ≥ 3 this is only the case asymptotically. 

These observations lead to the question whether there is some. k and a connected 
graph.G∗ on. n vertices, such that.bs(k,G∗) > max{bs(k, Pn), bs(k, Sn−1)}. We con-
jecture that this is not the case which means that we have 

. bs(k,G) ≤ max{bs(k, Pn), bs(k, Sn−1)}

for all connected graphs . G. For  .k ∈ {1, 2} we have proven this conjecture to 
hold, while for .k ≥ 3 it remains open. If we assume .n ≥ 2 and .k ≥ n, we have  
.bs(k, Sn−1) = 2 and thus .max{bs(k, Sn−1), bs(k, Pn)} = bs(k, Pn) = [√n]. There-
fore the proposed .k-slow burning conjecture generalises the original conjecture. 
Although, because of this, proving the conjecture seems difficult, it may be interest-
ing to show the conjecture to hold on certain subclasses of trees such as caterpillars 
or spiders where the normal burning conjecture is known to be true. 
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Discrepancies of Subtrees 

Tarun Krishna, Peleg Michaeli, Michail Sarantis, Fenglin Wang, 
and Yiqing Wang 

Abstract We study multicolour, oriented and high-dimensional discrepancies of the 
set of all subtrees of a tree. As our main result, we show that the .r -colour discrep-
ancy of the subtrees of any tree is a linear function of the number of leaves . l of 
that tree. More concretely, we show that it is bounded by .[(r − 1)l/r] from below 
and.[(r − 1)l/2] from above, and that these bounds are asymptotically sharp. Moti-
vated by this result, we introduce natural notions of oriented and high-dimensional 
discrepancies and prove bounds for the corresponding discrepancies of the set of all 
subtrees of a given tree as functions of its number of leaves. 

1 Introduction 

Given a hypergraph.H = (V, E), a (two-)colouring of (the vertices of).H is a function 
. f : V → {±1}. For a hyperedge. A we set . f (A) = ∑

a∈A f (a), and.| f (A)| is called 
the imbalance of . A. The (combinatorial) discrepancy of .H is defined to be 

. D(H) = min
f :V→{±1}

max
A∈E

| f (A)|.
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Namely, the discrepancy of.H is the maximum imbalance of an edge under an optimal 
colouring. It is often convenient to think about this definition in terms of a game: an 
adversary colours. V using. 2 colours. He tries to do it as balanced as possible, that is, 
so that the distribution of the colours in every member of. E will be as close as possible 
to uniform. Our goal is then to find a member of . E of maximum imbalance. Over 
the last century, the study of discrepancy-type problems has developed into a field 
with extensive range and variety, demonstrating strong ties to number theory, Ramsey 
theory, and computational methods. We refer the reader to the book of Matoušek [ 13] 
for a comprehensive overview of the topic. 

There are several natural ways to generalise the above definition of (.2-colour) 
discrepancy to an arbitrary number of colours. One such generalisation was intro-
duced by Doerr and Srivastav [ 4], in which the notion of imbalance captures the 
maximum deviation of the size of a colour class from the mean size of a colour 
class (or, in other words, the (scaled).l∞-distance of the colour distribution from the 
uniform distribution). We call it here the symmetric .r -colour discrepancy of . H, 
and denote 1

. D◦
r (H) = min

f :V→[r ]
max
A∈E

max
j∈[r ]

|
|r

|
| f −1( j) ∩ A

|
| − |A||| .

Recently, mostly in the context of graphs, a slightly different notion of multicolour 
discrepancy was studied, in which the notion of imbalance captures the deviation of 
the size of the largest colour class from the mean size. We call it here the (upper) 
.r -colour discrepancy of . H, and denote 

. Dr (H) = min
f :V→[r ]

max
A∈E

max
j∈[r ]

(
r
|
| f −1( j) ∩ A

|
| − |A|) .

It is not hard to see that these definitions are both generalisations of the classical 
notion of discrepancy, and differ from each other by a constant factor. Concretely, 
.D2(H) = D◦

2(H) = D(H) and 

.Dr (H) ≤ D◦
r (H) ≤ (r − 1)Dr (H) (1) 

for every hypergraph .H and .r ≥ 2. 
The “upper” variation is more natural in the context of edge-colourings in 

(hyper)graphs, due to its direct relation to Ramsey-type questions: given an edge-
colouring of a graph, instead of looking for a monochromatic copy of a target sub-
graph, one looks for a copy of that subgraph in which one of the colours appears 
(significantly) more than the average. In that sense, discrepancy-type problems may 
be considered as a relaxation—or rather a quantification—of Ramsey-type problems. 

Let us elaborate on combinatorial discrepancies in the context of graphs. Here, 
given a base graph .G and a family of graphs . X , we construct a hypergraph whose 
vertices are the edges of .G and whose hyperedges are edge sets that from a member

1 The original definition of Doerr and Srivastava was a .(1/r)-scaling of the above definition; we 
scaled it for convenience to allow.D◦

2 = D, and to ensure it is an integer. 
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of . X . The  discrepancy of .X in . G, denoted .D(G,X ), is the discrepancy of that 
hypergraph. Analogously, we define the symmetric .r -colour discrepancy of .X in . G
(.D◦

r (G,X )) and the.r -colour discrepancy of.X in. G (.Dr (G,X )). It is helpful to keep 
in mind that .D(H) is monotone in . E , hence .D(G,X ) is monotone both in .G and in 
. X . It is therefore natural (and often nontrivial) to study .D(Kn,X ). 

The study of combinatorial discrepancy in graphs was initiated by Erdős et al. [ 5], 
who analysed the 2-colour discrepancy of a fixed spanning tree with a given maximum 
degree in the complete graph. However, several earlier results can be stated using 
this terminology. As an example we mention the result of Erdős and Spencer [ 6], 
that can be interpreted as showing that the (2-colour) discrepancy of cliques in the 
complete graph on. n vertices (or, more generally, of hypercliques in the complete.k-
uniform hypergraph) is of order.n3/2 (or, more generally,.n(k+1)/2). Recently, Balogh, 
Csaba, Jing and Pluhár [ 1] initiated the study of discrepancies in general graphs. In 
particular, they obtained a Dirac-type bound for positive discrepancy of Hamilton 
cycles (in 2 colours; this was generalised to . r colours in [ 7] and independently 
in [ 10]), and estimated the discrepancy of the set of all spanning trees in random 
regular graphs and 2-dimensional grids (in 2 colours). The last result was greatly 
generalised to . r colours and to almost every base graph in [ 10], where the authors 
establish a non-trivial connection between the spanning-tree discrepancy (essentially 
an extremal quantity) and a purely geometric property of the graph. In.2-dimensional 
grids, Balogh et al. also showed that the discrepancy of paths (hence also of trees) is 
linear in the number of vertices. 

Other recent works include an estimate of multicolour discrepancy in random 
graphs and in the complete graph [ 9]; a Dirac-type bound for positive .2-colour 
discrepancy of.k-factors [ 2]; and a Dirac-type bound for positive.2-colour discrepancy 
of powers of Hamilton cycles [ 3]. Finally, Gishboliner, Krivelevich and the second 
author have introduced a notion of oriented discrepancy, and studied the oriented 
discrepancy of Hamilton cycles in dense and in random graphs [11]. We will elaborate 
on this matter further. 

The present work continues this line of research. Our main result shows that the 
.r -colour discrepancy of the set of all trees in a given tree is linear in the number 
of leaves of that tree. Let us denote the set of all trees by . T . Thus, for a graph . G, 
.Dr (G, T ) denotes the.r -colour discrepancy of trees in. G. For  a tree. T , denote by. l(T )

the number of leaves in. T . As a warm-up example, consider the following two simple 
cases. Let .Sl denote the star with . l leaves. It is evident that an optimal colouring 
is an equipartition of the leaves into the . r colour classes, and the most unbalanced 
tree in this case will be a monochromatic substar. Hence,. Dr (Sl, T ) = (r − 1)

[
l
r

]
.

Similarly, considering the path.Pn on. n vertices (so.l(Pn) = 2), an optimal colouring 
can easily be seen to be any periodic colouring, in which the most unbalanced tree 
will be a single edge. Hence, . Dr (Pn, T ) = (r − 1)

[
2
r

]
.

Given the above, a natural guess would be that any tree .T satisfies . Dr (T, T ) =
(r − 1) [l(T )/r]. It turns out that the above holds for .r = 2 (see below). For .r ≥ 3, 
however, this is only (at least asymptotically) a lower bound, and the star demonstrates 
that it is sharp. Our first and main result gives bounds on.Dr (T, T ) in terms of.l(T ).
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Theorem 1 (Multicolour discrepancy) For every .r ≥ 2 and every tree .T with . l
leaves, 

. 

[

(r − 1) · l

r

]

≤ Dr (T, T ) ≤
[

(r − 1) · l

2

]

.

In particular, for .r = 2 we have .D2(T, T ) = [
l
2

]
. 

We explained earlier why the lower bound in Theorem 1 is sharp (asymptotically 
and for infinitely many values of . l). In Sect. 2, where we prove the theorem, we also 
prove that the upper bound is sharp (exactly and for every . l; see Proposition 1). 

Using a classical result of Kleitman and West [ 12] about the maximum number of 
leaves in a spanning tree of a graph (sometimes called the maximum leaf number), 
we obtain the following improvement 2 and extension (to any number of colours) of 
[ 1, Corollary 7]. 

Corollary 1 Let .m, n ≥ 2 be integers and let .G be the .m × n grid. Then 

. Dr (G, T ) ≥ r − 1

4r
· mn + 1 − 2r.

Our next result is in the context of signed/oriented discrepancy. Let us lay a 
formal ground to state our results. The notion of a signed hypergraph, intro-
duced by Shi [ 15], is an extension of the conventional notion of a hypergraph 
that allows “negative” vertex-edge incidences. Formally, a signed hypergraph . H
is a triple .(V, E, ψ) where .V, E are disjoint sets (“vertices” and “hyperedges”) 
and .ψ : V × E → {−1, 0, 1} is an incidence function. For a hyperedge .A we set 
. f (A) = ∑

a∈V f (a) · ψ(a, A), and .| f (A)| is called the imbalance of . A. We define 
the signed discrepancy of .H to be 

. Ḋ(H) = min
f :V→{±1}

max
A∈E

|
∑

a∈V
f (a) · ψ(a, A)|.

With a slight abuse, we may ignore the formal definition that contains the incidence 
function, and instead think of sets in a more general way: for each set and each 
element, the set can contain the element, not contain the element, or “negatively” 
contain that element. This notion turns out to be useful in many cases, as we will 
see below. Note that .Ḋ(H) = D2(H) if .ψ is nonnegative; in that sense, the signed 
discrepancy is a direct generalisation of .2-colour discrepancy. 

Analogously to how we defined multicolour discrepancies in graphs, we define 
oriented discrepancy in graphs. In this setting, given an oriented 3 base graph .G and 
a family of oriented graphs . X , we construct a signed hypergraph whose vertices are 
the edges of.G and whose hyperedges are edge sets that from a member of. X , where

2 Their result, for .r = 2 only, is an immediate corollary of a stronger result they prove on the 
discrepancy of paths in the grid. On the other hand, while their proof is a clever ad-hoc and suited 
for grids, our proof is more general. 
3 That base orientation will not matter and can be arbitrary. 
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an edge is positively contained in a hyperedge if its orientation in .G agrees with its 
orientation in . X , and negatively contained otherwise. The oriented discrepancy of 
.X in . G, denoted .

−→D (G,X ), is the signed discrepancy of that signed hypergraph. 4

Again, it is convenient to think about this definition in terms of a game: an adversary 
orients the edges of .G (ignoring the “original” orientation it had). He tries to do it 
as balanced as possible, that is, so that in any member of . X , the number of edges 
in which the orientation in .X agrees with his orientation of .G is as close to 50% as 
possible. Our goal is then to find a member of .X of maximum imbalance, namely, 
that contains many more agreements than disagreements, or the other way around. 

Let .DHAM be the set of all directed Hamilton cycles. The result of [ 11] on the  
oriented discrepancy of Hamilton cycles in Dirac graphs can be restated as follows: if 

.G is an .n-vertex graph with .δ(G) ≥ n/2 + 8 then . 
−→D (G,DHAM) = Ω(2δ(G) −

n)). The authors of [ 11] conjectured that if .δ(G) ≥ n/2 then . 
−→D (G,DHAM) ≥

2δ(G) − n, and that if true, it would be best possible. The conjecture—a strong 
generalisation of Dirac’s theorem—was fully resolved by Freschi and Lo [ 8]. 

Here, we obtain a new result in the setting of oriented discrepancy in graphs. Let 
.DT denote the set of all directed rooted trees; namely, trees that have a distinguished 
vertex called the root and that are oriented away from that root. 5 Our next theorem 
gives bounds on .

−→D (T,DT ) in terms of .l(T ). 

Theorem 2 (Oriented discrepancy) For every tree . T on at least . 3 vertices and with 
. l leaves, 

. 

[
l

2

]

+ 1 ≤ −→D (T,DT ) ≤ l.

The lower bound is sharp (exactly and for every. l), since a star with. l leaves that is 
oriented as evenly as possible has oriented imbalance.[l/2] + 1. We conjecture that 
one can obtain a better upper bound that matches the lower bound asymptotically, 

namely, that .
−→D (T,DT ) ∼ l/2. 

The multicolour discrepancy .Dr and the signed discrepancy .Ḋ are two natural 
generalisations of the classical notion of discrepancy. D, both of combinatorial nature. 
In some sense, however, they lack the geometric aspect of discrepancy. In particular, 
.Dr is not even generally monotone in . r . Following Tao [ 16], we may generalise 
the definition of discrepancy geometrically, by allowing vector-valued colouring 
functions. Here, we restrict our attention to the (already challenging) case of the 
vector space .Rd . For  .d ≥ 0, let  .Sd denote the .d-dimensional unit hypersphere in 
.R

d+1. A  .d-dimensional colouring of .H is a function . f : V → S
d . For a hyperedge 

. A we set . f (A) = ∑
a∈A f (a), and .| f (A)| is called the imbalance of . A. We define 

the .d-dimensional discrepancy of .H to be

4 A potential term would have been signed discrepancy; however, when the vertices of the hyper-
graph represent edges of a graph, the notion of orientation is more natural. 
5 This is an arbitrary choice of one of two natural orientations of a rooted tree, and has no implications 
on the results. 
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. Dd(H) = min
f :V→Sd

max
A∈E

| f (A)|.

We observe that .D0 = D2, and that .Dd ' ≤ Dd whenever .d ' ≥ d. Understanding . D0

quite well, we move on to study .Dd for .d ≥ 1. 
While the .r -colour discrepancy is more combinatorial in nature and the .d-

dimensional discrepancy is more geometric, they are related by the following inequal-
ity: for every.r ≥ 2,.d ≥ 1 and hypergraph. H,.Dd(H) ≤ D1(H) ≤ D◦

r (H). It follows  
from Eq. 1, Theorem 1 that the high-dimensional tree-discrepancy of a tree with . l
leaves is at most .[l/2] (for every dimension.d ≥ 1). In the next theorem we prove a 
lower bound that we believe that under some assumptions matches the upper bound. 
Let .B(z1, z2) be the beta function. 

Theorem 3 (high-dimensional discrepancy) For every tree . T with . l leaves, 

. Dd(T, T ) ≥ l

d · B (
d
2 ,

1
2

) .

In particular, .D1(T, T ) ≥ l/π and .Dd(T, T ) ≥ (1 − od(1))l/
√
2πd. 

We conjecture that.D1(T, T ) ≥ 1/(2 sin(π/(2l))) ∼ l/π and that when. Δ(T ) →
∞, .D1(T, T ) ∼ l/π . 

2 Multicolour Discrepancy 

In this section we prove Theorem 1 and its sharpness. Given a tree. T , a colouring. f :
E(T ) → [r ] and a subtree. S, write.e j (S) = | f −1(S)| and.w j (S) = re j (S) − |E(S)|. 
Proof (Of the lower bound in Theorem 1) Let  .T be a tree with . l leaves, and let 
. f : E(T ) → [r ] be an .r -colouring of its edges. Denote .m j = | f −1( j)| for . j ∈ [r ]
and.m = ∑

j∈[r ] m j = |E(T )|. We obtain a subtree.T ' of. T be deleting all leaves of. T , 
and denote .m '

j = | f −1( j) ∩ E(T ')| and .l j = | f −1( j) \ E(T ')| for . j ∈ [r ]. Write 
.m ' = ∑

j∈[r ] m
'
j and note that.

∑
j∈[r ] l

'
j = m − m ' = l. Finally, we obtain.Tj from. T '

by adding back the edges . f −1( j) \ E(T '). Observe that .w j (Tj ) = rm j − m ' − l j , 
hence 

. 

∑

j∈[r ]
w j (Tj ) = rm − rm ' − l = (r − 1)l.

Thus, by the pigeonhole principle, there exists. j ∈ [r ] for which.w j ≥ [(r − 1)l/r], 
hence .Dr (T, T ) ≥ [(r − 1)l/r]. 

We move on to prove the upper bound in Theorem 1. Consider the pointwise partial 
order relation on.R

r defined as follows: for.m = (m1, . . . ,mr ) and.n = (n1, . . . , nr ), 
.m ≤ n if and only if .m j ≤ n j for every . j ∈ [r ]. For a permutation . τ of .[r ] we
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write .τ(m) = (mτ(1), . . . ,mτ(r)). We say that .m is dominated by . n and denote it 
.m < n if there exists a permutation . τ of .[r ] such that .τ(m) ≤ n. We further write 
.m ∨ n = (m1 ∨ n1, . . . ,mr ∨ nr ), where for real numbers.x, y,.x ∨ y = max{x, y}. 
Call .m is increasing if it is (weakly) monotone increasing as a sequence. Denote by 
.σm the first permutation of.[r ] (according to some arbitrary fixed ordering) for which 
.σm(m) is increasing. Write .i(m) = σm(m) for the “monotone version” of . m. Let  
.minm and .maxm denote the minimal and maximal coordinate in . m, respectively, 
and note that if .m < n then .maxm ≤ max n. Say that a vector .m is .1-Lipschitz if 
for every .1 ≤ j < r , .|m j+1 − m j | ≤ 1. 

For a vector . m, let  .αm be the vector .(a1, . . . , ar ) where .a j = m j + r − σ−1
m ( j). 

It is useful to observe that if .m < n then .αm < αn. It is also useful to observe that 
if .m is increasing .1-Lipschitz then .αm is decreasing .1-Lipschitz. For every . j ∈
[r ] denote .d j = r − [(r + 1 − j)/2], and let .d2 = (d1, . . . , dr ). For  .l ≥ 2 define 
.dl+1 = i(αdl

), and note that for.l ≥ 3,.min dl = max dl−1. Note futher that since. d2
is increasing .1-Lipschitz then by the discussion above, .dl is increasing .1-Lipschitz 
for every .l ≥ 2. Thus, for every .l ≥ 3, .(dl) j = (dl−1)r+1− j + j − 1. In particular, 
.max d3 = d1 + r − 1 = 2r − 1 − [r/2] = [3(r − 1)/2], and, for .l ≥ 4, . max dl =
min dl−1 + r − 1 = max dl−2 + r − 1. By induction, .max dl = [l(r − 1)/2]. The  
following claim will be useful for us. 

Claim 2.1 For every .l ≥ 3, if .m < dl−1 and .n < dl then .m ∨ n < dl. 

Proof We may assume that .i(n) = dl. Thus, .min n = min dl = max dl−1, hence 
.m ∨ n = n, and the claim follows. 

Proof (Of the lower bound in Theorem 1) For vertices.u, v ∈ V (T ), let.Sv(T ) denote 
the set of subtrees . S of .T that contain the vertex . v, let  .Su,v(T ) the set of subtrees 
. S that contain .u, v, and let .Su,¬v(T ) be the set of subtrees . S that contain . u but not 
. v. For  . j ∈ [r ], define .Mj (v; T ) = maxS∈Sv(T ) w j (S) and analogously . Mj (u, v; T )

and .Mj (u,¬v; T ). The  colour profile of . v in .T (with respect to a colouring . f ) 
is the vector .χ(v; T ) = (M1(v; T ), . . . , Mr (v; T )). Define analogously . χ(u, v; T )

and .χ(u,¬v; T ). We prove by induction the following statement: for every . l ≥ 2
and every tree. T with. l leaves, there exists a colouring. f of.E(T ) for which for every 
vertex.v ∈ V (T ),.χ(v; T ) < dl. This would imply, in particular, that for every subtree 
. S of. T and every colour. j ∈ [r ],.w j (S) ≤ maxχ(v; T ) for some vertex.v ∈ V (S); but  
for every.v ∈ V (T ),.maxχ(v; T ) ≤ max dl ≤ [(r − 1)l/2], implying the statement 
of the theorem. Our inductive argument yields a concrete explicit colouring of.E(T ); 
see Sect. 2 for an (implied) efficient algorithmic version. 

The base case is when.l = 2. Here, . T is a path; suppose the edges of the path are 
.(e1, . . . , ek) in this order. We colour the path periodically; namely, we let. f (ei ) = j if 
and only if.i ≡ j (mod r). Let.v ∈ V (T ) and let.S ∈ Sv be a subpath of. T containing 
. v. Evidently, .w j (S) ≤ r − 1 for every . j ∈ S. Thus, .χ(v; T ) < d2. 

We move on to the induction step. Let. T be a tree with.l = l(T ) ≥ 3 and suppose 
the statement holds for.l − 1. Let. u be a leaf in. T , and let. b be the branching vertex 
of . u, namely, the nearest vertex to . u with degree greater than two. Let .Pu be the 
path connecting . u to . b, and denote by .T ' the subtree of . T obtained by removing all
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edges of .Pu and all vertices of .Pu but . b. Evidently, .l(T ') = l − 1. By the induction 
hypothesis, there exists an .r -colouring . f ' of .E(T ') that satisfies . χ(v; T ') < dl−1

for every .v ∈ V (T '). We extend . f ' to a colouring . f of .E(T ) as follows. Let . b' =
χ(b; T ') be the colour profile of . b in . T '. Consider the permutation .σb' . Colour 
the edges of .Pu periodically according to .σb' ; namely, if .Pu = (e1, . . . , ek) (where 
.b ∈ e1 and.u ∈ ek), let. f (ei ) = σb'( j) if and only if.i ≡ j (mod r). Note that for any 
subpath .Q of .Pu that contains . b, and for any colour . j ∈ [r ], .w j (Q) ≤ r − σ−1

b ( j). 
We now show that . T satisfies the hypothesis (with respect to . f ). Namely, we show 
that for every .v ∈ V (T ), .χ(v; T ) < dl. We consider three separate cases. 

Case I, .v = b: We observe that for every .S ∈ Sb and every . j ∈ [r ], letting . S' =
S ∩ T ' and .S− = S ∩ Pu , we have  . w j (S) = w j (S') + w j (S−) ≤ Mj (b; T ') +
r − σ−1

b' ( j). Thus, .χ(b; T ) ≤ αb' . By the induction hypothesis, .b' < dl−1, hence 
.χ(b; T ) ≤ αb' < i(αdl−1) = dl. 

Case II, .v ∈ V (Pu) \ {b}: As with the base case of the induction, we have 
.χ(v,¬b; T ) ≤ d2 ≤ dl−1. On the other hand, .χ(v, b; T ) ≤ χ(b; T ) < dl (by 
Case I). Thus, .χ(v; T ) = χ(v,¬b; T ) ∨ χ(v, b; T ) < dl (by Sect. 2.1). 

Case III, .v ∈ V (T ') \ {b}: By the induction hypothesis . χ(v,¬b; T ) ≤ χ(v; T ')
< dl−1. On the other hand, .χ(v, b; T ) ≤ χ(b; T ) < dl. Thus, . χ(v; T ) =
χ(v,¬b; T ) ∨ χ(v, b; T ) < dl (by Sect. 2.1). 

The proof is now complete. 

We briefly discuss how the inductive argument presented in the proof of the upper 
bound of Theorem 1 yields a simple and efficient algorithm for finding a colouring 
the achieves at least the upper bound. 

We begin by describing an efficient algorithm to compute the colour profile of a 
vertex . b in an .r -coloured tree . T . The input is a given tree . T with .m edges, a vertex 
. b, and an .r -colouring . f . For every vertex . v of . T , let  .Tv denote the tree rooted at . v
comprised of . v and all its descendants in . T . Now observe that, by considering the 
imbalance of color . j at each subtree . Tv , .v ∈ N (b), we have  

. Mj (b; T ) =
∑

v∈N (b)

max{r · 1 f ({b,v})= j − 1 + Mj (v; Tv), 0}.

Hence, computing .χ(b; T ) requires .O(rm) steps. 
We proceed by describing the colouring procedure. We are given a tree. T with. m

edges and . l leaves, and a number of colours . r . Let  .u1, u2 be two distinct leaves of 
. T , and let .P be the unique path between them in . T . We colour .P alternately with 
a fixed (arbitrary) cyclic order of the colours. Set .T ' = P . We then iterate over the 
remaining.l − 2 leaves: given a leaf. u that is not in. T ', let.Pu be the unique path in. T
from. u to. T ', and let. b be the last vertex in the path (so.b ∈ V (T ')). We can calculate 
the colour profile .χ(b; T ') of . b in .T ' in .O(rm) steps. Given the colour profile, we 
colour the path from . b to . u alternately with a cyclic order of the colours, from the 
least popular colour up to the most popular. That is, the order of colours is .σχ(b;T '). 
We then add the new coloured path to .T ' and continue to the next leaf outside . T '.
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Fig. 1 Visualisation of the inductive .3-colouring of a tree. The colour profiles are indexed red– 
green–blue 

This algorithm runs, therefore, in.O(rml) steps. Its correctness was verified recur-
sively in the proof of the upper bound in Theorem 1. See Fig. 1 for a visualisation 
of the algorithm. 

We now prove Corollary 1. 

Proof (Of Corollary 1) Let .G be the .2-dimensional .m × n grid (.m, n ≥ 2). Obtain 
.G+ from .G by adding a perfect matching covering the . 4 vertices of degree . 2 in . G, 
so .δ(G+) = 3. Hence, by [ 12, Theorem 2], .G+ has a spanning tree .T with at least 
.mn/4 + 2 leaves. By Theorem 1, 

. Dr (G
+, T ) ≥ Dr (T, T ) ≥ r − 1

r
·
(mn

4
+ 2

)
= r − 1

4r
· mn + 2 − 2

r
≥ r − 1

4r
· mn + 1.

The result follows since .Dr (G, T ) ≥ Dr (G+, T ) − 2Wr . 

In the introduction, we showed the lower bound of Theorem 1 is asymptotically 
tight. Here, we show the upper bound is (exactly) tight. 

Proposition 1 For every .r, l ≥ 2 there exists a tree . T with .l(T ) = l and 

.Dr (T, T ) =
[

(r − 1) · l

2

]

.
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Proof A spider is a star-like graph defined as follows: for.k ≥ 1 and.l ≥ 2,.Spkl is a 
tree with a root attached to. l paths (“legs”), each is of length. k. Note that.l(Spkl) = l. 
Let .T = Sprl, and let . f : E(T ) → [r ] be an .r -colouring of its edges. We identify 
.E(T ) by.[l] × [r ] by labelling the . h’th edge (counting from the root) of the . i’th leg 
.(i, h). For. j ∈ [r ] let.E j ⊆ [l] × [r ] be the set of. j-coloured edges in. T . For. j ∈ [r ], 
let .Sj be the smallest subtree of . T that contains the root and every . j-coloured edge. 
Note that .w j (Sj ) ≥ ∑

(i,h)∈E j
(r − h), thus 

. 

∑

j∈[r ]
w j (Sj ) ≥

∑

(i,h)∈E(T )

(r − h) = l

(
r

2

)

.

By the pigeonhole principle, there exists . j ∈ [r ] for which .w j (Sj ) ≥ [(r − 1)l/2]. 

3 Oriented Discrepancy 

In this section we prove Theorem 2 and the sharpness of its lower bound. 

Proof (Of the lower bound in Theorem 2) The oriented discrepancy of trees in an 
.l-leaf star is .[l/2] + 1. We may therefore assume that . T is not a star. In particular, 
there exists a vertex . u which is not a leaf and has a neighbour which is also not 
a leaf. Consider an arbitrary orientation of the edges of . T . Consider a .2-colouring 
of .T according to the direction of each edge with respect to . u: colour . e red if it is 
oriented towards. u, and blue otherwise. By Theorem 1, there exist a subtree.T ∗ of. T
with.2-colour imbalance at least.

[
l
2

]
. Assume.T ∗ maximises the.2-colour imbalance. 

Assume further, without loss of generality, that the popular colour in .T ∗ is red. In 
particular, every edge from .T ∗ to its complement is blue. We claim that . u is in .T ∗, 
and is not a leaf of .T ∗. Indeed, if . u is not in .T ∗, let  .w be the closest vertex to . u in 
.T ∗. Then, since the edge .{w, z} along the path from .w to . u is blue, the rooted tree 
.(T ∗ + z, w) has oriented imbalance at least .

[
l
2

] + 1. Similarly, if . u is a leaf of .T ∗, 
then, since . u has a neighbour . v outside .T ∗, and the edge .{u, v} is blue, the rooted 
tree .(T ∗ + v, v) has oriented imbalance at least .

[
l
2

] + 1. This shows, in particular, 
that all edges incident to . u are red. 

We conclude that every subtree of .T of maximal .2-colour imbalance contains . u
and its neighbourhood, and that all of these trees have the same popular colour (say, 
red). By the choice of . u, it has a non-leaf neighbour . v. Let  .e = {u, v} and consider 
the tree .T1 = T/e that is obtained from. T be contracting . e and keeping the original 
orientations (and the induced.2-colouring). Note that due to the choice of . v, . u is not 
a leaf of .T1 and.l(T1) = l(T ) = l. Thus, applying Theorem 1 again yields a subtree 
.T ∗
1 of .T1 of maximal .2-colour imbalance, which is at least .

[
l
2

]
. By repeating the 

argument above (in which we did not assume that . u has a non-leaf neighbour, but 
only that it is not a leaf itself), we conclude that . u is in .T ∗

1 . Let .T
∗
2 be obtained from 

.T ∗
1 be de-contracting . e. If the dominant colour of .T ∗

1 is blue, then the rooted tree
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.(T ∗
2 , v) has oriented discrepancy at least .

[
l
2

] + 1. If the dominant colour of .T ∗
1 is 

red, then the rooted tree .(T ∗
2 , u) has oriented discrepancy at least .

[
l
2

] + 1. 

Proof (Of the upper bound in Theorem 2) For  a tree  . T with a fixed orientation we 
define.xTv→, xTv← to be the largest possible imbalance of a subtree rooted at. v in which 
the dominant orientation is from, respectively to,. v. We will prove that there exists an 
orientation of . T such that .xTv→ + xTv← ≤ l for all vertices . v. We prove the statement 
by induction on . l. 

For a tree with two leaves, i.e., a path, orienting the edges alternately clearly 
works. Assume the statement holds for any tree with up to. l leaves and let. T be a tree  
with .l + 1 leaves. Consider a leaf and the path connecting it to its branching vertex 
. v. Let.T ' be the tree after removing this path. By induction, .T ' admits an orientation 
for which.xT

'
v→ + xT

'
v← ≤ l − 1 for all.v ∈ T '. Assume, without loss of generality that 

.xT
'

v→ is the smallest of the two. Now, orient the edges of the removed path alternately, 
where the edge incident to . v is oriented towards it. We claim that this orientation of 
. T satisfies the requirements. 

First, for any .u ∈ V (T '), only .xT '
u← can possibly be increased by . 1, so  . xTu→ +

xTu← ≤ l. Now for any vertex . u in the path, we have 

• .(xTu→, xTu←) ≤ (xT
'

v→ + 2, xT
'

v← − 1) if .d(u, v) is odd. Note that the only case this 
is not true is when.xT

'
v← = 0. But then, .0 ≤ xT

'
v→ ≤ xT

'
v← = 0, which is impossible, 

since at least one of them should be positive. Thus, .xTu→ + xTu← ≤ l. 
• .(xTu→, xTu←) ≤ (xT

'
v→, xT

'
v← + 1) if .d(u, v) is even. Thus, .xTu→ + xTu← ≤ l. 

This concludes the induction. 

4 High Dimensional Discrepancy 

We prove Theorem 3. A proof of the next lemma can be found in [ 14]. 

Lemma 1 Let .d ≥ 1, and let .X = (X1, . . . , Xd) ∼ Unif(Sd−1). Then, the random 

variable .X1 is distributed on .[−1, 1] with density function . fX1(x) = (1−x2)
d−3
2

B( d−1
2 , 12 )

.

Proof (Of Theorem 3) Let  .T be a tree with  . l leaves, and let . f : E(T ) → S
d be a 

.d-dimensional colouring its edges. Let .L ⊆ E(T ) be the set of edges in .T that are 
incident to a leaf (so .|L| = l). For a vector .v ∈ S

d let .Lv be the set of edges . e in . L
for which.v · f (e) > 0, and let.L '

v = L \ Lv. Denote by.Tv the subtree of. T with the 
edge set .E(T ) \ L '

v and by .T '
v the subtree of . T with the edge set .E(T ) \ Lv. For  a  

subtree . S of . T , write .D(S) = ∑
e∈E(S) f (e). Write .e1 = (1, 0, . . . , 0) ∈ S

d for the 
first vector in the standard basis. Let . v be a uniformly random sampled vector in .S

d , 
and set .Dv = ∑

e∈L |v · f (e)|. By linearity of expectation and by Lemma 1, 

.EDv = l · E|v · e1| = 2l ·
∫ 1

0

x(1 − x2)d/2−1

B
(
d
2 ,

1
2

) dx = 2l

d · B (
d
2 ,

1
2

) .
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Thus, there exists a vector . v for which .Dv ≥ 2l
d·B( d

2 , 12 )
. By Cauchy–Schwarz we get 

. 

||
||D(Tv) − D(T '

v)
||
|| ≥ |

|v · (
D(Tv) − D(T '

v)
)|
| = Dv ≥ 2l

d · B (
d
2 ,

1
2

) .

By the triangle inequality,.D(S) ≥ l/
(
d · B (

d
2 ,

1
2

))
for some.S ∈ {T, T '}. A straight-

forward application of Stirling’s formula yields the asymptotic bound as .d → ∞. 
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Handling Sub-symmetry in Integer 
Programming using Activation Handlers 

Christopher Hojny, Tom Verhoeff, and Sten Wessel 

Abstract Symmetry in integer programs (IPs) can be exploited to reduce solving 
times. Usually only symmetries of the original IP are handled, but new symmetries 
may arise at some nodes of the branch-and-bound tree. While symmetry-handling 
inequalities (SHIs) can easily be used to handle original symmetries, handling sub-
symmetries arising later on is more intricate. To handle sub-symmetries, it has been 
proposed to add SHIs that are activated by auxiliary variables. But this may increase 
the IP’s size substantially as all sub-symmetries need to be modeled explicitly. We 
propose an alternative framework for generically activating SHIs, so-called activa-
tion handlers. In this framework, we define a callback that checks for active sub-
symmetries, eliminating the need for auxiliary variables. In particular, activation han-
dlers can activate symmetry-handling techniques that are more powerful than SHIs. 
We show that our approach is flexible, with applications in the multiple-knapsack 
and unit commitment problems. Numerical results show a substantial performance 
improvement on the existing sub-symmetry-handling methods. 

1 Introduction 

Branch-and-bound (B&B) is a popular method to solve integer programs (IPs). By 
iteratively splitting IPs into smaller subproblems, B&B can solve problems with 
thousands of variables and constraints in adequate time, but it is well-known that the 
presence of symmetries leads to unnecessarily large B&B trees. The main reason is 
that B&B explores symmetric subproblems, which all provide essentially the same 
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information. Therefore, symmetry-handling is an important ingredient of modern 
B&B implementations that substantially improves the running time [ 23]. 

We consider permutation symmetries of binary programs .max{cTx |x ∈ X }, 
where .c ∈ Z

d and .X ⊆ {0, 1}d . A  permutation is a bijection of .[d] := {1, . . . , d}; 
the set of all permutations is .Symd . We assume that a permutation .π ∈ Symd acts 
on .x ∈ {0, 1}d by permuting its coordinates, i.e., .π(x) := (xπ−1(1), . . . , xπ−1(d)). A  
symmetry of the binary program is a permutation.π ∈ Symd that preserves the objec-
tive, i.e., .cTπ(x) = cTx , and feasibility, i.e., .x ∈ X if and only if .π(x) ∈ X . Note  
that the set of all symmetries forms a group under composition. We refer to this group 
as the symmetry group of the binary program, denoted by . G. Since computing . G
is NP-hard [ 19], one usually only handles a subgroup of . G, which can either be 
detected automatically [ 23, 25] or is provided by an expert. 

The orbit of . x is .orbG(x) = {π(x)|π ∈ G} and contains all solutions equiva-
lent to . x w.r.t. . G. Note that orbits partition . X . To handle symmetries, it suffices to 
restrict .X to (usually lexicographically maximal) representatives of orbits. A vec-
tor.y ∈ Z

d is lexicographically greater than.z ∈ Z
d , denoted.y > z, if there is. i ∈ [d]

with .yi > zi and .y j = z j for all . j < i . We write .y < z when .y > z or .y = z hold. 
A solution .x ∈ X is lexicographically maximal in its orbit under .G if .x < π(x) for 
all .π ∈ G. 

To solve binary programs, B&B generates subproblems.max{cTx |x ∈ Q}, where 
.Q ⊆ X . Each subproblem is a binary program with symmetry group.GQ . In general, 
.GQ is different from.G and neither is a subgroup of the other. Following [ 2], we call 
symmetries in .GQ sub-symmetries of the initial binary program. If sub-symmetries 
appear frequently during the solving process, it can be beneficial to handle them. But 
since computing (subgroups of) .GQ might be costly, providing knowledge about 
sub-symmetries via experts can substantially reduce the complexity of handling sub-
symmetries. This, however, leads to a new challenge: how to efficiently provide 
expert knowledge to a binary programming solver. 

Recently, [ 2] suggested to introduce, for each possible sub-symmetry, a simple 
symmetry-handling inequality (SHI) that is coupled with auxiliary variables that 
enable (resp. disable) the SHI if the sub-symmetry is active (resp. inactive) at a 
subproblem. This, however, might lead to a significant increase in the size of the 
problem formulation as all sub-symmetries need to be explicitly modeled. Moreover, 
simple SHIs might not lead to the strongest symmetry reductions. 

In this paper, we propose an alternative approach. Instead of using auxiliary vari-
ables to activate SHIs, we aim to both (i) detect sub-symmetries valid at a B&B node 
and (ii) handle these symmetries on-the-fly. Our approach is inspired by the cele-
brated idea to separate (exponentially) large families of cutting planes for IPs instead 
of adding all of them initially. Such separation routines are usually implemented via 
callback mechanisms of IP solvers such as SCIP, Gurobi, CPLEX, or Xpress. There-
fore, we introduce a new type of callback, so-called activation handlers, which is 
able to detect sub-symmetries and activate sophisticated symmetry handling meth-
ods. The aim of this article is to answer the following research question:
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Does the success of using callbacks for separating cutting planes carry over to symmetry 
handling? In particular, to which extent can we improve upon the SHI approach? 

In the remainder of this section, we provide a brief overview of symmetry handling 
methods. Sect. 2 summarizes the state-of-the-art of handling sub-symmetries, which 
is complemented by a description of our activation handler framework in Sect. 3. 
Then, we illustrate for three classes of problems how activation handlers can be used 
to handle sub-symmetries (Sect. 4), and we evaluate our activation handler framework 
on a broad set of instances (Sect. 5). Numerical results show that our novel framework 
substantially improves upon the state-of-the-art in handling sub-symmetries. 

Related Literature 

Many symmetry-handling methods exist in the literature, including variable branch-
ing and fixing rules [ 18, 22], pruning rules [ 17, 18, 21], model reformulation tech-
niques [ 5], and symmetry-handling constraints [ 6, 9, 10, 12– 16, 26]. In the following, 
we discuss some constraint-based techniques that we also use in our experiments. 
For details on other techniques, we refer to the surveys [ 19, 23]. 

Most symmetry-handling constraints enforce that only lexicographically maximal 
representatives of symmetric solutions are computed. For a single symmetry.π ∈ G, 
.x < π(x) can be enforced in linear time by propagation and separation techniques [ 4, 
10]. For general groups, however, it is coNP-complete to decide whether a solution 
is lexicographically maximal in its orbit if .G is given by a set of generators, c.f. [ 1]. 
Attention has thus been spent on groups that arise frequently in practice. One such 
case assumes that the variables are organized in a matrix .x = (xi, j )i∈[m], j∈[n] and 
that the symmetries in .G permute the columns of . x arbitrarily. Such symmetries 
arise frequently in benchmark instances [ 23], and in Sect. 4, we illustrate some 
applications. There, we also discuss how orbitopes can be used to handle these 
symmetries. 

The full orbitope is the convex hull of all binary matrices with lexicographically 
non-increasingly sorted columns. If restricting to matrices all of whose rows have 
at most (resp. exactly) one 1-entry, the corresponding convex hull is called packing 
(resp. partitioning) orbitope. These matrix symmetries can be handled by separating 
valid inequalities for orbitopes. For packing/partitioning orbitopes, a facet descrip-
tion can be separated in linear time [ 12]; for full orbitopes, efficiently separable IP 
formulations are known [ 10]. Moreover, efficient propagation algorithms for full 
and packing/partitioning orbitopes are known [ 3, 11]. The so-called orbitopal fixing 
algorithms receive local variable bounds at a subproblem and derive variables that 
need to be fixed at a certain value to guarantee that a solution is within the orbitope. 

2 Sub-symmetry in Integer Programming 

In this section, we provide a detailed explanation of sub-symmetries and intricacies 
when dealing with them. We use the multiple knapsack problem as a running example 
for illustration purposes.
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The multiple knapsack problem (MKP) considers. m items with associated profit. pi
and weight.wi , .i ∈ [m], as well as. n knapsacks with capacity. c j , . j ∈ [n]. The objec-
tive is to assign each item to at most one knapsack such that the total weight of items 
assigned to knapsack. j ∈ [n] does not exceed.c j and the total profit of assigned items 
is maximized. The MKP is NP-hard as it generalizes the NP-hard single-knapsack 
problem [ 8]. A standard IP formulation (1) is given below. There, variable .yi, j indi-
cates whether item.i ∈ [m] is packed in knapsack. j ∈ [n], see  [  20]. Let.YMKP denote 
the set of all feasible solution matrices . y. 

This formulation exhibits two types of symmetries. For any feasible solution, 
permuting indices of knapsacks with equal capacity yields another feasible solution. 
When all knapsacks have the same capacity, this symmetry corresponds to permuting 
the columns of the solution matrix . y. Symmetries also arise from items with iden-
tical properties (same weight and profit). In any feasible solution such items can be 
permuted, corresponding to permuting the respective rows in the solution matrix . y. 

Formulation (1) also admits sub-symmetries: Consider two knapsacks . j and . j ', 
and an item with index . i . Suppose items .{1, . . . , i − 1} are placed such that the 
remaining capacity of knapsacks . j and . j ' are equal. Then, the placement of the 
remaining items.{i, . . . ,m} can be permuted between the two knapsacks. We call this 
type of sub-symmetry capacity sub-symmetries. By this definition, also knapsacks. j
and . j ' with .c j /= c j ' can become sub-symmetric. 

. max
y∈ {0,1}m×n

⎧
⎨

⎩

m∑

i=1

n∑

j=1

pi yi, j

|
|
|
|
|
|
wTy ≤ cTand

n∑

j=1

yi, j ≤ 1 for all i ∈ [m]
⎫
⎬

⎭
(1) 

In general, sub-symmetries can be defined for arbitrary collections of subprob-
lems .S = {Qs ⊂ X |s ∈ [q]} for some . q. The sub-symmetries then correspond to 
permutations in .GQs , .s ∈ [q], and are either automatically detected by an IP solver 
or are provided by a user. In the MKP, the solution subsets for which capacity sub-
symmetries occur, are defined as 

.Qi
j, j ' =

(

y ∈ YMKP

|
|
|
|
|
c j −

i−1∑

k=1

wk yk, j = c j ' −
i−1∑

k=1

wk yk, j '

)

, (2) 

for all pairs. j, j ' ∈ [n], . j < j ', and all .i ∈ [m]. We denote by.SMKP the collection of 
all these solution subsets. 

In B&B, a subproblem (node of the B&B tree) may belong to one or multiple 
solution subsets .Qs . We then say that the sub-symmetries in .GQs become active. To  
exploit sub-symmetries, a solver needs to detect when it is in a subproblem where 
the sub-symmetry is active. Then, the sub-symmetry must be handled, which can be 
done using methods similar to those for handling global symmetries. 

As observed by [ 3], sub-symmetry handling for different sub-problems might be 
conflicting. Consider, for example, the MKP for two knapsacks with capacities. c1 = 6
and.c2 = 2, and three items with weights.(4, 2, 2) and profits.(2, 3, 3). Initially, only
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items 2 and 3 are equivalent. This symmetry can be handled by. (y2,1, y3,1, y2,2, y3,2) <
(y3,1, y2,1, y3,2, y2,2), i.e., we prefer item 2 in knapsack 1. If we branch on .y1,1 = 1, 
both knapsacks have the same remaining capacity. The knapsack sub-symmetry 
can be handled by .(y3,1, y2,1, y2,2, y3,2) < (y3,2, y2,2, y3,1, y2,1), i.e, we prefer using 
knapsack 1 and item 3 first. These constraints, however, allow to pack at most one of 
the remaining items, which is suboptimal. Therefore, [ 3] conclude that compatible 
sub-symmetry handling methods need to be selected. 

If one only handles symmetries arising from permutations of columns in the 
matrix of binary variables, the following structure in the set of sub-symmetries . S
ensures compatability [ 3]. Let .Q ∈ S. For a solution matrix .x ∈ Q, let  . x(R,C)

denote the submatrix of . x obtained by restricting to rows .R ⊆ [m] and columns 
.C ⊆ [n]. The symmetry group.GQ is the sub-symmetric group with respect to. (R,C)

if it contains all the permutations of the columns of .x(R,C). If  .GQ is the sub-
symmetric group, then .Q is called sub-symmetric with respect to .(R,C). Now, let  
.S be a set of solution subsets such that every .Qs ∈ S is sub-symmetric with 
respect to .(Rs,Cs). For every orbit .σ i

s of .GQs , choose the representative . x
i
s ∈ σ i

s
such that the submatrix .xis(Rs,CS) is lexicographically maximal in its orbit, i.e., 
its columns are lexicographically non-increasing. Then, these representatives are 
compatible [ 3]. 

For the MKP example, the capacity sub-symmetries arise in the solution 
subsets .SMKP. A solution subset .Qi

j, j ' ∈ SMKP is sub-symmetric with respect 
to .({i, . . . ,m}, { j, j '}). Whenever the sub-symmetry is active, one can thus handle 
it by enforcing that the columns of the submatrix .y({i, . . . ,m}, { j, j '}) are lexico-
graphically non-increasing. 

The state-of-the-art approach to handle a sub-symmetry is to add sub-symmetry-
handling inequalities to the model [ 2]. For the MKP, the inequalities are of the 
form .yi, j ' ≤ z + yi, j for the sub-symmetry in .Qi

j, j ' . When .z = 0, the inequality 
partially breaks the symmetry by ensuring correct lexicographical ordering of two 
entries in the matrix of variables. When .z ≥ 1, the inequality is trivially satisfied. 
Here, . z is an auxiliary non-negative integer variable that is necessary to only acti-
vate the SHI whenever we are indeed in the subproblem .Qi

j, j ' , and can be defined 

as.z =
|
|
|c j − c j ' − ∑i−1

k=1 wk(yk, j − yk, j ')
|
|
|. To include this in the IP, we use standard 

techniques to linearize the expression, leading to additional variables and constraints. 
We refer to [ 2] for more details on SHIs and the techniques to make the set of SHIs 
fully break the sub-symmetry. 

3 Activation Handler 

The existing method of handling sub-symmetries with inequalities has a number 
of limitations. For every sub-symmetry that we want to handle, it is necessary to 
add many explicit SHIs to the formulation, leading to a blow-up of the IP. The 
size of the formulation increases even more for problems where additional variables
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or constraints are necessary to express the auxiliary .z-variable in the formulation. 
Additionally, the inequalities are rather weak for symmetry handling. In particular, 
the variable-based approach is not immediately able to activate more sophisticated 
symmetry-handling methods such as orbitopal fixing. 

To circumvent these issues, we introduce a new approach for handling sub-
symmetries. Our framework is defined by the following steps. 

S1 Identify the sub-symmetries present in the formulation. 
S2 Define how active sub-symmetries can be detected at the nodes of the B&B tree. 
S3 Implement a callback for detecting sub-symmetries. 
S4 Use a symmetry-handling method to handle the detected sub-symmetries. 

S1, S2, and S3 require expert knowledge of the modeled problem, to provide sym-
metry information of the problem to the callback. S4 allows the modeler to specify 
a method to handle detected sub-symmetries from within the callback. 

This approach makes the activation and handling of sub-symmetries flexible. In 
the activation handler, complete information about the current node in the B&B tree 
is available to the modeler. In many cases, such as for the MKP and the problems 
in Sect. 4, active sub-symmetries can be detected by inspecting variable fixings at a 
node. Furthermore, the activation handler can be used with any symmetry-handling 
method from the literature, and is not restricted to inequality-based approaches. 
Neither activation nor symmetry handling needs to be encoded in the formulation 
directly, keeping the IP compact. 

The validity of the approach depends firstly on the validity of the identified sub-
symmetries in S1, for which the arguments are problem-specific. For S4, existing 
symmetry-handling techniques are used, for which the correctness proofs remain 
valid in our case. By selecting compatible representatives, handling multiple sub-
symmetries simultaneously does not lead to conflicts, which is proven in [ 3]. 

As the framework is rather generic, we will illustrate the concept for two prob-
lems in Sect. 4. Afterwards, we compare the numerical performance in Sect. 5. Our  
implementation of the activation handler framework and experiments are publicly 
available [ 28]. The generic framework can easily be adapted by practitioners for use 
in other applications. 

4 Application 

In this section, we discuss how sub-symmetries arise for two types of problems: 
the multiple knapsack problem and the unit commitment problem, see also [ 29] for  
further applications. We describe how SHIs can be applied to handle sub-symmetries, 
as well as the activation handler framework. The activation handler uses information 
from the solver about variable fixings at a node of the B&B tree. To this end, we 
define for a node . a of the B&B tree the sets .Fa

0 and .Fa
1 , which denote the variables 

that are fixed to . 0 or . 1 at node . a, respectively.
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4.1 Multiple Knapsack Problem 

We introduced the MKP, its symmetries, and the capacity sub-symmetries in Sect. 2. 
Notice that the set of solution subsets .SMKP, which considers all pairs of knapsacks, 
can be generalized to arbitrary groups of knapsacks with identical residual capacities. 
When handling the symmetry with inequalities, considering all these solution subsets 
is intractable, as potentially every subset of knapsacks might define a sub-symmetry. 
That is, exponentially many SHIs as well as auxiliary variables and constraints need 
to be added to the problem. Therefore, we only consider SHIs for consecutive pairs 
of knapsacks, i.e., . j ' = j + 1. We hence add .O(mn) SHIs to the formulation, with 
for each SHI four auxiliary variables and five auxiliary constraints. 

Sub-symmetry-handling with Activation Handler 

When handling sub-symmetries via activation handlers, we are more flexible in 
implementing the activation rules. Instead of enumerating every solution subset. Qi

j1, j2
separately and checking if the sub-symmetry is active, we can use a single activation 
handler in the model. The activation handler returns all submatrices of. y that contain 
active sub-symmetries at a given node of the B&B tree. 

The activation handler identifies whether the placement of items .[i − 1] is fixed 
at node. a, according to the variable fixings.Fa

0 and.Fa
1 . For every item. i for which the 

previous holds, the activation handler checks whether there are knapsacks of equal 
remaining capacity, after placement of items.[i − 1]. Suppose that for item. i the knap-
sacks. jk1 , . . . , jkr have equal remaining capacity. Then, the activation handler reports 
the submatrix .y({i, . . . ,m}, { jk1 , . . . , jkr }), for which the capacity sub-symmetry is 
now active at node. a. In this way, finding all active capacity sub-symmetries is linear 
in the number of variables in the matrix . y, as we can simply perform a linear scan 
over the rows of . y and checking the variable fixings. Note that checking whether a 
variable is fixed can be done in constant time, as this information is available from 
the solver, through our new callback interface. 

The activated submatrices are then passed to a high-level symmetry-handling 
constraint in the solver. Several methods can be used to handle symmetry in the 
submatrix. In our implementation, we use orbitopal fixing for packing orbitopes [ 11] 
to handle the active sub-symmetries. 

4.2 Unit Commitment Problem 

Another problem in which we can handle sub-symmetries is the min-up/min-down 
unit commitment problem (MUCP), as introduced in [ 2]. We are given a set of 
production units .U with .|U | = n, and a discrete time horizon .T = [T ] for which 
a certain non-negative demand .Dt needs to be satisfied at every time .t ∈ T . Every  
production unit. j ∈ U can be either up or down at every.t ∈ T . When a unit is up, its 
production is between a minimum and maximum production capacity.P j

min and.P j
max, 

and it must remain up for at least .L j time steps. When a unit is down, its production
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is zero and it must remain down for at least .l j time steps. We furthermore have for 
every unit . j a start-up cost . c j

0 , a fixed cost .c
j
f for every time step the unit is up, and 

a production cost .c j
p proportional to its production. The goal is to find a production 

schedule satisfying the production demand at every time step and the min-up and 
min-down constraints, while minimizing the total cost. 

Let the variables .xt, j ∈ {0, 1} indicate whether unit . j ∈ U is up at time .t ∈ T , 
and .ut, j ∈ {0, 1} whether unit . j starts up at time . t . We omit further details of the 
IP formulation we use for this problem, as they are not relevant for symmetry han-
dling, and refer to [ 2] for details. Let.XMUCP denote the set of matrices.(xt, j ) that are 
feasible. Notice that the solution matrix. x completely characterizes a solution, as the 
corresponding matrix . u can be derived completely from. x . 

Symmetries are present globally in the MUCP when production units have identi-
cal properties, i.e., units where the properties.(Pmin, Pmax, L , l, c0, c f , cp) are equal. 
For now, we assume that all units are indeed identical, and we can hence permute 
their production schedules. This corresponds to permuting the columns of . x . One  
possible way of breaking the symmetry is to restrict . x to the full orbitope for binary 
matrices of size.T × n, i.e., by imposing that the columns of. x are lexicographically 
non-increasing. If not all units are identical, this approach can instead be applied to 
submatrices . x that only contain the columns corresponding to identical units. 

The MUCP also exhibits sub-symmetries, as introduced in [ 2]. Call a production 
unit . j ∈ U ready to start up at some time .t ∈ T if the unit has been down con-
tinuously for at least the minimum downtime . l j . In other words, when . xt ', j = 0
for all .t ' = t − l j , . . . , t − 1 and .t ≥ l j + 1. Now, suppose there are at least two 
units . j1, . . . , jk ∈ U that are all ready to start up at some time. t . Then, their produc-
tion schedules can be permuted from time . t onwards, regardless of their schedule 
up to time . t . This thus defines a sub-symmetry where the columns of the subma-
trix.x({t, . . . , T }, { j1, . . . , jk}) can be permuted. Analogously, one can identify sub-
symmetries for units ready to shut down at some time .t ∈ T . We refer to these 
sub-symmetries as start-up and shut-down sub-symmetries, respectively. 

Sub-symmetry-handling Inequalities 

Following the approach in [ 2], the start-up sub-symmetries can be handled with 
inequalities as follows. The handling of shut-down sub-symmetries is analogous, 
and we omit the details here. Let . j := jk, j ' := jk+1 be a pair of consecutive units, 
for the sake of brevity. Then, the solution subsets 

.Q̌t
k = {

x ∈ XMUCP

|
|xt ', j = xt ', j ' = 0 for all t ' = t − l, . . . , t − 1

}
(3) 

for all .t ≥ l + 1, define when the start-up sub-symmetries occur. For .Q̌t
k , the corre-

sponding auxiliary variable can be expressed as .z = ∑t−1
t '=t−l[xt ', j + xt ', j ' ], leading 

to the SHI.xt, j ' ≤ z + xt, j . Note that the .z-variable has a linear description in . x , and 
hence it is not necessary to add. z explicitly to the formulation. Instead, we can simply 
replace. z directly with its linear expression. The SHIs for the start-up sub-symmetries
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can be slightly strengthened, for which we refer to [ 2] for details on the derivation. 
A similar inequality can be obtained for the shut-down sub-symmetries. 

Sub-symmetry-handling with Activation Handler 

Handling sub-symmetry with an activation handler is similar to the approach for the 
MKP. We add a single activation handler to the model, that identifies all submatrices 
corresponding to active sub-symmetries in the following manner. For sake of pre-
sentation, we assume that all production units .U have the same type, i.e., all units 
have identical properties. In the more general case where we have multiple types of 
production units, we can simply apply our method to the unit types separately. 

Let . a be a node of the B&B tree. Define for every .t ∈ {l + 1, . . . , T }, 

.Šat = {
j ∈ U

|
|xt ', j ∈ Fa

0 for all t ' ∈ {t − l, . . . , t − 1}} . (4) 

That is, .Šat are the production units that are fixed to be ready to start up at time . t
at node . a. For every subset .Šat for which .|Sat | ≥ 2, the corresponding start-up sub-
symmetry becomes active. Hence, the symmetry corresponds to column permutations 
of the submatrix.x({t, . . . , T }, Šat ). We then use orbitopal fixing for full orbitopes to 
handle the sub-symmetry in the activated submatrix. 

Notice that we can find the units that are ready to start up for every time . t ∈ T
in .O(nT ) time, by iterating over the time horizon and a dynamic-programming 
approach. The shut-down sub-symmetries are activated and handled with an analo-
gous approach. 

5 Experimental Results 

In this section, we compare the sub-symmetry-handling methods using experiments 
on instances of the problems introduced above. 

Instances 

Let .U (l; L) denote a random variable uniformly distributed on .{l, . . . , L}. For  the  
MKP, we generate random instances from four standard problem classes [ 7, 20, 24]: 

• uncorrelated, .wi , pi ∈ U (l; L), 
• weakly correlated, .wi ∈ U (l; L) and .pi ∈ U (max{1, wi − L−l

10 };wi + L−l/10), 
• strongly correlated, .wi ∈ U (l; L) and .pi = wi + (L − l)/10, 
• multiple subset-sum, .wi ∈ U (l; L) and .pi = wi . 

We generate our instances with.l = 10,.L = 1000. The capacity of every knapsack is 
set to .c j = |

1
2

∑m
i=1 wi/n

|
, i.e., the total capacity is approximately half of the total 

weight of all items. To introduce symmetry in the problem, we generate multiple 
items with the same weight with an approach similar to [ 2]. Generated weights 
are duplicated . d times, where .d ∈ U (1; f m), where we call . f ∈ { 12 , 1

3 ,
1
4 ,

1
8 } the 

symmetry factor. Larger values of . f generate larger groups of items with equal
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weight, leading to a more symmetric instance. For generating the profit values for 
the items within an equal-weight group, we consider two types of instances: 

• equal profit, where every item in the equal-weight group also has equal profit, 
generated according to the item class above, 

• free profit, where every item in the equal-weight group has a profit value generated 
according to the item class above. 

For strongly correlated and multiple subset-sum, we only generate instances for equal 
profit as both types are equivalent. We make groups of equal-weight items until we 
have generated. m items,.(m, n) ∈ {(48, 12), (60, 10), (60, 30), (75, 15), (100, 10)}. 
We generate .20 instances for every combination of item class, symmetry factor, and 
duplication type, yielding.2400 instances. For MUCP, we use the instances from [ 2]. 

Experimental Setup 

All experiments are run with a development version of SCIP 7.0.3 (Git hash 
3671128c) with the SoPlex 6.0.0 LP solver [ 27], on a single core of an Intel Xeon 
Platinum 8260 CPU (.2.4 GHz), with a memory limit of .10 GB of RAM and a time 
limit of .3600 s. The IP model is constructed in Python 3.10 using the PySCIPOpt 
interface that exposes the SCIP API in Python. Activation handlers are implemented 
in SCIP as a new plugin, and can be added via the PySCIPOpt interface. 

In order to compare performance of the different symmetry-handling methods, 
we use the following settings: 

• No-Sym: Formulation with SCIP internal symmetry handling turned off. 
• Default: Formulation with SCIP default parameters. 
• Orbitope: Formulation with orbitope constraints for (global) symmetry handling. 
• Ineq: Formulation with SHIs. 
• Act: Formulation with orbitope constraints for (global) symmetry handling and 
activation handler for sub-symmetries. 

For the MKP, all models except for No-Sym include orbitope constraints for handling 
symmetry between identical items. In the orbitopes for symmetries between identical 
items and symmetries between identical knapsacks, we use a compatible ordering of 
the variables such that orbitopal fixing for all orbitopes can be performed simulta-
neously, without introducing any conflicts. For the MUCP, we use the strengthened 
SHIs in the Ineq model [ 2]. The orbitope constraints in SCIP use orbitopal fixing, as 
discussed in Sect. 1. 

Results 

The results are summarized in Table 1. We aggregate the results for instances in 
classes, based on the solving time of the tested models. Notation.[a, b) denotes the set 
of instances for which all models have a solving time of at least. a and below. b seconds. 
We exclude .551 MKP and .12 MUCP instances from our test set, where all models 
reach the time limit. For each instance class, we report the number of instances in 
the class (#). For every model, the number of instances solved to optimality (Opt) 
and mean solving time (in seconds) is reported. The mean solving time is the shifted
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Table 1 Summarized numerical results for MKP and MUCP 
Existing methods Our method 

No-Sym Default Ineq Orbitope Act 

Problem Instances .# Opt Time Opt Time Opt Time Opt Time Opt Time 

MKP All 1849 1166 50.4 1387 33.6 625 1109.6 1636 16.6 1828 12.4 

.[0, 100) 277 277 0 277 0.2 277 14.4 277 0.1 277 0.2 

.[100, 1800) 272 272 0.4 272 0.5 272 371.5 272 0.3 272 0.4 

.[1800, ∞) 1300 617 250.2 838 134.1 76 3474.1 1087 53.1 1279 35.5 

MUCP All 268 172 162.7 216 70.8 240 131.4 – – 266 39.0 

.[0, 10) 26 26 3.1 26 3.0 26 5.0 – – 26 3.6 

.[10, 300) 101 101 19.2 101 14.1 101 31.3 – – 101 15.8 

.[300,∞) 34 1 3353.4 7 2789.0 18 1972.0 – – 32 751.3 

geometric mean, with a shift of . 1 s. For instances that are not solved to optimality 
within the time limit, the solving time is set to .3600 s. 

In Table 1, we see that over all MKP instances, the activation handler method 
solves more instances to optimality within the time limit, compared to the other 
models. We can see that symmetry handling is highly relevant for the MKP prob-
lem. SCIP’s state-of-the-art symmetry-handling methods reduce the running time 
by roughly 33%. Our activation handler approach reduces the running time of this 
already very competitive setting by further 63%. Comparing the different sub-
symmetry-handling methods, the additional overhead necessary for the inequalities 
method is too large for handling this type of sub-symmetries. From the small and 
medium classes, we see there is a substantial difference between solving time for 
the inequalities method. There is also a slight improvement in running time for the 
global orbitope and activation handler methods, compared to default SCIP and the 
model where no symmetry handling is performed. For the large instances we see 
that the activation handler method solves more instances to optimality with a clear 
improvement in solving time. 

For the MUCP we see similar results. Overall, SCIP’s symmetry-handling meth-
ods improve the running time by roughly 55%, whereas the activation handler reduces 
it even further by 45%. We omit the Orbitope model in the results, as SCIP automati-
cally finds these orbitopes in the Default model. The inequalities method, in contrast 
with the results for the MKP, shows improvement on the default models for the large 
instances, confirming the results of [ 2]. This difference compared to the results for 
the MKP is likely caused by the auxiliary .z-variables, that can here be expressed 
linearly with no additional constraints. The activation handler outperforms all other 
models; it solves considerably more large instances to optimality.
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6 Conclusion 

Based on our numerical experiments, we can answer our research question to the affir-
mative, i.e., activation handlers substantially improve on the SHI-based approach. 
We thus believe that this approach can also be successful in further applications. 
It is up to future research to investigate this in more detail. To this end, we aim to 
include our framework in the SCIP solver. This way, also other researchers can easily 
benefit from our flexible framework and extend to a broader class of problems. Our 
new callback also enables the exploration of different symmetry handling methods 
that, e.g., do not depend on a fixed variable order. To the best of our knowledge, it is 
currently not possible to implement such methods directly in commercial solvers. 

Acknowledgements We thank the authors of [ 2] for providing us with the MUCP instances orig-
inally used in their experiments. 
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A Multivariate Complexity Analysis 
of the Generalized Noah’s Ark Problem 

Christian Komusiewicz and Jannik T. Schestag 

Abstract In the Generalized Noah’s Ark Problem, one is given a phyloge-
netic tree on a set of species .X and a set of projects for each species. Each project 
comes with a cost and raises the survival probability of the corresponding species. 
The aim is to select for each species a conservation project such that the total cost 
of the selected projects does not exceed some given threshold and that the expected 
phylogenetic diversity is as large as possible. We study Generalized Noah’s Ark 
Problem and some of its special cases with respect to several parameters related 
to the input structure such as the number of different costs, the number of different 
survival probabilities, or the number of species, .|X |. 

1 Introduction 

The preservation of biological diversity is one of humanity’s most critical challenges. 
To help addressing this challenge in a systematic way, it is useful to quantify or pre-
dict the effect of interventions. Here, two questions arise: how to measure biological 
diversity of ecosystems and how to model the effect of certain actions on the biolog-
ical diversity of an ecosystem under consideration. 

A popular measure to measure the biological diversity of an ecosystem, introduced 
by Faith [ 4], is to consider the phylogenetic diversity of the species present in that 
system. Here, the phylogenetic diversity is the sum of evolutionary distances between 
the species, when their evolution is modeled by an evolutionary (phylogenetic) tree. 
The tree then not only gives the phylogenetic diversity of the whole species set 
but also allows to infer the phylogenetic diversity of any subset of these species 
that would remain after some currently present species are extinct. Now to model the 
effect of certain actions, a first simple model is that one can afford to protect. k species 
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and that all other species go extinct. Under this model phylogenetic diversity can be 
efficiently maximized with a simple greedy algorithm [ 8, 9]. Later, more realistic 
models where introduced. One step was to model that protecting some species may 
be more costly than protecting others [ 10]. Subsequent approaches also allowed to 
model uncertainty: performing an action does not guarantee the survival of a species 
but only raises its survival probability [ 6]. In this model, one now aims to maximize 
the expected phylogenetic diversity. Finally, one may also consider the even more 
realistic case when for each species, one can choose from a set of actions, each 
coming with a cost and a resulting survival probability. This model was proposed by 
Billionnet [ 12, 13] as  Generalized Noah’s Ark Problem (GNAP). 

Introducing cost differences for species protection makes the problem of maxi-
mizing phylogenetic diversity NP-hard [ 10] and thus all of the even richer models 
are NP-hard as well. Apart from several pseudopolynomial-time algorithms, there is 
no work that systematically studies which structural properties of the input make the 
problems tractable. The aim of this work is to fill this gap. More precisely, we study 
how different parameters related to the input structure influence the algorithmic com-
plexity of GNAP and some of its special cases. In a nutshell, we show the following. 
First, GNAP can be solved more efficiently when the number of different project costs 
and survival probabilities is small. Second, while a constant number.|X | of species. X
leads to polynomial-time solvability, algorithms with running time. f (|X | |)| · |I|O(1)

are unlikely to exist. Finally, restricted cases where for example the input tree has 
height 1 or there is exactly one action for each species which guarantees its sur-
vival are much easier than the general problem. We also observe close relations to 
the Multiple- Choice Knapsack problem and to a further natural number prob-
lem which we call Penalty- Sum. 

Due to lack of space, most of our proofs are deferred to the long version [ 1]. 

2 Preliminaries 

For values . i and . j , the  Kronecker-Delta .δi= j is 1 if .i = j , and 0 otherwise. For an 
integer. n, we define.[n] := {1, . . . , n} and.[n]0 := {0, 1, . . . , n}. A  partition of .N is 
a family of pairwise disjoint sets .{N1, . . . , Nm} such that .Um

i=1 Ni = N . 
A directed graph .G is a tuple .(V, E), where .V is called the set of vertices of . G

and .E the set of edges of . G, respectively. An edge .e = (v, u) is incident with . u
and . v. The  degree of a vertex . v is the number of edges that are incident with . v. A  
tree .T with root . r is a directed, cycle-free graph with .r ∈ V (T ) where each vertex 
of .T can be reached from . r via exactly one path. A vertex . v of a tree .T is a leaf 
when the degree of . v is one. In a rooted tree, the height of a vertex . v is the distance 
from the root . r to . v for each vertex . v. The  height .heightT of a rooted tree .T is the 
maximal height of one of the vertices of . T . For an edge .(u, v), we call . u the parent 
of . v and . v a child of . u. For a vertex . v with parent . u, the  subtree .Tv rooted at 
. v is the connected component containing . v in .T − (u, v). In the special case that 
. v is the root of . T , we define .Tv := T . For a vertex . v with children .w1, . . . , wt and
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.i ∈ [t], the.i -partial subtree.Tv,i rooted at . v is the connected component containing. v

in .Tv − (v,wi+1) − · · · − (v,wt ). For a vertex . v in a tree . T , the  offspring of . v, 
denoted .off(v), is the  set of leaves in  . Tv . A  star is a graph .G = (V, E) with a 
vertex .c ∈ V and .E = {(c, v) | v ∈ V \ {c}}. 

A phylogenetic .X-tree .T = (V, E, λ) (in short, .X -tree) is a tree .T with root . r , 
where.λ : E → N is an edge-weight function and.X is the set of leaves of . T . In bio-
logical applications, the internal vertices of . T correspond to hypothetical ancestors 
of the leaves and.λ(e) describes the evolutionary distance between the endpoints of. e. 
An .X -tree .T is ultrametric if there is an integer . p such that the sum of the weights 
of the edges from the root . r to .xi equals . p for every leaf . xi . 

A project .pi, j is a tuple.(ci, j , wi, j ) ∈ N0 × Q ∩ [0, 1], where.ci, j is called the cost 
and .wi, j the survival probability of .pi, j . For a given .X -tree .T and a taxon .xi ∈ X , 
a project list .Pi is a tuple .(pi,1, . . . , pi, i ). As a project with higher cost will only 
be considered when the survival probability is higher, we assume the costs and sur-
vival probabilities to be ordered. That is, .ci, j < ci, j+1 and .wi, j < wi, j+1 for every 
project list .Pi and every . j <  i . An .m-collection of projects .P is a set of .m project 
lists .{P1, . . . , Pm}. For a project set . S, the  total cost .Cost(S) of . S is .

∑
pi, j∈S ci, j . 

For a given.X -tree. T , the  phylogenetic diversity .PDT (S) of a set of projects . S =
{p1, j1 , . . . , p|X |, j|X | } is given by 

. PDT (S) :=
∑

(u,v)∈E
λ((u, v)) ·

⎛

⎝1 −
∏

xi∈off(v)
(1 − wi, ji )

⎞

⎠ .

The term .
(
1 − ∏

xi∈off(v)(1 − wi, ji )
)
is the likelihood that some offspring of . v sur-

vives. Thus, .PDT (S) is is the expected total edge-weight of .T when applying . S. 
To assess the influence of structural properties of the input on the problem 

complexity, we study the problems in the framework of parameterized complex-
ity. For a detailed introduction to parameterized complexity refer to the standard 
monographs [ 15, 16]. We only recall the most important definitions: A param-
eterized problem with parameter . k is fixed-parameter tractable (FPT) if every  
instance .(I, k) can be solved in . f (k) · |I|O(1) time. A parameterized problem is 
slicewice-polynomial (XP) if every instance can be solved in .|I| · g(k) time. It is 
widely assumed that problems that are hard for W[1] have no FPT-algorithm. 

2.1 Problem Definitions, Parameters, and Results Overview 

We now state our main problem and the case where each species has two projects. 

Generalized Noah’s Ark Problem (GNAP) 
Input: An .X -tree .T = (V, E, λ), a .|X |-collection of projects . P , and numbers . B ∈
N0, D ∈ Q≥0.
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Question: Is there a set of projects .S = {p1, j1 , . . . , p|X |, j|X | }, one from each project 
list of . P , such that .PDT (S) ≥ D and .Cost(S) ≤ B? 

A project set . S is called a solution for the instance .I = (T ,P, B, D). 
.ai

ci→ bi [2]-Noah’s Ark Problem (.ai
ci→ bi [2] -NAP) 

Input: An.X -tree.T = (V, E, λ), a.|X |-collection of projects. P in which the project 
list .Pi contains exactly two projects .(0, ai ) and .(ci , bi ) for all .i ∈ [|X |], and inte-
gers .B ∈ N0, D ∈ Q≥0. 
Question: Is there a set of projects .S = {p1, j1 , . . . , p|X |, j|X | }, one from each project 
list of . P , such that .PDT (S) ≥ D, and .Cost(S) ≤ B? 

In other words, in an instance ai 
ci → bi [2]-NAP we can decide for each taxon . xi

whether we want to spend . ci to increase the survival probability of .xi from.ai to . bi . 
We study GNAP with respect to several parameters which we describe in the 

following; for an overview of the results see Table 1. If not stated differently, we 
assume in the following that .i ∈ [|X |] and . j ∈ [|Pi |]. The input of GNAP directly 
gives the natural parameters number of taxa .|X |, budget . B, and required diversity . D. 
Closely related to. B is the maximum cost per project .C = maxi, j ci, j . We may assume 
that no projects have a cost that exceeds the budget, as we can delete them from the 
input and so .C ≤ B. We may further assume that .B ≤ C · |X |, as otherwise we can 
compute in polynomial time whether the diversity of the most valuable projects of 
the taxa exceeds .D and return yes, if it does and no, otherwise. 

Further, we consider the maximum number of projects per taxon .L := maxi |Pi |. 
By definition, .L = 2 in ai 

ci → bi [2]-NAP and in GNAP we have .L ≤ C + 1. We  
denote the number of projects by .||P|| = ∑

i |Pi |. Clearly, .|X | ≤ ||P||, .L ≤ ||P||, 
and.||P|| ≤ |X | · L . By.varc, we denote the number of different costs, that is,. varc :=
|{ci, j : (ci, j , wi, j ) ∈ Pi , Pi ∈ P}|. We define the number of different survival pro-
babilities .varw analogously. The consideration of this type of parameterization, 
called number of numbers parameterization was initiated by Fellows et al. [ 11]; it 
is motivated by the idea that often the number of numbers may be small. Also, 
we consider the maximum encoding length for survival probabilities . w-code =
maxi, j ( binary length of wi, j ) and the maximum edge weight .valλ = maxe∈E λ(e). 
Observe that because the maximal survival probability of a taxon could be smaller 
than 1, one can not assume that .valλ ≤ D. 

2.2 Observations for GNAP 

We first present some basic observations that provide some first complexity classifi-
cations. In the problem with exactly two projects per taxa, ai 

ci → bi [2]-NAP, one can 
iterate over all subsets.X ' of taxa and check if it is a possible solution pay. ci to increase 
the survival probability for each.xi ∈ X '. To this end, we check if.

∑
xi∈X ' ci ≤ B and 

compute if the phylogenetic diversity is at least . D, when the survival probability
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Table 1 Complexity results for Generalized Noah’s Ark Problem. Here, 0 
ci→ 1 [2]-NAP 

is the special case where the survival probabilities are only 0 or 1, and 0 
1→ bi [2]-NAP is the 

special case where each project has unit costs. Entries with the sign “—” mark parameters that are 
(partially) constant in the specific problem definition and thus are not interesting 

Parameter GNAP GNAP with. heightT = 1

.|X | W[1]-hard (Theorem 4.4), XP 
(Proposition 4.1) 

W[1]-hard (Theorem 4.4), XP 
(Proposition 4.1) 

.B XP (Observation 2.2) PFPT.O(B · ||P||) (Proposition 4.7) 

.C Open PFPT. O(C · ||P|| · |X |)
(Proposition 4.7) 

.D Para-NP-h (Observation 2.4) Para-NP-h (Observation 2.4) 

.valλ Para-NP-h (Theorem 4.4) Para-NP-h (Theorem 4.4) 

.varc Open XP. O(|X |varc −1 · ||P||)
(Proposition 4.7) 

.varw Para-NP-h (Observation 2.3) Para-NP-h (Observation 2.3) 

.D + w-code Open FPT. O(D · 2w-code · ||P||)
(Proposition 4.7) 

.B + varw XP.O(B · |X |2·varw +1) (Theorem 4.3) PFPT (Proposition 4.7) 

.D + varw Para-NP-h (Observation 2.4) Para-NP-h (Observation 2.4) 

.varc + varw XP. O(|X |2·(varc + varw)+1)

(Theorem 4.2) 
FPT (Theorem 4.8) 

Parameter 0 
ci→ 1 [2]-NAP 0 

1→ bi [2]-NAP 
.|X | FPT (Observation 2.1) FPT (Observation 2.1) 

.B PFPT.O(B2 · n) [ 10] XP (Observation 2.2) 

.C PFPT.O(C2 · n3) (Corollary 5.1) — 

.D PFPT.O(D2 · n) (Proposition 5.2) Open 

.valλ PFPT.O((valλ)2 · n3) [ 1] Open 

.varc XP [ 1] — 

.varw — XP [ 1] 

.D + w-code — Open 

.B + varw — XP [ 1] 

.D + varw — Open 

of every .xi ∈ X ' is .bi and .ai otherwise. Thus, ai 
ci → bi [2]-NAP is fixed-parameter 

tractable with respect to the number of taxa. 

Observation 2.1 ai 
ci → bi [2]-NAP can be solved in .2|X | · |I|O(1) time. 

A.GNAP solution contains at most. B projects with positive costs. Hence, a solution 
can be found by iterating over all .B-sized subsets .X ' of taxa and checking every 
combination of projects for .X '. Like before, we have to check that the budget is not 
exceeded and the phylogenetic diversity of the selected projects is at least . D. This  
brute-force algorithm shows that GNAP is XP with respect to the budget.
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Observation 2.2 GNAP can be solved in .(|X | · L)B · |I|O(1) time. 

In the NP-hard Knapsack problem, one is given a set of items . N , a cost-
function .c : N → N, a value-function .d : N → N, and two integers .B and .D and 
asks whether there is a an item set .N ' such that .c(N ') ≤ B and .d(N ') ≥ D. We  
describe briefly a known reduction from Knapsack to 0 

ci → 1 [2]-NAP [ 10]. Let. I =
(N , c, d, B, D) be an instance of Knapsack. Define.T := (V, E, λ) to be an.N -tree 
with .V := {w} ∪ N and .E := {(w, xi ) | xi ∈ N } and .λ((w, xi )) := d(xi ). For each 
leaf .xi we define a project list .Pi that contains two projects .(0, 0) and .(c(xi ), 1). 
Then, .I ' := (T ,P, B ' := B, D' := D) is a yes-instance of 0 

ci → 1 [2]-NAP if and 
only if . I is a yes-instance of Knapsack. 

Observation 2.3 ([ 10]) 0 
ci → 1 [2]-NAP is NP-hard, even if the tree .T has height 1. 

Because 0 
ci → 1 [2]-NAP is a special case of GNAP in which.L = 2, w-code = 1, 

and .varw = 2, we conclude that GNAP is NP-hard, even if . heightT = w-code = 1
and.L = varw = 2. In this reduction, one could also set .D' := 1 and set the survival 
probability of every project with positive cost to .b := 1/D. 

Observation 2.4 0 
ci → b [2]-NAP is NP-hard, even if .D = 1, .b ∈ (0, 1] is a con-

stant, and the given .X-tree .T has height 1. 

Thus, GNAP is NP-hard even if .D = 1 and .varw = 2. This however is, because 
the size of the binary encoding of a survival probability became very large. Thus, 
one can wonder if GNAP admits an FPT algorithm for the parameter .D + w-code. 
Proposition 4.7 shows such an algorithm for the case when .T has .heightT = 1. 

3 Multiple-Choice Knapsack 

In this section, we consider a variant of Knapsack, in which the set of items is 
divided into classes. From every class, exactly one item can be chosen. 

Multiple- Choice Knapsack Problem (MCKP) 
Input: A set of items .N = {a1, . . . , an}, a partition .{N1, . . . , Nm} of . N , two func-
tions .c, d : N → N, and two integers .B, D. 
Question: Is there a set.S ⊆ N such that.|S ∩ Ni | = 1 for each.i ∈ [m], .c∑(S) ≤ B, 
and .d∑(S) ≥ D? 

Herein, we write.c∑(A) := ∑
ai∈A c(ai ) and.d∑(A) := ∑

ai∈A d(ai ) for a set. A ⊆
N . We call .c(ai ) the cost of .ai and.d(ai ) the value of . ai . Further, for a set .A ⊆ N we 
define .c(A) := {c(a) | a ∈ A} and .d(A) := {d(a) | a ∈ A}. A set  . S that fulfills the 
presented criteria is called a solution for the instance . I. 

For MCKP, we consider parameters that are closely related to the parameters 
described for GNAP: The input gives the number of classes . m, the  budget . B, and 
the desired value . D. Closely related to .B is the maximum cost for an item .C =



A Multivariate Complexity Analysis of the Generalized Noah’s Ark Problem 115

Table 2 Complexity results for Multiple- Choice Knapsack 

Parameter MCKP 

.m W[1]-hard, XP (Theorem 3.6) 

.B PFPT.O(B · |N |) [ 5] 

.C PFPT.O(C · |N | · m) (Observation 3.1) 

.D PFPT.O(D · |N |) [ 7] 

.L para-NP [ 17] 

.varc XP.O(mvarc −1 · |N |) (Proposition 3.2) 

.vard XP.O(mvard −1 · |N |) (Proposition 3.3) 

.varc + vard FPT (Theorem 3.4) 

maxa j∈N c(a j ). As for  GNAP, we may assume .C ≤ B and .B ≤ C · m. By .varc, we  
denote the number of different costs, that is,.varc := |{c(a j ) : a j ∈ N }|. We define the 
number of different values .vard analogously. The size of the biggest class is denoted 
by . L . If one class .Ni contains two items .ap and .aq with the same cost and . d(ap) ≤
d(ap), the item.ap can be removed from the instance. Thus, we may assume that no 
class contains two items with the same cost and so .L ≤ varc. Analogously, we may 
assume that no class contains two same-valued items and so .L ≤ varw. Table 2 lists 
old and new complexity results for MCKP. 

First, we provide some algorithms for MCKP. It is known that MCKP can be 
solved in.O(B · |N |) time [ 5] and in.O(D · |N |) time [ 7]. As we may assume that. C ·
m ≥ B, we may also observe the following. 

Observation 3.1 MCKP can be solved in .O(C · |N | · m) time. 

Knapsack is FPT with respect to the number of different costs .varc [ 14], via 
reduction to ILP- Feasibility with . f (varc) variables. This approach can not be 
adopted easily, as it has to be checked whether a solution contains exactly one item 
per class. In Propositions 3.2 and 3.3 we show that MCKP is XP with respect to the 
number of different costs and different values, respectively. Then, in Theorem 3.4 
we show that MCKP is FPT with respect to the parameter .varc + vard . 

Proposition 3.2 MCKP can be solved in .O(mvarc −1 · |N |) time, where .varc is the 
number of different costs. 

Proposition 3.3 MCKP can be solved in.O(mvard −1 · |N |), where.vard is the number 
of different values. 

By Propositions 3.2 and 3.3, MCKP is XP with respect to .varc and .vard , respec-
tively. In the following, we reduce an instance of MCKP to an instance of ILP-
Feasibility, in which the number of variables is in .2varc + vard · varc. Since ILP-
Feasibility with . n variables and input length . s can be solved using . s · n2.5n+o(n)

arithmetic operations [ 2, 3], this reduction gives the following.
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Theorem 3.4 For an instance of MCKP an equivalent instance of ILP- Feasibility 
with .O(2varc + vard · varc) variables can be defined. Thus, MCKP is FPT with respect 
to .varc + vard . 

We contrast these algorithms by the following hardness results. There is a reduc-
tion from Knapsack to MCKP in which each item in the instance of Knapsack is 
added to a unique class with a further, new item that has no costs and no value [ 17]. 

Observation 3.5 ([17]) MCKP is NP-hard even if every class contains two items. 

In the following, we prove that MCKP is W[1]-hard with respect to the number 
of classes . m, even if  .B = D and .c(a) = d(a) for each .a ∈ N . This special case 
of MCKP is called Multiple- Choice Subset Sum [ 17] chosen. 

Theorem 3.6 MCKP is XP and W[1]-hard with respect to the number of classes . m. 

4 The Generalized Noah’s Ark Problem 

We now consider the Generalized Noah’s Ark Problem (GNAP). First, we observe 
that for a constant number of taxa, we can solve the problem in polynomial time by 
branching into the possible project choices for each taxon. 

Proposition 4.1 GNAP is XP with respect to .|X |. 
In Theorem 4.2, we now show that GNAP can be solved in polynomial time when 

the number of different project costs and the number of different survival probabilities 
is constant. 

In the following, let .I = (T , λ,P, B, D) be an instance of GNAP, and let . C :=
{c1, . . . , cvarc} and.W := {w1, . . . , wvarw } denote the sets of different costs and differ-
ent survival probabilities in I, respectively. Without loss of generality, assume. ci <
ci+1 for each.i ∈ [varc −1] and likewise assume.w j < w j+1 for each. j ∈ [varw −1]. 
In other words,. ci is the. i th cheapest cost in. C and.w j is the. j th smallest survival pro-
bability in. D. Recall, that we assume that there is at most one item with cost.cp and at 
most one item with survival probability.wq in every project list. Pi , for each. p ∈ [varc]
and .q ∈ [varw]. For the rest of the section, by . a and . b we denote . (a1, . . . , avarc −1)

and.(b1, . . . , bvarw −1), respectively. Further, we let.p( j)+z denote the vector. p in which 
at position. i , the  value. z is added and we let. 0 denote the.(varc −1)-dimensional zero. 

Theorem 4.2 GNAP can be solved in .O
(|X |2(varc + varw −1) · (varc + varw)

)
time. 

Proof Algorithm We describe a dynamic programming algorithm with two tables 
. F and.G that have a dimension for all the.varc different costs, except for.cvarc and all 
the .varw different survival probabilities, except for .varw −1. Recall that for a vertex 
. v with . t children .Tv is the subtree rooted at . v and the offspring .off(v) of . v are the 
leaves in . Tv . We define the .i -partial subtree .Tv,i rooted at . v as the subtree of . Tv
containing only the first . i children of . v for .i ∈ [t]. For a vertex .v ∈ V and given 
vectors a and b, we define .S(v)

a,b to be the family of sets of projects . S such that
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1. . S contains exactly one project of .Pi for each .xi ∈ off(v), and 
2. . S contains exactly .ak projects with cost .ck for each .k ∈ [varc −1], and 
3. . S contains exactly.b projects with survival probability.w for each. ∈ [varw −1]. 
For a vector .v ∈ V with children .u1, . . . , ut , given vectors a and b and a given 
integer .i ∈ [t] we define .S(v,i)

a,b analogously, just that exactly one projects of .Pi is 
chosen for each .xi ∈ off(u1) ∪ · · · ∪ off(ui ). 

It follows that we can compute how many projects with cost .cvarc and survival 
probability .wvarw a set  .S ∈ S(v)

a,b contains. That are . a(v)
varc := | off(v)| − ∑varc −1

j=1 a j

projects with cost .cvarc and .b(v)varw := | off(v)| − ∑varw −1
j=1 b j projects with survi-

val probability .wvarw . The entries .F[v, a,b] and .G[v, i, a,b] store the maximum 
expected phylogenetic diversity of the tree .Tv for .S ∈ S(v)

a,b and .Tv,i for .S ∈ S(v,i)
a,b , 

respectively. We further define the total survival probability to be . w(bvarw ,b) :=
1 − (1 − wvarw )

bvarw · ∏varw −1
i=1 (1 − wi )

bi , when .bvarw and . b describe the number of 
chosen single survival probabilities. 

Fix a taxon.xi with project list . Pi . As we want to select exactly one project of . Pi , 
the project is clearly defined by. a and. b. So, we store.F[xi , a,b] = 0, if .Pi contains 
a project .p = (ck, w ) such that 

1. (.k < varc and .a = 0(k)+1 or .k = varc and .a = 0), and 
2. (. < varw and .b = 0( )+1 or . = varw and .b = 0). 

Otherwise, store .F[xi , a,b] = −∞. 
Let . v be an internal vertex with children .u1, . . . , ut , we define 

.G[v, 1, a,b] = F[u1, a,b] + λ((v, u1)) · w (
b(u1)varw ,b

)
(1) 

and to compute further values of . G, we can use the recurrence 

.G[v, i + 1, a,b] = max
0 ≤ a' ≤ a
0 ≤ b' ≤ b

(
G[v, i, a − a',b − b'] + F[ui+1, a',b']
+λ((v, ui+1)) · w

)
b(ui+1)
varw ,b'

)
. (2) 

Herein, we write .p ≤ q if . p and . q have the same dimension . d and .pi ≤ qi for 
every .i ∈ [d]. And finally, we define .F[v, a,b] = G[v, t, a,b]. 

Return yes if there are. a and. b such that.
∑varc −1

i=1 ai ≤ |X |, and.
∑varw −1

i=1 bi ≤ |X |, 
and .a(r)

varc · cvarc + ∑varc −1
i=1 ai · ci ≤ B, and .F[r, a,b] ≥ D where . r is the root of . T . 

Otherwise, return no. 
The correctness and running time proofs are deferred to the long version [ 1]. ◻

As each project with a cost higher than .B can be deleted, we may assume 
that there are no such projects which implies that .varc ≤ C + 1 ≤ B + 1. Thus, 
Theorem 4.2 also implies that GNAP is XP with respect to .C + varw and . B +
varw with an astronomical running time of .O

(|X |2(C+varw −1) · (C + varw)
)
and 

.O
(|X |2(B+varw −1) · (B + varw)

)
, respectively. However, however we can adjust algo-

rithm so that . B is not in the exponent of the running time. Instead of declaring how
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many projects of cost .ci for .i ∈ [varc] are selected, we declare the budget that can 
be spent. 

Theorem 4.3 GNAP can be solved in .O
(
B2 · |X |2(varw −1)) · varw

)
time. 

We now consider the special case of GNAP where the.X -tree.T has height 1. We 
first show that this special case—and therefore GNAP—is W[1]-hard with respect 
to the number .|X | of taxa. This implies that Proposition 4.1 cannot be improved to 
an FPT algorithm. Afterward, we prove that most of the FPT and XP algorithms 
we presented for MCKP can also be adopted for this special case of GNAP yielding 
algorithms that have a faster running time than for GNAP. Recall that. ∆ is the highest 
degree of a vertex in the tree. 

Theorem 4.4 GNAP is W[1]-hard with respect to .|X | + ∆, even if the given .X-
tree .T is ultrametric with .valλ = heightT = 1, and .D = 1. 

Proof Reduction. We reduce from MCKP, which by Theorem 3.6 is W[1]-hard 
with respect to the number of classes . m. Let  . I = (N , {N1, . . . , Nm}, c, d, B, D)

be an instance of MCKP. We define an instance .I ' = (T ,P, B ' := B, D' := 1) in 
which the .X -tree .T = (V, E, λ) is a star with center . v and the vertex set is . V :=
{v} ∪ X , with.X := {x1, . . . , xm}. Set.λ(e) := 1 for every.e ∈ E . For every class. Ni =
{ai,1, . . . , ai, i }, define a project list .Pi with projects . pi, j := (ci, j := c(ai, j ), wi, j :=
d(ai, j )/D). The .|X |-collection of projects .P contains all these project lists . Pi . 

Correctness. Because we may assume that .0 ≤ d(a) ≤ D for all .a ∈ N , the  sur-
vival probabilities fulfill .wi, j ∈ [0, 1] for all .i ∈ [m] and . j ∈ [|Ni |]. The tree has . m
taxa and a maximum degree of. m. The reduction is clearly computable in polynomial 
time, so it only remains to show the equivalence. 
“.⇒”: Let . S be a solution for I with .S ∩ Ni = {ai, ji }. We show that . S' = {pi, ji |
i ∈ [m]} is a solution for . I ': The cost of the set .S' is . 

∑m
i=1 ci, ji = ∑m

i=1 c(ai, ji ) ≤
B and further . PDT (S') = ∑

(v,xi )∈E λ((v, xi )) · wi, ji = ∑
(v,xi )∈E 1 · d(ai, j )/D = 1

D ·
∑m

i=1 d(ai, j ) ≥ 1 = D'. 
“.⇐”: Let .S = {p1,i1 , . . . , pm, jm } be a solution for . I '. We show that . S' = {a1,i1 , . . . ,
am, jm } is a solution for I: Clearly, .S' contains exactly one item per class. The cost 
of the set .S' is .c(S') = ∑m

i=1 c(ai, ji ) = ∑m
i=1 ci, ji ≤ B. The diversity of the set . S'

is .d(S') = ∑m
i=1 d(ai, ji ) = ∑m

i=1 wi, ji · D = PDT (S) · D ≥ D. ◻

By Observation 3.5, MCKP is NP-hard, even if every class contains at most two 
items (of which one has no cost and no value). Because the above reduction is 
computed in polynomial time, we conclude the following. 

Corollary 4.5 0 
ci → bi [2]-NAP is NP-hard, even if the given.X-tree. T is ultrametric 

with .heightT = valλ = 1, and .D = 1. 

The .X -tree that has been constructed in the reduction in the proof of 
Theorem 4.4, is a star and therefore has a relatively high degree. In the following, 
we show that GNAP is also W[1]-hard with respect to .|X | when .∆ = 3.
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Corollary 4.6 GNAP is W[1]-hard with respect to .|X | + D + heightT even if . ∆ =
3 and .valλ = 1. 

In Sect. 3, we presented algorithms that solve MCKP. Many of these algorithms 
can be adopted for the special case of GNAP where the input.X -tree.T has height 1. 

Proposition 4.7 When the given .X-tree .T has .heightT = 1, GNAP can be solved 

• in .O(D · 2w-code · ||P|| + |I|) time, or 
• in .O(B · ||P|| + |I|) time, or 
• in .O(C · ||P|| · |X | + |I|) time, or 
• in .O(|X |varc −1 · ||P|| + |I|) time, 
where .||P|| = ∑|X |

i=1 |Pi | is the number of projects and .|I| is the size of the input. 
By Proposition 4.7 and Theorem 3.4, we can conclude that the restriction of GNAP 

to instances with height 1 is FPT with respect to.varc + varw + valλ. However, in the 
following, we present a reduction from an instance of GNAP in which the height 
of the given tree is 1 to an instance of ILP- Feasibility, in which the number of 
variables is in .O(2varc + vard · varc). 
Theorem 4.8 For an instance of GNAP with an .X-tree of height 1, an equiva-
lent instance of ILP- Feasibility with .O(2varc + vard · varc) variables can be defined. 
Thus, GNAP is FPT with respect to .varc + vard if the height of the given .X-tree is 1. 

5 Restriction to Two Projects per Taxon 

We finally study two special cases of ai 
ci → bi [2]-NAP—the special case of GNAP, 

in which every project list contains exactly two projects. 
First, we consider 0 

ci → 1 [2]-NAP, the special case where each taxon.xi survives 
definitely if cost .ci is paid and becomes extinct, otherwise. This special case was 
introduced by Pardi and Goldman [ 10] who also presented a pseudo-polynomial 
algorithm which computes a solution to 0 

ci → 1 [2]-NAP in.O(B2 · n) time. Because 
we may assume that .B ≤ C · |X |, we may conclude the following. 

Corollary 5.1 0 
ci → 1 [2]-NAP can be solved in .O(C2 · |X |3) time. 

We also show that 0 
ci → 1 [2]-NAP is FPT with respect to . D, with an adaption of 

the above-mentioned dynamic programming algorithm of Pardi and Goldman [ 10] 
for the parameter . B. 

Proposition 5.2 0 
ci → 1 [2]-NAP can be solved in .O(D2 · n) time. 

Second, we consider 0 
1→ bi [2]-NAP—the special case of GNAP in which every 

project with a positive survival probability has the same cost. Observe that for
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every .c ∈ N, an instance .I = (T ,P, B, D) of 0 
c→ bi [2]-NAP can be reduced to 

an equivalent instance .I ' = (T ,P ', B ', D) of 0 
1→ bi [2]-NAP by replacing every 

project .(c, bi ) with .(1, bi ), and setting .B ' = ˪B/c˩. Thus, 0  
1→ bi [2]-NAP can be 

considered as the special case of GNAP with unit costs for projects. 

Unfortunately, we were not able to resolve whether 0 
1→ bi [2]-NAP is NP-hard 

or not. However, we may relate its complexity to the following, more basic problem. 

Penalty- Sum 
Input: A set of tuples .T = {ti = (ai , bi ) | i ∈ [n], ai ∈ Q≥0, bi ∈ (0, 1)}, two inte-
gers .k, Q, and a number .D ∈ Q+. 
Question: Is there a subset .S ⊆ T of size . k such that .

∑
ti∈S ai − Q · ∏

ti∈S bi ≥ D? 
Despite being quite natural and fundamental, we are not aware of any previous 
work on the complexity of Penalty- Sum. We present two karp-reductions, one 

from Penalty- Sum to 0 
1→ bi [2]-NAP in which the .X -tree has a height of 2 

and .deg(r) = 1 for the root . r and one for the converse direction. 

Theorem 5.3 Penalty- Sum is NP-hard if and only if 0 
1→ bi [2]-NAP restricted 

to .X-trees with height 2 and .deg(r) = 1 for the root . r is NP-hard. 

Recall that in an ultrametric tree, we require the length from the root to a vertex to 

be the same for all vertices. 0 
1→ bi [2]-NAP can be solved greedily on ultrametric 

trees that have height at most 2 when always the taxon with the highest diversity 

is selected. In the following theorem, we show that 0 
1→ bi [2]-NAP is even on 

ultrametric trees of height 3 NP-hard, if Penalty- Sum is NP-hard. 

Theorem 5.4 0 
1→ bi [2]-NAP is NP-hard on ultrametric trees of height 3, if 

Penalty- Sum is NP-hard. 

6 Discussion 

We have provided several tractability and intractability results for GNAP and some 
of its special cases. Naturally, several open questions remain. For example, it is not 
known whether GNAP is weakly or strongly NP-hard. Moreover, it remains open 
whether GNAP is FPT with respect to .varc + varw. Finally, as described above, it is 

open whether 0 
1→ bi [2]-NAP and Penalty- Sum are NP-hard.
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Comparing Ad-Hoc and MIP-Based 
Algorithms for the Online Facility 
Location Problem 

Rosario Messana and Alberto Ceselli 

Abstract We consider online variants of the uncapacitated facility location problem. 
Facilities need to be placed, at a cost, and clients need to be assigned to them, yielding 
revenues. We provide an experimental comparison of two classes of algorithms: ad-
hoc ones, which rely on the specific structure of the problem, and generic ones, which 
rely on the solution of Mixed Integer Programs (MIPs) as sub-problems. Models and 
algorithms from the literature assume one client to appear at a time. We generalize 
them, assuming that clients may arrive in batches of fixed (but arbitrary) size. We 
compare our batch adaptation to the original versions of the algorithms. We design 
four generators of rewards and costs, two being “adversarial” and two stochastic. 
We propose a variant of an existent MIP-based algorithm to profitably deal with 
stochastic settings. Our analysis shows that in each of the four settings, suitable 
MIP-based algorithms provide better solutions than ad-hoc ones, with a comparable 
computing effort. Our experiments also show that batching is in fact useful. 

1 Introduction 

In the classical uncapacitated facility location problem (FLP) a set of candidate 
location sites and a set of clients are given. The decision maker needs to open facilities 
in a subset of the candidate sites, at a given cost. Each client needs to be assigned to 
one of the open facilities, yielding a given revenue. Besides its theoretical interest, the 
FLP contains in its simplicity the core complexity of location problems. It is in fact 
NP-hard to find a set of sites where facilities need to be opened, which maximizes 
the difference between the assignment revenues and the opening costs. 

The classical FLP, as an offline optimization problem, has been investigated for 
decades [ 5]. The FLP appears also in online variants, although the literature on them 
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is much more recent and scarce [ 13]. In these online FLPs the decision process is 
iterative. At each iteration, after the facilities have been placed, the location costs and 
the assignment rewards are revealed. One of the most studied variants assumes that a 
single client arrives at each round. The decision maker is allowed to open an arbitrary 
number of facilities, paying their costs; only the revenue of the best assignment is 
however collected. Recent contributions include [ 19], in which the authors propose 
an algorithm named MaxHedge, and carry out a theoretical analysis of its quality 
guarantees. Being the online counterpart of the FLP, generic online optimization 
techniques relying on solving a MIP subproblem at each round can also be exploited 
[ 22]. Despite the relevance of FLP in applications [ 5], to the best of our knowledge, 
algorithm [ 19] has not been experimented in practice nor compared to algorithms 
like [ 22]. 

A first research question therefore arises, on whether an ad-hoc approach like [ 19] 
is actually yielding advantages with respect to a generic MIP-based approach like 
that of [ 22]. Concerning modeling, the assumption of a single client to arrive at each 
round is often unrealistic. Therefore, as a second research task, we investigate a batch 
variant of the online FLP, adapting both ad-hoc and general purpose algorithms to 
this case. Accordingly, we evaluate the effect of such a batching technique. 

We design four different generators of rewards and costs. Two of them are “adver-
sarial”, since they take into account the history and the strategy of the decision maker 
with the aim of hindering the profit. The other two are stochastic, as they draw 
rewards and costs according to fixed distributions. We show that for each of the four 
data generators, a MIP-based algorithm can be chosen that yields better profit than 
the corresponding ad-hoc ones. 

2 Problem Statement and Background 

The problem we are interested in is an online version of the well known uncapacitated 
facility location problem [ 5] (FLP). In a classical offline maximization setting, we 
are given a set .I = {1, . . . ,m} of clients and a set .J = {1, . . . , n} of sites which are 
candidates to host facilities. A vector of rewards .ri ∈ R

n = (ri1 . . . rin) is given for 
each client.i ∈ {1, . . . ,m} and a vector of opening costs.c ∈ R

n = (c1 . . . cn) is given 
for candidate sites. We wish to choose the facilities to open, and assign each client 
to exactly one open facility, maximizing the total profit, given by the assignment 
revenues minus the opening costs. In other terms, we want to determine a value 
for assignment variables .xi j and facility variables .y j solving the well-known binary 
programming model for the FLP. Binary variables .y j are . 1 if a facility is opened in 
. j , . 0 otherwise. Binary variables .xi j are . 1 if client . i is assigned to an open facility in 
. j , . 0 otherwise. Partitioning constraints impose that each client is assigned to exactly 
one facility, while consistency constraints impose that no client . i can be assigned to 
facility . j , unless . j is open. 

The FLP has been studied also in different online versions, in which clients are 
assumed to arrive sequentially (see e.g. [ 2, 6, 7, 10, 18]). The variant we tackle in
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this paper, which we indicate as OFLP, has been presented in [ 19] in its basic form 
and can be formalized as follows. At each trial .t ∈ N+, the decision maker chooses 
a set of facilities among . n available candidate sites. An energy value .z j ∈ [0, 1] is 
associated with each facility. j ∈ {1, . . . , n} and the total energy of the open facilities 
cannot exceed . 1. To fix the notation, let .ytj be . 1 if the decision maker has chosen 
to open facility . j and . 0 otherwise. After the decision, a client requires to be served. 
Contextually, for each facility . j , two values are revealed: the reward .r tj ∈ [0, 1] to 
assign the client to. j and the cost.ctj ∈ [0, 1] to open the facility. The client is assigned 
to the facility with maximum revenue. The decision maker earns a profit given by 
such a revenue minus the sum of the costs of the facilities which have been opened. 
The goal of the decision maker is to maximize the overall profit up to trial .T ∈ N+. 
We report that such a profit maximization version of FLP is equivalent to the more 
common minimization version [ 5] from a modeling point of view, but not from a 
theoretical guarantees point of view [ 18]. 

As reported in [ 19], in its simplicity, such a setting is able to capture a wide 
range of practical applications. In order to additionally close the gap between the-
oretical models and their practical use, we consider its natural generalization, in 
which more than a single client appears at each trial. t . We call it Batch Online Facil-
ity Location Problem (BOFLP). Formally, after the decision maker has chosen . ytj
for every . j , a fixed number .m ∈ N+ of clients show up, with revenues . r ti j ∈ [0, 1]
for each .i ∈ {1, . . . ,m} and . j ∈ {1, . . . , n}. At the same time, the opening costs 
.ctj ∈ [0, 1] for each. j ∈ {1, . . . , n} are revealed. The decision maker gains the profit 
.μt (yt ) = ∑m

i=1 maxnj=1r
t
i j y

t
j − ∑n

j=1 c
t
j y

t
j . The definition of cumulative profit is: 

.P(T ) := ∑T
t=1 μt (yt ). 

3 Ad-Hoc OFLP Algorithms 

As mentioned in the Introduction, the algorithm MaxHedge [ 19] is specifically 
designed for the OFLP. It works by maintaining an internal status, which is rep-
resented at each trial . t by values .wt

j for each facility . j . In the decision phase the 
interval .U = [0, 1] is partitioned in infinitely many sub-intervals .Ul for .l ∈ N+, 
whose length decreases exponentially as. l increases. For each sub-interval.Ul, some  
facilities are sampled from the set.Ωl = {1 ≤ j ≤ n | z j ∈ Ul}. Only a finite number 
of sets .Ωl are non-empty. This sampling is performed according to the probabil-
ity mass function . p over .Ωl roughly given by .p( j) = w j/

∑
k∈Ωl

wk . For a more 
detailed description, we refer to the original paper [ 19]. For every facility. j , if . j has 
been sampled at least once, then .ytj is set to . 1 (otherwise it is set to . 0). After the 
decision phase, MaxHedge receives the revenues and the opening costs and executes 
an update phase of the internal status applying the Projected Online Gradient Descent 
Algorithm [ 23]. 

Theoretical guarantees. MaxHedge ensures theoretical guarantees. It respects a sub-
linear pseudo bound on the regret. Formally, let .μt (y) = maxnj=1r

t
j y j − ∑n

j=1 c
t
j y j
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be the profit function at trial . t . It is easy to check that an optimal FLP solution 
always exists, whose value can be represented as .μt (y). In fact, given values for the 
.y j variables, an optimal solution always exists in which, for each client . i , only the 
.xi j variable corresponding to maximum revenue over . j is set to . 1. 

Let. F be the set of feasible decisions and let.y∗ = maxy∈F
∑T

t=1 μt (y) be the best 
a posteriori solution. A regret bound for the OFLP is of the form: 

.

T∑

t=1

μt (y∗) − E

[
T∑

t=1

μt (yt )

]

≤ C f (T ) (1) 

where. C is a constant and. f is a function of. T . We remark that such a regret bound is 
proved for .y∗ (and not, as more commonly, in terms of a generic . y). When. f (T )/T
tends to. 0 as. T goes to infinity, the regret bound indicates that the algorithm actually 
“learns” to produce good solutions as the number of trials increases. For MaxHedge, 
the following slightly different bound holds: 

.

T∑

t=1

μ̂t
α,δ(y) − E

[
T∑

t=1

μt (yt )

]

≤ n
√
2T (1 − √

β)2(r̂ + ĉ) ∀y ∈ F (2) 

where .μ̂t
α,δ are suitable discounted profit functions, .r̂ = max j∈J,t≤T {r tj}, . ĉ =

max j∈J,t≤T {ctj } and .β = maxni=1{zi }. 
Adapting MaxHedge to the BOFLP. We adapted MaxHedge to solve the BOFLP 
as follows, obtaining a new class of algorithms we called BatchMaxHedge. Given 
.k ∈ N between. 1 and. m, the decision phase of MaxHedge is executed. k consecutive 
times. For every facility . j , if  . j has been chosen in at least one of the . k executions, 
then.ytj is set to. 1 (and otherwise it is set to. 0). The update phase is executed. m times 
sequentially, one for each client . i using the corresponding reward values. Every 
choice of . k identifies a different algorithm, that we indicate as BMH(. k). Note that 
when .m = 1 and .k = 1, BMH(. k) is exactly MaxHedge. 

We can give an interpretation of the algorithms corresponding to.k = 1 and.k = m. 
Indeed, the decision process of BMH(. 1) assumes that the .m clients in a batch are 
not distinguishable one from another. Hence, it makes sense to select the facilities to 
open like the client was just one. Instead, the decision process of BMH(. m) takes into 
account that, even if the clients cannot be distinguished in advance, every batch of. m
clients will have a certain variability in its composition. So it is reasonable to select 
.m groups of facilities independently, one for each client, and then merge them. 

The worst case complexity of MaxHedge is in .O(nlog(n)), while for BMH(. k) 
it is in .O(kn + mnlog(n)), since the decision phase, which takes time .O(n) in 
MaxHedge, in BMH(. k) is executed . k times, and the update phase is executed . m
times.
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4 MIP-Based Algorithms for BOFLP 

Our BOFLP has a natural description in terms of MIP. Indeed, it involves an iterative 
solution of a sequence of instances of FLP, one for each trial . t between . 1 and . T . 

In the literature, a set of well established algorithms based on the iterative solution 
of mathematical programs is known. The most fundamental algorithm is Follow-The-
Leader [ 11]. In the continuous case with convex profit functions, particularly studied 
generalizations go under the name of Follow-The-Regularized-Leader [ 9, 21] or also  
Dual Averaging [ 14]. For a comprehensive survey see e.g. [ 17]. 

More recently, Follow-The-Leader has been adapted for Combinatorial Optimiza-
tion. In the worst case scenario, in which there is no assumption about how the feed-
back to the decision maker is generated, the algorithms are know as Follow-The-
Perturbed-Leader (FPL) [ 15, 16, 22]. In the stochastic feedback setting, algorithms 
with similar underlying ideas have been proposed [ 3, 4, 8, 12]. 

4.1 Follow The Uniformly Perturbed Leader 

We considered the class of FPL algorithms introduced in [ 22], which we called 
Follow-The-Uniformly-Perturbed-Leader (FUPL). We adapted a representative of 
that class to solve the BOFLP. Its functioning can be formalized as follows. First 
of all, define .u1i j := 0 for every .i ∈ {1, . . . ,m} and . j ∈ {1, . . . , n} and .v1

j := 0 for 
every . j ∈ {1, . . . , n}. At each trial .t ∈ {1, . . . , T }, a decision .yt ∈ {0, 1}n is made 
such that, for some .xt ∈ {0, 1}mn , .(xt , yt ) is an optimal solution of the following 
MIP. 

.max
m∑

i=1

n∑

j=1

(
uti j +Ui j (N )

)
xi j −

n∑

j=1

(
vt
j +Uj (N )

)
y j (FLPt) 

.s.t.
n∑

j=1

xi j = 1 ∀i ∈ I (3) 

. xi j ≤ y j ∀i ∈ I ∀ j ∈ J (4) 

.

n∑

j=1

z j y j ≤ 1 (5) 

. xi j ∈ {0, 1} ∀i ∈ I ∀ j ∈ J y j ∈ {0, 1} ∀ j ∈ J (6) 

.Ui j (N ) and .Uj (N ) indicate real values, sampled independently from random vari-
ables with uniform distribution over the set .[0, N ]. The maximum perturbation.N is 
given by
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. N :=
(
4n2

eL

) 1
3

T
2
3

where .L is the maximum norm 1 that a feasible solution of FLPt can achieve. At 
end of trial . t , after receiving feedback .r ti j and . ctj , the decision maker computes 

.uti j = ut−1
i j + r ti j and .vt

j = vt−1
j + ctj . 

For Follow-The-Perturbed-Leader algorithms, regret bounds have been proven for 
linear profit or loss functions. With respect to the setting of the BOFLP, this sentence 
can be formally expressed as follows. Let us define the linear profit functions 

. ν t (x, y) :=
m∑

i=1

n∑

j=1

r ti j x
t
i j −

n∑

j=1

ctj y
t
j

for every.t ∈ {1, . . . , T }, and call. C the set of feasible solutions of (6). The cumulative 
regret is given by: 

.Rν(T ) =
T∑

t=1

(ν t (x∗, y∗) − E[ν t (xt , yt )]), (7) 

where .(x∗, y∗) ∈ argmax(x,y)∈C
[(∑T

t=1 r
t
i j

)
xi j −

(∑T
t=1 c

t
j

)
y j

]
. The expected 

value is intended with respect to the perturbation applied to the learning parame-
ters. It is proved [ 22] that FUPL guarantees the regret bound: 

.Rν(T ) ≤ 3

(
L2n2

2e

) 1
3

T
2
3 . (8) 

Note that this result does not directly apply to the BOFLP, as in that case the 
profit function.μt (y) is not linear. Anyway, we can observe that.ν t and.μt are linked: 
in fact, calculating .μt (y) is equivalent to maximize .ν t (x, y) over .C after fixing the 
variables . y. In fact, when .m = 1, the functions .μt and .ν t coincide, which means 
that in this case both FUPL and MaxHedge guarantee some sort of sub-linear regret 
bound. 

We remark that FUPL is an easy algorithm to implement if the solution of (6) 
is carried out using for example a general purpose MIP solver. However, its worst 
case time complexity depends on that of (6) itself. In practice, FUPL results efficient 
only when the concrete instances of (6) that the algorithm encounters are solved 
efficiently.
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4.2 Follow The Clustered Leader 

The randomization ingredient of FUPL is essential to ensure the sub-linear regret 
bound (8) in the worst-case scenario, namely when a hypothetical adversary is able 
to reproduce every deterministic move of the decision maker. Instead, when the 
nature is stochastic, the perturbation of the learning parameters is unnecessary, since 
the generation of the data is blind with respect to the decision making process. 
FUPL without randomization is a simple Follow-The-Leader (FTL) algorithm. As 
we show in Sect. 5, FTL is not sufficiently powerful to always provide better profit 
than BMH(. m) when. m is greater than 1 and the nature is stochastic. In order to fill the 
gap, we propose the following variant of FTL, called Follow-The-Clustered-Leader 
(FCL). 

At any iteration. t , consider the set of all the reward vectors observed until time step 
.t − 1, namely .Rt = {r τ

i | i ∈ I, 1 ≤ τ ≤ t − 1}. Assume that every single reward 
value is inversely proportional to the distance between the relative client and facility. 
Then it is reasonable to cluster the reward vectors so that different clusters identify 
different regions in the space of the facilities, and therefore different typologies of 
clients. 

Given the set .Ht := {1, . . . , lt }, we apply the K-means algorithm to obtain the 
clusters .Ct

1, . . . ,C
t
lt . Let assume none of them to be empty. Then we compute the 

surrogate rewards.r̄ th j := 1

t − 1

∑
r∈Ct

h
r j for every.h ∈ Ht and. j ∈ J . We also com-

pute the average opening costs .c̄tj := 1

t − 1

∑
τ<t c

τ
j . In this way we can solve the 

following model. 

.
max

lt∑

h=1

n∑

j=1

r̄ th j xh j −
n∑

j=1

c̄tj y j

s.t.(5’) (6’) (7’) (8’)

(FLPt’) 

where (5’), (6’), (7’), (8’) are the analogous constraints of (5), (6), (7), (8) with . Ht

in place of . I . 
Since the number of clusters to use is unknown, we define a constant . Δ ∈ N+

and increase .lt by 1 every .Δ iterations according to .lt := [t/Δ] + 1. Moreover, 
since the clustering operation is expensive, we update the clusters and the surrogate 
rewards less often as the time step increases, relaying on the fact that the quantity of 
reward vectors collected increases as well and therefore additional vectors will have 
in general less impact on the estimation quality that we can obtain. In particular, we 
compute the clusters only when .t = 1 (trivial case) or when 

.t ≡ 0 (mod m([t/Δ] + 1)).
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5 Experimental Setting and Results 

We remark that no experimental performance evaluation of MaxHedge has been 
presented in [ 19] nor in any other work, to the best of our knowledge. Similarly, no 
specific experiments on MIP-based algorithms for the OFLP have been presented 
so far. Our experimental analysis has therefore two targets: (a) the assessment of 
the relative performance of these two classes of algorithms and (b) the evaluation of 
the effect of moving from a OFLP to a BOFLP model. Our experiments have been 
conducted on a machine with CPU AMD Ryzen 7 5800H and O.S. Ubuntu 23.04. 
The binary linear programming models have been solved using Gurobi version 9.5.1 
and the code has been written in Python 3.10. 

5.1 Experimental Test Bed 

Three of our test cases (AAH, AAF, MPSN - see below) share the same set of facility 
locations. We choose.n = 20 and for each. j ∈ J we extracted a pair. ζ ( j) = (ζ

( j)
1 , ζ

( j)
2 )

from .[0, 1]2 with uniform distribution and we fixed them once for all. A random 
generator consisting of a Python re-implementation of GEN2 [ 20], was used to 
generate a knapsack instance .(v,w, c) where . v are the values of the items, .w the 
weights and . c is the capacity. Then we normalized the vectors dividing . v by the 
maximum possible item value and .w by . c. Finally, we fixed the mean opening cost 
vector .c̄ := v and the energy vector .z := w. 

We designed four different online rewards-and-costs generators (so called natures), 
in part inspired by the experimental setting presented in [ 22]. Two of these generators 
are “adversarial” and two of them are stochastic. One of the stochastic generators is 
based on real data [ 1]. 

Adversary Against History (AAH). The first adversarial nature tries to damage 
the decision maker taking into account the whole history of the decisions under the 
assumption that the next decision will not differ too much from the previous ones. 
For each .i ∈ I this nature considers .xi = ∑t−1

τ=1 x
τ
i and its maximum value . Xi =

maxni=1xi and then it estimates the next decision that will be taken by the decision 
maker. To do so, it produces a vector .ŷti ∈ {0, 1}n such that .ŷti j = 1 with probability 
.xi j/Xi and. 0 otherwise. At this point, the nature finds the farthest point .γ t

i in . [0, 1]2
from all the open facilities according to . ŷti . It assigns  .r

t
i j := √

2 − ||γ t
i − ζ ( j)||2 for 

all. j ∈ J . At the end, the nature generates a further decision estimate.ŷt and for each 
. j ∈ J assigns .ctj := 1 if .ŷtj = 1 and . 0 otherwise. 

Adversary Against the Future (AAF). This adversarial nature acts exactly like AAH 
except that the vectors of open facilities,.ŷti for.i ∈ I and. ŷt , are obtained mimicking 
the method the decision maker would use to calculate . yt . In other words it applies 
the same decision making step of the algorithm used by the decision maker. Note 
that if the algorithm is FUPL, the nature cannot perturb the learning parameters .ut
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and.vt using the same random values of the decision maker, because it is impossible 
to know in advance what such values will be. So the nature has to adopt its own 
random values. 

Multi-Pyramidal Stochastic Nature (MPSN). This stochastic nature acts in the 
following way. Three fixed available facilities with coordinates .ζ ( j̃1), .ζ ( j̃2) and . ζ ( j̃3)

are considered. Each of them has an attractiveness, respectively.α( j̃1), .α( j̃2) and.α( j̃3), 
such that .α( j̃1) + α( j̃2) + α( j̃3) = 1. For each .i ∈ I the nature samples an index . j̃ t

from .{ j̃1, j̃2, j̃3} according to the probability distribution given by the respective 
attractiveness values. It extracts a point .γ t

i = (γ t
i1, γ

t
i2) from.[0, 1]2 by sampling . γ t

i1

from the triangular distribution on .[0, 1] with mode.ζ
( j̃ t )
1 and.γ t

i2 from the triangular 

distribution on .[0, 1] with mode .ζ ( j̃ t )
2 . At last, it assigns . r ti j := √

2 − ||γ t
i − ζ ( j)||2

for each . j ∈ J . Regarding the opening costs, the nature randomly defines . ctj :=
max(0,min(1, c̄ j +U[−0.3,0.3])) for all. j ∈ J , where.U[−0.3,0.3] indicates a real value 
sampled uniformly from.[−0.3, 0.3]. 
Telecom Stochastic Nature (TSN). The second stochastic nature is based on real 
data, and can be sketched as follows. The data comes from the Telecom Italia Big 
Data Challange Dataset [ 1]. In particular, we used the information regarding the 
number of Call Detail Records (CDRs) for internet connections registered to the 
mobile network of the telecommunication company Telecom Italia in the city of 
Milan (Italy) from November 1st 2013 to January 1st 2014. Both space and time 
was discretized in square cells of 235 m approximately, and time slots of .10 min, 
respectively. We placed .20 candidate location sites in a regular fashion. Data was 
manipulated to obtain probability distributions, which changes every .60 iterations 
simulating the passage of time from a 10 min interval to the next one. Positions of 
clients are sampled according to these distributions. Then the rewards as well as the 
opening costs are generated in the same way as done by MPSN. 

5.2 Evaluation of the Algorithms 

In the single client case, we compared BMH(1) (MaxHedge) with FTPL in the adver-
sarial setting and with FTL in the stochastic one. Then we applied BMH(1), BMH(m), 
FUPL and FCL for .m ∈ {10, 20, 40}, both in the adversarial and the stochastic set-
ting. For FCL, the value of the parameter .Δ has been set to 1000. All the algorithms 
have been applied with respect to the same profit function.μt (y) as defined in Sect. 3 
and have been evaluated on the profit obtained as function of the iteration counter 
and on the computing time. In Figs. 1, 2, 3 and 4 we report a selection of our results. 
Each line corresponds to an algorithm: BMH(1) (orange), BMH(. m) (red), FUPL 
(black), FTL (blue), FCL (green). Horizontal axes represent time iterations from . 1
to .10.000, vertical axes represent profit (Figs. 1, 2, 3 and 4). Each figure refers to 
specific combinations of batch sizes and natures, as indicated in the related caption. 
All the time series have been averaged with a sliding window of 100 iterations.
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Fig. 1 Profit per iteration, AAF:.m = 1 (left) and.m = 40 (right) 

Fig. 2 Profit per iteration, AAH:.m = 1 (left) and.m = 40 (right) 

Fig. 3 Profit per iteration, MPSN:.m = 1 (left) and.m = 40 (right) 

Fig. 4 Profit per iteration, TSN:.m = 1 (left) and.m = 40 (right)
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Profit. On the long run, FUPL obtains higher profit than BMH(1) in the adversarial 
setting with single client, and similarly FTL does in the stochastic case. For every 
choice of .m ∈ {10, 20, 40}, FUPL is the best of the four tested algorithms when the 
nature is AAF. For the other natures, FCL obtains the best performance starting from 
when the number of clusters is sufficiently high. We observed that such a number 
is directly proportional to the number of clients per iteration. We also noticed that 
when the nature is AAH, FUPL is more profitable than the two BMH representa-
tives for .m ∈ {10, 20}, but its performance looks equivalent to that of BMH(. m) for  
.m = 40. We calculated the average percentage profit error with respect to the best 
maximum obtainable profit. In general it is higher with adversarial generators and 
more restrained with stochastic ones. Finally, we found that grouping clients into 
batches is beneficial, since it increases the profit per client and decreases the average 
percent error per client. 

Running time. We report that the algorithms required fractions of seconds per iter-
ation on average to run, except for FUPL with .m = 40. When .m = 1, BMH(1) was  
faster while FUPL required less than 7 ms per and FTL less than 4 ms. When. m = 40
and the nature is AAF, FUPL took between 1.4 and 1.6 seconds per iteration, while 
the other algorithms stayed under 0.6 s. When the nature is AAH, all the four algo-
rithms required less than 0.2 s. With MPSN, they took no more than 70 ms. With 
TSN, they have not exceed 90 ms. The running time of FCL approximately grows 
during all the execution, which reflects our choice to gradually increase the number 
of clusters. 

6 Conclusions 

The paper focused on Online algorithms for Facility Location Problems, and more 
specifically on two research questions. 

The first one was to understand the experimental behaviour of both ad-hoc and 
MIP-based algorithms. We designed four test scenarios, by considering two adver-
sarial natures, and two stochastic natures, one of which coming from real data. We 
found out that for each case there is a MIP-based approach that provides better profit. 
The CPU time required by the MIP-based algorithms is comparable to that of ad-hoc 
algorithms, with the exception of the adversary against the future. 

The second research question was to adapt the existing methods to handle batches 
of clients at each decision round (instead of one, as assumed in the literature). We 
indeed found adaptations to be possible without changing too much the nature of 
the algorithms. Furthermore, we found such a batching technique useful to obtain 
higher profit per client with lower average percent profit error.
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Data-Driven Feasibility for the Resource 
Constrained Shortest Path Problem 

Cristina Ondei, Alberto Ceselli, and Marco Trubian 

Abstract Resource Constrained Shortest Path Problems (RCSPP) have wide appli-
cability, representing a flexible model for network applications. Furthermore, they 
frequently arise as subproblems in decomposition-based methods, as occurs in col-
umn generation for Vehicle Routing Problems. In all these settings, being able to 
perform early detection of infeasibility helps to strongly reduce computing times. 
For instance, dynamic programming is often used to design RCSPP algorithms: labels 
representing partial solutions are iteratively created and extended, and these can be 
dropped if they are found to have no feasible (and profitable) completion. Many fath-
oming heuristics have been proposed in the literature. We experiment a data-driven 
approach in this context, using supervised learning models to deal with the problem 
of detecting infeasibility. We design features which are not dependent on instance 
size, having different computing cost. We compare the tradeoff between computa-
tional effort and performance which can be achieved, when a binary classifier is 
employed. Our results indicate such an attempt to be effective. 

1 Introduction 

In the Resource Constrained Shortest Path Problem (RCSPP) [ 1] a graph is given, 
having two special source and sink nodes. Furthermore, a set of resources is given: 
a vector of values is associated to each edge, having one element for each resource. 
A consumption limit for each resource is finally given. A path is considered to be 
feasible if the sum of resource values on its edges exceeds the corresponding limit 
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for no resource. In its feasibility version, the RCSPP asks whether a feasible path 
from source to sink exists or not. In its optimization version, one resource is given 
interpretation as a cost: the aim is to find a feasible path from source to sink whose 
sum of cost values on edges is minimized. 

Besides its direct mapping to a routing problem on graphs, the RCSPP has appli-
cations as other standalone combinatorial optimization problems, for instance in the 
realm of project scheduling. It is more famous, however, as a subproblem of Vehicle 
Routing Problems [ 2] when decomposition algorithms (such as column generation 
ones) are employed [ 3]. In these algorithms, RCSPPs are in fact iteratively solved as 
pricing subproblems, when feasible routes (e.g. respecting overall time and capacity 
limits) need to be generated, having negative reduced cost. 

The RCSPP is weakly NP-Hard [ 1]; dynamic programming is often used for its 
optimal resolution. A well known technique for speeding up these algorithms is the 
so-called completion bounding [ 4]: for each partial path a check is performed, to 
understand if any extension may exist leading to a feasible complete path. These 
techniques may become key ingredients when RCSPPs need to be solved iteratively, 
as in column generation algorithms. Since this bounding check may be performed a 
very high number of times (e.g. at each extension operation of a dynamic program-
ming algorithm) its speed is crucial. Machine learning approaches have also been 
explored in this context. For instance, in [ 5] binary classifiers are used to choose the 
critical resource in a bidirectional label setting algorithm; in [ 6] machine learning is 
used to select the most promising arcs when RCSPP is the pricing subproblem in a 
column generation algorithm. 

We propose to tackle the RCSPP feasibility problem with data-driven models, 
and in particular with supervised learning ones [ 7]. In Sect. 2 we formally describe 
the problem. In Sect. 3 we introduce a set of features, which become parameters that 
we observe to predict feasibility or infeasibility of a path. In Sect. 4 we report on a 
set of experiments where binary classifiers are trained by sampling both feasible and 
infeasible RCSPP solutions and measuring their features; these classifiers are then 
tested on new RCSPP instances to understand their feasibility predictive power. In 
Sect. 5 we collect some brief conclusions. 

2 Problem Definition 

Let .G = (V,E) be an undirected weighted graph, with .n = |V| and .m = |E|, and 
let .H be a set of . r resources. A positive cost .ce is associated with each edge .e ∈ E. 
For every resource .h ∈ H and for every edge .e ∈ E we consider a positive weight 
.wh

e , representing the consumption of resource . h traversing edge . e. We assume a 
consumption limit .Wh for every resource .h ∈ H . Let the vertices .s ∈ V and . t ∈ V
be respectively the source and the destination. 

A feasible solution is a path.Pst between vertex. s and vertex. t that complies with 
the capacity constraint on every resource, i.e. .

∑
e∈Pst wh

e ≤ Wh for each .h ∈ H .
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The optimization problem traditionally consists in finding the minimum cost path. 
In our framework, the focus is on the feasibility problem: given an instance for the 
RCSPP, determine whether it admits a feasible solution or not. 

It has been proven that RCSPP, in its feasibility formulation, is an NP-complete 
problem, even in the case with only two resources [ 1]. 

Let . i be an arbitrary instance of the RCSPP. We consider a vector of features 
.xi ∈ R

p. Each of these features measures a particular parameter of the instance . i . 
We assume that a function.g : Rp → {F, I } exists. The function. gmaps each feature 
vector .xi to a label .F if the instance . i admits a feasible solution, . I if it does not. 

Our objective is to use supervised learning algorithms to find (an approximation 
of) such a function.g(). In particular, we exploit supervised learning: we collect a set 
of RCSPP instances . I for which feasibility is known. We use such a training set to 
build an approximation of .g(). Then, we exploit .g() to actually perform feasibility 
predictions on new RCSPP instances. 

The most critical point of this approach is the so-called feature engineering pro-
cess, that is the choice of parameters to measure on RCSPP instances, which is 
discussed in Sect. 3. We remark that, hypothetically speaking, it would be easy to 
build a perfect function.g() by including in these features the actual exact resolution 
of the RCSPP. Indeed, these features must balance predictive power with computa-
tional efficiency: our aim is to obtain high predictive power with a small fraction of 
the computing effort needed to actually solve the RCSPP. 

3 Feature Engineering 

For our approach to be effective, we designed features that are quickly computable 
and not dependent on specific aspects of the instance, such as the dimension of the 
graph and the range of the parameters. This allows the approach to be scalable, and 
potentially to be generalized to instances which are very different from those in the 
training set. 

Most of the features considered are based on single resource shortest path com-
putations. For each resource .k ∈ H , we indicate with .Pst

k the shortest path between 
. s and . t , with respect to the resource .k ∈ H . The Shortest Path Problem is known to 
be solvable in polynomial time; moreover, several advanced algorithmic techniques 
make it very fast also empirically. We finally mention that in column generation 
contexts, as those discussed in the introduction, single resource shortest paths for 
each resource besides costs can be computed once in a preprocessing phase. 

To effectively predict feasibility, we need to exploit the aspects of the instance 
that could indicate the existence of a feasible solution. In this context, the single 
resource paths could give useful information. With our features we tried to summarize 
important aspects, such as the structure and the resource consumption along these 
paths. Our features are based on the idea that if a feasible solution exits, it might be 
close to these paths.
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We indicate with.uhk the consumption of resource.h ∈ H along.Pst
k and with.ūhk the 

average consumption of resource .h ∈ H on each edge of the path .Pst
k . We indicate 

with . lk the length (i.e. the number of edges) of the path and with .Vk the set of its 
vertices. 

Finally, let . d be the diameter of the graph and .w̄h the average consumption of 
resource .h ∈ H on each edge of the graph. 

With this notation, we can formally define the features we designed. We grouped 
them into three classes. 

Path related features. 

The first group of features are strictly related to the shortest paths and the resource 
consumption along these paths. 

Feature 1 Relative consumption of resource . h traversing the path .Pst
k . 

.F1
hk = uhk

Wh
∀h ∈ H,∀k ∈ H (1) 

Observation 1 If a resource.k ∈ H exists, such that.F1
hk ≤ 1.∀h ∈ H , then the path 

.Pst
k is a feasible solution for the RCSPP. 

Observation 2 If a resource .k ∈ H exists, such that .F2
kk > 1, then the instance is 

infeasible. 

We remark that these two observations span only specific cases. In particular, 
Observation 1 is a sufficient, but not necessary, condition for feasibility. In the general 
one, a feasible RCSPP solution may exist, crossing parts of .Pst

k for different . k. 
Still, this features give a measure of how much of each resource is consumed. 
Since these features can exactly establish feasibility, as shown in Observations 1 

and 2, we expect them to be highly predictive. 

Feature 2 Average relative consumption of resource . h traversing the path .Pst
k . 

.F2
hk = ūhk

Wh
∀h ∈ H,∀k ∈ H (2) 

Path-Graph related features. 

In the second group we have features that consider both path related and graph 
related aspects. They are designed to exploit some topological aspects of the graph, 
concerning the vertices and edges in the single-resource optimal paths. 

Definition 1 Given a resource .h ∈ H , for each edge .e = (i, j) ∈ E, we define 
reduced cost of edge . e with respect to resource . h the quantity . rch(i, j) = wh

e −
(wh(Ps j ) − wh(Psi )), where .wh(Psi ) and .wh(Ps j ) represent the consumption of 
resource. h along the minimum paths, w.r.t resource. h, between. s and. i and. j respec-
tively.
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If the edge .e = (i, j) ∈ Pst
h , then the reduced cost .rc

h(i, j) = 0. Otherwise, it is  
.rch(i, j) > 0 when the edge .(i, j) does not belong to the shortest path between . s
and . j w.r.t. resource .h ∈ H . In this case the reduced cost represents the difference 
between the value of the path between . s and . j passing through edge .(i, j) and the 
value of the shortest path between . s and . j . 

We consider the quantity .rchi for each .i ∈ Vh , as the minimum reduced cost of 
the outgoing edges of . i not in .Pst

h . We indicate with .rch the average, on the vertices 
of the path .Pst

h , of the quantities .rc
h
i . 

Definition 2 Given two vertices .i, j ∈ V, we define the distance .d(i, j) between . i
and . j as the minimum number of edges in a path between . i and . j . 

Definition 3 We define .D-neighbourhood of .Pst
h the subgraph induced by the ver-

tices that have distance from the vertices in.Pst
h less or equal than. D (w.r.t. the distance 

in Definition 2). 

Feature 3 Average reduced cost on the vertices of path .Pst
h , considering for each 

vertex the outgoing edge not in .Pst
h with minimum reduced cost. 

.F3
h = rch

w̄h
h ∈ H (3) 

The reduced cost for an edge .e = (i, j) represents a penalty paid by deviating 
from the shortest path between . s and . j . Lower values of this feature could indicate 
the presence of non-expensive deviations from the path .Pst

h and the presence of a 
feasible solution. 

The value is normalized, in order to reduce the dependency of this feature from 
the range of the resource values. 

Feature 4 Ratio between the average consumption of resource .h ∈ H along path 
.Pst

h and the average consumption of resource .h ∈ H along the edges in a .D-
neighbourhood of .Pst

h , not in the path itself. 

.F4
hD = ūhh

ūhD
h ∈ H (4) 

This feature measures the difference between the resource consumption on the 
edges in the path and the consumption on the unused edges. The idea is that if the 
edges in the path are much more convenient than the others, it would be harder to 
find a feasible solution. 

It is worth noticing that the distance in Definition 2 is well defined only in undi-
rected graphs, otherwise the symmetry property would not hold. In case of an appli-
cation on directed graphs, this feature should be redesigned using a different distance. 

In our analysis we considered neighbourhoods with .D = 2, 3.
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Feature 5 Percentage of edges used in path . Pst
h

.F5
h = lh

m
∀h ∈ H (5) 

This feature lies on the assumption that the more edges are used in the shortest 
paths, less likely there would be different feasible paths. 

Feature 6 Maximum, minimum and average degree of the vertices in . Pst
h

.F6
h,max = max

i∈Vh

deg(i) ∀h ∈ H (6a) 

.F6
h,min = min

i∈Vh

deg(i) ∀h ∈ H (6b) 

.F6
h,avg =

∑
i∈Vh

deg(i)

lh + 1
∀h ∈ H (6c) 

The main idea behind this feature is that if the vertices in the paths have many 
connections, it would be easier to find a feasible solution. 

Graph related features. 

The last group of features considers only some topological aspects of the graph. 

Feature 7 Comparison of the distance between. s and. t and the diameter of the graph. 

.F7 = d(s, t)

d
(7) 

This feature represents a measure of the distance of the source. s and the destination 
. t in the graph. We expect higher values to be linked to infeasibility: if . s and. t are far 
away in the graph it would be harder to find a feasible solution. 

Feature 8 Maximum, minimum and average degree of the vertices in . N

.F8
max = max

i∈N
deg(i) (8a) 

.F8
min = min

i∈N
deg(i) (8b) 

.F8
avg =

∑
i∈N deg(i)

n
(8c) 

These features give a measure of the sparsity of the graph. Similarly to features 
.F6

max , .F
6
min and .F6

avg , the idea is that more connections could facilitate the presence 
of a feasible solution.
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4 Computational Experiments 

Dataset description. 

For the experimental analysis we considered the RCSPP with two resources. To train 
and test the machine learning algorithms, we build a dataset of .9600 instances, that 
have been correctly classified as feasible or infeasible. 

The graphs for the instances were extracted as random subgraphs of the instances 
for the 9th DIMACS Implementation Challenge [ 8]. We created 20 graphs of . 5500
vertices each. Starting from the same base graph, we generated various instances, by 
assigning different weights to the edges and selecting different sources, destinations 
and resource limits. In particular, our dataset is composed by different scenarios of 
increasing challenge: 

• instances that differ only in the resource limits; 
• instances with different source, destination and resource limits; 
• instances based on the same graph with different resource values on the edges; 
• instances based on entirely different graphs (with different resource values on the 
edges). 

We established the feasibility of each instance by solving the corresponding opti-
mization problem, considering one of the resources as the cost to be minimized. A 
mixed integer program for the RCSPP was implemented in Python, using the Pyomo 
library [ 9, 10] e, and solved with CPLEX 20.1. 

The instances resulted fairly balanced between feasible (59.6%) and infeasible 
(40.4%). 

Features computation. 

In Table 1 we summarize the average computing time and the worst case complexity 
for the computation of the features. 

Considering different instances are based on the same graph, we could compute 
some static graph indexes in a preprocessing phase. This is often the case when 
the RCSPP is solved as a subproblem. In particular, for the worst case complexities 
reported in Table 1, we assume the following quantities to be precomputed: 

• Diameter of the graph; 
• Average resource consumption on the edges . ūhk , for each .h, k ∈ H ; 
• Minimum, maximum and average degree of the vertices of the graph. 

In the first line of Table 1 we report the theoretical complexity and the average 
computation times for the shortest paths. They are solved using Dijkstra-like algo-
rithms, for which we did not invest in sophisticated implementations. 

We assume that the shortest paths are computed once for every instance. Thus their 
computation time is not included in the remaining lines of Table 1. We report both 
the complexity required to compute the single feature and the overall complexity,
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Table 1 Worst case complexity and average computing time of the shortest paths and the features 

Features Worst case complexity 
(single feature) 

Average computing 
time (s) 

Total worst case 
complexity 

Shortest path. Pst
h

. h ∈ H
.O(m log n) .1.333 · 10−2 . O(rm log n)

.F1
hh .h ∈ H .O(1) .1.658 · 10−6 . O(r)

.F1
hk .h, k ∈ H , .h /= k .O(n) .1.398 · 10−5 . O(r2n)

.F2
hk .h, k ∈ H .O(1) .5.283 · 10−7 . O(r2)

.F3
h .h ∈ H .O(m) .7.243 · 10−5 . O(rm)

.F4
hD .h ∈ H , .D = 2, 3 .O(n + m) .1.087 · 10−3 . O((n + m)r |D|)

.F5
h .h ∈ H .O(1) .6.776 · 10−7 . O(r)

.F6
h,max .F6

h,min . F6
h,avg

. h ∈ H
.O(m) .8.306 · 10−5 . O(rm)

.F7 .O(m + n) .2.327 · 10−3 . O(m + n)

.F8
max .F8

min .F8
avg .O(1) .2.551 · 10−7 . O(1)

considering many features are computed for each resource. The total computing time 
for each instance is about 0.064 s, on average. 

Prediction phase. 

We tested our features on three models: a Decision Tree with different impurity 
functions, Support Vector Machines with different kernel functions, and a Gradient 
Boosting (Random Forest) Classifier. The models were implemented in Python using 
Scikit-Learn library [ 11]. 

To enforce the results, we implemented a Cross Validation procedure. The dataset 
was randomly split into five groups of the same size. At each iteration, four groups 
were used for the training of the model, the remaining group for the test. The scores 
reported in Tables 2 and 3 are the average ones, obtained at each iteration. 

For the first run of experiments, we randomly split the dataset between training 
and testing. Results are shown in Table 2. The best performing model is the Gradient 
Boosting, reaching an accuracy of 84% on the test set. 

In the second round of experiments, we split the dataset in order to have instances 
from different groups based on different graphs. This leads to test the model on 
instances that are not based on the same graphs as the instances used for the training. 
In Table 3 are summarized the results. The scores are comparable to the previous 
case, showing that the efficacy of our features does not depend on having the same 
underlying graph. The best performing model is again the Gradient Boosting. 

Features importance analysis. 

We performed an analysis of the importance of the features, to see if they are all 
relevant in the effectiveness of the predictions. We focused on the Gradient Boosting 
model, that was the best performing one.
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Table 2 Cross validated scores 

Model Accuracy 
train (%) 

Accuracy 
test (%) 

I_precision 
(%) 

F_precision 
(%) 

I_recall 
(%) 

F_recall 
(%) 

F1-score 
(%) 

Decision 
Tree 

Gini 81.47 80.01 75.66 82.98 74.59 83.73 75.05 

Entropy 81.07 79.77 74.64 83.41 75.77 82.47 75.15 

Support 
Vector 
Machines 

Linear 79.75 79.60 74.55 83.07 75.10 82.67 74.81 

Poly 2 80.81 80.20 75.72 83.20 75.02 83.74 75.34 

Poly 3 81.09 80.47 76.06 83.42 73.35 83.96 75.68 

rbf 81.02 80.25 75.70 83.30 75.23 83.68 75.44 

Gradient 
boosting 

88.24 84.23 81.57 85.94 78.75 87.96 80.11 

Table 3 Cross validated scores. In this case training instances and test instances are based on 
different graphs 

Model Accuracy 
train (%) 

Accuracy 
Test (%) 

I_precision 
(%) 

F_precision 
(%) 

I_recall 
(%) 

F_recall 
(%) 

F1-score 
(%) 

Decision 
Tree 

Gini 80.86 79.54 74.07 83.34 75.76 82.02 74.91 

Entropy 80.59 79.43 74.55 82.84 74.68 82.51 74.55 

Support 
Vector 
Machines 

Linear 79.77 79.58 74.66 82.93 74.87 82.70 74.74 

Poly 2 80.73 79.81 75.61 82.57 73.86 83.77 74.69 

Poly 3 81.05 79.72 75.70 82.28 73.25 84.01 74.44 

rbf 81.13 79.67 75.42 82.51 73.75 83.61 74.51 

Gradient 
boosting 

88.41 84.10 81.53 85.72 78.29 88.00 79.86 

We performed a Recursive Feature Elimination using a Gradient Boosting model: 
starting with all the features, at each iteration the model is trained and the least impor-
tant feature is discarded. In Table 4 we rank the features by decreasing importance: 
the first one was the last remaining feature in the recursive elimination. In Table 4 
we also report the average importance of the features in the full Gradient Boosting 
model, i.e. the model trained with all the features. The results are coherent with the 
rank obtained by Recursive Feature Elimination. 

In Fig. 1 we report the accuracy (on the test set) of the model w.r.t. the number 
of features retained. We see that 5 features are necessary to reach a high accuracy 
level. There is an improvement up until 10 features. Adding further features seems 
irrelevant. 

In Table 5 we report the results for the Gradient Boosting using only the best 
10 features (considering the rank in Table 4). The scores are comparable to those 
obtained in the full model, reported in Tables 2 and 3. 

Finally, considering the model with the selected features, we tested the impact 
of these features, by removing one feature at a time. In Fig. 2 we represent the 
accuracy gap on the test set, meaning the difference between the test accuracy of 
model trained with the 10 selected features and the test accuracy of the model trained
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Table 4 Rank of the features obtained by Recursive Feature Elimination and average importance 
in the full model. The last 5 features are not reported, since they have an importance below 0.001 

Feature Rank in recursive feature 
elimination 

Importance 

.F1
11 1 0,391 

.F1
22 2 0,254 

.F1
21 3 0,104 

.F1
12 4 0,099 

.F2
11 5 0,033 

.F2
21 6 0,023 

.F6
1,avg 7 0,016 

.F7 8 0,010 

.F6
2,avg 9 0,010 

.F2
22 10 0,010 

.F3
1 11 0,009 

.F2
12 12 0,010 

.F4
2,2 13 0,006 

.F4
1,3 14 0,006 

.F4
2,3 15 0,007 

.F3
2 16 0,005 

.F5
1 17 0,003 

.F5
2 18 0,003 

.F4
1,2 19 0,003 

.F8
avg 20 0,003 

Fig. 1 Accuracy of the 
Gradient Boosting 
depending on the numbers of 
features retained by recursive 
elimination 
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Table 5 Cross validated scores for the Gradient Boosting model with selected features 

Training/Test Accuracy 
train (%) 

Accuracy 
Test (%) 

I_precision 
(%) 

F_precision 
(%) 

I_recall 
(%) 

F_recall 
(%) 

F1-score 
(%) 

Same graphs 87.92 84.17 81.44 85.91 78.73 87.86 80.04 

Different 
graphs 

87.87 83.89 81.13 85.62 78.20 87.72 79.61 

Train and test on same graphs 

f1 
11 

f1 
22 

f1 
21 

f1 
12 

f2 
11 

f2 
21 

f6 
1avg 

f7 f6 
2avg 

f2 
22 

0 

0.01 

0.02 

0.03 

0.04 

0.05 

Train and test on different graphs 

f1 
11 

f1 
22 

f1 
21 

f1 
12 

f2 
11 

f2 
21 

f6 
1avg 

f7 f6 
2avg 

f2 
22 

0 

0.01 

0.02 

0.03 

0.04 

0.05 

Fig. 2 Accuracy gap between a Gradient Boosting model trained with selected features and the 
same model trained excluding one of the features 

excluding one of them. Again, we considered both the case with training and test set 
based on the same graphs and the case where different graphs are used. The features 
.F1

hk , for .h, k ∈ H , are the most relevant. The other features seem almost irrelevant, 
when taken out singularly. However, by comparing these results to those in Fig. 1 
we conclude them to be in synergy: their contribution stacks up, finally providing 
overall an improvement of about 2%. 

5 Conclusions 

Our models, which are designed to predict the RCSPP feasibility by measuring fea-
tures of the instance, prove effective. More in details, a supervised learning method, 
relying on the training of random forests by means of gradient boosting, gave the 
best results. 

One of the main challenges was to design a set of features which is able to 
generalize from the specific structure of the training instances, and can be computed 
with a limited effort. In our experiments, no feature required more than milliseconds 
to compute on graphs with up to.5500 vertices. None of them depends on the presence 
of a specific graph structure. 

We found the following outcome to be particularly relevant: by repeating our 
experiments with training and testing on different sets of graphs, accuracy kept above 
.84%. 

Considering the perspective use of our models as fast approximate completion 
bound checks, we argue false Infeasible predictions to be the most critical ones. The
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I_precision score deserves most attention: even if it results in values above . 81%
future research efforts in improving it might be pertinent. 

The most promising way of integrating our models in exact methods is indeed 
their use as triggers for more computationally expensive checks. 

For what concerns the embedding of our technique in column generation pricing, 
future investigations will extend our models to cover the elementary version of the 
problem, which allows for negative resource values, potentially leading to cycles. 
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Monte-Carlo Integration on a Union 
of Polytopes 

Jonas Stübbe and Anne Remke 

Abstract A new integration approach is presented that is tailored towards integrat-
ing over a union of polytopes with low coverage in high dimensions. It combines 
Markov Chain Monte Carlo and Multiphase Monte Carlo and takes advantage of the 
specific geometrical structure by directly sampling from it, which ensures scalabil-
ity in higher dimensions. A feasibility study shows the efficiency of our method in 
comparison to the state-of-the-art approach GSL VEGAS. To showcase the specific 
strenght of the proposed method, integration is performed on a selected set of such 
multi-dimensional polytopes with low coverage. 

1 Introduction 

Verifying stochastic hybrid systems requires integrating the probability density func-
tion of random variables defined on a union of polytopes [ 14, 19, 20]. However, 
integrating over complex geometrical structures in large dimensions is usually not 
feasible analytically. Hence, mostly numerical solutions are applied, which sample 
uniformly from a rectangular overapproximation, e.g., VEGAS with stratified and 
importance sampling [ 16, 22], as implemented in the GNU Scientific Library [ 12]. 
Depending on the model, these method however yield excessive computation times 
in higher dimensions. Note, that VEGAS does not take advantage of the convexity of 
the polytopes computed in the reachability analysis. 

Sampling from convex polytopes is well-investigated and methods like Markov-
Chain Monte Carlo [ 2, 15, 18, 24, 25, 27, 28] and Multiphase Monte Carlo [ 6, 9– 11] 
can be applied, efficiently. Other efficient sampling techniques build on a Markov 
chain, e.g., Ball Walk [ 13] or Billiard Walk [ 21]. A stable library for volume approxi-
mation and sampling of convex polytopes can be found in VolEsti [ 5]. Convergence of 
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Monte-Carlo Hit-and-Run methods is polynomial for convex polytopes [ 8], however 
can be arbitrarily slow for non-convex regions [ 1]. 

In 1984, Smith [ 25] proposed a method to sample from high dimensional non-
trivial bodies called rejection sampling which samples from a bounding box instead 
which completetly contains the original body. However, the required number of sam-
ples grows exponentially for increasing dimensions, as the ratio between the volume 
of the original body and its bounding box decreases exponentially with increasing 
dimensions. When a union of polytopes is used, the corresponding bounding box 
is created based on the minimum and maximum point in each dimension over all 
polytopes, resulting in even lower coverage. 

This paper proposes a Monte-Carlo integration Multiphase Union Markov Chain 
Monte Carlo (MpU(MC)2) specifically tailored to the union of convex polytopes, 
which is in general not convex. Multiphase Union Markov Chain Monte Carlo 
addresses challenges which arise from a non-convex area of integration: First, we 
adapt coordinate Hit-and-Run to allow direct transitions between polytopes with an 
empty intersection. Rejection sampling is only used to obtain the initial sample, 
hence the curse of dimensionality, described above, does not impact performance as 
badly. All other samples are generated via our version of coordinate Hit-and-Run and 
are hence contained in the union of polytopes by construction. Second, the volume of 
the union of convex polytopes is approximated with a variant of Multiphase Monte 
Carlo that can be applied to non-convex regions. Then Monte-Carlo integration can 
be used to estimate a multi-dimensional integral over that union of convex polytopes. 

Organization. Section 2 defines relevant preliminaries. Section 3 presents our 
approach of Monte-Carlo integration on the union of polytopes. Section 4 compares 
results obtained from MpU(MC)2with VEGAS. Section 5 concludes the paper. 

2 Preliminaries 

Vectors are denoted as bold lowercase letters and matrices are denoted as bold upper-
case letters. Sets of sets are denoted as calligraphic capital letters. Further, we define 
intervals as sets .T = {v ∈ R | l ≤ v ≤ u} for some .l ∈ R and .u ∈ R. Let .T denote 
a set of intervals. To allow the definition of H-polytopes via the intersection of half-
spaces, we first define half-spaces and hyperplanes. For two vectors . x and . y, the  
scalar product is denoted by .⟨x, y⟩ ∈ R. 

Definition 1 (Half-space) Given  normal vector .n ∈ R
d and an offset .o ∈ R, a  .d-

dimensional half-space . h is defined as the set 

. h = {x ∈ R
d |⟨n, x⟩ ≤ o}.

The set .h = {x ∈ R
d | ⟨n, x⟩ = o} is the bounding hyperplane of half-space . h. 

In the following, we consider polytopes in the so-called H-representation.
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Definition 2 (H-Polytope) A H-polytope.P ⊆ R
d is defined by the (bounded) inter-

section of .m half-spaces 
. P := {x ∈ R

d | Ax ≤ b},

with.A ∈ R
m×d ,.b ∈ R

m . The.k-th row of. A is refered to as.ak and the.k-th half-space 
of the polytope as .akx ≤ bk . Half-spaces are also called constraints. 

The union of polytopes.Pi , Pj is defined by.Pi ∪ Pj={x ∈ R
d | x ∈ Pi ∨ x ∈ Pj }, 

and the intersection is defined as .Pi ∩ Pj = {x ∈ R
d | x ∈ Pi ∧ x ∈ Pj }. Further-

more,.P = {Pi | 0 ≤ i < n} represents a set of polytopes. Let the size of. P be denoted 
by .|P| = n. Here, .

U
Pi∈P Pi represents the union of polytopes .Pi over the set . P. 

H-Polytopes can be converted into other representations, e.g., vertex-oriented V-
Polytopes. However, this transformation is NP-hard in general [ 3, 7]. In the following, 
we rely on the representation as H-polytopes. 

Monte-Carlo integration is used to numerically approximate an integral. Sample 
points are drawn randomly from the integration region .Ω and used to evaluate the 
integrand. We follow the definition in the GNU scientific library [ 12]. 

Definition 3 (Monte-Carlo integration) An multi-dimensional definite integral . I is 
defined for .x = (x1, . . . , xd): 

. I =
∫

Ω

f (x)dx,

with integrand . f : Rd → R and .Ω ⊂ R
d . The volume of . Ω, denoted . V (Ω) ∈ R

equals.V (Ω) = ∫
Ω
dx. With.N ∈ N sample points.xi ∈ R

d , that are uniformly drawn 
from. Ω, . I can be approximated the integral as: 

.I ≈ E( f ; N ) = V (Ω)

N

N∑

i=1

f (xi ). (1) 

Due to the strong law of large numbers, .E( f ; N ) converges to . I for large .N [ 23]. 

Let .N(μ, σ 2) denote the normal distribution with mean . μ and variance .σ 2. The  
function.g : R → R then denotes the probability density function of.N(μ, σ 2)with: 

. g(x) = 1

σ
√
2π

e− 1
2 (

x−μ

σ
)2 .

This paper aims to integrate the joint density function of. d i.i.d random variables, 
each distributed with .N(μ, σ 2) over . Ω. Hence, we define . f (x) = ∏d

l=1 g(xl). 
Rejection sampling [ 25] draws uniformly distributed samples from an overap-

proximating region .S ⊇ Ω and .Ω ⊂ R
d instead of sampling over .Ω directly. Each 

sample. x that is contained in. Ωwill be distributed uniformly in. Ω. If the sample gen-
erated in . S is not contained in . Ω, it is rejected. Usually, . S is chosen as a region with 
a tight bound on .Ω from which uniformly distributed samples can easily be drawn, 
e.g., a hyperrectangle. If .Ω = U

Pi∈P Pi is a union of polytopes, the hyperrectangle
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is given by the minimum and maximum value over all polytopes .Pi ∈ P in every 
dimension, further denoted as .SP. 

In the following, we use Markov Chain Monte Carlo in the variant Hit-and-Run as 
introduced by Smith [ 26] in 1984. Hit-and-Run draws samples from a homogenous 
continuous-state Markov chain in discrete time, i.e.,.{Xn | n ≥ 0}with.n ∈ N. Such a 
Markov is chain is called a Random Walk and defined as a family of independently and 
identically distributed random variables, which take values from .R

d . For a set . Ω ⊂
R

d , Hit-and-Run generates a direction vector .v ∈ R
d , that is uniformly distributed 

on the direction set .D ⊆ R
d , depending on the used Hit-and-Run method. 

Let .l = {x + λ · v | λ ∈ R} be the line defined by . x and. v. A new point . x' is then 
sampled uniformly distributed from the part of . l that is included in . Ω. 

For convex spaces. Ω the Markov chain converges to approximately the stationary 
distribution [ 25]. Here, the convergence speed is specified as mixing time [ 18], which 
indicates the required number of steps in the Random Walk until obtaining points 
which are approximately stationary. 

Hit-and-Run is considered to be one of the most efficient Markov Chain Monte 
Carlo sampler currently available for generating asymptotically uniform points in 
convex sets due to its polynomial convergence time [17, 18]. As hit-and-run sampling 
algorithms produce points that are uniformly distributed on a convex space, they are 
very well suited for sampling polytopes. 

Coordinate Directions Hit-and-Run (CDHR) [  9] is a form  of  Hit-and-Run. Starting 
from a point .x ∈ R

d inside the polytope .P = {x ∈ R
d | Ax ≤ b}, . v is uniformly 

sampled at random as one of the coordinate axes. Afterwards, . v and . x are used to 
calculate the distance .λ ∈ R to the bounding hyperplane of every half-space of . P . 
The scalars .λ+ and .λ− result from maximizations of . λ over each half-space [ 9]: 

Definition 4 (Minimum distance to bounding hyperplane) Given a convex polytope 
.Pi with .mi half-spaces, a point .x ∈ Pi and a direction vector . v. Let  .λ+, λ− ∈ R be 
the minimum distance between point . x and a bounding hyperplane . h along . v in 
both directions. .λ+ and .λ− are calculated by maximizing the distance .λ ∈ R to the 
bounding hyperplane of each half-space with 

. λ+ = max{λ | ∀k, 0 ≤ k < mi : ak(x + λv) ≤ bk}, and

λ− = max{λ | ∀k, 0 ≤ k < mi : ak(x − λv) ≤ bk}.

The interval .Ti is then defined by .Ti = [λ−, λ+]. 
We now uniformly sample a value.t ∈ Ti and as a result, a new point. x' = x + t · v

is obtained, which by construction is contained in the polytope. The iterative pro-
cedure is continued until a predefined number of sample points has been generated. 
The generation of three sample points with Coordinate Directions Hit-and-Run on a 
polytope is illustrated in Fig. 1 from left to right: starting from a point. x, first a direc-
tion vector . v is drawn and the line segment .l = {x + t · v | t ∈ Ti } created. From . l, 
a new sample point . x' is drawn uniformly. 

Note that the sample points correspond to the values taken by the random variables 
of the Markov chain .{Xn|n ≥ 0}, with .Xn ∈ R

d .
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Fig. 1 Coordinate Directions Hit-and-Run on a polytope 

3 Monte-Carlo Integration on a Union of Polytopes 

Hit-and-Run Monte-Carlo methods are not restricted to convex polytopes. Smith even 
proves in [ 27] that Hit-and-Run algorithms converge to approximately the uniform 
distribution when applied to an open subset of .Rd . However, their mixing time, i.e., 
the bound on the number of samples required for convergence, can be arbitrarily 
large for non-convex regions [ 1]. 

Figure 2 shows an examplary run of traditional Markov chain Hit-and-Run on a 
(non-convex) union of three polytopes. Here, starting in .P0, the Markov chain can 
only directly transition into polytopes with a non-empty intersection with .P0. 

In the following, we detail two major improvements of MpU(MC)2, which allow 
the transition to unions of polytopes. First, we allow direct transitions from one 
polytope to another one that is part of that union, however has an empty intersection 
with the current one. This is illustrated in Fig. 3. 

Second, the volume of the union is computed with a variant of Multiphase Monte 
Carlo, and used to approximate the integral in Eq. 1. As the intersection of any two 
polytopes in the union is not necessarily empty (e.g., see Fig. 2) the volume of that 
union does not simply equal the sum of the individual polytope’s volumes. 

Section 3.1 extends coordinate Hit-and-Run to a union of convex polytopes and 
allows direct transitions between two polytopes with empty intersection. Section 3.2 
discusses how the volume of the union is approximated via Multiphase Monte Carlo. 

Fig. 2 A possible path from 
.P0 to.P2 results in three 
intermediate points in. P1

0 1  

2 3  

4 

0 

1 

2
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Fig. 3 A possible path from 
.P0 to.P2 is possible without 
intermediate points in. P1

0 1 

0 

1 

2 

3.1 Extending Markov Chain Monte Carlo 

The union of convex polytopes.
U

Pi∈P Pi is in general not convex. Hence, the mixing-
time of CDHR could be arbitrarily large [ 1]. Intuitively, this is due to the fact that 
CDHR only generates successor sample points within the same polytope.Pi or in any 
polytope .Pj with a non-empty intersection .Pi ∩ Pj /= ∅. 

Figure 2 illustrates a sequence of sampling points starting in. x0, where the Markov 
chain requires sampling from polytope .P1 before samples in .P2 can be constructed. 
In the following, Markov Chain Monte Carlo is extended by allowing transitions 
from polytope .P0 to .P2 without intermediate samples in .P1, as shown in Fig. 3. 
We require the set .P to include at least two polytopes, i.e., .|P| ≥ 2. The iterative 
computation of sample points with MpU(MC)2then  works as follows:  

(1) To initialize one execution of MpU(MC)2, we perform rejection sampling from 
the bounding box of the union of polytopes, denoted .SP, until a point .x ∈ R

d is 
sampled, which is contained in . Ω. 

(2) A direction vector . v is uniformly sampled at random as one of the coordinate 
axes. Let .T denote a set of intervals, which is initially empty. 

(3) Let . x be contained in polytope . Pi , then the corresponding interval .Ti is created 
according to Definition 4 and added to the set of intervals . T . 

(4) Let .Pj ∈ P with .Pi /= Pj be another polytope. Then either .x ∈ Pj or . x /∈ Pj

applies. If .x ∈ Pj , create interval .Tj according to Definition 4 and add to . T . If  
.x /∈ Pj , the interval .Tj is created according to Definition 5 and added to . T . 

(5) After iterating over each polytope.Pi ∈ P, a new point is generated with.x + t · v, 
where . t is sampled uniformly over the set .T of all obtained one-dimensional 
intervals. The process is repeated from step 2., until a predefined number of 
sample points has been generated. 

In the following we provide more details on step 4. Recall that a polytope .Pj is 
defined by .m j constraints. A point .x ∈ Pj then satisfies every constraint of .Pj . In  
contrast for a point .x /∈ Pj , there exists at least one constraint in .Pj with . aqx > bq
for.0 ≤ q < m j . For such a sample point, the goal is to find the interval .Tj such that
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for all .t ∈ Tj , .ak(x + t · v) ≤ bk is satisfied for all .0 ≤ k < m j . As it is previously 
unknown how many constraints are violated by a point.x /∈ Pj , the interval.Tj requires 
a more elaborate computation than the one explained in Definition 4. Let. sgn : R →
{+,−, 0} denote the mapping of each value of the real numbers to its respective 
sign. Recall that a half-space . h is well defined by . n and . o. We now introduce two 
functions which are applied to every half-space . h of .Pj : 

. dir : Rd × R
d → {+,−, 0} with dir(n, v) = sgn(⟨n, v⟩), and

sat : R × R
d × R

d → {+,−, 0} with sat(o, n, x) = sgn(o − ⟨n, x⟩).

Here, dir specifies, whether the constraint’s normal vector. n and the direction vector 
. v point in the same direction. It returns. +, if both vectors point in the same direction 
and .− if they point in different directions. In case . v and . n are parallel, dir returns 
. 0. Using the constraint’s normal vector . n and offset . o, sat returns . +, if a point . x
satisfies the constraint i.e., .x ∈ h. It returns . −, if .x /∈ h and zero if .x ∈ h. 

Further, we use dir and sat, to split the line.l = {
x' | x' = x + λ · v, λ ∈ R>0

}
into 

two rays.l+ = {
x' | x' = x + λ · v, λ ∈ R

+
>0

}
and.l−= {

x' | x'=x − λ · v, λ ∈ R
+
>0

}
. 

As each individual polytope .Pj is convex and .x /∈ Pj , if the  set  .l ∩ Pj is non-
empty, the set of points .l ∩ Pj is either completely included in ray .l+ or in ray . l−. 
If dir or sat is zero, none of the rays . l+, .l− intersects the bounding hyperplane. 
Otherwise, if dir equals sat, the  ray.l+ intersects the bounding hyperplane, and if dir 
does not equal sat, .l− intersects the bounding hyperplane. 

Figure 4 illustrates the four different combinations of .dir and sat, where . x is 
indicated by x, the arrow originating in . x specifies the sampled direction vector . v, 
and for the currently considered halfspace. h (indicated in red) its normal vector . n is 
shown. In cases (a), and (b) the bounding hyperplane . h is intersected by .l+ and in 
cases (c) and (d) it is intersected by . l−. 

Let .Hi = {akx ≤ bk | 0 ≤ k < mi } be the set of all half-spaces for polytope . Pi
then .L+ = {h | h ∈ Hi ∧ l ∩ h ⊆ l+} is the set of constraints . h in polytope .Pi for 
which the intersection of . l and . h is completely included in ray . l+. Further let . L− =
{h | h ∈ Hi ∧ l ∩ h ⊆ l−} be the set of constraints . h in polytope .Pi for which the 
intersection of . l and . h is completely included in ray . l−. 

As polytope.Pi is convex and.x /∈ Pi , the interval .Ti is created either by the set of 
constraints.L+ or.L−. Therefore, we consider both sets separately: We first consider 
the set .L+ (compare (a), (b) in Fig. 4). If the set .l+ ∩ Pi is non-empty, we define the 
interval .Ti using only constraints in .L+, as follows: 

Definition 5 (Line segment boundaries for.x /∈ Pi ) Given a polytope.Pi with.mi half-
spaces denoted by the set.Hi = {akx ≤ bk | 0 ≤ k < mi }, a point.x ∈ R

d , x /∈ Pi and 
a direction vector. v. Let.L+ ⊆ Hi be a set of constraints with.|L+| = m '

i ≤ mi . Then 
.L+

in ⊆ L+ and .L+
out ⊆ L+ is defined by 

.L+
in = {h | h ∈ L+ ∧ x /∈ h}, and L+

out = {h | h ∈ L+ ∧ x ∈ h}.
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+ 

dir(n, v):  −  
sat( n, x):  −  

a) 

+ 

dir(n, v):  +  
sat( ,  n, x):  +  

b) 

− 

dir(n, v):  −  
sat( ,  n, x):  +  

c) 

− 

dir(n, v):  +  
sat( n, x):  −  

d) 

Fig. 4 Classification of constraints according to the values of.dir(n, v) and. sat(o, n, x)

Further, let .λin, λout ∈ R be two distances defined by 

. λ+
in = max{λ | h ∈ L+

in ∧ ⟨n, x + λv⟩ = o}, and

λ+
out = min{λ | h ∈ L+

out ∧ ⟨n, x + λv⟩ = o}.

Then .λ+
in denotes the maximal distance along . v between point . x and a bounding 

hyperplane. h̄, for.h ∈ L+
in. Further,.λ

+
out denotes the minimal distance along. v between 

point. x and a bounding hyperplane. h̄, for.h ∈ L+
out. The interval.Ti is then defined by 

.Ti = [λ+
in, λ

+
out]. 

The above definition is adapted to .L−, using  

. L−
in = {h | h ∈ L− ∧ x /∈ h}, and L−

out = {h | h ∈ L− ∧ x ∈ h},

and .Ti = [−λ−
out, λ

−
in] is defined by: 

. λ−
in = max{λ | h ∈ L−

in ∧ ⟨n, x − λv⟩ = o}, and

λ−
out = min{λ | h ∈ L−

out ∧ ⟨n, x − λv⟩ = o}.

After the extensions made to Markov Chain Monte Carlo, the procedure still 
satisfies the definition of Mixing Algorithms by Smith [ 25], therefore results in a 
sequence of sample points that is uniformly distributed in . Ω. 

3.2 Extending Multiphase Monte Carlo 

Although a variety of Monte-Carlo algorithms for volume approximation exist, their 
majority can only be applied to convex bodies. More general approaches, e.g., based 
on partitioning into simplices, suffer from scalability issues. In the following we 
show how Multiphase Monte Carlo approximates the volume .V (Ω) of the union 
over a finite set of convex polytopes .Ω = U

Pi∈P Pi .
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Fig. 5 Union of polytopes.P1, P2, P3 (left) and the unique assignment of the non-empty intersec-
tions to the polytope with the largest index (right) 

First, we apply Multiphase Monte Carlo to each.Pi individually, and approximate 
its volume.V (Pi ) as. Vi . Then we ensure that the volumes of the individual polytopes 
are combined such that non-empty intersections are taken into account, correctly. 
We attribute the non-empty intersection of polytopes.Pi and.Pj to the polytope with 
the higher index. Hence, every polytope .Pj maintains the volume of its non-empty 
intersection with polytope.Pi for.i < j . Figure 5 illustrates the concept for the union 
of three polytopes (left) and the resulting attribution of intersections to the polytope 
with the highest index (right). 

Instead of considering the union of convex polytopes .Pi with potentially non-
empty intersections, we take the union of non-convex polytopes.P̂i with empty inter-
sections, i.e., .P̂i ∩ P̂j = ∅ for all .i /= j and .i, j ≤ |P|, formalized as: 

. Ω =
⊔

Pi∈P
Pi =

⊔

Pi∈P
P̂i , with P̂i = {x ∈ Pi | ∀Pj ∈ P, i < j.x /∈ Pj }.

Second, we sample .N points from .Ω with MpU(MC)2, resulting in the set of 
samples .ΦN = {xi | 0 ≤ i ≤ N } which are uniformly distributed over . Ω. We then 
estimate the volume of each .P̂i using the samples in .ΦN and the indicator function 
.1Pi (x)which returns one if.x ∈ Pi and zero, otherwise. The number of samples from 
.ΦN contained in the polytope .Pi is then given as .

∑
x∈ΦN

1Pi (x). For simplicity we 
write.

∑
Φn

1Pi . For every polytope.Pi ∈ P, we define. ρi , which is used to reduce the 
estimated volume .Vi to .VP̂i

: 

. ρi =
∑

Φn
1P̂i∑

Φn
1Pi

, and VP̂i
= ρi · Vi .

Hence, the volume of .Ω is approximated as .VΩ = ∑|P|
i=1 ρi · Vi . This allows to 

estimate the integral from Eq. 1, using .V (Ω) = VΩ.
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4 Evaluation 

We compare results obtained by MpU(MC)2with the state-of-the-art approach GSL 
VEGAS for pseudo-randomly created sets of polytopes . P in .15 and .20 dimensions. 
All results were obtained on a Nehalem-C @2.25 GHz processor. We compute the 
probability resulting from Eq. 1 for the joint density function. f = ∏d

l=1 g(xl), where 
.g(x) equals the normal distribution .N(μ, σ 2) with parameters .μ = 10, .σ = 5 in 
every dimension. 

Results obtained by MpU(MC)2and VEGAS are illustrated as boxplots indicating 
median and variation for a union of polytopes in .15-dimensions in Fig. 6 and for . 20
dimensions in Fig. 7. The whiskers are chosen as .1.5 times the range between the 
upper and the lower quartile. Table 1 summarizes the corresponding number of runs, 
the average computation time of runs and the median for all performed integrations. 

For .d = 15, MpU(MC)2and VEGAS compute a comparable median in a similar 
time, while VEGAS achieves a smaller variation, as indicated in the boxplots. How-
ever, for .d = 20, MpU(MC)2clearly outperforms VEGAS, as the resulting boxplots 
indicate a very small variation, while VEGAS results in a large variation. Note that the 
median computed by MpU(MC)2and VEGAS differ considerably. As no ground truth 
exists for these computations, we consider the scatter plots illustrating the computed 
probability over the computation time for .d = 15 in Fig. 8 and for .d = 20 in Fig. 9 
for every run performed. 

Recall that MpU(MC)2is an iterative approach which computes a fixed number of 
samples. In contrast VEGAS uses a convergence criterion .χ2 ≤ 0.5 and required 
between one and seven iterations per run. Figures 8 and 9 show that runs with 

Fig. 6 MpU(MC)2with .N = 1e+. 8, .N = 2, 5e.8 and .N = 5e+. 8, VEGAS with . N =
4, 3e+. 8,.N = 9, 3e+. 8 and.N = 2, 4e+. 9, .d = 15
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Fig. 7 MpU(MC)2with.N = 1e+. 7 and.N = 1e+. 8, VEGAS with.N = 3, 5e+. 9, . d = 20

Table 1 Computation times, number of runs and median obtained in dimensions 15 and 20 with 
MpU(MC)2 and VEGAS, respectively 

MpU(MC)2 MpU(MC)2 MpU(MC)2 MpU(MC)2 MpU(MC)2 VEGAS VEGAS VEGAS VEGAS 

. . . . . . . . . 

Dimension 15 15 15 20 20 15 15 15 20 

Time(h) 1.79 4.45 9.01 4.73 12.98 2.14 4.35 9.46 27.76 

# runs 7 7 8 10 10 7 8 7 10 

Median (. e+. 4) .2.134 .2.136 .2.136 .0.034 0.034 .2.137 .2.137 .2.138 .9.485e-. 10

MpU(MC)2always have the same computation time for a fixed number of samples, 
while the computation time of VEGAS depends on the number of iterations. For 
.d = 15 VEGAS computes a similar probability for different number of iterations. 

For.d = 20, seven runs of VEGAS terminate after one or two iterations, i.e., 10h or 
20h, and the resulting probability is too small. The three runs of VEGAS with larger 
computation times take . 4, . 6 and . 7 iterations and result in a very similar probability 
as computed by MpU(MC)2. These results indicate, that VEGAS was started with not 
enough samples. However, the sample size of VEGAS in.20 dimensions was already 
set to .3, 5e+. 9, and the corresponding computation time is excessive.
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Fig. 8 Relation of time and 
result, . d = 15

Fig. 9 Relation of time and 
result, . d = 20

5 Conclusion 

The proposed integration method MpU(MC)2is able to provide very good approxima-
tions of multi-dimensional integrals over the union of convex polytopes, especially 
in high dimensions. The results of the evaluation show that VEGAS as implemented 
in the GNU library, is an efficient integration strategy for up to.15 dimensions. In. 20
dimensions MpU(MC)2clearly outperforms VEGAS on the randomly created union 
of polytopes considered. Note that due to excessive computation times, we do not 
have the same number of runs for all computations in .15 dimensions. Instead, the 
available computational power was focused on computations in .20 dimensions. 

This work is funded through the DFG grant 471367371. To ensure repeatability, 
the source code and the generated sets of polytopes can be found at https://zivgitlab. 
uni-muenster.de/ag-sks/tools/realyst.

https://zivgitlab.uni-muenster.de/ag-sks/tools/realyst
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https://zivgitlab.uni-muenster.de/ag-sks/tools/realyst
https://zivgitlab.uni-muenster.de/ag-sks/tools/realyst
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Future work aims at proving that the mixing time of MpU(MC)2is polynomial 
and to include MpU(MC)2into tools for verification of stochastic hybrid systems. 

References 

1. Abbasi-Yadkori, Y., Bartlett, P., Gabillon, V., Malek, A.: Hit-and-run for sampling and planning 
in non-convex spaces. In: 20th International Conference on Artificial Intelligence and Statistics, 
Proceedings of Machine Learning Research, vol. 54, pp. 888–895 (2017) 

2. Asmussen, S., Glynn, P.: A new proof of convergence of MCMC via the ergodic theorem. Stat. 
Probab. Lett. 81, 1482–1485 (2011) 

3. Barber, C.B., Dobkin, D.P., Huhdanpaa, H.: The quickhull algorithm for convex hulls. ACM 
Trans. Math. Softw. 22(4), 469–483 (1996) 

4. Bellman, R.E.: Dynamic Programming. Princeton University Press, Princeton (2021) 
5. Chalkis, A., Fisikopoulos, V.: Volesti: volume approximation and sampling for convex poly-

topes in R. R J. 13(2), 561 (2021) 
6. Cousins, B., Vempala, S.: A practical volume algorithm. Math. Program. Comput. 8(2), 133– 

160 (2016) 
7. Dyer, M.E.: The complexity of vertex enumeration methods. Math. Oper. Res. 8(3), 381–402 

(1983) 
8. Dyer, M.E., Frieze, A.M.: Random walks, totally unimodular matrices, and a randomised dual 

simplex algorithm. Math. Program. 64, 1–16 (1994) 
9. Emiris, I.Z., Fisikopoulos, V.: Efficient random-walk methods for approximating polytope 

volume. In: 13th Annual Symposium on Computational Geometry, pp. 318–327. ACM (2014) 
10. Ge, C., Ma, F.: A fast and practical method to estimate volumes of convex polytopes. In: 

Frontiers in Algorithmics, pp. 52–65. Springer, Berlin (2015) 
11. Ge, C., Ma, F., Zhang, P., Zhang, J.: Computing and estimating the volume of the solution 

space of SMT(LA) constraints. Theoret. Comput. Sci. 743, 110–129 (2018) 
12. Gough, B.: GNU scientific library reference manual. Network Theory Ltd. (2009) 
13. Hastings, W.K.: Monte Carlo sampling methods using Markov chains and their applications. 

Biometrika 57(1), 97–109 (1970) 
14. Hüls, J., Pilch, C., Schinke, P., Niehaus, H., Delicaris, J., Remke, A.: State-space construction 

of hybrid petri nets with multiple stochastic firings. ACM Trans. Model. Comput. Simul. 31(3), 
13:1–13:37 (2021) 

15. Kiatsupaibul, S., Smith, R.L., Zabinsky, Z.B.: An analysis of a variation of hit-and-run for 
uniform sampling from general regions. ACM Trans. Model. Comput. Simul. 21(3) (2011) 

16. Lepage, G.P.: Adaptive multidimensional integration: VEGAS enhanced. J. Comput. Phys. 
439, 110386 (2021) 

17. Lovasz, L., Vempala, S.: Fast algorithms for logconcave functions: sampling, rounding, inte-
gration and optimization. In: 47th Annual IEEE Symposium on Foundations of Computer 
Science, pp. 57–68 (2006) 

18. László, L.: Hit-and-run mixes fast. Math. Program., Ser. B 86, 443–461 (1999) 
19. Pilch, C., Hartmanns, A., Remke, A.: Classic and non-prophetic model checking for hybrid petri 

nets with stochastic firings. In: 23rd International Conference on Hybrid Systems: Computation 
and Control. ACM (2020) 

20. Pilch, C., Schupp, S., Remke, A.: Optimizing reachability probabilities for a restricted class of 
stochastic hybrid automata via Flowpipe-construction. In: Quantitative Evaluation of Systems, 
pp. 435–456. Springer, Berlin (2021) 

21. Polyak, B., Gryazina, E.: Billiard walk—a new sampling algorithm for control and optimization. 
IFAC Proc. Vol. 19, 6123–6128 (2014) 

22. Press, W.H., Farrar, G.R.: Recursive stratified sampling for multidimensional Monte Carlo 
integration. Comput. Phys. 4(2), 190 (1990)



160 J. Stübbe and A. Remke

23. Ross, S.M.: Introduction to probability models. Academic Press (2007) 
24. Simonovits, M.: How to compute the volume in high dimension? Math. Program. 97(1), 337– 

374 (2003) 
25. Smith, R.L.: Efficient Monte Carlo procedures for generating points uniformly distributed over 

bounded regions. Oper. Res. (1984) 
26. Smith, R.L.: Efficient Monte Carlo procedures for generating points uniformly distributed over 

bounded regions. Oper. Res. 32(6), 1296–1308 (1984) 
27. Smith, R.L.: The hit-and-run sampler: a globally reaching Markov chain sampler for generating 

arbitrary multivariate distributions. In: Conference on Winter Simulation, pp. 260–264. IEEE 
CS (1996) 

28. Zabinsky, Z.B., Smith, R.L.: Hit-and-Run Methods, pp. 721–729. Springer, Berlin (2013)



Achieving Long-Term Fairness 
in Submodular Maximization Through 
Randomization 

Shaojie Tang, Jing Yuan, and Twumasi Mensah-Boateng 

Abstract Submodular function optimization is applied in ML and data analysis, 
including diverse dataset summarization. Fairness-aware algorithms are essential for 
handling sensitive attributes. Our research investigates the problem of maximizing a 
monotone submodular function while adhering to constraints on the expected number 
of selected items per group. Our goal is to compute a distribution over feasible sets, 
and to achieve this, we develop a series of approximation algorithms. 

1 Introduction 

A set function is referred to as submodular if it follows the principle of diminishing 
returns, where adding an item to a larger set yields a smaller benefit. This concept is 
applied in various real-world scenarios such as feature selection [ 9], where the goal 
is to select the most relevant features from a large pool of potential features to use in a 
machine learning model; active learning [14, 20, 21], where the goal is to choose a set 
of instances for a machine learning model to learn from; exemplar-based clustering 
[ 10], where the goal is to choose a set of exemplars to represent a set of data points; 
influence maximization in social networks [ 22, 24], where the goal is to choose a set 
of individuals to target in order to maximize the spread of information or influence 
in a network; as well as recommender system [ 12] and diverse data summarization 
[ 18]. The goal of submodular optimization is to choose a set of items that optimizes 
a submodular function while satisfying constraints such as size limitations, matroid 
requirements, or knapsack restrictions. 
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In practice, items or individuals are often grouped based on attributes such as 
gender, race, age, religion, or other factors. However, if not properly monitored, 
existing algorithms may display bias and result in an over- or under-representation 
of certain groups in the final selected set. To address this issue, we propose the study of 
long-term fair submodular maximization problem. The aim is to randomly choose a 
subset of items that optimizes a submodular function, such that the expected number 
of selected items from each group falls within the desired range. This approach 
ensures that the final selection of items is not only optimized, but also equitable, 
providing a fair representation of all groups in the long term. 

Formally, we consider a set.V of items, which are divided into. m (not necessarily 
disjoint) groups: .V1, V2, . . . , Vm with items in each group sharing similar attributes 
(e.g., race). To ensure fairness, a randomized item selection algorithm must satisfy 
the following criteria for all groups.t ∈ [m]where.[m] = {1, 2, . . . ,m}: the  expected 
number of selected items from group.Vt must be within the range of.[αt , βt ], where. αt

and.βt are arbitrary parameters that may differ across groups; moreover, the number 
of chosen items must always stay below a cardinality constraint of. b. To put it simply, 
a fair randomized solution must meet two important requirements [ 3]: (a) restricted 
dominance, which means the proportion of items from each group must be within 
a certain limit, and (b) minority protection, which means the proportion of items 
from each group must not fall below a certain limit. Our fairness notation has gained 
significant recognition in the academic world and it has been adopted in various 
studies, including multi-winner voting systems [ 7], fair recommendation systems 
[ 13], and matroid-constrained optimization problems [ 8]. In fact, this notation is 
capable of capturing other fairness definitions such as statistical parity [ 11], the 
.80%-rule [ 4], and proportional representation [ 16]. 

In contrast to the majority of prior studies on fairness-aware algorithm design [ 7, 
8, 13, 23, 25], which focus on finding a fixed solution set, our objective is to compute 
a randomized solution that can, on average, satisfy the group fairness constraints. 
This approach provides more flexibility in meeting the fairness requirements. Take 
fairness-aware product recommendations as an example. The objective is to suggest 
a set of products to online consumers while ensuring that each group of sellers, 
such as male and female sellers, is expected to have at least one of their products 
recommended. Due to limited display space, suppose we can only display one product 
to the consumer. In this scenario, it is not possible for any of the deterministic 
solutions to fulfill the fairness requirement, however, a randomized solution can be 
easily found to satisfy it. For instance, a product can be suggested from each group 
with the same likelihood of occurrence. We next summarize the main contributions 
of this paper. 

1. We are the first to investigate the long-term fair submodular maximization prob-
lem, which presents a substantial challenge due to its exponential number of 
variables. As a result, it is difficult to solve using traditional linear programming 
(LP) solvers. 

2. We develop a .(1 − 1/e)2-approximation algorithm that approximately satisfies 
the fairness constraints. Specifically, our algorithm ensures that the number of
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selected items from group .Vt is within the range of .[[αt], [βt]]. Notably, if both 
.αt and.βt are integers, our solution strictly satisfies the fairness constraints in the 
original problem. 

3. It is important to note that the previous algorithm requires optimizing a contin-
uous approximation of the underlying submodular function, referred to as the 
multi-linear extension [ 6]. This is achieved by executing the continuous greedy 
algorithm, whose implementation is computationally expensive in practice. Our 
second contribution is the introduction of a fast greedy algorithm that achieves a 
degraded approximation ratio of .(1 − 1/e)2/2. 

4. We present a .(1 − 1/e)-approximation randomized algorithm. Our approach 
involves utilizing the ellipsoid method and incorporating an approximate sep-
aration oracle for the dual LP of the original problem, which has a polynomial 
number of variables and an exponential number of constraints. Unlike the deter-
ministic solutions, our randomized approach provides three key benefits. Firstly, 
our solution does not depend on the assumption of non-overlapping groups. Sec-
ondly, our approach strictly satisfies all fairness constraints. Thirdly, we achieve 
the optimal approximation ratio of .1 − 1/e. 

2 Preliminaries and Problem Statement 

A set  .V of . n items is considered and there is a non-negative submodular utility 
function . f : 2V → R+. The marginal utility of an item .e ∈ V on a set  .S ⊆ V is 
denoted as . f (e | S), i.e., . f (e | S) = f ({e} ∪ S) − f (S). The function . f is consid-
ered submodular if, for any sets .X,Y ⊆ V with.X ⊆ Y and any item.e ∈ V \ Y , the  
following inequality holds: . f (e | Y ) ≤ f (e | X). It is considered monotone if, for 
any set .X ⊆ V and any item.e ∈ V \ X , it holds that . f (e | X) ≥ 0. 

Assuming .V is divided into .m groups, .V1, V2, . . . , Vm , there is a specified lower 
and upper bound on the expected number of items from each group that must be 
included in a feasible solution. These bounds, referred to as .α ∈ R

m
≥0 and .β ∈ R

m
≥0, 

represent group fairness constraints. In addition, there is a hard constraint . b on 
the number of selected items. Let .F = {S ⊆ V | |S| ≤ b} denote the set of feasible 
selections. The goal of the fair submodular maximization problem (denoted as.P.0) is  
to determine a distribution.x ∈ [0, 1]F over sets from.F that maximizes the expected 
utility, while ensuring that the expected number of items selected from each group 
meets the fairness constraints. I.e., 

. P.0 max
x∈[0,1]F

∑

S∈F
xS f (S)s.t.

(
αt ≤ ∑

S∈F (xS · |S ∩ Vt |) ≤ βt ,∀t ∈ [m].∑
S∈F xS ≤ 1.

Here each decision variable.xS represents the selection probability of.S ∈ F . This  
LP has a total of .2m + 1 constraints, excluding the obvious constraints that specify



164 S. Tang et al.

that .xS ≥ 0 for all .S ∈ F . Despite this, the number of variables in the LP problem 
is equal to the number of elements in . F , which can be exponential in . n. As a result, 
conventional LP solvers are unable to solve this LP problem efficiently. The next 
lemma asserts that .P.0 is a problem that is NP-hard. 

Lemma 1 Problem .P.0 is NP-hard. 

Proof We demonstrate this by reducing it to the classic cardinality constrained mono-
tone submodular maximization problem, which we will describe below. ∎
Definition 1 The cardinality constrained monotone submodular maximization prob-
lem takes as input a collection of items . V , a monotone submodular function 
. f : 2V → R+, and a cardinality constraint . b. The goal is to choose a subset of 
items .S ⊆ V that maximizes . f (S) while ensuring that .|S| ≤ b. 

To show the reduction, we take an instance of the cardinality constrained monotone 
submodular maximization problem and create a corresponding instance of.P.0. To do  
this, we consider only one group with no fairness constraints, meaning.V = V1, with 
.α1 = 0 and.β1 = |V |. It can be easily verified that the optimal solution of this instance 
is a distribution over a set of solutions, each of which is an optimal solution to the 
instance of cardinality constrained monotone submodular maximization problem. 
Additionally, although.P.0 allows for randomized solutions, there exists at least one 
optimal solution that is a deterministic set. Specifically, every optimal solution of 
the cardinality constrained monotone submodular maximization problem must be an 
optimal solution to its corresponding instance of .P.0. Hence, these two instances are 
equivalent. This concludes the proof of the reduction. ∎

3 Near Feasible Deterministic Algorithms 

In this section, we present a deterministic algorithm for .P.0. Here we assume that 
.m groups do not overlap with each other. To begin, we introduce the multilinear 
extension of a monotone submodular function . f . Given a vector .y ∈ [0, 1]n , let  . Sy
be a random set where each item.i ∈ V is independently added to.Sy with probability 
. yi . Then we let .F(y) = E[ f (Sy)] = ∑

S⊆V f (S)
∏

i∈S yi
∏

i /∈S(1 − yi ). 
We next introduce a new optimization problem.P.1. The goal of.P.1 is to compute a 

vector .y ∈ [0, 1]n that maximizes .F(y) such that .αt ≤ ∑
i∈Vt

yi ≤ βt ,∀t ∈ [m] and 
.
∑

t∈[m]
∑

i∈Vt
yi ≤ b. 

. P.1 max
y∈[0,1]n F(y)s.t.

(
αt ≤ ∑

i∈Vt
yi ≤ βt ,∀t ∈ [m].∑

t∈[m]
∑

i∈Vt
yi ≤ b.

The following lemma establishes a connection between the optimal solution of 
problem .P.0 and that of problem .P.1. This lemma serves as a crucial foundation 
for understanding the relationship between the two problems and allows for the 
development of a near optimal solution for .P.0 by solving .P.1.
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Lemma 2 Let .x∗ denote the optimal solution of .P.0 and .y∗ denote the optimal 
solution of .P.1, it holds that 

.(1 − 1/e)
∑

S∈F
x∗
S f (S) ≤ F(y∗). (1) 

Proof Let . B be a polytope defined as the set of all vectors .y ∈ [0, 1]n that meet the 
conditions in .P.1, i.e., 

.B = {y ∈ [0, 1]n | αt ≤
∑

i∈Vt
yi ≤ βt ,∀t ∈ [m];

∑

t∈[m]

∑

i∈Vt
yi ≤ b; 0 ≤ yi ≤ 1,∀i ∈ V }. (2) 

Given the optimal solution.x∗ of.P.0, we then introduce a vector.ŷ ∈ [0, 1]n such that 
.ŷi = ∑

S∈F x∗
S · 1i∈S where .1i∈S = 1 if .i ∈ S and .1i∈S = 0 otherwise. It is easy to 

verify that the value of. ŷi represents the probability of item. i being selected according 
to the distribution defined by . x∗. We next show that to prove this lemma, it suffices 
to prove that 

.ŷ ∈ B. (3) 

As established in [ 2], if. f is monotone and submodular and.ŷi = ∑
S∈F x∗

S · 1i∈S , then 
.(1 − 1/e)

∑
S∈F x∗

S f (S) ≤ F(ŷ). Here .1 − 1/e is also known as correlation gap of 
monotone submodular functions. Suppose (3) is true and .y∗ is the optimal solution 
of.P.1, it holds that .F(ŷ) ≤ F(y∗). Therefore, this lemma is a direct consequence of 
the observation that .(1 − 1/e)

∑
S∈F x∗

S f (S) ≤ F(ŷ) ≤ F(y∗). 
The rest of the proof is devoted to proving .ŷ ∈ B. First, because .x∗ is a feasible 

solution of .P.0, it holds that .αt ≤ ∑
S∈F (x∗

S · |S ∩ Vt |) ≤ βt ,∀t ∈ [m]. It follows 
that .αt ≤ ∑

i∈Vt
ŷi ≤ βt ,∀t ∈ [m], this is because . ∑S∈F (x∗

S · |S ∩ Vt |) = ∑
i∈Vt

ŷi
represents the expected number of items being selected from group .Vt according to 
the distribution defined by . x∗. Second, because .x∗ is a feasible solution of .P.0, the  
expected number of selected items according to the distribution defined by .x∗ is at 
most. b. Hence,.

∑
t∈[m]

∑
i∈Vt

ŷi ≤ b. Third, it is trivial to show that. 0 ≤ ŷi ≤ 1,∀i ∈
V . This finishes the proof of .ŷ ∈ B. ∎

3.1 Algorithm Design 

We next present our algorithm. Initially, we use a continuous greedy algorithm to 
compute a fractional solution for .P.1, which we then round to obtain an integral 
solution. 

Continuous greedy algorithm. We first provide a detailed description of the 
continuous greedy algorithm (listed in Algorithm 1). The framework of this algorithm 
was first developed in [ 6] and we adapt it to find a fractional solution within polytope 
. B (listed in (2)). Note that polytope. B is not downward-closed, which presents unique 
challenges in our study. This algorithm maintains a fractional solution .yl ∈ [0, 1]n ,
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Algorithm 1 Continuous Greedy Algorithm 
1: Set δ = 9n2, l = 0, y0 = [0]n . 
2: while l < δ  do 
3: For each i ∈ V , estimate F(i | yl ) 
4: Find an optimal solution z ∈ [0, 1]n to P.A 

5: P.A Maximizey
∑

i∈V yi F(i | yl ) s.t. y ∈ B. 

6: yl+1 = yl + z , increment l = l + 1 
7: y' ← yδ 

8: return y'

starting with .y0 = (0, 0, . . . , 0). In each round. l, it computes the marginal utility of 
each item.i ∈ V on top of .yl with respect to .F as follows, 

..F(i | yl) = F(ei ∨ yl) − F(yl). (4) 

where.ei ∈ {0, 1}n is the vector with. 1 in the.i-th coordinate and. 0 elsewhere;. ei ∨ yl

denotes the element-wise maximum of two vectors . ei and . yl . 
Then we solve the following linear programming problem P.A which assigns a 

weight .F(i | yl) to each item. i and seeks the maximum weighted vector in . B. 

. P.AMaximizey
∑

i∈V
yi F(i | yl)s.t.y ∈ B.

After solving P.A at round . l and obtaining an optimal solution .z ∈ [0, 1]n , we  
update the fractional solution as follows: .yl+1 = yl + z. After  . δ rounds where . δ =
9n2, .yδ is returned as the final solution . y'. 

Rounding. We next employ pipage rounding [ 1], a simple deterministic procedure 
of rounding of linear relaxations, to round .y' to an integral solution. This algorithm 
is composed of three phases. 

• Phase 1: For each .t ∈ [m], repeatedly perform the following until .Vt has no more 
than one non-integral coordinate: Choose any two fractional coordinates. i , . j such 
that .i, j ∈ Vt . Calculate .θ1 = min{1 − y'

i , y
'
j } and .θ2 = min{y'

i , 1 − y'
j }. Create 

two vectors,.ya = y' + θ1(ei − e j ) and.yb = y' + θ2(e j − ei ). If.F(ya) ≥ F(yb), 
set .y ← ya , otherwise set .y ← yb. 

• Phase 2: Assume .y1, . . . , yk are the remaining fractional coordinates. Repeat the 
same procedure as in the first phrase until. y has at most one non-integral coordinate. 

• Phase 3: Let . i denote the last non-integral coordinate, if any. Set .yi = 1. Output 
.A ⊆ V whose coordinate in . y is . 1. 

Note that a similar framework has been utilized to tackle the fair submodular 
maximization problem in a deterministic setting [ 7]. This problem aims to identify a 
fixed set of items that optimize a submodular function while fulfilling group fairness 
constraints. Their approach shares similarities with ours in the rounding stage, but
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does not require the third phase. This is because in their setting, both .αt and .βt are 
integers, which allows them to ensure that no non-integral coordinates exist after the 
first two rounding phases. 

3.2 Performance Analysis 

Recall that.x∗ denotes the optimal solution of.P.0, let.OPT = ∑
S∈F x∗

S f (S) denote 
the utility of the optimal solution. The following theorem states that . A, the solution 
set returned from our algorithm, is a near feasible solution of.P.0 and has a utility of 
at least .(1 − 1/e)2OPT . 

Theorem 1 Let .A be the set returned by our algorithm and .OPT be the utility of 
the optimal solution of .P.0. It follows that: 

. f (A) ≥ (1 − 1/e)2OPT . (5) 

Moreover, . A always satisfies the cardinality constraint and nearly satisfies the fair-
ness constraints of .P.0, i.e., .|A| ≤ b and .[αt] ≤ |A ∩ Vt | ≤ [βt],∀t ∈ [m]. 
Proof We first prove that .|A| ≤ b always holds. Observe that the fractional solution 
.y' found by the continuous greedy algorithm belongs to . B, hence, .

∑
i∈V y'

i ≤ b. 
Moreover, phases 1 and 2 in the rounding stage do not change this value, and 
phase 3 rounds the last non-integral coordinate, if any, to one. It follows that . |A| ≤
[∑i∈V y'

i] ≤ b where the second inequality is by the observations that . 
∑

i∈V y'
i ≤ b

and . b is an integer. 
We next prove that .A nearly satisfies the fairness constraints of .P.0, i.e., . [αt] ≤

|A ∩ Vt | ≤ [βt],∀t ∈ [m]. Because .y' ∈ B, it holds that . αt ≤ ∑
i∈Vt

y'
i ≤ βt ,∀t ∈

[m]. Observe that phase 1 does not change this value, phases 2 and 3 round at most 
one fractional coordinate from each group to a binary value. Hence, . [∑i∈Vt

y'
i] ≤

|A ∩ Vt | ≤ [∑i∈Vt
y'
i],∀t ∈ [m]. This, together with.αt ≤ ∑

i∈Vt
y'
i ≤ βt ,∀t ∈ [m], 

implies that .[αt] ≤ |A ∩ Vt | ≤ [βt],∀t ∈ [m]. 
At last, we prove the approximation ratio of . A. Recall that .y∗ denotes the opti-

mal solution of .P.1, [  6] has proved that if . f is monotone and submodular, then 
the fractional solution .y' returned from the continuous greedy algorithm has a util-
ity of at least .(1 − 1/e)F(y∗), i.e., .F(y') ≥ (1 − 1/e)F(y∗). This, together with 
Lemma 2, implies that .F(y') ≥ (1 − 1/e)2

∑
S∈F x∗

S f (S) = (1 − 1/e)2OPT . To  
prove . f (A) ≥ (1 − 1/e)2OPT , it suffices to show that . f (A) ≥ F(y'). We next  
prove this inequality. Observe that in phases 1 and 2 of the rounding stage, we per-
form pipage rounding to round. y' to a vector. y that contains at most one non-integral 
coordinate. According to [ 6], pipage rounding does not decrease the expected utility 
of . y', that is, .F(y) ≥ F(y'). In phase 3, we round the last non-integral coordinate 
in . y, if any, to one. This operation does not decrease the expected utility of . y by the 
assumption that. f is monotone. Hence,.F(y) ≥ F(y') still holds. Recall that. y is the 
indicator vector of . A, hence, . f (A) = F(y). Therefore, . f (A) = F(y) ≥ F(y'). ∎
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Remark 1 It follows immediately from the preceding theorem that if .αt and .βt are 
both integers for all.t ∈ [m], then our solution strictly satisfies all fairness constraints 
of problem.P.0. 

3.3 A Fast Greedy Algorithm 

Our prior algorithm involves solving a multi-linear relaxation problem, which can 
be slow and computationally expensive, particularly for large scale problems. In this 
section, we introduce a simple greedy algorithm that offers a significant increase in 
speed but with a trade-off in the form of a decreased approximation ratio. 

Even though.P.0 permits the use of randomized solutions, Theorem 1 shows that a 
deterministic solution is sufficient for obtaining a constant-factor approximation for 
.P.0. We next present a simple greedy algorithm that effectively finds a near optimal 
deterministic solution, which in turn results in a constant-factor approximation for the 
problem.P.0. To this end we introduce a new optimization problem.P.2, a deterministic 
version of .P.0 (with relaxed fairness constraints). 

. P.2max
S∈F

f (S)s.t.[αt] ≤ |S ∩ Vt | ≤ [βt],∀t ∈ [m].

Note that in.P.2we use.[αt] and.[βt] as lower and upper bounds, hence a feasible 
solution of .P.2 is a near feasible solution of the original problem.P.0. The following 
lemma states that the optimal solution of .P.2 attains a .(1 − 1/e)2 approximation of 
the problem.P.0. 

Lemma 3 Let .AP2 denote the optimal solution of .P.2, it holds that . f (AP2) ≥ (1 −
1/e)2OPT where .OPT is the optimal solution of .P.0. 

Proof Recall that in Theorem 1, we show that . f (A) ≥ (1 − 1/e)2OPT where . A
satisfies all constraints in .P.2. Because .AP2 is the optimal solution of .P.2, we have  
. f (AP2) ≥ f (A) ≥ (1 − 1/e)2OPT . ∎

We next present a simple greedy algorithm to attain a .1/2 approximation of .P.2. 
First, we present .P.3, a relaxed problem of .P.2. 

. P.3max
S⊆V

f (S)s.t.

(
|S ∩ Vt | ≤ [βt],∀t ∈ [m].∑

t∈[m] max{[αt], |S ∩ Vt |} ≤ b.

It is easy to verify that any feasible solution of .P.2 must be a feasible solution 
of .P.3. Hence, . f (AP2) ≤ f (AP3) where .AP3 is the optimal solution of .P.3. It has 
been shown that the constraints listed in.P.3 constitute a matroid [ 13]. Hence,.P.3 is a 
classic submodular maximization problem subject to a matroid constraint. A simple 
greedy algorithm guarantees a .1/2 approximation of .P.3 [ 17]. This algorithm works
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by iteratively adding items to the solution set such that at each step, the marginal 
increase in the objective value is maximized, and the matroid constraint is satisfied, 
and it terminates when the current solution set can not be expanded. Let .Ag denote 
the solution returned from the greedy algorithm, it holds that 

. f (Ag) ≥ (1/2) f (AP3) ≥ (1/2) f (AP2). (6) 

Moreover, it is easy to verify that .Ag must be a feasible solution of .P.2. 

Theorem 2 Let .Ag denote the solution of returned from the greedy algorithm, it 
holds that . f (Ag) ≥ (1−1/e)2

2 · OPT . Moreover, .Ag always satisfies the cardinality 
constraint and nearly satisfies the fairness constraints of .P.0, i.e., .|Ag| ≤ b and 
.[αt] ≤ |Ag ∩ Vt | ≤ [βt],∀t ∈ [m]. 
Proof The proof of the first part of this theorem stems from inequality (6) and 
Lemma 3. The second part of this theorem is because .Ag is a feasible solution to 
problem.P.2. ∎

4 A Feasible .(1− 1/e)-Approximation Randomized 
Algorithm 

We now present a randomized algorithm for .P.0. In contrast to the results presented 
in the previous section, our randomized solution offers three advantages: (1) our 
solution does not rely on the assumption of non-overlapping groups, (2) our solution 
satisfies all fairness constraints in a strict sense, and (3) we achieve the optimal 
approximation ratio of .1 − 1/e. 

As previously stated,.P.0 has a number of variables equal to the number of elements 
in . F , which can become extremely large when . n is significant. This means that 
standard LP solvers are unable to handle this LP problem effectively. To tackle 
this issue, we resort to its corresponding dual problem (.Dual of P.0) and utilize the 
ellipsoid algorithm [ 15] to solve it. In the dual problem, we assign two “weights” 
.zt ∈ R≥0 and.ut ∈ R≥0 to each group.Vt and there is an additional variable.w ∈ R≥0. 

. 
Dual of P.0minz∈Rm

≥0,u∈Rm
≥0,w∈R≥0

∑
t∈[m](βt ut − αt zt ) + w

s.t.w ≥ f (S) + ∑
t∈[m] |S ∩ Vt | · (zt − ut ),∀S ∈ F .

The ellipsoid method determines the emptiness of a non-degenerate convex set 
. C , such as the feasible region of.Dual of P.0. It defines an ellipsoid containing. C and 
iteratively checks if the center is in. C . If feasible, it explores smaller objectives. If not, 
it employs a (approx.) separation oracle, constructing smaller ellipsoids. This geo-
metric process continues until a feasible solution is found or . C is considered empty. 
The method requires a poly-time (approx.) separation oracle and has polynomial 
iterations for linear problems.
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In the context of our problem, we approximately solve the SubMax problem to 
check the feasibility of the current solution and act as the separation oracle. 

Definition 2 Given a utility function . f , a cardinality constraint . b, and two vectors 
.z ∈ R

m
≥0 and .u ∈ R

m
≥0, SubMax.(z, u, b) aims to . maxS∈F ( f (S) + ∑

t∈[m] |S ∩ Vt | ·
(zt − ut )). 

SubMax.(z, u, b) asks for a set . S of size at most . b such that . f (S) + ∑
t∈[m] |S ∩

Vt | · (zt − ut ) is maximized. Observe that. f is non-negative monotone and submod-
ular; and .

∑
t∈[m] |S ∩ Vt | · (zt − ut ) is a modular function in terms of . S, hence, 

SubMax.(z, u, b) is a classic problem of maximizing the summation of a non-
negative monotone submodular and a modular function under cardinality constraints. 
Reference [ 19] developed a randomized algorithm that finds a set .A such that for 
every .S ∈ F , it holds that 

. f (A) +
∑

t∈[m]
|A ∩ Vt | · (zt − ut ) ≥ (1 − 1/e) f (S) +

∑

t∈[m]
|S ∩ Vt | · (zt − ut ). (7) 

Now we are ready to present the main theorem of this section. 

Theorem 3 There exists a polynomial time .(1 − 1/e)-approximation algorithm 
(with additive error . ∈) for .P.0. 

The rest of this section is devoted to proving Theorem 3, that is, we present a 
polynomial .(1 − 1/e)-approximation algorithm for .P.0. Let  .C(L) denote the set of 
.(z ∈ R

m
≥0, u ∈ R

m
≥0,w ∈ R≥0) satisfying that 

. 

∑

t∈[m]
(βt ut − αt zt ) + w ≤ L and w ≥ f (S) +

∑

t∈[m]
|S ∩ Vt | · (zt − ut ),∀S ∈ F .

We use binary search to determine the smallest value of .L for which .C(L) is 
not empty. Given a specific value of . L , we first check the inequality . 

∑
t∈[m](βt ut −

αt zt ) + w ≤ L . Then, we run algorithm from [ 19] (labeled as . A) to solve  Sub-
Max.(z, u, b). Let . A be the solution set returned from. A. 

• If. f (A) + ∑
t∈[m] |A ∩ Vt | · (zt − ut ) ≤ w, then.C(L) is marked as non-empty. In 

this case, we try a smaller . L . 
• If. f (A) + ∑

t∈[m] |A ∩ Vt | · (zt − ut ) > w, then.(z,w) /∈ C(L) and. A is a separat-
ing hyperplane. We identify a reduced-size ellipsoid whose center complies with 
the given constraint. This process continues until a feasible solution in .C(L) is 
found (in this case, we try a smaller . L) or the volume of the bounding ellipsoid is 
so small that.C(L) is considered empty (in this case, it is evident that reaching the 
current objective is not achievable and therefore, we will attempt a larger value 
for . L). 

To learn about the specific steps involved in running ellipsoid using separation 
oracles and achieving (multiplicative and additive) approximate guarantees, we sug-
gest referring to Chap. 2 of [ 5]. Assume .L∗ is the minimum value of .L for which
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the algorithm determines that .C(L) is non-empty. Hence, there exists a . (z∗, u∗,w∗)
such that 

.

∑

t∈[m]
(βt u

∗
t − αt z

∗
t ) + w∗ ≤ L∗ (8) 

and 

. f (A) +
∑

t∈[m]
|A ∩ Vt | · (z∗

t − u∗
t ) ≤ w∗ (9) 

where .A is the output obtained from .A after solving SubMax.(z∗, u∗, b). Let  . μ =
1 − 1/e, it follows  that . ∀S ∈ F ,

. f (S) +
∑

t∈[m]
|S ∩ Vt | · (u∗

t − z∗
t )/μ ≤ ( f (A) +

∑

t∈[m]
|A ∩ Vt | · (u∗

t − z∗
t ))/μ

≤ w∗/μ (10) 

where the first inequality is by (7) and the second inequality is by inequality (9). In 
addition, inequality (8) implies that  

.

∑

t∈[m]
(βt u

∗
t − αt z

∗
t )/μ + w∗/μ ≤ L∗/μ. (11) 

In Eq. (10) implies .(z∗/μ, u∗/μ,w∗/μ) is a feasible solution of .Dual of P.0. 
This, together with in Eq. (11), implies that the optimal solution of .Dual of P.0 and 
thus the optimal solution of .P.0 (by strong duality) is upper bounded by . 1

μ
· L∗. By  

solving.P.0 with a value of .L∗, we attain a .μ-approximation solution for the original 
problem .P.0. Here, we explain how to compute such a solution using only feasible 
solution sets corresponding to the separating hyperplanes found by the separation 
oracle. Assume.L∗ − ∈ is the largest value of . L for which the algorithm determines 
that .C(L) is empty, where . ∈ is decided by the precision of our algorithm. Let . F '
denote the subset of .F for which the dual constraint is violated during the execution 
of the ellipsoid algorithm on .C(L∗ − ∈). Then, .|F '| is polynomial. We consider the 
following polynomial sized .Dual of P.0 (labeled as .Poly-sized Dual of P.0), using 
separating hyperplanes from.F '. 

. 
Poly-sized Dual of P.0minz∈Rm

≥0,u∈Rm
≥0,w∈R≥0

∑
t∈[m](βt ut − αt zt ) + w

s.t.w ≥ f (S) + ∑
t∈[m] |S ∩ Vt | · (zt − ut ),∀S ∈ F '.

Because.C(L∗ − ∈) is empty, the optimal solution to.Poly-sized Dual of P.0 is at 
least .L∗ − ∈. Hence, the value of the dual of .Poly-sized Dual of P.0, which is listed 
in .Poly-sized P.0, is at least .L∗ − ∈. Note that .Poly-sized P.0 is of polynomial size.
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. 

Poly-sized P.0maxx∈[0,1]F '
∑

S∈F ' xS f (S)

s.t.

(
αt ≤ ∑

S∈F (xS · |S ∩ Vt |) ≤ βt ,∀t ∈ [m].∑
S∈F ' xS ≤ 1.

Recall that the optimal solution of .P.0 is upper bounded by . 1
μ

· L∗, obtaining 
an optimal solution from .Poly-sized P.0 provides a .μ-approximation for .P.0 (with 
additive error . ∈), where .μ = 1 − 1/e. 
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On Syntactical Graphs-of-Words 

Nabil Moncef Boukhatem, Davide Buscaldi, and Leo Liberti 

Abstract A graph-of-words is a graph representation of natural language text based 
on proximity in the linear text reading order: the vertices are the words, and edges 
are induced by . k left and right neighbours of the words. Vertices representing same 
or similar words are then contracted. We propose graphs-of-words where edges are 
instead induced on paths in the syntax trees (we investigate both dependency and 
constituency trees). We discuss some properties, advantages, and disadvantages of 
classic and new graphs-of-words on texts extracted from literature, as well as from 
a technical Q&A database. 

1 Introduction 

Natural language is human-specific, ambiguous, and often ungrammatical; its under-
standing is usually subjected to context knowledge. It is opposed to formal language, 
which is computer-specific, unambiguous, and must be grammatically perfect to be 
meaningful: its pragmatics are formally defined by the effect it has on an electronic 
or mechanical system. In this paper we use formal language constructs to instruct 
computers to deal with natural language text. More precisely, we focus on a very 
specific and well-known task in Natural Language Processing (NLP), i.e. that of key-
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word extraction: given a text in natural language, output .K keywords that a human 
would find the most pertinent for the text. This obviously poses the issue of empir-
ical verification: since different humans would have different preferences, how do 
we determine what keywords are “best”? In this paper we resort to ground truths put 
together by a restricted number of humans (see Sect. 3). 

The most established method for extracting keywords from natural language text 
is probably based on ranking functions (see e.g. [ 14]) based on frequency of words 
in documents with respect to a set of documents called corpus [ 11]. The main appli-
cation is automatic document indexing or summarization [ 12]. 

This paper replaces the concept of word frequency in documents with that of 
vertex degrees in graphs that represent the text. Methodologically speaking, the main 
contribution is a comparison between different graph representations of text. One of 
the graph representations we consider is derived from constituency syntax trees (see 
Sect. 1.3, which, to the best of our knowledge, has never been previously considered 
for this purpose). 

1.1 Ranking Functions for Text 

The earliest cornerstone of information retrieval in text is perhaps the TF-IDF ranking 
function. It consists of the product of two other functions: Term Frequency (TF) 
and Inverse Document Frequency (IDF) [ 15]. We shall limit our introduction to 
the functions we actually used in our computational experiments. In the following 
formulæ, we let . C be a corpus (i.e., a set) of text documents, .D be a document in . C , 
and . t be a term (i.e., a word) in . D. Then: 

.tf(t, D) = |(v ∈ D | v = t)| (1) 

.TF(t, D) = 1 + ln(1 + max(0, ln(tf(t, D)))) (2) 

.IDF(t,C) = ln(|C| + 1)
∑

D∈C tf(t, D)
(3) 

are the basic building blocks for two well-known ranking functions. These are: 

.TFIDF(t, D,C) = TF(t, D) IDF(t,C)

1 − b + ( b|D|∑
P∈C |P|/|C|

) (4) 

.BM25(t, D,C) = (k1 + 1)tf(t, D) IDF(t,C)

k1
(
1 − b + ( b|D|∑

P∈C |P|/|C|
)) + tf(t, D)

, (5) 

where .b = 0.5 and .k1 = 1.2. We aim at replacing .TF with the weighted degree 
.tw(t, D) of a word vertex . t in a graph .G(D) representing a document, namely:
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.tw(t, D) =
∑

v∈NG(D)(t)

dtv (6) 

.TWIDF(t, D,C) = tw(t, D) IDF(t,C)

1 − b + b
( |D|∑

D∈C |P|/|C|
) , (7) 

where .duv is the weight of the edge .{u, v} in the graph .G(D), and .b = 0.75. The  
weights of the constants is taken from [ 16]. For unweighted graphs .G(D) we have 
.duv = 1 for all edges .{u, v}. 

1.2 Graph-of-Words 

Graphs can be used to summarize and extract keywords from a text in natural language 
[ 13]. In general, these graphs encode syntactical and sometimes semantic information 
on the edges, that represent relations on the words inferred from the text. Here we 
look at a purely syntactical construction proposed in Rousseau’s Ph.D thesis [ 16] 
under the name graph-of-words. 

In a graph-of-words (gow), the vertices are labeled by the words. The edges inci-
dent to each node are induced by the proximity of the words that are left and right of 
the node word in the linear text reading order. For example, in the sentence “Com-
puters are close to understanding natural language”, the words “are” and “to” are .1-
proximal to “close”, and the words “computers” and “understanding” are.2-proximal 
to “close”. In a gow with proximity parameter. 2, the node labelled by “close” would 
be adjacent to the vertices labelled by “computers”, “are”, “to”, “understanding”. 

Note that, if a word occurs more than once in a text, this construction creates 
separate vertices referring to each occurrence. Moreover, the resulting graph would 
be a simple chain of embedded cliques, where almost every vertex has the same 
degree. This motivates a last contraction step in the construction of gows: if two or 
more vertices represent different occurrences of the same word, they are contracted 
to a single node. This last step is sometimes interpreted more broadly, for example by 
contracting vertices having same lemmatized word (i.e. the stem of the word without 
the desinences). An important pre-processing step to a useful gow is the removal of 
stop-words: words that are very frequent in most texts, but do not carry keyword-
status information. Typically, stop-words are articles, auxiliary verbs or particles, 
prepositions, conjunctions, common adverbs, and so on. An example of a gow is 
given in Fig. 1. We note that gows of proximity . k have at least .2k adjacencies. 

1.3 Syntax Trees 

In the framework of formal languages, syntax trees are the trace of a parsing algo-
rithm for the sentences of the language. They also provide the mechanism by which
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Fig. 1 A graph-of-word with proximity. 2 of the sentence “if two or more nodes represent different 
occurrences of the same word, they are contracted to a single node”. Edges are weighted by the text 
distance between the two word vertices, but this weighting is not essential. The node with largest 
degree is labelled by the word “nodes” (in the above graph, the two nodes corresponding to “nodes” 
and “node” were contracted) 

computers assign semantics to high-level programs, or, in other words, execute code 
[ 6, 10]. Parsing algorithms use a formal grammar in order to drive a recursive anal-
ysis of a formal language sentence. The grammar consists of a set of rules of the 
form 

. tag −→ comp11 . . . comp1n1 | . . . | comph1 . . . comphnk ,

which requires that a phrase tag be decomposed in one of . h ways, each of which 
consists of a certain number of components, which can themselves be phrase tags 
or words. The grammar includes rules for each of the component tags down to the 
words, which are part of a given vocabulary. Each sentence input is assigned an 
initial tag, e.g. . S for “sentence”. The parser resolves tags recursively in terms of the 
component tags prescribed by the grammar rules, for as long as there are relevant 
rules that apply. In so doing, the parser produces a syntax tree. If the parser stops 
before all tags are resolved into constant words, the sentence does not conform to the 
grammar rules (this is how interpreters and compilers flag syntax errors). Otherwise, 
the recursive parsing process can also assign executable machine code to each of the 
constant words (which may be loops, tests, assignments), and then compose the code 
into an executable program (this is how interpreters and compilers turn a high-level 
language program into a set of actions performed by the CPU). 

Noam Chomsky is credited with the popularization of syntax trees applied to nat-
ural languages [ 1], where the sentence tag. S is usually mapped to the decomposition 
.NP VP: i.e., a sentence corresponds to a noun phrase and a verb phrase. These two 
tags are then recursively decomposed until the words are reached. Since natural lan-
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Fig. 2 The constituency tree for the same sentence as in Fig. 1. The tags are: S (sentence), SBAR 
(subordinate sentence), NP (noun phrase), VP (verb phrase), QP (quantificational phrase), PP 
(propositional phrase) 

Fig. 3 The dependency tree for the same sentence as in Fig. 1. The arcs are usually labeled by the 
dependency tag of a child node to its parent node, not shown here because they are not used in this 
paper 

guage is not formal, in general there may be many possible recursive decompositions, 
all leading to a different meaning, without an obvious way to choose between them. 
Chomsky’s trees are called constituency trees (see Fig. 2 for an example). 

Dependency trees are different types of trees originally introduced to linguistics 
by Louis Tesnière. The root of the tree is the main verb of the sentence, which has 
subject and main complement as child nodes. Each noun node has articles, adjectives, 
adverbs as child nodes (see Fig. 3 for an example). 

Our interest in syntax trees is that they provide a binary relation on words alter-
native to linear text order proximity. For dependency trees, this order is natural. For 
constituency trees, the words in a sentence appear as leaf nodes. In both cases, since 
(undirected) trees are connected, each word is adjacent to any other word by means
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of the shortest path between the corresponding nodes. This allows us to define a 
natural edge weight equal to the length of the shortest path. 

Contributions of this paper. In this paper we present gows based on different syn-
tactical relations:.k-proximity, dependency, constituency. While.k-proximity [17] and 
dependency-based gows [ 3] are not new, to the best of our knowledge, constituency 
trees were never used to construct gows so far. We computationally evaluate gows 
of these different types on several counts. 

2 Graph-of-Words Construction Algorithms 

By a sentence we mean a string that a human could correctly transform into a valid 
syntax tree. A phrase is a sub-string of a sentence, which appears as a sub-tree of the 
sentence’s syntax tree. Sentences are also assumed to be equivalent to lists of tokens, 
where each token can be either a word or a punctuation symbol. Notation-wise, for 
a sentence . s we let . si be the . i th token of . s for every .i ≤ |s|, which is the number of 
tokens of . s. 

All our gow construction algorithms have three main phases: 

1. generation of a binary relationship on words; 
2. projection over important words (and removal of non-important ones: typically 

these includes punctuation and stop-words); 
3. contraction of like words (typically words with the same lemmatization, or with 

a similar meaning according to an existing vocabulary or encyclopedia [ 2]). 

2.1 Proximity Gows 

In proximity gows the two phases (generation, projection) may be carried out in either 
order, but changing the order yields different weights (usefulness of edge weights 
in proximity gow is doubtful, though [ 16]). For a string of . n tokens, the generation 
phase is as follows. Initially, .V = {s1, . . . , sn} and .E is empty. Then we add edges 
.{si , si−h} and .{si , si+h} for all .1 ≤ h ≤ k and for all .h < i < n − h. 

The projection phase, if carried out before generation, simply removes the tokens 
deemed unimportant from the sentence. s. The new list of tokens. s ' is then subjected 
to the generation phase. Otherwise projection re-arranges edges incident to removed 
token vertices: we iteratively replace pairs of edges .({v, u}, {u,w}) incident to a 
removed vertex . u by means of an edge .{v,w} with weight .dvw = dvu + duw. Note  
that the removal process may add an edge .{v,w} involving a removed vertex: this 
edge will be part of a replaced pairs later in the iteration. 

Proposition 1 Let .G = (V, E) be the the .k-proximity graph obtained from the sen-
tence .s = (s1, . . . , sn) by performing generation first, then projection; and . H =
(U, F) be obtained by projection then generation. We have .G = H.
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Proof We have.V = U because projection removes the same vertices whether carried 
out before or after generation. Let us now consider an edge.{u, v} ∈ E , where. u = si
and .v = s j for some .i < j . If  . j − i ≤ k in the original sentence . s then projection 
either leaves . j − i invariant or makes it smaller, so .{u, v} ∈ F . Assume now that 
. j − i = k + 1. This means that there is an index . h with .i < h < j such that .sh is a 
removed node. Then, after generation, there must be an edge pair . ({si , sh}, {sh, s j })
in the graph that is replaced by a single edge.{si , s j }: obviously, since .sh is removed 
first in . H , this edge is also in . F . By induction, the same holds for any value of 
. j − i > k. The argument showing that edges in .F must also be in .E is similar. ∎

Given a weighted graph .G = (V, E, d) where .V is a set of tokens of a string . s, 
the contraction in. G of a subset.R ⊂ V s.t..|R| ≥ 2 is as follows: (i) a representative 
.r ∈ R is chosen; (ii) in all edges .{v, u} ∈ E with .v /∈ R and .u ∈ R the symbol . u is 
replaced by. r , with.dvr = dvu + dur ; (iii) all edges in the induced subgraph.G[R] are 
removed from. E ; (iv) all vertices in . R except from. r are removed from. V . 

Corollary 1 Before contraction, the token graph .G = (V, E) constructed by gen-
eration and projection has .|V | − 2k vertices (from the .(k + 1)-st to the .(n − k)th) 
having the same node degree .2k. 
Proof By Proposition 1, the graph.G = (V, E) can be constructed by projection first 
and then generation. Therefore this graph is a.k-proximity graph, where the. i th vertex 
has degree .2k for all .k < i ≤ n − k. ∎

Corollary 1 shows that the contraction step is essential to yielding proximity gows 
with range of different vertex degrees. This feature is important insofar as our aim is 
to look at word ranking functions based on vertex degrees in gows rather than word 
frequencies in documents. 

2.2 Dependency 

A dependency tree is by definition a tree graph over the sentence tokens. The gen-
eration of dependency trees from sentences is carried out by either Probabilistic 
Context-Free Grammar (PCFG) parsers [ 9] or appropriately trained neural networks 
[ 5]. 

Projection and contraction are the same as for proximity-based gows. We note 
that the projection step on dependency trees has a weak impact on connectivity, 
since most of the important tokens are naturally set at nodes closer to the root than 
non-important ones. 

2.3 Constituency 

A constituency tree is a tree graph over sentence tokens as well as syntax tags. In 
this sense, constituency trees can be seen as “liftings” from dependency trees. To
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a given constituency tree, one can retrieve the corresponding dependency tree 1 [ 7]. 
Vice-versa, there may be more than one constituency tree corresponding to a given 
dependency tree [ 18]. Existing algorithms aim at finding the smallest corresponding 
constituency tree. 

The generation of constituency trees from sentences is carried out by either PCFG 
parsers (see https://nlp.stanford.edu/software/srparser.html) or appropriately trained 
neural networks (see https://pypi.org/project/benepar/). 

Because constituency trees have more nodes than just tokens from the given sen-
tence, a preliminary projection step is necessary to remove all of the non-token nodes. 
This is different from the projection step in proximity and dependency gows, because 
the impact on connectivity when removing grammatical tag nodes is considerable. 
We therefore defined a more connectivity-aware variant of projection: (i) for any 
pair .(u, v) of leaf nodes (word tokens) in the constituency tree . T of the sentence . s, 
compute the shortest path .u → v in . T having length . l, and add the edge .{u, v} with 
weight .duv = l to the graph; (ii) remove all arcs adjacent to at least one non-leaf 
node; (iii) remove all non-leaf nodes. This preliminary projection step transforms 
the constituency tree into a graph on the word tokens from the sentence . s. 

We note that the most efficient algorithm for computing shortest paths in trees 
is by means of the Lowest Common Ancestor (LCA) of the origin and destination 
nodes. This yields a linear-time shortest path algorithm. 

Projection and contraction are the same as for proximity-based gows. 

3 Computational Experiments 

Our benchmark aims at establishing advantages and disadvantages of different types 
of gows in keyword extraction tasks. We consider two corpora: a literary one, and 
a technical one. We extract keywords from documents in these corpora using the 
following rank functions: .TFIDF and .BM25 using term frequency, and .TWIDF on 
.k-proximity, constituency tree, and dependency tree based gows (see Sect. 1.1). 

Our code is written in Python 3.10. For dependency and constituency syntax trees 
we made use of spaCy 3.4.4 [ 5] and benepar 0.2.0 [ 8]. Graphs were encoded and 
handled in NetworkX [ 4] 2.8.6. Experiments were obtained on an Apple M1 Max 
CPU with 64GB RAM and MacOS 12.6.3. See http://www.github.com/leoliberti/ 
syntaxGraphOfWords to access the code and the corpora. 

3.1 The Literary Dataset 

The literary corpus contains 18 short documents extracted from various literary work, 
each consisting of a single paragraph. The lexical and grammatical quality of these

1 See https://github.com/wenkokke/dep2con. 
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Table 1 Comparative results on a set of paragraphs from various literary sources, from which we 
extracted the three highest-rank keywords with various methods. We report the number of keywords 
given by each method that is in the list of three keywords in the ground truth 

Instance TermFreq Graphs-of-words 

Source kw TFIDF BM25 .1-prox .4-prox con dep 

1177 b.C. 3 1 1 1 2 0 1 

Crossings 3 1 1 1 1 0 0 

The golden bough 3 1 1 0 0 0 0 

Illuminating Eco 3 0 0 0 0 0 0 

The island of the day before 3 1 1 1 2 1 1 

The library of Babel 3 0 0 0 0 0 1 

Media stories: Malvinas 3 1 1 1 1 1 0 

Neverwhere 3 2 2 1 1 0 1 

Nothing 3 0 0 0 0 0 0 

Paine 3 0 0 0 0 0 0 

Foucault’s Pendulum 3 0 0 0 0 0 0 

The perks of being a wallflower 3 1 1 1 1 0 0 

Quantum computing since Democritus 3 0 0 0 0 0 0 

Richard III 3 1 1 1 1 0 1 

The seventh function of language 3 0 0 0 0 0 0 

Walden 3 1 1 0 0 0 0 

When the sleeper wakes 3 1 1 1 1 0 0 

Wisdom 3 0 0 0 0 0 1 

Total 54 11 11 8 10 2 6 

excerpts is perfect. The ground truth is a set of three keywords per document. These 
keywords were established by the authors of this paper before obtaining the compu-
tational results (we admit nonetheless to a considerable risk of personal bias in our 
ground truth). 

The keywords extracted automatically from the literary corpus are the 3 topmost 
ranking ones according to the values of term frequency and graph degree rank func-
tions. In Table 1 we report the number of keywords guessed by the automatic methods 
that are part of the set of keywords in the ground truth. 

We see from Table 1 that term frequency based ranking methods are better than 
gow-based methods. Amongst the latter, .4-proximity gows yield the best perfor-
mance. We also note that the two term frequency based rankings have exactly the 
same performance.
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3.2 The Technical Dataset 

The technical corpus consists of 449 documents, each of which is a client question 
to technical support. The corresponding ground truth was collected by one of the 
authors of this paper (NB) in the course of his work at OneTeam. The questions are “as 
asked”, with the normal amount of lexical quirks and ungrammatical phrases. These 
documents are short (.8.6 words on average). We therefore restricted .k-proximity 
to .k = 1, otherwise the central word in the sentence would have ended up having 
an abnormally high vertex degree in the .k-proximity gow. The average number of 
keywords per document in the ground truth is.2.4, but the maximum is. 5: we therefore 
allowed the extraction of up to . 5 keywords (the gows often had fewer than five 
vertices, however). 

In Table 2 we present comparative statistical distributions on the success scores 
of each method on documents with a certain number of ground truth keywords. Each 
entry has the format .x@y to mean that a given method was able to find . y correct 
keywords. x times, when ranking the docs documents having.|GT| keywords in their 
ground truth. The total.9 + 238 + 143 + 36 + 3 = 428 falls short of the total of. 449
documents since 21 documents had no keywords. Moreover, the marginal sums do 
not match docs because we did not print the number of times methods found zero 
correct keywords (it suffices to subtract the marginal sums from docs). 

Table 2 Comparative statistics on the technical corpus. Under “Input” we report the number (docs) 
of documents having.|GT| keywords in the ground truth. Each data entry.x@y in row (.|GT|, docs) 
and method-indexed column means that the corresponding method found . y out of .|GT| ground 
truth keywords in. x documents 

Input Ranking method 

.|GT| docs TermFreq Graphs-of-words 

TFIDF BM25 .1-proximity Constituency Dependency 

1 9 6@1 6@1 6@1 6@1 6@1 

2 238 111@1 111@1 115@1 115@1 113@1 

14@2 14@2 14@2 14@2 15@2 

3 143 41@1 41@1 41@1 43@1 42@1 

76@2 76@2 77@2 76@2 77@2 
1@3 1@3 1@3 1@3 1@3 

4 36 17@1 17@1 17@1 17@1 17@1 

6@2 6@2 6@2 6@2 6@2 

0@3 0@3 0@3 1@3 0@3 

1@4 1@4 1@4 0@4 1@4 

5 3 3@1 3@1 3@1 3@1 3@1 

Total 428 276 276 281 282 281
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In this experiment we find that gows are more effective at keyword extraction 
than term frequency. Constituency tree based gows are marginally better than other 
gows. We also note, again, that the two term frequency based methods attain equal 
performance levels. 

4 Conclusion 

We looked at graphs-of-words constructed using syntax trees, and their performance 
in extracting keywords from text. There is no clear dominance of term frequency 
versus graph-of-words rankinds. Graph-of-words scored better with short ungram-
matical sentences, term frequency in literary texts. In the future, we may apply this 
technique to structures such as “knowledge graphs”, which can be obtained by map-
ping the words in the text into structured knowledge sources. 
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On the Optimality Gap of Full Airport 
Slot Assignments: Capacity-Limited 
Packing with Pareto Optimality 
Constraints 

Andreas Brieden, Peter Gritzmann, and Michael Ritter 

Abstract We study a combinatorial packing problem with Pareto optimality con-
straints which arises naturally in the aviation industry. In fact, it has been observed 
that the current practice of assigning takeoff and landing rights at major airports 
may result in a significant gap between full and maximal flight schedules in practice. 
We analyze the specific packing problem theoretically and, particularly, study the 
occurring optimality gap under the prevailing regulatory regimes at the major air-
ports in Germany. Finally, we report on the findings of a computational study based 
on real-world flight requests for one highly congested German airport. 

1 Introduction 

The allocation of takeoff and landing rights at congested airports is governed by 
constraints which restrict the number of arrivals, departures and movements in time 
intervals of specified length. More precisely, under the International Air Transport 
Association’s (IATA) slot system, the aircraft movements at a so-called coordinated 
airport are organized in the form of slots, which designate the right of an airline to 
execute a landing or a takeoff at a specified time. The standard scheduling interval has 
a length of 10 min, and can accommodate a specified number of arrivals, departures 
or, generally, movements. Further restrictions apply for other time periods, e.g., 
for intervals of 30 or 60 min length. These intervals are usually “rolling”, i.e., the 
specified bounds need to hold for each interval of that length starting at any of the 
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Table 1 Reference value system applied at Frankfurt Airport. The R60M value of .106 includes. 2
movements reserved for ad-hoc operations 

Name Length (min) Operation Type of constraint Upper bound 

R10A 10 Arrival Fixed 13 

R10D 10 Departure Fixed 13 

R10M 10 Movement Fixed 20 

R30A 30 Arrival Rolling 33 

R30D 30 Departure Rolling 33 

R30M 30 Movement Rolling 57 

R60A 60 Arrival Rolling 60 

R60D 60 Departure Rolling 60 

R60M 60 Movement Rolling 106 

10 min intervals, i.e., at the full hour, 10 min after the hour, 20 min after the hour etc. 
Table 1 depicts the current slot regime or reference value system at Frankfurt Airport 
as an example. Such reference value systems are designed to balance the number 
of overall flights, arrivals and departures for safety, security, service, environmental 
and other concerns. 

At the beginning of the planning for a new season, all airlines submit either 
single flight requests or flight series requests. The former concern a single arrival 
or departure at a specified time or an arrival-departure pair with specified landing 
and takeoff times. The latter demand a series of movements at given times and days 
of the season. For instance, one such flight series request could ask for slots for the 
following operation: 

Arrival at 8:00, departure at 8:40 every Monday, Wednesday and Friday, starting June 1, 
ending September 30. 

In practice, the airlines usually allow some flexibility in terms of the arrival and 
departure times, specify minimal ground time etc.; exact parameters are given with 
the request in the form specified by the responsible authorities. 

The coordination of all flight requests for all coordinated airports in Germany 
is conducted by the “Flughafenkoordination Deutschland”, a federally owned com-
pany; similar institutions exist throughout the European Union and in other countries. 
The final allocation which takes the inter-airport dependencies into account is then 
negotiated at an international flight scheduling conference. 

Under the so-called “use-it-or-lose-it” provision, airlines receive a grandfather 
right for the upcoming summer or winter season for each flight request which was 
already assigned in the previous summer or winter season, respectively, and in oper-
ation for at least 80% of the time. The slots with grandfather rights must be assigned 
first before the remaining slot pool is allocated (with some additional constraints 
concerning new entrants). 

There are various reasonable objectives for the allocation including that of welfare 
optimization (which, however, is currently hardly used in practice). Here, we will
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mainly focus on the total number of flight movements that can be allocated and 
refer to the underlying optimization problem as MaxMov. See [ 2] for background 
information and detailed pointers to the literature, [ 2, 8, 9] for integer programming 
models and [ 2] for a study of auction based allocation. 

As it has been observed in practice, the “interplay” between the slot regime and 
grandfather rights may lead to quite significant “blocking” which prevents any addi-
tional request from being assigned while the schedule contains a substantially lower 
number of movements than expected. 

The paper is organized as follows. In Sect. 2 we will provide a combinatorial pack-
ing model with Pareto optimality constraints, and state our main results. Section 3 
addresses computational complexity issues. In Sect. 4 we study the blocking effect for 
each fully coordinated airport in Germany based on its current individual reference 
value system. We model the problem of minimizing the number of flight movements 
under Pareto optimality as an integer programming problem and compute bounds for 
the worst-case optimality gap which is caused by flight requests, i.e., of single move-
ments or arrival-departure pairs alone. We complement these results by reporting on 
the findings of a computational study based on real-world flight series requests for 
a major German airport in the presence of grandfather rights. Section 5 closes with 
some final remarks. 

2 Notation, Preliminaries, and Main Results 

Mathematically, slot assignment is a specific packing problem, and grandfather rights 
can be viewed as additional constraints which fix part of the packing. We will now 
introduce a combinatorial packing model with Pareto optimality constraints. It is 
slightly more general than what is required for our aviation problem. Its ingredients 
will still be interpreted within the realm of slot assignments. 

For .n ∈ N, let  .[n] = {1, . . . , n}, let  .1 = (1, . . . , 1)T ∈ R
n , and, for . j ∈ [n], let  

.u j denote the . j th standard unit vector in .R
n . Now, for .m, n ∈ N, let  

. A = (αi, j )i∈[m], j∈[n] =
⎛
⎜⎝
aT
1
...

aT
m

⎞
⎟⎠ ∈ Z

m×n, b =
⎛
⎜⎝

β1
...

βm

⎞
⎟⎠ ∈ Z

m, c =
⎛
⎜⎝

γ1
...

γn

⎞
⎟⎠ ∈ N

n
0.

As usual, in the following, inequalities are meant component-wise. 
In the slot assignment problem, the columns of the matrix .A correspond to the 

potential time slots for each flight request while the rows encode the constraints 
imposed by the reference value system. The right hand side. b contains the individual 
reference values, and. c is the objective function vector, e.g., .c = 1when the number 
of allocated flight assignments has to be maximized.
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In the following, the triple .(A, b, c) will be regarded as a packing task, and the 
collection of all such tasks will constitute our packing problem. We will generally 
suppose that the polyhedron 

. P = {x ∈ R
n : Ax ≤ b ∧ 0 ≤ x ≤ 1}

contains at least one integer point, i.e., .P ∩ Z
n /= ∅. This is, of course, trivially 

satisfied when.b ≥ 0 since the empty packing. 0 is always feasible then. Each vector 
.g ∈ P ∩ Z

n is referred to as a packing while the objective function value.cT g is called 
its density. We speak of .(A, b, c) as a combinatorial packing task if .A ∈ {0, 1}m×n , 
.b ∈ N

m , and .c = 1. Note that MaxMov, i.e., the slot assignment problem with the 
goal to allocate as many movements as possible, is a combinatorial packing problem. 

In the present paper we are particularly interested in the effect that grandfather 
rights will have on the maximal density which can be achieved. More generally, we 
study the worst-case gap between maximal and “full” packings. As usual, “maximal” 
refers to the global maximum.max{cT g : g ∈ P ∩ Z

n} of the objective function over 
all packings. On the other hand, “full” relates to a local optimum, i.e. a packing 
which does not allow the addition of any further object without violating at least one 
of the constraints. 

Hence we say that a point .g ∈ P ∩ Z
n is full, if it is  Pareto-optimal with respect 

to all coordinate directions, i.e., 

. ĝ ∈ P ∩ Z
n ∧ ∀i∈[n] uT

i g ≤ uT
i ĝ =⇒ g = ĝ.

Let .GP denote the corresponding Pareto front, i.e., the set of all integer points in . P
which are full. Then we consider the following decision problem: 

Problem 1 MinParetoMax 

. 

Input: γ ∈ N, A ∈ Z
m×n, b ∈ Z

m, c ∈ N
n
0 such that P ∩ Z

n /= ∅,

where P = {x ∈ R
n : Ax ≤ b ∧ 0 ≤ x ≤ 1}.

Task: Decide whether there exist g∗ ∈ P ∩ Z
n and g∗ ∈ GP such that

cT g∗ − cT g∗ ≥ γ ?

Of course, MinParetoMax is the decision version of computing 

. max{cT x : x ∈ P ∩ Z
n} − min{cT x : x ∈ GP}

which asks for the optimality gap, i.e., the difference in the objective function values 
of a maximal and a minimal full packing. 

In slot allocation we are interested in the effect of a priority assignment for requests 
which are endowed with grandfather rights. The optimality gap is then an upper bound 
for the consequences of current assignment regimes for the degree of exhaustion of 
airport capacity.
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Gaps between global and certain local optima are well studied for packings of 
objects of different sizes or weights, with a particular view on the behavior of specific 
approximation algorithms. The area of bin packing, for instance, provides a large class 
of examples; see, e.g., [ 4]. The existence and extent of such effects is, however, less 
obvious for packings of objects of the same weight and same gain. To the best of our 
knowledge, optimality gaps which are caused by the interplay of grandfather rights 
with specific reference value systems have not been studied systematically before. 

As it turns out, even quite restricted versions of MinParetoMax are .NP-
complete. For background material on computational complexity see [ 5]. 

Theorem 1 MinParetoMax is .NP-complete. The .NP-completeness persists even 
if all instances are restricted to those for which .γ = 1, one integer solution is explic-
itly known, all integer solutions have the same cardinality, all entries of the matrices 
and right hand sides are in .{0,±1}, .c ∈ {0, 1}n, and .(n,m) = (p2, 8p − 4) with 
.p ∈ N. 

The special case of the optimization version of MinParetoMax where all 
instances are combinatorial packing tasks will be referred to as CombMinPare-
toMax. We show that CombMinParetoMax is hard to approximate, even when 
the right hand side is restricted to the all-ones vector. 

Theorem 2 CombMinParetoMax is.APX-hard even if all instances are restricted 
to those for which .b = 1. 

In the context of slot allocation, Theorem 2 can be viewed as an indication that 
(unless.P = NP) there will never be a practically efficient deterministic algorithm for 
computing the optimality gap in general. Note, however, that for any fixed reference 
value system the number of different slot assignments within a season is a polynomial 
in the number of flight requests whose degree is a function of the reference values. 
Given the figures of Table 1 it is clear that the gigantic degrees of these polynomials 
for real-world instances render any enumerative approach hopeless in practice. 

In Sect. 4 we model the problem of minimizing the number of flight movements 
under Pareto optimality as an integer programming problem and compute bounds 
for the worst-case optimality gap. Our computations indicate that (even without the 
presence of longer flight series) the potential blocking effect for each fully coordi-
nated airport in Germany based on its current individual reference value system is 
at least 8.9% (with one notable exception) and may be as large as 15.9%, depending 
on the slot regime. For details see Tables 3 and 4. These results are complemented 
by the findings of a computational study for a major German airport based on the 
real-world flight series requests.
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3 Computational Complexity 

Here we will only briefly indicate which problems are used for the reduction but refer 
to the full version [ 3] of this paper for the details. First note that, while integer linear 
programming is.NP-complete, it is not clear a priori whether the hardness persists in 
our special situation. Accordingly, we use reductions from rather different problems 
in order to establish our complexity results. 

Obviously, MinParetoMax is in .NP. Its .NP-hardness can be proved by means 
of a reduction from a specific uniqueness problem from discrete tomography, see  
[ 1]. 

In order to show that CombMinParetoMax is .APX-hard even if all instances 
are restricted to those for which .b = 1 we can use a reduction from the following 
set packing problem. 

Problem 2 Maximum .3- Set Packing 

. 

Input: A finite set C with |C | ≥ 4, and a set C /= ∅ of
nonempty subsets of Cof cardinality 3.

Task: Find the maximum cardinality of all packings in C,

i.e., of all subsets S of C whose elements are disjoint.

As [ 7] showed, Maximum .3- Set Packing is .APX-complete, even when 
restricted to instances where, for some.q ∈ N with.q ≥ 3, no element of . C occurs in 
more than. q of the subsets in. C. Let us remark that, by [ 6], Maximum .k- Set  Pack-
ing can be approximated within a factor.k/2 + ε for any.ε > 0. However, this does not 
seem to imply particularly strong approximation results for CombMinParetoMax. 

4 Gap Potential at the German Level 3 Airports 

In the following we will analyze the potential optimality gaps at all German Level 3 
airports, i.e., airports operating at the limit of their capacity which are therefore sub-
ject to coordination (Berlin, Düsseldorf, Frankfurt, Hamburg, Hannover, München 
and Stuttgart). The current reference value systems (summer season 2023) for these 
airports are given in Table 2. 

The table is slightly simplified: the figures apply only for the core times (in 
reality, the limits sometimes vary slightly according to the time of day), slots for 
ad-hoc operations are treated as regular slots, and specific values for flights on a 
North Atlantic route are omitted; see https://fluko.org for the precise information. 
Generally, the reference values are “rolling”, i.e., they apply for each interval of the 
specified length beginning every 10 min (except for Düsseldorf airport). 

First, we model the optimization version of MinParetoMax as an integer pro-
gramming problem. So, let .(A, b, c) be a given instance. Using the obvious decou-

https://fluko.org
https://fluko.org
https://fluko.org
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Table 2 Reference value system for the summer season 2023, slightly simplified 

10 min 20 min 30 min 60 min 

A D M A D M A D M A D M 

Berlin 12 12 15 – – – 32 32 45 50 50 78 

Düsseldorf 8 7 12 – 13 – – – 27 33 36 47 

Frankfurt 13 13 20 – – – 33 33 57 60 60 106 

Hamburg 7 7 9 – – – 18 18 25 31 31 48 

Hannover 6 6 8 – – – – – – 30 34 40 

München 12 12 15 – – – – – – 58 58 90 

Stuttgart 7 7 9 – – – – – – 35 35 48 

pling into the maximization .max{cT x : x ∈ P ∩ Z
n} and the minimization problem 

.min{cT x : x ∈ GP} it suffices to consider the latter. 
Note that .y ∈ GP , if and only if .y ∈ P ∩ Z

n , but  .y + u j /∈ P for any . j ∈ [n], 
i.e., there exists an index .i ∈ [m] such that .A(y + u j ) /≤ b or .y + u j /≤ 1. Hence, 
.y ∈ GP , if and only if, .y ∈ P ∩ Z

n , and for every. j ∈ [n] with.uT
j y = 0 there exists 

an index .i ∈ [m] such that 

. aT
i (y + u j ) = aT

i y + αi, j ≥ βi + 1,

where .aT
1 , . . . , aT

m denote again the rows of . A. Setting 

. μi = αi, j − (βi + 1) + min{aT
i x : x ∈ P},

the condition can be written as 

. aT
i y + μiδi, j ≥ βi + 1 − αi, j + μi (i ∈ [m], j ∈ [n])

δi, j ≤ 1 − uT
j y, δi, j ∈ {0, 1} (i ∈ [m], j ∈ [n]),

m∑
i=1

δi, j ≥ 1 ( j ∈ [n]).

Note that the constraints .δi, j ≤ 1 − uT
j y imply that .δi, j = 0 if the . j th component of 

. y is already . 1. 
Hence, using linear programming to compute.μ1, . . . , μm , and setting. τi, j := βi +

1 − ai, j + μi for.i ∈ [m],. j ∈ [n], the minimization problem.min{cT y : y ∈ GP} can 
be formulated as 

. min
{
cT y : Ay ≤ b ∧ y ∈ {0, 1}n ∧ aT

i y + μiδi, j ≥ τi, j ∧ δi, j ≤ 1 − uT
j y

∧
m∑
i=1

δi, j ≥ 1 − uT
j y ∧ δi, j ∈ {0, 1} (i ∈ [m], j ∈ [n])}.
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We used essentially this formulation to compute bounds on the optimality gap for all 
level 3 airports in Germany based on their slot regime according to Table 2 and the 
following assumptions: 

• A complete day consists of 18 h (usually 5:00 a.m. to 10:59 p.m. but times may 
vary from airport to airport due to nighttime flight restrictions). 

• For each time during the hours of operation an arbitrary number of flight requests 
for arrivals and departures is available (i.e., we are just concerned with the number 
of arrivals and departures, not with actual flight or flight series requests comprising 
additional constraints). 

• A flight request involves either a single movement (arrival or departure) or a 
tightly coupled arrival-departure pair where the departure is exactly 60 min after 
the corresponding arrival (on the runway). 

As, due to the Pareto constraints, the integer linear programs are computationally 
too challenging for obtaining provably optimal solutions for the full range of operat-
ing hours within reasonable time we resorted to the following method for obtaining 
lower bounds on the optimality gap: 

• First, the maximum gap and corresponding maximal and minimal full solutions 
were computed for all time periods between 1 and 4 h for each airport. The time 
windows for the reference value systems were “wrapped around” to make sure 
that these “patterns” could be concatenated to obtain a feasible solution for longer 
time periods. 

• A feasible solution for a period of exactly 18 h was subsequently obtained by 
concatenating one of these solutions a sufficient number of times and then adding 
additional 10-minute intervals to the beginning and the end of the time period such 
that at least one full hour was still available both at the beginning and at the end 
of that solution. 

• Flight movements (arrivals and departures) for the intervals added at the begin-
ning and at the end were computed (using a straightforward modification of the 
MinParetoMax integer linear program) such that the overall gap of the solution 
over the total of 18 h was maximized. No coupling between arrivals and departures 
was enforced for these additional flights. 

The solutions obtained in this way naturally provide lower bounds for the possible 
gap, and we selected those which provided the largest gap. The numbers of flight 
movements for the so obtained full solutions, maximum solutions and the resulting 
bound for the optimality gap are depicted in Tables 3 and 4. Of course, the actual 
optimum might have an even larger gap. 

As Table 3 shows the obtained bound for the optimality gap for Düsseldorf Airport 
is. 0. In fact, a case analysis shows that, under our assumptions on the flight requests, 
the optimality gap at Düsseldorf is actually. 0. The main difference of the slot regime 
at Düsseldorf is that the bounds on the arrivals, departures and movements are not 
required for rolling intervals while the reference values at the other airports are 
rolling. Of course, coupling effects inflicted by complex flight series requests for
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Table 3 A lower bound on the worst-case optimality gap for the valid reference value systems 
under the conditions specified above for the case of no arrival-departure coupling 

min. full Maximum Gap Ratio (% of max.) 

Berlin 1202 1404 202 14.4 

Düsseldorf 846 846 0 0 

Frankfurt 1738 1908 170 8.9 

Hamburg 745 864 119 13.8 

Hannover 624 720 96 73.3 

München 1362 1620 258 15.9 

Stuttgart 786 864 78 9.0 

Table 4 A lower bound on the worst-case optimality gap for the valid reference value systems 
under the conditions specified above for the case where arrivals and departures are tightly coupled 
with exactly 60 min between an arrival and its corresponding departure (except for the extra flights 
added at the boundary) 

min. full Maximum Gap Ratio (% of max.) 

Berlin 1082 1404 322 22.9 

Düsseldorf 743 846 103 12.2 

Frankfurt 1665 1906 241 12.6 

Hamburg 654 864 210 24.3 

Hannover 538 720 182 25.3 

München 1181 1616 435 26.9 

Stuttgart 654 210 210 24.3 

longer time periods may still result in significant blocking, but the reference value 
system itself is “robust” at least against the most simple manipulation attempts. 

To facilitate the understanding of the underlying patterns, let us take a look at an 
explicit solution for Frankfurt airport for the case of tightly linked arrivals and depar-
ture pairs with exactly 60 min between an arrival and the corresponding departure. 
As we will see, even in this extremely restricted situation the optimality gap is quite 
significant. The solution is based on a pattern for 12 consecutive 10-minute intervals, 
thus it is sufficient to look at four hours. We have selected the time period from 6:00 
a.m. to 10:00 a.m. as that is usually a time of high traffic at Frankfurt airport and thus 
the actual flight movements might be somewhat close to the “prototypical” case we 
have computed. 

In the slot assignment indicated in Table 5, in five out of six 10-minute intervals 
either arrivals or departures are at their maximum value of. 13. The remaining move-
ments are determined such that R30M is at maximum for the first three intervals, thus 
completely covering the first five 10-minute intervals. For the sixth such interval, the 
numbers are chosen such that R60A is full for the intervals 1 to 6, i.e., 06:00 a.m. 
to 06:50 a.m. and R60D is full for the intervals 6-12, i.e., 06:50 a.m. to 07:50 a.m.
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Table 5 Part of the minimum full configuration computed for Frankfurt airport; arrivals and depar-
tures are tightly coupled with a difference of.60min. The gray overlays indicate that the correspond-
ing 10-minute intervals (rows) are “blocked” by an active rule, boldface indicates a rule at its limit. 
The values for R10 rules are equal to the number of arrivals, departures and movements and are 
thus not explicitly given. For the other rules, each component depicts the number of corresponding 
flights in the rolling interval beginning at the time indicated in its row 

Time A D M R30A R30D R30M R60A R60D R60M 

06:00 13 7 20 33 24 57 60 36 96 

06:10 13 4 17 33 24 57 54 42 96 

06:20 7 13 20 33 24 57 45 51 96 

06:30 13 7 20 27 12 39 51 45 96 

06:40 13 4 17 21 18 39 45 51 96 

06:50 1 1 2 12 27 39 36 60 96 

07:00 7 13 20 24 33 57 36 60 96 

07:10 4 13 17 24 33 57 42 54 96 

07:20 13 7 20 24 33 57 51 45 96 

07:30 7 13 20 12 27 39 45 51 96 

07:40 4 13 17 18 21 39 51 45 96 

07:50 1 1 2 27 12 39 60 36 96 

08:00 13 7 20 33 24 57 60 36 96 

08:10 13 4 17 33 24 57 54 42 96 

08:20 7 13 20 33 24 57 45 51 96 

08:30 13 7 20 27 12 39 51 45 96 

08:40 13 4 17 21 18 39 45 51 96 

08:50 1 1 2 12 27 39 36 60 96 

09:00 7 13 20 24 33 57 36 60 96 

09:10 4 13 17 24 33 57 42 54 96 

09:20 13 7 20 24 33 57 51 45 96 

09:30 7 13 20 12 27 39 45 51 96 

09:40 4 13 17 18 21 39 51 45 96 

09:50 1 1 2 27 12 39 60 36 96 

This pattern of R60A/R60D alternates with one 10-minute interval overlap at 06:50 
a.m., 07:50 a.m. etc. where R30M takes care of the intervals “in between”. In effect, 
the rules are combined to obtain a full flight schedule with as few movements as 
possible. 

Table 6, on the other hand, depicts a maximum configuration for the same time 
period. Note that all R60M rules are now binding, showing that the assignment is 
indeed maximal. Also R10M is satisfied with equality as much as possible. 

When we extend the depicted schedules to the full time period from 6 a.m. to 
11 p.m. as described above, we obtain two different full schedules which however,
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Table 6 Part of a maximum configuration computed for Frankfurt airport; arrivals and departures 
are tightly coupled with a distance of.60min. The gray overlays indicate that the corresponding slots 
(rows) are “blocked” by an active rule, boldface numbers indicate an active limit. The values for 
R10 rules are equal to the number of arrivals, departures and movements and are thus not explicitly 
given 

Time A D M R30A R30D R30M R60A R60D R60M 

06:00 7 13 20 24 33 57 48 58 106 

06:10 7 13 20 30 22 52 54 52 106 

06:20 10 7 17 33 19 52 60 46 106 

06:30 13 2 15 24 25 49 57 49 106 

06:40 10 10 20 24 30 54 46 60 106 

06:50 1 13 14 27 27 54 46 60 106 

07:00 13 7 20 33 24 57 58 48 106 

07:10 13 7 20 22 30 52 52 54 106 

07:20 7 10 17 19 33 52 46 60 106 

07:30 2 13 15 25 24 49 49 57 106 

07:40 10 10 20 30 24 54 60 46 106 

07:50 13 1 14 27 27 54 60 46 106 

08:00 7 13 20 24 33 57 48 58 106 

08:10 7 13 20 30 22 52 54 52 106 

08:20 10 7 17 33 19 52 60 46 106 

08:30 13 2 15 24 25 49 57 49 106 

08:40 10 10 20 24 30 54 46 60 106 

08:50 1 13 14 27 27 54 46 60 106 

09:00 13 7 20 33 24 57 58 48 106 

09:10 13 7 20 22 30 52 52 54 106 

09:20 7 10 17 19 33 52 46 60 106 

09:30 2 13 15 25 24 49 49 57 106 

09:40 10 10 20 30 24 54 60 46 106 

09:50 13 1 14 27 27 54 60 46 106 

accommodate.1738 and.1908flights, respectively. Even though not a single additional 
arrival or departure can be incorporated in the first schedule, it contains .241, i.e., 
12.6% less flights than the second one. Similar examples provide the figures of 
Tables 3 and 4 for the other level 3 airports in Germany. 

Let us point out that, for various reasons, the derived ratios should only be viewed 
as theoretical indication for potential blocking within the slot regimes. First, in prac-
tice, a flight can only be assigned if slots are requested by an airline. Second, in the 
process of coordination one attempts to solve MaxMov (or a variant of it) and hence 
tries to avoid “bad” solutions as far as possible. However, as we have seen, blocking
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already occurs when only requests for single movements are considered and may 
thus be introduced inadvertently into the scheduling process. 

Even worse, in practice, the majority of requests is not for single movements 
or arrival-departure pairs but for flight series at specified times, days and weeks 
throughout the season. In effect, such series constitute a “wide range coupling” 
throughout the season, which may result in a significantly higher optimality gap. 
Further recall that grandfather rights can be viewed as fixing partial solutions which 
may drive even best assignments of the remaining slot pool to full schedules of 
smaller cardinality. 

In order to assess how these conflicting effects act in practice, we studied opti-
mality gaps empirically at a major German airport under realistic assumptions and, 
in particular, based on the real flight requests for a full season which included infor-
mation on the connection of arrivals and subsequent departures, on minimum ground 
times requirements etc. Also, a tolerance of plus/minus 10 min for intercontinental 
flights and of plus 10 min for continental flights compared to the requested slot time 
was permitted. 

In the first scenario we solved MaxMov under the assumption that no grandfather 
rights had to be observed. In the second and third scenario, 40% and 50% of the 
requests were endowed with grandfather rights, respectively. All computations were 
carried out for a full season (which is roughly six months long). Due to the grandfather 
rights, the maximum number of movements which could be scheduled in the second 
scenario was by about 4000 less than the number in scenario one. The presence of 
grandfather rights for 50% of the requests led to a reduction of about 6000 movements 
in the season. 

5 Final Remarks 

As we have seen, even a simple regime of flight requests carries the potential for 
significant optimality gaps. In the absence of grandfather rights suboptimal schedules 
can be avoided by using state-of-the-art integer programming algorithms which are 
capable of computing optimal schedules; see [ 2, 9]. 

In conjunction with the slot regime grandfather rights can act as additional con-
straints or can be viewed as a partial result of some scheduling heuristic and can hence 
lead to significant gaps between full and maximal schedules. It might therefore be 
advisable to study the effect of weakening grandfather rights to some extent. The 
right to operate at times close to but not quite exactly at the time of the previous usage 
will typically allow more flexibility in flight scheduling and thus lead to schedules 
with additional flights if needed. The effect of such changes will, of course, depend 
on the slot regime, the flight series requests, the amount and location of previous 
grandfather rights etc. and may hence vary from airport to airport.
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