
AIRO Springer Series 13

Andreas Brieden
Stefan Pickl
Markus Siegle Editors

Graphs and
Combinatorial
Optimization:
from Theory
to Applications
CTW 2023, Garmisch-Partenkirchen,
Germany, June 20–22

AIRO Springer Series

Volume 13

Editor-in-Chief

Daniele Vigo, Dipartimento di Ingegneria dell’Energia Elettrica e
dell’Informazione “Gugliemo Marconi”, Alma Mater Studiorum Università di
Bologna, Bologna, Italy

Series Editors

Alessandro Agnetis, Dipartimento di Ingegneria dell’Informazione e Scienze
Matematiche, Università degli Studi di Siena, Siena, Italy

Edoardo Amaldi, Dipartimento di Elettronica, Informazione e Bioingegneria
(DEIB), Politecnico di Milano, Milan, Italy

Francesca Guerriero, Dipartimento di Ingegneria Meccanica, Energetica e
Gestionale (DIMEG), Università della Calabria, Rende, Italy

Stefano Lucidi, Dipartimento di Ingegneria Informatica Automatica e Gestionale
“Antonio Ruberti” (DIAG), Università di Roma “La Sapienza”, Rome, Italy

Enza Messina, Dipartimento di Informatica Sistemistica e Comunicazione,
Università degli Studi di Milano-Bicocca, Milan, Italy

Antonio Sforza, Dipartimento di Ingegneria Elettrica e Tecnologie
dell’Informazione, Università degli Studi di Napoli Federico II, Naples, Italy

The AIRO Springer Series focuses on the relevance of operations research (OR) in
the scientific world and in real life applications.

The series publishes peer-reviewed only works, such as contributed volumes,
lectures notes, and monographs in English language resulting from workshops,
conferences, courses, schools, seminars, and research activities carried out by AIRO,
Associazione Italiana di Ricerca Operativa – Optimization and Decision Sciences:
http://www.airo.org/index.php/it/.

The books in the series will discuss recent results and analyze new trends focusing
on the following areas: Optimization and Operation Research, including Continuous,
Discrete and Network Optimization, and related industrial and territorial applica-
tions. Interdisciplinary contributions, showing a fruitful collaboration of scientists
with researchers from other fields to address complex applications, are welcome.

The series is aimed at providing useful reference material to students, academic
and industrial researchers at an international level.

Should an author wish to submit a manuscript, please note that this can be done by
directly contacting the series Editorial Board, which is in charge of the peer-review
process.

THE SERIES IS INDEXED IN SCOPUS

http://www.airo.org/index.php/it/

Andreas Brieden · Stefan Pickl · Markus Siegle
Editors

Graphs and Combinatorial
Optimization: from Theory
to Applications
CTW 2023, Garmisch-Partenkirchen,
Germany, June 20–22

Editors
Andreas Brieden
Fakultät für Wirtschafts- und
Organisationswissenschaften
Universität der Bundeswehr München
Munich, Germany

Markus Siegle
Fakultät für Informatik
Universität der Bundeswehr München
Munich, Germany

Stefan Pickl
Fakultät für Informatik
Universität der Bundeswehr München
Munich, Germany

ISSN 2523-7047 ISSN 2523-7055 (electronic)
AIRO Springer Series
ISBN 978-3-031-46825-4 ISBN 978-3-031-46826-1 (eBook)
https://doi.org/10.1007/978-3-031-46826-1

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature
Switzerland AG 2024

This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether
the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse
of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and
transmission or information storage and retrieval, electronic adaptation, computer software, or by similar
or dissimilar methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, expressed or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Paper in this product is recyclable.

https://orcid.org/0000-0001-5549-6259
https://doi.org/10.1007/978-3-031-46826-1

CTW 2023 Program Committee

Ali Fuat Alkaya, Marmara U.
Andreas Brieden, U. Bundeswehr München
Brigitte Buchetmann, U. Bundeswehr München
Christoph Buchheim, TU Dortmund
Francesco Carrabs, U. Salerno
Alberto Ceselli, U. Milano
Roberto Cordone, U. Milano
Ekrem Duman, Ozyegin U.
Yuri Faenza, Columbia U.
Claudio Gentile, IASI-CNR Roma
Johann Hurink, U. Twente
Ola Jabali, Politecnico di Milano
Leo Liberti, CNRS and LIX Polytechnique Palaiseau
Bodo Manthey, U. Twente
Gaia Nicosia, U. Roma
Tre Tony Nixon, U. Lancaster
Andrea Pacifici, U. Roma Tor Vergata
Ulrich Pferschy, U. Graz
Stefan Pickl, U. Bundeswehr München
Bert Randerath, U. Köln
Giovanni Righini, U. Milano
Heiko Roeglin, U. Bonn
Oliver Schaudt, RTWH Aachen U.
Rainer Schrader, U. Köln
Markus Siegle, U. Bundeswehr München
Giuseppe Stecca, IASI-CNR Roma

v

vi CTW 2023 Program Committee

Paolo Ventura, IASI-CNR Roma
Maria Teresa Vespucci, U. Bergamo
Angelika Wiegele, Alpen-Adria U. Klagenfurt
Maryna Zharikova, Kherson National Technical U.

CTW Steering Committee

Ali Fuat Alkaya, Marmara U.
Alberto Ceselli, U. Milano
Roberto Cordone, U. Milano
Ekrem Duman, Ozyegin U.
Ulrich Faigle, U. Köln
Claudio Gentile, IASI-CNR Roma
Johann Hurink, U. Twente
Leo Liberti, CNRS and LIX Polytechnique Palaiseau
Bodo Manthey, U. Twente
Gaia Nicosia, U. Roma
Tre Andrea Pacifici, U. Roma Tor Vergata
Stefan Pickl, U. Bundeswehr München
Bert Randerath, U. Köln
Giovanni Righini, U. Milano
Heiko Roeglin, U. Bonn
Oliver Schaudt, RWTH Aachen
Rainer Schrader, U. Köln
Rudiger Schultz, U. Duisburg-Essen
Frank Vallentin, U. Köln

CTW23 Organizing Committee

Dr. Andrea Ferstl
Tino Krug
Viola Schad
Ulrike Stein
Silvia Wagner

Program Committee Chairs

Andreas Brieden
Stefan Pickl
Markus Siegle

Preface

The Cologne-Twente Workshop (CTW) on Graphs and Combinatorial Optimization
is an established workshop series initiated by Ulrich Faigle in 2001, which was the
time he moved from Twente University to the University of Cologne. After several
CTW editions in Twente and Cologne, the workshop was also held in different loca-
tions in Italy, France, Germany, the Netherlands, and Türkiye. Having been initially
set up by discrete applied mathematicians, CTW still follows the mathematical
tradition.

In this CTW2023 edition, we implemented again two submission tracks: standard
papers of at most 12 pages and traditional CTW extended abstracts of at most 4
pages. This volume collects the standard papers that were accepted by CTW2023.
The papers underwent a peer-review process performed by a Program Committee
consisting of 30 members and 19 CTW steering committee members. PC members
came from Austria, France, Germany, Italy, The Netherlands, Türkiye, Ukraine, UK,
and the USA. We received 33 submissions of which 15 (45.5%) were accepted for
publication in this volume. The chapters of this volume present works on graph
theory, discrete mathematics, combinatorial optimization, and operations research
methods, with particular emphasis on coloring, graph decomposition, connectivity,
distance geometry, mixed-integer programming, machine learning, heuristics, meta-
heuristics, math-heuristics, and exact methods. Applications are related to logistics,
production planning, and scheduling.

The scientific program of CTW2023 included presentations of the 15 standard
papers in this volume, of 10 extended abstracts, and 4 plenary invited lectures. As usual
for the CTW, extended abstracts were subject to a high acceptance level, allowing also
papers containing preliminary results with a particular focus on work presented by
young researchers. Those traditional CTW extended abstracts were published in an
internal publication and on the conference’s website at www.ctw2023.de.

We thank all PC members for their hard reviewing work performed to select the
papers and to improve their quality.

Following the CTW tradition, a special issue of Discrete Applied Mathematics
(DAM) journal dedicated to this workshop and its main topics of interest will be
edited.

vii

https://www.ctw2023.de

viii Preface

This CTW edition also featured invited plenary speakers. Four well-known
researchers accepted our invitation: Prof. Peter Gritzmann (Technische Universität
München) spoke about “Diagrams, clustering, and coresets, and their application to
the representation of polycrystals”, Prof. Janny Leung (University of Macau) gave
insights into the complex nature of “Sports Scheduling”, Prof. Anne Remke (Univer-
sität Münster) gave an overview of “Optimizing different flavours of nondeterminism
in hybrid automata with random clocks”, and Prof. Maximilian Moll (Universität
der Bundeswehr München) chose the topic “Exploring Solutions to the Interdiction
Problem: Network Optimization in Operations Research, Machine Learning and
Quantum Computing”.

We would like to thank the Associazione Italiana di Ricerca Operativa (AIRO) for
hosting this volume in its AIRO Springer series. Also, last but not least, we would
like to thank our organizing team for their dedicated work in making this workshop
possible.

Munich, Germany
July 2023

Andreas Brieden
Stefan Pickl

Markus Siegle

Contents

The Algorithmic Complexity of the Paired Matching Problem 1
Ruben F. A. Verhaegh

Edge Contraction and Forbidden Induced Subgraphs 15
Hany Ibrahim and Peter Tittmann

Exact Approaches for the Connected Vertex Cover Problem 29
Manuel Aprile

Rigidity of Frameworks on Spheres . 41
John Hewetson and Anthony Nixon

Managing Time Expanded Networks: The Strong Lift Problem 53
José-L. Figueroa, Alain Quilliot, Hélène Toussaint, and Annegret Wagler

k-Slow Burning: Complexity and Upper Bounds . 67
Michaela Hiller, Arie M. C. A. Koster, and Philipp Pabst

Discrepancies of Subtrees . 81
Tarun Krishna, Peleg Michaeli, Michail Sarantis, Fenglin Wang,
and Yiqing Wang

Handling Sub-symmetry in Integer Programming using Activation
Handlers . 95
Christopher Hojny, Tom Verhoeff, and Sten Wessel

A Multivariate Complexity Analysis of the Generalized Noah’s
Ark Problem . 109
Christian Komusiewicz and Jannik T. Schestag

Comparing Ad-Hoc and MIP-Based Algorithms for the Online
Facility Location Problem . 123
Rosario Messana and Alberto Ceselli

ix

x Contents

Data-Driven Feasibility for the Resource Constrained Shortest
Path Problem . 135
Cristina Ondei, Alberto Ceselli, and Marco Trubian

Monte-Carlo Integration on a Union of Polytopes . 147
Jonas Stübbe and Anne Remke

Achieving Long-Term Fairness in Submodular Maximization
Through Randomization . 161
Shaojie Tang, Jing Yuan, and Twumasi Mensah-Boateng

On Syntactical Graphs-of-Words . 175
Nabil Moncef Boukhatem, Davide Buscaldi, and Leo Liberti

On the Optimality Gap of Full Airport Slot Assignments:
Capacity-Limited Packing with Pareto Optimality Constraints 187
Andreas Brieden, Peter Gritzmann, and Michael Ritter

Author Index . 201

The Algorithmic Complexity
of the Paired Matching Problem

Ruben F. A. Verhaegh

Abstract We introduce a new matching problem originating from industry called
the Paired Matching problem. The objective in the problem is to find a maximum
matching of minimum cost in a bipartite graph. This is complicated by a non-trivial
definition of cost, which is expressed based on a pairing of the vertices in one partite
set. We prove that the problem is NP-complete even under further restrictions. We
also study the parameterized complexity of the problem and give an exact algorithm
for it using kernelization. In doing so, we show that the problem can be solved
efficiently even on large inputs, as long as a given one of the partite sets is small.

1 Introduction

Background and motivation. The field of matching theory studies and explores
matchings (sets of pairwise vertex-disjoint edges) and their properties, which are
relevant for a plethora of applications. Some of the most fundamental matching
problems, such as the Maximum Matching problem and the Minimum Weight
Perfect Matching problem, have long been known to be solvable in polynomial
time [4], while many other matching problems however have been proven to be NP-
complete, including the Exact Weight Perfect Matching problem [10], the
Induced Matching problem [11] and the Rainbow Matching problem [7].

We introduce and study a new matching problem. Its origins and relevance lie
in pick-and-place machines that are used in electronics assembly to place electri-
cal components on printed circuit boards. Recently, a company from the Eindhoven
Brainport area designed an upgrade to one of their machines, such that it could pick
and place two of these components at the same time. With this upgrade also comes
a new optimization problem: which pairs of components should be handled simul-

This work is based on a Masters thesis [12].

R. F. A. Verhaegh (B)
Eindhoven University of Technology, Eindhoven, The Netherlands
e-mail: r.f.a.verhaegh@tue.nl

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
A. Brieden et al. (eds.), Graphs and Combinatorial Optimization:
from Theory to Applications, AIRO Springer Series 13,
https://doi.org/10.1007/978-3-031-46826-1_1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-46826-1_1&domain=pdf
r.f.a.verhaegh@tue.nl
 854
56538 a 854 56538 a

mailto:r.f.a.verhaegh@tue.nl
https://doi.org/10.1007/978-3-031-46826-1_1
https://doi.org/10.1007/978-3-031-46826-1_1
https://doi.org/10.1007/978-3-031-46826-1_1
https://doi.org/10.1007/978-3-031-46826-1_1
https://doi.org/10.1007/978-3-031-46826-1_1
https://doi.org/10.1007/978-3-031-46826-1_1
https://doi.org/10.1007/978-3-031-46826-1_1
https://doi.org/10.1007/978-3-031-46826-1_1
https://doi.org/10.1007/978-3-031-46826-1_1
https://doi.org/10.1007/978-3-031-46826-1_1
https://doi.org/10.1007/978-3-031-46826-1_1

2 R. F. A. Verhaegh

taneously to minimize the time spent? This optimization problem can be formulated
as the following problem.

Minimum Paired Matching (MPM)

Given: A bipartite graph .G = (P + T, E) with “people vertices” .P and “task ver-
tices” . T , where the .|P| = 2n people vertices are partitioned into ordered pairs
.(a1, b1), (a2, b2), . . . , (an, bn). Also given are a constant.c ∈ R≥0, and a function
. f : T × T → R≥0

Objective: Determine the minimum cost of a matching with cardinality.|T | in.G or conclude
that no such matching exists in. G. Each people pair.(ai , bi) contributes separately
to the cost of a matching .M and the total cost of the matching is the sum of all
these contributions. The contribution of a pair.(ai , bi) is as follows:

• If neither.ai nor.bi is matched to a task by. M , their contribution to the
cost is . 0.

• If exactly one of. ai and. bi is matched to a task by. M , their contribution
to the cost is . c.

• If .ai is matched to task .t1 ∈ T and .bi is matched to task .t2 ∈ T , then
their contribution to the cost is given by . f (t1, t2). Note the possible
asymmetry in the definition of . f , meaning that . f (t1, t2) might not
equal . f (t2, t1).

We define the Paired Matching problem (PM) to be the corresponding decision
problem in which an additional parameter.d ∈ R≥0 is added to the input. Rather than
finding the minimum cost of a matching with cardinality.|T | in the graph, the objective
is then to determine whether such a matching exists with cost at most . d.

For the practical application in electronics manufacturing, one may think of the
tasks in this definition as electrical components and think of the people as machine
parts to pick and place these components. Then, the cost to be minimized represents
the total time spent to complete the assembly for a given choice of assigning electrical
components to machine parts.

Despite the practically motivated origins of the problem, there are some deep links
between PM and other better known matching problems, in particular to the Exact
Matching problem [10]. Although not part of this paper, the relation between PM
and existing literature is explored further in the master thesis this work is based on
[12].

Our contribution. In Sect. 2, we consider the Paired Matching problem from
the perspective of classical complexity theory: we prove the decision problem
PM to be NP-complete and make some notes on the implications this has on the
(in)approximability of the optimization problem MPM.

In Sect. 3, we shift our focus to the parameterized complexity of PM. By exploit-
ing a kernelization technique presented by Bodlaender, Jansen and Kratsch [1], we
give an exact algorithm that solves a PM instance . I with .|T | task vertices in time

The Algorithmic Complexity of the Paired Matching Problem 3

.2O(|T |3)|I |O(1). Hence this algorithm shows that large instances with a small number
of task vertices can be solved efficiently.

Parameterized complexity of other matching problems. As briefly mentioned
above, PM is closely related to the Exact Matching problem. This problem itself
has also been studied from the perspective of parameterized complexity theory. In
[8] for example, parameterized algorithms for it were developed when considering
the independence number or bipartite independence number of the graph to be the
parameter. Another common choice of parameter for graph problems is, if applicable,
the size of the solution whose existence needs to be determined. Since the objective
in the Exact Matching problem is to determine the existence of a specific type
of perfect matching, this size is always polynomial in the input size, making the
solution size an uninteresting parameter to consider for EM.

Many other matching problems however ask for matchings that are not neces-
sarily perfect and problems like the Rainbow Matching problem [6] and 3-
Dimensional Matching problem [5] admit efficient parameterized algorithms
when parameterized by the solution size. Contrarily, the Induced Matching prob-
lem is an example of a matching problem for which it has been proven that such
algorithms are unlikely to exist [9].

Notation. Throughout the paper, we use standard graph notation. Any notation not
defined here can be found in the book Parameterized Algorithms by Cygan et al. [3].
Although our results are presented in such a way that familiarity with the field of
parameterized algorithms is not required, the book may also also be a good reference
for readers unfamiliar with the field to provide additional background and motivation.

2 Classical Complexity

We start this section by proving PM to be NP-complete in Theorem 1. Afterwards,
we discuss the implications of the theorem for the approximability for MPM.

Before proving the NP-hardness of PM, briefly note that the problem is contained
in NP: the cost of any matching in a PM instance can be computed in polynomial
time, so a solution to the problem may be verified in polynomial time as well. Now
to prove that the problem is also NP-hard, we provide a polynomial time reduction
from 3OCC-SAT, a variant of the well-known SAT problem which asks to determine
the satisfiability of a Boolean formula in conjunctive normal form. The 3OCC-SAT
problem poses an extra restriction on the input by requiring that every variable occurs
at most three times.

4 R. F. A. Verhaegh

3-Occurence Satisfiability (3OCC-SAT)

Given: A Boolean formula .F in conjunctive normal form (CNF) on the variables . X =
{x1, x2, . . . , xn} such that every variable occurs at most three times

Objective: Determine whether.X admits a truth assignment that satisfies. F .

Although many variants of the SAT problem limit the clauses to contain no more
than three literals, remark that clauses in 3OCC-SAT instances are allowed to be
arbitrarily large. Now, given the NP-completeness of the SAT problem [2], it is not
hard to convince ourselves of the NP-completeness of 3OCC-SAT as every CNF
formula can be rewritten to an equivalent one in which no variables occur more than
three times [13]. Hence, we can use this problem to prove Theorem 1.

Theorem 1 Let .c1, c2 ∈ R≥0 be any two constants such that .0 ≤ c1 < c2. Then any
3OCC-SAT instance can be reduced to an equivalent PM instance in which .c = c1,
. f only takes values .2 · c1 and .2 · c2 and .d = c1 · |T |. Hence, PM is NP-complete,
even when . c and . f are integer valued and bounded by a constant.

Proof Let .F be a 3OCC-SAT instance, where .F is a formula with clauses
.C1,C2, . . . ,Cm using the variables.X = {x1, x2, . . . , xn}. Let.li,1, li,2, . . . , li,|Ci | be
the occurrences of literals of the .i-th clause. We reduce .F to an equivalent PM-
instance .(G, c, f, d) and we start by constructing the graph .G = (P + T, E). First,
the set . T will be constructed as the union of two sets .T1 and . T2.

For every clause.Ci we add a vertex.vi to. T1. For every occurrence.li, j of a literal
we add two vertices .p+

i, j and .p
−
i, j to . P , representing a true or false assignment

of the variable in .li, j respectively. These two vertices form a pair in . P . If .li, j is a
positive variable we connect .p+

i, j and. vi . If .li, j is a negated variable we connect . p
−
i, j

and . vi . Remark that this construction thus creates multiple people pairs for literals
occurring multiple times.

By finding a matching in this graph which matches all vertices in. T1, we are deter-
mining an assignment of the variables in .F which satisfies all its clauses. However,
not every such matching in .G necessarily corresponds to a valid truth assignment of
the variables in . X : we might try to set a variable to true to satisfy one clause and
at the same time set it to false to satisfy another clause. Hence, we need to expand
our graph to prevent situations like these. We can only encounter this problem for
variables that occur both positively and negatively in the formula, so we expand our
reduction based on the following two cases:

• Suppose .xh is a variable that occurs twice in . F : once positively in the literal . li1, j1
and once negated in the literal .li2, j2 . We then add a vertex .sh to the set .T2 and
connect .p+

i1, j1
and .p−

i2, j2
to . sh . See Fig. 1a for an example.

• Suppose .xh is a variable that occurs three times in .F and suppose that it occurs
positively in the literals.li1, j1 and.li2, j2 and that it occurs negated in the literal.li3, j3 .
We then add two vertices .sh,1 and .sh,2 to . T2. We connect both .p+

i1, j1
and .p+

i3, j3
to

.sh,1 and we connect both .p
+
i2, j2

and .p−
i3, j3

to .sh,2. See Fig. 1b for an example. For

The Algorithmic Complexity of the Paired Matching Problem 5

(a) The direct neighborhood of the ver-
tices representing the literals that oc-
curs in if it occurs once positively and
once negatively.

(b) The direct neighborhood of the ver-
tices representing the literals that oc-
curs in if it occurs twice positively and
once negatively.

Fig. 1 The structure created for variables that occur two or three times in. F

variables that occur once positively and twice negated, we can simply swap the. +
and .− signs in this step.

For variables that occur only in positive form or only in negated form, we skip this
step as there is only one assignment for such a variable that allows it to satisfy clauses.
The problematic situation explained above, where it is simultaneously assigned true
to satisfy one clause and false to satisfy another, is therefore not applicable to these
variables.

By taking .T = T1 ∪ T2 we have now finalized the construction of . G = (P +
T, E). Now let .c1 and.c2 be any two given constants with .0 ≤ c1 < c2. We let . c and
. f depend on these two constants by taking .c = c1 and taking . f to be given by:

. f (t1, t2) =
(
2c1 if t1, t2 ∈ T2
2c2 otherwise.

Finally, we take .d = c1 · |T |, to complete our construction of the PM instance
.(G, c, f, d). Observe that this reduction can be done in polynomial time. To prove
that it is also correct we show that .F is a YES-instance if and only if .(G, c, f, d) is
a YES-instance.

.(⇒) Suppose that .F is a YES-instance for 3OCC-SAT. Then there is a truth assign-
ment .T : X → {true, false} of the variables in .X that satisfies . F . In particular, it
satisfies each clause individually. We will use this assignment to construct a matching
.M that covers every vertex in .T and which has a cost of . d. We construct it as the
union of two matchings .M1 and .M2. .M1 is used to cover the vertices in .T1 and can
be seen as actually encoding the truth assignment .T into . G. .M2 is used to cover the
remaining vertices at a low enough cost. First we construct .M1.

Consider the clause.Ci and consider a literal.li, j that satisfies it under assignment
. T . If there are multiple literals satisfying the clause, we can pick any arbitrary one

6 R. F. A. Verhaegh

of them. If .li, j is a positive variable, we include .{p+
i, j , vi } in .M1. If .li, j is a negated

variable, we include.{p−
i, j , vi } in.M1. By construction, whichever edge we add, exists

in . G. Doing this for every clause .Ci ensures that every vertex in .T1 is covered by
.M1. Furthermore, the vertices in .T1 do not have any shared neighbors so none of the
edges of .M1 coincide, meaning it is indeed a matching.

We continue by constructing a matching .M2 which covers the vertices in .T2 and
none of the vertices already covered by.M1. Consider a variable.xh that occurs more
than once in . F , both positively and negated. We distinguish two cases:

• Suppose.xh occurs twice in. F : once positively in.li1, j1 and once negatively in.li2, j2 .
If .xh is set to true in . T , we know that .li2, j2 cannot be used to satisfy .Ci2 , which
in turn means that we did not cover .p−

i2, j2
with .M1. Hence, we can add . {p−

i2, j2
, sh}

to .M2. By construction, this edge exists. Similarly, if .xh is instead set to false in
. T , we add.{p+

i1, j1
, sh} to.M2. Again, this edge exists and does not coincide with an

edge from.M1.
• Suppose.xh occurs three times in. F . Assume for now that it occurs twice positively
in .li1, j1 and .li2, j2 and once negated in .li3, j3 . If .xh is set to true in . T , we know
that .li3, j3 cannot be used to satisfy .Ci3 , which in turn means that we did not cover
.p−

i3, j3
with .M1. Because .p

+
i3, j3

does not have any neighbors in . T1, this vertex was
also not covered by.M1. Hence we can add the edges.{p+

i3, j3
, sh,1} and. {p−

i3, j3
, sh,2}

to .M2. By construction, these edges exist.
If .xh is instead set to false in . T , we know that .li1, j1 cannot be used to satisfy. Ci1
and .li2, j2 cannot be used to satisfy .Ci2 . This in turn means that neither .p+

i1, j1
nor

.p+
i2, j2

was covered by.M1. Hence, we can add the edges.{p+
i1, j1

, sh,1} and. {p+
i2, j2

, sh,2}
to .M2. By construction these edges exist.
If .xh were to occur once positively and twice negated in . F , we can simply swap
the .+ and .− signs in this step.

If we do this for every variable that occurs both positively and negated, we ensure that
every vertex in .T2 is covered by .M2. Moreover, we have done so without covering
vertices already covered by .M1. Combining this with the fact that .M1 and .M2 are
both matchings, we get that .M := M1 ∪ M2 is also a matching. .M then covers all
vertices in .T = T1 ∪ T2.

Finally, we determine the cost of . M . Note that most pairs in .P have only one
edge matched by. M , therefore each contributing.c = c1 to the total cost of. M . In our
construction, the only pairs in. P of which both vertices are matched by.M correspond
to variables that occur three times. In fact, every such variable has only one literal
.li, j whose corresponding vertex pair even has edges connected to both vertices at
all. There are only two cases in which both these vertices are matched by. M : if.li, j is
a positive variable which is set to false in the satisfying assignment .T or if .li, j is a
negated variable which is set to true in. T . In these cases, the corresponding vertices
.p+

i, j and.p−
i, j are both matched to a vertex in. T2, meaning that together they contribute

.2c1 to the cost of. M . So for every edge in.M it can be said that it contributes.c1 to the
cost of. M , meaning that its cost is.c1 · |T | = d. Hence,.(G, c, f, d) is a YES-instance.

The Algorithmic Complexity of the Paired Matching Problem 7

.(⇐) Suppose that .(G, c, f, d) is a YES-instance. Then there exists a matching . M
in.G = (P + T, E) which has cost at most .d = c1 · |T | and covers all vertices in. T .
We partition the matching into .M = .M1 ∪ M2 such that .M1 contains all the edges
covering.T1 and.M2 contains all the edges covering. T2. We show that there exists an
assignment .T of the variables .x1, . . . , xn such that .F is satisfied.

For every edge .{p+
i, j , vi } ∈ M we assign the variable in the literal .li, j to true

and for every edge .{p−
i, j , vi } ∈ M we assign the variable in the literal .li, j to false.

Any possible remaining variables may receive an arbitrary assignment. Because . M
matches every vertex in. T and in particular in. T1, every clause of. F is satisfied by this
assignment: if .{p+

i, j , vi } ∈ M (and therefore in . G), then by construction .Ci contains
the positive literal .li, j meaning that it can be satisfied by setting the corresponding
variable to true. Likewise, if .{p−

i, j , vi } ∈ M (and therefore in . G), then by construc-
tion.Ci contains the negated literal .li, j meaning that it can be satisfied by setting the
corresponding variable to false. So this assignment indeed satisfies . F . It remains
to show that this is a valid assignment, i.e.: there is no variable which is set to true
and false to satisfy multiple clauses.

This problem could of course only happen for a variable .xh which occurs at least
once positively and at least once negated. We distinguish two cases:

• Suppose .xh occurs twice in . F : once positively in .li1, j1 and once negated in .li2, j2 .
This implies the presence of a vertex.sh ∈ T which only has the vertices.p+

i1, j1
and

.p−
i2, j2

as neighbors. Since .sh is by definition covered by . M , we know that at least
one of these two neighbors must be connected to .xh in .M and because .M is a
matching, this particular vertex is not also used to satisfy its corresponding clause.
Hence, at most one of the literals.li1, j1 and.li2, j2 is used to satisfy its corresponding
clause meaning that .xh does not get assigned both true and false.

• Suppose .xh occurs three times in . F . Assume for now that it occurs twice
positively in .li1, j1 and .li2, j2 and once negated in .li3, j3 . We will prove that if
.{p−

i3, j3
, vi3} ∈ M (in which case we assign .xh to false to satisfy clause .Ci3) it

holds that.{p+
i1, j1

, vi1}, {p+
i2, j2

, vi2} /∈ M . This implies that.xh is not set to true and
false simultaneously to satisfy multiple clauses.
So suppose that .{p−

i3, j3
, vi3} ∈ M . Because .sh,2 is by definition matched in . M , but

apparently not to.p−
i3, j3

, it must instead be matched to its only other neighbor:.p+
i2, j2

.
Because .p+

i2, j2
is then already matched to a vertex other than .vi2 by .M and .M is a

matching, we know that .{p+
i2, j2

, vi2} /∈ M .
To show that also .{p+

i1, j1
, vi1} /∈ M , we first argue that .{p+

i3, j3
, sh,1} /∈ M . If this

edge were to be in . M , then the pair .(p+
i3, j3

, p−
i3, j3

) would contribute .2c2 to the cost
of.M by the definition of. f . Since.M has size.|T | and a cost of at most.c1 · |T |, pairs
in. P cannot contribute more than.c1 to the cost per matched vertex in them without
exceeding the cost of . d . Hence, .{p+

i3, j3
, sh,1} cannot be in .M as it would make the

pair .(p+
i3, j3

, p−
i3, j3

) contribute .c2 > c1 to the cost of .M per matched vertex. So we
establish that .{p+

i3, j3
, sh,1} /∈ M . This implies that .{p+

i1, j1
, sh,1} ∈ M , because .sh,1

8 R. F. A. Verhaegh

must be matched by .M and.p+
i1, j1

is its only other neighbor, which in turn implies
that .{p+

i1, j1
, vi1} /∈ M because .M is a matching.

This shows that.xh is not set to true and false simultaneously in our assignment.
An analogous argument can be made in case .xh occurs once positively and twice
negated in . F .

This proves that our assignment is indeed valid and satisfies . F , meaning that . F
is a YES-instance for 3OCC-SAT. ∎

The additional constraints posed by Theorem 1 under which PM is still NP-
complete, also have implications for the approximability of MPM.

Corollary 1 Unless P=NP, MPM cannot be approximated in polynomial time to
within a multiplicative factor of the optimal solution.

Proof By taking .c1 = 0 in Theorem 1, we obtain a restriction to the input of PM in
which we always have .d = 0. An algorithm that approximates MPM within some
multiplicative factor of the optimal solution would return. 0 if and only if the optimal
solution is . 0, so this approximation algorithm could also be used to solve any PM
instance under this restriction. Since Theorem 1 states that this restricted version of
PM is still NP-complete, such an approximation algorithm cannot run in polynomial
time unless .P = NP. ∎

Of course, any optimization problem in which the optimal solution is . 0 can be
solved exactly using an approximation algorithm. Approximating such problems is
therefore just as hard as solving them exactly. However, even if we require . c and . f
to be positive in MPM, thereby avoiding the trivial case from above where .d = 0,
we find the problem to be hard to approximate [12].

3 Solving Large Instances with Few Task Vertices

In this next section, we consider the parameterized complexity of PM, where our
parameter of choice is .|T |, the number of task vertices in an instance. We develop
an algorithm for PM based on kernelization, a popular technique for developing
parameterized algorithms. A complete definition and explanation of the concept can
be found in the book by Cygan et al. [3], but the high level idea is to reduce an
instance . I of a problem to an equivalent instance .I ' of the same problem whose
size depends only on the parameter associated with the original instance. I . Here, we
say that the two instances are equivalent when they can be answered with the same
YES/NO answer.

When the reduction can be executed in time that is polynomial in the original
input size .|I |, we call it a kernelization. Remark that any follow-up algorithm that
is run on the newly created, yet equivalent instance.I ' has a running time depending
only on the parameter associated with . I , rather than the size of . I .

The Algorithmic Complexity of the Paired Matching Problem 9

We first show that a kernelization exists for PM with respect to.|T | in Proposition 1
and explain in Corollary 2 how it can be used to solve large PM instances with few
task vertices efficiently.

The kernelization is based on the observation that it does not matter to which
people pair a task is assigned. It only matters which other task vertex gets connected
to the same pair, if any. This means that we could remove all people pairs from an
instance for which it holds that for any solution covering that pair, there also exists
another solution of the same cost which does not cover that pair. A key ingredient to
prove the correctness of the kernelization will be a formalization of this idea as given
by the following result from Bodlaender, Jansen, and Kratsch [1, (Theorem 2)].

Lemma 1 Let .B = (X + Y, E) be a bipartite graph and let .M ⊆ E be a maximum
matching in . B. Let .XM ⊆ X be the set of vertices in .X that are covered by . M. Then
for each .Y ' ⊆ Y , if there exists a matching .M ' in .B that covers . Y ', then there exists
a matching .M '' in .G[XM ∪ Y] that covers . Y '.

We continue by using it to show the following result:

Proposition 1 Any PM instance .(G, c, f, d) with .G = (P + T, E) can be reduced
in polynomial time to an equivalent PM instance.(G ', c, f, d) in which.G ' has. O(|T |2)
vertices and .O(|T |3) edges.
Proof Let .(G = (P + T, E), c, f, d) be a PM instance. We will construct a graph
.G ' = (P ' + T ', E ') with .O(|T |2) vertices and .O(|T |3) edges such that . (G, c, f, d)

is a YES-instance if and only if .(G ', c, f, d) is a YES-instance. Figure 2 shows the
kernelization for an example input.

Before constructing.G ', we first construct an auxiliary bipartite graph. B = (X +
Y, E '') from. G. For every pair.(ai , bi) in. P we add a vertex. xi to. X . We construct. Y as
the union of two sets .Y = Y1 ∪ Y2. For every vertex .t j ∈ T we add a vertex .y j to . Y1
and for every pair of distinct vertices.t j1 , t j2 ∈ T we add the vertices.y j1, j2 and.y j2, j1 to
. Y2. We add an edge between every .xi ∈ X and.y j ∈ Y1 for which either . {ai , t j } ∈ E
or.{bi , t j } ∈ E . We also add an edge between every.xi ∈ X and.y j1, j2 ∈ Y2 for which
.{ai , t j1}, {bi , t j2} ∈ E . This concludes the construction of . B.

An interesting observation to make is that every matching.MG in. G can be encoded
in .B as a matching .MB . Given any .MG , we could construct a corresponding .MB in
which:

• The presence of an edge between some .xi ∈ X and some .y j ∈ Y1 would indicate
that .MG leaves one vertex of .(ai , bi) unmatched, while matching the other to
.t j ∈ T .

• The presence of an edge between some.xi ∈ X and some.y j1, j2 ∈ Y2 in.MB would
indicate that .ai and .bi get matched to .t j1 and .t j2 respectively by .MG .

Now that we have constructed our auxiliary graph . B, we continue by finding
a maximum matching .M in it and we use this matching to construct the graph
.G ' = (P ' + T ', E '). To this end, let .XM ⊆ X denote the set of vertices in.X that are

10 R. F. A. Verhaegh

Fig. 2 Kernelization applied to an example graph. Figure 2a shows an example graph. G. Figures 2b
and c depict the auxiliary graph. B and respectively show its construction and a maximum matching
in it. They are drawn on a gray background to avoid confusion between the three different graphs
depicted (. G, . B and.G '). Figure 2d shows the resulting graph. G '

covered by. M . Then.G ' is obtained from.G by removing all people pairs .(ai , bi) for
which .xi /∈ XM .

Because.|Y | = O(|T |2), we also have that.|XM | = |M | = O(|T |2), which in turn
means that.|P '| = O(|T |2). Since.T ' = T , this gives us that.G ' has.O(|T |2) vertices
and therefore .O(|T |3) edges.

This concludes the kernelization. First note that all steps of the kernelization (con-
structing .B from . G, finding a maximum matching in .B and removing people pairs
from .G to obtain .G ') can be done in polynomial time. Now to show that this pro-
cedure is indeed a valid kernelization for PM, it remains to show that it provides a
correct reduction.

To this end, we show that .(G, c, f, d) is a YES-instance if and only if . (G ', c, f, d)

is a YES-instance. Clearly, if .(G ', c, f, d) is a YES-instance, then so is .(G, c, f, d),
since.G ' is obtained from.G by only removing people vertices. Then every matching
in .G ' also exists in . G, since .G ' is a subgraph of . G. Moreover, since no task vertices
were removed from .G to obtain .G ', a matching that covers all task vertices in . G '
also does so in . G.

The Algorithmic Complexity of the Paired Matching Problem 11

Suppose now that.(G, c, f, d) is a YES-instance, meaning that there is some matching
.MG in .G of cost .d∗ ≤ d. If .MG only contains edges that are also present in .G ', then
this matching also exists in .G ', making .(G ', c, f, d) trivially a YES-instance. So
suppose.MG does not exist in.G '. Then we will construct a matching.MG ' in.G ' with
the same cost . d∗.

To this end, we take a look at the graph . B. Although .B was just an auxiliary
graph to construct .G ' (and is therefore not part of our resulting PM instance), it will
be useful in constructing the matching .MG ' . As explained above, the matching . MG

in .G could be encoded in .B as some matching .MB . Let .Y ' ⊆ Y denote the set of
vertices in . Y that are covered by this .MB . Each vertex in .Y ' represents an ordered
combination of either one or two vertices that are matched to the same pair of people
vertices by .MG .

Consider now again the maximum matching .M in .X from before and the set
.XM of vertices in .X covered by . M . By Lemma 1, there exists a matching .M '' in
.B[XM ∪ Y] covering all the vertices in . Y '. We use this matching .M '' to construct
.MG ' . We do the following for every edge .e ∈ M '':

• If . e has endpoints .xi ∈ X and .y j ∈ Y1, then we add either .{ai , t j } or .{bi , t j } to
.MG ' , depending on which of these edges is present in .G '. We know that at least
one of these edges is present in .G ', because . e exists in . B and .xi ∈ XM .

• If . e has endpoints .xi ∈ X and .y j1, j2 ∈ Y2, then we add the edges .{ai , t j1} and
.{bi , t j2} to .MG ' . Because . e exists in . B, both these edges are present in .G and
because .xi ∈ XM , this edge also exists in .G '.

Because .M '' covers the same vertices in . Y as .MB does, this construction of . MG '

leads to a matching in .G ', which matches the same combinations of vertices to
the same pair of people vertices as .MG did in . G. Not only does this make .MG ' a
valid matching in .G ', but it also has the same cost .d∗ as .MG , making .(G ', c, f, d) a
YES-instance. ∎

Of course, performing just the kernelization on a PM instance does not yet yield
an answer to the problem. Combining it with a brute-force algorithm however, yields
an exact algorithm for the problem as follows.

Corollary 2 Any PM instance.I = (G, c, f, d)with.G = (P + T, E) can be solved
in time .2O(|T |3) · |I |O(1).

Proof Let .I = (G, c, f, d) be a PM-instance with .G = (P + T, E). To solve it in
the desired running time, the first step would be to perform the kernelization from
Proposition 1. This takes .|I |O(1) time and yields an equivalent instance. (G ', c, f, d)

in which .G has .O(|T |2) vertices and .O(|T |3) edges.
The second step is to solve the new instance using a brute-force algorithm. A very

naive way in which this can be done is to iterate over all .2O(|T |3) subsets of edges in
.G ' and checking whether they are a matching such that all task vertices are covered
at a cost of at most . d. Doing this can of course be done in .|I |O(1) time, so the total
time spent by this procedure is .2O(|T |3) · |I |O(1). ∎

12 R. F. A. Verhaegh

4 Conclusion and Discussion

In this paper we have seen the introduction of the Paired Matching problem and
explored its algorithmic complexity. Further exploration thereof has been done in
the master thesis this work is based on [12], but plenty of open questions related to
the problem remain.

While we have seen the problem to be NP-complete, not much is known about
special cases of the problem being solvable in polynomial time. Some NP-complete
graph problems become polynomial time solvable on planar graphs for example and
one could investigate whether the same is true for PM. Another restriction of PM
that could be considered is obtained by requiring the cost function. f to be constant.

It could also be interesting to see whether improvements can be made to the algo-
rithm presented in Corollary 2. Either of its two parts can be tackled. First, one could
see whether the kernelization can be improved to yield an even smaller instance. If
not, it may be possible to prove that any kernelization of PM must yield instances
whose size are at least cubic in the number of task vertices, just like the kerneliza-
tion we have provided in Proposition 1. Secondly, it could be investigated whether
the follow-up algorithm could be improved over the naive brute-force algorithm
presented here.

References

1. Bodlaender, H., Jansen, B., Kratsch, S.: Kernel bounds for path and cycle problems. Theor.
Comput. Sci. 511, 117–136 (2013). https://doi.org/10.1016/j.tcs.2012.09.006

2. Cook, S.: The complexity of theorem-proving procedures. In: Harrison, M., Banerji, R., Ullman,
J (eds.) Proceedings of the 3rd Annual ACM Symposium on Theory of Computing, pp. 151–
158. ACM (1971). https://doi.org/10.1145/800157.805047

3. Cygan, M., Fomin, F., Kowalik, L., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M.,
Saurabh, S.: Parameterized Algorithms. Springer (2015). https://doi.org/10.1007/978-3-319-
21275-3

4. Edmonds, J.: Paths, trees, and flowers. Can. J. Math. 17, 449–467 (1965). https://doi.org/10.
4153/cjm-1965-045-4

5. Fellows, M., Knauer, C., Nishimura, N., Ragde, P., Rosamond, F., Stege, U., Thilikos, D.,
Whitesides, S.: Faster fixed-parameter tractable algorithms for matching and packing problems.
Algorithmica 52(2), 167–176 (2008). https://doi.org/10.1007/s00453-007-9146-y

6. Gupta, S., Roy, S., Saurabh, S., Zehavi, M.: Quadratic vertex kernel for rainbow matching.
Algorithmica 82(4), 881–897 (2020). https://doi.org/10.1007/s00453-019-00618-0

7. Kano, M., Li, X.: Monochromatic and heterochromatic subgraphs in edge-colored graphs-a
survey. Graphs Comb. 24(4), 237–263 (2008). https://doi.org/10.1007/s00373-008-0789-5

8. Maalouly, N.E., Steiner, R.: Exact matching in graphs of bounded independence number. In:
Szeider, S., Ganian, R., Silva, A (eds.) 47th International Symposium on Mathematical Foun-
dations of Computer Science, MFCS 2022, August 22–26, 2022, Vienna, Austria, LIPIcs, vol.
241, pp. 46:1–46:14. Schloss Dagstuhl-Leibniz-Zentrum für Informatik (2022). https://doi.org/
10.4230/LIPIcs.MFCS.2022.46

9. Moser, H., Thilikos, D.: Parameterized complexity of finding regular induced subgraphs. J.
Discret. Algorithms 7(2), 181–190 (2009). https://doi.org/10.1016/j.jda.2008.09.005

https://doi.org/10.1016/j.tcs.2012.09.006
https://doi.org/10.1016/j.tcs.2012.09.006
https://doi.org/10.1016/j.tcs.2012.09.006
https://doi.org/10.1016/j.tcs.2012.09.006
https://doi.org/10.1016/j.tcs.2012.09.006
https://doi.org/10.1016/j.tcs.2012.09.006
https://doi.org/10.1016/j.tcs.2012.09.006
https://doi.org/10.1016/j.tcs.2012.09.006
https://doi.org/10.1016/j.tcs.2012.09.006
https://doi.org/10.1016/j.tcs.2012.09.006
https://doi.org/10.1145/800157.805047
https://doi.org/10.1145/800157.805047
https://doi.org/10.1145/800157.805047
https://doi.org/10.1145/800157.805047
https://doi.org/10.1145/800157.805047
https://doi.org/10.1145/800157.805047
https://doi.org/10.1145/800157.805047
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.4153/cjm-1965-045-4
https://doi.org/10.4153/cjm-1965-045-4
https://doi.org/10.4153/cjm-1965-045-4
https://doi.org/10.4153/cjm-1965-045-4
https://doi.org/10.4153/cjm-1965-045-4
https://doi.org/10.4153/cjm-1965-045-4
https://doi.org/10.4153/cjm-1965-045-4
https://doi.org/10.4153/cjm-1965-045-4
https://doi.org/10.4153/cjm-1965-045-4
https://doi.org/10.1007/s00453-007-9146-y
https://doi.org/10.1007/s00453-007-9146-y
https://doi.org/10.1007/s00453-007-9146-y
https://doi.org/10.1007/s00453-007-9146-y
https://doi.org/10.1007/s00453-007-9146-y
https://doi.org/10.1007/s00453-007-9146-y
https://doi.org/10.1007/s00453-007-9146-y
https://doi.org/10.1007/s00453-007-9146-y
https://doi.org/10.1007/s00453-007-9146-y
https://doi.org/10.1007/s00453-019-00618-0
https://doi.org/10.1007/s00453-019-00618-0
https://doi.org/10.1007/s00453-019-00618-0
https://doi.org/10.1007/s00453-019-00618-0
https://doi.org/10.1007/s00453-019-00618-0
https://doi.org/10.1007/s00453-019-00618-0
https://doi.org/10.1007/s00453-019-00618-0
https://doi.org/10.1007/s00453-019-00618-0
https://doi.org/10.1007/s00453-019-00618-0
https://doi.org/10.1007/s00373-008-0789-5
https://doi.org/10.1007/s00373-008-0789-5
https://doi.org/10.1007/s00373-008-0789-5
https://doi.org/10.1007/s00373-008-0789-5
https://doi.org/10.1007/s00373-008-0789-5
https://doi.org/10.1007/s00373-008-0789-5
https://doi.org/10.1007/s00373-008-0789-5
https://doi.org/10.1007/s00373-008-0789-5
https://doi.org/10.1007/s00373-008-0789-5
https://doi.org/10.4230/LIPIcs.MFCS.2022.46
https://doi.org/10.4230/LIPIcs.MFCS.2022.46
https://doi.org/10.4230/LIPIcs.MFCS.2022.46
https://doi.org/10.4230/LIPIcs.MFCS.2022.46
https://doi.org/10.4230/LIPIcs.MFCS.2022.46
https://doi.org/10.4230/LIPIcs.MFCS.2022.46
https://doi.org/10.4230/LIPIcs.MFCS.2022.46
https://doi.org/10.4230/LIPIcs.MFCS.2022.46
https://doi.org/10.4230/LIPIcs.MFCS.2022.46
https://doi.org/10.1016/j.jda.2008.09.005
https://doi.org/10.1016/j.jda.2008.09.005
https://doi.org/10.1016/j.jda.2008.09.005
https://doi.org/10.1016/j.jda.2008.09.005
https://doi.org/10.1016/j.jda.2008.09.005
https://doi.org/10.1016/j.jda.2008.09.005
https://doi.org/10.1016/j.jda.2008.09.005
https://doi.org/10.1016/j.jda.2008.09.005
https://doi.org/10.1016/j.jda.2008.09.005
https://doi.org/10.1016/j.jda.2008.09.005

The Algorithmic Complexity of the Paired Matching Problem 13

10. Papadimitriou, C., Yannakakis, M.: The complexity of restricted spanning tree problems. J.
ACM 29(2), 285–309 (1982). https://doi.org/10.1145/322307.322309

11. Stockmeyer, L., Vazirani, V.: NP-completeness of some generalizations of the maximum
matching problem. Inf. Process. Lett. 15(1), 14–19 (1982). https://doi.org/10.1016/0020-
0190(82)90077-1

12. Verhaegh, R.: The parameterized complexity of a new matching problem: the paired matching
problem. Master’s thesis, Eindhoven University of Technology (2022). https://pure.tue.nl/ws/
portalfiles/portal/292963340/Verhaegh_R.pdf

13. Yannakakis, M.: Node- and edge-deletion NP-complete problems. In: Lipton, R., Burkhard,
W., Savitch, W., Friedman, E., Aho, A (eds.) Proceedings of the 10th Annual ACM Symposium
on Theory of Computing, pp. 253–264. ACM (1978). https://doi.org/10.1145/800133.804355

https://doi.org/10.1145/322307.322309
https://doi.org/10.1145/322307.322309
https://doi.org/10.1145/322307.322309
https://doi.org/10.1145/322307.322309
https://doi.org/10.1145/322307.322309
https://doi.org/10.1145/322307.322309
https://doi.org/10.1145/322307.322309
https://doi.org/10.1016/0020-0190(82)90077-1
https://doi.org/10.1016/0020-0190(82)90077-1
https://doi.org/10.1016/0020-0190(82)90077-1
https://doi.org/10.1016/0020-0190(82)90077-1
https://doi.org/10.1016/0020-0190(82)90077-1
https://doi.org/10.1016/0020-0190(82)90077-1
https://doi.org/10.1016/0020-0190(82)90077-1
https://doi.org/10.1016/0020-0190(82)90077-1
https://pure.tue.nl/ws/portalfiles/portal/292963340/Verhaegh_R.pdf
https://pure.tue.nl/ws/portalfiles/portal/292963340/Verhaegh_R.pdf
https://pure.tue.nl/ws/portalfiles/portal/292963340/Verhaegh_R.pdf
https://pure.tue.nl/ws/portalfiles/portal/292963340/Verhaegh_R.pdf
https://pure.tue.nl/ws/portalfiles/portal/292963340/Verhaegh_R.pdf
https://pure.tue.nl/ws/portalfiles/portal/292963340/Verhaegh_R.pdf
https://pure.tue.nl/ws/portalfiles/portal/292963340/Verhaegh_R.pdf
https://pure.tue.nl/ws/portalfiles/portal/292963340/Verhaegh_R.pdf
https://pure.tue.nl/ws/portalfiles/portal/292963340/Verhaegh_R.pdf
https://pure.tue.nl/ws/portalfiles/portal/292963340/Verhaegh_R.pdf
https://pure.tue.nl/ws/portalfiles/portal/292963340/Verhaegh_R.pdf
https://doi.org/10.1145/800133.804355
https://doi.org/10.1145/800133.804355
https://doi.org/10.1145/800133.804355
https://doi.org/10.1145/800133.804355
https://doi.org/10.1145/800133.804355
https://doi.org/10.1145/800133.804355
https://doi.org/10.1145/800133.804355

Edge Contraction and Forbidden
Induced Subgraphs

Hany Ibrahim and Peter Tittmann

Abstract Given a family of graphs . H , a graph .G is .H-free if any subset of . V (G)

does not induce a subgraph of .G that is isomorphic to any graph in . H . We present
sufficient and necessary conditions for a graph .G such that .G/e is .H-free for any
edge. e in.E(G). Thereafter, we use these conditions to characterize.2K2-free,.C4-free,
.C5-free, and split graphs.

1 Introduction

A graph. G is an ordered pair.(V (G), E(G))where.V (G) is a set of vertices and. E(G)

is a set of .2-elements subsets of .V (G) called edges. Thus, any graph in this paper is
simple. The set of all graphs is . G. The degree of a vertex . v, denoted by .deg(v), is
the number of edges incident to . v. We denote the maximum degree of a vertex in a
graph .G by .Δ(G). We call two vertices adjacent if there is an edge between them,
otherwise, we call them nonadjacent. Moreover, the set of all vertices adjacent to a
vertex . v is called the neighborhood of . v, which we denote by .N (v). On the other
hand, the closed neighborhood of . v, denoted by .N [v], is .N (v) ∪ {v}. Generalizing
this to a set of vertices . S, the neighborhood of . S, denoted by .N (S), is defined by
.N (S) := U

v∈S N (v) \ S. Similarly the closed neighborhood of. S, denoted by.N [S],
is .N (S) ∪ S. Moreover, for a subset of vertices . S, we denote the set of vertices in . S
that are adjacent to . v by .NS(v). Furthermore, we write . v is adjacent to . S to mean
that .S ⊆ N (v) and . v is adjacent to exactly . S to mean that .S = N (v).

A set of vertices . S is independent if there is no edge between any two vertices
in . S. We call a set . S dominating if .N [S] = V (G). A subgraph .H of a graph .G is a
graph where.V (H) ⊆ V (G) and.E(H) ⊆ E(G). An induced graph.G[S] for a given

H. Ibrahim (B)
KIT university, Karlsruhe, Germany
e-mail: hany.ibrahim@kit.edu

P. Tittmann
University of Applied Sciences Mittweida, Mittweida, Germany
e-mail: peter@hs-mittweida.de

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
A. Brieden et al. (eds.), Graphs and Combinatorial Optimization:
from Theory to Applications, AIRO Springer Series 13,
https://doi.org/10.1007/978-3-031-46826-1_2

15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-46826-1_2&domain=pdf
hany.ibrahim@kit.edu
 854 52344 a 854 52344
a

mailto:hany.ibrahim@kit.edu
peter@hs-mittweida.de
 854 56329
a 854 56329 a

mailto:peter@hs-mittweida.de
https://doi.org/10.1007/978-3-031-46826-1_2
https://doi.org/10.1007/978-3-031-46826-1_2
https://doi.org/10.1007/978-3-031-46826-1_2
https://doi.org/10.1007/978-3-031-46826-1_2
https://doi.org/10.1007/978-3-031-46826-1_2
https://doi.org/10.1007/978-3-031-46826-1_2
https://doi.org/10.1007/978-3-031-46826-1_2
https://doi.org/10.1007/978-3-031-46826-1_2
https://doi.org/10.1007/978-3-031-46826-1_2
https://doi.org/10.1007/978-3-031-46826-1_2
https://doi.org/10.1007/978-3-031-46826-1_2

16 H. Ibrahim and P. Tittmann

set.S ⊆ V , is a subgraph of.G with vertex set. S and two vertices in.G[S] are adjacent
if and only if they are adjacent in . G. Two graphs .G, H are isomorphic if there is a
bijective mapping . f : V (G) → V (H) where .u, v ∈ V (G) are adjacent if and only
if . f (u), f (v) are adjacent in. H . In this case we call the mapping. f an isomorphism.
Two graphs that are not isomorphic are called non-isomorphic. In particular, an
isomorphism from a graph to itself is called automorphism. Furthermore, two vertices
.u, v are similar in a graph .G if there is an automorphism that maps . u to . v. The set
of all automorphisms of a graph.G forms a group called the automorphism group of
. G, denoted by Aut(. G). The complement of a graph. G, denoted by. Ḡ, is a graph with
the same vertex set as .V (G) and two vertices in .Ḡ are adjacent if and only if they
are nonadjacent in . G.

The independence number of a graph. G, denoted by.α(G), is the largest cardinality
of an independent set in. G. In this thesis, we write singletons.{x} just as . x whenever
the meaning is clear from the context. A vertex . u is a corner dominated by . v if
.N [u] ⊆ N [v]. Let .H be a set of graphs. A graph .G is called .H-free if there is no
induced subgraph of.G that is isomorphic to any graph in. H , otherwise, we say.G is
.H-exist.

By contracting the edge between. u and. v, we mean the graph constructed from. G
by adding a vertex. w with edges from. w to the union of the neighborhoods of . u and
. v, followed by removing. u and. v. We denote the graph obtained from contracting. uv

by .G/uv. If . e is the edge between . u and . v, then we also denote the graph .G/uv by
.G/e. Further, we call .G/e a .G-contraction. Finally, for notions not defined, please
consult [2]. Additionally, we divide longer proofs into smaller claims, and we prove
them only if their proofs are not apparent.

For a graph invariant . c, a graph . G, and a .G-contraction . H , the question of how
.c(G) differs from .c(H) is investigated for different graph invariants. For instance,
how contracting an edge in a graph affects its .k-connectivity. Hence, the intensively
investigated ([13]) notion of.k-contractible edges in a.k-connected graph. G is defined
as the edge whose contraction yields a.k-connected graph. Another instance is in the
game Cops and Robber where a policeman and a robber are placed on two vertices
of a graph in which they take turns to move to a neighboring vertex. For any graph. G,
if the policeman can always end in the same vertex as the robber, we call.G cop-win.
However, .G is .CECC if it is not cop-win, but any .G-contraction is cop-win. The
characteristics of a .CECC graph are studied in [5].

A further instance is the investigation of the so-called contraction critical edges,
with respect to independence number. That is an edge. e in a graph. G where. α(G/e) ≤
α(G), studied in [18]. Furthermore, the case where . c is the chromatic and clique
number, respectively, has been investigated in [7, 16, 17].

In this article, we investigate the graph invariant .H -free for a given set of graphs
. H . In particular, we present sufficient and necessary conditions for a graph .G such
that any .G-contraction is .H-free.

Let .H be a set of graphs. The set of elementary (minimal) graphs in . H , denoted
by.elm(. H), is defined as.{H ∈ H : if.G ∈ H and.H is.G-exist, then. G is isomorphic
to .H}. From the previous definition, we can directly obtain the following.

Edge Contraction and Forbidden Induced Subgraphs 17

Proposition 1 Let .H be a set of graphs. Graph .G is .H-free if and only if G is
.elm(H)-free.

We call an .H-free graph . G, strongly .H-free if any .G-contraction is .H-free.
Furthermore, an .H-exist graph .G is a critically .H-exist if any .G-contraction is
.H-free. If we add any number of isolated vertices to a strongly .H -free or critically
.H -exist graph, then we obtain a graph with the same property. Thus, from this section
and forward, we exclude graphs having isolated vertices unless otherwise stated.

We conclude directly the following.

Proposition 2 Let .H be a set of graphs and .G be a graph where .G is neither
critically .H-exist nor .H-free but not strongly .H-free. The graph .G is .H-free if and
only if any .G-contraction is .H-free.

Given a graph .G and a set of graphs . H , we call .G .H-split if there is a .G-
contraction isomorphic to a graph in . H . Furthermore, .G is .H-free-split if .G is
.H-split and .H-free. Moreover, the set of all .H-free-split graphs, for a given . H , is
denoted by .fs(H).

Proposition 3 Let.H be a set of graphs and. G be a.H-free graph. Then. G is strongly
.H-free if and only if .G is .fs(H)-free.

Proof Assume for the sake of contradiction that there exists a strongly.H-free graph
.G with an induced .H-free-split subgraph . J . Consequently, there is an edge . e in . J
such that .J/e induces a graph in . H . As a result, .G/e is .H-exist, which contradicts
the fact that .G is strongly .H-free.

In contrast, if .G is an .H-free but not a strongly .H-free, then there is a set . U ⊆
V (G) such that there is an edge .e ∈ E(G[U]) where .G/e is .H-exist. Let .U be a
minimum set with such a property. Thus .G[U] is .H-free-split. ∎

From Propositions 2 and 3, we deduce the following.

Theorem 1 Let .H be a set of graphs and .G be a .fs(H)-free graph where .G is not
critically .H-exist. The graph .G is .H-free if and only if any .G-contraction is .H-free.

Theorem 1 provides a sufficient and necessary condition that answers the ques-
tion we investigate in this article, however, it translates the problem to determining
characterizations for critically .H-exist and .H-free-split graphs for a set of graphs
. H . In Sects. 1.1 and 1.2, we present some properties for these families of graphs.

1.1 The H-Split Graphs

Let .H be a graph with .v ∈ V (H) and .NH (v) = U ∪ W . The .splitting(H,v,U,W) is
the graph obtained from .H by removing . v and adding two vertices . u and .w where
.NH (u) = U ∪ {w} and.NH (w) = W ∪ {u}. Furthermore, .spli t ting(H, v) is the set
of all graphs for any possible .U and. W . Moreover, .spli t ting(H) is the union of the
.spli t ting(H, v) for any vertex .v ∈ V (H). Given a set of graphs . H , . spli t ting(H)

is the union of the splittings of every graph in . H .

18 H. Ibrahim and P. Tittmann

Theorem 2 For a graph .G and a set of graphs . H , .G is an .H-split if and only if
.G ∈ spli t ting(H).

Proof Let .G be an .H-split. Hence there is a graph .H ∈ H such that .G is .H -split.
Thus, there are two vertices .u, w ∈ V (G) such that .G/uw is isomorphic to . H . Let
.x := V (G/uw) − V (G), then.NG/uw(x) = (NG(u) ∪ NG(w)) \ {u, w}. As a result,
.G ∈ spli t ting(H, x). Consequently, .G ∈ spli t ting(H).

Conversely, let .G ∈ spli t ting(H). Hence there is a graph.H ∈ H such that . G ∈
spli t ting(H). Thus, there are two adjacent vertices.u, w ∈ V (G) such that. G/uw ∼=
H . Thus, .G is .H-split. ∎

For a set of graphs.H and using Theorem 2, we can use.spli t ting(H) to construct
all .H-split graphs, consequently .H-free-split graphs.

Proposition 4 In a graph . G, let .u, v ∈ V (G). If . u is similar to . v, then . spli t ting
(G, u) = spli t ting(G, v).

By the previous proposition, for a graph . H , the steps to construct the .H -free-split
graphs are:

• Let . π be the partition of .V (H) induced by the orbits generated from.Aut (H);
• for every orbit .o ∈ π , we choose a vertex .v ∈ o; and
• construct .spli t ting(H, v).

The proofs of Propositions 5 to 8 are direct. Thus, we skip them and leave them
for the interested reader.

Proposition 5 Let .G be a graph, . v a vertex in .V (G) where .NG(v) = U ∪ W. If
.U = NG(v) or .W = NG(v), then .spli t ting(G, v,U,W) is not .G-free-split.

Proposition 6 Let .G be a graph and . v a vertex in .V (G). If .deg(v) = 1, then
.spli t ting(G, v) contains no .G-free-split graph.

Proposition 7 If .G is a path, then .spli t ting(G) contains no .G-free-split graph.

Proposition 8 If .G is a .Cn for an integer .n ≥ 3, then the .G-free-split is .Cn+1.

1.2 Critically H-Exist Graphs

Theorem 3 Let .G be a graph and .H be a set of graphs. If .G is a critically .H-exist,
then for any .S ⊆ V (G) such that .G[S] is isomorphic to a graph in . H , the followings
properties hold:

1. .V (G) \ S is independent and
2. there is no corner in .V (G) \ S that is dominated by a vertex in . S.

Edge Contraction and Forbidden Induced Subgraphs 19

Proof 1. For the sake of contradiction, assume there is a.S ⊆ V (G) such that.G[S] is
isomorphic to a graph.H ∈ H but.V (G) \ S is not independent. Hence, there are
two vertices.u, v ∈ V (G) \ S where. u and. v are adjacent. Consequently,. G/uv[S]
is isomorphic to . H , which contradicts the fact that .G is a critically .H-exist.

2. Since .V (G) \ S is independent, the neighborhood of any vertex in . V (G) \ S
is a subset of . S. For the sake of contradiction, assume that there is a corner
.u ∈ V (G) \ S that is dominated by .v ∈ S. However, .G/uv[S] is isomorphic to a
graph .H ∈ H , which contradicts the fact that .G is a critically .H-exist.

∎
Corollary 1 Let .G be a critically .H-exist graph for a set of graphs . H . If . S is a
vertex set that induces a graph in. H , then no vertex in.V (G) \ S is adjacent to exactly
one vertex, two adjacent vertices, three vertices that induce either .P3 or .C3, or a
vertex with degree .|V (G)| − 1.

Let .G be a graph with adjacent vertices .u, v, and .{w} := V (G/uv) \ V (G). We
define the mapping . f : 2V (G) → 2V (G/uv) as follows:

. f (S) =
(
S if u, v /∈ S,

(S ∪ {w}) \ {u, v} otherwise.

Let . S be a vertex set such that .G[S] is isomorphic to a given graph . H . We call an
edge .uv, .H -critical for . S if .G/uv[f (S)] is non-isomorphic to . H . Furthermore, we
call the edge .uv .H -critical in .G if for any vertex subset . S that induces . H , .uv is
.H -critical for . S.

Theorem 4 Let .G be a graph and .S ⊆ V (G) where .H is the graph induced by . S in
. G. For any edge .uv ∈ E(G), .uv is .H-critical for . S if and only if

1. .u, v ∈ S or
2. .u ∈ V (G) \ S, .v ∈ S, and . u is not a corner dominated by . v in the subgraph

.G[S ∪ {u}].
Proof 1. If .u, v ∈ S, then .| f (S)| < |S|. Thus, .G/uv[f (S)] is non-isomorphic to

. H .
2. Let .u ∈ V (G) \ S, .v ∈ S, and . u is not a corner dominated by . v in the sub-

graph .G[S ∪ {u}]. Additionally, let .w ∈ NS(u) but .w /∈ NS(v). In .G/uv, let
.x := V (G/uv) \ V (G). Clearly, . x is adjacent to any vertex in .NS(v) ∪ {w}.
Hence, the size of .G/uv[f (S)] is larger than that of .G[S]. Thus, . G/uv[f (S)]
is non-isomorphic to . H .

Conversely, if none of the conditions in the theorem hold, then one of the following
holds:

1. both . u and . v are not in . S, or
2. .u ∈ V (G) \ S,.v ∈ S, and. u is a corner dominated by. v in the subgraph.G[S ∪ {u}].
In both cases, .G[S] ∼= G/uv[f (S)] ∼= H . Consequently, .uv is not .H -critical
for . S. ∎

20 H. Ibrahim and P. Tittmann

In the following Section, we present examples on using Theorem 1 by using it to
characterize the special graph classes .2K2-free, .C4-free, .C5-free, and split graphs.

2 Special Graph Classes

2.1 The .2K2-Free Graphs

Different graphs families are.2K2-free graphs; for instance split, pseudo-split, thresh-
old, and co-chordal graphs. Various graph invariants were studied for .2K2-free
graphs, please consult [3, 4, 6, 8, 10]. The class of .2K2-free graphs has been char-
acterized in different ways, see [14, 19].

We call an edge.uv in a graph.G almost-dominating if .V (G) \ N [{u, v}] induces
edgeless graph.

Proposition 9 A graph .G is .2K2-free if and only if any edge in .E(G) is almost-
dominating.

Lemma 1 Let .G be a graph with a unique subset .S ⊆ V (G) such that .G[S] induces
.2K2. If every edge. e in.E(G) is. e is.2K2-critical for. S, then. G is a critically.2K2-exist.

Proof Let .H be a .G-contraction. Every edge . e in .E(G) is .2K2-critical for . S, then
.V (G) \ S is independent set. Furthermore, every vertex in .V (G) \ S is adjacent to
at least two nonadjacent vertices in . S. In . H , let .u ∈ V (G) \ f (S) and .v ∈ f (S). If
.u, v are adjacent, then .uv is almost-dominating. Let .u ∈ f (S), then .uv is almost-
dominating. Hence, every edge in .H is almost-dominating. Thus, .G is a critically
.2K2-exist. ∎

It is not hard to identify the .2K2-split graphs.

Proposition 10 The graphs .P2 ∪ C3 and .P2 ∪ P3 are the only .2K2-split graphs.

Clearly, both .P2 ∪ C3 and .P2 ∪ P3 are .2K2-exist. Thus, the following corollary fol-
lows directly.

Corollary 2 There is no .2K2-free-split graph.

Proposition 11 The graphs in Fig. 1 are the only critically .2K2-exist graphs.

Proof Through this proof, we assume that .G is a critically .2K2-exist graph with
.S = {r, s, t, u} such that .G[S] is isomorphic to .2K2, where .rs and .tu are edges
in . G. By Theorem 3, we note that .V (G) \ S is independent. Thus, any vertex in
.V (G) \ S is adjacent to vertices only in . S. By Corollary 1, if .v ∈ V (G) \ S, then
neither .|N (v)| = 1 nor . v is adjacent to exactly two adjacent vertices.

Claim 11.1 If.v,w ∈ V (G) \ S such that.|N (v)| = |N (w)| = 2while. N (v) ∩ N (w)

= φ, then .G is isomorphic to .H1. ∎

Edge Contraction and Forbidden Induced Subgraphs 21

1 2 3 4

5 6

Fig. 1 Critically.2K2-exist graphs

Proof W.l.o.g., let .N (v) = {r, u} and .N (w) = {s, t}. We will show that . V (G) =
S ∪ {v,w}. For the sake of contradiction, assume that there is a vertex.x ∈ V (G) \ S.
Thus,. x is adjacent to at least one vertex in. S. W.l.o.g., let. x be adjacent to. r . In.G/r x ,
. f ({s, u, v, w}) induces .2K2, which contradicts the fact that .G is a critically .2K2-
exist. ∎

Claim 11.2 If .v,w, x ∈ V (G) \ S such that .|N (v)| = |N (w)| = 2, . |N (x)| = 3
while .N (v) = N (w), then .N (v) ⊂ N (x). ∎

Proof W.l.o.g., let.N (v) = N (w) = {r, u}. For the sake of contradiction and w.l.o.g.,
assume .N (x) = {r, s, t}. In .G/rw, . f ({s, u, v, x}) induces .2K2, which contradicts
the fact that .G is a critically .2K2-exist. ∎

Claim 11.3 If .v,w, x ∈ V (G) \ S such that .|N (v)| = |N (w)| = 2 while . |N (v) ∩
N (w)| = 1 and .|N (x)| = 3where .N (v) ∩ N (w) ∩ N (x) = φ, then .G is isomorphic
to .H4. ∎

Proof W.l.o.g., let.N (v) = {r, u},.N (w) = {r, t}, and.N (x) = {s, t, u}. For the sake
of contradiction, assume that there is a vertex .y ∈ V (G) \ S. Hence, . y is adjacent
to at least one vertex in . S. If . y is adjacent to . s (or . u), then . f ({r, t, v, x}) induces
.2K2 in .G/sy (or .G/uy), which contradicts the fact that .G is a critically .2K2-exist.
Moreover, if . y is adjacent to . t , then . f ({r, u, w, x}) induces .2K2 in .G/t y, which
contradicts the fact that .G is a critically .2K2-exist. ∎

Claim 11.4 If .v,w, x ∈ V (G) \ S such that .|N (v)| = |N (w)| = 2 while . |N (v) ∩
N (w)| = 1 and .|N (x)| = 3, then either .N (v) ∪ N (w) = N (x) or . N (v) ∩ N (w) ∩
N (x) = φ and .G is isomorphic to .H4. ∎

22 H. Ibrahim and P. Tittmann

Proof By Claim 11.3, if .N (v) ∩ N (w) ∩ N (x) = φ, then .G is isomorphic to .H4.
If .N (v) ∪ N (w) = N (x), then we are done. As a result, and w.l.o.g, let . N (v) =
{r, u} and.N (w) = {r, t}. Assume for the sake of contradiction that.N (x) = {r, s, t}.
However, . f ({s, u, v, x}) induces .2K2 in .G/rw, which contradicts the fact that .G is
a critically .2K2-exist. ∎
Claim 11.5 If .v,w ∈ V (G) \ S such that .|N (v)| = |N (w)| = 3, while . N (v) ∩
N (w) consists of two nonadjacent vertices in . S, then .G is isomorphic to .H3. ∎
Proof W.l.o.g., let .N (v) = {r, t, u} and.N (w) = {r, s, t}. For the sake of contradic-
tion, assume that there is a vertex .x ∈ V (G) \ S. If . x is adjacent to . r (or . t), then
. f ({s, u, v, w}) induces.2K2 in.G/r x (or.G/t x), which contradicts the fact that .G is
a critically .2K2-exist graph. Thus, .N (x) = {s, u}, however, . f ({s, t, v, x}) induces
.2K2 in .G/rw, which contradicts the fact that .G is a critically .2K2-exist. ∎
Claim 11.6 If .v,w, x ∈ V (G) \ S such that .|N (v)| = |N (w)| = 3, while . N (v) ∩
N (w) is two adjacent vertices in . S, then .|N (x)| /= 2. ∎
Proof W.l.o.g., Let .N (v) = {r, t, u} and .N (w) = {s, t, u}. W.l.o.g and for the sake
of contradiction, assume that .N (x) = {r, u}. However, . f ({r, t, w, x}) induces . 2K2

in .G/uv, which contradicts the fact that .G is a critically .2K2-exist. ∎

By Claims 11.1 to 11.6, the possible critically.2K2-exist graphs are those presented
in Fig. 1 whose proofs of being critically .2K2-exist for .H1, .H2, .H3, and .H4 are
straightforward.

Claim 11.7 The graph .H5 in Fig. 1 is a critically .2K2-exist. ∎
Proof Graph .H5 in Fig. 1 is isomorphic to a graph .G that contains a vertex subset
.S = {r, s, t, u}, where .G[S] is isomorphic to a .2K2 and .rs, tu ∈ E(G). Moreover,
.V (G) = S ∪ W ∪ X ∪ Y , such that .N (w ∈ W) = {r, s, t}, .N (x ∈ X) = {r, s, u},
.N (y ∈ Y) = {r, s, t, u}, and .|W |, |X |, |Y | ≥ 0.

We note that . S is the only vertex set inducing .2K2 in . G. Moreover, every edge
in .E(G) is .G[S]-critical for . S. Thus, and by Lemma 1, .H5 in Fig. 1 is a critically
.2K2-exist. ∎
Claim 11.8 Graph .H6 in Fig. 1 is a critically .2K2-exist. ∎
Proof Graph .H6 in Fig. 1 is isomorphic to a graph .G that contains a vertex subset
.S = {r, s, t, u} where .G[S] is isomorphic to a .2K2 and .rs, tu ∈ E(G). Moreover,
.V (G) = S ∪ W ∪ X ∪ Y ∪ Z , such that .N (w ∈ W) = {s, t}, .N (x ∈ X) = {s, u},
.N (y) = {s, t, u}, .N (z) = {r, s, t, u}, and .|W |, |X |, |Y |, |Z | ≥ 0.

We note that . S is the only vertex set inducing .2K2 in . G. Moreover, every edge
in .E(G) is .G[S]-critical for . S. Thus, and by Lemma 1, .H6 in Fig. 1 is a critically
.2K2-exist. ∎

By Claims 11.7 and 11.8, the proof is complete. ∎
By Theorem 1, Corollary 2, and Proposition 11, we obtain the following.

Theorem 5 Let .G be a graph that is non-isomorphic to any graph in Fig. 1. The
graph .G is .2K2-free if and only if any .G-contraction is .2K2-free.

Edge Contraction and Forbidden Induced Subgraphs 23

2.2 The .C4-Free Graphs

The .C4-split graphs can be easily recognized as follows:

Proposition 12 The graphs in Fig. 2 are the only .C4-split graphs.

The remaining graphs presented in Fig. 2 are obviously .C4-exist, which immedi-
ately provides the following result.

Corollary 3 .C5 is the only .C4-free-split graph.

Proposition 13 The graphs in Fig. 3 are the only critically .C4-exist graphs.

Proof Through this proof, we assume that .G is a critically .C4-exist graph with
.S = {r, s, t, u} such that.G[S] is isomorphic to.C4 where. r and. t are adjacent to both
. s and . u. By Theorem 3, we note that .V (G) \ S is independent. Thus, any vertex in
.V (G) \ S is adjacent to vertices only in . S. By Corollary 1, if .v ∈ V (G) \ S, then . v

is nonadjacent to exactly: one vertex, two adjacent vertices, or three vertices.
Let .v ∈ V (G) \ S such that .|N (v)| = 2. W.l.o.g, assume that .N (v) = {r, t}. Let

.w ∈ V (G) \ S, however, if .w is adjacent to . s (or . u), then in .G/sw, . f ({r, t, u, v})
induces .C4, which contradicts the fact that .G is a critically .C4-exist. Thus, if . v ∈
V (G) \ S such that .|N (v)| = 2, then .G is isomorphic to a graph in .H1.

Let .v,w, x ∈ V (G) \ S such that .|N (v)| = |N (w)| = 4. Hence, .|N (x)| = 4,
however, in .G/rv, . f ({s, u, w, x}) induces .C4, which contradicts the fact that . G
is a critically .C4-exist. Thus, if there is a vertex outside . S that is adjacent to every
vertex in . S then .G is isomorphic to either .H2 or .H3.

Consequently, the possible critically.C4-exist graphs are those presented in Fig. 3
whose proofs, of being critically .C4-exist, are straightforward, which completes the
proof. ∎

By Theorem 1, Corollary 3, and Proposition 13, we obtain the following.

1 2 3 4

Fig. 2 .C4-split graphs

1 2 3

Fig. 3 Critically.C4-exist graphs

24 H. Ibrahim and P. Tittmann

Fig. 4 .C5-split graphs

1 2 3 4

Theorem 6 Let .G be a .C5-free graph that is non-isomorphic to any graph in Fig. 3.
The graph .G is .C4-free if and only if any .G-contraction is .C4-free.

2.3 The .C5-Free Graphs

It is not hard to identify the .C5-split graphs as follows.

Proposition 14 The graphs in Fig. 4 are the only .C5-split graphs.

The remaining graphs presented in Fig. 4 are obviously .C5-exist, which immedi-
ately provides the following result.

Corollary 4 .C6 is the only .C5-free-split graph.

In similar way to the proof of Proposition 13, we can obtain the following:

Proposition 15 The graphs in Fig. 5 are the only critically .C5-exist graphs.

By Theorem 1, Corollary 4, and Proposition 15, we obtain the following.

Theorem 7 Let .G be a .C6-free graph that is non-isomorphic to any graph in Fig. 5.
The graph .G is .C5-free if and only if any .G-contraction is .C5-free.

2.4 Split Graphs

Split graphs were introduced in [9] and were characterized as follows:

Theorem 8 [9] A graph .G is split if and only if .G is .{2K2,C4,C5}-free.
Thus, we call a graph that is .{2K2,C4,C5}-exist non-split graph. Additionally, split
graphs have been characterized in [9] as chordal graphs whose complements are also
chordal. Furthermore, it was characterized by its degree sequences in [11]. Moreover,
further properties of split graphs are studied in [1, 12, 15].

By Theorems 1, 5, 6, and 7, we obtain:

Theorem 9 Let .G be a graph that is non-isomorphic to any graph in Fig. 6. The
graph .G is split if and only if any .G-contraction is split.

Edge Contraction and Forbidden Induced Subgraphs 25

1 2 3

4 5

6

Fig. 5 Critically.C5-exist graphs

The class of split graphs is a closed class under edge contraction. The definition of
a split graph implies that by contraction of an arbitrary edge in a split graph leads
to another split graph. So the contribution of Theorem 9 is in listing the critically
non-split graphs.

26 H. Ibrahim and P. Tittmann

1 2 3

4 5 6 7

Fig. 6 Critically non-split graphs

Acknowledgements The research presented here is funded by the European Social Fund (ESF).

References

1. Bertossi, A.A.: Dominating sets for split and bipartite graphs. Inf. Process. Lett. 19(1), 37–40
(1984)

2. Bondy, J.A., Murty, U.S.: Graph Theory. Springer (2000)
3. Brause, C., Randerath, B., Schiermeyer, I., Vumar, E.: On the chromatic number of .2K2-free

graphs. Discret. Appl. Math. 253, 14–24 (2019)
4. Broersma, H., Patel, V., Pyatkin, A.: On toughness and hamiltonicity of .2K2-free graphs. J.

Graph Theory 75(3), 244–255 (2014)
5. Cameron, B., Fitzpatrick, S.: Edge contraction and cop-win critical graphs. Australas. J. Comb.

63, 70–87 (2015)
6. Chung, F.R., Gyárfás, A., Tuza, Z., Trotter, W.T.: The maximum number of edges in. 2K.2-free

graphs of bounded degree. Discret. Math. 81(2), 129–135 (1990)
7. Diner, Ö.Y., Paulusma, D., Picouleau, C., Ries, B.: Contraction and deletion blockers for perfect

graphs and h-free graphs. Theor. Comput. Sci. 746, 49–72 (2018)
8. El-Zahar, M., Erdős, P.: On the existence of two non-neighboring subgraphs in a graph. Comb.

5(4), 295–300 (1985)
9. Foldes, S., Hammer, P.L.: Split graphs. In: Proceedings of the 8th Southeastern Conference on

Combinatorics, Graph Theory, and Computing, Baton Rouge 1977, pp. 311–315 (1977)
10. Golan, G., Shan, S.: Nonempty intersection of longest paths in .2k_2-free graphs (2016).

arXiv:1611.05967
11. Hammer, P.L., Simeone, B.: The splittance of a graph. Comb. 1(3), 275–284 (1981)
12. Kratsch, D., Lehel, J., Müller, H.: Toughness, hamiltonicity and split graphs. Discret. Math.

150(1), 231–246 (1996)
13. Kriesell, M.: A survey on contractible edges in graphs of a prescribed vertex connectivity.

Graphs Comb. 18(1), 1–30 (2002)
14. Meister, D.: Two characterisations of minimal triangulations of.2K2-free graphs. Discret. Math.

306(24), 3327–3333 (2006)
15. Merris, R.: Split graphs. Eur. J. Comb. 24(4), 413–430 (2003)

arXiv:1611.05967
 -318 47577 a -318 47577 a

http://arxiv.org/abs/1611.05967

Edge Contraction and Forbidden Induced Subgraphs 27

16. Paulusma, D., Picouleau, C., Ries, B.: Reducing the clique and chromatic number via edge
contractions and vertex deletions. In: International Symposium on Combinatorial Optimization,
pp. 38–49. Springer (2016)

17. Paulusma, D., Picouleau, C., Ries, B.: Critical vertices and edges in H-free graphs. Discret.
Appl. Math. 257, 361–367 (2019)

18. Plummer, M.D., Saito, A.: A note on graphs contraction-critical with respect to independence
number. Discret. Math. 325, 85–91 (2014)

19. Dhanalakshmi, S., N. S. and V. Manogna,: On.2K2-free graphs. Int. J. Pure Appl. Math. 109(7),
167–173 (2016)

Exact Approaches for the Connected
Vertex Cover Problem

Manuel Aprile

Abstract Given a graph . G, the Connected Vertex Cover problem (CVC) asks to
find a minimum cardinality vertex cover of .G that induces a connected subgraph.
This paper describes some approaches to solve the CVC problem exactly. First,
we give compact mixed-integer extended formulations for CVC: these are the first
formulations proposed for this problem, have a small number of extra variables and
can be easily adapted to variations of the problem such as Tree Cover. Second,
we describe a simple branch and bound algorithm for the CVC problem. Finally,
we implement our algorithm and compare its performance against our best extended
formulation: contrary to what usually happens for the classical Vertex Cover problem,
our formulation outperforms the branch and bound algorithm.

1 Introduction

Given a graph.G = (V, E), a subset of vertices.C ⊆ V is a vertex cover of. G if every
edge of .G has at least one endpoint in . C . The problem of finding a vertex cover of
minimum cardinality in a graph is equivalent to finding a maximum stable set (or a
maximum clique in the complement graph) and is one of the best studied problems
in theoretical computer science. In this paper we study one of the most popular
variants of the minimum Vertex Cover (VC) problem, where we aim at finding a
minimum connected vertex cover (CVC): i.e., we additionally require the subgraph
.G[C] induced by . C to be connected. We call this the CVC problem.

The CVC problem has applications in wireless network design, where one aims
at placing relay stations on the network so that they cover all transmission links (the
edges of the network) and are all connected to each other.

Similarly to the VC problem, the CVC problem is NP-hard [16] and admits a
polynomial-time 2-approximation algorithm [25]. On the other hand, the CVC prob-
lem is NP-hard even if the input graph is restricted to be bipartite [14]: this is sur-

M. Aprile (B)
Mathematics Department, Universitá degli studi di Padova, Via Trieste 63, 35121 Padova, Italy
e-mail: manuel.aprile@unipd.it

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
A. Brieden et al. (eds.), Graphs and Combinatorial Optimization:
from Theory to Applications, AIRO Springer Series 13,
https://doi.org/10.1007/978-3-031-46826-1_3

29

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-46826-1_3&domain=pdf
manuel.aprile@unipd.it
 854
56538 a 854 56538 a

mailto:manuel.aprile@unipd.it
https://doi.org/10.1007/978-3-031-46826-1_3
https://doi.org/10.1007/978-3-031-46826-1_3
https://doi.org/10.1007/978-3-031-46826-1_3
https://doi.org/10.1007/978-3-031-46826-1_3
https://doi.org/10.1007/978-3-031-46826-1_3
https://doi.org/10.1007/978-3-031-46826-1_3
https://doi.org/10.1007/978-3-031-46826-1_3
https://doi.org/10.1007/978-3-031-46826-1_3
https://doi.org/10.1007/978-3-031-46826-1_3
https://doi.org/10.1007/978-3-031-46826-1_3
https://doi.org/10.1007/978-3-031-46826-1_3

30 M. Aprile

prising as Vertex Cover is polynomially solvable for bipartite graphs, as, thanks to
the famous König–Egeváry Theorem, it amounts to finding a maximum matching.

The CVC problem has received attention especially from the point of view of
parameterized algorithms [17, 23] and approximation algorithms [10, 13, 25]. An
aspect that did not receive much attention is that of solving the CVC problem in
practice: moreover, prior to this paper there were no mathematical programming
formulations for the problem. Such formulations are usually easy to implement and
are flexible to the addition of extra constraints to the problem, an advantage for real-
world applications. Different from the CVC problem, there is a wealth of methods
for solving the VC problem, the most effective being branch and bound algorithms
(see [27] for a survey), and there are many linear and non-linear formulations for VC
and the related maximum clique and maximum stable set problems [5, 20, 24].

A key feature of the CVC problem that we exploit in this paper is that its con-
straints can be modelled as linear constraints from two polytopes: the vertex cover
polytope and the spanning tree polytope. Both are well-studied polytopes for which
a large number of extended formulations is known [5, 6, 8, 15, 21, 26]: those are
formulations where extra variables are used, other than the variables of the original
polytope, in order to limit the number of inequalities.

In this paper we aim at partially filling the gap between VC and CVC by proposing
mixed-integer extended formulations for the CVC problem. Our main contribution is
a mixed integer formulation for the CVC problem with a relatively small number of
variables (linear in the number of edges of the input graph). The formulations we pro-
pose also lend themselves to modelling related problems as the Tree Cover problem
[9] (see Sect. 5). As an additional contribution, we also describe a simple branch and
bound algorithm for CVC, by modifying a standard algorithm for the maximum sta-
ble set problem. Finally, we perform numerical experiments to compare the various
approaches. In our experiments, the proposed mixed-integer formulation solves the
problem much faster than the branch and bound algorithm. This is interesting since,
for the general Vertex Cover problem, combinatorial algorithms usually outperform
linear formulations.

The paper is organized as follows: this introduction terminates with Sect. 1.1,
which gives some basic terminology and notation; in Sect. 2 we give our formulations
for CVC and prove their correctness; the branch and bound algorithm is described in
Sect. 3; numerical experiments are given in Sect. 4; finally, we conclude with some
further research directions in Sect. 5.

1.1 Preliminaries

Throughout the paper we let .G = (V, E) be a connected graph. This is natural
because, ignoring exceptions such as isolated vertices, only connected graphs admit
connected vertex covers. Given a set .U ⊆ V , we let .G[U] = (U, E(U)) be the
subgraph induced by . U , where .E(U) = {(u, v) ∈ E : u, v ∈ U }. Set .U is stable if
the .G[U] does not contain any edge. Clearly, a subset .U ⊆ V is a vertex cover if

Exact Approaches for the Connected Vertex Cover Problem 31

and only if its complement .V \U is stable. Hence, solving the CVC problem is
equivalent to finding the maximum stable set . S such that the graph .G \ S obtained
by removing . S is connected. Finally, a subgraph of .G is a spanning tree of .G if it is
a tree and contains all vertices of . G: we usually identify a spanning tree with a set
of edges .F ⊆ E .

For sets .U ⊆ A, we denote by .χU ∈ {0, 1}A the incidence vector of . U , which
satisfies .χU

v = 1 if and only if .v ∈ U . We will use incidence vectors for subsets of
vertices, edges, or arcs in directed graphs. For a vector.x ∈ R

A, we often write. x(U)

to denote .
∑

u∈U xu .

2 Mixed-Integer Programming Formulations

A compact integer formulation of the Vertex Cover problem is well known: it suffices
to use a variable .xv for each node . v of our graph . G, and ask that .xu + xv ≥ 1 for
each edge.uv of. G. On the other hand, it is not trivial to come up with a formulation
for CVC, and we do not know any formulation that only uses node variables. The
reason behind this difficulty is that imposing connectedness in an induced subgraph
is a difficult constraint to model. Notice that a graph is connected if and only if it
admits a spanning tree. Hence to model connectedness we resort to the spanning
tree polytope of . G, denoted by .STP(G), defined as the convex hull of the incidence
vectors of all the spanning trees in. G. The basic idea that underlies all the formulations
in this section is to add edge variables to the node variables, and to impose that such
edge variables model a spanning tree in the subgraph induced by our vertex cover.
We first propose the following formulation, based on the classical linear description
of .STP(G) given by Edmonds [12].

. Pstp =
{
x ∈ {0, 1}V | ∃ y ∈ [0, 1]E :

xu + xv ≥ 1 ∀(u, v) ∈ E (1)

.y(E(U)) ≤ |U | − 1 ∀∅ /= U ⊆ V (2)

.y(E) = x(V) − 1 (3)

.yuv ≤ xu, yuv ≤ xv ∀(u, v) ∈ E
}
. (4)

Lemma 1 Let .G = (V, E) be a connected graph. Then .C ⊆ V is a CVC if and only
if .(χC , y) ∈ Pstp for some .y ∈ R

E .

Proof If. C is a CVC, then fix any spanning tree. F of.G[C]. Then.χC clearly satisfies
Constraints (1); moreover, setting .y = χ F can be easily seen to satisfy Constraints
(2), (3), (4).

On the other hand, assume that .(χC , y) ∈ Pstp. Then .C ⊆ V is clearly a vertex
cover. Moreover, (4) implies .ye = 0 for each .e ∈ E \ E(C), hence the projection . y'
of . y to variables .E(C) is in the spanning tree polytope of .G[C], due to constraints

32 M. Aprile

(2), (3) (notice that .x(V) − 1 = |C | − 1). The spanning tree polytope of .G[C] is
then non-empty, therefore .G[C] is connected. ∎

The description above has an exponential number of constraints. There are well
known extended formulations of size .O(n3) for the spanning tree polytope of an
.n-vertex graph [21, 26], and smaller extended formulations for special classes of
graphs [8, 15]. Therefore, we would like to turn any formulation for the spanning
tree polytope into a formulation for CVC. This can be done by going through the
forest polytope of . G, .STP↓(G), defined as the convex hull of incidence vectors
of forests of . G. The same proof of Lemma 1 shows that a correct formulation
for CVC can be obtained by replacing Constraints 2 in .Pstp with .y ∈ STP↓(G).
Finally, it is well-known that one can obtain a formulation of .STP↓(G) from one
of.STP(G), since.STP↓(G) = {x ∈ [0, 1]E : ∃y ∈ R

E : x ≤ y, y ∈ STP(G)}. While
this approach does reduce the size of our CVC formulation from exponential to poly-
nomial, it still yields too many extra variables to be practical. In the next section, we
address this issue.

2.1 A Smaller Mixed-Integer Formulation

We now give a smaller formulation for the CVC problem, which makes use of a
mixed-integer formulation for .STP(G) with a small number of additional variables.
We start by giving the formulation for .STP(G), which builds on natural ideas that
can be found, for instance, in [22]. Rather than spanning trees in undirected graphs,
we focus on arborescences in directed graphs. Given our graph. G, we simply bidirect
each edge obtaining the directed graph.D = (V, A). Now, fix a “root” vertex.r ∈ V .
Recall that an .r -arborescence of .D is a subset of arcs .F ⊆ A such that, for every
.v ∈ V \ {r}, .F contains exactly one directed path from. r to . v. Clearly, a description
of the .r -arborescences of .D gives a description of the spanning trees of .G by just
ignoring the orientations (i.e. setting .yuv = zuv + zvu for each edge .uv). Moreover,
since arborescences are rooted in. r , we do not need arcs that point to. r , and we simply
delete them. Recall that .δ−(v) denotes the set of arcs of .A pointing to . v. Consider
the following formulation:

. Qr =
{
z ∈ {0, 1}A | ∃ d ∈ R

V :
z(δ−(v)) = 1 ∀v ∈ V \ {r} (5)

.dv ≥ n · (zuv − 1) + du + 1 ∀(u, v) ∈ A (6)

.dr = 0 (7)

.z(A) = |V | − 1
}
. (8)

Lemma 2 Let .D = (V, A) be a directed graph, and .r ∈ V such that .δ−(r) = ∅.
Then.F ⊆ A is an.r-arborescence of.D if and only if.(χ F , d) ∈ Qr for some.d ∈ R

V .

Exact Approaches for the Connected Vertex Cover Problem 33

Proof First, given an .r -arborescence . F , set .dv to the length of the (unique) path
from. r to . v in . F , for each .v ∈ V . It is easy to check that all constraints are satisfied
by .(χ F , d).

On the other hand, let .(z, d) ∈ Qr , with .z = χ F . We first show that . F , after
ignoring orientations, does not contain cycles: suppose by contradiction that . C ⊆
F is a cycle with vertices .v1, . . . , vk , where for each .i = 1, . . . , k, .vivi+1 ∈ C or
.vi+1vi ∈ C (where the sum is modulo. k). For any.uv ∈ C , we have that . dv ≥ du + 1
by (6): this implies that . C cannot be a directed cycle. In particular, if . v is the vertex
of .C with .dv minimum, then there are two arcs of .C pointing to . v: but this is in
contradiction with Constraint (5), if .v /= r , and with .δ−(r) = ∅ otherwise.

Now, we have .|F | = |V | − 1 by (8). This, the absence of cycles, and Constraint
(5), guarantees that .F is an .r -arborescence of . D. ∎

One could turn .Qr into a formulation for the forest polytope of .G and obtain a
formulation for the CVC problem, as described in the previous section. However, it
is not clear how to do this without adding additional variables: the issue is the choice
of the root . r , which does not need to be connected to the other vertices in a forest.
Instead, we are able to limit the number of variables by exploiting the fact that, for
any edge.uv of. G, at least one of.u, v has to be picked in our vertex cover. Hence, we
choose a “main” root vertex . r , and another root . r1, adjacent to . r , that we can use as
a root when . r is not in our vertex cover. We consider the following directed version
.D = (V, A) of our graph .G = (V, E): fix .r, r1 ∈ V with .rr1 ∈ E , turn every edge
.vr ∈ E into a directed arc from . r to . v, turn every edge .vr1 ∈ E with .v /= r into a
directed arc from.r1 to . v, and bidirect each other edge. Notice that, in . D, . δ−(r) = ∅
and .δ−(r1) = {r}. Now, consider the following formulation:

. Parb(r, r1) =
{
x ∈ {0, 1}V ∃ z ∈ {0, 1}A, d ∈ R

V :
xu + xv ≥ 1 ∀(u, v) ∈ A, (9)

.z(δ−(v)) = xv ∀v ∈ V \ {r, r1} (10)

.dv ≥ n · (zuv − 1) + du + xv ∀(u, v) ∈ A (11)

.dr = 0 (12)

.z(A) = x(V) − 1 (13)

.zuv ≤ xu, zuv ≤ xv ∀(u, v) ∈ A
}
. (14)

Theorem 1 Let .G = (V, E) be a connected graph, let .r, r1 ∈ V with . (r, r1) ∈ E
and construct the directed graph .D = (V, A) as described above. Then .C ⊆ V is a
CVC if and only if .(χC , z, d) ∈ Parb(r, r1) for some .z, d.

Proof First, let .C ⊆ V be a CVC. We distinguish three cases.

1. .r ∈ C, r1 /∈ C . Let. F be any.r -arborescence of.D[C], and set.x = χC ,.z = χ F ,. dv

equal to the distance between. r and. v in. F for.v ∈ C , and.dv = 0 for.v /∈ C . Notice
that .0 ≤ dv ≤ n − 1 holds for all .v ∈ V . Now,.(x, z, d) can be checked to satisfy
all constraints of .Parb(r, r1): we only discuss Constraints (11). Let .(u, v) ∈ A. If

34 M. Aprile

.(u, v) /∈ F , the corresponding constraint is.dv ≥ −n + du + xv , which is trivially
satisfied for any.u, v as.dv is non-negative and the right-hand side is non-positive.
Hence, suppose .(u, v) ∈ F , hence .xv = 1. Then the constraint is .dv ≥ du + 1,
which is satisfied at equality by our choice of . d.

2. .r1 ∈ C, r /∈ C . We proceed similarly as in the previous case, choosing an .r1-
arborescence.F of .D[C] and setting.z = χ F , .dv equal to the distance between. r1
and . v in .F for .v ∈ C , and .dv = 0 for .v /∈ C . Then .(x, z, d) can be checked to
satisfy all constraints exactly as before.

3. .r, r1 ∈ C . Let. F be an.r -arborescence of.D[C] containing the arc.rr1 (notice that
such an arborescence always exists). Set .z = χ F , and set . d as in the first case.
Again, one checks that all constraints are satisfied.

Now, let .(χC , z, d) ∈ Parb(r, r1), with .z = χ F . In order to show that .G[C] is
connected, we just need to show that. F does not contain any cycle. We use the same
argument as in the proof of Lemma 2, which we repeat for completeness. Assume
that. F contains a cycle. C .. C cannot be a directed cycle due to Constraints (11), hence
. C contains a vertex . v with two incoming arcs. Constraint (10) implies that .v = r or
.v = r1, but this contradicts the fact that .δ−(r) = ∅, .δ−(r1) = {r}. ∎

3 A Branch & Bound Algorithm

In this section we describe a naive branch & bound algorithm to solve the CVC prob-
lem. For simplicity we follow the standard framework of branch & bound algorithms
for the maximum stable set problem, see for instance [27]: instead of looking directly
for a minimum vertex cover, we look for a stable set .S∗ of maximum size. The only
difference with the classical setting is that we impose that .S∗ is feasible, where we
call feasible a stable set . S such that .G \ S is connected.

We now give an informal description of the algorithm, referring to Algorithm 1
for the pseudocode. To avoid recursion, a stack is used to store the nodes explored by
the algorithm. Each node consists of a pair.(S,U), where. S is a feasible stable set and
.U is a set of candidate nodes that can be added to. S. The idea is to explore the search
space of all possible nodes while keeping a record of the best solution found so far,
denoted by.S∗: at each step, the current node.(S,U) of the stack is either branched on,
or pruned if we realize that it cannot produce a stable set larger than.S∗. The pruning
step is based on greedy coloring, as in the classical algorithm for the maximum stable
set problem, exploiting the fact that any proper coloring of the complement of a graph
gives an upper bound on its maximum stable set: in particular, the maximum stable
set that the node can produce has size at most.|S| + α(G[U]) ≤ |S| + χ(Ḡ(U)), and
the latter term is estimated as the numbers of colors used in a greedy coloring (see
Line 6). Branching is also performed as in the classical algorithm, but with a crucial
difference: we select a vertex.v ∈ U and create nodes.(S,U \ {v}) and.(S ∪ {v},U '),
where .U ' ⊆ U \ {v} is obtained by removing from .U all the neighbors of . v and all

Exact Approaches for the Connected Vertex Cover Problem 35

the cut-vertices 1 of .G \ (S ∪ {v}) (see Line 11). This ensures that we only consider
feasible stable sets.

Algorithm 1 Pseudocode of a basic branch & bound algorithm for CVC. Following
the classical framework for maximum stable set algorithms, the algorithm finds
the largest stable set S∗ in G such that G \ S∗ is connected, and then outputs the
corresponding vertex cover.

Input: A connected graph G = (V , E)
Output: A minimum-size CVC of G

1: S∗ ← ∅
2: C ← cut-vertices of G
3: A ← [(∅, V \ C)]
4: while A non-empty do
5: (S, U) ← pop(A)
6: while U non-empty and |S∗| < |S|+ greedy_color(Ḡ[U]) do
7: v ← pop(U)
8: Append (S, U) to A
9: S ← S ∪ {v}
10: C ← cut-vertices of G \ S
11: U ← (U ∩ N̄ (v)) \ C
12: if |S| > |S∗| then
13: S∗ ← S
14: end if
15: end while
16: end while
17: return V \ S∗

We now argue that our algorithm is correct: most importantly, we need to show
that removing cut-vertices as described above is enough to find the largest feasible
stable set.

Theorem 2 Let .G = (V, E) be a connected graph. Then Algorithm 1 on input . G
outputs a minimum CVC of . G.

Proof Equivalently, we will show that the set .S∗ output by the algorithm is the
maximum feasible stable set of . G. We say that a node .(S,U) contains a feasible
stable set .S' if .S ⊆ S' ⊆ U .

First, we claim that the starting node .(∅, V \ C) contains all feasible stable sets,
where . C are the cut-vertices of . G. Indeed, if . u is a cut-vertex of . G, and . S a feasible
stable set, . S cannot contain . u: if .u ∈ S, we must have that .G \ {u} consists of two
connected components .G1, .G2, and . S contains the vertices of .G1 without loss of
generality. But since.G is connected, there is at least an edge between. u and a vertex
of .G1, a contradiction.

Now, it suffices to show that, whenever we branch on a node .(S,U) obtaining
two new nodes, any feasible stable set .S' contained in .(S,U) is contained in one of

1 A vertex. v of a connected graph.G is a cut-vertex if its deletion disconnects. G.

36 M. Aprile

the new nodes. This implies that any feasible stable set is explored by the algorithm
at some step, and concludes the proof.

The new nodes created are.(S,U \ {v}) and.(S ∪ {v},U '), where.U ' is defined in
Line 11. Clearly, if.v /∈ S', then.S' is contained in node.(S,U \ {v}) and we are done.
On the other hand, if .v ∈ S', we only need to show that .S' ⊆ U '. This follows since
.S' cannot contain any neighbor of . v, or any cut-vertex of .G \ (S ∪ {v}), where the
latter is proved by using the same argument as for the starting node. ∎

We conclude the section with some improvements to Algorithm 1 that can be
implemented to increase performance (see next Section for the implementation
details).

• Computing a strong upper bound reduces the number of branch and bound nodes,
at the price of longer running time for each node: for bipartite graphs, instead of
resorting to a coloring bound we can directly compute the size of a maximum
(usually unfeasible) stable set in the current subgraph, resulting in much better
bounds and shorter total running time.

• On the other hand, for general graphs we find that is better to spend less time on
the upper bound computation: instead of recomputing a greedy coloring at each
execution of Line 6, keeping the same coloring for several steps reduces the total
running time.

• Russian Doll Search: to slightly restrict the number of visited nodes, we order the
vertices as .v1, . . . , vn by decreasing degree and call the algorithm. n times: at step
. i , we include node. i on our starting set . S and restrict the set .U to vertices. v j , with
. j > i , that are not neighbors of . vi .

4 Numerical Results

We now compare the performance of our formulation.Parb and our branch and bound
algorithm on a benchmark of random graphs. We remark that the CVC problem
is most interesting in graphs where the solution of CVC is strictly larger than the
minimum vertex cover (we call such graphs interesting): if this is not the case one
could just use the state of the art methods for finding the minimum vertex cover,
and check that it induces a connected subgraph. This poses challenges to forming a
benchmark of interesting graphs, as for instance the standard DIMACS benchmark
[19] does not contain interesting graphs as far as we could check. Hence we resorted
to sparse, random graphs. In particular, half of our graphs are Erdős–Rényi random
graphs with density equal to.0.05; the others are bipartite random graphs, with density
ranging from.0.1 to.0.5. We remark that bipartite graphs often seem to be interesting,
which makes sense intuitively as each part of the bipartition forms a (possibly sub-
optimal) vertex cover that is not connected: for instance, in the complete bipartite
graph .Kn,n , a minimum vertex cover has size . n, while a minimum connected vertex
cover has size .n + 1. Moreover, as mentioned in the introduction, bipartite graphs

Exact Approaches for the Connected Vertex Cover Problem 37

are one of the simplest graph classes for which the VC problem is polynomial and
CVC is NP-hard, which makes them good candidates for studying the differences
between the two problems.

The graphs are produced with the functions fast_gnp_random_graph() and bipar-
tite.random_graph() from the Networkx package [18], and the name of the graph
indicates the random seed: for instance,.Gi is the random graph on 100 vertices with
density 0.05 created by seed. i . Some of the seeds are missing since we only consider
connected graphs. The experiments are run on a processor Intel Core i5-4590 (4
cores) clocked at 3.3 GHz with 4 GB RAM. Algorithm 1 is coded in Python, version
3.7, and Networkx functions articulation_points() and greedy_color() are used to
perform Lines 10 and 6 respectively. We refer to [3] for the code for Algorithm 1 and
for producing the formulation .Parb.

As for the implementation of formulation .Parb, it is also done in Python 3.7 and
Gurobi 9.0.3 is used as MIP solver. Default parameters are used, and the results are
averaged over three runs to account for the performance variability of the solver.

Table 1 indicates the results for random graphs, and Table 2 for bipartite graphs.
Columns .VC , .CVC indicate the sizes of the minimum vertex cover and connected
vertex cover respectively. The columns B&B t, B&B n indicate the running time (in
seconds) and the number of nodes of Algorithm 1, and similarly for.Parb t and.Parb n.

It is evident from this comparison that solving the CVC problem with our formu-
lation .Parb is much faster than with Algorithm 1, by a factor of one up to three order
of magnitudes for some of the instances. Algorithm 1 does not finish in the time
limit (one hour) for one of the bipartite graphs of density 0.2. Clearly, this might
be partially due to the naive implementation of Algorithm 1, which is not optimized
for speed: for instance, in Line 10 one does not have to recompute all cut vertices
every time, but could restrict the computation to a single connected component of
an appropriate subgraph of . G. However, implementing this using the appropriate
functions of Networkx actually further slows down the algorithm, as more infor-

Table 1 Results for random graphs of low density (0.05)

Name
(seed)

.|V | .|E | VC CVC B&B t B&B n .Parb t .Parb n

.G1 100 252 58 60 65.6 23138 0.2 1

.G2 100 247 55 56 6.4 435 0.1 1

.G3 100 232 56 57 12.7 1742 0.2 1

.G4 100 238 58 59 17.9 2296 0.4 191

.G7 100 257 56 59 21.1 2700 0.3 14

.G9 100 254 58 60 100.3 21846 0.2 1

.G13 100 260 58 59 56.2 18766 0.3 7

.G16 100 263 56 58 18.1 3620 0.2 1

.G24 100 234 58 58 11.2 1788 0.2 1

.G25 100 264 61 61 28.6 4789 0.5 158

38 M. Aprile

Table 2 Results for random bipartite graphs. The density of each graph is written in its name, with
the random seed in brackets

Name
(seed)

.|V | .|E | VC CVC B&B t B&B n .Parb t .Parb n

.G0.1(1) 100 255 49 54 11.1 6635 0.1 1

.G0.1(4) 100 242 50 57 863.4 818251 0.23 1

.G0.2(0) 100 483 50 57 1h+ 2mln+ 2.7 393

.G0.2(1) 100 497 50 56 1314.9 999252 2.3 338

.G0.3(0) 100 753 50 55 1137.1 723409 4.2 88

.G0.3(1) 100 753 50 55 1266.4 874949 4.3 166

.G0.4(0) 100 1007 50 54 354.5 210209 3 1

.G0.4(1) 100 977 50 53 69.6 39614 2.1 1

.G0.5(0) 100 1254 50 53 73.5 38685 3.9 1

.G0.5(1) 100 1231 50 53 50.0 26071 5.4 1

mation needs to be carried by each node. Hence, obtaining a faster version of the
algorithm would require more advanced data structures and tools. But we believe
this would not be enough to match the speed of .Parb: a major limit of the algorithm
is that the bound used in the pruning phase (Line 6) is the same as for the classical
vertex cover problem, i.e. does not take connectivity into account. Finding a better
bound that is specific to the CVC problem is a non-trivial challenge, that we leave
as an open problem. On the other hand, since Gurobi solves .Parb using a very small
number of branching nodes, it would seem that the bound of the linear relaxation of
.Parb is reasonably tight. This suggests the idea of taking the best of both worlds and
integrating a bound based on.Parb into a combinatorial branch and bound algorithm.

5 Conclusion

The CVC problem brings together two of the most natural concepts in graph theory:
stable sets and vertex covers on one hand, connectedness and spanning trees on
the other. This paper approaches the problem from a modeling perspective, giving
exact mixed-integer formulations for solving the problem, and compares them with
a simple branch and bound algorithm. We believe that further work needs to be done
in both directions: while we focused on modeling the connectivity requirement,
better formulations could be found by using tighter formulations of the vertex cover
problem; on the other hand, finding a faster branch and bound algorithm is fascinating
challenge, as it is unclear how to tailor the branching and pruning steps to the CVC
problem. We conclude by mentioning some extensions of CVC that could be of
interest.

Exact Approaches for the Connected Vertex Cover Problem 39

The Tree Cover problem [9] is closely related to the CVC problem: given a
graph with non-negative weights on the edges and numbers .k, w one asks to find a
connected vertex cover of size at most. k whose induced subgraph admits a spanning
tree of weight at most. w. It is easy to see that our formulations given in Sect. 2 can be
adapted to model the Tree Cover problem, and exploring this further is an interesting
research direction.

A natural generalization of the CVC problem considers hypergraphs instead of
graphs [13]. We remark that deciding whether a hypergraph contains a spanning tree
is NP-hard [1], hinting that the hypergraph version of CVC might be significantly
harder than the graph version. However, we believe that our formulations can be
extended to the hypergraph setting, and intend to investigate further in the future.

Finally, a different direction of research would be to generalize the connectivity
constraint in the CVC problem to a matroid constraint, i.e. requiring that the edges
of the subgraph induced by our vertex cover are full-rank sets of a given matroid.
To the best of our knowledge, problems of this kind have not been studied before.
Modelling such problems with mixed-integer formulations would be a promising line
of inquiry, as there are several extended formulations for special matroid polytopes
[2, 4, 7, 11].

References

1. Andersen, L.D., Fleischner, H.: The np-completeness of finding a-trails in eulerian graphs and
of finding spanning trees in hypergraphs. Discrete Appl. Math. 59(3), 203–214 (1995)

2. Aprile, M.: Extended formulations for matroid polytopes through randomized protocols. Oper.
Res. Lett. 50(2), 145–149 (2022)

3. Aprile, M.: Some code for solving the cvc problem (2022). https://github.com/manuel-aprile/
CVC

4. Aprile, M., Conforti, M., Fiorini, S., Faenza, Y., Huynh, T., Macchia, M.: Slack matrices, k-
products, and 2-level polytopes. Discrete Appl. Math. (2022). https://doi.org/10.1016/j.dam.
2022.07.028

5. Aprile, M., Faenza, Y.: Extended formulations from communication protocols in output-
efficient time. Math. Progr. 183(1), 41–59 (2020)

6. Aprile, M., Faenza, Y., Fiorini, S., Huynh, T., Macchia, M.: Extension complexity of stable
set polytopes of bipartite graphs. In: International Workshop on Graph-Theoretic Concepts in
Computer Science. pp. 75–87. Springer (2017)

7. Aprile, M., Fiorini, S.: Regular matroids have polynomial extension complexity. Math. Oper.
Res. 47(1), 540–559 (2022)

8. Aprile, M., Fiorini, S., Huynh, T., Joret, G., Wood, D.R.: Smaller extended formulations for
spanning tree polytopes in minor-closed classes and beyond. Electr. J. Comb. 28(4), P4.47
(2021)

9. Arkin, E.M., Halldórsson, M.M., Hassin, R.: Approximating the tree and tour covers of a graph.
Inf. Proc. Lett. 47(6), 275–282 (1993)

10. Cardinal, J., Levy, E.: Connected vertex covers in dense graphs. Theor. Comput. Sci. 411(26–
28), 2581–2590 (2010)

11. Conforti, M., Kaibel, V., Walter, M., Weltge, S.: Subgraph polytopes and independence poly-
topes of count matroids. Oper. Res. Lett. 43(5), 457–460 (2015)

12. Edmonds, J.: Matroids and the greedy algorithm. Math. progr. 1(1), 127–136 (1971)

https://github.com/manuel-aprile/CVC
https://github.com/manuel-aprile/CVC
https://github.com/manuel-aprile/CVC
https://github.com/manuel-aprile/CVC
https://github.com/manuel-aprile/CVC
https://github.com/manuel-aprile/CVC
https://doi.org/10.1016/j.dam.2022.07.028
https://doi.org/10.1016/j.dam.2022.07.028
https://doi.org/10.1016/j.dam.2022.07.028
https://doi.org/10.1016/j.dam.2022.07.028
https://doi.org/10.1016/j.dam.2022.07.028
https://doi.org/10.1016/j.dam.2022.07.028
https://doi.org/10.1016/j.dam.2022.07.028
https://doi.org/10.1016/j.dam.2022.07.028
https://doi.org/10.1016/j.dam.2022.07.028
https://doi.org/10.1016/j.dam.2022.07.028

40 M. Aprile

13. Escoffier, B., Gourvès, L., Monnot, J.: Complexity and approximation results for the connected
vertex cover problem in graphs and hypergraphs. J. Discrete Algor. 8(1), 36–49 (2010)

14. Fernau, H., Manlove, D.F.: Vertex and edge covers with clustering properties: complexity and
algorithms. J. Discrete Algor. 7(2), 149–167 (2009)

15. Fiorini, S., Huynh, T., Joret, G., Pashkovich, K.: Smaller extended formulations for the spanning
tree polytope of bounded-genus graphs. Discrete & Comput. Geom. 57(3), 757–761 (2017)

16. Garey, M.R., Johnson, D.S.: The rectilinear steiner tree problem is np-complete. SIAM J. Appl.
Math. 32(4), 826–834 (1977)

17. Guo, J., Niedermeier, R., Wernicke, S.: Parameterized complexity of vertex cover variants.
Theory Comput. Syst. 41(3), 501–520 (2007)

18. Hagberg, A., Swart, P., S Chult, D.: Exploring network structure, dynamics, and function using
networkx. Technical Report, Los Alamos National Lab. (LANL), Los Alamos, NM (United
States) (2008)

19. Johnson, D.S., Trick, M.A.: Cliques, coloring, and satisfiability: second DIMACS implemen-
tation challenge, October 11–13, 1993, vol. 26. American Mathematical Society (1996)

20. Kleinberg, J., Goemans, M.X.: The lovász theta function and a semidefinite programming
relaxation of vertex cover. SIAM J. Discrete Math. 11(2), 196–204 (1998)

21. Martin, R.K.: Using separation algorithms to generate mixed integer model reformulations.
Oper. Res. Lett. 10(3), 119–128 (1991)

22. Miller, C.E., Tucker, A.W., Zemlin, R.A.: Integer programming formulation of traveling sales-
man problems. J. ACM (JACM) 7(4), 326–329 (1960)

23. Mölle, D., Richter, S., Rossmanith, P.: Enumerate and expand: improved algorithms for con-
nected vertex cover and tree cover. Theory Comput. Syst. 43(2), 234–253 (2008)

24. Padberg, M.W.: On the facial structure of set packing polyhedra. Math. Progr. 5(1), 199–215
(1973)

25. Savage, C.: Depth-first search and the vertex cover problem. Inf. Proc. Lett. 14(5), 233–235
(1982)

26. Wong, R.: Integer programming formulations of the traveling salesman problem. In: Proceed-
ings of the 1980 IEEE International Conference on Circuits and Computers, pp. 149–152
(1980)

27. Wu, Q., Hao, J.K.: A review on algorithms for maximum clique problems. Eur. J. Oper. Res.
242(3), 693–709 (2015)

Rigidity of Frameworks on Spheres

John Hewetson and Anthony Nixon

Abstract Consider the rigidity of bar-joint frameworks in 3-dimensional space that
are constrained to lie on a union of spheres. It is well known that rigidity on a
single sphere is equivalent to Euclidean rigidity and this equivalence extends to the
case where the spheres are concentric. We consider the case when the spheres have
distinct centres and give coloured sparsity conditions, analogous to the Euclidean
case, necessary for a generic framework on the union of two spheres with different
centres to be rigid. We show that these conditions are not sufficient in general and
add additional conditions which we prove are sufficient in a special case.

1 Introduction

A bar-joint framework .(G, p) is the combination of a finite, simple graph. G = (V, E)

and a map .p : V → R
d . The framework is rigid if the only edge-length preserving

continuous deformations of the vertices arise from isometries of .Rd . In general it is
NP-hard to determine the rigidity of a given framework [1], however for ‘generic’
frameworks one can linearise and consider the equivalent notion of infinitesimal rigid-
ity [2]. Infinitesimal rigidity has been studied intensely in recent decades. Notably,
when .d ≤ 2 there is a precise combinatorial characterisation [7, 12] which leads to
efficient deterministic algorithms [8]. However, when .d ≥ 3 fundamental questions
remain open [5, 14].

A natural question is what happens when .Rd is replaced by a, perhaps smooth,
.d-dimensional manifold. The case of the unit sphere centred at the origin,.Sd , is well
understood. In particular, due to work going back to Pogorelov [4, 11, 13], infinites-
imal rigidity is now well understood as a projective invariant and hence infinitesimal
rigidity in .Rd is equivalent to infinitesimal rigidity on .Sd . This equivalence breaks

J. Hewetson · A. Nixon (B)
Lancaster University, Mathematics and Statistics, Lancaster LA1 4YF, UK
e-mail: a.nixon@lancaster.ac.uk

J. Hewetson
e-mail: j.hewetson2@lancaster.ac.uk

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
A. Brieden et al. (eds.), Graphs and Combinatorial Optimization:
from Theory to Applications, AIRO Springer Series 13,
https://doi.org/10.1007/978-3-031-46826-1_4

41

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-46826-1_4&domain=pdf
a.nixon@lancaster.ac.uk
 854 53672 a 854 53672 a

mailto:a.nixon@lancaster.ac.uk
j.hewetson2@lancaster.ac.uk
 854 56550 a 854 56550
a

mailto:j.hewetson2@lancaster.ac.uk
https://doi.org/10.1007/978-3-031-46826-1_4
https://doi.org/10.1007/978-3-031-46826-1_4
https://doi.org/10.1007/978-3-031-46826-1_4
https://doi.org/10.1007/978-3-031-46826-1_4
https://doi.org/10.1007/978-3-031-46826-1_4
https://doi.org/10.1007/978-3-031-46826-1_4
https://doi.org/10.1007/978-3-031-46826-1_4
https://doi.org/10.1007/978-3-031-46826-1_4
https://doi.org/10.1007/978-3-031-46826-1_4
https://doi.org/10.1007/978-3-031-46826-1_4
https://doi.org/10.1007/978-3-031-46826-1_4

42 J. Hewetson and A. Nixon

down for.d-manifolds which ‘support’ isometry groups of smaller dimension. How-
ever, a number of recent papers have studied rigidity for .2-manifolds such as cylin-
ders, surfaces of revolution, and surfaces arising from the more general context of
linearly constrained frameworks [3, 9, 10]. Previous research has focused on either
irreducible manifolds with a single connected component, or the mild extension to
‘concentric’ surfaces. One such example is concentric spheres, where the isometry
group has the same dimension as any one of its irreducible components.

In this article we consider the reducible case proper by considering the rigidity
of frameworks in .R

3 where the vertices lie on the union of two spheres with distinct
centres. Since the dimension of the isometry group of a single sphere is different to
that of the isometry group of such a union of spheres, the required number of con-
straints varies depending on whether a (sub-)framework is supported on one or both
spheres. We use 2-(vertex)-coloured graphs to model such frameworks and analyse
appropriate classes of ‘coloured sparse’ graphs. The multiple sparsity requirements
lead to additional cases to check and substantial complications. One difficulty is the
existence of various types of ‘flexible circuit’ (see Remark 1 below). It turns out that
the problem is already non-trivial when exactly one vertex lives on the second sphere
and our main result precisely characterises this case.

In Sect. 2 we introduce formal definitions, express infinitesimal rigidity as a matrix
rank condition, and give coloured sparse graph counts necessary for infinitesimal
rigidity. Then we show that certain operations on frameworks on a pair of non-
concentric spheres preserve infinitesimal rigidity. Our main result is proved, via a
recursive construction of the relevant coloured graphs, in Sect. 3.

2 Rigidity on Non-concentric Spheres

Let .Sd
c denote the .d-dimensional unit sphere centred at the point .c ∈ R

d . For nota-
tional convenience we will use. S to denote the union.S

2
(0,0,0) ∪ S

2
(3,0,0).

1 Throughout,
unless stated otherwise, .G will be a finite, simple graph with vertex set . V , edge set
.E and .χ : V → {r, b} will be a 2-colouring of the vertices of .G (with colours red
and blue). The resulting ordered pair .(G, χ) is a 2-coloured graph, and we denote
this object .Gχ . For .i ∈ {r, b}, let .Vi = {v ∈ V : χ(v) = i}. A 2-coloured subgraph
.Hχ of .Gχ is a subgraph .H of .G equipped with the colouring .χ |V (H). A bar-joint
framework on . S, .(Gχ , p), is the combination of a 2-coloured graph .Gχ and a reali-
sation, of. G, .p : V → R

d such that .p(v) ∈ S
2
(0,0,0) for all .v ∈ Vr and. p(v) ∈ S

2
(3,0,0)

for all .v ∈ Vb. Throughout we will always assume that . p is chosen in this way. That
is, it will be assumed that . χ and . p are compatible in the sense that every .v ∈ Vr is
mapped to .p(v) ∈ S

2
(0,0,0) and every .u ∈ Vb is mapped to . p(u) ∈ S

2
(3,0,0)

The frameworks.(Gχ , p) and.(Gχ , q) on. S are: equivalent if. ||p(vi) − p(v j)||2 =
||q(vi) − q(v j)||2 for all .viv j ∈ E ; and congruent if .||p(vi) − p(v j)||2 = ||q(vi) −

1 Rigidity is invariant under both isometries and global dilations; we choose to work with unit radius
spheres with the specified centres purely for convenience.

Rigidity of Frameworks on Spheres 43

q(v j)||2 for all .vi , v j ∈ V . Note that .(G, p) and .(G, q) are congruent if and only if
there exists an isometry . ι of .R3 such that .ι(q) = p. The framework .(Gχ , p) on . S is
.S-rigid if there exists a neighbourhood of . p such that every equivalent framework
.(Gχ , q) on. S, with. q in that neighbourhood, is congruent to.(Gχ , p). We refer to non-
.S-rigid frameworks as.S-flexible. Moreover,.(Gχ , p) is minimally .S-rigid if. (Gχ , p)
is .S-rigid and .((G − e)χ , p) is .S-flexible for any .e ∈ E .

For a given framework on . S, .(Gχ , p), let .Q(p) denote the field extension of
.Q by adjoining the coordinates of (the image of) . p. Then .(Gχ , p) is .S-generic if
.td[Q(p) : Q] = 2|V |. In other words the coordinates of .p satisfy the polynomial
equations defining the component of . S the relevant point lives on but no other alge-
braic dependency. For generic frameworks it is standard to consider a linearisation
through the Jacobian derivative matrix. We take the same approach and define the
rigidity matrix for a framework on . S, .(Gχ , p), to be the .(|E | + |V |) × 3|V | matrix

.

(
R3(G, p)
S(Gχ , p)

)

where .R3(G, p) is the usual 3-dimensional rigidity matrix and .S(Gχ , p) is a block
diagonal matrix in which the 3-tuple in the row and columns for .v ∈ V is a normal
vector to. S at the point.p(v). We denote this matrix.RS(Gχ , p). Borrowing language
from matroid theory we say that a 2-coloured graph .Gχ is .S-independent (resp. .S-
dependent) if .RS(Gχ , p) has linearly independent (resp. dependent) rows for some
(and hence all) generic . p. Moreover .Gχ is an .S-circuit if .RS(Gχ , p) has linearly
dependent rows but deleting any single row of .RS(Gχ , p) results in a matrix with
linearly independent rows.

Let .Gχ = (V, E)χ be a 2-coloured graph. When .|Vb|, |Vr | ≥ 2 then there is
exactly one isometry that preserves . S; this congruence is the rotation about the line
determined by the centres of the two spheres. However, if .Vb = {x} then a second
isometry exists, namely rotation about the line determined by .p(x) and the centre
of the ‘red’ sphere, and preserves congruence. Moreover, if .Vb = ∅ then all three
rotational isometries of the red sphere exist and preserve congruence.

Let .Gχ = (V, E)χ be a 2-coloured graph, we may then define the function . f :
P(V) \ ∅ → Z by

. f (U) =

⎧⎪⎨
⎪⎩
3 if U ⊆ Vr or U ⊆ Vb,

2 if U ⊂ Vr , Vb and |U ∩ Vr | = 1 or |U ∩ Vb| = 1,

1 if |U ∩ Vr |, |U ∩ Vb| ≥ 2.

We say that .(Gχ , p) is infinitesimally .S-rigid if . rank RS(Gχ , p) = 3|V | − f (V)

or .G ∼= K1 and minimally infinitesimally .S-rigid if it is infinitesimally .S-rigid and
the rows of .RS(Gχ , p) are linearly independent. It follows immediately from [12]
that when . f (V) = 3 this rank can be achieved. It is not difficult to construct small
examples where the other maximum possible ranks can be achieved. Figure 1 illus-

44 J. Hewetson and A. Nixon

Fig. 1 A realisation of .K2 on two spheres. The three dotted lines represent axes of three rota-
tional motions that result in congruent frameworks. This framework is.S-rigid even though it is not
infinitesimally.S-rigid

trates how the number of vertices of each colour affects the number isometries of. R3

that preserve . S, and hence why the count . f (U) depends on . χ .
For .S-generic frameworks one may use the inverse function theorem to deduce

the following analogue of a key theorem of Asimow and Roth [2] (see also [9] for
the irreducible manifold case).

Proposition 1 Let .(Gχ , p) be an .S-generic framework on at least 5 vertices. Then
.(Gχ , p) is .S-rigid if and only if it is infinitesimally .S-rigid.

Since the rank of the rigidity matrix is maximised at any.S-generic point,.S-rigidity
depends only on the underlying 2-coloured graph and hence we say that.Gχ is.S-rigid
if some (and hence any) .S-generic framework .(Gχ , p) on . S is .S-rigid.

To see the necessity of the lower bound on the number of vertices, consider . K2

(see Fig. 1), .K3, and .K4. Regardless of the colouring assigned by . χ , any complete
2-coloured graph is .S-rigid. However: .(K2)χ is infinitesimally .S-rigid if and only if
.χ is monochrome; .(K3)χ is infinitesimally .S-rigid if and only if .χ assigns all the
vertices of.K3 the same colour; and.(K4)χ is infinitesimally.S-rigid if and only if one
colour is assigned to at most one vertex.

Let.G = (V, E) be a graph and take.∅ /= X ⊆ V . Let.iG(X), or.i(X) if the graph is
clear from the context, denote the number of edges in the subgraph of. G induced by. X .
A 2-coloured graph.Gχ is.(2, f)-sparse if for all.X ⊆ V such that.|X | ≥ 2,. iG(X) ≤
2|X | − f (X). .Gχ is .(2, f)-tight if it is .(2, f)-sparse and .|E | = 2|V | − f (V).

Proposition 2 Let .Gχ be minimally infinitesimally .S-rigid on at least 2 vertices.
Then .Gχ is .(2, f)-tight.

Proof As.Gχ is infinitesimally.S-rigid,.|E | ≥ 2|V | − f (V). Suppose. i(X) > 2|X | −
f (X) for some .X ⊆ V with .|X | ≥ 2. Since .rank RS(Gχ [X], p|X) ≤ 3|X | − f (X),

.RS(Gχ [X], p|X) has linearly dependent rows, contradicting the fact that .Gχ is min-
imally infinitesimally .S-rigid. Thus .Gχ is .(2, f)-sparse and hence .(2, f)-tight. ∎

The remainder of this article will consider the converse question. That is, given a
.(2, f)-tight graph is it .S-rigid? We first illustrate one reason this is challenging. It is
immediate from Proposition 2 that .S-circuits admit different behaviour to standard

Rigidity of Frameworks on Spheres 45

(a) (b) (c)

Fig. 2 a the double banana graph which satisfies the Maxwell conditions for 3-dimensional rigidity
but is not rigid. b A 2-coloured graph that is.(2, f)-tight but not.S-rigid. c An augmentation of (a)
that models the constraints under the two spheres models of the coloured graph in (b). The green
vertices represent the fixed centres of the two spheres and the dashed edges to the green vertices
represent the constraints that the red/blue vertices must move on the given sphere

Fig. 3 Illustration of the 0- and 1-extension operations

rigidity models. Specifically a flexible .S-circuit is a graph that is both .S-flexible
and an .S-circuit. Somewhat surprisingly, flexible .S-circuits exist. For contrast, in
the well studied 2-dimensional Euclidean rigidity (or equivalently for rigidity on the
2-sphere) all circuits are rigid. The following example shows the well known double
banana graph (see Fig. 2) can easily be disguised as a flexible .S-circuit.

Remark 1 Let.Gχ be the coloured graph consisting of two copies of.K4 that intersect
in exactly one vertex, which is the unique blue vertex of .Gχ (see Fig. 2b). We may
consider the corresponding ‘linearly constrained’ framework (see [3]), depicted in
Fig. 2c, which has two additional vertices located at the centers of the two spheres.
This framework clearly contains the ‘usual’ double banana (Fig. 2a) and admits the
same infinitesimal motion. Moreover, it is easily checked that .Gχ is .(2, f)-sparse,
with. f (V) = 2, and hence the converse to Proposition 2 is false. Further note that one
may adapt the example by careful replacement of one, or both, of the .K4 subgraphs
with larger graphs to create infinite families of such examples in both the . f (V) = 2
and . f (V) = 1 cases.

The existence of flexible .S-circuits makes characterising .S-rigidity challenging.
For that reason we focus on, and resolve, the case where . f (V) = 2. Note that this
case is rich enough to contain the flexible .S-circuits described in Remark 1.

We conclude this section by deriving two ways to build .S-rigid coloured graphs.
To that end,.G ' is said to be obtained from a graph.G by a 0-extension if. G = G ' − v

for a vertex .v ∈ V (G ') of degree . 2, or by a 1-extension if .G = G ' − v + xy for a
vertex .v ∈ V (G ') of degree . 3 where . x and . y are neighbours of . v. These operations
are illustrated in Fig. 3. The converse operations will be referred to as 0-reduction
and 1-reduction respectively.

46 J. Hewetson and A. Nixon

Lemma 1 Let .Gχ be infinitesimally .S-rigid on at least 2 vertices and let .G ' be
obtained from .G by a 0-extension. If .χ '|V = χ and . f (V (G ')) = f (V) then .G '

χ ' is
infinitesimally .S-rigid.

Proof Let .G ' be formed by adding. v and.vv1, vv2. Set .p' = (p, p'(v)) and observe
the following block form for the rigidity matrix of .(G '

χ ' , p'):

. RS(G
'
χ ' , p') =

(
RS(Gχ , p) 0

∗ T

)
.

Here .T is a .3 × 3 matrix whose entries are determined by . p'. In particular,
.(G '

χ ' , p') is infinitesimally .S-rigid if and only if .T is invertible. It is easy to check
this holds for any non-collinear triple .p(v1), p(v2), p(v) and hence it holds for .
.S-generic . p'. ∎

Lemma 2 Let .Gχ be infinitesimally .S-rigid on at least 2 vertices and let .G ' be
obtained from .G by a 1-extension that deletes the edge .v1v2 and adds a new vertex . v

with .N (v) = {v1, v2, v3}. If .χ '|V = χ , . f (V (G ')) = f (V) and .v, v1 ∈ Vr then . G '
χ '

is infinitesimally .S-rigid.

Proof If.v2 ∈ Vr then we place.p'(v) on the great circle of.S(0,0,0) through the points
.p(v1) and.p(v2). It is easy to check that the complete graph on.v1, v2, v is a minimally
dependent set. If .v2 ∈ Vb then we place .p(v) on the intersection of .S(0,0,0) and the
unique line determined by.p(v1) and.p(v2) (generically this intersection necessarily
contains a point distinct from.p(v1)). It is again easy to check that the complete graph
on .v1, v2, v is a minimally dependent set. Hence in both cases we may use the fact
that 0-extension preserves infinitesimal .S-rigidity when .p(v), p(v1), p(v3) are not
collinear to show that .(G + v + {v1v, v3v})χ ' is infinitesimally .S-rigid. Now by the
minimality of the dependent set on .v1, v2, v we may remove the edge .v1v2 and add
the edge .v2v without altering the rank of .RS(Gχ , p). This shows that .(G '

χ ' , p'), and
hence .G '

χ ' , is infinitesimally .S-rigid. ∎

3 Rigidity of Nearly Monochrome Graphs

A 2-coloured graph.Gχ is monochrome if every vertex has the same colour and nearly
monochrome if it is not monochrome but there exists .v ∈ V such that . (G − v)χ
is monochrome. The classical characterisation of rigidity on the 2-sphere [12, 13]
resolves the case when.Gχ is monochrome. In this section we consider the case when
.Gχ is nearly monochrome and hence one of the spheres contains exactly one vertex
of the graph. In this case the combinatorial conditions simplify to. iG(X) ≤ 2|X | − 2
for all .X ⊆ V , and .iG(X) ≤ 2|X | − 3 for all .X ⊆ Vr with .|Vr | > 1.

For a graph .G and .v ∈ V we will use .dG(v), .NG(v), and .NG[v] to denote the
degree, neighbourhood, and closed neighbourhood respectively of . v in . G. Further-
more, for .X,Y ⊆ V we use .dG(X,Y) to denote the number of edges of the form.xy

Rigidity of Frameworks on Spheres 47

such that .x ∈ X \ Y and .y ∈ Y \ X . In each case we may drop the subscript if the
graph is clear from the context. We will repeatedly use the equality

.iG(X) + iG(Y) + dG(X, Y) = iG(X ∪ Y) + iG(X ∩ Y). (1)

Given a 2-coloured graph .Gχ , we say that .∅ /= X ⊆ V is . f -critical (in .Gχ) if
.iG(X) = 2|X | − f (X). If .Gχ is .(2, f)-sparse then a 1-reduction of .Gχ is said to be
admissible if the resulting 2-coloured graph is.(2, f)-sparse. The next lemma shows
that . f -critical sets are the main ‘blockers’ to admissible 1-reductions in.(2, f)-tight
graphs. Vertices of degree 3 shall be referred to as nodes. We say that a node. v ∈ Vr

with .N (v) = {x, y, z} is: type 1 if .N (v) ⊆ Vr and type 2 if .|N (v) ∩ Vb| = 1. The
other type of node possible in a nearly monochrome graph is a node .v ∈ Vb with
.N (v) ⊆ Vr ; we avoid working with such nodes.

The proof of the next lemma is standard and hence omitted. For the proof and
additional details on subsequent results in this section see [6, Chap. 5].

Lemma 3 Let .Gχ be a 2-coloured graph, suppose . v is a node of .G and let . N (v) =
{x, y, z}. If .Gχ is .(2, f)-sparse then .(G − v + xy, χ |V \{v}) is not a .(2, f)-sparse
2-coloured graph if and only if .xy ∈ E or there exists an . f -critical set .Z ⊆ V such
that .{x, y} ⊆ Z. Further, if such a set . Z exists and . v is type 1 or type 2 then .z /∈ Z.

Given that.Gχ is.(2, f)-sparse and. v is a node of. G,. v is admissible if at least one of
the 1-reductions of.Gχ at. v result in a.(2, f)-sparse 2-coloured graph. To understand
this, the remainder of this subsection consider interactions between . f -critical sets.

Lemma 4 Let .Gχ be .(2, f)-sparse and take .∅ /= X, Y ⊆ V . If .X and .Y are . f -
critical in .Gχ and .|X ∩ Y | ≥ 2 then .d(X, Y) = 0, .X ∪ Y is . f -critical in .Gχ and
either

1. . f (X ∪ Y) = 1, . f (X) = 2 = f (Y), . f (X ∩ Y) = 3, and .X ∩ Y is . f -critical in
.Gχ , or

2. . f (X ∪ Y) = 1, . f (X) = 2 = f (Y) = f (X ∩ Y), and .G[X ∩ Y] ∼= K2, or
3. . f (X ∪ Y) = min{ f (X), f (Y)}, . f (X ∩ Y)} = max{ f (X), f (Y)}, and .X ∩ Y is

. f -critical in .Gχ .

Proof As .Gχ is .(2, f)-sparse, and .X and .Y are . f -critical in .Gχ , it follows from
Eq. (1) that . f (X) + f (Y) ≥ f (X ∪ Y) + f (X ∩ Y) + d(X, Y). Note that, by the
definition of . f ,

. f (X ∩ Y) ≥ max{ f (X), f (Y)} ≥ min{ f (X), f (Y)} ≥ f (X ∪ Y). (2)

Let.D = min{ f (X), f (Y)} − f (X ∪ Y). If.D = 2 then. f (X ∪ Y) = 1 and. f (X) =
3 = f (Y). However as .X ∩ Y /= ∅ this contradicts the definition of . f . Hence . D ∈
{0, 1}.

Suppose instead that .D = 1, so . f (X ∪ Y) ≤ 2. If . f (X ∪ Y) = 2 then . f (X) =
3 = f (Y) and, as in the previous paragraph, we have a contradiction. Therefore
. f (X ∪ Y) = 1 and .min{ f (X), f (Y)} = 2. If .max{ f (X), f (Y)} = 3 then, as .|X ∩

48 J. Hewetson and A. Nixon

Y | ≥ 2 and .min{ f (X), f (Y)} = 2, it follows that . f (X ∪ Y) = 2, a contradiction.
Therefore . f (X) = 2 = f (Y), and so . f (X ∩ Y) ∈ {2, 3}. If . f (X ∩ Y) = 3 then it
follows that .d(X, Y) = 0 and then Eq. (1) implies that .X ∪ Y and .X ∩ Y are both
. f -critical in.Gχ . Alternatively, if . f (X ∩ Y) = 2 then, as. f (X ∪ Y) = 1,. |X ∩ Y | =
2. It follows from Eq. (1) that .d(X, Y) = 0 and so .i(X ∪ Y) = 2|X ∪ Y | − 1 and
.i(X ∩ Y) = 2|X ∩ Y | − 3. That is, .X ∪ Y is . f -critical in .Gχ and .G[X ∩ Y] ∼= K2.

Finally suppose that .D = 0, so . f (X ∪ Y) = min{ f (X), f (Y)}. It now follows
from Eq. (2) that .d(X, Y) = 0 and . f (X ∩ Y) = max{ f (X), f (Y)}. Consequently,
Eq. (1) implies that both .X ∪ Y and .X ∩ Y are . f -critical in .Gχ . ∎

Lemma 5 Let .Gχ be .(2, f)-sparse and take .∅ /= X, Y ⊆ V . If .X and .Y are . f -
critical in .Gχ , .|X ∩ Y | = 1, . f (V) ≥ 2 and .d(X, Y) ≥ 1 then . f (X ∪ Y) =
min{ f (X), f (Y)},.d(X, Y) = 1,.X ∪ Y is. f -critical in.Gχ , and. max{ f (X), f (Y)} =
3.

Proof As.Gχ is.(2, f)-sparse, and.X and. Y are. f -critical in.Gχ and. |X ∩ Y | = 1 ≤
d(X, Y) it follows from Eq. (1) that

. f (X) + f (Y) ≥ f (X ∪ Y) + f (X ∩ Y) + d(X, Y) ≥ f (X ∪ Y) + 2 + 1. (3)

Let.D = min{ f (X), f (Y)} − f (X ∪ Y). If.D = 1 then, as. f (V) ≥ 2,. f (X ∪ Y) =
2 and . f (X) = f (Y) = 3. However, as .X ∩ Y /= ∅ this contradicts the definition of
. f . Hence.D = 0, so. f (X ∪ Y) = min{ f (X), f (Y)}. It now follows from Eq. (3) that
.d(X, Y) = 1 and .max{ f (X), f (Y)} = 3. Consequently, Eq. (1) implies that . X ∪ Y
is . f -critical in .Gχ . ∎

Similar considerations give the following result, see [6, Chap. 5] for the proof.

Lemma 6 Let .Gχ be .(2, f)-sparse and take .∅ /= X, Y, Z ⊆ V . If .X, Y and .Z are
. f -critical in .Gχ , .|X ∩ Y | = |X ∩ Z | = |Y ∩ Z | = 1, .X ∩ Y ∩ Z = ∅ and . f (V) ≥
2 then . f (X) + f (Y) + f (Z) ≥ 8, . f (X ∪ Y ∪ Z) = min{ f (X), f (Y), f (Z)}, . X ∪
Y ∪ Z is . f -critical in .Gχ , .d(X ∪ Y, Z) = 0, and .d(X ∩ Z , Y ∩ Z) = d(X, Y).

Lemma 7 Let .Gχ be .(2, f)-sparse, suppose .v ∈ V is a node, and let . N (v) =
{x, y, z}. If . f (V) ≥ 2, and . v is type 1 or type 2, then . v is non-admissible if and
only if . v is type 2 and either (i) .G[N (v)] ∼= K3, or (ii) .G[N (v)] = (N (v), {xz, yz}),
and there exists .Z ⊆ V such that .N [v] ∩ Z = {x, y}, . f (Z) = 3, and . Z is . f -critical
in .Gχ .

Proof If . v is type 2 and (i) or (ii) hold then Lemma 3 implies that . v is non-
admissible. On the other hand, let us suppose that . v is non-admissible. Let . H =
(N (v), {xy, xz, yz}) and let .F = E(H) \ E . We deal with both types of . v simulta-
neously, and proceed by considering .i(N (v)).

If.i(N (v)) = 0 then let.F = {e1, e2, e3}. As. v is non-admissible, Lemma 3 implies
there exist .U1,U2,U3 ⊆ V such that, for .i ∈ {1, 2, 3}, the endpoints of .ei are in . Ui

and .Ui is . f -critical in .Gχ . As . f (V) ≥ 2, Lemmas 4 and 6 together imply that there
exist.i, j ∈ {1, 2, 3} such that.i /= j and.Ui ∪Uj is. f -critical in.Gχ , or.U1 ∪U2 ∪U3

Rigidity of Frameworks on Spheres 49

is . f -critical in .Gχ . However, as . v is type 1 or type 2 this contradicts Lemma 3. If
.i(N (v)) = 1 then let .F = {e1, e2}. As . v is non-admissible, Lemma 3 implies there
exist .U1,U2 ⊆ V such that, for .i ∈ {1, 2}, the endpoints of .ei are in .Ui and .Ui is
. f -critical in .Gχ . As.d(U1,U2) ≥ 1 and. f (V) ≥ 2, Lemma 4 and Lemma 5 together
imply that .U1 ∪U2 is . f -critical in .Gχ . However, as . v is type 1 or type 2 and . Gχ

is .(2, f)-sparse this contradicts Lemma 3.If .i(N (v)) = 2 then let .F = {e}. As . v is
non-admissible, Lemma 3 implies there exists .U ⊆ V such that the endpoints of . e
are in .U and.U is . f -critical in .Gχ . As .Gχ is .(2, f)-sparse and. v is type 1 or type 2,
Lemma 3 implies .|U ∩ N (v)| = 2. Consequently,

. i(U ∪ N [v]) ≥ i(U) + 5 = (2|U | − f (U)) + 5 = 2|U ∪ N [v]| − (f (U) − 1),

As.Gχ is .(2, f)-sparse it follows that . f (U) ≥ f (U ∪ N [v]) + 1. So, as . f (V) ≥ 2,
it follows that. f (U) = 3 and. f (U ∪ N [v]) = 2. Therefore. v is type 2 and (ii) holds.
If .i(N (v)) = 3 then, as .Gχ is .(2, f)-sparse, . v is type 2 and (i) holds. ∎

A nearly monochrome graph .Gχ is .(2, f)-cut-sparse if it is .(2, f)-sparse and
every .(2, f)-tight subgraph of .Gχ with at least three vertices is 2-connected. .Gχ is
.(2, f)-cut-tight if it is .(2, f)-cut-sparse and .(2, f)-tight.

Lemma 8 Let.Gχ be nearly monochrome and.(2, f)-cut-sparse. Suppose.v ∈ V is a
node and.N (v) = {x, y, z}. If the 1-reduction of.Gχ at. v adding.xy is admissible then
it is non-feasible if and only if there exist.W1,W2 ⊆ V such that.N (v) ∩ W1 = {x, y},
.W1 ∩ W2 = {v ∈ V : f (V \ {v}) > f (V)}, .i(W1) = 2|W1| − 3, .W2 is . f -critical in
.Gχ , and .d(W1,W2) = 0.

Proof Let .G '
χ ' denote the 2-coloured graph resulting from the 1-reduction of . Gχ

at . v adding .xy. Suppose there exist such sets .W1 and .W2. Then .W1 and .W2 are . f -
critical in .G '

χ ' . As .G '
χ ' is .(2, f)-sparse, Eq. 1 implies .W1 ∪ W2 is . f -critical in .G '

χ ' .
So .G '[W1 ∪ W2]χ ' is a .(2, f)-tight 2-coloured subgraph of .G '

χ ' and.|W1 ∪ W2| ≥ 3.
However it is not 2-connected and therefore the 1-reduction is not feasible.

Conversely, suppose the 1-reduction is not feasible. Then there exists. U ⊆ V (G ')
such that .|U | ≥ 3, .U is . f -critical in .G '

χ ' and there exists a cut-vertex, . u, of
.G '[U]. As .U is . f -critical in .G '

χ ' and . u is a cut-vertex of .G '[U] we note that
. f (U) = 2. Let .H1, . . . , Hn denote the components of .G '[U \ {u}]. It follows from
Eq. 1 that for all .1 ≤ i ≤ n, .V (Hi) ∪ {u} is . f -critical in .G '

χ ' and . f (V (Hi) ∪
{u}) = 2. Moreover, as . f (V) = 2, .{u} = {w ∈ V : f (V \ {w}) > f (V)}. As . Gχ

is.(2, f)-cut-sparse, there exists.1 ≤ i ≤ n such that.{x, y} ⊆ V (Hi) ∪ {u}. We may
suppose that .{x, y} ⊆ V (H1) ∪ {u}. Then .(V (H1) ∪ {u}) ∩ (V (H2) ∪ {u}) = {u},
.iG(V (H1) ∪ {u}) = 2|V (H1) ∪ {u}| − 3, .V (H2) ∪ {u} is .(2, f)-critical in .Gχ and
.dG(V (H1) ∪ {u}, V (H2) ∪ {u}) = 0. ∎

We next show that, at every admissible vertex, there exists some feasible reduction.
See Fig. 4 for an example.

Lemma 9 Let.Gχ be nearly monochrome and.(2, f)-cut-sparse and suppose. v ∈ V
is a node. Then . v is feasible if and only if . v is admissible.

50 J. Hewetson and A. Nixon

Fig. 4 The three possible 1-reductions of.Gχ at. v demonstrate distinct outcomes. The 1-reduction
adding .uy is non-admissible, the 1-reduction adding .ux is admissible but non-feasible, and the
1-reduction adding.xy (resulting in.Hψ) is feasible

Proof If . v is feasible then clearly . v is admissible. On the other hand, let us sup-
pose that . v is admissible. Let .Vb = {u}. Let .H = (N (v), {xy, xz, yz}) and let
.F = E(H) \ E . We present only the case when .i(N (v)) = 1. The other cases use
similar analysis and can be found in [6, Chap. 5]. Let .F = {e1, e2}. As . v is admis-
sible we may suppose, without loss of generality, that the 1-reduction of .Gχ at . v
adding .e1 is admissible. Suppose there exist .W1,W2 ⊆ V such that . N (v) ∩ W1 =
{endpoints of e1}, .W1 ∩ W2 = {u}, .i(W1) = 2|W1| − 3, .W2 is . f -critical in .Gχ and
.d(W1,W2) = 0. There are two cases. Firstly, suppose there exists .U ⊆ V such that
.U ∩ N [v] = {endpoints of e2} and .U is . f -critical in .Gχ . Then Eq. 1 implies

. i(W1 ∪U) ≥ 2|W1 ∪U | + 2|W1 ∩U | − (2 + f (U) + i(W1 ∩U)).

Note that, as .W1 ∩U /= ∅ and . f (V) = 2 = f (W1), . f (U) = f (W1 ∩U). If . |W1 ∩
U | ≥ 2 then, as .Gχ is .(2, f)-sparse, it follows that

. i(W1 ∪U) ≥ (2|W1 ∪U | − 2) + (2|W1 ∩U | − f (W1 ∩U)) − i(W1 ∩U) ≥ 2|W1 ∪U | − 2

and so.W1 ∪U is.(2, f)-critical in.Gχ . Then. i(W1 ∪U ∪ {v}) = 2|W1 ∪U ∪ {v}| −
1, a contradiction. Hence .|W1 ∩U | = 1. Thus .i(W1 ∪U) ≥ 2|W1 ∪U | − f (U).
Hence.i(W1 ∪U ∪ {v}) ≥ 2|W1 ∪U ∪ {v}| − (f (U) − 1). As. f (V) ≥ 2 it follows
that.W1 ∪U ∪ {v} is. f -critical in.Gχ ,. f (U) = 3,.i(W1 ∪U) = 2|W1 ∪U | − f (U),
and .d(W1,U) = 1. If .W2 ∩U /= ∅ then Lemma 4 implies .(W1 ∪U ∪ {v}) ∩ W2 is
. f -critical in .Gχ . This implies .dG[(W1∪U∪{v})∩W2](w) ≥ 2, a contradiction. If . W2 ∩
U = ∅, Eq. 1 implies .(W1 ∪U ∪ {v}) ∪ W2 is . f -critical in .Gχ and . d(W1 ∪U ∪
{v},W2) = 0. So . u is a cut-vertex of .G[W1 ∪U ∪ {v} ∪ W2], a contradiction.

Alternatively, suppose there exist .U1,U2 ⊆ V such that .U1 ∩U2 = {u}, . N (v) ∩
U1 = {endpoints of e2}, .i(U1) = 2|U1| − 3,.U2 is . f -critical in.Gχ and. d(U1,U2) =
0. Then Eq. 1 implies that . i(W1 ∪U1) ≥ (2|W1| − 3) + (2|U1| − 3) + 1 − i(W1 ∩
U1) = 2|W1 ∪U1| + 2|W1 ∩U1| − (5 + i(W1 ∩U1)). As .Gχ is .(2, f)-sparse, it
follows that . i(W1 ∪U1) ≥ (2|W1 ∪U1| − 3) + (2|W1 ∩U1| − 2) − i(W1 ∩U1) ≥
2|W1 ∪U1| − 3. Hence .i(W1 ∪U1 ∪ {v}) ≥ 2|W1 ∪U1 ∪ {v}| − 2. It follows that
.W1 ∪U1 ∪ {v} is . f -critical in .Gχ , .i(W1 ∪U1) = 2|W1 ∪U | − 3, and . d(W1,U) =
1.As.|W2 ∩U2| ≥ 1and.Gχ is.(2, f)-cut-sparse,.|W2 ∩U2| ≥ 2. Therefore Lemma 4

Rigidity of Frameworks on Spheres 51

implies .W2 ∩U2 is . f -critical in .Gχ . As .(W2 ∩U2) ∩ (W1 ∪U1 ∪ {v}) = {u}, Eq. 1
implies .(W1 ∪U1 ∪ {v}) ∪ (W2 ∩U2) is . f -critical in .Gχ . However, then . u is a cut-
vertex of .G[(W1 ∪U1 ∪ {v}) ∪ (W2 ∩U2)], a contradiction. ∎

Theorem 1 A nearly monochrome graph .Gχ on at least 2 vertices is minimally
infinitesimally .S-rigid if and only if .Gχ is .(2, f)-cut-tight.

Proof The necessity of the .(2, f)-tight count with . f (V) = 2 was proved in Propo-
sition 2. Suppose.Gχ is minimally infinitesimally.S-rigid and has a .(2, f)-tight sub-
graph .Hχ , with .|V (H)| ≥ 3, which is not 2-connected. Then . f (V (H)) = 2 and . H
is the union of two.(2, f)-tight subgraphs intersecting in a single vertex. u. It follows
that .Hχ is .S-dependent, as in Remark 1, a contradiction.

For the sufficiency we proceed via induction on .|V |. The base case is any nearly
monochrome.(K4)χ . It is not hard to show that.RS((K4)χ , p) has full rank for any.S-
generic . p. So we may suppose .Gχ /= (K4)χ . Suppose .Gχ is .(2, f)-cut-tight. There
exists .v ∈ V of minimum degree with . f (V \ {v}) = f (V). Note that .d(v) ∈ {2, 3}.
.(G − v)χ is a nearly monochrome subgraph of.Gχ and hence is.(2, f)-cut-sparse. If
.d(v) = 2 then .i(V \ {v}) = i(V) − 2 = 2|V \ {v}| − 2, so .(G − v)χ is .(2, f)-cut-
tight and we can complete the proof using Lemma 1.

Alternatively suppose .d(v) = 3, and, for .i ∈ {1, 2}, let
.Wi = {w ∈ V : w is a type i node of Gχ }. Let .Vb = {u}. Then

. 4|V | − 4 = 2|E | ≥ 3(|W1| + |W2|) + d(u) + 4(|V | − (|W1| + |W2| + 1)).

Hence .|W1| + |W2| ≥ d(u) ≥ |W2|. If .W1 = ∅ then .d(u) = |W2| and so Lemma 7
implies that for all .w ∈ W2, . w is admissible or .G[N (w)] ∼= K4. In the latter case, as
.G ≅ K4 and.Gχ is.(2, f)-cut-tight, this leads to a contradiction. Hence.W1 /= ∅ and
so, by Lemma 7, there exists an admissible node of.Gχ . Now Lemma 9 implies there
exists a feasible node of .Gχ and so we can complete the proof using Lemma 2. ∎

4 Concluding remarks

Well known graph orientation type algorithms (e.g. [8]) can be easily adapted to
prove that we can determine whether a graph is .(2, f)-cut-tight in polynomial time
and hence determine generic rigidity for nearly monochrome graphs.

Motivated by Theorem 1 we provide an additional necessary condition for .S-
rigidity in the more general case. To do this we augment the definition of.(2, f)-cut-
tight. Given a .(2, f)-tight graph .Gχ we say that .Gχ is .(2, f)-cut-tight if any cut-
vertex. v (if any exist) of any.(2, f)-tight subgraph.Hχ of.Gχ gives rise to components
of .H − v that are all not monochromatic.

Proposition 3 If .Gχ is minimally infinitesimally .S-rigid on at least 2 vertices then
.Gχ is .(2, f)-cut-tight.

52 J. Hewetson and A. Nixon

Proof By Proposition 2, .Gχ is .(2, f)-tight. Suppose .Hχ is a .(2, f)-tight subgraph
of .Gχ , with .|V (H)| ≥ 3, and there exists a cut-vertex, . v, of .H such that .H − v has
a monochrome component. Then . f (V (H)) ∈ {1, 2} and .H is the union of (at least)
two .(2, f)-tight subgraphs intersecting in the single vertex . v. Since .Hχ is .(2, f)-
tight,. v is coloured differently from the monochrome component of.H − v. It follows
that .Hχ is .S-dependent, as in Remark 1, a contradiction. ∎

It is tempting to conjecture that every .(2, f)-cut-tight graph is .S-rigid. In the
remaining case, when. f (V) = 1, Lemmas 1 and 2 can be used to verify that statement
for a large family of.(2, f)-cut-tight graphs. However a full resolution seems beyond
presently available techniques. The conjecture would be resolved by characterising
.S-independence for an arbitrary 2-coloured graph .Gχ . We conclude the paper by
noting that combining the recursive construction of [7] with Lemma 1 and a stronger
version of Lemma 2 shows that if .G is .(2, 3)-sparse then .Gχ is .S-independent (for
any . χ). This shows that the difficult part of the conjecture is dealing with ‘dense’
coloured subgraphs.

Acknowledgements A.N. was partially supported by EPSRC grant number EP/W019698/1.

References

1. Abbott, T.: Generalizations of Kempe’s Universality Theorem. Master’s thesis, Massachusetts
Institute of Technology (2008)

2. Asimow, L., Roth, B.: The rigidity of graphs. Trans. Am. Math. Soc. 245, 279–289 (1978)
3. Cruickshank, J., Guler, H., Jackson, B., Nixon, A.: Rigidity of linearly constrained frameworks.

Int. Math. Res. Not. 12, 3824–3840 (2020)
4. Eftekhari, Y., Jackson, B., Nixon, A., Schulze, B., Tanigawa, S., Whiteley, W.: Point-hyperplane

frameworks, slider joints, and rigidity preserving transformations. J. Comb. Theory Ser. B 135,
44–74 (2019)

5. Graver, J., Servatius, B., Servatius, H.: Combinatorial Rigidity. Graduate Studies in Mathemat-
ics, AMS, Providence, RI (1993)

6. Hewetson, J.: Recursive combinatorial constructions and rigidity of frameworks. Ph.D. Thesis,
Lancaster University (2023)

7. Laman, G.: On graphs and rigidity of plane skeletal structures. J. Eng. Math. 4, 331–340 (1970)
8. Lee, A., Streinu, I.: Pebble game algorithms and sparse graphs. Discrete Math. 308(8), 1425–

1437 (2008)
9. Nixon, A., Owen, J., Power, S.: Rigidity of frameworks supported on surfaces. SIAM J. Discret.

Math. 26(4), 1733–1757 (2012)
10. Nixon, A., Owen, J., Power, S.: A characterization of generically rigid frameworks on surfaces

of revolution. SIAM J. Discret. Math. 28(4), 2008–2028 (2014)
11. Pogorelov, A.V.: Extrinsic geometry of convex surfaces. Translation of the 1969 edition, Trans-

lations of Mathematical Monographs, vol. 35. AMS (1973)
12. Pollaczek-Geiringer, H.: Uber die Gliederung ebener Fachwerke. ZAMM-J. Appl. Math.

Mech./Zeitschrift fur Angewandte Mathematik und Mechanik, 7 (1927), 58–72 and 12 (1932),
369–376

13. Saliola, F., Whiteley, W.: Some notes on the equivalence of first-order rigidity in various
geometries (2007). arXiv:0709.3354

14. Tay, T.-S., Whiteley, W.: Generating isostatic frameworks. Struct. Topol. 11, 21–69 (1985)

arXiv:0709.3354
 7025 56151 a 7025 56151 a

http://arxiv.org/abs/0709.3354

Managing Time Expanded Networks:
The Strong Lift Problem

José-L. Figueroa, Alain Quilliot, Hélène Toussaint, and Annegret Wagler

Abstract Time Expanded Networks, built by considering the vertices of a base
network all over some time space, are powerful tools for the formulation of problems
that simultaneously involve resource assignment and scheduling. Still, in most cases,
deriving algorithms from those formulations is difficult. We implement here a generic
Project and Lift decomposition scheme while solving the Strong Lift issue, which
consists in turning a solution defined on the base network into a solution of the whole
problem with identical cost.

1 Introduction

A Time Expanded Network (TEN) .NTIME (see [6]) is derived from a network . N =
(X, A) and a time space TIME according to the following construction: vertices
of .NTIME are the copies .(x, t) of the vertices . x of .N at the different instants . t of
TIME. An arc of .NTIME is either an active arc .

(
(x, t), (y, t + δ(t))

)
, where .δ(t) is

the time required to traverse the arc .(x, y) of.N while starting at time. t , or a waiting
arc.

(
(x, t), (x, t ')

)
with.t < t ', which expresses some kind of standby in. x from time

. t to time . t '. Note that TIME may be discrete or continuous.
TENs are powerful tools for modeling problems which simultaneously involve

routing, scheduling, and synchronization mechanisms. The notion was first intro-

J.-L. Figueroa (B) · A. Quilliot · H. Toussaint · A. Wagler
Université Clermont Auvergne, CNRS, Clermont Auvergne INP, Mines Saint-Etienne, LIMOS,
63000 Clermont-Ferrand, France
e-mail: jfg77_sigma@hotmail.com

A. Quilliot
e-mail: alain.quilliot@uca.fr

H. Toussaint
e-mail: helene.toussaint@uca.fr

A. Wagler
e-mail: annegret.wagler@uca.fr

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
A. Brieden et al. (eds.), Graphs and Combinatorial Optimization:
from Theory to Applications, AIRO Springer Series 13,
https://doi.org/10.1007/978-3-031-46826-1_5

53

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-46826-1_5&domain=pdf
jfg77_sigma@hotmail.com
 854
46809 a 854 46809 a

mailto:jfg77_sigma@hotmail.com
alain.quilliot@uca.fr
 854 49687 a 854 49687 a

mailto:alain.quilliot@uca.fr
helene.toussaint@uca.fr
 854 52565 a 854 52565 a

mailto:helene.toussaint@uca.fr
annegret.wagler@uca.fr
 854 55444 a 854 55444 a

mailto:annegret.wagler@uca.fr
https://doi.org/10.1007/978-3-031-46826-1_5
https://doi.org/10.1007/978-3-031-46826-1_5
https://doi.org/10.1007/978-3-031-46826-1_5
https://doi.org/10.1007/978-3-031-46826-1_5
https://doi.org/10.1007/978-3-031-46826-1_5
https://doi.org/10.1007/978-3-031-46826-1_5
https://doi.org/10.1007/978-3-031-46826-1_5
https://doi.org/10.1007/978-3-031-46826-1_5
https://doi.org/10.1007/978-3-031-46826-1_5
https://doi.org/10.1007/978-3-031-46826-1_5
https://doi.org/10.1007/978-3-031-46826-1_5

54 J.-L. Figueroa et al.

duced by Ford and Fulkerson [6] in order to show how problems involving both
routing and scheduling could be cast into the network flow framework. It next gave
rise to dynamic networks and flow over time models, where flow values may be tra-
jectories. A trajectory means here a function from the time space TIME onto real
or integer numbers, subject to constraints like continuity or Lipchitz inequalities.
In the years 1990/2000, there were important contributions about algorithm design
and applications of these notions to evacuation planning (see [1, 5, 7]). Insights
were brought about the link between the TEN framework and the network flow over
time models. More recently, some authors tried to combine the TEN framework
with the improvement of the Mixed Integer Linear Programming (MILP) libraries
in order to directly address some transportation problems (see [2, 3, 8]). Finally, we
recently described the Project/Lift decomposition scheme at the core of the present
contribution, and addressed the Project issue through Branch-and-Cut (see [4]).

The TEN construction does not provide us with natural algorithmic solutions. The
fact is not only that the size of a TEN.NTIME increases very fast with the size of the
time space TIME, but also that trying to control this size through rounding tends
to induce uncontrolled error propagation. So, our purpose here is to bypass those
difficulties by implementing the following Project /Lift decomposition scheme: We
first solve (Project step) a projection of our problem set onto the base graph . N , and
next try (Lift step) to turn this projected solution into a full feasible solution defined
on the TEN.NTIME. Since we formerly addressed the Project issue (see [4]) we focus
here on the Lift issue. We address it in the “strong” way that means while imposing
that the projection of the lifted solution is exactly equal to the projected solution.

In order to make our methods easier to understand and to perform numerical
experiments, we refer inside this paper to a model related to the management of an
item relocation process involving a set of carriers.

The paper is organized as follows. In Sect. 2, we present a TEN model for our
reference problem together with the projected model which derives from this TEN
model. In Sects. 3–4, we address the Strong Lift issue and perform some numerical
experiments.

2 A Reference TEN Relocation Model

We consider here a transit network .N = (X, A), together with a distinguished vertex
.Depot . Every arc .a = (x, y) of .N is provided with a time value .T(x,y) and with a
cost value .C(x,y). We use the following notations:

• We set .T = (T(x,y) : (x, y) ∈ A) and .C = (C(x,y) : (x, y) ∈ A). For any path . π
from.x ∈ X to.y ∈ X , we denote by.LT (π) its length in the sense of T. We do the
same with C. For any pair of vertices .(x, y) we denote by .DT (x, y) the shortest
path distance induced by T from. x to. y, and by.DC(x, y) the shortest path distance
induced by C from. x to . y.

Managing Time Expanded Networks: The Strong Lift Problem 55

Fig. 1 The transit network.N = (X, A) used in Example 1

• Let .U be some subset of . X . We set .∂−
N (U) = {(x, y) ∈ A : x /∈ U, y ∈ U },

.∂+
N (U) = {(x, y) ∈ A : x ∈ U, y /∈ U }, .∂N (U) = ∂−

N (U) ∪ ∂+
N (U), and . A(U) =

{(x, y) ∈ A : x ∈ U, y ∈ U }. We simplify these notations in case of a singleton
.{x} by writing .∂−

N (x), .∂+
N (x) and .∂N (x) instead of .∂−

N ({x}), .∂+
N ({x}) and .∂N ({x}),

respectively.

Items are located inside the network and must be relocated, within a discrete time
horizon .{0, 1, . . . , Tmax} by a fleet of identical carriers with capacity .Cap. We are
provided with an integral balance vector.b = (bx , x ∈ X) such that.

∑
x∈X bx = 0. A

value.bx > 0means that. x is an excess vertex and that.bx items must be removed from
. x ; a value.bx < 0 means that. x is a deficit vertex and that.−bx items must be brought
to. x . The Item Relocation Problem (IRP) consists in scheduling the carriers in such a
way they perform this relocation process while meeting the time horizon and carrier
capacity requirements and while minimizing a hybrid cost .α · c1 + β · c2 + γ · c3,
where .c1 is the number of active carriers, .c2 is their running cost in the sense of . C,
.c3 is the time that items spend moving inside the carriers, and . α, . β, . γ are scaling
coefficients. We allow preemption, which means that carriers may exchange items
during the process.

Example 1 The network.N = (X, A) depicted in Fig. 1 shows two carrier routes. [1

and.[2. Note that two items are transferred from the carrier in.[1 to the carrier in. [2

at the vertex . x , and we have that .c1 = 2, .c2 = 10, and .c3 = 32. . ∎

2.1 A TEN Relocation Commodity Flow Model

In order to cast the IRP into the TEN framework (see [8]), we first derive from the
transit network .N = (X, A) its time expansion .NTmax = (XTmax , ATmax) according to
.Tmax. The vertex set .XTmax is the set of all pairs .(x, t), .x ∈ X , .t ∈ {0, 1, . . . , Tmax},
augmented with two distinguished vertices .source and.sink. The arcs .a ∈ ATmax are
classified as follows, together with their carrier cost .Ĉa , and their item cost . Îa :

56 J.-L. Figueroa et al.

• input-arcs .a = (
source, (x, 0)

)
, .x ∈ X , with . Îa = 0 and .Ĉa = 0;

• output-arcs .a = (
(x, Tmax), sink

)
, .x ∈ X , with . Îa = Ĉa = 0;

• waiting-arcs .a = (
(x, t), (x, t + 1)

)
, .x ∈ X , .t ∈ {0, . . . , Tmax − 1},

with . Îa = Ĉa =0;
• active-arcs .a = (

(x, t), (y, t + T(x,y))
)
, .(x, y) ∈ A, .t ∈ {0, . . . , Tmax − T(x,y)},

with . Îa = γ · T(x,y) and .Ĉa = β · C(x,y);
• backward-arc .a = (sink, source), with . Îa = 0 and .Ĉa = α.

Now we formalize the IRP as a 2-commodity flow model on .NTmax .

TEN IRP Formulation. Compute two nonnegative integral.ATmax -indexed vec-
tors H and h (for carriers and items, respectively) such that:

• H and h satisfy flow conservation at any vertex of .XTmax ; (E1)
• for any active-arc .a = (

(x, t), (y, t + T(x,y))
)
: .ha ≤ Cap · Ha ; (E2)

• for any input-arc .a=(
source, (x, 0)

)
, .x /= Depot :

.Ha = 0; .ha = max(bx , 0); (E3)
• for any output-arc .a =(

(y, Tmax), sink
)
, .y /= Depot :

.Ha = 0; .ha =max(−by, 0); (E4)
• the global cost .Cost (H, h) = ∑

a∈ATmax

(
Ha · Ĉa + ha · Îa

)
is minimized.

(E1) expresses the circulation of carriers and items inside. N . (E2) ensures that any
item moving between two vertices. x and. y is contained into some carrier. Constraints
(E3) and (E4) characterize initial and final states.

Figure 2 shows the construction of the TEN.NTmax = (XTmax , ATmax) associated to
the network .N = (X, A) of Fig. 1 and .Tmax = 6. It turns the solution of Example 1
into a 2-commodity flow vector (H, h).

2.2 The Projected IRP Model

A flow vector H being given on .NTmax = (XTmax , ATmax), we define its projection F
on .N by setting, for any arc .(x, y) of . N : .F(x,y) = ∑Tmax

t=0 H(x,t),(y,t+T(x,y)). We define
the projection f of h exactly the same way, and we call (F, f) the projection of (H,
h) on the network . N .

F and f must be such that:

• F satisfies flow conservation at any vertex of . X ; (E5.1)
• for any vertex . x of . N : .

∑
a∈∂+

N (x) fa − ∑
a∈∂−

N (x) fa = bx ; (E5.2)
• for any arc . a of . N : . fa ≤ Cap · Fa ; (E6)

Those constraints are not enough to characterize F and f : They do not forbid sub-
tours and they do not provide us with a well-fitted

Managing Time Expanded Networks: The Strong Lift Problem 57

Fig. 2 The routes and schedules from Example 1 viewed as a 2-commodity flow on the TEN
.NTmax = (XTmax , ATmax). a Carrier flow vector H. b Item flow vector h

estimation of the carrier number . c1. In order to enhance our projected model, we
first notice as in [4] that the quantity .

∑
a∈A Ta · Fa provides us with the global time

that carriers spend running inside . N . Since the whole process must be performed in
no more than.Tmax time units, we need at least .[(∑a∈A Ta · Fa)/Tmax] carriers. As a
consequence, (F, f) should minimize the projected cost: (E7)

.PCost(F, f) .= α ·
(∑

a∈A Ta ·Fa
)

Tmax
+ β · (∑

a∈A Ca · Fa
) + γ · (∑

a∈A Ta · fa
)
.

Similarly we notice that for any .U ⊂ X \ {Depot}, the time carriers spend at
the border or inside .U is equal to .

∑
a∈∂N (U)∪A(U) Ta · Fa . For any carrier . q this

time must not exceed .Tmax. Since the number of carriers that serve the vertices of
.U is .

∑
a∈∂−

N (U) Fa , we deduce that F must satisfy the following Extended Subtour
constraint:
.Tmax ·

(∑
a∈∂−

N (U) Fa
)

≥ ∑
a∈∂N (U)∪A(U) Ta · Fa . (E8)

One may check that (E8) can be separated in polynomial time (see [4]). This allows
us to set the following projected model which can be handled by Branch-and-Cut:

58 J.-L. Figueroa et al.

Projected Item Relocation Problem (PIRP). Compute on the network . N =
(X, A) two nonnegative integral vectors .A-indexed F and f such that:

• F satisfies flow conservation at any vertex of . X ; (E5.1)
• for any vertex .x ∈ X , .

∑
a∈∂−

N (x) fa − ∑
a∈∂+

N (x) fa = bx ; (E5.2)
• for any arc .a ∈ A, . fa ≤ Cap · Fa ; (E6)
• for any .U ⊆ X \ {Depot}, .Tmax ·

∑

a∈∂−
N (U)

Fa ≥
∑

a∈∂N (U)∪A(U)

Ta · Fa; (E8)

• Minimize .α ·
(∑

a∈A Ta ·Fa
)

Tmax
+ β · (∑

a∈A Ca · Fa
) + γ · (∑

a∈A Ta · fa
)
.

(E7)

3 The Strong Lift Issue

The former section raises in a natural way the following Lift issue: How can we derive
from a feasible PIRP solution (F, f) an efficient TEN IRP (H, h) while applying the
following decomposition scheme?

Project/Lift Decomposition Scheme.

1. Solve the PIRP model and get a projected solution (F, f).
2. Turn (i.e., lift) (F, f) into a “good” solution (H, h) of the TEN IRP model.

3.1 The Strong Lift Model

The most natural way to formalize this Lift issue consists in asking (H, h) to be such
that its projection onto .N is exactly (F, f). This leads us to set the following Strong
Lift Problem:

Strong Lift Problem SLIFT(F, f). Compute a feasible IRP solution (H, h) in
such a way that:

• the projection of H (respectively, h) on the transit network .N is equal to F
(respectively, f);

• the cost value .Cost(H, h) is smallest possible.

-
If (H, h) is a feasible solution of SLIFT(F, f) then the difference between .Cost(H,
h) and .PCost(F, f) only reflects the difference between the true number of carriers
H.(sink,source) and its approximation .(

∑
a∈A Ta · Fa)/Tmax as expressed in the PIRP

Model.

Managing Time Expanded Networks: The Strong Lift Problem 59

3.2 A Necessary Condition for the Feasibility of the Strong
Lift Problem: Enhancing the PIRP Model

A PIRP solution (F, f) may not always be liftable. So we should try to reinforce this
projected model in order to enhance the probability that (F, f) becomes liftable. We
intend to do it in such a way that (F, f) becomes “partially” liftable, that means that
there exists a feasible TEN IRP solution (H, h) such that the projection of h is f. In
order to set this in a formal way, we need to introduce the notion of a feasible path.

• A feasible path (seen as a set of arcs) of.N is any path. π from an excess vertex. x to
a deficit vertex . y whose length .LT (π) in the sense of the time matrix T satisfies:
.DT (Depot, x) + LT (π) + DT (y, Depot) ≤ Tmax. We associate, with any such
feasible path, a flow vector f. π which transports one item from . x to . y along the
path . π . We denote by .∏FP the set of feasible paths.

• A flow vector f is feasible-path-decomposable if and only if it can be written as f
.= ∑

π∈∏FP λπ f. π , with .λπ ∈ R+ for all .π ∈ ∏FP .
• We say that an .A-indexed vector w is a Path Feasibility vector if, for any feasible
path . π , we have .

∑
a∈π wa ≥ 0.

An item starting from an excess vertex. x can be transported to some deficit vertex
. y along path. π only if. π is a feasible path. It follows that a solution (F, f) of the PIRP
Model may be lifted into a feasible IRP solution (H, h) only if f is feasible-path-
decomposable. This leads us to the following necessary condition for the feasibility
of the Strong Lift Problem.

Theorem 1 The Strong Lift Problem SLIFT(F, f) admits a feasible solution if and
only if, for any Path Feasibility vector w, the following inequality holds:
.
∑

a∈A fa · wa ≥ 0. (E10)

Proof Necessity is straightforward from the above explanation. As for the suffi-
ciency, we get it by noticing that (E10) is nothing more than a formulation of Farkas
lemma in the case of vector f and the vector collection. {f.π , π ∈ ∏FP}: A flow vector
f is feasible-path-decomposable if and only if it belongs to the cone defined by the
collection . {f.π , π ∈ ∏FP}, that means (Farkas lemma) if and only if for any vector
w whose scalar product .

∑
a∈A f.πa · wa ≥ 0 with any vector f. π is nonnegative, then

the scalar product .
∑

a∈Af.a · wa is also nonnegative.

The latter result suggests us to enhance our projected model with the following
Feasible Path constraint:

• For any Path Feasibility vector w: .
∑

a∈A fa · wa ≥ 0. (E10)

One easily checks that separating (E10) may be performed in practice through
a simple column generation process. It follows that the resulting augmented PIRP
may be handled through Branch-and-Cut.

60 J.-L. Figueroa et al.

Fig. 3 A PIRP solution (F, f) on.N = (X, A) that satisfies (E10) but cannot be lifted

Remark 1 (E10) is not a sufficient condition for (F, f) to be liftable. Figure 3
shows that even if we impose the Feasible Path constraints, a PIRP solution
(F, f) cannot always be viewed as the projection of a feasible solution (H, h) of IRP
TEN. The carrier follows the route.(Depot, y, x, z, y, Depot), but cannot transport
any item from. z to . x . In fact, it is known that computing (H, h) from (F, f) in such a
way that (F, f) is the projection of (H, h) with identical cost value, is NP-Hard [3].

4 A MILP Formulation of the Strong Lift Problem

Let us recall that our strong version of the Lift Problem is about the search of an
IRP solution (H, h) whose projection on the network .N is exactly the solution (F,
f) obtained through resolution of the projected PIRP model. So let us consider a
feasible (optimal) solution (F, f) of the PIRP model. We denote by . Q(F) the sum
.
∑

x∈X
(
(
∑

a∈∂−
N (x) Fa) · (

∑
a∈∂+

N (x) Fa)
)
, and by. S(F) the sum.

∑
a∈A Fa . We are going

to show that it is possible to set an exact MILP formulation of the Strong Lift Problem,
which involves .2 · Q(F) decision variables, together with . Q(F) .+3 · S(F) rational
load and time variables.

The idea is that solving the Strong Lift Problem basically means determining what
happens “inside” the vertices of the transit network . N : More precisely, a vertex . x
being given, we want to know along which arc.a' a given carrier (respectively, item)
which arrives into . x along some arc . a is going to leave . x , and at which time.

4.1 Solving the Strong Lift Problem in an Exact Way

In order to formalize this idea, we construct a network .Strong(N , F.).

• With any arc .a = (x, y) ∈ A such that .Fa ≥ 1, we associate the set .Copy(a) of
.Fa copy-arcs.am ,.m = 1, . . . , Fa , with respective origin vertices.p = (x, a,m,+),
and respective destination vertices .q = (y, a,m,−). It follows that, at the same
time we create those copy-arcs, we also create copy-vertices .p = (x, a,m,+) and

Managing Time Expanded Networks: The Strong Lift Problem 61

.q = (y, a,m,−), which respectively correspond to the carriers which leave. x and
to the carriers which arrive into . y. We denote by .X∗ the resulting vertex set and
by.Copy(A) the set of all copy-arcs. For any such vertex.p = (y, a,m, ε), we set
.x(p) = y and .ε(p) = ε, and, for any vertex . y of . N , we set:

– .X∗(y) = {p ∈ X∗ such that x(p) = y};
– .X∗Plus(y) = {p ∈ X∗ such that x(p) = y, ε(p) = +};
– .X∗Minus(y) = {p ∈ X∗ such that x(p) = y, ε(p) = −};
– .CopyIn(y) = {a ∈ Copy(A) with destination in X∗Minus(y)};
– .CopyOut (y) = {a ∈ Copy(A) with origin in X∗Plus(y)}.

• We complete the arc collection. {am, a = (x, y) such that Fa ≥ 1,m = 1, . . . , Fa}
by middle-arcs .u = ((x, a,m,−), (x, a',m ',+)) which, for any vertex . x of . N ,
connect any copy-vertex .(x, a,m,−), where . a has destination. x , .m = 1, . . . , Fa ,
to any copy-vertex.(x, a',m ',+), where. a' has origin. x ,.m ' = 1, . . . Fa' . We denote
by.Middle the set of all middle-arcs created that way, and, for any. x , we denote by
.Middle(x) the set of the middle-arcs. u whose origin may be written.(x, a,m,−).
Notice that .Middle(x) defines a complete bipartite graph on .X∗(x). For any
vertex .p = (x, a,m,+), we denote by .I n(p) the set of middle-arcs . u whose
destination is. p, and, for any vertex.p = (x, a,m,−), we denote by.Out (p) the set
of middle-arcs. uwhose origin is. p. For any vertex. x of. N , we set. MiddleOut (x) =U

p∈X∗Minus(x) Out (p), and .MiddleIn(x) = U
p∈X∗Plus(x) I n(p).

We denote by .Strong(N , F.) the resulting network (see Fig. 4), which contains
.2 · S(F) vertices, . S(F) copy-arcs, and . Q(F) middle-arcs.

To set up our SLIFT(F, f) model, we use the following variables:

Fig. 4 Constructing the graph .Strong(N , F.). a A set of arcs in a network .N together with their
corresponding F flow values. b The arcs and vertices in the graph .Strong(N , F.) that are created
from the arcs, vertices, and flow values in (a). To avoid a cumbersome drawing we have not depicted
the arcs in the set.Middle

62 J.-L. Figueroa et al.

• Z.= (Zu, u = ((x, a,m,−), (x, a',m ',+)) ∈ Middle), with.{0, 1} values, where
.Zu = 1 means that the carrier which arrives at vertex . x along copy-arc .am keeps
on along arc .a'm '

.
• z .= (zu, u = ((x, a,m,−), (x, a',m ',+)) ∈ Middle), with rational values: . zu
may be kept integral and so may be viewed as the number of items which arrive
at vertex . x along arc .am and which are transferred to arc .a'm '

.
• .l = (lu, u = ((x, a,m,−), (x, a',m ',+)) ∈ Middle), with .{0, 1} values: where

.lu = 1 means that .zu /= 0.
• z.∗ = (z∗

am , am ∈ Copy(A)) with rational values: similarly as for . z, .zam shall cor-
respond to the number of items transported along arc .am ;

• t .= (tp, p = (x, a,m, ε) ∈ X∗)with rational nonnegative values:. tp stands for the
time when a carrier arrives (in case .ε = −) or leaves (in case .ε = +) in . x along
arc .am .

MILP model SLIFT(F, f). Compute on the network.Strong(. N , F) two 0–1 vec-
tors.Middle-indexed Z and. l; one nonnegative integral vector.Middle-indexed
z; one nonnegative integral vector .Copy(A)-indexed z. ∗; and one rational non-
negative vector .X∗-indexed t, such that:

• For any copy-vertex .q = (x, a,m, ε) of .Strong(. N , F), with .x /= Depot :
.
∑

u∈MiddleI n(q) Zu = 1 = ∑
u∈MiddleOut (q) Zu . (E11.1)

• For any copy-vertex .q = (Depot, a,m,+): .
∑

u∈MiddleI n(q) Zu ≤ 1. (E11.2)
• For any copy-vertex .p = (Depot, a,m,−): .

∑
u∈MiddleOut (p) Zu ≤ 1.

(E11.3)
• For any middle-arc . u: .zu ≤ Cap · lu . (E12.1)
• For any copy-arc .am : .z∗

am ≤ Cap. (E12.2)
• For any vertex .q = (y, a,m,−): .z∗

am ≥ ∑
u∈MiddleOut (q) zu . (E13.1)

• For any vertex .p = (x, a,m,+): .z∗
am ≥ ∑

u∈MiddleI n(p) zu . (E13.2)
• For any vertex . x of . N :

.
∑

u∈CopyIn(x) z
∗
u = ∑

u∈MiddleOut (x) zu + max(−bx , 0). (E14.1)
• For any vertex . x of . N :

.
∑

u∈CopyOut (x) z
∗
u = ∑

u∈MiddleI n(x) zu + max(bx , 0). (E14.2)
• For any arc .a = (x, y) of . N : .

∑
u∈Copy(a) z

∗
u = fa . (E15)

• For any copy-arc .(p, q) = (
(x, a = (x, y),m,+), (y, a = (x, y),m,−)

)
:

.tq ≥ tp + T(x,y). (E16)
• For any middle-arc.u = (q = (x, a,m,−), p = (x, a',m ',+)), the implica-
tion .

(
(Zu = 1) ∨ (lu = 1)

) ⇒ tp ≥ tq holds, equivalent to: . Zu + tq−tp
Tmax

≤ 1

and .lu + tq−tp
Tmax

≤ 1. (E17)

Objective function Maximize .
∑

u∈Middle(Depot) Zu . (E18)

-
The meaning of those constraints becomes clear from the proof of Theorem 2.

Managing Time Expanded Networks: The Strong Lift Problem 63

Theorem 2 Solving the above MILP model SLIFT(F, f), which involves .2 · Q(F)
decision variables Z and . l, together with . Q(F) .+3 · S(F) rational variables z, z. ∗
and t, also solves the Strong Lift Problem related to (F, f) in an exact way.

Proof This result derives from the fact that we require the projection of H onto
network .N to be exactly equal to F. More precisely, since the Strong Lift Problem
explicitly requires the projection of H onto the transit network .N to be equal to F,
we see that the routes followed by the carriers are completely determined by the way
we assign a carrier entering into a vertex . x along some copy-arc .am onto another
copy-arc.a'm '

leaving. x (in case.x = Depot , we may assign a “null” arc, that means
consider that the carrier ends its trip into .Depot with the arc .am). Decision vector
Z, together with matching constraints (E11.1–E11.3) express the way carrier routes
distribute themselves inside any vertex . x . As for the items, we first notice that once
Z has been computed, z and z. ∗ come as the solution of a Min-Cost Flow problem. So
SLIFT(F, f) behaves as if both vectors were imposed to be integral. Since any item
move from. x to. y must be covered by some carrier, any item arriving to some vertex
.xi along some copy-arc .am will have either to remain in . x as part of the negative
deficit.bx or keep on along another copy-arc.a'm '

leaving. x . Constraints (E13.1 - E15)
express the way items are going to distribute themselves while traversing this vertex
. x . Deriving an IRP solution (H, h) from a PIRP solution (F, f) and from vectors
Z, . l, z, z. ∗, becomes possible if we are able to embed the vertices of the .Strong(F,
f) graph into the Time Expanded Network .NTmax , that means if we can compute a
vector t which meets constraints (E16, E17). It follows that any feasible solution
of the Strong Lift Problem may be turned into a feasible solution of SLIFT(F, f)
and conversely. We conclude by noticing that the value of the objective function
.
∑

u∈Middle(Depot) Zu is merely the difference between the value .
∑

x F(Depot,x) and
the number of carriers, while the other components of the cost IRP function are the
same for (H, h) and (F, f). It follows that solving SLIFT(F, f) makes us minimize
the number of carriers involved into the lifted solution (H, h) whose projection onto
.N is exactly (F, f).

4.2 Numerical Experiments

We performed several numerical experiments, whose purpose is to estimate the fea-
sibility of the Strong Lift Model and the gap between the number of vehicles obtained
after resolution of this model and its approximation according to the PIRP model.
We ran those experiments on a computer with a 2.3 GHz Intel Core i5 processor and
16 GB RAM, while using the C++ language (compiled with Apple Clang 10) and
the CPLEX12.10 MILP library.

No standardized benchmarks exist for the generic IRP. So we built instances as
follows: The station set. X is a set of. n points inside a.100 × 100 grid, the set of arcs. A
consists of. m arcs generated randomly, the time matrix T.= (T(x,y), (x, y) ∈ A) corre-
sponds to the rounded Euclidean Distance and the cost matrix

64 J.-L. Figueroa et al.

Ta
bl
e
1

St
ro
ng

 li
ft
 n
um

er
ic
al
 r
es
ul
ts

Id
.n

.m
.C
a
p

.T
m
ax

.λ
.α

.β
.γ

P
IR

P
V
P
IR

P
T
P
IR

P
SL

V
SL

T
SL

1
20

78
2

32
4

4
30
4

1.
0

1.
00
0

21
10
.8
5

3
1.
61

–
–

0.
01

2
20

65
5

40
0

5
15
0

0.
4

0.
50
0

11
96
.1
0

3
0.
01

–
–

0.
01

3
20

50
5

60
3

9
39
2

0.
4

0.
25
0

23
54
.4
3

3
0.
44

24
74
.7
0

3
0.
01

4
20

62
5

42
0

6
30
0

0.
4

0.
50
0

27
27
.3
0

4
0.
32

–
–

0.
01

5
50

15
5

5
39
0

6
19
6

0.
4

0.
50
0

43
26
.1
0

7
0.
01

–
–

0.
01

6
50

14
6

20
43
6

4
31
2

0.
1

0.
12
5

18
40
.1
7

4
19
.3
3

–
–

0.
01

7
50

21
7

5
91
2

8
67
2

0.
4

0.
25
0

16
43
.7
6

2
12
4.
47

21
53
.6
5

2
0.
14

8
10
0

36
3

2
33
6

4
25
2

1.
0

1.
00
0

17
17
9.
00

22
81
.5
8

–
–

0.
01

9
10
0

28
9

10
43
2

4
36
0

0.
2

0.
25
0

32
72
.9
8

4
70
.2
2

–
–

0.
01

10
10
0

32
7

5
55
2

8
39
2

0.
5

0.
20
0

59
44
.2
3

7
46
.9
0

–
–

16
30
.8
7

Managing Time Expanded Networks: The Strong Lift Problem 65

C.= (Ca, a ∈ A) to the Manhattan Distance. Each vertex . x but .Depot is assigned
a .bx value in .{−10, . . . , 10}, the capacity .Cap belongs to .{2, 5, 10, 20}, the time
horizon limit.Tmax is the product.λ · (max(x, y)∈A T(x, y))with.λ ∈ {4, 5, 6, 8, 9}. The
scaling coefficients . α, . β, . γ are chosen in such a way that the values of cost com-
ponents .α · number of carriers, .β · carrier ride cost and .γ · items ride time become
comparable. The first nine columns of Table 1 summarize those characteristics.

The same Table 1 displays the output values of the SLIFT(F, f) MILP. Column
PIRP corresponds to the optimal value (with respect to the objective function (E7))
of the projected PIRP model, VPIRP shows the estimated number of carriers (related
to PIRP), and TPIRP the related running time (in seconds). The column SL displays
the optimal value of SLIFT(F, f), VSL the related number of carriers, and TSL
indicates the related CPU time (in seconds). Missing values are indicated by a hyphen
symbol–, and correspond to PIRP solutions (F, f) for which the corresponding
SLIFT(F, f) MILP is infeasible.

We see that solving SLIFT(F, f) can be done in a reasonable computing time.
But we also see that in many cases this model happens to be infeasible. This means
that we should accept, while dealing with the Lift issue, a deterioration of the cost
induced by the projected model. We shall address this requirement in a future work.

References

1. Aronson, J.: A survey of dynamic network flows. Ann. Oper. Res. 20, 1–66 (1989)
2. Bsaybes, S., Quilliot, A., Wagler, A.: Fleet management for autonomous vehicles using flows

in time-expanded networks. TOP 27(2), 288–311 (2019) (Springer Verlag)
3. Chemla, D., Meunier, F., Wolfler-Calvo, R.: Bike sharing systems: solving the static rebalancing

problem. Disc. Opt. 10(2), 120–146 (2013)
4. Figueroa González, J.L., Baïou, M., Quilliot, A., Toussaint, H., Wagler, A.: Branch-and-cut for

a 2-commodity flow relocation model with time constraints. ISCO 2022. LNCS, vol. 13526.
Springer, Berlin (2022)

5. Fleischer, L., Skutella, M.: Quickest flow over time. SIAM J. Comput. 36(6), 1600–1630 (2007)
6. Ford, R.L., Fulkerson, D.R.: Flows in networks. Princeton, NJ (1962)
7. Hall, A., Hippler, S., Skutella, M.: Multicommodity flows over time. Theor. Comput. Sci. 58–84

(2007)
8. Krumke, S., Quilliot A., Wagler A., Wegener, J.: Relocation in carsharing systems using flows in

time-expanded networks. In: Gudmundsson, J., Katajainen, J. (eds.) Experimental Algorithms,
pp. 87–98. Springer, Berlin (2014)

9. Raviv, T., Tzur, M., Forma, I.A.: Static repositioning in a bike-sharing system. EURO J. Transp.
Logist. 2, 187–229 (2013)

.k-Slow Burning: Complexity and Upper
Bounds

Michaela Hiller, Arie M. C. A. Koster, and Philipp Pabst

Abstract The graph burning problem studies the speed at which information can
spread in graphs across their edges. We discuss a recently introduced variant of the
problem, .k-slow burning, in which every burning vertex can only ignite up to . k of
its neighbours in each step of the burning process. We consider the complexity of
computing the corresponding graph parameter, the.k-slow burning number.bs(k,G).
We prove .NP-hardness on multiple graph classes, most notably the class of graphs
of radius 1, where normal graph burning is solvable in polynomial time. Furthermore,
we show that among all connected graphs on. n vertices, the burning number of the star
graph, .bs(k, Sn−1), is maximal for .k ∈ {1, 2} and asymptotically maximal for fixed
.k ≥ 3. This observation leads to a generalisation of the burning number conjecture
in regard to .k-slow burning.

1 Introduction

The notion of graph burning was introduced as a model for contagion in social net-
works [3] and has since been the subject of extensive research. Topics of interest
include the computational complexity of the problem (e.g., [1, 12]), approximation
algorithms (e.g., [5, 7, 9]) and upper bounds for the associated graph parameter, the
burning number .b(G). An overview of results can be found in [2]. Graph burning
is carried out as a step-wise process on an undirected graph .G = (V, E), |V | = n,
where in every step first, every burning vertex spreads the fire to its entire neighbour-
hood, before second, a new source of fire is ignited. If.(v1, . . . , vt) is a sequence, such

M. Hiller · A. M. C. A. Koster
Discrete Optimization, RWTH Aachen, Aachen, Germany
e-mail: hiller@math2.rwth-aachen.de

A. M. C. A. Koster
e-mail: koster@math2.rwth-aachen.de

P. Pabst (B)
Chair for Management Science, RWTH Aachen, Aachen, Germany
e-mail: philipp.pabst@oms.rwth-aachen.de

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
A. Brieden et al. (eds.), Graphs and Combinatorial Optimization:
from Theory to Applications, AIRO Springer Series 13,
https://doi.org/10.1007/978-3-031-46826-1_6

67

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-46826-1_6&domain=pdf
hiller@math2.rwth-aachen.de
 854 49687 a 854 49687
a

mailto:hiller@math2.rwth-aachen.de
koster@math2.rwth-aachen.de
 854
52565 a 854 52565 a

mailto:koster@math2.rwth-aachen.de
philipp.pabst@oms.rwth-aachen.de
 854 56550 a 854 56550
a

mailto:philipp.pabst@oms.rwth-aachen.de
https://doi.org/10.1007/978-3-031-46826-1_6
https://doi.org/10.1007/978-3-031-46826-1_6
https://doi.org/10.1007/978-3-031-46826-1_6
https://doi.org/10.1007/978-3-031-46826-1_6
https://doi.org/10.1007/978-3-031-46826-1_6
https://doi.org/10.1007/978-3-031-46826-1_6
https://doi.org/10.1007/978-3-031-46826-1_6
https://doi.org/10.1007/978-3-031-46826-1_6
https://doi.org/10.1007/978-3-031-46826-1_6
https://doi.org/10.1007/978-3-031-46826-1_6
https://doi.org/10.1007/978-3-031-46826-1_6

68 M. Hiller et al.

that, when choosing.vi as the. i th source of fire, .G can be burned within. t time steps,
it is called a burning sequence for . G. The aim is to choose the new sources of fire
in a way that minimises the length of a burning sequence. The minimum number of
steps necessary to ignite every vertex in .G is denoted by the burning number, .b(G).

The central open question within the area of graph burning is given by the burning
number conjecture [3], which states that .b(G) ≤ [√n] for all connected graphs . G
on . n vertices. This conjectured upper bounds is reached for paths .Pn and cycles . Cn

on. n vertices. There are numerous results either proving upper bounds close to. [√n]
(e.g., [6, 15]) or showing the conjecture to hold for certain classes of graphs, such as
spiders or .p-caterpillars, .p ≤ 2 [7, 12], however the conjecture itself remains open.

Graph burning is placed alongside a multitude of other problems studying the
spread of information across networks. One of the oldest such problems is the (min-
imum time) .k-broadcasting problem [11, 16], where, starting from a single vertex,
some information is distributed across a graph. Here, in each time step every informed
vertex spreads the information to up to . k of its neighbours. However, in contrast to
the second step in graph burning, no new sources of information are chosen in sub-
sequent time steps. Thus, in order to minimise the number of time steps needed to
inform the entire graph, an optimal broadcast protocol has to optimise the order in
which every vertex informs its neighbours once it is informed itself. The problem is
.NP-hard in general [8] and polynomially solvable on trees [10].

For certain applications neither the graph burning model nor .k-broadcasting is
realistic. E.g., consider some political party campaigning for voters. In every time
step, the party can hire a new campaigner, represented as a source of fire in the
graph burning model. However, it is unrealistic to assume that this campaigner can
convince all of their acquaintances within a single time step. Instead, we assume in
our generalised model that they can only influence up to. k of their acquaintances per
time step, as in .k-broadcasting.

To formalise this behaviour, in [2, 14] it was suggested to study a variant of the
graph burning problem,.k-slow burning, that forms a midpoint between graph burning
and .k-broadcasting. Here, in every time step, first every burning vertex spreads the
fire to up to. k of its neighbours (as for.k-broadcasting) before second a new source of
fire is chosen (as for graph burning). We define the terms .k-slow burning sequence
and .k-slow burning number, denoted by .bs(k,G), analogously as for normal graph
burning. This leads to the following decision problem.

k- slow Burning

Input: A Graph G, an integer k and a time bound t .
Question:Does bs(k, G) t hold? ≤
In order to minimise the length of a .k-slow burning sequence, we have to opti-

mise the choice of neighbours in the first step as well as the choice of new sources of
fire in the second step of the process. This observation suggests that .k-slow burning
combines difficulties of both graph burning and .k-broadcasting. As .k-slow burning
and graph burning coincide for .k ≥ Δ(G) (the maximum degree of . G), this variant
generalises normal graph burning.

.k-Slow Burning: Complexity and Upper Bounds 69

Our Results. The aim for this work is to contrast .k-slow burning (for some fixed
. k) with graph burning, focusing on two main aspects of the problem, complexity
and upper bounds, in Sects. 2 and 3, respectively. Due to the page limit, some of the
proofs will be omitted.

Complexity. Graph burning is known to be .NP-hard, even for very simple graph
classes such as path forests and spider graphs [1]. To match both of these results for.k-
slow burning, we will use a very similar reduction as for normal graph burning to show
hardness for path forests, before then connecting this path forests components in a
suitable way to show.NP-hardness for spiders. By also showing.NP-hardness of the
problem when restricted to graphs of radius 1, we will find a class of graphs on which
.k-slow burning is hard, whereas normal graph burning is solvable in polynomial time.
Finally, we will see that even the subproblem of checking a potential.k-slow burning
sequence for correctness, while trivial for normal graph burning, is still .NP-hard.
The latter two results verify our observation in the preceding paragraph that .k-slow
burning seems to be harder than normal graph burning.

Upper Bounds. In an attempt to find an analogy for the burning number conjecture
in regard to .k-slow burning, we study upper bounds for the .k-slow burning number
on connected graphs. Here, the .k-slow burning number of the star graph .Sn−1 on . n
vertices, .bs(k, Sn−1), plays a critical role for discussing upper bounds. For . k = 1, 2
we will show, that indeed .bs(k,G) ≤ bs(k, Sn−1) holds for all connected graphs . G
with . n vertices. While this is no longer true for .k ≥ 3, we can still show. bs(k,G) ≤
bs(k, Sn−1) + f (k) for some error term . f (k) that does not depend on . n and that
satisfies . f (k) = Θ(k).

2 Complexity

In this section, we will prove .NP-hardness of .k-slow burning on several different
graph classes. We will start by showing hardness on path forests, which is known to
be.NP-hard for normal graph burning from [1]. This result immediately implies the
.NP-hardness of .k-slow burning for .k ≥ 2 on path forests, as .k ≥ Δ(G). For .k = 1,
we will use an analogous reduction from a variant of the 3-Partition problem as for
normal graph burning. This variant is known to be strongly .NP-hard due to [13].

Distinct 3- Partition (D3P)

Input: A Set A = {a1, ..., a3n} of pairwise distinct integers ai ∈ N and a
natural number B s.t. n · B = ∑3n

i=1 ai and B/4 < ai < B/2 for all i .
Question:Can A be partitioned into triples (b(i)

1 , b
(i)
2 , b

(i)
3), i = 1, ..., n s.t.

b(i)
1 + b(i)

2 + b(i)
3 = B for all i?

In our reduction we will need the .1-slow burning number of the path .Pn .

Lemma 1 Let .Pn be the path on . n vertices. We have . bs(1, Pn) = [√
n − 3/4 +

1/2
]
.

The proof is analogous to the one for normal graph burning in [4].

70 M. Hiller et al.

Theorem 1 .1-slow burning is .NP-hard, even when restricted to path forests.
Proof Let .(A := {a1, . . . , a3n}, B) be an instance of D3P. W.l.o.g., we assume. B =
O(poly(n)), which is possible since D3P is strongly.NP-hard. Also, for sufficiently
large values of . n we have .1 /∈ A. We define .M := max A and . Y := {2, 3, . . . , M} \
A. We construct a path forest .P consisting of . n paths .P (i)

2B−6 of length .2B − 6, one
path.P2y−2 of length.2y − 2 for each.y ∈ Y as well as one additional isolated vertex.
We will prove that the D3P-instance is solvable iff .bs(1, P) ≤ M .

First, assume that the instance of D3P is solvable and thus there exists a partition
of. A into. n triples.(b(i)

1 , b(i)
2 , b(i)

3), i = 1, . . . , n, that all sum to. B. Then we can cover
.P (i)

2B−6 with . 3 paths of lengths .2b(i)
1 − 2, 2b(i)

2 − 2 and .2b(i)
3 − 2, i.e., with burning

neighbourhoods of sizes .b(i)
j . Doing so, only the paths of length .2y − 2, .y ∈ Y and

the isolated vertex remain. These paths correspond to burning neighbourhoods of
sizes .y ∈ Y and . 1 respectively. As .A ∩ Y = ∅ and .1 /∈ A we used every burning
range exactly once and thus .bs(1, P) ≤ M .

Conversely, assume that .P can be burned in at most .M rounds. Note, that in this
case we already have .bs(1, P) = M as .P is a subgraph of .P|V (P)| with

. |V (P)| = (2B − 6)n +
(∑

y∈Y
2y − 2

)

+ 1 =
(3n∑

i=1

2ai − 2

)

+
(∑

y∈Y
2y − 2

)

+ 1

=
(M∑

i=2

2i − 2

)

+ 1 = M2 − M + 1

and thus.bs(1, P) ≥ bs(1, PM2−M+1) = M by Lemma 1. Also, all burning neighbour-
hoods have to be disjoint, since otherwise we can only burn less than. M2 − M + 1 =
|V (P)| vertices.

Next, note that in order to burn a path of length .2B − 6, we need to use at
least 3 burning ranges as otherwise we can burn at most . (2b1 − 2) + (2b2 − 2) <

(2(B/2) − 2) + (2((B/2) − 1) − 2) = 2B − 6 vertices. Since there are . |Y | + 1
other paths, each needing at least one burning range, we need a minimum of
.3n + |Y | + 1 = M burning ranges in total. This also implies, that we have to use
exactly 3 burning ranges for each path of length .2B − 6 and exactly one burning
range for every other path. This means, that we have to use the burning range . y to
cover the path of length.2y − 2 for each.y ∈ Y and burning range. 1 for.P1. This way,
only the burning ranges .a1, . . . , a3n remain to cover the . n paths of length .2B − 6.
This induces a partition of . A into triples by choosing.(b(i)

1 , b(i)
2 , b(i)

3) as exactly the 3
burning ranges used to cover .P (i)

2B−6. ∎

This reduction is very similar to the one used for normal graph burning in [1].
Here, .P consists of . n paths of length .2B − 3 and one path each of length .2y − 1,
.y ∈ Y := {1, . . . , M} \ A. Note, that if the constructed instance of (.k-slow) burning
.(P, t) is solvable, we always have .bs(1, P) = M (and never .bs(1, P) < M).

.k-Slow Burning: Complexity and Upper Bounds 71

2.1 Connecting the Paths

To show.NP-hardness on spider graphs we will use a similar approach as in [1] and
connect the components of the path forest .P from Theorem 1 to a spider graph . S
with central vertex . v in a way, which ensures that in order to burn . S in .t + 1 steps
(a) we have to choose. v as our first source of fire and (b) upon removing the burning
neighbourhood of . v only a subgraph of the path forest .P remains. Together with
Theorem 1 this proves .NP-hardness on spider graphs.
Theorem 2 Let .k ≥ 1 be fixed. .k-slow burning is .NP-hard, even when restricted to
spider graphs.

Proof For this proof, we will identify path forests and spider graphs .G with the list
of lengths of their paths (legs), writing.G = [l1, . . . , lm]. Let. (P = [p1, . . . , pm], t)
be the instance of .k-slow burning on path forests constructed in the reduction for
Theorem 1 for .k = 1 or in [1] for .k ≥ 2 respectively. We construct the spider graph
(sketched in Fig. 1 for .k = 1)

. S = [p1, . . . , pm, 1, . . . , 1
, ,, ,

k

, 2, . . . , 2
, ,, ,

k

, . . . , t, . . . , t
, ,, ,

k

]

and show that .bs(k, S) ≤ t + 1 iff .bs(k, P) ≤ t .
By. v, we denote the central vertex of . S. We will show that . S can never be burned

in time if . v is not part of the burning neighbourhood of the first source of fire. For
this, note that

Fig. 1 .Uv is marked red. We search for a set of paths to embed them into.Q ∈ P . Starting from. v,
4 vertices in.Q have been burned. Thus, we look at a path of length 4 in.S∗ − P . This path contains
2 burned vertices, so we consider a path.P2. As this path is completely unburnt, we can embed.P2,
as well as the unburnt parts of.P4 and.Q in.S −Uv into.Q

72 M. Hiller et al.

. |V (S)| = |V (P)| + 1 +
(

k
t∑

j=1

j

)

=
(

(1 + ∑t
j=2 2 j − 2) + ∑t

j=1 j, k = 1,

t2 + 1 + k
∑t

j=1 j, k ≥ 2.

(1)

In the burning neighbourhood containing . v we can ignite one vertex in the first step
and .k(t∗ − 1) vertices in step .t∗ ≥ 2. Every other burning neighbourhood of size . t∗
is a path and thus we can burn. 1 vertex for.k = 1 and.t∗ = 1, at most.2t∗ − 2 vertices
for .k = 1 and .t∗ ≥ 2 and at most .2t∗ − 1 vertices for .k ≥ 2. Hence, if . v lies in the
burning neighbourhood of size . t∗, we can burn at most

.

((
1 + ∑t+1

j=2(2 j − 2)
) − (2t∗ − 2) + (

1 + ∑t∗−1
j=1 j

)
, k = 1

(t + 1)2 − (2t∗ − 1) + (
1 + k

∑t∗−1
j=1

)
, k ≥ 2

(2)

vertices in total. This is equal to .|V (S)| iff .t∗ = t + 1. Also, to achieve equality
between (1) and (2), the number of vertices in each burning neighbourhood has to
be maximal, so the burning neighbourhood of size .t + 1 containing . v has to be of
size .1 + k

∑t
j=1 j . To achieve this we have to choose. v as our first source of fire for

.k ≥ 2 or. v has to be one of the first two burning vertices for.k = 1. In the latter case,
w.l.o.g. we can also assume. v to be the first source of fire.

Thus, we burn. v as our first source of fire and fix some arbitrary, maximal, burning
neighbourhood.Uv (of size.t + 1) of. v. Consider the path forest.P∗ induced by. S −Uv

as a subgraph of. S and denote by.S∗ the path forest that remains after deleting. v from
. S. Because we choose .Uv to be maximal, we have .|P∗| = |P|. We claim, that . P∗
can always be embedded as a subgraph into .P and will construct this embedding
algorithmically. To do so, we look at every path .p∗ of length . l∗ in .P separately and
find a set of unmarked paths .Sp∗ = {p1, . . . , pm} of lengths .{l1, . . . , lm} in .P∗ such
that.l1 + · · · + lm = l∗. After this, we mark the paths.p1, . . . , pm . If.p∗ is part of.P∗,
we choose.Sp∗ = {p∗} and we are done. Otherwise, some number of vertices.n1 out of
.p∗ have already been burned. We add the unburnt subpath of .p∗ to.Sp∗ and continue
to look at one of the. k paths of length.n1 in.S∗ − P . Again, if this path is completely
unburnt, we add it to .Sp∗ and we are done. If this is not the case, we continue in the
same way by adding the unburnt part of the path to .Sp∗ and searching for a path of
length. n2, where.n2 denotes the number of burnt vertices in the new path. We proceed
to do this until we find an unburnt path. We repeat this process for all paths .p∗ ∈ P .
This approach is demonstrated in Fig. 1. To prove the correctness of this approach,
we have to show that we always find enough paths of suitable length. We look for
a path of length .l∗ if and only if exactly .l∗ vertices of some other path were burned
starting from . v. As .Uv is maximal, this only happens . k times. This means, because
.S∗ − P contains exactly . k paths of length . l∗, that we can always find an unmarked
path of suitable length.

This proves the claim and therefore we have .bs(k, P∗) ≥ bs(k, P), which means
that it is optimal to choose .Uv in a way such that .S −Uv = P . This means that
.bs(k, S) = t + 1 iff .bs(k, P) = t , which concludes the proof. ∎

.k-Slow Burning: Complexity and Upper Bounds 73

2.2 .k-Slow Burning is Harder Than Graph Burning

So far we have only considered graph classes where normal graph burning is known
to be.NP-hard. We want to find a class of graphs, where.k-slow burning is.NP-hard
while normal graph burning is solvable in polynomial time. For this, we will look
at classes . C, where the radius of all graphs is bounded by some constant . c. In this
case we have.b(G) ≤ c + 1 for all .G ∈ C and thus we can simply check all burning
sequences of length at most .c + 1. This is easily possible in polynomial time. In
contrast to that, .k-slow burning is hard, even when restricted to graphs of radius 1.
To prove this, we will use a reduction from the .k-broadcasting problem.

Minimum Time k- Broadcasting
Input: A Graph G, an integer k and a time bound t .
Question: Is a k-broadcast on G starting from an optimal source of information

v possible in t time steps, i.e., does
minbk(G) := minv∈V bk(v, G) ≤ t hold?

Note that the source of information is already informed before the first step of the
broadcasting process, whereas for .k-slow burning the first source of fire is ignited
during the first time step. For .k = 1 this problem is .NP-hard according to [8]. The
reduction can easily be adjusted to also hold for .k ≥ 2 and to show hardness on
planar graphs.

Theorem 3 Let .k ≥ 1 be fixed. .k-slow burning is .NP-hard, even when restricted to
graphs of radius 1.

Proof Let .(G, t) be an instance of .k-broadcasting. We extend.G by adding an inde-
pendent set .I = {w1, . . . , w|I |} of size .(t + 1)(k + 1) − 1 to .G and connect all ver-
tices in . I as well as in .V (G) to some new vertex . v. The resulting graph .G∗ clearly
has radius 1. We show that .minbk(G) ≤ t holds iff .bs(k,G∗) ≤ t + 2.

First, assume that.minbk(G) ≤ t holds with.minbk(G) = bk(x,G) for some vertex
.x ∈ V (G). Then,.(v,w1, . . . , wt+1) forms a.k-slow burning sequence of length. t + 2
for .G∗. To burn down .G∗ in .t + 2 steps, we spread the fire from . v to . x as well as
.k − 1 vertices in . I in round 2 and to . k vertices in . I in each subsequent round. This
way we ignite exactly .(k − 1) + tk vertices in . I starting from . v and choose . t + 1
vertices in. I as sources of fire. This means, because of.(k − 1) + (t + 1) + tk = |I |,
that . I is burned in time. Also, starting from round . 3, we can replicate the behaviour
from the .k-broadcast on .G to ignite every vertex in .V (G) by round .t + 2.

Conversely, assume that .bs(k,G) ≤ t + 2. Clearly, we can assume that the first
source of fire does not lie in . I . Out of the .(t + 1)(k + 1) − 1 vertices in . I we can
ignite a maximum of .k + 1 each round - one as a source of fire and . k coming from
. v. As we have to ignite all .(t + 1)(k + 1) − 1 vertices within rounds .2, . . . , t + 2,
we have to ignite at least . k vertices in . I in round. 2. Thus, . v has to be the first source
of fire and in rounds .2, . . . , t + 2 we can ignite only one vertex . x in .V (G) coming
from. v. By assumption, we have.bs(k,G) ≤ t + 2, so, if the fire spreads to. x in round
. t∗, . x can ignite .G within rounds .t∗ + 1, . . . , t + 2. If we copy this behaviour as a
broadcast-protocol on.G starting from. x , we get . minbk(G) ≤ bk(x,G) ≤ (t + 2) −
(t∗ + 1) + 1 ≤ t . ∎

74 M. Hiller et al.

2.3 Checking Burning Sequences

Whereas checking whether a given sequence .(v1, . . . , vt) works as a burning
sequence for a given graph is trivial for normal graph burning, this is not the case
for .k-slow burning. Using a reduction from .k-broadcasting we will show that this
subproblem is in fact .NP-hard for arbitrary graphs.
Theorem 4 Given a fixed integer .k ≥ 1, a graph .G and a sequence of vertices
.(v1, . . . , vt), it is .NP-hard to decide, whether .(v1, . . . , vt) is a suitable burning
sequence for . G, even when restricted to planar graphs. However, this problem is
solvable in polynomial time when restricted to trees.

Proof Let .(G, t, v1) be an instance of .k-broadcasting for some planar graph . G. We
extend.G by adding. t isolated vertices .{v2, . . . , vt+1} and denote the resulting graph
by .G∗. Clearly, .G∗ is planar and a .k-broadcast on .G starting from.v1 in . t time steps
is possible iff .(v1, . . . , vt+1) is a possible burning sequence for .G∗. This proves the
.NP-hardness on planar graphs. ∎

In contrast to this result, when restricting ourselves to trees, checking whether a
potential.k-slow burning sequence is feasible is possible in polynomial time by using
a polynomial time algorithm for .k-broadcasting on trees [10]. The exact algorithm
and proof of correctness will be omitted here.

3 Upper Bounds

The burning number conjecture, stating .b(G) ≤ [√n] for all connected graphs . G
on . n vertices, is the central open question within the field of graph burning, with
numerous papers either proving the conjecture for certain classes of graphs (such as
Hamiltonian graphs, 2-caterpillars or spiders) or proving upper bounds close to.[√n].
In this section, we will look at the question of finding upper bounds for .bs(k,G) for
fixed values of . k. Similar to normal graph burning, for this purpose we only need to
consider trees, as

. bs(k,G) = min{bs(k, T) | T spanning tree of G}.

When discussing upper bounds for.bs(k,G), the star graph.Sn−1 on. n vertices fulfills a
critical role. To burn down.Sn−1, it is clear that it is optimal to choose the central vertex
. v as the first source of fire. In every subsequent step, except for the last step, if there
are less than .k + 1 non-burning vertices left, the fire spreads to exactly .k + 1 of the
outer vertices:. k vertices can be ignited by. v and one additional vertex can be chosen
as a new source of fire. Using this observation we get.bs(k, Sn) = [(n + k)/(k + 1)].
Seeing that on.Sn the number of vertices burned largely remains constant during each
step of the burning process, it seems reasonable to assume that.bs(k, Sn) is close to the
upper bound for.bs(k,G) among all connected graphs. G, at least for large values for. n.

.k-Slow Burning: Complexity and Upper Bounds 75

The cases .k = 1 and .k = 2. During the 1- or 2-slow burning process on . Sn , we can
burn exactly 2 or 3 vertices in each step of the burning process, respectively. If for
an arbitrary tree . T we can find 2 (respectively, 3) vertices to be burned in every step
of the process, this proves that.bs(k, Sn) indeed marks an upper bound for the.1- and
2-slow burning number on connected graphs.

Theorem 5 Let .G be an arbitrary connected graph with . n vertices. For . k ∈ {1, 2}
we have

. bs(k,G) ≤ bs(k, Sn) =
[
n + k

k + 1

]

.

Proof Let .T be a tree, .k ∈ {1, 2} and .tmax = [(n + k)/(k + 1)]. By .BNt∗(v1) we
denote the set of all vertices burned starting from the first source of fire .v1 after . t∗
steps. It suffices to show that we can choose .v1 and .BNtmax (v1) in a way such that
.|V (G) \ BNtmax (v1)| ≤ tmax − 1.

Case .k = 1: Choose .v1 arbitrarily. In each of the time steps . t∗ ∈ {2, . . . , tmax }
we can extend the subtree formed by .BNt∗−1(v1) by one arbitrary vertex. Thus, we
have .|BNtmax (v1)| = tmax which leads to

. n − |BNtmax (v1)| = n −
[
n + 1

2

]

=
|
n − 1

2

|

≤ tmax − 1.

Case .k = 2: We choose .v1 to be a .1/2-separator of . T , i.e., in a way, that each
of the components .C1, . . . ,Cm in .T − {v1} satisfies .|Ci | ≤ |T |/2. Using a greedy
approach, we can partition the indices.1, . . . ,m into two sets.I1 and.I2 in a way, that
we have

.
n − 1

3
|T | ≤

∑

i∈I j
|Ci | ≤ 2(n − 1)

3
|T |, j = 1, 2.

By .Tj , j = 1, 2, we denote the subtree of .T induced by .{v1} ∪ U
i∈I j Ci . This way

we have .|Tj | ≥ tmax , j = 1, 2, so in every subsequent step of the burning process
.t∗ ∈ {2, . . . , tmax } we can extend .BNt∗(v1) ∩ Tj , j = 1, 2 by one vertex each and
thus we get .|BNtmax (v1) ∩ Tj | = tmax which (because of .T1 ∩ T2 = {v1}) leads to
.|BNtmax | = 2tmax − 1. If we choose .Btmax (v1) in this way, we get

. n − |BNtmax (v1)| = n −
(

2

[
n + 2

3

]

− 1

)

≤
[
n + 2

3

]

− 1.

The last inequality holds because of .3[(n + 2)/3] − 2 ≥ (3n + 6)/3 − 2 = n. ∎

Asymptotic Upper Bounds for .k ≥ 3. For larger values of . k, the burning number
of the star graph is no longer always the worst case. For example, taking .k = 3 and
.n = 5 we get.bs(3, S4) = 2 < 3 = bs(3, P5). However, we can show, that after some
preparation phase consisting of at most . f (k) rounds (for some suitable function
. f) we can burn at least .k + 1 vertices in each subsequent step. Thus, for fixed . k,
.bs(k, Sn−1) forms an asymptotic bound for .bs(k,G) on all connected graphs . G.

76 M. Hiller et al.

Theorem 6 Let .k ≥ 3 be fixed and .G be a connected graph with . n vertices. Then,

. bs(k,G) ≤
[

n

k + 1

]

+ f (k)

holds for some function . f satisfying . f (k) ≤ 2k − 3.

Proof We assume.k < n as otherwise the theorem is trivial. To prove the bound for
. f (k) for an arbitrary tree. T , we use a similar approach as for the case.k = 2. First, in
a preparation phase, we iteratively choose .1/2-separators . S in . T in a way ensuring
that all components in the forest .T − S are sufficiently small. In the first .|S| rounds
of the burning process, we only ignite all vertices in. S. To obtain an upper bound for
.|S| we make use of the following lemma. ∎

Lemma 2 Let .1 ≤ Z ∈ R be arbitrary and let .T be a tree. We choose .c ∈ N0 in a
way such that .cZ ≤ |V (T)| ≤ (c + 1)Z holds. Then there exists some set . S ⊂ V (T)

such that each component in .T − S has at most . Z vertices and such that .|S| = 0 for
.c = 0 and .|S| ≤ 2c − 1 otherwise.

The proof of this lemma uses a simple induction over . c and will be omitted
here. By using the lemma with .Z = n/k ≥ 1 we obtain a set of vertices . S such that
.|S| ≤ 2k − 3 and every component.Ci in the forest.F := T − S contains at most. n/k
vertices. In the first.|S| rounds of the burning process we only ignite all vertices in. S.
We denote the components of .T − S by .C1, . . . ,Cm , their orders by .ni := |Ci | and
we assume.[n/k] ≥ n1 ≥ . . . ≥ nm . Furthermore, in each of the components we fix
some root . ri that is adjacent to at least one vertex in . S. We have to burn .T − S in
.[n/(k + 1)] rounds.

To do so, we fix the set of remaining sources of fire,.M = {w1, . . . , w[n/(k+1)]}, in
a way that ensures every component in .(T − S) − M contains at most . [n/(k + 1)]
vertices. In.T − S there are at most. k components.Ci that contain more than. n/(k + 1)
vertices, as otherwise .T − S would have to contain at least . (k + 1)((n/(k + 1)) +
1) > n vertices in total. Thus, we have to remove at most. k[(n/k) − (n/(k + 1))] ≤
[n/(k + 1)] vertices, which ensures the existence of a suitable set of sources of fire
. M . We choose the vertices in .M in a way that (a) all components in .T − S remain
connected and (b) the root . ri of every component in .T − S is not chosen as a source
of fire as long as there are still other unburnt vertices in . Ci .

We denote the remaining forest .T − S − M as .F[n/(k+1)]. For descending . j =
[n/(k + 1)], . . . , 1 we construct the graph .Fj−1 by removing one vertex in each of
the . k largest components of .Fj or one vertex out of every component if there are at
most. k components remaining. Via induction over. j = [n/(k + 1)], . . . , 0, we show
that .Fj satisfies the following two properties:

1. Every component in .Fj contains at most . j vertices.
2. Either it was possible to burn . k vertices in every round of the burning process,

starting from round .|S| + 1 or .Fj contains at most . k components.

.k-Slow Burning: Complexity and Upper Bounds 77

As this means .F0 is the empty graph and because we can clearly obtain .Fj from
.Fj+1 within one round of the burning process, this will prove the upper bound for
.bs(k, T). We start by looking at the base case . j = [n/(k + 1)]. We have shown (1)
previously and for (2) there is nothing to show as we are exactly in round . |S| + 1
of the burning process. Now, assume. j < [n/(k + 1)] and that both properties have
been shown to hold for larger . j .

By this assumption, in .Fj+1 every component contains at most . j + 1 vertices. If
.Fj+1 contains at most . k components we can burn one vertex in each component and
the remaining graph still has at most . k components containing .≤ j vertices each.
Thus, (1) and (2) both hold. Otherwise, by induction, it was possible to remove . k
vertices staring from . S in each of the previous rounds . |S| + 1, . . . , |S| + [n/(k +
1)] − j . .Fj+1 cannot contain more than . k components with exactly . j + 1 vertices,
as otherwise .T − S − M would have to contain

. (k + 1)(j + 1) + k

([
n

k + 1

]

− j

)

≥ k + j + 1 + kn

k + 1
> n −

[
n

k + 1

]

≥ |T − S − M |

vertices, which is a contradiction. Hence, after igniting one vertex each in the . k
largest components of .Fj+1, every component in the resulting forest .Fj contains at
most . k vertices. Thus, (1) holds. As we removed . k vertices in order to construct . Fj

from.Fj+1, (2) is also true. This proves the theorem.
We compare the .k-slow burning number of paths and star graphs on . n vertices

for .k ≥ 3 and to do so maximise . bs(k, Pn) − bs(k, Sn−1) = √
n − (n/(k + 1)) +

O(1). The function.gk(n) := √
n − (n/(k + 1)) reaches its maximum for. n = ((k +

1)/2)2. In this case we have .gk(n) = (k + 1)/4 = Ω(n). This means that the bound
for. f (k) from Theorem 6 already has the correct magnitude, i.e., we necessarily have
. f (k) = Θ(k).

4 Concluding Remarks

We have proven.NP-hardness on path forests, spider graphs and graphs of radius 1.
Also, an analogous approach as in [12] can be used to show hardness on caterpillars of
maximum degree 3 as well. Out of our three results, the last is the most notable, as for
the class of graphs of radius 1 normal graph burning is possible in polynomial time.
Together with our observation that checking a potential.k-slow burning sequence for
correctness is hard, this indicates that .k-slow burning is in fact harder than normal
graph burning. Natural follow-up questions would be to discuss the complexity on
other graph classes where normal graph burning is known to be easy, such as split
graphs and cographs, or to discuss the parameterised complexity of the problem.

In an attempt to find an analogy to the well known burning number conjecture, we
then studied upper bounds for the .k-slow burning number. Whereas the conjectured
upper bound of .[√n] holds with equality for paths for normal graph burning, for
.k-slow burning the star graph.Sn−1 appears to be critical for studying upper bounds.

78 M. Hiller et al.

We could prove, that .bs(k,G) is indeed maximal on star graphs for .k ∈ {1, 2} while
for .k ≥ 3 this is only the case asymptotically.

These observations lead to the question whether there is some. k and a connected
graph.G∗ on. n vertices, such that.bs(k,G∗) > max{bs(k, Pn), bs(k, Sn−1)}. We con-
jecture that this is not the case which means that we have

. bs(k,G) ≤ max{bs(k, Pn), bs(k, Sn−1)}

for all connected graphs . G. For .k ∈ {1, 2} we have proven this conjecture to
hold, while for .k ≥ 3 it remains open. If we assume .n ≥ 2 and .k ≥ n, we have
.bs(k, Sn−1) = 2 and thus .max{bs(k, Sn−1), bs(k, Pn)} = bs(k, Pn) = [√n]. There-
fore the proposed .k-slow burning conjecture generalises the original conjecture.
Although, because of this, proving the conjecture seems difficult, it may be interest-
ing to show the conjecture to hold on certain subclasses of trees such as caterpillars
or spiders where the normal burning conjecture is known to be true.

References

1. Bessy, S., Bonato, A., Janssen, J., Rautenbach, D., Roshanbin, E.: Burning a graph is hard.
Discret. Appl. Math. 232, 73–87 (2017). https://doi.org/10.1016/j.dam.2017.07.016

2. Bonato, A.: A survey of graph burning. Contributions Discret. Math. 16, 185–197 (2020).
https://doi.org/10.11575/CDM.V16I1.71194

3. Bonato, A., Janssen, J., Roshanbin, E.: Burning a graph as a model of social contagion. In:
Bonato, A., Graham, F., Prałat, P. (eds) Algorithms and Models for the Web Graph, LNCS,
vol. 8882 (2014). https://doi.org/10.1007/978-3-319-13123-8_2

4. Bonato, A., Janssen, J., Roshanbin, E.: How to burn a graph (2015). https://doi.org/10.48550/
arXiv.1507.06524

5. Bonato, A., Kamali, S.: Approximation algorithms for graph burning (2018). https://doi.org/
10.48550/arXiv.1811.04449

6. Bonato, A., Kamali, S.: An improved bound on the burning number of graphs (2021). https://
doi.org/10.48550/arXiv.2110.01087

7. Bonato, A., Lidbetter, T.: Bounds on the burning numbers of spiders and path-forests. Theor.
Comput. Sci. 794, 12–19 (2019). https://doi.org/10.1016/j.tcs.2018.05.035

8. Garey, M., Johnson, D.: Computers and Intractability. A Guide to the Theory of NP-
Completeness. W. H. Freeman & Co., New York (1990)

9. Gautam, R., Kare, A., Durga, B.: Improved approximation algorithm for graph burning on trees
(2022). https://doi.org/10.48550/arXiv.2204.00772

10. Harutyunyan, H., Liestmann, A., Shao, B.: A linear algorithm for finding the.k-broadcast center
of a tree. Networks 53, 287–292 (2009). https://doi.org/10.1002/net.20270

11. Hedetniemi, S.M., Hedetniemi, S.T., Liestmann, A.: A survey of gossiping and broadcasting
in communication networks. Networks 18, 319–349 (1988)

12. Hiller, M., Triesch, E., Koster, A.: On the burning number of p-Caterpillars. In: Gentile, C.,
Stecca, G., Ventura, P. (eds) Graphs and Combinatorial Optimization: from Theory to Appli-
cations. AIRO Springer Series, vol. 5 (2021)

13. Hulett, H., Will, T., Woeginger, G.: Multigraph realizations of degree sequences: maximization
is easy, minimization is hard. Oper. Res. Lett. 36, 594–596 (2008)

14. Moghbel, D.: Topics in graph burning and datalog. Thesis (2022). https://doi.org/10.32920/
19775380.v1

https://doi.org/10.1016/j.dam.2017.07.016
https://doi.org/10.1016/j.dam.2017.07.016
https://doi.org/10.1016/j.dam.2017.07.016
https://doi.org/10.1016/j.dam.2017.07.016
https://doi.org/10.1016/j.dam.2017.07.016
https://doi.org/10.1016/j.dam.2017.07.016
https://doi.org/10.1016/j.dam.2017.07.016
https://doi.org/10.1016/j.dam.2017.07.016
https://doi.org/10.1016/j.dam.2017.07.016
https://doi.org/10.1016/j.dam.2017.07.016
https://doi.org/10.11575/CDM.V16I1.71194
https://doi.org/10.11575/CDM.V16I1.71194
https://doi.org/10.11575/CDM.V16I1.71194
https://doi.org/10.11575/CDM.V16I1.71194
https://doi.org/10.11575/CDM.V16I1.71194
https://doi.org/10.11575/CDM.V16I1.71194
https://doi.org/10.11575/CDM.V16I1.71194
https://doi.org/10.11575/CDM.V16I1.71194
https://doi.org/10.1007/978-3-319-13123-8_2
https://doi.org/10.1007/978-3-319-13123-8_2
https://doi.org/10.1007/978-3-319-13123-8_2
https://doi.org/10.1007/978-3-319-13123-8_2
https://doi.org/10.1007/978-3-319-13123-8_2
https://doi.org/10.1007/978-3-319-13123-8_2
https://doi.org/10.1007/978-3-319-13123-8_2
https://doi.org/10.1007/978-3-319-13123-8_2
https://doi.org/10.1007/978-3-319-13123-8_2
https://doi.org/10.1007/978-3-319-13123-8_2
https://doi.org/10.48550/arXiv.1507.06524
https://doi.org/10.48550/arXiv.1507.06524
https://doi.org/10.48550/arXiv.1507.06524
https://doi.org/10.48550/arXiv.1507.06524
https://doi.org/10.48550/arXiv.1507.06524
https://doi.org/10.48550/arXiv.1507.06524
https://doi.org/10.48550/arXiv.1507.06524
https://doi.org/10.48550/arXiv.1507.06524
https://doi.org/10.48550/arXiv.1811.04449
https://doi.org/10.48550/arXiv.1811.04449
https://doi.org/10.48550/arXiv.1811.04449
https://doi.org/10.48550/arXiv.1811.04449
https://doi.org/10.48550/arXiv.1811.04449
https://doi.org/10.48550/arXiv.1811.04449
https://doi.org/10.48550/arXiv.1811.04449
https://doi.org/10.48550/arXiv.1811.04449
https://doi.org/10.48550/arXiv.2110.01087
https://doi.org/10.48550/arXiv.2110.01087
https://doi.org/10.48550/arXiv.2110.01087
https://doi.org/10.48550/arXiv.2110.01087
https://doi.org/10.48550/arXiv.2110.01087
https://doi.org/10.48550/arXiv.2110.01087
https://doi.org/10.48550/arXiv.2110.01087
https://doi.org/10.48550/arXiv.2110.01087
https://doi.org/10.1016/j.tcs.2018.05.035
https://doi.org/10.1016/j.tcs.2018.05.035
https://doi.org/10.1016/j.tcs.2018.05.035
https://doi.org/10.1016/j.tcs.2018.05.035
https://doi.org/10.1016/j.tcs.2018.05.035
https://doi.org/10.1016/j.tcs.2018.05.035
https://doi.org/10.1016/j.tcs.2018.05.035
https://doi.org/10.1016/j.tcs.2018.05.035
https://doi.org/10.1016/j.tcs.2018.05.035
https://doi.org/10.1016/j.tcs.2018.05.035
https://doi.org/10.48550/arXiv.2204.00772
https://doi.org/10.48550/arXiv.2204.00772
https://doi.org/10.48550/arXiv.2204.00772
https://doi.org/10.48550/arXiv.2204.00772
https://doi.org/10.48550/arXiv.2204.00772
https://doi.org/10.48550/arXiv.2204.00772
https://doi.org/10.48550/arXiv.2204.00772
https://doi.org/10.48550/arXiv.2204.00772
https://doi.org/10.1002/net.20270
https://doi.org/10.1002/net.20270
https://doi.org/10.1002/net.20270
https://doi.org/10.1002/net.20270
https://doi.org/10.1002/net.20270
https://doi.org/10.1002/net.20270
https://doi.org/10.1002/net.20270
https://doi.org/10.32920/19775380.v1
https://doi.org/10.32920/19775380.v1
https://doi.org/10.32920/19775380.v1
https://doi.org/10.32920/19775380.v1
https://doi.org/10.32920/19775380.v1
https://doi.org/10.32920/19775380.v1
https://doi.org/10.32920/19775380.v1

.k-Slow Burning: Complexity and Upper Bounds 79

15. Norin, S., Turcotte, J.: The burning number conjecture holds asymptotically (2022). https://
doi.org/10.48550/arXiv.2207.04035

16. Slater, P.J., Cockayne, E.J., Hedetniemi, S.T.: Information dissemination in trees. SIAM J.
Comput. 10, 692–701 (1981)

https://doi.org/10.48550/arXiv.2207.04035
https://doi.org/10.48550/arXiv.2207.04035
https://doi.org/10.48550/arXiv.2207.04035
https://doi.org/10.48550/arXiv.2207.04035
https://doi.org/10.48550/arXiv.2207.04035
https://doi.org/10.48550/arXiv.2207.04035
https://doi.org/10.48550/arXiv.2207.04035
https://doi.org/10.48550/arXiv.2207.04035

Discrepancies of Subtrees

Tarun Krishna, Peleg Michaeli, Michail Sarantis, Fenglin Wang,
and Yiqing Wang

Abstract We study multicolour, oriented and high-dimensional discrepancies of the
set of all subtrees of a tree. As our main result, we show that the .r -colour discrep-
ancy of the subtrees of any tree is a linear function of the number of leaves . l of
that tree. More concretely, we show that it is bounded by .[(r − 1)l/r] from below
and.[(r − 1)l/2] from above, and that these bounds are asymptotically sharp. Moti-
vated by this result, we introduce natural notions of oriented and high-dimensional
discrepancies and prove bounds for the corresponding discrepancies of the set of all
subtrees of a given tree as functions of its number of leaves.

1 Introduction

Given a hypergraph.H = (V, E), a (two-)colouring of (the vertices of).H is a function
. f : V → {±1}. For a hyperedge. A we set . f (A) = ∑

a∈A f (a), and.| f (A)| is called
the imbalance of . A. The (combinatorial) discrepancy of .H is defined to be

. D(H) = min
f :V→{±1}

max
A∈E

| f (A)|.

T. Krishna · P. Michaeli (B) · M. Sarantis · F. Wang · Y. Wang
Department of Mathematical Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
e-mail: pelegm@cmu.edu; pmichael@andrew.cmu.edu

T. Krishna
e-mail: tkrishna@andrew.cmu.edu

M. Sarantis
e-mail: msaranti@andrew.cmu.edu

F. Wang
e-mail: fenglinw@andrew.cmu.edu

Y. Wang
e-mail: yiqingw@andrew.cmu.edu

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
A. Brieden et al. (eds.), Graphs and Combinatorial Optimization:
from Theory to Applications, AIRO Springer Series 13,
https://doi.org/10.1007/978-3-031-46826-1_7

81

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-46826-1_7&domain=pdf
pelegm@cmu.edu
 854 45026 a 854 45026 a

mailto:pelegm@cmu.edu
pmichael@andrew.cmu.edu
 8187 45026 a 8187 45026
a

mailto:pmichael@andrew.cmu.edu
tkrishna@andrew.cmu.edu
 854
47904 a 854 47904 a

mailto:tkrishna@andrew.cmu.edu
msaranti@andrew.cmu.edu
 854 50782 a 854 50782 a

mailto:msaranti@andrew.cmu.edu
fenglinw@andrew.cmu.edu
 854 53660 a 854 53660
a

mailto:fenglinw@andrew.cmu.edu
yiqingw@andrew.cmu.edu
 854 56538 a 854 56538 a

mailto:yiqingw@andrew.cmu.edu
https://doi.org/10.1007/978-3-031-46826-1_7
https://doi.org/10.1007/978-3-031-46826-1_7
https://doi.org/10.1007/978-3-031-46826-1_7
https://doi.org/10.1007/978-3-031-46826-1_7
https://doi.org/10.1007/978-3-031-46826-1_7
https://doi.org/10.1007/978-3-031-46826-1_7
https://doi.org/10.1007/978-3-031-46826-1_7
https://doi.org/10.1007/978-3-031-46826-1_7
https://doi.org/10.1007/978-3-031-46826-1_7
https://doi.org/10.1007/978-3-031-46826-1_7
https://doi.org/10.1007/978-3-031-46826-1_7

82 T. Krishna et al.

Namely, the discrepancy of.H is the maximum imbalance of an edge under an optimal
colouring. It is often convenient to think about this definition in terms of a game: an
adversary colours. V using. 2 colours. He tries to do it as balanced as possible, that is,
so that the distribution of the colours in every member of. E will be as close as possible
to uniform. Our goal is then to find a member of . E of maximum imbalance. Over
the last century, the study of discrepancy-type problems has developed into a field
with extensive range and variety, demonstrating strong ties to number theory, Ramsey
theory, and computational methods. We refer the reader to the book of Matoušek [13]
for a comprehensive overview of the topic.

There are several natural ways to generalise the above definition of (.2-colour)
discrepancy to an arbitrary number of colours. One such generalisation was intro-
duced by Doerr and Srivastav [4], in which the notion of imbalance captures the
maximum deviation of the size of a colour class from the mean size of a colour
class (or, in other words, the (scaled).l∞-distance of the colour distribution from the
uniform distribution). We call it here the symmetric .r -colour discrepancy of . H,
and denote 1

. D◦
r (H) = min

f :V→[r]
max
A∈E

max
j∈[r]

|
|r

|
| f −1(j) ∩ A

|
| − |A||| .

Recently, mostly in the context of graphs, a slightly different notion of multicolour
discrepancy was studied, in which the notion of imbalance captures the deviation of
the size of the largest colour class from the mean size. We call it here the (upper)
.r -colour discrepancy of . H, and denote

. Dr (H) = min
f :V→[r]

max
A∈E

max
j∈[r]

(
r
|
| f −1(j) ∩ A

|
| − |A|) .

It is not hard to see that these definitions are both generalisations of the classical
notion of discrepancy, and differ from each other by a constant factor. Concretely,
.D2(H) = D◦

2(H) = D(H) and

.Dr (H) ≤ D◦
r (H) ≤ (r − 1)Dr (H) (1)

for every hypergraph .H and .r ≥ 2.
The “upper” variation is more natural in the context of edge-colourings in

(hyper)graphs, due to its direct relation to Ramsey-type questions: given an edge-
colouring of a graph, instead of looking for a monochromatic copy of a target sub-
graph, one looks for a copy of that subgraph in which one of the colours appears
(significantly) more than the average. In that sense, discrepancy-type problems may
be considered as a relaxation—or rather a quantification—of Ramsey-type problems.

Let us elaborate on combinatorial discrepancies in the context of graphs. Here,
given a base graph .G and a family of graphs . X , we construct a hypergraph whose
vertices are the edges of .G and whose hyperedges are edge sets that from a member

1 The original definition of Doerr and Srivastava was a .(1/r)-scaling of the above definition; we
scaled it for convenience to allow.D◦

2 = D, and to ensure it is an integer.

Discrepancies of Subtrees 83

of . X . The discrepancy of .X in . G, denoted .D(G,X), is the discrepancy of that
hypergraph. Analogously, we define the symmetric .r -colour discrepancy of .X in . G
(.D◦

r (G,X)) and the.r -colour discrepancy of.X in. G (.Dr (G,X)). It is helpful to keep
in mind that .D(H) is monotone in . E , hence .D(G,X) is monotone both in .G and in
. X . It is therefore natural (and often nontrivial) to study .D(Kn,X).

The study of combinatorial discrepancy in graphs was initiated by Erdős et al. [5],
who analysed the 2-colour discrepancy of a fixed spanning tree with a given maximum
degree in the complete graph. However, several earlier results can be stated using
this terminology. As an example we mention the result of Erdős and Spencer [6],
that can be interpreted as showing that the (2-colour) discrepancy of cliques in the
complete graph on. n vertices (or, more generally, of hypercliques in the complete.k-
uniform hypergraph) is of order.n3/2 (or, more generally,.n(k+1)/2). Recently, Balogh,
Csaba, Jing and Pluhár [1] initiated the study of discrepancies in general graphs. In
particular, they obtained a Dirac-type bound for positive discrepancy of Hamilton
cycles (in 2 colours; this was generalised to . r colours in [7] and independently
in [10]), and estimated the discrepancy of the set of all spanning trees in random
regular graphs and 2-dimensional grids (in 2 colours). The last result was greatly
generalised to . r colours and to almost every base graph in [10], where the authors
establish a non-trivial connection between the spanning-tree discrepancy (essentially
an extremal quantity) and a purely geometric property of the graph. In.2-dimensional
grids, Balogh et al. also showed that the discrepancy of paths (hence also of trees) is
linear in the number of vertices.

Other recent works include an estimate of multicolour discrepancy in random
graphs and in the complete graph [9]; a Dirac-type bound for positive .2-colour
discrepancy of.k-factors [2]; and a Dirac-type bound for positive.2-colour discrepancy
of powers of Hamilton cycles [3]. Finally, Gishboliner, Krivelevich and the second
author have introduced a notion of oriented discrepancy, and studied the oriented
discrepancy of Hamilton cycles in dense and in random graphs [11]. We will elaborate
on this matter further.

The present work continues this line of research. Our main result shows that the
.r -colour discrepancy of the set of all trees in a given tree is linear in the number
of leaves of that tree. Let us denote the set of all trees by . T . Thus, for a graph . G,
.Dr (G, T) denotes the.r -colour discrepancy of trees in. G. For a tree. T , denote by. l(T)

the number of leaves in. T . As a warm-up example, consider the following two simple
cases. Let .Sl denote the star with . l leaves. It is evident that an optimal colouring
is an equipartition of the leaves into the . r colour classes, and the most unbalanced
tree in this case will be a monochromatic substar. Hence,. Dr (Sl, T) = (r − 1)

[
l
r

]
.

Similarly, considering the path.Pn on. n vertices (so.l(Pn) = 2), an optimal colouring
can easily be seen to be any periodic colouring, in which the most unbalanced tree
will be a single edge. Hence, . Dr (Pn, T) = (r − 1)

[
2
r

]
.

Given the above, a natural guess would be that any tree .T satisfies . Dr (T, T) =
(r − 1) [l(T)/r]. It turns out that the above holds for .r = 2 (see below). For .r ≥ 3,
however, this is only (at least asymptotically) a lower bound, and the star demonstrates
that it is sharp. Our first and main result gives bounds on.Dr (T, T) in terms of.l(T).

84 T. Krishna et al.

Theorem 1 (Multicolour discrepancy) For every .r ≥ 2 and every tree .T with . l
leaves,

.

[

(r − 1) · l

r

]

≤ Dr (T, T) ≤
[

(r − 1) · l

2

]

.

In particular, for .r = 2 we have .D2(T, T) = [
l
2

]
.

We explained earlier why the lower bound in Theorem 1 is sharp (asymptotically
and for infinitely many values of . l). In Sect. 2, where we prove the theorem, we also
prove that the upper bound is sharp (exactly and for every . l; see Proposition 1).

Using a classical result of Kleitman and West [12] about the maximum number of
leaves in a spanning tree of a graph (sometimes called the maximum leaf number),
we obtain the following improvement 2 and extension (to any number of colours) of
[1, Corollary 7].

Corollary 1 Let .m, n ≥ 2 be integers and let .G be the .m × n grid. Then

. Dr (G, T) ≥ r − 1

4r
· mn + 1 − 2r.

Our next result is in the context of signed/oriented discrepancy. Let us lay a
formal ground to state our results. The notion of a signed hypergraph, intro-
duced by Shi [15], is an extension of the conventional notion of a hypergraph
that allows “negative” vertex-edge incidences. Formally, a signed hypergraph . H
is a triple .(V, E, ψ) where .V, E are disjoint sets (“vertices” and “hyperedges”)
and .ψ : V × E → {−1, 0, 1} is an incidence function. For a hyperedge .A we set
. f (A) = ∑

a∈V f (a) · ψ(a, A), and .| f (A)| is called the imbalance of . A. We define
the signed discrepancy of .H to be

. Ḋ(H) = min
f :V→{±1}

max
A∈E

|
∑

a∈V
f (a) · ψ(a, A)|.

With a slight abuse, we may ignore the formal definition that contains the incidence
function, and instead think of sets in a more general way: for each set and each
element, the set can contain the element, not contain the element, or “negatively”
contain that element. This notion turns out to be useful in many cases, as we will
see below. Note that .Ḋ(H) = D2(H) if .ψ is nonnegative; in that sense, the signed
discrepancy is a direct generalisation of .2-colour discrepancy.

Analogously to how we defined multicolour discrepancies in graphs, we define
oriented discrepancy in graphs. In this setting, given an oriented 3 base graph .G and
a family of oriented graphs . X , we construct a signed hypergraph whose vertices are
the edges of.G and whose hyperedges are edge sets that from a member of. X , where

2 Their result, for .r = 2 only, is an immediate corollary of a stronger result they prove on the
discrepancy of paths in the grid. On the other hand, while their proof is a clever ad-hoc and suited
for grids, our proof is more general.
3 That base orientation will not matter and can be arbitrary.

Discrepancies of Subtrees 85

an edge is positively contained in a hyperedge if its orientation in .G agrees with its
orientation in . X , and negatively contained otherwise. The oriented discrepancy of
.X in . G, denoted .

−→D (G,X), is the signed discrepancy of that signed hypergraph. 4

Again, it is convenient to think about this definition in terms of a game: an adversary
orients the edges of .G (ignoring the “original” orientation it had). He tries to do it
as balanced as possible, that is, so that in any member of . X , the number of edges
in which the orientation in .X agrees with his orientation of .G is as close to 50% as
possible. Our goal is then to find a member of .X of maximum imbalance, namely,
that contains many more agreements than disagreements, or the other way around.

Let .DHAM be the set of all directed Hamilton cycles. The result of [11] on the
oriented discrepancy of Hamilton cycles in Dirac graphs can be restated as follows: if

.G is an .n-vertex graph with .δ(G) ≥ n/2 + 8 then .
−→D (G,DHAM) = Ω(2δ(G) −

n)). The authors of [11] conjectured that if .δ(G) ≥ n/2 then .
−→D (G,DHAM) ≥

2δ(G) − n, and that if true, it would be best possible. The conjecture—a strong
generalisation of Dirac’s theorem—was fully resolved by Freschi and Lo [8].

Here, we obtain a new result in the setting of oriented discrepancy in graphs. Let
.DT denote the set of all directed rooted trees; namely, trees that have a distinguished
vertex called the root and that are oriented away from that root. 5 Our next theorem
gives bounds on .

−→D (T,DT) in terms of .l(T).

Theorem 2 (Oriented discrepancy) For every tree . T on at least . 3 vertices and with
. l leaves,

.

[
l

2

]

+ 1 ≤ −→D (T,DT) ≤ l.

The lower bound is sharp (exactly and for every. l), since a star with. l leaves that is
oriented as evenly as possible has oriented imbalance.[l/2] + 1. We conjecture that
one can obtain a better upper bound that matches the lower bound asymptotically,

namely, that .
−→D (T,DT) ∼ l/2.

The multicolour discrepancy .Dr and the signed discrepancy .Ḋ are two natural
generalisations of the classical notion of discrepancy. D, both of combinatorial nature.
In some sense, however, they lack the geometric aspect of discrepancy. In particular,
.Dr is not even generally monotone in . r . Following Tao [16], we may generalise
the definition of discrepancy geometrically, by allowing vector-valued colouring
functions. Here, we restrict our attention to the (already challenging) case of the
vector space .Rd . For .d ≥ 0, let .Sd denote the .d-dimensional unit hypersphere in
.R

d+1. A .d-dimensional colouring of .H is a function . f : V → S
d . For a hyperedge

. A we set . f (A) = ∑
a∈A f (a), and .| f (A)| is called the imbalance of . A. We define

the .d-dimensional discrepancy of .H to be

4 A potential term would have been signed discrepancy; however, when the vertices of the hyper-
graph represent edges of a graph, the notion of orientation is more natural.
5 This is an arbitrary choice of one of two natural orientations of a rooted tree, and has no implications
on the results.

86 T. Krishna et al.

. Dd(H) = min
f :V→Sd

max
A∈E

| f (A)|.

We observe that .D0 = D2, and that .Dd ' ≤ Dd whenever .d ' ≥ d. Understanding . D0

quite well, we move on to study .Dd for .d ≥ 1.
While the .r -colour discrepancy is more combinatorial in nature and the .d-

dimensional discrepancy is more geometric, they are related by the following inequal-
ity: for every.r ≥ 2,.d ≥ 1 and hypergraph. H,.Dd(H) ≤ D1(H) ≤ D◦

r (H). It follows
from Eq. 1, Theorem 1 that the high-dimensional tree-discrepancy of a tree with . l
leaves is at most .[l/2] (for every dimension.d ≥ 1). In the next theorem we prove a
lower bound that we believe that under some assumptions matches the upper bound.
Let .B(z1, z2) be the beta function.

Theorem 3 (high-dimensional discrepancy) For every tree . T with . l leaves,

. Dd(T, T) ≥ l

d · B (
d
2 ,

1
2

) .

In particular, .D1(T, T) ≥ l/π and .Dd(T, T) ≥ (1 − od(1))l/
√
2πd.

We conjecture that.D1(T, T) ≥ 1/(2 sin(π/(2l))) ∼ l/π and that when. Δ(T) →
∞, .D1(T, T) ∼ l/π .

2 Multicolour Discrepancy

In this section we prove Theorem 1 and its sharpness. Given a tree. T , a colouring. f :
E(T) → [r] and a subtree. S, write.e j (S) = | f −1(S)| and.w j (S) = re j (S) − |E(S)|.
Proof (Of the lower bound in Theorem 1) Let .T be a tree with . l leaves, and let
. f : E(T) → [r] be an .r -colouring of its edges. Denote .m j = | f −1(j)| for . j ∈ [r]
and.m = ∑

j∈[r] m j = |E(T)|. We obtain a subtree.T ' of. T be deleting all leaves of. T ,
and denote .m '

j = | f −1(j) ∩ E(T ')| and .l j = | f −1(j) \ E(T ')| for . j ∈ [r]. Write
.m ' = ∑

j∈[r] m
'
j and note that.

∑
j∈[r] l

'
j = m − m ' = l. Finally, we obtain.Tj from. T '

by adding back the edges . f −1(j) \ E(T '). Observe that .w j (Tj) = rm j − m ' − l j ,
hence

.

∑

j∈[r]
w j (Tj) = rm − rm ' − l = (r − 1)l.

Thus, by the pigeonhole principle, there exists. j ∈ [r] for which.w j ≥ [(r − 1)l/r],
hence .Dr (T, T) ≥ [(r − 1)l/r].

We move on to prove the upper bound in Theorem 1. Consider the pointwise partial
order relation on.R

r defined as follows: for.m = (m1, . . . ,mr) and.n = (n1, . . . , nr),
.m ≤ n if and only if .m j ≤ n j for every . j ∈ [r]. For a permutation . τ of .[r] we

Discrepancies of Subtrees 87

write .τ(m) = (mτ(1), . . . ,mτ(r)). We say that .m is dominated by . n and denote it
.m < n if there exists a permutation . τ of .[r] such that .τ(m) ≤ n. We further write
.m ∨ n = (m1 ∨ n1, . . . ,mr ∨ nr), where for real numbers.x, y,.x ∨ y = max{x, y}.
Call .m is increasing if it is (weakly) monotone increasing as a sequence. Denote by
.σm the first permutation of.[r] (according to some arbitrary fixed ordering) for which
.σm(m) is increasing. Write .i(m) = σm(m) for the “monotone version” of . m. Let
.minm and .maxm denote the minimal and maximal coordinate in . m, respectively,
and note that if .m < n then .maxm ≤ max n. Say that a vector .m is .1-Lipschitz if
for every .1 ≤ j < r , .|m j+1 − m j | ≤ 1.

For a vector . m, let .αm be the vector .(a1, . . . , ar) where .a j = m j + r − σ−1
m (j).

It is useful to observe that if .m < n then .αm < αn. It is also useful to observe that
if .m is increasing .1-Lipschitz then .αm is decreasing .1-Lipschitz. For every . j ∈
[r] denote .d j = r − [(r + 1 − j)/2], and let .d2 = (d1, . . . , dr). For .l ≥ 2 define
.dl+1 = i(αdl

), and note that for.l ≥ 3,.min dl = max dl−1. Note futher that since. d2
is increasing .1-Lipschitz then by the discussion above, .dl is increasing .1-Lipschitz
for every .l ≥ 2. Thus, for every .l ≥ 3, .(dl) j = (dl−1)r+1− j + j − 1. In particular,
.max d3 = d1 + r − 1 = 2r − 1 − [r/2] = [3(r − 1)/2], and, for .l ≥ 4, . max dl =
min dl−1 + r − 1 = max dl−2 + r − 1. By induction, .max dl = [l(r − 1)/2]. The
following claim will be useful for us.

Claim 2.1 For every .l ≥ 3, if .m < dl−1 and .n < dl then .m ∨ n < dl.

Proof We may assume that .i(n) = dl. Thus, .min n = min dl = max dl−1, hence
.m ∨ n = n, and the claim follows.

Proof (Of the lower bound in Theorem 1) For vertices.u, v ∈ V (T), let.Sv(T) denote
the set of subtrees . S of .T that contain the vertex . v, let .Su,v(T) the set of subtrees
. S that contain .u, v, and let .Su,¬v(T) be the set of subtrees . S that contain . u but not
. v. For . j ∈ [r], define .Mj (v; T) = maxS∈Sv(T) w j (S) and analogously . Mj (u, v; T)

and .Mj (u,¬v; T). The colour profile of . v in .T (with respect to a colouring . f)
is the vector .χ(v; T) = (M1(v; T), . . . , Mr (v; T)). Define analogously . χ(u, v; T)

and .χ(u,¬v; T). We prove by induction the following statement: for every . l ≥ 2
and every tree. T with. l leaves, there exists a colouring. f of.E(T) for which for every
vertex.v ∈ V (T),.χ(v; T) < dl. This would imply, in particular, that for every subtree
. S of. T and every colour. j ∈ [r],.w j (S) ≤ maxχ(v; T) for some vertex.v ∈ V (S); but
for every.v ∈ V (T),.maxχ(v; T) ≤ max dl ≤ [(r − 1)l/2], implying the statement
of the theorem. Our inductive argument yields a concrete explicit colouring of.E(T);
see Sect. 2 for an (implied) efficient algorithmic version.

The base case is when.l = 2. Here, . T is a path; suppose the edges of the path are
.(e1, . . . , ek) in this order. We colour the path periodically; namely, we let. f (ei) = j if
and only if.i ≡ j (mod r). Let.v ∈ V (T) and let.S ∈ Sv be a subpath of. T containing
. v. Evidently, .w j (S) ≤ r − 1 for every . j ∈ S. Thus, .χ(v; T) < d2.

We move on to the induction step. Let. T be a tree with.l = l(T) ≥ 3 and suppose
the statement holds for.l − 1. Let. u be a leaf in. T , and let. b be the branching vertex
of . u, namely, the nearest vertex to . u with degree greater than two. Let .Pu be the
path connecting . u to . b, and denote by .T ' the subtree of . T obtained by removing all

88 T. Krishna et al.

edges of .Pu and all vertices of .Pu but . b. Evidently, .l(T ') = l − 1. By the induction
hypothesis, there exists an .r -colouring . f ' of .E(T ') that satisfies . χ(v; T ') < dl−1

for every .v ∈ V (T '). We extend . f ' to a colouring . f of .E(T) as follows. Let . b' =
χ(b; T ') be the colour profile of . b in . T '. Consider the permutation .σb' . Colour
the edges of .Pu periodically according to .σb' ; namely, if .Pu = (e1, . . . , ek) (where
.b ∈ e1 and.u ∈ ek), let. f (ei) = σb'(j) if and only if.i ≡ j (mod r). Note that for any
subpath .Q of .Pu that contains . b, and for any colour . j ∈ [r], .w j (Q) ≤ r − σ−1

b (j).
We now show that . T satisfies the hypothesis (with respect to . f). Namely, we show
that for every .v ∈ V (T), .χ(v; T) < dl. We consider three separate cases.

Case I, .v = b: We observe that for every .S ∈ Sb and every . j ∈ [r], letting . S' =
S ∩ T ' and .S− = S ∩ Pu , we have . w j (S) = w j (S') + w j (S−) ≤ Mj (b; T ') +
r − σ−1

b' (j). Thus, .χ(b; T) ≤ αb' . By the induction hypothesis, .b' < dl−1, hence
.χ(b; T) ≤ αb' < i(αdl−1) = dl.

Case II, .v ∈ V (Pu) \ {b}: As with the base case of the induction, we have
.χ(v,¬b; T) ≤ d2 ≤ dl−1. On the other hand, .χ(v, b; T) ≤ χ(b; T) < dl (by
Case I). Thus, .χ(v; T) = χ(v,¬b; T) ∨ χ(v, b; T) < dl (by Sect. 2.1).

Case III, .v ∈ V (T ') \ {b}: By the induction hypothesis . χ(v,¬b; T) ≤ χ(v; T ')
< dl−1. On the other hand, .χ(v, b; T) ≤ χ(b; T) < dl. Thus, . χ(v; T) =
χ(v,¬b; T) ∨ χ(v, b; T) < dl (by Sect. 2.1).

The proof is now complete.

We briefly discuss how the inductive argument presented in the proof of the upper
bound of Theorem 1 yields a simple and efficient algorithm for finding a colouring
the achieves at least the upper bound.

We begin by describing an efficient algorithm to compute the colour profile of a
vertex . b in an .r -coloured tree . T . The input is a given tree . T with .m edges, a vertex
. b, and an .r -colouring . f . For every vertex . v of . T , let .Tv denote the tree rooted at . v
comprised of . v and all its descendants in . T . Now observe that, by considering the
imbalance of color . j at each subtree . Tv , .v ∈ N (b), we have

. Mj (b; T) =
∑

v∈N (b)

max{r · 1 f ({b,v})= j − 1 + Mj (v; Tv), 0}.

Hence, computing .χ(b; T) requires .O(rm) steps.
We proceed by describing the colouring procedure. We are given a tree. T with. m

edges and . l leaves, and a number of colours . r . Let .u1, u2 be two distinct leaves of
. T , and let .P be the unique path between them in . T . We colour .P alternately with
a fixed (arbitrary) cyclic order of the colours. Set .T ' = P . We then iterate over the
remaining.l − 2 leaves: given a leaf. u that is not in. T ', let.Pu be the unique path in. T
from. u to. T ', and let. b be the last vertex in the path (so.b ∈ V (T ')). We can calculate
the colour profile .χ(b; T ') of . b in .T ' in .O(rm) steps. Given the colour profile, we
colour the path from . b to . u alternately with a cyclic order of the colours, from the
least popular colour up to the most popular. That is, the order of colours is .σχ(b;T ').
We then add the new coloured path to .T ' and continue to the next leaf outside . T '.

Discrepancies of Subtrees 89

Fig. 1 Visualisation of the inductive .3-colouring of a tree. The colour profiles are indexed red–
green–blue

This algorithm runs, therefore, in.O(rml) steps. Its correctness was verified recur-
sively in the proof of the upper bound in Theorem 1. See Fig. 1 for a visualisation
of the algorithm.

We now prove Corollary 1.

Proof (Of Corollary 1) Let .G be the .2-dimensional .m × n grid (.m, n ≥ 2). Obtain
.G+ from .G by adding a perfect matching covering the . 4 vertices of degree . 2 in . G,
so .δ(G+) = 3. Hence, by [12, Theorem 2], .G+ has a spanning tree .T with at least
.mn/4 + 2 leaves. By Theorem 1,

. Dr (G
+, T) ≥ Dr (T, T) ≥ r − 1

r
·
(mn

4
+ 2

)
= r − 1

4r
· mn + 2 − 2

r
≥ r − 1

4r
· mn + 1.

The result follows since .Dr (G, T) ≥ Dr (G+, T) − 2Wr .

In the introduction, we showed the lower bound of Theorem 1 is asymptotically
tight. Here, we show the upper bound is (exactly) tight.

Proposition 1 For every .r, l ≥ 2 there exists a tree . T with .l(T) = l and

.Dr (T, T) =
[

(r − 1) · l

2

]

.

90 T. Krishna et al.

Proof A spider is a star-like graph defined as follows: for.k ≥ 1 and.l ≥ 2,.Spkl is a
tree with a root attached to. l paths (“legs”), each is of length. k. Note that.l(Spkl) = l.
Let .T = Sprl, and let . f : E(T) → [r] be an .r -colouring of its edges. We identify
.E(T) by.[l] × [r] by labelling the . h’th edge (counting from the root) of the . i’th leg
.(i, h). For. j ∈ [r] let.E j ⊆ [l] × [r] be the set of. j-coloured edges in. T . For. j ∈ [r],
let .Sj be the smallest subtree of . T that contains the root and every . j-coloured edge.
Note that .w j (Sj) ≥ ∑

(i,h)∈E j
(r − h), thus

.

∑

j∈[r]
w j (Sj) ≥

∑

(i,h)∈E(T)

(r − h) = l

(
r

2

)

.

By the pigeonhole principle, there exists . j ∈ [r] for which .w j (Sj) ≥ [(r − 1)l/2].

3 Oriented Discrepancy

In this section we prove Theorem 2 and the sharpness of its lower bound.

Proof (Of the lower bound in Theorem 2) The oriented discrepancy of trees in an
.l-leaf star is .[l/2] + 1. We may therefore assume that . T is not a star. In particular,
there exists a vertex . u which is not a leaf and has a neighbour which is also not
a leaf. Consider an arbitrary orientation of the edges of . T . Consider a .2-colouring
of .T according to the direction of each edge with respect to . u: colour . e red if it is
oriented towards. u, and blue otherwise. By Theorem 1, there exist a subtree.T ∗ of. T
with.2-colour imbalance at least.

[
l
2

]
. Assume.T ∗ maximises the.2-colour imbalance.

Assume further, without loss of generality, that the popular colour in .T ∗ is red. In
particular, every edge from .T ∗ to its complement is blue. We claim that . u is in .T ∗,
and is not a leaf of .T ∗. Indeed, if . u is not in .T ∗, let .w be the closest vertex to . u in
.T ∗. Then, since the edge .{w, z} along the path from .w to . u is blue, the rooted tree
.(T ∗ + z, w) has oriented imbalance at least .

[
l
2

] + 1. Similarly, if . u is a leaf of .T ∗,
then, since . u has a neighbour . v outside .T ∗, and the edge .{u, v} is blue, the rooted
tree .(T ∗ + v, v) has oriented imbalance at least .

[
l
2

] + 1. This shows, in particular,
that all edges incident to . u are red.

We conclude that every subtree of .T of maximal .2-colour imbalance contains . u
and its neighbourhood, and that all of these trees have the same popular colour (say,
red). By the choice of . u, it has a non-leaf neighbour . v. Let .e = {u, v} and consider
the tree .T1 = T/e that is obtained from. T be contracting . e and keeping the original
orientations (and the induced.2-colouring). Note that due to the choice of . v, . u is not
a leaf of .T1 and.l(T1) = l(T) = l. Thus, applying Theorem 1 again yields a subtree
.T ∗
1 of .T1 of maximal .2-colour imbalance, which is at least .

[
l
2

]
. By repeating the

argument above (in which we did not assume that . u has a non-leaf neighbour, but
only that it is not a leaf itself), we conclude that . u is in .T ∗

1 . Let .T
∗
2 be obtained from

.T ∗
1 be de-contracting . e. If the dominant colour of .T ∗

1 is blue, then the rooted tree

Discrepancies of Subtrees 91

.(T ∗
2 , v) has oriented discrepancy at least .

[
l
2

] + 1. If the dominant colour of .T ∗
1 is

red, then the rooted tree .(T ∗
2 , u) has oriented discrepancy at least .

[
l
2

] + 1.

Proof (Of the upper bound in Theorem 2) For a tree . T with a fixed orientation we
define.xTv→, xTv← to be the largest possible imbalance of a subtree rooted at. v in which
the dominant orientation is from, respectively to,. v. We will prove that there exists an
orientation of . T such that .xTv→ + xTv← ≤ l for all vertices . v. We prove the statement
by induction on . l.

For a tree with two leaves, i.e., a path, orienting the edges alternately clearly
works. Assume the statement holds for any tree with up to. l leaves and let. T be a tree
with .l + 1 leaves. Consider a leaf and the path connecting it to its branching vertex
. v. Let.T ' be the tree after removing this path. By induction, .T ' admits an orientation
for which.xT

'
v→ + xT

'
v← ≤ l − 1 for all.v ∈ T '. Assume, without loss of generality that

.xT
'

v→ is the smallest of the two. Now, orient the edges of the removed path alternately,
where the edge incident to . v is oriented towards it. We claim that this orientation of
. T satisfies the requirements.

First, for any .u ∈ V (T '), only .xT '
u← can possibly be increased by . 1, so . xTu→ +

xTu← ≤ l. Now for any vertex . u in the path, we have

• .(xTu→, xTu←) ≤ (xT
'

v→ + 2, xT
'

v← − 1) if .d(u, v) is odd. Note that the only case this
is not true is when.xT

'
v← = 0. But then, .0 ≤ xT

'
v→ ≤ xT

'
v← = 0, which is impossible,

since at least one of them should be positive. Thus, .xTu→ + xTu← ≤ l.
• .(xTu→, xTu←) ≤ (xT

'
v→, xT

'
v← + 1) if .d(u, v) is even. Thus, .xTu→ + xTu← ≤ l.

This concludes the induction.

4 High Dimensional Discrepancy

We prove Theorem 3. A proof of the next lemma can be found in [14].

Lemma 1 Let .d ≥ 1, and let .X = (X1, . . . , Xd) ∼ Unif(Sd−1). Then, the random

variable .X1 is distributed on .[−1, 1] with density function . fX1(x) = (1−x2)
d−3
2

B(d−1
2 , 12)

.

Proof (Of Theorem 3) Let .T be a tree with . l leaves, and let . f : E(T) → S
d be a

.d-dimensional colouring its edges. Let .L ⊆ E(T) be the set of edges in .T that are
incident to a leaf (so .|L| = l). For a vector .v ∈ S

d let .Lv be the set of edges . e in . L
for which.v · f (e) > 0, and let.L '

v = L \ Lv. Denote by.Tv the subtree of. T with the
edge set .E(T) \ L '

v and by .T '
v the subtree of . T with the edge set .E(T) \ Lv. For a

subtree . S of . T , write .D(S) = ∑
e∈E(S) f (e). Write .e1 = (1, 0, . . . , 0) ∈ S

d for the
first vector in the standard basis. Let . v be a uniformly random sampled vector in .S

d ,
and set .Dv = ∑

e∈L |v · f (e)|. By linearity of expectation and by Lemma 1,

.EDv = l · E|v · e1| = 2l ·
∫ 1

0

x(1 − x2)d/2−1

B
(
d
2 ,

1
2

) dx = 2l

d · B (
d
2 ,

1
2

) .

92 T. Krishna et al.

Thus, there exists a vector . v for which .Dv ≥ 2l
d·B(d

2 , 12)
. By Cauchy–Schwarz we get

.

||
||D(Tv) − D(T '

v)
||
|| ≥ |

|v · (
D(Tv) − D(T '

v)
)|
| = Dv ≥ 2l

d · B (
d
2 ,

1
2

) .

By the triangle inequality,.D(S) ≥ l/
(
d · B (

d
2 ,

1
2

))
for some.S ∈ {T, T '}. A straight-

forward application of Stirling’s formula yields the asymptotic bound as .d → ∞.

Acknowledgements The second author wishes to thank Boris Bukh, Matan Harel and Yinon
Spinka for fruitful discussions at various stages of this project.

References

1. Balogh, J., Csaba, B., Jing, Y., Pluhár, A.: On the discrepancies of graphs. Electr. J. Combin.
27, 2, Paper No. 2.12, 14 (2020). https://doi.org/10.37236/8425 MR4245067

2. Balogh, J., Csaba, B., Pluhár, A., Treglown, A.: A discrepancy version of the Hajnal-Szemerédi
theorem, 2021, 0963–5483. Combin. Probab. Comput. 30, 3, 444–459 (2021). https://doi.org/
10.1017/s0963548320000516, MR4247634

3. Bradač, D.: Powers of Hamilton cycles of high discrepancy are unavoidable. Electr. J.
Combin. 29, 3, Paper No. 3.22, 26 (2022). https://doi-org.cmu.idm.oclc.org/10.37236/
10279MR4458145

4. Doerr, B., Srivastav, A.: Multicolour discrepancies, 2003, 0963-5483. Combin. Probab. Com-
put. 12, 4, 365–399 (2003). https://doi.org/10.1017/S0963548303005662, MR1994100

5. Erdős, P., Füredi, Z., Loebl, M., Sós, V.T.: Discrepancy of trees, 1995, 0081-6906. Studia
Scientiarum Mathematicarum Hungarica 30, 1–2, 47–57, MR1341566 (1995)

6. Erdős, P., Spencer, J.H.: Imbalances in .k-colorations, 1971/72, 0028-3045. Networks 1, 379–
385 (1971/92). https://doi.org/10.1002/net.3230010407, MR299525

7. Freschi, A., Hyde, J., Lada, J., Treglown, A.: A note on color-bias Hamilton cycles in dense
graphs, 2021, 0895-4801. SIAM J. Disc. Math. 35, 2, 970–975 (2021). https://doi-org.cmu.
idm.oclc.org/10.1137/20M1378983, MR4256086

8. Freschi, A., Lo, A.: An oriented discrepancy version of Dirac’s theorem, 2022-11, arXiv e-
prints, eprint=2211.06950

9. Gishboliner, L., Krivelevich, M., Michaeli, P.: Color-biased Hamilton cycles in random graphs,
2022, 1042-9832. Random Struct. Algorithms 60, 3, 289–307 (2022). https://doi-org.cmu.idm.
oclc.org/10.1002/rsa.21043, MR4388697

10. Gishboliner, L., Krivelevich, M., Michaeli, P.: Discrepancies of spanning trees and Hamilton
cycles, 2022, 0095-8956. J. Comb. Theory Ser B 154, 262–291 (2022). https://doi-org.cmu.
idm.oclc.org/10.1016/j.jctb.2022.01.003, MR4374842

11. Gishboliner, L., Krivelevich, M., Michaeli, P.: Oriented discrepancy of Hamilton cycles, 2023,
0364-9024,1097-0118. J. Graph Theory 103, 4, 780–792 (2023). https://doi.org/10.1002/jgt.
22947, MR4606422

12. Kleitman, D.J., West, D.B.: Spanning trees with many leaves, 1991, 0895-4801. SIAM J. Disc.
Math. 4, 1, 99–106 (1991). https://doi-org.cmu.idm.oclc.org/10.1137/0404010, MR1090293

13. Matoušek, J.: Geometric discrepancy. Algorithms Combinatorics, vol. 18, 3-540-65528-X.
Springer, Berlin (1999). https://doi.org/10.1007/978-3-642-03942-3, MR1697825

14. Pavlyk, O.: Random point uniform on a sphere (answer) (2012). https://math.stackexchange.
com/q/185312

https://doi.org/10.37236/8425
https://doi.org/10.37236/8425
https://doi.org/10.37236/8425
https://doi.org/10.37236/8425
https://doi.org/10.37236/8425
https://doi.org/10.37236/8425
https://doi.org/10.1017/s0963548320000516
https://doi.org/10.1017/s0963548320000516
https://doi.org/10.1017/s0963548320000516
https://doi.org/10.1017/s0963548320000516
https://doi.org/10.1017/s0963548320000516
https://doi.org/10.1017/s0963548320000516
https://doi-org.cmu.idm.oclc.org/10.37236/10279
https://doi-org.cmu.idm.oclc.org/10.37236/10279
https://doi-org.cmu.idm.oclc.org/10.37236/10279
https://doi-org.cmu.idm.oclc.org/10.37236/10279
https://doi-org.cmu.idm.oclc.org/10.37236/10279
https://doi-org.cmu.idm.oclc.org/10.37236/10279
https://doi-org.cmu.idm.oclc.org/10.37236/10279
https://doi-org.cmu.idm.oclc.org/10.37236/10279
https://doi-org.cmu.idm.oclc.org/10.37236/10279
https://doi-org.cmu.idm.oclc.org/10.37236/10279
https://doi.org/10.1017/S0963548303005662
https://doi.org/10.1017/S0963548303005662
https://doi.org/10.1017/S0963548303005662
https://doi.org/10.1017/S0963548303005662
https://doi.org/10.1017/S0963548303005662
https://doi.org/10.1017/S0963548303005662
https://doi.org/10.1002/net.3230010407
https://doi.org/10.1002/net.3230010407
https://doi.org/10.1002/net.3230010407
https://doi.org/10.1002/net.3230010407
https://doi.org/10.1002/net.3230010407
https://doi.org/10.1002/net.3230010407
https://doi.org/10.1002/net.3230010407
https://doi-org.cmu.idm.oclc.org/10.1137/20M1378983
https://doi-org.cmu.idm.oclc.org/10.1137/20M1378983
https://doi-org.cmu.idm.oclc.org/10.1137/20M1378983
https://doi-org.cmu.idm.oclc.org/10.1137/20M1378983
https://doi-org.cmu.idm.oclc.org/10.1137/20M1378983
https://doi-org.cmu.idm.oclc.org/10.1137/20M1378983
https://doi-org.cmu.idm.oclc.org/10.1137/20M1378983
https://doi-org.cmu.idm.oclc.org/10.1137/20M1378983
https://doi-org.cmu.idm.oclc.org/10.1137/20M1378983
https://doi-org.cmu.idm.oclc.org/10.1137/20M1378983
https://doi-org.cmu.idm.oclc.org/10.1002/rsa.21043
https://doi-org.cmu.idm.oclc.org/10.1002/rsa.21043
https://doi-org.cmu.idm.oclc.org/10.1002/rsa.21043
https://doi-org.cmu.idm.oclc.org/10.1002/rsa.21043
https://doi-org.cmu.idm.oclc.org/10.1002/rsa.21043
https://doi-org.cmu.idm.oclc.org/10.1002/rsa.21043
https://doi-org.cmu.idm.oclc.org/10.1002/rsa.21043
https://doi-org.cmu.idm.oclc.org/10.1002/rsa.21043
https://doi-org.cmu.idm.oclc.org/10.1002/rsa.21043
https://doi-org.cmu.idm.oclc.org/10.1002/rsa.21043
https://doi-org.cmu.idm.oclc.org/10.1002/rsa.21043
https://doi-org.cmu.idm.oclc.org/10.1016/j.jctb.2022.01.003
https://doi-org.cmu.idm.oclc.org/10.1016/j.jctb.2022.01.003
https://doi-org.cmu.idm.oclc.org/10.1016/j.jctb.2022.01.003
https://doi-org.cmu.idm.oclc.org/10.1016/j.jctb.2022.01.003
https://doi-org.cmu.idm.oclc.org/10.1016/j.jctb.2022.01.003
https://doi-org.cmu.idm.oclc.org/10.1016/j.jctb.2022.01.003
https://doi-org.cmu.idm.oclc.org/10.1016/j.jctb.2022.01.003
https://doi-org.cmu.idm.oclc.org/10.1016/j.jctb.2022.01.003
https://doi-org.cmu.idm.oclc.org/10.1016/j.jctb.2022.01.003
https://doi-org.cmu.idm.oclc.org/10.1016/j.jctb.2022.01.003
https://doi-org.cmu.idm.oclc.org/10.1016/j.jctb.2022.01.003
https://doi-org.cmu.idm.oclc.org/10.1016/j.jctb.2022.01.003
https://doi-org.cmu.idm.oclc.org/10.1016/j.jctb.2022.01.003
https://doi-org.cmu.idm.oclc.org/10.1016/j.jctb.2022.01.003
https://doi.org/10.1002/jgt.22947
https://doi.org/10.1002/jgt.22947
https://doi.org/10.1002/jgt.22947
https://doi.org/10.1002/jgt.22947
https://doi.org/10.1002/jgt.22947
https://doi.org/10.1002/jgt.22947
https://doi.org/10.1002/jgt.22947
https://doi-org.cmu.idm.oclc.org/10.1137/0404010
https://doi-org.cmu.idm.oclc.org/10.1137/0404010
https://doi-org.cmu.idm.oclc.org/10.1137/0404010
https://doi-org.cmu.idm.oclc.org/10.1137/0404010
https://doi-org.cmu.idm.oclc.org/10.1137/0404010
https://doi-org.cmu.idm.oclc.org/10.1137/0404010
https://doi-org.cmu.idm.oclc.org/10.1137/0404010
https://doi-org.cmu.idm.oclc.org/10.1137/0404010
https://doi-org.cmu.idm.oclc.org/10.1137/0404010
https://doi-org.cmu.idm.oclc.org/10.1137/0404010
https://doi.org/10.1007/978-3-642-03942-3
https://doi.org/10.1007/978-3-642-03942-3
https://doi.org/10.1007/978-3-642-03942-3
https://doi.org/10.1007/978-3-642-03942-3
https://doi.org/10.1007/978-3-642-03942-3
https://doi.org/10.1007/978-3-642-03942-3
https://doi.org/10.1007/978-3-642-03942-3
https://doi.org/10.1007/978-3-642-03942-3
https://doi.org/10.1007/978-3-642-03942-3
https://doi.org/10.1007/978-3-642-03942-3
https://math.stackexchange.com/q/185312
https://math.stackexchange.com/q/185312
https://math.stackexchange.com/q/185312
https://math.stackexchange.com/q/185312
https://math.stackexchange.com/q/185312
https://math.stackexchange.com/q/185312

Discrepancies of Subtrees 93

15. Shi, C.-J.: A signed hypergraph model of the constrained via minimization problem. Micro-
electron. J. 23, 7, 533–542 (1992)

16. Tao, T.: The Erdős discrepancy problem. Discrete Analysis, Paper No. 1, 29 (2016). https://
doi-org.cmu.idm.oclc.org/10.19086/da.609, MR3533300

https://doi-org.cmu.idm.oclc.org/10.19086/da.609
https://doi-org.cmu.idm.oclc.org/10.19086/da.609
https://doi-org.cmu.idm.oclc.org/10.19086/da.609
https://doi-org.cmu.idm.oclc.org/10.19086/da.609
https://doi-org.cmu.idm.oclc.org/10.19086/da.609
https://doi-org.cmu.idm.oclc.org/10.19086/da.609
https://doi-org.cmu.idm.oclc.org/10.19086/da.609
https://doi-org.cmu.idm.oclc.org/10.19086/da.609
https://doi-org.cmu.idm.oclc.org/10.19086/da.609
https://doi-org.cmu.idm.oclc.org/10.19086/da.609
https://doi-org.cmu.idm.oclc.org/10.19086/da.609

Handling Sub-symmetry in Integer
Programming using Activation Handlers

Christopher Hojny, Tom Verhoeff, and Sten Wessel

Abstract Symmetry in integer programs (IPs) can be exploited to reduce solving
times. Usually only symmetries of the original IP are handled, but new symmetries
may arise at some nodes of the branch-and-bound tree. While symmetry-handling
inequalities (SHIs) can easily be used to handle original symmetries, handling sub-
symmetries arising later on is more intricate. To handle sub-symmetries, it has been
proposed to add SHIs that are activated by auxiliary variables. But this may increase
the IP’s size substantially as all sub-symmetries need to be modeled explicitly. We
propose an alternative framework for generically activating SHIs, so-called activa-
tion handlers. In this framework, we define a callback that checks for active sub-
symmetries, eliminating the need for auxiliary variables. In particular, activation han-
dlers can activate symmetry-handling techniques that are more powerful than SHIs.
We show that our approach is flexible, with applications in the multiple-knapsack
and unit commitment problems. Numerical results show a substantial performance
improvement on the existing sub-symmetry-handling methods.

1 Introduction

Branch-and-bound (B&B) is a popular method to solve integer programs (IPs). By
iteratively splitting IPs into smaller subproblems, B&B can solve problems with
thousands of variables and constraints in adequate time, but it is well-known that the
presence of symmetries leads to unnecessarily large B&B trees. The main reason is
that B&B explores symmetric subproblems, which all provide essentially the same

C. Hojny · T. Verhoeff · S. Wessel (B)
Eindhoven University of Technology, Eindhoven, The Netherlands
e-mail: s.wessel@tue.nl

C. Hojny
e-mail: c.hojny@tue.nl

T. Verhoeff
e-mail: t.verhoeff@tue.nl

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
A. Brieden et al. (eds.), Graphs and Combinatorial Optimization:
from Theory to Applications, AIRO Springer Series 13,
https://doi.org/10.1007/978-3-031-46826-1_8

95

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-46826-1_8&domain=pdf
s.wessel@tue.nl
 854
50782 a 854 50782 a

mailto:s.wessel@tue.nl
c.hojny@tue.nl
 854 53660
a 854 53660 a

mailto:c.hojny@tue.nl
t.verhoeff@tue.nl
 854
56538 a 854 56538 a

mailto:t.verhoeff@tue.nl
https://doi.org/10.1007/978-3-031-46826-1_8
https://doi.org/10.1007/978-3-031-46826-1_8
https://doi.org/10.1007/978-3-031-46826-1_8
https://doi.org/10.1007/978-3-031-46826-1_8
https://doi.org/10.1007/978-3-031-46826-1_8
https://doi.org/10.1007/978-3-031-46826-1_8
https://doi.org/10.1007/978-3-031-46826-1_8
https://doi.org/10.1007/978-3-031-46826-1_8
https://doi.org/10.1007/978-3-031-46826-1_8
https://doi.org/10.1007/978-3-031-46826-1_8
https://doi.org/10.1007/978-3-031-46826-1_8

96 C. Hojny et al.

information. Therefore, symmetry-handling is an important ingredient of modern
B&B implementations that substantially improves the running time [23].

We consider permutation symmetries of binary programs .max{cTx |x ∈ X },
where .c ∈ Z

d and .X ⊆ {0, 1}d . A permutation is a bijection of .[d] := {1, . . . , d};
the set of all permutations is .Symd . We assume that a permutation .π ∈ Symd acts
on .x ∈ {0, 1}d by permuting its coordinates, i.e., .π(x) := (xπ−1(1), . . . , xπ−1(d)). A
symmetry of the binary program is a permutation.π ∈ Symd that preserves the objec-
tive, i.e., .cTπ(x) = cTx , and feasibility, i.e., .x ∈ X if and only if .π(x) ∈ X . Note
that the set of all symmetries forms a group under composition. We refer to this group
as the symmetry group of the binary program, denoted by . G. Since computing . G
is NP-hard [19], one usually only handles a subgroup of . G, which can either be
detected automatically [23, 25] or is provided by an expert.

The orbit of . x is .orbG(x) = {π(x)|π ∈ G} and contains all solutions equiva-
lent to . x w.r.t. . G. Note that orbits partition . X . To handle symmetries, it suffices to
restrict .X to (usually lexicographically maximal) representatives of orbits. A vec-
tor.y ∈ Z

d is lexicographically greater than.z ∈ Z
d , denoted.y > z, if there is. i ∈ [d]

with .yi > zi and .y j = z j for all . j < i . We write .y < z when .y > z or .y = z hold.
A solution .x ∈ X is lexicographically maximal in its orbit under .G if .x < π(x) for
all .π ∈ G.

To solve binary programs, B&B generates subproblems.max{cTx |x ∈ Q}, where
.Q ⊆ X . Each subproblem is a binary program with symmetry group.GQ . In general,
.GQ is different from.G and neither is a subgroup of the other. Following [2], we call
symmetries in .GQ sub-symmetries of the initial binary program. If sub-symmetries
appear frequently during the solving process, it can be beneficial to handle them. But
since computing (subgroups of) .GQ might be costly, providing knowledge about
sub-symmetries via experts can substantially reduce the complexity of handling sub-
symmetries. This, however, leads to a new challenge: how to efficiently provide
expert knowledge to a binary programming solver.

Recently, [2] suggested to introduce, for each possible sub-symmetry, a simple
symmetry-handling inequality (SHI) that is coupled with auxiliary variables that
enable (resp. disable) the SHI if the sub-symmetry is active (resp. inactive) at a
subproblem. This, however, might lead to a significant increase in the size of the
problem formulation as all sub-symmetries need to be explicitly modeled. Moreover,
simple SHIs might not lead to the strongest symmetry reductions.

In this paper, we propose an alternative approach. Instead of using auxiliary vari-
ables to activate SHIs, we aim to both (i) detect sub-symmetries valid at a B&B node
and (ii) handle these symmetries on-the-fly. Our approach is inspired by the cele-
brated idea to separate (exponentially) large families of cutting planes for IPs instead
of adding all of them initially. Such separation routines are usually implemented via
callback mechanisms of IP solvers such as SCIP, Gurobi, CPLEX, or Xpress. There-
fore, we introduce a new type of callback, so-called activation handlers, which is
able to detect sub-symmetries and activate sophisticated symmetry handling meth-
ods. The aim of this article is to answer the following research question:

Handling Sub-symmetry in Integer Programming … 97

Does the success of using callbacks for separating cutting planes carry over to symmetry
handling? In particular, to which extent can we improve upon the SHI approach?

In the remainder of this section, we provide a brief overview of symmetry handling
methods. Sect. 2 summarizes the state-of-the-art of handling sub-symmetries, which
is complemented by a description of our activation handler framework in Sect. 3.
Then, we illustrate for three classes of problems how activation handlers can be used
to handle sub-symmetries (Sect. 4), and we evaluate our activation handler framework
on a broad set of instances (Sect. 5). Numerical results show that our novel framework
substantially improves upon the state-of-the-art in handling sub-symmetries.

Related Literature

Many symmetry-handling methods exist in the literature, including variable branch-
ing and fixing rules [18, 22], pruning rules [17, 18, 21], model reformulation tech-
niques [5], and symmetry-handling constraints [6, 9, 10, 12– 16, 26]. In the following,
we discuss some constraint-based techniques that we also use in our experiments.
For details on other techniques, we refer to the surveys [19, 23].

Most symmetry-handling constraints enforce that only lexicographically maximal
representatives of symmetric solutions are computed. For a single symmetry.π ∈ G,
.x < π(x) can be enforced in linear time by propagation and separation techniques [4,
10]. For general groups, however, it is coNP-complete to decide whether a solution
is lexicographically maximal in its orbit if .G is given by a set of generators, c.f. [1].
Attention has thus been spent on groups that arise frequently in practice. One such
case assumes that the variables are organized in a matrix .x = (xi, j)i∈[m], j∈[n] and
that the symmetries in .G permute the columns of . x arbitrarily. Such symmetries
arise frequently in benchmark instances [23], and in Sect. 4, we illustrate some
applications. There, we also discuss how orbitopes can be used to handle these
symmetries.

The full orbitope is the convex hull of all binary matrices with lexicographically
non-increasingly sorted columns. If restricting to matrices all of whose rows have
at most (resp. exactly) one 1-entry, the corresponding convex hull is called packing
(resp. partitioning) orbitope. These matrix symmetries can be handled by separating
valid inequalities for orbitopes. For packing/partitioning orbitopes, a facet descrip-
tion can be separated in linear time [12]; for full orbitopes, efficiently separable IP
formulations are known [10]. Moreover, efficient propagation algorithms for full
and packing/partitioning orbitopes are known [3, 11]. The so-called orbitopal fixing
algorithms receive local variable bounds at a subproblem and derive variables that
need to be fixed at a certain value to guarantee that a solution is within the orbitope.

2 Sub-symmetry in Integer Programming

In this section, we provide a detailed explanation of sub-symmetries and intricacies
when dealing with them. We use the multiple knapsack problem as a running example
for illustration purposes.

98 C. Hojny et al.

The multiple knapsack problem (MKP) considers. m items with associated profit. pi
and weight.wi , .i ∈ [m], as well as. n knapsacks with capacity. c j , . j ∈ [n]. The objec-
tive is to assign each item to at most one knapsack such that the total weight of items
assigned to knapsack. j ∈ [n] does not exceed.c j and the total profit of assigned items
is maximized. The MKP is NP-hard as it generalizes the NP-hard single-knapsack
problem [8]. A standard IP formulation (1) is given below. There, variable .yi, j indi-
cates whether item.i ∈ [m] is packed in knapsack. j ∈ [n], see [20]. Let.YMKP denote
the set of all feasible solution matrices . y.

This formulation exhibits two types of symmetries. For any feasible solution,
permuting indices of knapsacks with equal capacity yields another feasible solution.
When all knapsacks have the same capacity, this symmetry corresponds to permuting
the columns of the solution matrix . y. Symmetries also arise from items with iden-
tical properties (same weight and profit). In any feasible solution such items can be
permuted, corresponding to permuting the respective rows in the solution matrix . y.

Formulation (1) also admits sub-symmetries: Consider two knapsacks . j and . j ',
and an item with index . i . Suppose items .{1, . . . , i − 1} are placed such that the
remaining capacity of knapsacks . j and . j ' are equal. Then, the placement of the
remaining items.{i, . . . ,m} can be permuted between the two knapsacks. We call this
type of sub-symmetry capacity sub-symmetries. By this definition, also knapsacks. j
and . j ' with .c j /= c j ' can become sub-symmetric.

. max
y∈ {0,1}m×n

⎧
⎨

⎩

m∑

i=1

n∑

j=1

pi yi, j

|
|
|
|
|
|
wTy ≤ cTand

n∑

j=1

yi, j ≤ 1 for all i ∈ [m]
⎫
⎬

⎭
(1)

In general, sub-symmetries can be defined for arbitrary collections of subprob-
lems .S = {Qs ⊂ X |s ∈ [q]} for some . q. The sub-symmetries then correspond to
permutations in .GQs , .s ∈ [q], and are either automatically detected by an IP solver
or are provided by a user. In the MKP, the solution subsets for which capacity sub-
symmetries occur, are defined as

.Qi
j, j ' =

(

y ∈ YMKP

|
|
|
|
|
c j −

i−1∑

k=1

wk yk, j = c j ' −
i−1∑

k=1

wk yk, j '

)

, (2)

for all pairs. j, j ' ∈ [n], . j < j ', and all .i ∈ [m]. We denote by.SMKP the collection of
all these solution subsets.

In B&B, a subproblem (node of the B&B tree) may belong to one or multiple
solution subsets .Qs . We then say that the sub-symmetries in .GQs become active. To
exploit sub-symmetries, a solver needs to detect when it is in a subproblem where
the sub-symmetry is active. Then, the sub-symmetry must be handled, which can be
done using methods similar to those for handling global symmetries.

As observed by [3], sub-symmetry handling for different sub-problems might be
conflicting. Consider, for example, the MKP for two knapsacks with capacities. c1 = 6
and.c2 = 2, and three items with weights.(4, 2, 2) and profits.(2, 3, 3). Initially, only

Handling Sub-symmetry in Integer Programming … 99

items 2 and 3 are equivalent. This symmetry can be handled by. (y2,1, y3,1, y2,2, y3,2) <
(y3,1, y2,1, y3,2, y2,2), i.e., we prefer item 2 in knapsack 1. If we branch on .y1,1 = 1,
both knapsacks have the same remaining capacity. The knapsack sub-symmetry
can be handled by .(y3,1, y2,1, y2,2, y3,2) < (y3,2, y2,2, y3,1, y2,1), i.e, we prefer using
knapsack 1 and item 3 first. These constraints, however, allow to pack at most one of
the remaining items, which is suboptimal. Therefore, [3] conclude that compatible
sub-symmetry handling methods need to be selected.

If one only handles symmetries arising from permutations of columns in the
matrix of binary variables, the following structure in the set of sub-symmetries . S
ensures compatability [3]. Let .Q ∈ S. For a solution matrix .x ∈ Q, let . x(R,C)

denote the submatrix of . x obtained by restricting to rows .R ⊆ [m] and columns
.C ⊆ [n]. The symmetry group.GQ is the sub-symmetric group with respect to. (R,C)

if it contains all the permutations of the columns of .x(R,C). If .GQ is the sub-
symmetric group, then .Q is called sub-symmetric with respect to .(R,C). Now, let
.S be a set of solution subsets such that every .Qs ∈ S is sub-symmetric with
respect to .(Rs,Cs). For every orbit .σ i

s of .GQs , choose the representative . x
i
s ∈ σ i

s
such that the submatrix .xis(Rs,CS) is lexicographically maximal in its orbit, i.e.,
its columns are lexicographically non-increasing. Then, these representatives are
compatible [3].

For the MKP example, the capacity sub-symmetries arise in the solution
subsets .SMKP. A solution subset .Qi

j, j ' ∈ SMKP is sub-symmetric with respect
to .({i, . . . ,m}, { j, j '}). Whenever the sub-symmetry is active, one can thus handle
it by enforcing that the columns of the submatrix .y({i, . . . ,m}, { j, j '}) are lexico-
graphically non-increasing.

The state-of-the-art approach to handle a sub-symmetry is to add sub-symmetry-
handling inequalities to the model [2]. For the MKP, the inequalities are of the
form .yi, j ' ≤ z + yi, j for the sub-symmetry in .Qi

j, j ' . When .z = 0, the inequality
partially breaks the symmetry by ensuring correct lexicographical ordering of two
entries in the matrix of variables. When .z ≥ 1, the inequality is trivially satisfied.
Here, . z is an auxiliary non-negative integer variable that is necessary to only acti-
vate the SHI whenever we are indeed in the subproblem .Qi

j, j ' , and can be defined

as.z =
|
|
|c j − c j ' − ∑i−1

k=1 wk(yk, j − yk, j ')
|
|
|. To include this in the IP, we use standard

techniques to linearize the expression, leading to additional variables and constraints.
We refer to [2] for more details on SHIs and the techniques to make the set of SHIs
fully break the sub-symmetry.

3 Activation Handler

The existing method of handling sub-symmetries with inequalities has a number
of limitations. For every sub-symmetry that we want to handle, it is necessary to
add many explicit SHIs to the formulation, leading to a blow-up of the IP. The
size of the formulation increases even more for problems where additional variables

100 C. Hojny et al.

or constraints are necessary to express the auxiliary .z-variable in the formulation.
Additionally, the inequalities are rather weak for symmetry handling. In particular,
the variable-based approach is not immediately able to activate more sophisticated
symmetry-handling methods such as orbitopal fixing.

To circumvent these issues, we introduce a new approach for handling sub-
symmetries. Our framework is defined by the following steps.

S1 Identify the sub-symmetries present in the formulation.
S2 Define how active sub-symmetries can be detected at the nodes of the B&B tree.
S3 Implement a callback for detecting sub-symmetries.
S4 Use a symmetry-handling method to handle the detected sub-symmetries.

S1, S2, and S3 require expert knowledge of the modeled problem, to provide sym-
metry information of the problem to the callback. S4 allows the modeler to specify
a method to handle detected sub-symmetries from within the callback.

This approach makes the activation and handling of sub-symmetries flexible. In
the activation handler, complete information about the current node in the B&B tree
is available to the modeler. In many cases, such as for the MKP and the problems
in Sect. 4, active sub-symmetries can be detected by inspecting variable fixings at a
node. Furthermore, the activation handler can be used with any symmetry-handling
method from the literature, and is not restricted to inequality-based approaches.
Neither activation nor symmetry handling needs to be encoded in the formulation
directly, keeping the IP compact.

The validity of the approach depends firstly on the validity of the identified sub-
symmetries in S1, for which the arguments are problem-specific. For S4, existing
symmetry-handling techniques are used, for which the correctness proofs remain
valid in our case. By selecting compatible representatives, handling multiple sub-
symmetries simultaneously does not lead to conflicts, which is proven in [3].

As the framework is rather generic, we will illustrate the concept for two prob-
lems in Sect. 4. Afterwards, we compare the numerical performance in Sect. 5. Our
implementation of the activation handler framework and experiments are publicly
available [28]. The generic framework can easily be adapted by practitioners for use
in other applications.

4 Application

In this section, we discuss how sub-symmetries arise for two types of problems:
the multiple knapsack problem and the unit commitment problem, see also [29] for
further applications. We describe how SHIs can be applied to handle sub-symmetries,
as well as the activation handler framework. The activation handler uses information
from the solver about variable fixings at a node of the B&B tree. To this end, we
define for a node . a of the B&B tree the sets .Fa

0 and .Fa
1 , which denote the variables

that are fixed to . 0 or . 1 at node . a, respectively.

Handling Sub-symmetry in Integer Programming … 101

4.1 Multiple Knapsack Problem

We introduced the MKP, its symmetries, and the capacity sub-symmetries in Sect. 2.
Notice that the set of solution subsets .SMKP, which considers all pairs of knapsacks,
can be generalized to arbitrary groups of knapsacks with identical residual capacities.
When handling the symmetry with inequalities, considering all these solution subsets
is intractable, as potentially every subset of knapsacks might define a sub-symmetry.
That is, exponentially many SHIs as well as auxiliary variables and constraints need
to be added to the problem. Therefore, we only consider SHIs for consecutive pairs
of knapsacks, i.e., . j ' = j + 1. We hence add .O(mn) SHIs to the formulation, with
for each SHI four auxiliary variables and five auxiliary constraints.

Sub-symmetry-handling with Activation Handler

When handling sub-symmetries via activation handlers, we are more flexible in
implementing the activation rules. Instead of enumerating every solution subset. Qi

j1, j2
separately and checking if the sub-symmetry is active, we can use a single activation
handler in the model. The activation handler returns all submatrices of. y that contain
active sub-symmetries at a given node of the B&B tree.

The activation handler identifies whether the placement of items .[i − 1] is fixed
at node. a, according to the variable fixings.Fa

0 and.Fa
1 . For every item. i for which the

previous holds, the activation handler checks whether there are knapsacks of equal
remaining capacity, after placement of items.[i − 1]. Suppose that for item. i the knap-
sacks. jk1 , . . . , jkr have equal remaining capacity. Then, the activation handler reports
the submatrix .y({i, . . . ,m}, { jk1 , . . . , jkr }), for which the capacity sub-symmetry is
now active at node. a. In this way, finding all active capacity sub-symmetries is linear
in the number of variables in the matrix . y, as we can simply perform a linear scan
over the rows of . y and checking the variable fixings. Note that checking whether a
variable is fixed can be done in constant time, as this information is available from
the solver, through our new callback interface.

The activated submatrices are then passed to a high-level symmetry-handling
constraint in the solver. Several methods can be used to handle symmetry in the
submatrix. In our implementation, we use orbitopal fixing for packing orbitopes [11]
to handle the active sub-symmetries.

4.2 Unit Commitment Problem

Another problem in which we can handle sub-symmetries is the min-up/min-down
unit commitment problem (MUCP), as introduced in [2]. We are given a set of
production units .U with .|U | = n, and a discrete time horizon .T = [T] for which
a certain non-negative demand .Dt needs to be satisfied at every time .t ∈ T . Every
production unit. j ∈ U can be either up or down at every.t ∈ T . When a unit is up, its
production is between a minimum and maximum production capacity.P j

min and.P j
max,

and it must remain up for at least .L j time steps. When a unit is down, its production

102 C. Hojny et al.

is zero and it must remain down for at least .l j time steps. We furthermore have for
every unit . j a start-up cost . c j

0 , a fixed cost .c
j
f for every time step the unit is up, and

a production cost .c j
p proportional to its production. The goal is to find a production

schedule satisfying the production demand at every time step and the min-up and
min-down constraints, while minimizing the total cost.

Let the variables .xt, j ∈ {0, 1} indicate whether unit . j ∈ U is up at time .t ∈ T ,
and .ut, j ∈ {0, 1} whether unit . j starts up at time . t . We omit further details of the
IP formulation we use for this problem, as they are not relevant for symmetry han-
dling, and refer to [2] for details. Let.XMUCP denote the set of matrices.(xt, j) that are
feasible. Notice that the solution matrix. x completely characterizes a solution, as the
corresponding matrix . u can be derived completely from. x .

Symmetries are present globally in the MUCP when production units have identi-
cal properties, i.e., units where the properties.(Pmin, Pmax, L , l, c0, c f , cp) are equal.
For now, we assume that all units are indeed identical, and we can hence permute
their production schedules. This corresponds to permuting the columns of . x . One
possible way of breaking the symmetry is to restrict . x to the full orbitope for binary
matrices of size.T × n, i.e., by imposing that the columns of. x are lexicographically
non-increasing. If not all units are identical, this approach can instead be applied to
submatrices . x that only contain the columns corresponding to identical units.

The MUCP also exhibits sub-symmetries, as introduced in [2]. Call a production
unit . j ∈ U ready to start up at some time .t ∈ T if the unit has been down con-
tinuously for at least the minimum downtime . l j . In other words, when . xt ', j = 0
for all .t ' = t − l j , . . . , t − 1 and .t ≥ l j + 1. Now, suppose there are at least two
units . j1, . . . , jk ∈ U that are all ready to start up at some time. t . Then, their produc-
tion schedules can be permuted from time . t onwards, regardless of their schedule
up to time . t . This thus defines a sub-symmetry where the columns of the subma-
trix.x({t, . . . , T }, { j1, . . . , jk}) can be permuted. Analogously, one can identify sub-
symmetries for units ready to shut down at some time .t ∈ T . We refer to these
sub-symmetries as start-up and shut-down sub-symmetries, respectively.

Sub-symmetry-handling Inequalities

Following the approach in [2], the start-up sub-symmetries can be handled with
inequalities as follows. The handling of shut-down sub-symmetries is analogous,
and we omit the details here. Let . j := jk, j ' := jk+1 be a pair of consecutive units,
for the sake of brevity. Then, the solution subsets

.Q̌t
k = {

x ∈ XMUCP

|
|xt ', j = xt ', j ' = 0 for all t ' = t − l, . . . , t − 1

}
(3)

for all .t ≥ l + 1, define when the start-up sub-symmetries occur. For .Q̌t
k , the corre-

sponding auxiliary variable can be expressed as .z = ∑t−1
t '=t−l[xt ', j + xt ', j '], leading

to the SHI.xt, j ' ≤ z + xt, j . Note that the .z-variable has a linear description in . x , and
hence it is not necessary to add. z explicitly to the formulation. Instead, we can simply
replace. z directly with its linear expression. The SHIs for the start-up sub-symmetries

Handling Sub-symmetry in Integer Programming … 103

can be slightly strengthened, for which we refer to [2] for details on the derivation.
A similar inequality can be obtained for the shut-down sub-symmetries.

Sub-symmetry-handling with Activation Handler

Handling sub-symmetry with an activation handler is similar to the approach for the
MKP. We add a single activation handler to the model, that identifies all submatrices
corresponding to active sub-symmetries in the following manner. For sake of pre-
sentation, we assume that all production units .U have the same type, i.e., all units
have identical properties. In the more general case where we have multiple types of
production units, we can simply apply our method to the unit types separately.

Let . a be a node of the B&B tree. Define for every .t ∈ {l + 1, . . . , T },

.Šat = {
j ∈ U

|
|xt ', j ∈ Fa

0 for all t ' ∈ {t − l, . . . , t − 1}} . (4)

That is, .Šat are the production units that are fixed to be ready to start up at time . t
at node . a. For every subset .Šat for which .|Sat | ≥ 2, the corresponding start-up sub-
symmetry becomes active. Hence, the symmetry corresponds to column permutations
of the submatrix.x({t, . . . , T }, Šat). We then use orbitopal fixing for full orbitopes to
handle the sub-symmetry in the activated submatrix.

Notice that we can find the units that are ready to start up for every time . t ∈ T
in .O(nT) time, by iterating over the time horizon and a dynamic-programming
approach. The shut-down sub-symmetries are activated and handled with an analo-
gous approach.

5 Experimental Results

In this section, we compare the sub-symmetry-handling methods using experiments
on instances of the problems introduced above.

Instances

Let .U (l; L) denote a random variable uniformly distributed on .{l, . . . , L}. For the
MKP, we generate random instances from four standard problem classes [7, 20, 24]:

• uncorrelated, .wi , pi ∈ U (l; L),
• weakly correlated, .wi ∈ U (l; L) and .pi ∈ U (max{1, wi − L−l

10 };wi + L−l/10),
• strongly correlated, .wi ∈ U (l; L) and .pi = wi + (L − l)/10,
• multiple subset-sum, .wi ∈ U (l; L) and .pi = wi .

We generate our instances with.l = 10,.L = 1000. The capacity of every knapsack is
set to .c j = |

1
2

∑m
i=1 wi/n

|
, i.e., the total capacity is approximately half of the total

weight of all items. To introduce symmetry in the problem, we generate multiple
items with the same weight with an approach similar to [2]. Generated weights
are duplicated . d times, where .d ∈ U (1; f m), where we call . f ∈ { 12 , 1

3 ,
1
4 ,

1
8 } the

symmetry factor. Larger values of . f generate larger groups of items with equal

104 C. Hojny et al.

weight, leading to a more symmetric instance. For generating the profit values for
the items within an equal-weight group, we consider two types of instances:

• equal profit, where every item in the equal-weight group also has equal profit,
generated according to the item class above,

• free profit, where every item in the equal-weight group has a profit value generated
according to the item class above.

For strongly correlated and multiple subset-sum, we only generate instances for equal
profit as both types are equivalent. We make groups of equal-weight items until we
have generated. m items,.(m, n) ∈ {(48, 12), (60, 10), (60, 30), (75, 15), (100, 10)}.
We generate .20 instances for every combination of item class, symmetry factor, and
duplication type, yielding.2400 instances. For MUCP, we use the instances from [2].

Experimental Setup

All experiments are run with a development version of SCIP 7.0.3 (Git hash
3671128c) with the SoPlex 6.0.0 LP solver [27], on a single core of an Intel Xeon
Platinum 8260 CPU (.2.4 GHz), with a memory limit of .10 GB of RAM and a time
limit of .3600 s. The IP model is constructed in Python 3.10 using the PySCIPOpt
interface that exposes the SCIP API in Python. Activation handlers are implemented
in SCIP as a new plugin, and can be added via the PySCIPOpt interface.

In order to compare performance of the different symmetry-handling methods,
we use the following settings:

• No-Sym: Formulation with SCIP internal symmetry handling turned off.
• Default: Formulation with SCIP default parameters.
• Orbitope: Formulation with orbitope constraints for (global) symmetry handling.
• Ineq: Formulation with SHIs.
• Act: Formulation with orbitope constraints for (global) symmetry handling and
activation handler for sub-symmetries.

For the MKP, all models except for No-Sym include orbitope constraints for handling
symmetry between identical items. In the orbitopes for symmetries between identical
items and symmetries between identical knapsacks, we use a compatible ordering of
the variables such that orbitopal fixing for all orbitopes can be performed simulta-
neously, without introducing any conflicts. For the MUCP, we use the strengthened
SHIs in the Ineq model [2]. The orbitope constraints in SCIP use orbitopal fixing, as
discussed in Sect. 1.

Results

The results are summarized in Table 1. We aggregate the results for instances in
classes, based on the solving time of the tested models. Notation.[a, b) denotes the set
of instances for which all models have a solving time of at least. a and below. b seconds.
We exclude .551 MKP and .12 MUCP instances from our test set, where all models
reach the time limit. For each instance class, we report the number of instances in
the class (#). For every model, the number of instances solved to optimality (Opt)
and mean solving time (in seconds) is reported. The mean solving time is the shifted

Handling Sub-symmetry in Integer Programming … 105

Table 1 Summarized numerical results for MKP and MUCP
Existing methods Our method

No-Sym Default Ineq Orbitope Act

Problem Instances .# Opt Time Opt Time Opt Time Opt Time Opt Time

MKP All 1849 1166 50.4 1387 33.6 625 1109.6 1636 16.6 1828 12.4

.[0, 100) 277 277 0 277 0.2 277 14.4 277 0.1 277 0.2

.[100, 1800) 272 272 0.4 272 0.5 272 371.5 272 0.3 272 0.4

.[1800, ∞) 1300 617 250.2 838 134.1 76 3474.1 1087 53.1 1279 35.5

MUCP All 268 172 162.7 216 70.8 240 131.4 – – 266 39.0

.[0, 10) 26 26 3.1 26 3.0 26 5.0 – – 26 3.6

.[10, 300) 101 101 19.2 101 14.1 101 31.3 – – 101 15.8

.[300,∞) 34 1 3353.4 7 2789.0 18 1972.0 – – 32 751.3

geometric mean, with a shift of . 1 s. For instances that are not solved to optimality
within the time limit, the solving time is set to .3600 s.

In Table 1, we see that over all MKP instances, the activation handler method
solves more instances to optimality within the time limit, compared to the other
models. We can see that symmetry handling is highly relevant for the MKP prob-
lem. SCIP’s state-of-the-art symmetry-handling methods reduce the running time
by roughly 33%. Our activation handler approach reduces the running time of this
already very competitive setting by further 63%. Comparing the different sub-
symmetry-handling methods, the additional overhead necessary for the inequalities
method is too large for handling this type of sub-symmetries. From the small and
medium classes, we see there is a substantial difference between solving time for
the inequalities method. There is also a slight improvement in running time for the
global orbitope and activation handler methods, compared to default SCIP and the
model where no symmetry handling is performed. For the large instances we see
that the activation handler method solves more instances to optimality with a clear
improvement in solving time.

For the MUCP we see similar results. Overall, SCIP’s symmetry-handling meth-
ods improve the running time by roughly 55%, whereas the activation handler reduces
it even further by 45%. We omit the Orbitope model in the results, as SCIP automati-
cally finds these orbitopes in the Default model. The inequalities method, in contrast
with the results for the MKP, shows improvement on the default models for the large
instances, confirming the results of [2]. This difference compared to the results for
the MKP is likely caused by the auxiliary .z-variables, that can here be expressed
linearly with no additional constraints. The activation handler outperforms all other
models; it solves considerably more large instances to optimality.

106 C. Hojny et al.

6 Conclusion

Based on our numerical experiments, we can answer our research question to the affir-
mative, i.e., activation handlers substantially improve on the SHI-based approach.
We thus believe that this approach can also be successful in further applications.
It is up to future research to investigate this in more detail. To this end, we aim to
include our framework in the SCIP solver. This way, also other researchers can easily
benefit from our flexible framework and extend to a broader class of problems. Our
new callback also enables the exploration of different symmetry handling methods
that, e.g., do not depend on a fixed variable order. To the best of our knowledge, it is
currently not possible to implement such methods directly in commercial solvers.

Acknowledgements We thank the authors of [2] for providing us with the MUCP instances orig-
inally used in their experiments.

References

1. Babai, L., Luks, E.M.: Canonical labeling of graphs. In: Proceedings of the Fifteenth Annual
ACM Symposium on Theory of Computing—STOC’83. ACM Press (1983)

2. Bendotti, P., Fouilhoux, P., Rottner, C.: Symmetry-breaking inequalities for ILP with structured
sub-symmetry. Math. Program. 183(1), 61–103 (2020)

3. Bendotti, P., Fouilhoux, P., Rottner, C.: Orbitopal fixing for the full (sub-)orbitope and appli-
cation to the unit commitment problem. Math. Program. 186(1), 337–372 (2021)

4. van Doornmalen, J., Hojny, C.: Efficient propagation techniques for handling cyclic symmetries
in binary programs (2022). https://optimization-online.org/2022/03/8812/

5. Fischetti, M., Liberti, L.: Orbital shrinking. In: Mahjoub, A.R., Markakis, V., Milis, I., Paschos,
V.T. (eds.) Combinatorial Optimization, LNCS, vol. 7422, pp. 48–58. Springer, Berlin (2012)

6. Friedman, E.J.: Fundamental domains for integer programs with symmetries. In: Dress, A., Xu,
Y., Zhu, B. (eds.) Combinatorial Optimization and Applications. Lecture Notes in Computer
Science, vol. 4616, pp. 146–153. Springer, Berlin, Heidelberg (2007)

7. Fukunaga, A.S.: A branch-and-bound algorithm for hard multiple knapsack problems. Ann.
Oper. Res. 184(1), 97–119 (2011)

8. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-
Completeness. W. H. Freeman & Co (1979)

9. Hojny, C.: Packing, partitioning, and covering symresearch. Disc. Appl. Math. 283, 689–717
(2020)

10. Hojny, C., Pfetsch, M.E.: Polytopes associated with symmetry handling. Math. Program.
175(1), 197–240 (2019)

11. Kaibel, V., Peinhardt, M., Pfetsch, M.E.: Orbitopal fixing. Discr. Optim. 8(4), 595–610 (2011)
12. Kaibel, V., Pfetsch, M.E.: Packing and partitioning orbitopes. Math. Program. 114(1), 1–36

(2008)
13. Liberti, L.: Automatic generation of symmetry-breaking constraints. In: Combinatorial Opti-

mization and Applications. LNCS, vol. 5165, pp. 328–338. Springer, Berlin (2008)
14. Liberti, L.: Reformulations in mathematical programming: automatic symmetry detection and

exploitation. Math. Program. 131(1–2), 273–304 (2012)
15. Liberti, L.: Symmetry in mathematical programming. In: Lee, J., Leyffer, S. (eds.) Mixed

Integer Nonlinear Programming, IMA Series, vol. 154, pp. 236–286. Springer, New York
(2012)

https://optimization-online.org/2022/03/8812/
https://optimization-online.org/2022/03/8812/
https://optimization-online.org/2022/03/8812/
https://optimization-online.org/2022/03/8812/
https://optimization-online.org/2022/03/8812/
https://optimization-online.org/2022/03/8812/
https://optimization-online.org/2022/03/8812/

Handling Sub-symmetry in Integer Programming … 107

16. Liberti, L., Ostrowski, J.: Stabilizer-based symmetry breaking constraints for mathematical
programs. J. Glob. Optim. 60, 183–194 (2014)

17. Margot, F.: Pruning by isomorphism in branch-and-cut. Math. Program. 94(1), 71–90 (2002)
18. Margot, F.: Exploiting orbits in symmetric ILP. Math. Program. 98(1), 3–21 (2003)
19. Margot, F.: Symmetry in Integer Linear Programming, Chap. 17, pp. 647–686. Springer (2010)
20. Martello, S., Toth, P.: Algorithms for knapsack problems. In: Martello, S., Laporte, G., Minoux,

M., Ribeiro, C. (eds.) Surveys in Combinatorial Optimization. North-Holland Mathematics
Studies, vol. 132, pp. 213–257. North-Holland (1987)

21. Ostrowski, J.: Symmetry in integer programming. Ph.D. dissertation, Lehigh University (2009)
22. Ostrowski, J., Linderoth, J., Rossi, F., Smriglio, S.: Orbital branching. Math. Program. 126(1),

147–178 (2011)
23. Pfetsch, M.E., Rehn, T.: A computational comparison of symmetry handling methods for mixed

integer programs. Math. Program. Comput. 11(1), 37–93 (2019)
24. Pisinger, D.: An exact algorithm for large multiple knapsack problems. European J. Oper. Res.

114(3), 528–541 (1999)
25. Salvagnin, D.: A dominance procedure for integer programming. Master’s thesis, University

of Padova, Padova, Italy (2005)
26. Salvagnin, D.: Symmetry breaking inequalities from the Schreier-Sims table. In: van Hoeve,

W.J. (ed.) CPAIOR, pp. 521–529. Springer (2018)
27. SCIP: SCIP optimization suite. https://www.scipopt.org. Accessed 27 Jan. 2023
28. Wessel, S.: Activation handler (2022). https://github.com/stenwessel/activation-handler
29. Wessel, S.: Handling sub-symmetries in integer linear programming using activation handlers.

Master’s thesis, Eindhoven University of Technology, Eindhoven (2022)

https://www.scipopt.org
https://www.scipopt.org
https://www.scipopt.org
https://www.scipopt.org
https://github.com/stenwessel/activation-handler
https://github.com/stenwessel/activation-handler
https://github.com/stenwessel/activation-handler
https://github.com/stenwessel/activation-handler
https://github.com/stenwessel/activation-handler
https://github.com/stenwessel/activation-handler

A Multivariate Complexity Analysis
of the Generalized Noah’s Ark Problem

Christian Komusiewicz and Jannik T. Schestag

Abstract In the Generalized Noah’s Ark Problem, one is given a phyloge-
netic tree on a set of species .X and a set of projects for each species. Each project
comes with a cost and raises the survival probability of the corresponding species.
The aim is to select for each species a conservation project such that the total cost
of the selected projects does not exceed some given threshold and that the expected
phylogenetic diversity is as large as possible. We study Generalized Noah’s Ark
Problem and some of its special cases with respect to several parameters related
to the input structure such as the number of different costs, the number of different
survival probabilities, or the number of species, .|X |.

1 Introduction

The preservation of biological diversity is one of humanity’s most critical challenges.
To help addressing this challenge in a systematic way, it is useful to quantify or pre-
dict the effect of interventions. Here, two questions arise: how to measure biological
diversity of ecosystems and how to model the effect of certain actions on the biolog-
ical diversity of an ecosystem under consideration.

A popular measure to measure the biological diversity of an ecosystem, introduced
by Faith [4], is to consider the phylogenetic diversity of the species present in that
system. Here, the phylogenetic diversity is the sum of evolutionary distances between
the species, when their evolution is modeled by an evolutionary (phylogenetic) tree.
The tree then not only gives the phylogenetic diversity of the whole species set
but also allows to infer the phylogenetic diversity of any subset of these species
that would remain after some currently present species are extinct. Now to model the
effect of certain actions, a first simple model is that one can afford to protect. k species

C. Komusiewicz · J. T. Schestag (B)
Friedrich-Schiller-Universität Jena, Ernst-Abbe-Platz 2, 07743 Jena, Germany
e-mail: j.t.schestag@uni-jena.de

C. Komusiewicz
e-mail: c.komusiewicz@uni-jena.de

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
A. Brieden et al. (eds.), Graphs and Combinatorial Optimization:
from Theory to Applications, AIRO Springer Series 13,
https://doi.org/10.1007/978-3-031-46826-1_9

109

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-46826-1_9&domain=pdf
http://orcid.org/0000-0003-0829-7032
http://orcid.org/0000-0001-7767-2970
j.t.schestag@uni-jena.de
 854 53672 a 854 53672 a

mailto:j.t.schestag@uni-jena.de
c.komusiewicz@uni-jena.de
 854 56550 a 854 56550
a

mailto:c.komusiewicz@uni-jena.de
https://doi.org/10.1007/978-3-031-46826-1_9
https://doi.org/10.1007/978-3-031-46826-1_9
https://doi.org/10.1007/978-3-031-46826-1_9
https://doi.org/10.1007/978-3-031-46826-1_9
https://doi.org/10.1007/978-3-031-46826-1_9
https://doi.org/10.1007/978-3-031-46826-1_9
https://doi.org/10.1007/978-3-031-46826-1_9
https://doi.org/10.1007/978-3-031-46826-1_9
https://doi.org/10.1007/978-3-031-46826-1_9
https://doi.org/10.1007/978-3-031-46826-1_9
https://doi.org/10.1007/978-3-031-46826-1_9

110 C. Komusiewicz and J. T. Schestag

and that all other species go extinct. Under this model phylogenetic diversity can be
efficiently maximized with a simple greedy algorithm [8, 9]. Later, more realistic
models where introduced. One step was to model that protecting some species may
be more costly than protecting others [10]. Subsequent approaches also allowed to
model uncertainty: performing an action does not guarantee the survival of a species
but only raises its survival probability [6]. In this model, one now aims to maximize
the expected phylogenetic diversity. Finally, one may also consider the even more
realistic case when for each species, one can choose from a set of actions, each
coming with a cost and a resulting survival probability. This model was proposed by
Billionnet [12, 13] as Generalized Noah’s Ark Problem (GNAP).

Introducing cost differences for species protection makes the problem of maxi-
mizing phylogenetic diversity NP-hard [10] and thus all of the even richer models
are NP-hard as well. Apart from several pseudopolynomial-time algorithms, there is
no work that systematically studies which structural properties of the input make the
problems tractable. The aim of this work is to fill this gap. More precisely, we study
how different parameters related to the input structure influence the algorithmic com-
plexity of GNAP and some of its special cases. In a nutshell, we show the following.
First, GNAP can be solved more efficiently when the number of different project costs
and survival probabilities is small. Second, while a constant number.|X | of species. X
leads to polynomial-time solvability, algorithms with running time. f (|X | |)| · |I|O(1)

are unlikely to exist. Finally, restricted cases where for example the input tree has
height 1 or there is exactly one action for each species which guarantees its sur-
vival are much easier than the general problem. We also observe close relations to
the Multiple- Choice Knapsack problem and to a further natural number prob-
lem which we call Penalty- Sum.

Due to lack of space, most of our proofs are deferred to the long version [1].

2 Preliminaries

For values . i and . j , the Kronecker-Delta .δi= j is 1 if .i = j , and 0 otherwise. For an
integer. n, we define.[n] := {1, . . . , n} and.[n]0 := {0, 1, . . . , n}. A partition of .N is
a family of pairwise disjoint sets .{N1, . . . , Nm} such that .Um

i=1 Ni = N .
A directed graph .G is a tuple .(V, E), where .V is called the set of vertices of . G

and .E the set of edges of . G, respectively. An edge .e = (v, u) is incident with . u
and . v. The degree of a vertex . v is the number of edges that are incident with . v. A
tree .T with root . r is a directed, cycle-free graph with .r ∈ V (T) where each vertex
of .T can be reached from . r via exactly one path. A vertex . v of a tree .T is a leaf
when the degree of . v is one. In a rooted tree, the height of a vertex . v is the distance
from the root . r to . v for each vertex . v. The height .heightT of a rooted tree .T is the
maximal height of one of the vertices of . T . For an edge .(u, v), we call . u the parent
of . v and . v a child of . u. For a vertex . v with parent . u, the subtree .Tv rooted at
. v is the connected component containing . v in .T − (u, v). In the special case that
. v is the root of . T , we define .Tv := T . For a vertex . v with children .w1, . . . , wt and

A Multivariate Complexity Analysis of the Generalized Noah’s Ark Problem 111

.i ∈ [t], the.i -partial subtree.Tv,i rooted at . v is the connected component containing. v

in .Tv − (v,wi+1) − · · · − (v,wt). For a vertex . v in a tree . T , the offspring of . v,
denoted .off(v), is the set of leaves in . Tv . A star is a graph .G = (V, E) with a
vertex .c ∈ V and .E = {(c, v) | v ∈ V \ {c}}.

A phylogenetic .X-tree .T = (V, E, λ) (in short, .X -tree) is a tree .T with root . r ,
where.λ : E → N is an edge-weight function and.X is the set of leaves of . T . In bio-
logical applications, the internal vertices of . T correspond to hypothetical ancestors
of the leaves and.λ(e) describes the evolutionary distance between the endpoints of. e.
An .X -tree .T is ultrametric if there is an integer . p such that the sum of the weights
of the edges from the root . r to .xi equals . p for every leaf . xi .

A project .pi, j is a tuple.(ci, j , wi, j) ∈ N0 × Q ∩ [0, 1], where.ci, j is called the cost
and .wi, j the survival probability of .pi, j . For a given .X -tree .T and a taxon .xi ∈ X ,
a project list .Pi is a tuple .(pi,1, . . . , pi, i). As a project with higher cost will only
be considered when the survival probability is higher, we assume the costs and sur-
vival probabilities to be ordered. That is, .ci, j < ci, j+1 and .wi, j < wi, j+1 for every
project list .Pi and every . j < i . An .m-collection of projects .P is a set of .m project
lists .{P1, . . . , Pm}. For a project set . S, the total cost .Cost(S) of . S is .

∑
pi, j∈S ci, j .

For a given.X -tree. T , the phylogenetic diversity .PDT (S) of a set of projects . S =
{p1, j1 , . . . , p|X |, j|X | } is given by

. PDT (S) :=
∑

(u,v)∈E
λ((u, v)) ·

⎛

⎝1 −
∏

xi∈off(v)
(1 − wi, ji)

⎞

⎠ .

The term .
(
1 − ∏

xi∈off(v)(1 − wi, ji)
)
is the likelihood that some offspring of . v sur-

vives. Thus, .PDT (S) is is the expected total edge-weight of .T when applying . S.
To assess the influence of structural properties of the input on the problem

complexity, we study the problems in the framework of parameterized complex-
ity. For a detailed introduction to parameterized complexity refer to the standard
monographs [15, 16]. We only recall the most important definitions: A param-
eterized problem with parameter . k is fixed-parameter tractable (FPT) if every
instance .(I, k) can be solved in . f (k) · |I|O(1) time. A parameterized problem is
slicewice-polynomial (XP) if every instance can be solved in .|I| · g(k) time. It is
widely assumed that problems that are hard for W[1] have no FPT-algorithm.

2.1 Problem Definitions, Parameters, and Results Overview

We now state our main problem and the case where each species has two projects.

Generalized Noah’s Ark Problem (GNAP)
Input: An .X -tree .T = (V, E, λ), a .|X |-collection of projects . P , and numbers . B ∈
N0, D ∈ Q≥0.

112 C. Komusiewicz and J. T. Schestag

Question: Is there a set of projects .S = {p1, j1 , . . . , p|X |, j|X | }, one from each project
list of . P , such that .PDT (S) ≥ D and .Cost(S) ≤ B?

A project set . S is called a solution for the instance .I = (T ,P, B, D).
.ai

ci→ bi [2]-Noah’s Ark Problem (.ai
ci→ bi [2] -NAP)

Input: An.X -tree.T = (V, E, λ), a.|X |-collection of projects. P in which the project
list .Pi contains exactly two projects .(0, ai) and .(ci , bi) for all .i ∈ [|X |], and inte-
gers .B ∈ N0, D ∈ Q≥0.
Question: Is there a set of projects .S = {p1, j1 , . . . , p|X |, j|X | }, one from each project
list of . P , such that .PDT (S) ≥ D, and .Cost(S) ≤ B?

In other words, in an instance ai
ci → bi [2]-NAP we can decide for each taxon . xi

whether we want to spend . ci to increase the survival probability of .xi from.ai to . bi .
We study GNAP with respect to several parameters which we describe in the

following; for an overview of the results see Table 1. If not stated differently, we
assume in the following that .i ∈ [|X |] and . j ∈ [|Pi |]. The input of GNAP directly
gives the natural parameters number of taxa .|X |, budget . B, and required diversity . D.
Closely related to. B is the maximum cost per project .C = maxi, j ci, j . We may assume
that no projects have a cost that exceeds the budget, as we can delete them from the
input and so .C ≤ B. We may further assume that .B ≤ C · |X |, as otherwise we can
compute in polynomial time whether the diversity of the most valuable projects of
the taxa exceeds .D and return yes, if it does and no, otherwise.

Further, we consider the maximum number of projects per taxon .L := maxi |Pi |.
By definition, .L = 2 in ai

ci → bi [2]-NAP and in GNAP we have .L ≤ C + 1. We
denote the number of projects by .||P|| = ∑

i |Pi |. Clearly, .|X | ≤ ||P||, .L ≤ ||P||,
and.||P|| ≤ |X | · L . By.varc, we denote the number of different costs, that is,. varc :=
|{ci, j : (ci, j , wi, j) ∈ Pi , Pi ∈ P}|. We define the number of different survival pro-
babilities .varw analogously. The consideration of this type of parameterization,
called number of numbers parameterization was initiated by Fellows et al. [11]; it
is motivated by the idea that often the number of numbers may be small. Also,
we consider the maximum encoding length for survival probabilities . w-code =
maxi, j (binary length of wi, j) and the maximum edge weight .valλ = maxe∈E λ(e).
Observe that because the maximal survival probability of a taxon could be smaller
than 1, one can not assume that .valλ ≤ D.

2.2 Observations for GNAP

We first present some basic observations that provide some first complexity classifi-
cations. In the problem with exactly two projects per taxa, ai

ci → bi [2]-NAP, one can
iterate over all subsets.X ' of taxa and check if it is a possible solution pay. ci to increase
the survival probability for each.xi ∈ X '. To this end, we check if.

∑
xi∈X ' ci ≤ B and

compute if the phylogenetic diversity is at least . D, when the survival probability

A Multivariate Complexity Analysis of the Generalized Noah’s Ark Problem 113

Table 1 Complexity results for Generalized Noah’s Ark Problem. Here, 0
ci→ 1 [2]-NAP

is the special case where the survival probabilities are only 0 or 1, and 0
1→ bi [2]-NAP is the

special case where each project has unit costs. Entries with the sign “—” mark parameters that are
(partially) constant in the specific problem definition and thus are not interesting

Parameter GNAP GNAP with. heightT = 1

.|X | W[1]-hard (Theorem 4.4), XP
(Proposition 4.1)

W[1]-hard (Theorem 4.4), XP
(Proposition 4.1)

.B XP (Observation 2.2) PFPT.O(B · ||P||) (Proposition 4.7)

.C Open PFPT. O(C · ||P|| · |X |)
(Proposition 4.7)

.D Para-NP-h (Observation 2.4) Para-NP-h (Observation 2.4)

.valλ Para-NP-h (Theorem 4.4) Para-NP-h (Theorem 4.4)

.varc Open XP. O(|X |varc −1 · ||P||)
(Proposition 4.7)

.varw Para-NP-h (Observation 2.3) Para-NP-h (Observation 2.3)

.D + w-code Open FPT. O(D · 2w-code · ||P||)
(Proposition 4.7)

.B + varw XP.O(B · |X |2·varw +1) (Theorem 4.3) PFPT (Proposition 4.7)

.D + varw Para-NP-h (Observation 2.4) Para-NP-h (Observation 2.4)

.varc + varw XP. O(|X |2·(varc + varw)+1)

(Theorem 4.2)
FPT (Theorem 4.8)

Parameter 0
ci→ 1 [2]-NAP 0

1→ bi [2]-NAP
.|X | FPT (Observation 2.1) FPT (Observation 2.1)

.B PFPT.O(B2 · n) [10] XP (Observation 2.2)

.C PFPT.O(C2 · n3) (Corollary 5.1) —

.D PFPT.O(D2 · n) (Proposition 5.2) Open

.valλ PFPT.O((valλ)2 · n3) [1] Open

.varc XP [1] —

.varw — XP [1]

.D + w-code — Open

.B + varw — XP [1]

.D + varw — Open

of every .xi ∈ X ' is .bi and .ai otherwise. Thus, ai
ci → bi [2]-NAP is fixed-parameter

tractable with respect to the number of taxa.

Observation 2.1 ai
ci → bi [2]-NAP can be solved in .2|X | · |I|O(1) time.

A.GNAP solution contains at most. B projects with positive costs. Hence, a solution
can be found by iterating over all .B-sized subsets .X ' of taxa and checking every
combination of projects for .X '. Like before, we have to check that the budget is not
exceeded and the phylogenetic diversity of the selected projects is at least . D. This
brute-force algorithm shows that GNAP is XP with respect to the budget.

114 C. Komusiewicz and J. T. Schestag

Observation 2.2 GNAP can be solved in .(|X | · L)B · |I|O(1) time.

In the NP-hard Knapsack problem, one is given a set of items . N , a cost-
function .c : N → N, a value-function .d : N → N, and two integers .B and .D and
asks whether there is a an item set .N ' such that .c(N ') ≤ B and .d(N ') ≥ D. We
describe briefly a known reduction from Knapsack to 0

ci → 1 [2]-NAP [10]. Let. I =
(N , c, d, B, D) be an instance of Knapsack. Define.T := (V, E, λ) to be an.N -tree
with .V := {w} ∪ N and .E := {(w, xi) | xi ∈ N } and .λ((w, xi)) := d(xi). For each
leaf .xi we define a project list .Pi that contains two projects .(0, 0) and .(c(xi), 1).
Then, .I ' := (T ,P, B ' := B, D' := D) is a yes-instance of 0

ci → 1 [2]-NAP if and
only if . I is a yes-instance of Knapsack.

Observation 2.3 ([10]) 0
ci → 1 [2]-NAP is NP-hard, even if the tree .T has height 1.

Because 0
ci → 1 [2]-NAP is a special case of GNAP in which.L = 2, w-code = 1,

and .varw = 2, we conclude that GNAP is NP-hard, even if . heightT = w-code = 1
and.L = varw = 2. In this reduction, one could also set .D' := 1 and set the survival
probability of every project with positive cost to .b := 1/D.

Observation 2.4 0
ci → b [2]-NAP is NP-hard, even if .D = 1, .b ∈ (0, 1] is a con-

stant, and the given .X-tree .T has height 1.

Thus, GNAP is NP-hard even if .D = 1 and .varw = 2. This however is, because
the size of the binary encoding of a survival probability became very large. Thus,
one can wonder if GNAP admits an FPT algorithm for the parameter .D + w-code.
Proposition 4.7 shows such an algorithm for the case when .T has .heightT = 1.

3 Multiple-Choice Knapsack

In this section, we consider a variant of Knapsack, in which the set of items is
divided into classes. From every class, exactly one item can be chosen.

Multiple- Choice Knapsack Problem (MCKP)
Input: A set of items .N = {a1, . . . , an}, a partition .{N1, . . . , Nm} of . N , two func-
tions .c, d : N → N, and two integers .B, D.
Question: Is there a set.S ⊆ N such that.|S ∩ Ni | = 1 for each.i ∈ [m], .c∑(S) ≤ B,
and .d∑(S) ≥ D?

Herein, we write.c∑(A) := ∑
ai∈A c(ai) and.d∑(A) := ∑

ai∈A d(ai) for a set. A ⊆
N . We call .c(ai) the cost of .ai and.d(ai) the value of . ai . Further, for a set .A ⊆ N we
define .c(A) := {c(a) | a ∈ A} and .d(A) := {d(a) | a ∈ A}. A set . S that fulfills the
presented criteria is called a solution for the instance . I.

For MCKP, we consider parameters that are closely related to the parameters
described for GNAP: The input gives the number of classes . m, the budget . B, and
the desired value . D. Closely related to .B is the maximum cost for an item .C =

A Multivariate Complexity Analysis of the Generalized Noah’s Ark Problem 115

Table 2 Complexity results for Multiple- Choice Knapsack

Parameter MCKP

.m W[1]-hard, XP (Theorem 3.6)

.B PFPT.O(B · |N |) [5]

.C PFPT.O(C · |N | · m) (Observation 3.1)

.D PFPT.O(D · |N |) [7]

.L para-NP [17]

.varc XP.O(mvarc −1 · |N |) (Proposition 3.2)

.vard XP.O(mvard −1 · |N |) (Proposition 3.3)

.varc + vard FPT (Theorem 3.4)

maxa j∈N c(a j). As for GNAP, we may assume .C ≤ B and .B ≤ C · m. By .varc, we
denote the number of different costs, that is,.varc := |{c(a j) : a j ∈ N }|. We define the
number of different values .vard analogously. The size of the biggest class is denoted
by . L . If one class .Ni contains two items .ap and .aq with the same cost and . d(ap) ≤
d(ap), the item.ap can be removed from the instance. Thus, we may assume that no
class contains two items with the same cost and so .L ≤ varc. Analogously, we may
assume that no class contains two same-valued items and so .L ≤ varw. Table 2 lists
old and new complexity results for MCKP.

First, we provide some algorithms for MCKP. It is known that MCKP can be
solved in.O(B · |N |) time [5] and in.O(D · |N |) time [7]. As we may assume that. C ·
m ≥ B, we may also observe the following.

Observation 3.1 MCKP can be solved in .O(C · |N | · m) time.

Knapsack is FPT with respect to the number of different costs .varc [14], via
reduction to ILP- Feasibility with . f (varc) variables. This approach can not be
adopted easily, as it has to be checked whether a solution contains exactly one item
per class. In Propositions 3.2 and 3.3 we show that MCKP is XP with respect to the
number of different costs and different values, respectively. Then, in Theorem 3.4
we show that MCKP is FPT with respect to the parameter .varc + vard .

Proposition 3.2 MCKP can be solved in .O(mvarc −1 · |N |) time, where .varc is the
number of different costs.

Proposition 3.3 MCKP can be solved in.O(mvard −1 · |N |), where.vard is the number
of different values.

By Propositions 3.2 and 3.3, MCKP is XP with respect to .varc and .vard , respec-
tively. In the following, we reduce an instance of MCKP to an instance of ILP-
Feasibility, in which the number of variables is in .2varc + vard · varc. Since ILP-
Feasibility with . n variables and input length . s can be solved using . s · n2.5n+o(n)

arithmetic operations [2, 3], this reduction gives the following.

116 C. Komusiewicz and J. T. Schestag

Theorem 3.4 For an instance of MCKP an equivalent instance of ILP- Feasibility
with .O(2varc + vard · varc) variables can be defined. Thus, MCKP is FPT with respect
to .varc + vard .

We contrast these algorithms by the following hardness results. There is a reduc-
tion from Knapsack to MCKP in which each item in the instance of Knapsack is
added to a unique class with a further, new item that has no costs and no value [17].

Observation 3.5 ([17]) MCKP is NP-hard even if every class contains two items.

In the following, we prove that MCKP is W[1]-hard with respect to the number
of classes . m, even if .B = D and .c(a) = d(a) for each .a ∈ N . This special case
of MCKP is called Multiple- Choice Subset Sum [17] chosen.

Theorem 3.6 MCKP is XP and W[1]-hard with respect to the number of classes . m.

4 The Generalized Noah’s Ark Problem

We now consider the Generalized Noah’s Ark Problem (GNAP). First, we observe
that for a constant number of taxa, we can solve the problem in polynomial time by
branching into the possible project choices for each taxon.

Proposition 4.1 GNAP is XP with respect to .|X |.
In Theorem 4.2, we now show that GNAP can be solved in polynomial time when

the number of different project costs and the number of different survival probabilities
is constant.

In the following, let .I = (T , λ,P, B, D) be an instance of GNAP, and let . C :=
{c1, . . . , cvarc} and.W := {w1, . . . , wvarw } denote the sets of different costs and differ-
ent survival probabilities in I, respectively. Without loss of generality, assume. ci <
ci+1 for each.i ∈ [varc −1] and likewise assume.w j < w j+1 for each. j ∈ [varw −1].
In other words,. ci is the. i th cheapest cost in. C and.w j is the. j th smallest survival pro-
bability in. D. Recall, that we assume that there is at most one item with cost.cp and at
most one item with survival probability.wq in every project list. Pi , for each. p ∈ [varc]
and .q ∈ [varw]. For the rest of the section, by . a and . b we denote . (a1, . . . , avarc −1)

and.(b1, . . . , bvarw −1), respectively. Further, we let.p(j)+z denote the vector. p in which
at position. i , the value. z is added and we let. 0 denote the.(varc −1)-dimensional zero.

Theorem 4.2 GNAP can be solved in .O
(|X |2(varc + varw −1) · (varc + varw)

)
time.

Proof Algorithm We describe a dynamic programming algorithm with two tables
. F and.G that have a dimension for all the.varc different costs, except for.cvarc and all
the .varw different survival probabilities, except for .varw −1. Recall that for a vertex
. v with . t children .Tv is the subtree rooted at . v and the offspring .off(v) of . v are the
leaves in . Tv . We define the .i -partial subtree .Tv,i rooted at . v as the subtree of . Tv
containing only the first . i children of . v for .i ∈ [t]. For a vertex .v ∈ V and given
vectors a and b, we define .S(v)

a,b to be the family of sets of projects . S such that

A Multivariate Complexity Analysis of the Generalized Noah’s Ark Problem 117

1. . S contains exactly one project of .Pi for each .xi ∈ off(v), and
2. . S contains exactly .ak projects with cost .ck for each .k ∈ [varc −1], and
3. . S contains exactly.b projects with survival probability.w for each. ∈ [varw −1].
For a vector .v ∈ V with children .u1, . . . , ut , given vectors a and b and a given
integer .i ∈ [t] we define .S(v,i)

a,b analogously, just that exactly one projects of .Pi is
chosen for each .xi ∈ off(u1) ∪ · · · ∪ off(ui).

It follows that we can compute how many projects with cost .cvarc and survival
probability .wvarw a set .S ∈ S(v)

a,b contains. That are . a(v)
varc := | off(v)| − ∑varc −1

j=1 a j

projects with cost .cvarc and .b(v)varw := | off(v)| − ∑varw −1
j=1 b j projects with survi-

val probability .wvarw . The entries .F[v, a,b] and .G[v, i, a,b] store the maximum
expected phylogenetic diversity of the tree .Tv for .S ∈ S(v)

a,b and .Tv,i for .S ∈ S(v,i)
a,b ,

respectively. We further define the total survival probability to be . w(bvarw ,b) :=
1 − (1 − wvarw)

bvarw · ∏varw −1
i=1 (1 − wi)

bi , when .bvarw and . b describe the number of
chosen single survival probabilities.

Fix a taxon.xi with project list . Pi . As we want to select exactly one project of . Pi ,
the project is clearly defined by. a and. b. So, we store.F[xi , a,b] = 0, if .Pi contains
a project .p = (ck, w) such that

1. (.k < varc and .a = 0(k)+1 or .k = varc and .a = 0), and
2. (. < varw and .b = 0()+1 or . = varw and .b = 0).

Otherwise, store .F[xi , a,b] = −∞.
Let . v be an internal vertex with children .u1, . . . , ut , we define

.G[v, 1, a,b] = F[u1, a,b] + λ((v, u1)) · w (
b(u1)varw ,b

)
(1)

and to compute further values of . G, we can use the recurrence

.G[v, i + 1, a,b] = max
0 ≤ a' ≤ a
0 ≤ b' ≤ b

(
G[v, i, a − a',b − b'] + F[ui+1, a',b']
+λ((v, ui+1)) · w

)
b(ui+1)
varw ,b'

)
. (2)

Herein, we write .p ≤ q if . p and . q have the same dimension . d and .pi ≤ qi for
every .i ∈ [d]. And finally, we define .F[v, a,b] = G[v, t, a,b].

Return yes if there are. a and. b such that.
∑varc −1

i=1 ai ≤ |X |, and.
∑varw −1

i=1 bi ≤ |X |,
and .a(r)

varc · cvarc + ∑varc −1
i=1 ai · ci ≤ B, and .F[r, a,b] ≥ D where . r is the root of . T .

Otherwise, return no.
The correctness and running time proofs are deferred to the long version [1]. ◻

As each project with a cost higher than .B can be deleted, we may assume
that there are no such projects which implies that .varc ≤ C + 1 ≤ B + 1. Thus,
Theorem 4.2 also implies that GNAP is XP with respect to .C + varw and . B +
varw with an astronomical running time of .O

(|X |2(C+varw −1) · (C + varw)
)
and

.O
(|X |2(B+varw −1) · (B + varw)

)
, respectively. However, however we can adjust algo-

rithm so that . B is not in the exponent of the running time. Instead of declaring how

118 C. Komusiewicz and J. T. Schestag

many projects of cost .ci for .i ∈ [varc] are selected, we declare the budget that can
be spent.

Theorem 4.3 GNAP can be solved in .O
(
B2 · |X |2(varw −1)) · varw

)
time.

We now consider the special case of GNAP where the.X -tree.T has height 1. We
first show that this special case—and therefore GNAP—is W[1]-hard with respect
to the number .|X | of taxa. This implies that Proposition 4.1 cannot be improved to
an FPT algorithm. Afterward, we prove that most of the FPT and XP algorithms
we presented for MCKP can also be adopted for this special case of GNAP yielding
algorithms that have a faster running time than for GNAP. Recall that. ∆ is the highest
degree of a vertex in the tree.

Theorem 4.4 GNAP is W[1]-hard with respect to .|X | + ∆, even if the given .X-
tree .T is ultrametric with .valλ = heightT = 1, and .D = 1.

Proof Reduction. We reduce from MCKP, which by Theorem 3.6 is W[1]-hard
with respect to the number of classes . m. Let . I = (N , {N1, . . . , Nm}, c, d, B, D)

be an instance of MCKP. We define an instance .I ' = (T ,P, B ' := B, D' := 1) in
which the .X -tree .T = (V, E, λ) is a star with center . v and the vertex set is . V :=
{v} ∪ X , with.X := {x1, . . . , xm}. Set.λ(e) := 1 for every.e ∈ E . For every class. Ni =
{ai,1, . . . , ai, i }, define a project list .Pi with projects . pi, j := (ci, j := c(ai, j), wi, j :=
d(ai, j)/D). The .|X |-collection of projects .P contains all these project lists . Pi .

Correctness. Because we may assume that .0 ≤ d(a) ≤ D for all .a ∈ N , the sur-
vival probabilities fulfill .wi, j ∈ [0, 1] for all .i ∈ [m] and . j ∈ [|Ni |]. The tree has . m
taxa and a maximum degree of. m. The reduction is clearly computable in polynomial
time, so it only remains to show the equivalence.
“.⇒”: Let . S be a solution for I with .S ∩ Ni = {ai, ji }. We show that . S' = {pi, ji |
i ∈ [m]} is a solution for . I ': The cost of the set .S' is .

∑m
i=1 ci, ji = ∑m

i=1 c(ai, ji) ≤
B and further . PDT (S') = ∑

(v,xi)∈E λ((v, xi)) · wi, ji = ∑
(v,xi)∈E 1 · d(ai, j)/D = 1

D ·
∑m

i=1 d(ai, j) ≥ 1 = D'.
“.⇐”: Let .S = {p1,i1 , . . . , pm, jm } be a solution for . I '. We show that . S' = {a1,i1 , . . . ,
am, jm } is a solution for I: Clearly, .S' contains exactly one item per class. The cost
of the set .S' is .c(S') = ∑m

i=1 c(ai, ji) = ∑m
i=1 ci, ji ≤ B. The diversity of the set . S'

is .d(S') = ∑m
i=1 d(ai, ji) = ∑m

i=1 wi, ji · D = PDT (S) · D ≥ D. ◻

By Observation 3.5, MCKP is NP-hard, even if every class contains at most two
items (of which one has no cost and no value). Because the above reduction is
computed in polynomial time, we conclude the following.

Corollary 4.5 0
ci → bi [2]-NAP is NP-hard, even if the given.X-tree. T is ultrametric

with .heightT = valλ = 1, and .D = 1.

The .X -tree that has been constructed in the reduction in the proof of
Theorem 4.4, is a star and therefore has a relatively high degree. In the following,
we show that GNAP is also W[1]-hard with respect to .|X | when .∆ = 3.

A Multivariate Complexity Analysis of the Generalized Noah’s Ark Problem 119

Corollary 4.6 GNAP is W[1]-hard with respect to .|X | + D + heightT even if . ∆ =
3 and .valλ = 1.

In Sect. 3, we presented algorithms that solve MCKP. Many of these algorithms
can be adopted for the special case of GNAP where the input.X -tree.T has height 1.

Proposition 4.7 When the given .X-tree .T has .heightT = 1, GNAP can be solved

• in .O(D · 2w-code · ||P|| + |I|) time, or
• in .O(B · ||P|| + |I|) time, or
• in .O(C · ||P|| · |X | + |I|) time, or
• in .O(|X |varc −1 · ||P|| + |I|) time,
where .||P|| = ∑|X |

i=1 |Pi | is the number of projects and .|I| is the size of the input.
By Proposition 4.7 and Theorem 3.4, we can conclude that the restriction of GNAP

to instances with height 1 is FPT with respect to.varc + varw + valλ. However, in the
following, we present a reduction from an instance of GNAP in which the height
of the given tree is 1 to an instance of ILP- Feasibility, in which the number of
variables is in .O(2varc + vard · varc).
Theorem 4.8 For an instance of GNAP with an .X-tree of height 1, an equiva-
lent instance of ILP- Feasibility with .O(2varc + vard · varc) variables can be defined.
Thus, GNAP is FPT with respect to .varc + vard if the height of the given .X-tree is 1.

5 Restriction to Two Projects per Taxon

We finally study two special cases of ai
ci → bi [2]-NAP—the special case of GNAP,

in which every project list contains exactly two projects.
First, we consider 0

ci → 1 [2]-NAP, the special case where each taxon.xi survives
definitely if cost .ci is paid and becomes extinct, otherwise. This special case was
introduced by Pardi and Goldman [10] who also presented a pseudo-polynomial
algorithm which computes a solution to 0

ci → 1 [2]-NAP in.O(B2 · n) time. Because
we may assume that .B ≤ C · |X |, we may conclude the following.

Corollary 5.1 0
ci → 1 [2]-NAP can be solved in .O(C2 · |X |3) time.

We also show that 0
ci → 1 [2]-NAP is FPT with respect to . D, with an adaption of

the above-mentioned dynamic programming algorithm of Pardi and Goldman [10]
for the parameter . B.

Proposition 5.2 0
ci → 1 [2]-NAP can be solved in .O(D2 · n) time.

Second, we consider 0
1→ bi [2]-NAP—the special case of GNAP in which every

project with a positive survival probability has the same cost. Observe that for

120 C. Komusiewicz and J. T. Schestag

every .c ∈ N, an instance .I = (T ,P, B, D) of 0
c→ bi [2]-NAP can be reduced to

an equivalent instance .I ' = (T ,P ', B ', D) of 0
1→ bi [2]-NAP by replacing every

project .(c, bi) with .(1, bi), and setting .B ' = ˪B/c˩. Thus, 0
1→ bi [2]-NAP can be

considered as the special case of GNAP with unit costs for projects.

Unfortunately, we were not able to resolve whether 0
1→ bi [2]-NAP is NP-hard

or not. However, we may relate its complexity to the following, more basic problem.

Penalty- Sum
Input: A set of tuples .T = {ti = (ai , bi) | i ∈ [n], ai ∈ Q≥0, bi ∈ (0, 1)}, two inte-
gers .k, Q, and a number .D ∈ Q+.
Question: Is there a subset .S ⊆ T of size . k such that .

∑
ti∈S ai − Q · ∏

ti∈S bi ≥ D?
Despite being quite natural and fundamental, we are not aware of any previous
work on the complexity of Penalty- Sum. We present two karp-reductions, one

from Penalty- Sum to 0
1→ bi [2]-NAP in which the .X -tree has a height of 2

and .deg(r) = 1 for the root . r and one for the converse direction.

Theorem 5.3 Penalty- Sum is NP-hard if and only if 0
1→ bi [2]-NAP restricted

to .X-trees with height 2 and .deg(r) = 1 for the root . r is NP-hard.

Recall that in an ultrametric tree, we require the length from the root to a vertex to

be the same for all vertices. 0
1→ bi [2]-NAP can be solved greedily on ultrametric

trees that have height at most 2 when always the taxon with the highest diversity

is selected. In the following theorem, we show that 0
1→ bi [2]-NAP is even on

ultrametric trees of height 3 NP-hard, if Penalty- Sum is NP-hard.

Theorem 5.4 0
1→ bi [2]-NAP is NP-hard on ultrametric trees of height 3, if

Penalty- Sum is NP-hard.

6 Discussion

We have provided several tractability and intractability results for GNAP and some
of its special cases. Naturally, several open questions remain. For example, it is not
known whether GNAP is weakly or strongly NP-hard. Moreover, it remains open
whether GNAP is FPT with respect to .varc + varw. Finally, as described above, it is

open whether 0
1→ bi [2]-NAP and Penalty- Sum are NP-hard.

A Multivariate Complexity Analysis of the Generalized Noah’s Ark Problem 121

References

1. Komusiewicz, C., Schestag, J.: A multivariate complexity analysis of the generalized Noah’s
ark problem. arXiv:2307.03518. https://doi.org/10.48550/arXiv.2307.03518

2. Lenstra Jr, H.W.: Integer programming with a fixed number of variables. Math. Oper. Res. 8(4),
538–548 (1983)

3. Frank, A., Tardos, É.: An application of simultaneous diophantine approximation in combina-
torial optimization. Combinatorica 7(1), 49–65 (1987)

4. Faith, D.P.: Conservation evaluation and phylogenetic diversity. Biol. Cons. 61(1), 1–10 (1992)
5. Pisinger, D.: A minimal algorithm for the multiple-choice Knapsack Problem. Eur. J. Oper.

Res. 83(2), 394–410 (1995)
6. Weitzman, M.L.: The Noah’s ark problem. Econometrica 1279–1298 (1998)
7. Bansal, M., Venkaiah, V.: Improved fully polynomial time approximation scheme for the 0–

1 multiple-choice Knapsack problem. In: International Institute of Information Technology
Technical Report, pp. 1–9 (2004)

8. Pardi, F., Goldman, N.: Species choice for comparative genomics: being greedy works. PLoS
Genet. 1(6), e71 (2005)

9. Steel, M.: Phylogenetic diversity and the greedy algorithm. Syst. Biol. 54(4), 527–529 (2005)
10. Pardi, F., Goldman, N.: Resource-aware taxon selection for maximizing phylogenetic diversity.

Syst. Biol. 56(3), 431–444 (2007)
11. Fellows, M.R., Gaspers, S., Rosamond, F.A.: Parameterizing by the number of numbers. Theory

Comput. Syst. 50(4), 675–693 (2012)
12. Billionnet, A.: Solution of the generalized Noah’s ark problem. Syst. Biol. 62(1), 147–156

(2013)
13. Billionnet, A.: How to take into account uncertainty in species extinction probabilities for

phylogenetic conservation prioritization. Environ. Model. Assess. 22(6), 535–548 (2017)
14. Etscheid, M., Kratsch, S., Mnich, M., Röglin, H.: Polynomial kernels for weighted problems.

J. Comput. Syst. Sci. 84, 1–10 (2017)
15. Cygan, M., Fomin, F.V., Kowalik, L., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M.,

Saurabh, S.: Parameterized Algorithms. Springer, Marcin Pilipczuk (2015)
16. Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity. In: Texts in Com-

puter Science. Springer, Berlin (2013)
17. Kellerer, H., Pferschy, U., Pisinger, D.: Knapsack Problems. Springer, Berlin (2004)

arXiv:2307.03518
 4726 3404 a 4726 3404 a

http://arxiv.org/abs/2307.03518
https://doi.org/10.48550/arXiv.2307.03518
https://doi.org/10.48550/arXiv.2307.03518
https://doi.org/10.48550/arXiv.2307.03518
https://doi.org/10.48550/arXiv.2307.03518
https://doi.org/10.48550/arXiv.2307.03518
https://doi.org/10.48550/arXiv.2307.03518
https://doi.org/10.48550/arXiv.2307.03518
https://doi.org/10.48550/arXiv.2307.03518

Comparing Ad-Hoc and MIP-Based
Algorithms for the Online Facility
Location Problem

Rosario Messana and Alberto Ceselli

Abstract We consider online variants of the uncapacitated facility location problem.
Facilities need to be placed, at a cost, and clients need to be assigned to them, yielding
revenues. We provide an experimental comparison of two classes of algorithms: ad-
hoc ones, which rely on the specific structure of the problem, and generic ones, which
rely on the solution of Mixed Integer Programs (MIPs) as sub-problems. Models and
algorithms from the literature assume one client to appear at a time. We generalize
them, assuming that clients may arrive in batches of fixed (but arbitrary) size. We
compare our batch adaptation to the original versions of the algorithms. We design
four generators of rewards and costs, two being “adversarial” and two stochastic.
We propose a variant of an existent MIP-based algorithm to profitably deal with
stochastic settings. Our analysis shows that in each of the four settings, suitable
MIP-based algorithms provide better solutions than ad-hoc ones, with a comparable
computing effort. Our experiments also show that batching is in fact useful.

1 Introduction

In the classical uncapacitated facility location problem (FLP) a set of candidate
location sites and a set of clients are given. The decision maker needs to open facilities
in a subset of the candidate sites, at a given cost. Each client needs to be assigned to
one of the open facilities, yielding a given revenue. Besides its theoretical interest, the
FLP contains in its simplicity the core complexity of location problems. It is in fact
NP-hard to find a set of sites where facilities need to be opened, which maximizes
the difference between the assignment revenues and the opening costs.

The classical FLP, as an offline optimization problem, has been investigated for
decades [5]. The FLP appears also in online variants, although the literature on them

R. Messana (B) · A. Ceselli
Dipartimento di Informatica, Universitá degli Studi di Milano, Milan, Italy
e-mail: rosario.messana@unimi.it

A. Ceselli
e-mail: alberto.ceselli@unimi.it

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
A. Brieden et al. (eds.), Graphs and Combinatorial Optimization:
from Theory to Applications, AIRO Springer Series 13,
https://doi.org/10.1007/978-3-031-46826-1_10

123

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-46826-1_10&domain=pdf
rosario.messana@unimi.it
 854 53672 a 854 53672 a

mailto:rosario.messana@unimi.it
alberto.ceselli@unimi.it
 854 56550 a 854 56550 a

mailto:alberto.ceselli@unimi.it
https://doi.org/10.1007/978-3-031-46826-1_10
https://doi.org/10.1007/978-3-031-46826-1_10
https://doi.org/10.1007/978-3-031-46826-1_10
https://doi.org/10.1007/978-3-031-46826-1_10
https://doi.org/10.1007/978-3-031-46826-1_10
https://doi.org/10.1007/978-3-031-46826-1_10
https://doi.org/10.1007/978-3-031-46826-1_10
https://doi.org/10.1007/978-3-031-46826-1_10
https://doi.org/10.1007/978-3-031-46826-1_10
https://doi.org/10.1007/978-3-031-46826-1_10
https://doi.org/10.1007/978-3-031-46826-1_10

124 R. Messana and A. Ceselli

is much more recent and scarce [13]. In these online FLPs the decision process is
iterative. At each iteration, after the facilities have been placed, the location costs and
the assignment rewards are revealed. One of the most studied variants assumes that a
single client arrives at each round. The decision maker is allowed to open an arbitrary
number of facilities, paying their costs; only the revenue of the best assignment is
however collected. Recent contributions include [19], in which the authors propose
an algorithm named MaxHedge, and carry out a theoretical analysis of its quality
guarantees. Being the online counterpart of the FLP, generic online optimization
techniques relying on solving a MIP subproblem at each round can also be exploited
[22]. Despite the relevance of FLP in applications [5], to the best of our knowledge,
algorithm [19] has not been experimented in practice nor compared to algorithms
like [22].

A first research question therefore arises, on whether an ad-hoc approach like [19]
is actually yielding advantages with respect to a generic MIP-based approach like
that of [22]. Concerning modeling, the assumption of a single client to arrive at each
round is often unrealistic. Therefore, as a second research task, we investigate a batch
variant of the online FLP, adapting both ad-hoc and general purpose algorithms to
this case. Accordingly, we evaluate the effect of such a batching technique.

We design four different generators of rewards and costs. Two of them are “adver-
sarial”, since they take into account the history and the strategy of the decision maker
with the aim of hindering the profit. The other two are stochastic, as they draw
rewards and costs according to fixed distributions. We show that for each of the four
data generators, a MIP-based algorithm can be chosen that yields better profit than
the corresponding ad-hoc ones.

2 Problem Statement and Background

The problem we are interested in is an online version of the well known uncapacitated
facility location problem [5] (FLP). In a classical offline maximization setting, we
are given a set .I = {1, . . . ,m} of clients and a set .J = {1, . . . , n} of sites which are
candidates to host facilities. A vector of rewards .ri ∈ R

n = (ri1 . . . rin) is given for
each client.i ∈ {1, . . . ,m} and a vector of opening costs.c ∈ R

n = (c1 . . . cn) is given
for candidate sites. We wish to choose the facilities to open, and assign each client
to exactly one open facility, maximizing the total profit, given by the assignment
revenues minus the opening costs. In other terms, we want to determine a value
for assignment variables .xi j and facility variables .y j solving the well-known binary
programming model for the FLP. Binary variables .y j are . 1 if a facility is opened in
. j , . 0 otherwise. Binary variables .xi j are . 1 if client . i is assigned to an open facility in
. j , . 0 otherwise. Partitioning constraints impose that each client is assigned to exactly
one facility, while consistency constraints impose that no client . i can be assigned to
facility . j , unless . j is open.

The FLP has been studied also in different online versions, in which clients are
assumed to arrive sequentially (see e.g. [2, 6, 7, 10, 18]). The variant we tackle in

Comparing Ad-Hoc and MIP-Based Algorithms … 125

this paper, which we indicate as OFLP, has been presented in [19] in its basic form
and can be formalized as follows. At each trial .t ∈ N+, the decision maker chooses
a set of facilities among . n available candidate sites. An energy value .z j ∈ [0, 1] is
associated with each facility. j ∈ {1, . . . , n} and the total energy of the open facilities
cannot exceed . 1. To fix the notation, let .ytj be . 1 if the decision maker has chosen
to open facility . j and . 0 otherwise. After the decision, a client requires to be served.
Contextually, for each facility . j , two values are revealed: the reward .r tj ∈ [0, 1] to
assign the client to. j and the cost.ctj ∈ [0, 1] to open the facility. The client is assigned
to the facility with maximum revenue. The decision maker earns a profit given by
such a revenue minus the sum of the costs of the facilities which have been opened.
The goal of the decision maker is to maximize the overall profit up to trial .T ∈ N+.
We report that such a profit maximization version of FLP is equivalent to the more
common minimization version [5] from a modeling point of view, but not from a
theoretical guarantees point of view [18].

As reported in [19], in its simplicity, such a setting is able to capture a wide
range of practical applications. In order to additionally close the gap between the-
oretical models and their practical use, we consider its natural generalization, in
which more than a single client appears at each trial. t . We call it Batch Online Facil-
ity Location Problem (BOFLP). Formally, after the decision maker has chosen . ytj
for every . j , a fixed number .m ∈ N+ of clients show up, with revenues . r ti j ∈ [0, 1]
for each .i ∈ {1, . . . ,m} and . j ∈ {1, . . . , n}. At the same time, the opening costs
.ctj ∈ [0, 1] for each. j ∈ {1, . . . , n} are revealed. The decision maker gains the profit
.μt (yt) = ∑m

i=1 maxnj=1r
t
i j y

t
j − ∑n

j=1 c
t
j y

t
j . The definition of cumulative profit is:

.P(T) := ∑T
t=1 μt (yt).

3 Ad-Hoc OFLP Algorithms

As mentioned in the Introduction, the algorithm MaxHedge [19] is specifically
designed for the OFLP. It works by maintaining an internal status, which is rep-
resented at each trial . t by values .wt

j for each facility . j . In the decision phase the
interval .U = [0, 1] is partitioned in infinitely many sub-intervals .Ul for .l ∈ N+,
whose length decreases exponentially as. l increases. For each sub-interval.Ul, some
facilities are sampled from the set.Ωl = {1 ≤ j ≤ n | z j ∈ Ul}. Only a finite number
of sets .Ωl are non-empty. This sampling is performed according to the probabil-
ity mass function . p over .Ωl roughly given by .p(j) = w j/

∑
k∈Ωl

wk . For a more
detailed description, we refer to the original paper [19]. For every facility. j , if . j has
been sampled at least once, then .ytj is set to . 1 (otherwise it is set to . 0). After the
decision phase, MaxHedge receives the revenues and the opening costs and executes
an update phase of the internal status applying the Projected Online Gradient Descent
Algorithm [23].

Theoretical guarantees. MaxHedge ensures theoretical guarantees. It respects a sub-
linear pseudo bound on the regret. Formally, let .μt (y) = maxnj=1r

t
j y j − ∑n

j=1 c
t
j y j

126 R. Messana and A. Ceselli

be the profit function at trial . t . It is easy to check that an optimal FLP solution
always exists, whose value can be represented as .μt (y). In fact, given values for the
.y j variables, an optimal solution always exists in which, for each client . i , only the
.xi j variable corresponding to maximum revenue over . j is set to . 1.

Let. F be the set of feasible decisions and let.y∗ = maxy∈F
∑T

t=1 μt (y) be the best
a posteriori solution. A regret bound for the OFLP is of the form:

.

T∑

t=1

μt (y∗) − E

[
T∑

t=1

μt (yt)

]

≤ C f (T) (1)

where. C is a constant and. f is a function of. T . We remark that such a regret bound is
proved for .y∗ (and not, as more commonly, in terms of a generic . y). When. f (T)/T
tends to. 0 as. T goes to infinity, the regret bound indicates that the algorithm actually
“learns” to produce good solutions as the number of trials increases. For MaxHedge,
the following slightly different bound holds:

.

T∑

t=1

μ̂t
α,δ(y) − E

[
T∑

t=1

μt (yt)

]

≤ n
√
2T (1 − √

β)2(r̂ + ĉ) ∀y ∈ F (2)

where .μ̂t
α,δ are suitable discounted profit functions, .r̂ = max j∈J,t≤T {r tj}, . ĉ =

max j∈J,t≤T {ctj } and .β = maxni=1{zi }.
Adapting MaxHedge to the BOFLP. We adapted MaxHedge to solve the BOFLP
as follows, obtaining a new class of algorithms we called BatchMaxHedge. Given
.k ∈ N between. 1 and. m, the decision phase of MaxHedge is executed. k consecutive
times. For every facility . j , if . j has been chosen in at least one of the . k executions,
then.ytj is set to. 1 (and otherwise it is set to. 0). The update phase is executed. m times
sequentially, one for each client . i using the corresponding reward values. Every
choice of . k identifies a different algorithm, that we indicate as BMH(. k). Note that
when .m = 1 and .k = 1, BMH(. k) is exactly MaxHedge.

We can give an interpretation of the algorithms corresponding to.k = 1 and.k = m.
Indeed, the decision process of BMH(. 1) assumes that the .m clients in a batch are
not distinguishable one from another. Hence, it makes sense to select the facilities to
open like the client was just one. Instead, the decision process of BMH(. m) takes into
account that, even if the clients cannot be distinguished in advance, every batch of. m
clients will have a certain variability in its composition. So it is reasonable to select
.m groups of facilities independently, one for each client, and then merge them.

The worst case complexity of MaxHedge is in .O(nlog(n)), while for BMH(. k)
it is in .O(kn + mnlog(n)), since the decision phase, which takes time .O(n) in
MaxHedge, in BMH(. k) is executed . k times, and the update phase is executed . m
times.

Comparing Ad-Hoc and MIP-Based Algorithms … 127

4 MIP-Based Algorithms for BOFLP

Our BOFLP has a natural description in terms of MIP. Indeed, it involves an iterative
solution of a sequence of instances of FLP, one for each trial . t between . 1 and . T .

In the literature, a set of well established algorithms based on the iterative solution
of mathematical programs is known. The most fundamental algorithm is Follow-The-
Leader [11]. In the continuous case with convex profit functions, particularly studied
generalizations go under the name of Follow-The-Regularized-Leader [9, 21] or also
Dual Averaging [14]. For a comprehensive survey see e.g. [17].

More recently, Follow-The-Leader has been adapted for Combinatorial Optimiza-
tion. In the worst case scenario, in which there is no assumption about how the feed-
back to the decision maker is generated, the algorithms are know as Follow-The-
Perturbed-Leader (FPL) [15, 16, 22]. In the stochastic feedback setting, algorithms
with similar underlying ideas have been proposed [3, 4, 8, 12].

4.1 Follow The Uniformly Perturbed Leader

We considered the class of FPL algorithms introduced in [22], which we called
Follow-The-Uniformly-Perturbed-Leader (FUPL). We adapted a representative of
that class to solve the BOFLP. Its functioning can be formalized as follows. First
of all, define .u1i j := 0 for every .i ∈ {1, . . . ,m} and . j ∈ {1, . . . , n} and .v1

j := 0 for
every . j ∈ {1, . . . , n}. At each trial .t ∈ {1, . . . , T }, a decision .yt ∈ {0, 1}n is made
such that, for some .xt ∈ {0, 1}mn , .(xt , yt) is an optimal solution of the following
MIP.

.max
m∑

i=1

n∑

j=1

(
uti j +Ui j (N)

)
xi j −

n∑

j=1

(
vt
j +Uj (N)

)
y j (FLPt)

.s.t.
n∑

j=1

xi j = 1 ∀i ∈ I (3)

. xi j ≤ y j ∀i ∈ I ∀ j ∈ J (4)

.

n∑

j=1

z j y j ≤ 1 (5)

. xi j ∈ {0, 1} ∀i ∈ I ∀ j ∈ J y j ∈ {0, 1} ∀ j ∈ J (6)

.Ui j (N) and .Uj (N) indicate real values, sampled independently from random vari-
ables with uniform distribution over the set .[0, N]. The maximum perturbation.N is
given by

128 R. Messana and A. Ceselli

. N :=
(
4n2

eL

) 1
3

T
2
3

where .L is the maximum norm 1 that a feasible solution of FLPt can achieve. At
end of trial . t , after receiving feedback .r ti j and . ctj , the decision maker computes

.uti j = ut−1
i j + r ti j and .vt

j = vt−1
j + ctj .

For Follow-The-Perturbed-Leader algorithms, regret bounds have been proven for
linear profit or loss functions. With respect to the setting of the BOFLP, this sentence
can be formally expressed as follows. Let us define the linear profit functions

. ν t (x, y) :=
m∑

i=1

n∑

j=1

r ti j x
t
i j −

n∑

j=1

ctj y
t
j

for every.t ∈ {1, . . . , T }, and call. C the set of feasible solutions of (6). The cumulative
regret is given by:

.Rν(T) =
T∑

t=1

(ν t (x∗, y∗) − E[ν t (xt , yt)]), (7)

where .(x∗, y∗) ∈ argmax(x,y)∈C
[(∑T

t=1 r
t
i j

)
xi j −

(∑T
t=1 c

t
j

)
y j

]
. The expected

value is intended with respect to the perturbation applied to the learning parame-
ters. It is proved [22] that FUPL guarantees the regret bound:

.Rν(T) ≤ 3

(
L2n2

2e

) 1
3

T
2
3 . (8)

Note that this result does not directly apply to the BOFLP, as in that case the
profit function.μt (y) is not linear. Anyway, we can observe that.ν t and.μt are linked:
in fact, calculating .μt (y) is equivalent to maximize .ν t (x, y) over .C after fixing the
variables . y. In fact, when .m = 1, the functions .μt and .ν t coincide, which means
that in this case both FUPL and MaxHedge guarantee some sort of sub-linear regret
bound.

We remark that FUPL is an easy algorithm to implement if the solution of (6)
is carried out using for example a general purpose MIP solver. However, its worst
case time complexity depends on that of (6) itself. In practice, FUPL results efficient
only when the concrete instances of (6) that the algorithm encounters are solved
efficiently.

Comparing Ad-Hoc and MIP-Based Algorithms … 129

4.2 Follow The Clustered Leader

The randomization ingredient of FUPL is essential to ensure the sub-linear regret
bound (8) in the worst-case scenario, namely when a hypothetical adversary is able
to reproduce every deterministic move of the decision maker. Instead, when the
nature is stochastic, the perturbation of the learning parameters is unnecessary, since
the generation of the data is blind with respect to the decision making process.
FUPL without randomization is a simple Follow-The-Leader (FTL) algorithm. As
we show in Sect. 5, FTL is not sufficiently powerful to always provide better profit
than BMH(. m) when. m is greater than 1 and the nature is stochastic. In order to fill the
gap, we propose the following variant of FTL, called Follow-The-Clustered-Leader
(FCL).

At any iteration. t , consider the set of all the reward vectors observed until time step
.t − 1, namely .Rt = {r τ

i | i ∈ I, 1 ≤ τ ≤ t − 1}. Assume that every single reward
value is inversely proportional to the distance between the relative client and facility.
Then it is reasonable to cluster the reward vectors so that different clusters identify
different regions in the space of the facilities, and therefore different typologies of
clients.

Given the set .Ht := {1, . . . , lt }, we apply the K-means algorithm to obtain the
clusters .Ct

1, . . . ,C
t
lt . Let assume none of them to be empty. Then we compute the

surrogate rewards.r̄ th j := 1

t − 1

∑
r∈Ct

h
r j for every.h ∈ Ht and. j ∈ J . We also com-

pute the average opening costs .c̄tj := 1

t − 1

∑
τ<t c

τ
j . In this way we can solve the

following model.

.
max

lt∑

h=1

n∑

j=1

r̄ th j xh j −
n∑

j=1

c̄tj y j

s.t.(5’) (6’) (7’) (8’)

(FLPt’)

where (5’), (6’), (7’), (8’) are the analogous constraints of (5), (6), (7), (8) with . Ht

in place of . I .
Since the number of clusters to use is unknown, we define a constant . Δ ∈ N+

and increase .lt by 1 every .Δ iterations according to .lt := [t/Δ] + 1. Moreover,
since the clustering operation is expensive, we update the clusters and the surrogate
rewards less often as the time step increases, relaying on the fact that the quantity of
reward vectors collected increases as well and therefore additional vectors will have
in general less impact on the estimation quality that we can obtain. In particular, we
compute the clusters only when .t = 1 (trivial case) or when

.t ≡ 0 (mod m([t/Δ] + 1)).

130 R. Messana and A. Ceselli

5 Experimental Setting and Results

We remark that no experimental performance evaluation of MaxHedge has been
presented in [19] nor in any other work, to the best of our knowledge. Similarly, no
specific experiments on MIP-based algorithms for the OFLP have been presented
so far. Our experimental analysis has therefore two targets: (a) the assessment of
the relative performance of these two classes of algorithms and (b) the evaluation of
the effect of moving from a OFLP to a BOFLP model. Our experiments have been
conducted on a machine with CPU AMD Ryzen 7 5800H and O.S. Ubuntu 23.04.
The binary linear programming models have been solved using Gurobi version 9.5.1
and the code has been written in Python 3.10.

5.1 Experimental Test Bed

Three of our test cases (AAH, AAF, MPSN - see below) share the same set of facility
locations. We choose.n = 20 and for each. j ∈ J we extracted a pair. ζ (j) = (ζ

(j)
1 , ζ

(j)
2)

from .[0, 1]2 with uniform distribution and we fixed them once for all. A random
generator consisting of a Python re-implementation of GEN2 [20], was used to
generate a knapsack instance .(v,w, c) where . v are the values of the items, .w the
weights and . c is the capacity. Then we normalized the vectors dividing . v by the
maximum possible item value and .w by . c. Finally, we fixed the mean opening cost
vector .c̄ := v and the energy vector .z := w.

We designed four different online rewards-and-costs generators (so called natures),
in part inspired by the experimental setting presented in [22]. Two of these generators
are “adversarial” and two of them are stochastic. One of the stochastic generators is
based on real data [1].

Adversary Against History (AAH). The first adversarial nature tries to damage
the decision maker taking into account the whole history of the decisions under the
assumption that the next decision will not differ too much from the previous ones.
For each .i ∈ I this nature considers .xi = ∑t−1

τ=1 x
τ
i and its maximum value . Xi =

maxni=1xi and then it estimates the next decision that will be taken by the decision
maker. To do so, it produces a vector .ŷti ∈ {0, 1}n such that .ŷti j = 1 with probability
.xi j/Xi and. 0 otherwise. At this point, the nature finds the farthest point .γ t

i in . [0, 1]2
from all the open facilities according to . ŷti . It assigns .r

t
i j := √

2 − ||γ t
i − ζ (j)||2 for

all. j ∈ J . At the end, the nature generates a further decision estimate.ŷt and for each
. j ∈ J assigns .ctj := 1 if .ŷtj = 1 and . 0 otherwise.

Adversary Against the Future (AAF). This adversarial nature acts exactly like AAH
except that the vectors of open facilities,.ŷti for.i ∈ I and. ŷt , are obtained mimicking
the method the decision maker would use to calculate . yt . In other words it applies
the same decision making step of the algorithm used by the decision maker. Note
that if the algorithm is FUPL, the nature cannot perturb the learning parameters .ut

Comparing Ad-Hoc and MIP-Based Algorithms … 131

and.vt using the same random values of the decision maker, because it is impossible
to know in advance what such values will be. So the nature has to adopt its own
random values.

Multi-Pyramidal Stochastic Nature (MPSN). This stochastic nature acts in the
following way. Three fixed available facilities with coordinates .ζ (j̃1), .ζ (j̃2) and . ζ (j̃3)

are considered. Each of them has an attractiveness, respectively.α(j̃1), .α(j̃2) and.α(j̃3),
such that .α(j̃1) + α(j̃2) + α(j̃3) = 1. For each .i ∈ I the nature samples an index . j̃ t

from .{ j̃1, j̃2, j̃3} according to the probability distribution given by the respective
attractiveness values. It extracts a point .γ t

i = (γ t
i1, γ

t
i2) from.[0, 1]2 by sampling . γ t

i1

from the triangular distribution on .[0, 1] with mode.ζ
(j̃ t)
1 and.γ t

i2 from the triangular

distribution on .[0, 1] with mode .ζ (j̃ t)
2 . At last, it assigns . r ti j := √

2 − ||γ t
i − ζ (j)||2

for each . j ∈ J . Regarding the opening costs, the nature randomly defines . ctj :=
max(0,min(1, c̄ j +U[−0.3,0.3])) for all. j ∈ J , where.U[−0.3,0.3] indicates a real value
sampled uniformly from.[−0.3, 0.3].
Telecom Stochastic Nature (TSN). The second stochastic nature is based on real
data, and can be sketched as follows. The data comes from the Telecom Italia Big
Data Challange Dataset [1]. In particular, we used the information regarding the
number of Call Detail Records (CDRs) for internet connections registered to the
mobile network of the telecommunication company Telecom Italia in the city of
Milan (Italy) from November 1st 2013 to January 1st 2014. Both space and time
was discretized in square cells of 235 m approximately, and time slots of .10 min,
respectively. We placed .20 candidate location sites in a regular fashion. Data was
manipulated to obtain probability distributions, which changes every .60 iterations
simulating the passage of time from a 10 min interval to the next one. Positions of
clients are sampled according to these distributions. Then the rewards as well as the
opening costs are generated in the same way as done by MPSN.

5.2 Evaluation of the Algorithms

In the single client case, we compared BMH(1) (MaxHedge) with FTPL in the adver-
sarial setting and with FTL in the stochastic one. Then we applied BMH(1), BMH(m),
FUPL and FCL for .m ∈ {10, 20, 40}, both in the adversarial and the stochastic set-
ting. For FCL, the value of the parameter .Δ has been set to 1000. All the algorithms
have been applied with respect to the same profit function.μt (y) as defined in Sect. 3
and have been evaluated on the profit obtained as function of the iteration counter
and on the computing time. In Figs. 1, 2, 3 and 4 we report a selection of our results.
Each line corresponds to an algorithm: BMH(1) (orange), BMH(. m) (red), FUPL
(black), FTL (blue), FCL (green). Horizontal axes represent time iterations from . 1
to .10.000, vertical axes represent profit (Figs. 1, 2, 3 and 4). Each figure refers to
specific combinations of batch sizes and natures, as indicated in the related caption.
All the time series have been averaged with a sliding window of 100 iterations.

132 R. Messana and A. Ceselli

Fig. 1 Profit per iteration, AAF:.m = 1 (left) and.m = 40 (right)

Fig. 2 Profit per iteration, AAH:.m = 1 (left) and.m = 40 (right)

Fig. 3 Profit per iteration, MPSN:.m = 1 (left) and.m = 40 (right)

Fig. 4 Profit per iteration, TSN:.m = 1 (left) and.m = 40 (right)

Comparing Ad-Hoc and MIP-Based Algorithms … 133

Profit. On the long run, FUPL obtains higher profit than BMH(1) in the adversarial
setting with single client, and similarly FTL does in the stochastic case. For every
choice of .m ∈ {10, 20, 40}, FUPL is the best of the four tested algorithms when the
nature is AAF. For the other natures, FCL obtains the best performance starting from
when the number of clusters is sufficiently high. We observed that such a number
is directly proportional to the number of clients per iteration. We also noticed that
when the nature is AAH, FUPL is more profitable than the two BMH representa-
tives for .m ∈ {10, 20}, but its performance looks equivalent to that of BMH(. m) for
.m = 40. We calculated the average percentage profit error with respect to the best
maximum obtainable profit. In general it is higher with adversarial generators and
more restrained with stochastic ones. Finally, we found that grouping clients into
batches is beneficial, since it increases the profit per client and decreases the average
percent error per client.

Running time. We report that the algorithms required fractions of seconds per iter-
ation on average to run, except for FUPL with .m = 40. When .m = 1, BMH(1) was
faster while FUPL required less than 7 ms per and FTL less than 4 ms. When. m = 40
and the nature is AAF, FUPL took between 1.4 and 1.6 seconds per iteration, while
the other algorithms stayed under 0.6 s. When the nature is AAH, all the four algo-
rithms required less than 0.2 s. With MPSN, they took no more than 70 ms. With
TSN, they have not exceed 90 ms. The running time of FCL approximately grows
during all the execution, which reflects our choice to gradually increase the number
of clusters.

6 Conclusions

The paper focused on Online algorithms for Facility Location Problems, and more
specifically on two research questions.

The first one was to understand the experimental behaviour of both ad-hoc and
MIP-based algorithms. We designed four test scenarios, by considering two adver-
sarial natures, and two stochastic natures, one of which coming from real data. We
found out that for each case there is a MIP-based approach that provides better profit.
The CPU time required by the MIP-based algorithms is comparable to that of ad-hoc
algorithms, with the exception of the adversary against the future.

The second research question was to adapt the existing methods to handle batches
of clients at each decision round (instead of one, as assumed in the literature). We
indeed found adaptations to be possible without changing too much the nature of
the algorithms. Furthermore, we found such a batching technique useful to obtain
higher profit per client with lower average percent profit error.

134 R. Messana and A. Ceselli

References

1. Barlacchi, G., De Nadai, M., Larcher, R., Casella, A., Chitic, C., Torrisi, G., Antonelli, F.,
Vespignani, A., ’Sandy’ Pentland, A., Lepri, B.: A multi-source dataset of urban life in the city
of Milan and the Province of Trentino. Sci. Data 2 (2015)

2. Chakraborty, A., Vaze, R.: Online facility location with timed-requests and congestion (2022).
arXiv:2211.11961

3. Chen, W., Wang, Y., Yuan, Y.: Combinatorial multi-armed bandit: general framework, results
and applications. In: International Conference on Machine Learning (2013)

4. Combes, R., Talebi, M.S., Proutière, A., Lelarge, M.: Combinatorial bandits revisited. In:
Conference on Neural Information Processing Systems (2015)

5. Drezner, Z., Hamacher, H.W.: Facility location applications and theory. Springer, Berlin, Hei-
delberg (2002)

6. Feldkord, B., Meyer auf der Heide, F.: Online facility location with mobile facilities. In: Pro-
ceedings of the 30th on Symposium on Parallelism in Algorithms and Architectures (2018)

7. Fotakis, D., Kavouras, L., Zakynthinou, L.: Online facility location in evolving metrics. Algo-
rithms 14, 73 (2021)

8. Gai, Y., Krishnamachari, B., Jain, R.: Combinatorial network optimization with unknown
variables: multi-armed bandits with linear rewards and individual observations. IEEE/ACM
Trans. Netw. 20, 1466–1478 (2012)

9. Hazan, E., Kale, S.: Extracting certainty from uncertainty: regret bounded by variation in costs.
Mach. Learn. 80, 165–188 (2008)

10. Jiang, S.H.-C., Liu, E., Lyu, Y., Tang, Z.G., Zhang, Y.: Online facility location with predictions
(2021). arXiv:2110.08840

11. Kalai, A.T., Vempala, S.S.: Efficient algorithms for online decision problems. J. Comput. Syst.
Sci. 71, 291–307 (2005)

12. Kveton, B., Wen, Z., Ashkan, A., Szepesvari, C.: Tight regret bounds for stochastic combina-
torial semi-bandits. In: International Conference on Artificial Intelligence and Statistics (2015)

13. Meyerson, A.: Online facility location. In: Proceedings 42nd IEEE Symposium on Foundations
of Computer Science, pp. 426–431 (2001)

14. Nesterov, Y.: Primal-dual subgradient methods for convex problems. Math. Program. 120,
221–259 (2005)

15. Neu, G., Bartók, G.: Importance weighting without importance weights: an efficient algorithm
for combinatorial semi-bandits. J. Mach. Learn. Res. 17, 1–21 (2016)

16. Neu, G., Valko, M.: Online combinatorial optimization with stochastic decision sets and adver-
sarial losses. In: NIPS (2014)

17. Orabona, F.: A modern introduction to online learning (2022). arXiv:1912.13213
18. Pasteris, S., He, T., Vitale, F., Wang, S., Herbster, M.: Online learning of facility locations. In:

International Conference on Algorithmic Learning Theory (2021)
19. Pasteris, S., Vitale, F., Chan, K.S., Wang, S., Herbster, M.: Maxhedge: maximising a maximum

online. In: International Conference on Artificial Intelligence and Statistics (2019)
20. Pisinger, D.: David Pisinger’s optimization codes (1994)
21. Shalev-Shwartz, S., Singer, Y.: A primal-dual perspective of online learning algorithms. Mach.

Learn. 69, 115–142 (2007)
22. Yang, F., Chen, W., Zhang, J., Sun, X.: Follow the perturbed approximate leader for solving

semi-bandit combinatorial optimization. Front. Comput. Sci. 15, 155404 (2021)
23. Zinkevich, M.A.: Online convex programming and generalized infinitesimal gradient ascent.

In: International Conference on Machine Learning (2003)

arXiv:2211.11961
 -318 6725 a -318 6725 a

http://arxiv.org/abs/2211.11961
arXiv:2110.08840
 2661 25543 a 2661 25543 a

http://arxiv.org/abs/2110.08840
arXiv:1912.13213
 23284 39934 a 23284
39934 a

http://arxiv.org/abs/1912.13213

Data-Driven Feasibility for the Resource
Constrained Shortest Path Problem

Cristina Ondei, Alberto Ceselli, and Marco Trubian

Abstract Resource Constrained Shortest Path Problems (RCSPP) have wide appli-
cability, representing a flexible model for network applications. Furthermore, they
frequently arise as subproblems in decomposition-based methods, as occurs in col-
umn generation for Vehicle Routing Problems. In all these settings, being able to
perform early detection of infeasibility helps to strongly reduce computing times.
For instance, dynamic programming is often used to design RCSPP algorithms: labels
representing partial solutions are iteratively created and extended, and these can be
dropped if they are found to have no feasible (and profitable) completion. Many fath-
oming heuristics have been proposed in the literature. We experiment a data-driven
approach in this context, using supervised learning models to deal with the problem
of detecting infeasibility. We design features which are not dependent on instance
size, having different computing cost. We compare the tradeoff between computa-
tional effort and performance which can be achieved, when a binary classifier is
employed. Our results indicate such an attempt to be effective.

1 Introduction

In the Resource Constrained Shortest Path Problem (RCSPP) [1] a graph is given,
having two special source and sink nodes. Furthermore, a set of resources is given:
a vector of values is associated to each edge, having one element for each resource.
A consumption limit for each resource is finally given. A path is considered to be
feasible if the sum of resource values on its edges exceeds the corresponding limit

C. Ondei (B) · A. Ceselli · M. Trubian
Department of Computer Science,University of Milan, Milan, Italy
e-mail: cristina.ondei@unimi.it

A. Ceselli
e-mail: alberto.ceselli@unimi.it

M. Trubian
e-mail: marco.trubian@unimi.it

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
A. Brieden et al. (eds.), Graphs and Combinatorial Optimization:
from Theory to Applications, AIRO Springer Series 13,
https://doi.org/10.1007/978-3-031-46826-1_11

135

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-46826-1_11&domain=pdf
cristina.ondei@unimi.it
 854 49687 a 854 49687 a

mailto:cristina.ondei@unimi.it
alberto.ceselli@unimi.it
 854 52565
a 854 52565 a

mailto:alberto.ceselli@unimi.it
marco.trubian@unimi.it
 854 55444 a 854 55444
a

mailto:marco.trubian@unimi.it
https://doi.org/10.1007/978-3-031-46826-1_11
https://doi.org/10.1007/978-3-031-46826-1_11
https://doi.org/10.1007/978-3-031-46826-1_11
https://doi.org/10.1007/978-3-031-46826-1_11
https://doi.org/10.1007/978-3-031-46826-1_11
https://doi.org/10.1007/978-3-031-46826-1_11
https://doi.org/10.1007/978-3-031-46826-1_11
https://doi.org/10.1007/978-3-031-46826-1_11
https://doi.org/10.1007/978-3-031-46826-1_11
https://doi.org/10.1007/978-3-031-46826-1_11
https://doi.org/10.1007/978-3-031-46826-1_11

136 C. Ondei et al.

for no resource. In its feasibility version, the RCSPP asks whether a feasible path
from source to sink exists or not. In its optimization version, one resource is given
interpretation as a cost: the aim is to find a feasible path from source to sink whose
sum of cost values on edges is minimized.

Besides its direct mapping to a routing problem on graphs, the RCSPP has appli-
cations as other standalone combinatorial optimization problems, for instance in the
realm of project scheduling. It is more famous, however, as a subproblem of Vehicle
Routing Problems [2] when decomposition algorithms (such as column generation
ones) are employed [3]. In these algorithms, RCSPPs are in fact iteratively solved as
pricing subproblems, when feasible routes (e.g. respecting overall time and capacity
limits) need to be generated, having negative reduced cost.

The RCSPP is weakly NP-Hard [1]; dynamic programming is often used for its
optimal resolution. A well known technique for speeding up these algorithms is the
so-called completion bounding [4]: for each partial path a check is performed, to
understand if any extension may exist leading to a feasible complete path. These
techniques may become key ingredients when RCSPPs need to be solved iteratively,
as in column generation algorithms. Since this bounding check may be performed a
very high number of times (e.g. at each extension operation of a dynamic program-
ming algorithm) its speed is crucial. Machine learning approaches have also been
explored in this context. For instance, in [5] binary classifiers are used to choose the
critical resource in a bidirectional label setting algorithm; in [6] machine learning is
used to select the most promising arcs when RCSPP is the pricing subproblem in a
column generation algorithm.

We propose to tackle the RCSPP feasibility problem with data-driven models,
and in particular with supervised learning ones [7]. In Sect. 2 we formally describe
the problem. In Sect. 3 we introduce a set of features, which become parameters that
we observe to predict feasibility or infeasibility of a path. In Sect. 4 we report on a
set of experiments where binary classifiers are trained by sampling both feasible and
infeasible RCSPP solutions and measuring their features; these classifiers are then
tested on new RCSPP instances to understand their feasibility predictive power. In
Sect. 5 we collect some brief conclusions.

2 Problem Definition

Let .G = (V,E) be an undirected weighted graph, with .n = |V| and .m = |E|, and
let .H be a set of . r resources. A positive cost .ce is associated with each edge .e ∈ E.
For every resource .h ∈ H and for every edge .e ∈ E we consider a positive weight
.wh

e , representing the consumption of resource . h traversing edge . e. We assume a
consumption limit .Wh for every resource .h ∈ H . Let the vertices .s ∈ V and . t ∈ V
be respectively the source and the destination.

A feasible solution is a path.Pst between vertex. s and vertex. t that complies with
the capacity constraint on every resource, i.e. .

∑
e∈Pst wh

e ≤ Wh for each .h ∈ H .

Data-Driven Feasibility for the Resource Constrained Shortest Path Problem 137

The optimization problem traditionally consists in finding the minimum cost path.
In our framework, the focus is on the feasibility problem: given an instance for the
RCSPP, determine whether it admits a feasible solution or not.

It has been proven that RCSPP, in its feasibility formulation, is an NP-complete
problem, even in the case with only two resources [1].

Let . i be an arbitrary instance of the RCSPP. We consider a vector of features
.xi ∈ R

p. Each of these features measures a particular parameter of the instance . i .
We assume that a function.g : Rp → {F, I } exists. The function. gmaps each feature
vector .xi to a label .F if the instance . i admits a feasible solution, . I if it does not.

Our objective is to use supervised learning algorithms to find (an approximation
of) such a function.g(). In particular, we exploit supervised learning: we collect a set
of RCSPP instances . I for which feasibility is known. We use such a training set to
build an approximation of .g(). Then, we exploit .g() to actually perform feasibility
predictions on new RCSPP instances.

The most critical point of this approach is the so-called feature engineering pro-
cess, that is the choice of parameters to measure on RCSPP instances, which is
discussed in Sect. 3. We remark that, hypothetically speaking, it would be easy to
build a perfect function.g() by including in these features the actual exact resolution
of the RCSPP. Indeed, these features must balance predictive power with computa-
tional efficiency: our aim is to obtain high predictive power with a small fraction of
the computing effort needed to actually solve the RCSPP.

3 Feature Engineering

For our approach to be effective, we designed features that are quickly computable
and not dependent on specific aspects of the instance, such as the dimension of the
graph and the range of the parameters. This allows the approach to be scalable, and
potentially to be generalized to instances which are very different from those in the
training set.

Most of the features considered are based on single resource shortest path com-
putations. For each resource .k ∈ H , we indicate with .Pst

k the shortest path between
. s and . t , with respect to the resource .k ∈ H . The Shortest Path Problem is known to
be solvable in polynomial time; moreover, several advanced algorithmic techniques
make it very fast also empirically. We finally mention that in column generation
contexts, as those discussed in the introduction, single resource shortest paths for
each resource besides costs can be computed once in a preprocessing phase.

To effectively predict feasibility, we need to exploit the aspects of the instance
that could indicate the existence of a feasible solution. In this context, the single
resource paths could give useful information. With our features we tried to summarize
important aspects, such as the structure and the resource consumption along these
paths. Our features are based on the idea that if a feasible solution exits, it might be
close to these paths.

138 C. Ondei et al.

We indicate with.uhk the consumption of resource.h ∈ H along.Pst
k and with.ūhk the

average consumption of resource .h ∈ H on each edge of the path .Pst
k . We indicate

with . lk the length (i.e. the number of edges) of the path and with .Vk the set of its
vertices.

Finally, let . d be the diameter of the graph and .w̄h the average consumption of
resource .h ∈ H on each edge of the graph.

With this notation, we can formally define the features we designed. We grouped
them into three classes.

Path related features.

The first group of features are strictly related to the shortest paths and the resource
consumption along these paths.

Feature 1 Relative consumption of resource . h traversing the path .Pst
k .

.F1
hk = uhk

Wh
∀h ∈ H,∀k ∈ H (1)

Observation 1 If a resource.k ∈ H exists, such that.F1
hk ≤ 1.∀h ∈ H , then the path

.Pst
k is a feasible solution for the RCSPP.

Observation 2 If a resource .k ∈ H exists, such that .F2
kk > 1, then the instance is

infeasible.

We remark that these two observations span only specific cases. In particular,
Observation 1 is a sufficient, but not necessary, condition for feasibility. In the general
one, a feasible RCSPP solution may exist, crossing parts of .Pst

k for different . k.
Still, this features give a measure of how much of each resource is consumed.
Since these features can exactly establish feasibility, as shown in Observations 1

and 2, we expect them to be highly predictive.

Feature 2 Average relative consumption of resource . h traversing the path .Pst
k .

.F2
hk = ūhk

Wh
∀h ∈ H,∀k ∈ H (2)

Path-Graph related features.

In the second group we have features that consider both path related and graph
related aspects. They are designed to exploit some topological aspects of the graph,
concerning the vertices and edges in the single-resource optimal paths.

Definition 1 Given a resource .h ∈ H , for each edge .e = (i, j) ∈ E, we define
reduced cost of edge . e with respect to resource . h the quantity . rch(i, j) = wh

e −
(wh(Ps j) − wh(Psi)), where .wh(Psi) and .wh(Ps j) represent the consumption of
resource. h along the minimum paths, w.r.t resource. h, between. s and. i and. j respec-
tively.

Data-Driven Feasibility for the Resource Constrained Shortest Path Problem 139

If the edge .e = (i, j) ∈ Pst
h , then the reduced cost .rc

h(i, j) = 0. Otherwise, it is
.rch(i, j) > 0 when the edge .(i, j) does not belong to the shortest path between . s
and . j w.r.t. resource .h ∈ H . In this case the reduced cost represents the difference
between the value of the path between . s and . j passing through edge .(i, j) and the
value of the shortest path between . s and . j .

We consider the quantity .rchi for each .i ∈ Vh , as the minimum reduced cost of
the outgoing edges of . i not in .Pst

h . We indicate with .rch the average, on the vertices
of the path .Pst

h , of the quantities .rc
h
i .

Definition 2 Given two vertices .i, j ∈ V, we define the distance .d(i, j) between . i
and . j as the minimum number of edges in a path between . i and . j .

Definition 3 We define .D-neighbourhood of .Pst
h the subgraph induced by the ver-

tices that have distance from the vertices in.Pst
h less or equal than. D (w.r.t. the distance

in Definition 2).

Feature 3 Average reduced cost on the vertices of path .Pst
h , considering for each

vertex the outgoing edge not in .Pst
h with minimum reduced cost.

.F3
h = rch

w̄h
h ∈ H (3)

The reduced cost for an edge .e = (i, j) represents a penalty paid by deviating
from the shortest path between . s and . j . Lower values of this feature could indicate
the presence of non-expensive deviations from the path .Pst

h and the presence of a
feasible solution.

The value is normalized, in order to reduce the dependency of this feature from
the range of the resource values.

Feature 4 Ratio between the average consumption of resource .h ∈ H along path
.Pst

h and the average consumption of resource .h ∈ H along the edges in a .D-
neighbourhood of .Pst

h , not in the path itself.

.F4
hD = ūhh

ūhD
h ∈ H (4)

This feature measures the difference between the resource consumption on the
edges in the path and the consumption on the unused edges. The idea is that if the
edges in the path are much more convenient than the others, it would be harder to
find a feasible solution.

It is worth noticing that the distance in Definition 2 is well defined only in undi-
rected graphs, otherwise the symmetry property would not hold. In case of an appli-
cation on directed graphs, this feature should be redesigned using a different distance.

In our analysis we considered neighbourhoods with .D = 2, 3.

140 C. Ondei et al.

Feature 5 Percentage of edges used in path . Pst
h

.F5
h = lh

m
∀h ∈ H (5)

This feature lies on the assumption that the more edges are used in the shortest
paths, less likely there would be different feasible paths.

Feature 6 Maximum, minimum and average degree of the vertices in . Pst
h

.F6
h,max = max

i∈Vh

deg(i) ∀h ∈ H (6a)

.F6
h,min = min

i∈Vh

deg(i) ∀h ∈ H (6b)

.F6
h,avg =

∑
i∈Vh

deg(i)

lh + 1
∀h ∈ H (6c)

The main idea behind this feature is that if the vertices in the paths have many
connections, it would be easier to find a feasible solution.

Graph related features.

The last group of features considers only some topological aspects of the graph.

Feature 7 Comparison of the distance between. s and. t and the diameter of the graph.

.F7 = d(s, t)

d
(7)

This feature represents a measure of the distance of the source. s and the destination
. t in the graph. We expect higher values to be linked to infeasibility: if . s and. t are far
away in the graph it would be harder to find a feasible solution.

Feature 8 Maximum, minimum and average degree of the vertices in . N

.F8
max = max

i∈N
deg(i) (8a)

.F8
min = min

i∈N
deg(i) (8b)

.F8
avg =

∑
i∈N deg(i)

n
(8c)

These features give a measure of the sparsity of the graph. Similarly to features
.F6

max , .F
6
min and .F6

avg , the idea is that more connections could facilitate the presence
of a feasible solution.

Data-Driven Feasibility for the Resource Constrained Shortest Path Problem 141

4 Computational Experiments

Dataset description.

For the experimental analysis we considered the RCSPP with two resources. To train
and test the machine learning algorithms, we build a dataset of .9600 instances, that
have been correctly classified as feasible or infeasible.

The graphs for the instances were extracted as random subgraphs of the instances
for the 9th DIMACS Implementation Challenge [8]. We created 20 graphs of . 5500
vertices each. Starting from the same base graph, we generated various instances, by
assigning different weights to the edges and selecting different sources, destinations
and resource limits. In particular, our dataset is composed by different scenarios of
increasing challenge:

• instances that differ only in the resource limits;
• instances with different source, destination and resource limits;
• instances based on the same graph with different resource values on the edges;
• instances based on entirely different graphs (with different resource values on the
edges).

We established the feasibility of each instance by solving the corresponding opti-
mization problem, considering one of the resources as the cost to be minimized. A
mixed integer program for the RCSPP was implemented in Python, using the Pyomo
library [9, 10] e, and solved with CPLEX 20.1.

The instances resulted fairly balanced between feasible (59.6%) and infeasible
(40.4%).

Features computation.

In Table 1 we summarize the average computing time and the worst case complexity
for the computation of the features.

Considering different instances are based on the same graph, we could compute
some static graph indexes in a preprocessing phase. This is often the case when
the RCSPP is solved as a subproblem. In particular, for the worst case complexities
reported in Table 1, we assume the following quantities to be precomputed:

• Diameter of the graph;
• Average resource consumption on the edges . ūhk , for each .h, k ∈ H ;
• Minimum, maximum and average degree of the vertices of the graph.

In the first line of Table 1 we report the theoretical complexity and the average
computation times for the shortest paths. They are solved using Dijkstra-like algo-
rithms, for which we did not invest in sophisticated implementations.

We assume that the shortest paths are computed once for every instance. Thus their
computation time is not included in the remaining lines of Table 1. We report both
the complexity required to compute the single feature and the overall complexity,

142 C. Ondei et al.

Table 1 Worst case complexity and average computing time of the shortest paths and the features

Features Worst case complexity
(single feature)

Average computing
time (s)

Total worst case
complexity

Shortest path. Pst
h

. h ∈ H
.O(m log n) .1.333 · 10−2 . O(rm log n)

.F1
hh .h ∈ H .O(1) .1.658 · 10−6 . O(r)

.F1
hk .h, k ∈ H , .h /= k .O(n) .1.398 · 10−5 . O(r2n)

.F2
hk .h, k ∈ H .O(1) .5.283 · 10−7 . O(r2)

.F3
h .h ∈ H .O(m) .7.243 · 10−5 . O(rm)

.F4
hD .h ∈ H , .D = 2, 3 .O(n + m) .1.087 · 10−3 . O((n + m)r |D|)

.F5
h .h ∈ H .O(1) .6.776 · 10−7 . O(r)

.F6
h,max .F6

h,min . F6
h,avg

. h ∈ H
.O(m) .8.306 · 10−5 . O(rm)

.F7 .O(m + n) .2.327 · 10−3 . O(m + n)

.F8
max .F8

min .F8
avg .O(1) .2.551 · 10−7 . O(1)

considering many features are computed for each resource. The total computing time
for each instance is about 0.064 s, on average.

Prediction phase.

We tested our features on three models: a Decision Tree with different impurity
functions, Support Vector Machines with different kernel functions, and a Gradient
Boosting (Random Forest) Classifier. The models were implemented in Python using
Scikit-Learn library [11].

To enforce the results, we implemented a Cross Validation procedure. The dataset
was randomly split into five groups of the same size. At each iteration, four groups
were used for the training of the model, the remaining group for the test. The scores
reported in Tables 2 and 3 are the average ones, obtained at each iteration.

For the first run of experiments, we randomly split the dataset between training
and testing. Results are shown in Table 2. The best performing model is the Gradient
Boosting, reaching an accuracy of 84% on the test set.

In the second round of experiments, we split the dataset in order to have instances
from different groups based on different graphs. This leads to test the model on
instances that are not based on the same graphs as the instances used for the training.
In Table 3 are summarized the results. The scores are comparable to the previous
case, showing that the efficacy of our features does not depend on having the same
underlying graph. The best performing model is again the Gradient Boosting.

Features importance analysis.

We performed an analysis of the importance of the features, to see if they are all
relevant in the effectiveness of the predictions. We focused on the Gradient Boosting
model, that was the best performing one.

Data-Driven Feasibility for the Resource Constrained Shortest Path Problem 143

Table 2 Cross validated scores

Model Accuracy
train (%)

Accuracy
test (%)

I_precision
(%)

F_precision
(%)

I_recall
(%)

F_recall
(%)

F1-score
(%)

Decision
Tree

Gini 81.47 80.01 75.66 82.98 74.59 83.73 75.05

Entropy 81.07 79.77 74.64 83.41 75.77 82.47 75.15

Support
Vector
Machines

Linear 79.75 79.60 74.55 83.07 75.10 82.67 74.81

Poly 2 80.81 80.20 75.72 83.20 75.02 83.74 75.34

Poly 3 81.09 80.47 76.06 83.42 73.35 83.96 75.68

rbf 81.02 80.25 75.70 83.30 75.23 83.68 75.44

Gradient
boosting

88.24 84.23 81.57 85.94 78.75 87.96 80.11

Table 3 Cross validated scores. In this case training instances and test instances are based on
different graphs

Model Accuracy
train (%)

Accuracy
Test (%)

I_precision
(%)

F_precision
(%)

I_recall
(%)

F_recall
(%)

F1-score
(%)

Decision
Tree

Gini 80.86 79.54 74.07 83.34 75.76 82.02 74.91

Entropy 80.59 79.43 74.55 82.84 74.68 82.51 74.55

Support
Vector
Machines

Linear 79.77 79.58 74.66 82.93 74.87 82.70 74.74

Poly 2 80.73 79.81 75.61 82.57 73.86 83.77 74.69

Poly 3 81.05 79.72 75.70 82.28 73.25 84.01 74.44

rbf 81.13 79.67 75.42 82.51 73.75 83.61 74.51

Gradient
boosting

88.41 84.10 81.53 85.72 78.29 88.00 79.86

We performed a Recursive Feature Elimination using a Gradient Boosting model:
starting with all the features, at each iteration the model is trained and the least impor-
tant feature is discarded. In Table 4 we rank the features by decreasing importance:
the first one was the last remaining feature in the recursive elimination. In Table 4
we also report the average importance of the features in the full Gradient Boosting
model, i.e. the model trained with all the features. The results are coherent with the
rank obtained by Recursive Feature Elimination.

In Fig. 1 we report the accuracy (on the test set) of the model w.r.t. the number
of features retained. We see that 5 features are necessary to reach a high accuracy
level. There is an improvement up until 10 features. Adding further features seems
irrelevant.

In Table 5 we report the results for the Gradient Boosting using only the best
10 features (considering the rank in Table 4). The scores are comparable to those
obtained in the full model, reported in Tables 2 and 3.

Finally, considering the model with the selected features, we tested the impact
of these features, by removing one feature at a time. In Fig. 2 we represent the
accuracy gap on the test set, meaning the difference between the test accuracy of
model trained with the 10 selected features and the test accuracy of the model trained

144 C. Ondei et al.

Table 4 Rank of the features obtained by Recursive Feature Elimination and average importance
in the full model. The last 5 features are not reported, since they have an importance below 0.001

Feature Rank in recursive feature
elimination

Importance

.F1
11 1 0,391

.F1
22 2 0,254

.F1
21 3 0,104

.F1
12 4 0,099

.F2
11 5 0,033

.F2
21 6 0,023

.F6
1,avg 7 0,016

.F7 8 0,010

.F6
2,avg 9 0,010

.F2
22 10 0,010

.F3
1 11 0,009

.F2
12 12 0,010

.F4
2,2 13 0,006

.F4
1,3 14 0,006

.F4
2,3 15 0,007

.F3
2 16 0,005

.F5
1 17 0,003

.F5
2 18 0,003

.F4
1,2 19 0,003

.F8
avg 20 0,003

Fig. 1 Accuracy of the
Gradient Boosting
depending on the numbers of
features retained by recursive
elimination

0 5 10 15 20 25

Number of features

0.72

0.74

0.76

0.78

0.8

0.82

0.84

0.86

T
es

t a
cc

ur
ac

y

Data-Driven Feasibility for the Resource Constrained Shortest Path Problem 145

Table 5 Cross validated scores for the Gradient Boosting model with selected features

Training/Test Accuracy
train (%)

Accuracy
Test (%)

I_precision
(%)

F_precision
(%)

I_recall
(%)

F_recall
(%)

F1-score
(%)

Same graphs 87.92 84.17 81.44 85.91 78.73 87.86 80.04

Different
graphs

87.87 83.89 81.13 85.62 78.20 87.72 79.61

Train and test on same graphs

f1
11

f1
22

f1
21

f1
12

f2
11

f2
21

f6
1avg

f7 f6
2avg

f2
22

0

0.01

0.02

0.03

0.04

0.05

Train and test on different graphs

f1
11

f1
22

f1
21

f1
12

f2
11

f2
21

f6
1avg

f7 f6
2avg

f2
22

0

0.01

0.02

0.03

0.04

0.05

Fig. 2 Accuracy gap between a Gradient Boosting model trained with selected features and the
same model trained excluding one of the features

excluding one of them. Again, we considered both the case with training and test set
based on the same graphs and the case where different graphs are used. The features
.F1

hk , for .h, k ∈ H , are the most relevant. The other features seem almost irrelevant,
when taken out singularly. However, by comparing these results to those in Fig. 1
we conclude them to be in synergy: their contribution stacks up, finally providing
overall an improvement of about 2%.

5 Conclusions

Our models, which are designed to predict the RCSPP feasibility by measuring fea-
tures of the instance, prove effective. More in details, a supervised learning method,
relying on the training of random forests by means of gradient boosting, gave the
best results.

One of the main challenges was to design a set of features which is able to
generalize from the specific structure of the training instances, and can be computed
with a limited effort. In our experiments, no feature required more than milliseconds
to compute on graphs with up to.5500 vertices. None of them depends on the presence
of a specific graph structure.

We found the following outcome to be particularly relevant: by repeating our
experiments with training and testing on different sets of graphs, accuracy kept above
.84%.

Considering the perspective use of our models as fast approximate completion
bound checks, we argue false Infeasible predictions to be the most critical ones. The

146 C. Ondei et al.

I_precision score deserves most attention: even if it results in values above . 81%
future research efforts in improving it might be pertinent.

The most promising way of integrating our models in exact methods is indeed
their use as triggers for more computationally expensive checks.

For what concerns the embedding of our technique in column generation pricing,
future investigations will extend our models to cover the elementary version of the
problem, which allows for negative resource values, potentially leading to cycles.

References

1. Pugliese, L.D.P., Guerriero, F.: A Survey of Resource Constrained Shortest Path Problems:
Exact Solution Approaches. Networks 62, 183–200 (2013)

2. Toth, P., Vigo, D.: The Vehicle Routing Problem. In: MOS-SIAM Series on Optimization
(2014)

3. Desaulniers, G., Desrosiers, J., Solomon, M.M.: Column Generation. Springer, New York
(2005)

4. Martinelli, R., Pecin, D., Poggi, M.: Efficient elementary and restricted non-elementary route
pricing. Eur. J. Oper. Res. 239(1), 102–111 (2014)

5. Bezzi, D., Ceselli, A., Righini, G.: Automated tuning of a column generation algorithm. In:
Kotsireas, I., Pardalos, P. (eds.) Learning and Intelligent Optimization. LION 2020. Lecture
Notes in Computer Science, vol. 12096. Springer, Cham (2020). https://doi.org/10.1007/978-
3-030-53552-0_21

6. Morabit, M., Desaulniers, G., Lodi, A.: Machine-learning-based arc selection for constrained
shortest path problems in column generation. INFORMS J. Optim. 5(2), 191–210 (2022).
https://doi.org/10.1287/ijoo.2022.0082

7. Larose, D.T., Larose, C.D.: Data Mining and Predictive Analytics. In: Wiley Series on Methods
and Applications in Data Mining. Wiley (2015)

8. 9th DIMACS Implementation Challenge—Shortest Paths. Challenge website: http://www.diag.
uniroma1.it/~challenge9/

9. Hart, W.E., Watson, J., Woodruff, D.L.: Pyomo: modeling and solving mathematical programs
in Python. Math. Program. Comput. 3(3), 219–260 (2011)

10. Hart, W.E., et al.: Pyomo-Optimization Modeling in Python, vol. 67, 2nd edn. Springer Science
& Business Media (2017)

11. Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–
2830 (2011)

https://doi.org/10.1007/978-3-030-53552-0_21
https://doi.org/10.1007/978-3-030-53552-0_21
https://doi.org/10.1007/978-3-030-53552-0_21
https://doi.org/10.1007/978-3-030-53552-0_21
https://doi.org/10.1007/978-3-030-53552-0_21
https://doi.org/10.1007/978-3-030-53552-0_21
https://doi.org/10.1007/978-3-030-53552-0_21
https://doi.org/10.1007/978-3-030-53552-0_21
https://doi.org/10.1007/978-3-030-53552-0_21
https://doi.org/10.1007/978-3-030-53552-0_21
https://doi.org/10.1287/ijoo.2022.0082
https://doi.org/10.1287/ijoo.2022.0082
https://doi.org/10.1287/ijoo.2022.0082
https://doi.org/10.1287/ijoo.2022.0082
https://doi.org/10.1287/ijoo.2022.0082
https://doi.org/10.1287/ijoo.2022.0082
https://doi.org/10.1287/ijoo.2022.0082
https://doi.org/10.1287/ijoo.2022.0082
http://www.diag.uniroma1.it/~challenge9/
http://www.diag.uniroma1.it/~challenge9/
http://www.diag.uniroma1.it/~challenge9/
http://www.diag.uniroma1.it/~challenge9/
http://www.diag.uniroma1.it/~challenge9/
http://www.diag.uniroma1.it/~challenge9/

Monte-Carlo Integration on a Union
of Polytopes

Jonas Stübbe and Anne Remke

Abstract A new integration approach is presented that is tailored towards integrat-
ing over a union of polytopes with low coverage in high dimensions. It combines
Markov Chain Monte Carlo and Multiphase Monte Carlo and takes advantage of the
specific geometrical structure by directly sampling from it, which ensures scalabil-
ity in higher dimensions. A feasibility study shows the efficiency of our method in
comparison to the state-of-the-art approach GSL VEGAS. To showcase the specific
strenght of the proposed method, integration is performed on a selected set of such
multi-dimensional polytopes with low coverage.

1 Introduction

Verifying stochastic hybrid systems requires integrating the probability density func-
tion of random variables defined on a union of polytopes [14, 19, 20]. However,
integrating over complex geometrical structures in large dimensions is usually not
feasible analytically. Hence, mostly numerical solutions are applied, which sample
uniformly from a rectangular overapproximation, e.g., VEGAS with stratified and
importance sampling [16, 22], as implemented in the GNU Scientific Library [12].
Depending on the model, these method however yield excessive computation times
in higher dimensions. Note, that VEGAS does not take advantage of the convexity of
the polytopes computed in the reachability analysis.

Sampling from convex polytopes is well-investigated and methods like Markov-
Chain Monte Carlo [2, 15, 18, 24, 25, 27, 28] and Multiphase Monte Carlo [6, 9– 11]
can be applied, efficiently. Other efficient sampling techniques build on a Markov
chain, e.g., Ball Walk [13] or Billiard Walk [21]. A stable library for volume approxi-
mation and sampling of convex polytopes can be found in VolEsti [5]. Convergence of

J. Stübbe · A. Remke (B)
University of Münster, Einsteinstr. 62, 48149 Münster, Germany
e-mail: anne.remke@uni-muenster.de

J. Stübbe
e-mail: jonas.stuebbe@uni-muenster.de

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
A. Brieden et al. (eds.), Graphs and Combinatorial Optimization:
from Theory to Applications, AIRO Springer Series 13,
https://doi.org/10.1007/978-3-031-46826-1_12

147

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-46826-1_12&domain=pdf
anne.remke@uni-muenster.de
 854 53672 a 854 53672
a

mailto:anne.remke@uni-muenster.de
jonas.stuebbe@uni-muenster.de
 854 56550 a 854 56550 a

mailto:jonas.stuebbe@uni-muenster.de
https://doi.org/10.1007/978-3-031-46826-1_12
https://doi.org/10.1007/978-3-031-46826-1_12
https://doi.org/10.1007/978-3-031-46826-1_12
https://doi.org/10.1007/978-3-031-46826-1_12
https://doi.org/10.1007/978-3-031-46826-1_12
https://doi.org/10.1007/978-3-031-46826-1_12
https://doi.org/10.1007/978-3-031-46826-1_12
https://doi.org/10.1007/978-3-031-46826-1_12
https://doi.org/10.1007/978-3-031-46826-1_12
https://doi.org/10.1007/978-3-031-46826-1_12
https://doi.org/10.1007/978-3-031-46826-1_12

148 J. Stübbe and A. Remke

Monte-Carlo Hit-and-Run methods is polynomial for convex polytopes [8], however
can be arbitrarily slow for non-convex regions [1].

In 1984, Smith [25] proposed a method to sample from high dimensional non-
trivial bodies called rejection sampling which samples from a bounding box instead
which completetly contains the original body. However, the required number of sam-
ples grows exponentially for increasing dimensions, as the ratio between the volume
of the original body and its bounding box decreases exponentially with increasing
dimensions. When a union of polytopes is used, the corresponding bounding box
is created based on the minimum and maximum point in each dimension over all
polytopes, resulting in even lower coverage.

This paper proposes a Monte-Carlo integration Multiphase Union Markov Chain
Monte Carlo (MpU(MC)2) specifically tailored to the union of convex polytopes,
which is in general not convex. Multiphase Union Markov Chain Monte Carlo
addresses challenges which arise from a non-convex area of integration: First, we
adapt coordinate Hit-and-Run to allow direct transitions between polytopes with an
empty intersection. Rejection sampling is only used to obtain the initial sample,
hence the curse of dimensionality, described above, does not impact performance as
badly. All other samples are generated via our version of coordinate Hit-and-Run and
are hence contained in the union of polytopes by construction. Second, the volume of
the union of convex polytopes is approximated with a variant of Multiphase Monte
Carlo that can be applied to non-convex regions. Then Monte-Carlo integration can
be used to estimate a multi-dimensional integral over that union of convex polytopes.

Organization. Section 2 defines relevant preliminaries. Section 3 presents our
approach of Monte-Carlo integration on the union of polytopes. Section 4 compares
results obtained from MpU(MC)2with VEGAS. Section 5 concludes the paper.

2 Preliminaries

Vectors are denoted as bold lowercase letters and matrices are denoted as bold upper-
case letters. Sets of sets are denoted as calligraphic capital letters. Further, we define
intervals as sets .T = {v ∈ R | l ≤ v ≤ u} for some .l ∈ R and .u ∈ R. Let .T denote
a set of intervals. To allow the definition of H-polytopes via the intersection of half-
spaces, we first define half-spaces and hyperplanes. For two vectors . x and . y, the
scalar product is denoted by .⟨x, y⟩ ∈ R.

Definition 1 (Half-space) Given normal vector .n ∈ R
d and an offset .o ∈ R, a .d-

dimensional half-space . h is defined as the set

. h = {x ∈ R
d |⟨n, x⟩ ≤ o}.

The set .h = {x ∈ R
d | ⟨n, x⟩ = o} is the bounding hyperplane of half-space . h.

In the following, we consider polytopes in the so-called H-representation.

Monte-Carlo Integration on a Union of Polytopes 149

Definition 2 (H-Polytope) A H-polytope.P ⊆ R
d is defined by the (bounded) inter-

section of .m half-spaces
. P := {x ∈ R

d | Ax ≤ b},

with.A ∈ R
m×d ,.b ∈ R

m . The.k-th row of. A is refered to as.ak and the.k-th half-space
of the polytope as .akx ≤ bk . Half-spaces are also called constraints.

The union of polytopes.Pi , Pj is defined by.Pi ∪ Pj={x ∈ R
d | x ∈ Pi ∨ x ∈ Pj },

and the intersection is defined as .Pi ∩ Pj = {x ∈ R
d | x ∈ Pi ∧ x ∈ Pj }. Further-

more,.P = {Pi | 0 ≤ i < n} represents a set of polytopes. Let the size of. P be denoted
by .|P| = n. Here, .

U
Pi∈P Pi represents the union of polytopes .Pi over the set . P.

H-Polytopes can be converted into other representations, e.g., vertex-oriented V-
Polytopes. However, this transformation is NP-hard in general [3, 7]. In the following,
we rely on the representation as H-polytopes.

Monte-Carlo integration is used to numerically approximate an integral. Sample
points are drawn randomly from the integration region .Ω and used to evaluate the
integrand. We follow the definition in the GNU scientific library [12].

Definition 3 (Monte-Carlo integration) An multi-dimensional definite integral . I is
defined for .x = (x1, . . . , xd):

. I =
∫

Ω

f (x)dx,

with integrand . f : Rd → R and .Ω ⊂ R
d . The volume of . Ω, denoted . V (Ω) ∈ R

equals.V (Ω) = ∫
Ω
dx. With.N ∈ N sample points.xi ∈ R

d , that are uniformly drawn
from. Ω, . I can be approximated the integral as:

.I ≈ E(f ; N) = V (Ω)

N

N∑

i=1

f (xi). (1)

Due to the strong law of large numbers, .E(f ; N) converges to . I for large .N [23].

Let .N(μ, σ 2) denote the normal distribution with mean . μ and variance .σ 2. The
function.g : R → R then denotes the probability density function of.N(μ, σ 2)with:

. g(x) = 1

σ
√
2π

e− 1
2 (

x−μ

σ
)2 .

This paper aims to integrate the joint density function of. d i.i.d random variables,
each distributed with .N(μ, σ 2) over . Ω. Hence, we define . f (x) = ∏d

l=1 g(xl).
Rejection sampling [25] draws uniformly distributed samples from an overap-

proximating region .S ⊇ Ω and .Ω ⊂ R
d instead of sampling over .Ω directly. Each

sample. x that is contained in. Ωwill be distributed uniformly in. Ω. If the sample gen-
erated in . S is not contained in . Ω, it is rejected. Usually, . S is chosen as a region with
a tight bound on .Ω from which uniformly distributed samples can easily be drawn,
e.g., a hyperrectangle. If .Ω = U

Pi∈P Pi is a union of polytopes, the hyperrectangle

150 J. Stübbe and A. Remke

is given by the minimum and maximum value over all polytopes .Pi ∈ P in every
dimension, further denoted as .SP.

In the following, we use Markov Chain Monte Carlo in the variant Hit-and-Run as
introduced by Smith [26] in 1984. Hit-and-Run draws samples from a homogenous
continuous-state Markov chain in discrete time, i.e.,.{Xn | n ≥ 0}with.n ∈ N. Such a
Markov is chain is called a Random Walk and defined as a family of independently and
identically distributed random variables, which take values from .R

d . For a set . Ω ⊂
R

d , Hit-and-Run generates a direction vector .v ∈ R
d , that is uniformly distributed

on the direction set .D ⊆ R
d , depending on the used Hit-and-Run method.

Let .l = {x + λ · v | λ ∈ R} be the line defined by . x and. v. A new point . x' is then
sampled uniformly distributed from the part of . l that is included in . Ω.

For convex spaces. Ω the Markov chain converges to approximately the stationary
distribution [25]. Here, the convergence speed is specified as mixing time [18], which
indicates the required number of steps in the Random Walk until obtaining points
which are approximately stationary.

Hit-and-Run is considered to be one of the most efficient Markov Chain Monte
Carlo sampler currently available for generating asymptotically uniform points in
convex sets due to its polynomial convergence time [17, 18]. As hit-and-run sampling
algorithms produce points that are uniformly distributed on a convex space, they are
very well suited for sampling polytopes.

Coordinate Directions Hit-and-Run (CDHR) [9] is a form of Hit-and-Run. Starting
from a point .x ∈ R

d inside the polytope .P = {x ∈ R
d | Ax ≤ b}, . v is uniformly

sampled at random as one of the coordinate axes. Afterwards, . v and . x are used to
calculate the distance .λ ∈ R to the bounding hyperplane of every half-space of . P .
The scalars .λ+ and .λ− result from maximizations of . λ over each half-space [9]:

Definition 4 (Minimum distance to bounding hyperplane) Given a convex polytope
.Pi with .mi half-spaces, a point .x ∈ Pi and a direction vector . v. Let .λ+, λ− ∈ R be
the minimum distance between point . x and a bounding hyperplane . h along . v in
both directions. .λ+ and .λ− are calculated by maximizing the distance .λ ∈ R to the
bounding hyperplane of each half-space with

. λ+ = max{λ | ∀k, 0 ≤ k < mi : ak(x + λv) ≤ bk}, and

λ− = max{λ | ∀k, 0 ≤ k < mi : ak(x − λv) ≤ bk}.

The interval .Ti is then defined by .Ti = [λ−, λ+].
We now uniformly sample a value.t ∈ Ti and as a result, a new point. x' = x + t · v

is obtained, which by construction is contained in the polytope. The iterative pro-
cedure is continued until a predefined number of sample points has been generated.
The generation of three sample points with Coordinate Directions Hit-and-Run on a
polytope is illustrated in Fig. 1 from left to right: starting from a point. x, first a direc-
tion vector . v is drawn and the line segment .l = {x + t · v | t ∈ Ti } created. From . l,
a new sample point . x' is drawn uniformly.

Note that the sample points correspond to the values taken by the random variables
of the Markov chain .{Xn|n ≥ 0}, with .Xn ∈ R

d .

Monte-Carlo Integration on a Union of Polytopes 151

Fig. 1 Coordinate Directions Hit-and-Run on a polytope

3 Monte-Carlo Integration on a Union of Polytopes

Hit-and-Run Monte-Carlo methods are not restricted to convex polytopes. Smith even
proves in [27] that Hit-and-Run algorithms converge to approximately the uniform
distribution when applied to an open subset of .Rd . However, their mixing time, i.e.,
the bound on the number of samples required for convergence, can be arbitrarily
large for non-convex regions [1].

Figure 2 shows an examplary run of traditional Markov chain Hit-and-Run on a
(non-convex) union of three polytopes. Here, starting in .P0, the Markov chain can
only directly transition into polytopes with a non-empty intersection with .P0.

In the following, we detail two major improvements of MpU(MC)2, which allow
the transition to unions of polytopes. First, we allow direct transitions from one
polytope to another one that is part of that union, however has an empty intersection
with the current one. This is illustrated in Fig. 3.

Second, the volume of the union is computed with a variant of Multiphase Monte
Carlo, and used to approximate the integral in Eq. 1. As the intersection of any two
polytopes in the union is not necessarily empty (e.g., see Fig. 2) the volume of that
union does not simply equal the sum of the individual polytope’s volumes.

Section 3.1 extends coordinate Hit-and-Run to a union of convex polytopes and
allows direct transitions between two polytopes with empty intersection. Section 3.2
discusses how the volume of the union is approximated via Multiphase Monte Carlo.

Fig. 2 A possible path from
.P0 to.P2 results in three
intermediate points in. P1

0 1

2 3

4

0

1

2

152 J. Stübbe and A. Remke

Fig. 3 A possible path from
.P0 to.P2 is possible without
intermediate points in. P1

0 1

0

1

2

3.1 Extending Markov Chain Monte Carlo

The union of convex polytopes.
U

Pi∈P Pi is in general not convex. Hence, the mixing-
time of CDHR could be arbitrarily large [1]. Intuitively, this is due to the fact that
CDHR only generates successor sample points within the same polytope.Pi or in any
polytope .Pj with a non-empty intersection .Pi ∩ Pj /= ∅.

Figure 2 illustrates a sequence of sampling points starting in. x0, where the Markov
chain requires sampling from polytope .P1 before samples in .P2 can be constructed.
In the following, Markov Chain Monte Carlo is extended by allowing transitions
from polytope .P0 to .P2 without intermediate samples in .P1, as shown in Fig. 3.
We require the set .P to include at least two polytopes, i.e., .|P| ≥ 2. The iterative
computation of sample points with MpU(MC)2then works as follows:

(1) To initialize one execution of MpU(MC)2, we perform rejection sampling from
the bounding box of the union of polytopes, denoted .SP, until a point .x ∈ R

d is
sampled, which is contained in . Ω.

(2) A direction vector . v is uniformly sampled at random as one of the coordinate
axes. Let .T denote a set of intervals, which is initially empty.

(3) Let . x be contained in polytope . Pi , then the corresponding interval .Ti is created
according to Definition 4 and added to the set of intervals . T .

(4) Let .Pj ∈ P with .Pi /= Pj be another polytope. Then either .x ∈ Pj or . x /∈ Pj

applies. If .x ∈ Pj , create interval .Tj according to Definition 4 and add to . T . If
.x /∈ Pj , the interval .Tj is created according to Definition 5 and added to . T .

(5) After iterating over each polytope.Pi ∈ P, a new point is generated with.x + t · v,
where . t is sampled uniformly over the set .T of all obtained one-dimensional
intervals. The process is repeated from step 2., until a predefined number of
sample points has been generated.

In the following we provide more details on step 4. Recall that a polytope .Pj is
defined by .m j constraints. A point .x ∈ Pj then satisfies every constraint of .Pj . In
contrast for a point .x /∈ Pj , there exists at least one constraint in .Pj with . aqx > bq
for.0 ≤ q < m j . For such a sample point, the goal is to find the interval .Tj such that

Monte-Carlo Integration on a Union of Polytopes 153

for all .t ∈ Tj , .ak(x + t · v) ≤ bk is satisfied for all .0 ≤ k < m j . As it is previously
unknown how many constraints are violated by a point.x /∈ Pj , the interval.Tj requires
a more elaborate computation than the one explained in Definition 4. Let. sgn : R →
{+,−, 0} denote the mapping of each value of the real numbers to its respective
sign. Recall that a half-space . h is well defined by . n and . o. We now introduce two
functions which are applied to every half-space . h of .Pj :

. dir : Rd × R
d → {+,−, 0} with dir(n, v) = sgn(⟨n, v⟩), and

sat : R × R
d × R

d → {+,−, 0} with sat(o, n, x) = sgn(o − ⟨n, x⟩).

Here, dir specifies, whether the constraint’s normal vector. n and the direction vector
. v point in the same direction. It returns. +, if both vectors point in the same direction
and .− if they point in different directions. In case . v and . n are parallel, dir returns
. 0. Using the constraint’s normal vector . n and offset . o, sat returns . +, if a point . x
satisfies the constraint i.e., .x ∈ h. It returns . −, if .x /∈ h and zero if .x ∈ h.

Further, we use dir and sat, to split the line.l = {
x' | x' = x + λ · v, λ ∈ R>0

}
into

two rays.l+ = {
x' | x' = x + λ · v, λ ∈ R

+
>0

}
and.l−= {

x' | x'=x − λ · v, λ ∈ R
+
>0

}
.

As each individual polytope .Pj is convex and .x /∈ Pj , if the set .l ∩ Pj is non-
empty, the set of points .l ∩ Pj is either completely included in ray .l+ or in ray . l−.
If dir or sat is zero, none of the rays . l+, .l− intersects the bounding hyperplane.
Otherwise, if dir equals sat, the ray.l+ intersects the bounding hyperplane, and if dir
does not equal sat, .l− intersects the bounding hyperplane.

Figure 4 illustrates the four different combinations of .dir and sat, where . x is
indicated by x, the arrow originating in . x specifies the sampled direction vector . v,
and for the currently considered halfspace. h (indicated in red) its normal vector . n is
shown. In cases (a), and (b) the bounding hyperplane . h is intersected by .l+ and in
cases (c) and (d) it is intersected by . l−.

Let .Hi = {akx ≤ bk | 0 ≤ k < mi } be the set of all half-spaces for polytope . Pi
then .L+ = {h | h ∈ Hi ∧ l ∩ h ⊆ l+} is the set of constraints . h in polytope .Pi for
which the intersection of . l and . h is completely included in ray . l+. Further let . L− =
{h | h ∈ Hi ∧ l ∩ h ⊆ l−} be the set of constraints . h in polytope .Pi for which the
intersection of . l and . h is completely included in ray . l−.

As polytope.Pi is convex and.x /∈ Pi , the interval .Ti is created either by the set of
constraints.L+ or.L−. Therefore, we consider both sets separately: We first consider
the set .L+ (compare (a), (b) in Fig. 4). If the set .l+ ∩ Pi is non-empty, we define the
interval .Ti using only constraints in .L+, as follows:

Definition 5 (Line segment boundaries for.x /∈ Pi) Given a polytope.Pi with.mi half-
spaces denoted by the set.Hi = {akx ≤ bk | 0 ≤ k < mi }, a point.x ∈ R

d , x /∈ Pi and
a direction vector. v. Let.L+ ⊆ Hi be a set of constraints with.|L+| = m '

i ≤ mi . Then
.L+

in ⊆ L+ and .L+
out ⊆ L+ is defined by

.L+
in = {h | h ∈ L+ ∧ x /∈ h}, and L+

out = {h | h ∈ L+ ∧ x ∈ h}.

154 J. Stübbe and A. Remke

+

dir(n, v): −
sat(n, x): −

a)

+

dir(n, v): +
sat(, n, x): +

b)

−

dir(n, v): −
sat(, n, x): +

c)

−

dir(n, v): +
sat(n, x): −

d)

Fig. 4 Classification of constraints according to the values of.dir(n, v) and. sat(o, n, x)

Further, let .λin, λout ∈ R be two distances defined by

. λ+
in = max{λ | h ∈ L+

in ∧ ⟨n, x + λv⟩ = o}, and

λ+
out = min{λ | h ∈ L+

out ∧ ⟨n, x + λv⟩ = o}.

Then .λ+
in denotes the maximal distance along . v between point . x and a bounding

hyperplane. h̄, for.h ∈ L+
in. Further,.λ

+
out denotes the minimal distance along. v between

point. x and a bounding hyperplane. h̄, for.h ∈ L+
out. The interval.Ti is then defined by

.Ti = [λ+
in, λ

+
out].

The above definition is adapted to .L−, using

. L−
in = {h | h ∈ L− ∧ x /∈ h}, and L−

out = {h | h ∈ L− ∧ x ∈ h},

and .Ti = [−λ−
out, λ

−
in] is defined by:

. λ−
in = max{λ | h ∈ L−

in ∧ ⟨n, x − λv⟩ = o}, and

λ−
out = min{λ | h ∈ L−

out ∧ ⟨n, x − λv⟩ = o}.

After the extensions made to Markov Chain Monte Carlo, the procedure still
satisfies the definition of Mixing Algorithms by Smith [25], therefore results in a
sequence of sample points that is uniformly distributed in . Ω.

3.2 Extending Multiphase Monte Carlo

Although a variety of Monte-Carlo algorithms for volume approximation exist, their
majority can only be applied to convex bodies. More general approaches, e.g., based
on partitioning into simplices, suffer from scalability issues. In the following we
show how Multiphase Monte Carlo approximates the volume .V (Ω) of the union
over a finite set of convex polytopes .Ω = U

Pi∈P Pi .

Monte-Carlo Integration on a Union of Polytopes 155

0

1

2

0

1

2

Fig. 5 Union of polytopes.P1, P2, P3 (left) and the unique assignment of the non-empty intersec-
tions to the polytope with the largest index (right)

First, we apply Multiphase Monte Carlo to each.Pi individually, and approximate
its volume.V (Pi) as. Vi . Then we ensure that the volumes of the individual polytopes
are combined such that non-empty intersections are taken into account, correctly.
We attribute the non-empty intersection of polytopes.Pi and.Pj to the polytope with
the higher index. Hence, every polytope .Pj maintains the volume of its non-empty
intersection with polytope.Pi for.i < j . Figure 5 illustrates the concept for the union
of three polytopes (left) and the resulting attribution of intersections to the polytope
with the highest index (right).

Instead of considering the union of convex polytopes .Pi with potentially non-
empty intersections, we take the union of non-convex polytopes.P̂i with empty inter-
sections, i.e., .P̂i ∩ P̂j = ∅ for all .i /= j and .i, j ≤ |P|, formalized as:

. Ω =
⊔

Pi∈P
Pi =

⊔

Pi∈P
P̂i , with P̂i = {x ∈ Pi | ∀Pj ∈ P, i < j.x /∈ Pj }.

Second, we sample .N points from .Ω with MpU(MC)2, resulting in the set of
samples .ΦN = {xi | 0 ≤ i ≤ N } which are uniformly distributed over . Ω. We then
estimate the volume of each .P̂i using the samples in .ΦN and the indicator function
.1Pi (x)which returns one if.x ∈ Pi and zero, otherwise. The number of samples from
.ΦN contained in the polytope .Pi is then given as .

∑
x∈ΦN

1Pi (x). For simplicity we
write.

∑
Φn

1Pi . For every polytope.Pi ∈ P, we define. ρi , which is used to reduce the
estimated volume .Vi to .VP̂i

:

. ρi =
∑

Φn
1P̂i∑

Φn
1Pi

, and VP̂i
= ρi · Vi .

Hence, the volume of .Ω is approximated as .VΩ = ∑|P|
i=1 ρi · Vi . This allows to

estimate the integral from Eq. 1, using .V (Ω) = VΩ.

156 J. Stübbe and A. Remke

4 Evaluation

We compare results obtained by MpU(MC)2with the state-of-the-art approach GSL
VEGAS for pseudo-randomly created sets of polytopes . P in .15 and .20 dimensions.
All results were obtained on a Nehalem-C @2.25 GHz processor. We compute the
probability resulting from Eq. 1 for the joint density function. f = ∏d

l=1 g(xl), where
.g(x) equals the normal distribution .N(μ, σ 2) with parameters .μ = 10, .σ = 5 in
every dimension.

Results obtained by MpU(MC)2and VEGAS are illustrated as boxplots indicating
median and variation for a union of polytopes in .15-dimensions in Fig. 6 and for . 20
dimensions in Fig. 7. The whiskers are chosen as .1.5 times the range between the
upper and the lower quartile. Table 1 summarizes the corresponding number of runs,
the average computation time of runs and the median for all performed integrations.

For .d = 15, MpU(MC)2and VEGAS compute a comparable median in a similar
time, while VEGAS achieves a smaller variation, as indicated in the boxplots. How-
ever, for .d = 20, MpU(MC)2clearly outperforms VEGAS, as the resulting boxplots
indicate a very small variation, while VEGAS results in a large variation. Note that the
median computed by MpU(MC)2and VEGAS differ considerably. As no ground truth
exists for these computations, we consider the scatter plots illustrating the computed
probability over the computation time for .d = 15 in Fig. 8 and for .d = 20 in Fig. 9
for every run performed.

Recall that MpU(MC)2is an iterative approach which computes a fixed number of
samples. In contrast VEGAS uses a convergence criterion .χ2 ≤ 0.5 and required
between one and seven iterations per run. Figures 8 and 9 show that runs with

Fig. 6 MpU(MC)2with .N = 1e+. 8, .N = 2, 5e.8 and .N = 5e+. 8, VEGAS with . N =
4, 3e+. 8,.N = 9, 3e+. 8 and.N = 2, 4e+. 9, .d = 15

Monte-Carlo Integration on a Union of Polytopes 157

Fig. 7 MpU(MC)2with.N = 1e+. 7 and.N = 1e+. 8, VEGAS with.N = 3, 5e+. 9, . d = 20

Table 1 Computation times, number of runs and median obtained in dimensions 15 and 20 with
MpU(MC)2 and VEGAS, respectively

MpU(MC)2 MpU(MC)2 MpU(MC)2 MpU(MC)2 MpU(MC)2 VEGAS VEGAS VEGAS VEGAS

.

Dimension 15 15 15 20 20 15 15 15 20

Time(h) 1.79 4.45 9.01 4.73 12.98 2.14 4.35 9.46 27.76

runs 7 7 8 10 10 7 8 7 10

Median (. e+. 4) .2.134 .2.136 .2.136 .0.034 0.034 .2.137 .2.137 .2.138 .9.485e-. 10

MpU(MC)2always have the same computation time for a fixed number of samples,
while the computation time of VEGAS depends on the number of iterations. For
.d = 15 VEGAS computes a similar probability for different number of iterations.

For.d = 20, seven runs of VEGAS terminate after one or two iterations, i.e., 10h or
20h, and the resulting probability is too small. The three runs of VEGAS with larger
computation times take . 4, . 6 and . 7 iterations and result in a very similar probability
as computed by MpU(MC)2. These results indicate, that VEGAS was started with not
enough samples. However, the sample size of VEGAS in.20 dimensions was already
set to .3, 5e+. 9, and the corresponding computation time is excessive.

158 J. Stübbe and A. Remke

Fig. 8 Relation of time and
result, . d = 15

Fig. 9 Relation of time and
result, . d = 20

5 Conclusion

The proposed integration method MpU(MC)2is able to provide very good approxima-
tions of multi-dimensional integrals over the union of convex polytopes, especially
in high dimensions. The results of the evaluation show that VEGAS as implemented
in the GNU library, is an efficient integration strategy for up to.15 dimensions. In. 20
dimensions MpU(MC)2clearly outperforms VEGAS on the randomly created union
of polytopes considered. Note that due to excessive computation times, we do not
have the same number of runs for all computations in .15 dimensions. Instead, the
available computational power was focused on computations in .20 dimensions.

This work is funded through the DFG grant 471367371. To ensure repeatability,
the source code and the generated sets of polytopes can be found at https://zivgitlab.
uni-muenster.de/ag-sks/tools/realyst.

https://zivgitlab.uni-muenster.de/ag-sks/tools/realyst
https://zivgitlab.uni-muenster.de/ag-sks/tools/realyst
https://zivgitlab.uni-muenster.de/ag-sks/tools/realyst
https://zivgitlab.uni-muenster.de/ag-sks/tools/realyst
https://zivgitlab.uni-muenster.de/ag-sks/tools/realyst
https://zivgitlab.uni-muenster.de/ag-sks/tools/realyst
https://zivgitlab.uni-muenster.de/ag-sks/tools/realyst
https://zivgitlab.uni-muenster.de/ag-sks/tools/realyst
https://zivgitlab.uni-muenster.de/ag-sks/tools/realyst

Monte-Carlo Integration on a Union of Polytopes 159

Future work aims at proving that the mixing time of MpU(MC)2is polynomial
and to include MpU(MC)2into tools for verification of stochastic hybrid systems.

References

1. Abbasi-Yadkori, Y., Bartlett, P., Gabillon, V., Malek, A.: Hit-and-run for sampling and planning
in non-convex spaces. In: 20th International Conference on Artificial Intelligence and Statistics,
Proceedings of Machine Learning Research, vol. 54, pp. 888–895 (2017)

2. Asmussen, S., Glynn, P.: A new proof of convergence of MCMC via the ergodic theorem. Stat.
Probab. Lett. 81, 1482–1485 (2011)

3. Barber, C.B., Dobkin, D.P., Huhdanpaa, H.: The quickhull algorithm for convex hulls. ACM
Trans. Math. Softw. 22(4), 469–483 (1996)

4. Bellman, R.E.: Dynamic Programming. Princeton University Press, Princeton (2021)
5. Chalkis, A., Fisikopoulos, V.: Volesti: volume approximation and sampling for convex poly-

topes in R. R J. 13(2), 561 (2021)
6. Cousins, B., Vempala, S.: A practical volume algorithm. Math. Program. Comput. 8(2), 133–

160 (2016)
7. Dyer, M.E.: The complexity of vertex enumeration methods. Math. Oper. Res. 8(3), 381–402

(1983)
8. Dyer, M.E., Frieze, A.M.: Random walks, totally unimodular matrices, and a randomised dual

simplex algorithm. Math. Program. 64, 1–16 (1994)
9. Emiris, I.Z., Fisikopoulos, V.: Efficient random-walk methods for approximating polytope

volume. In: 13th Annual Symposium on Computational Geometry, pp. 318–327. ACM (2014)
10. Ge, C., Ma, F.: A fast and practical method to estimate volumes of convex polytopes. In:

Frontiers in Algorithmics, pp. 52–65. Springer, Berlin (2015)
11. Ge, C., Ma, F., Zhang, P., Zhang, J.: Computing and estimating the volume of the solution

space of SMT(LA) constraints. Theoret. Comput. Sci. 743, 110–129 (2018)
12. Gough, B.: GNU scientific library reference manual. Network Theory Ltd. (2009)
13. Hastings, W.K.: Monte Carlo sampling methods using Markov chains and their applications.

Biometrika 57(1), 97–109 (1970)
14. Hüls, J., Pilch, C., Schinke, P., Niehaus, H., Delicaris, J., Remke, A.: State-space construction

of hybrid petri nets with multiple stochastic firings. ACM Trans. Model. Comput. Simul. 31(3),
13:1–13:37 (2021)

15. Kiatsupaibul, S., Smith, R.L., Zabinsky, Z.B.: An analysis of a variation of hit-and-run for
uniform sampling from general regions. ACM Trans. Model. Comput. Simul. 21(3) (2011)

16. Lepage, G.P.: Adaptive multidimensional integration: VEGAS enhanced. J. Comput. Phys.
439, 110386 (2021)

17. Lovasz, L., Vempala, S.: Fast algorithms for logconcave functions: sampling, rounding, inte-
gration and optimization. In: 47th Annual IEEE Symposium on Foundations of Computer
Science, pp. 57–68 (2006)

18. László, L.: Hit-and-run mixes fast. Math. Program., Ser. B 86, 443–461 (1999)
19. Pilch, C., Hartmanns, A., Remke, A.: Classic and non-prophetic model checking for hybrid petri

nets with stochastic firings. In: 23rd International Conference on Hybrid Systems: Computation
and Control. ACM (2020)

20. Pilch, C., Schupp, S., Remke, A.: Optimizing reachability probabilities for a restricted class of
stochastic hybrid automata via Flowpipe-construction. In: Quantitative Evaluation of Systems,
pp. 435–456. Springer, Berlin (2021)

21. Polyak, B., Gryazina, E.: Billiard walk—a new sampling algorithm for control and optimization.
IFAC Proc. Vol. 19, 6123–6128 (2014)

22. Press, W.H., Farrar, G.R.: Recursive stratified sampling for multidimensional Monte Carlo
integration. Comput. Phys. 4(2), 190 (1990)

160 J. Stübbe and A. Remke

23. Ross, S.M.: Introduction to probability models. Academic Press (2007)
24. Simonovits, M.: How to compute the volume in high dimension? Math. Program. 97(1), 337–

374 (2003)
25. Smith, R.L.: Efficient Monte Carlo procedures for generating points uniformly distributed over

bounded regions. Oper. Res. (1984)
26. Smith, R.L.: Efficient Monte Carlo procedures for generating points uniformly distributed over

bounded regions. Oper. Res. 32(6), 1296–1308 (1984)
27. Smith, R.L.: The hit-and-run sampler: a globally reaching Markov chain sampler for generating

arbitrary multivariate distributions. In: Conference on Winter Simulation, pp. 260–264. IEEE
CS (1996)

28. Zabinsky, Z.B., Smith, R.L.: Hit-and-Run Methods, pp. 721–729. Springer, Berlin (2013)

Achieving Long-Term Fairness
in Submodular Maximization Through
Randomization

Shaojie Tang, Jing Yuan, and Twumasi Mensah-Boateng

Abstract Submodular function optimization is applied in ML and data analysis,
including diverse dataset summarization. Fairness-aware algorithms are essential for
handling sensitive attributes. Our research investigates the problem of maximizing a
monotone submodular function while adhering to constraints on the expected number
of selected items per group. Our goal is to compute a distribution over feasible sets,
and to achieve this, we develop a series of approximation algorithms.

1 Introduction

A set function is referred to as submodular if it follows the principle of diminishing
returns, where adding an item to a larger set yields a smaller benefit. This concept is
applied in various real-world scenarios such as feature selection [9], where the goal
is to select the most relevant features from a large pool of potential features to use in a
machine learning model; active learning [14, 20, 21], where the goal is to choose a set
of instances for a machine learning model to learn from; exemplar-based clustering
[10], where the goal is to choose a set of exemplars to represent a set of data points;
influence maximization in social networks [22, 24], where the goal is to choose a set
of individuals to target in order to maximize the spread of information or influence
in a network; as well as recommender system [12] and diverse data summarization
[18]. The goal of submodular optimization is to choose a set of items that optimizes
a submodular function while satisfying constraints such as size limitations, matroid
requirements, or knapsack restrictions.

S. Tang (B)
Naveen Jindal School of Management, The University of Texas at Dallas, Richardson, USA
e-mail: shaojie.tang@utdallas.edu

J. Yuan · T. Mensah-Boateng
Department of Computer Science and Engineering, University of North Texas, Denton, USA
e-mail: jing.yuan@unt.edu

T. Mensah-Boateng
e-mail: twumasimensah-boateng@my.unt.edu

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
A. Brieden et al. (eds.), Graphs and Combinatorial Optimization:
from Theory to Applications, AIRO Springer Series 13,
https://doi.org/10.1007/978-3-031-46826-1_13

161

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-46826-1_13&domain=pdf
shaojie.tang@utdallas.edu
 854 49687 a 854 49687 a

mailto:shaojie.tang@utdallas.edu
jing.yuan@unt.edu
 854
53672 a 854 53672 a

mailto:jing.yuan@unt.edu
twumasimensah-boateng@my.unt.edu
 854 56550 a 854 56550 a

mailto:twumasimensah-boateng@my.unt.edu
https://doi.org/10.1007/978-3-031-46826-1_13
https://doi.org/10.1007/978-3-031-46826-1_13
https://doi.org/10.1007/978-3-031-46826-1_13
https://doi.org/10.1007/978-3-031-46826-1_13
https://doi.org/10.1007/978-3-031-46826-1_13
https://doi.org/10.1007/978-3-031-46826-1_13
https://doi.org/10.1007/978-3-031-46826-1_13
https://doi.org/10.1007/978-3-031-46826-1_13
https://doi.org/10.1007/978-3-031-46826-1_13
https://doi.org/10.1007/978-3-031-46826-1_13
https://doi.org/10.1007/978-3-031-46826-1_13

162 S. Tang et al.

In practice, items or individuals are often grouped based on attributes such as
gender, race, age, religion, or other factors. However, if not properly monitored,
existing algorithms may display bias and result in an over- or under-representation
of certain groups in the final selected set. To address this issue, we propose the study of
long-term fair submodular maximization problem. The aim is to randomly choose a
subset of items that optimizes a submodular function, such that the expected number
of selected items from each group falls within the desired range. This approach
ensures that the final selection of items is not only optimized, but also equitable,
providing a fair representation of all groups in the long term.

Formally, we consider a set.V of items, which are divided into. m (not necessarily
disjoint) groups: .V1, V2, . . . , Vm with items in each group sharing similar attributes
(e.g., race). To ensure fairness, a randomized item selection algorithm must satisfy
the following criteria for all groups.t ∈ [m]where.[m] = {1, 2, . . . ,m}: the expected
number of selected items from group.Vt must be within the range of.[αt , βt], where. αt

and.βt are arbitrary parameters that may differ across groups; moreover, the number
of chosen items must always stay below a cardinality constraint of. b. To put it simply,
a fair randomized solution must meet two important requirements [3]: (a) restricted
dominance, which means the proportion of items from each group must be within
a certain limit, and (b) minority protection, which means the proportion of items
from each group must not fall below a certain limit. Our fairness notation has gained
significant recognition in the academic world and it has been adopted in various
studies, including multi-winner voting systems [7], fair recommendation systems
[13], and matroid-constrained optimization problems [8]. In fact, this notation is
capable of capturing other fairness definitions such as statistical parity [11], the
.80%-rule [4], and proportional representation [16].

In contrast to the majority of prior studies on fairness-aware algorithm design [7,
8, 13, 23, 25], which focus on finding a fixed solution set, our objective is to compute
a randomized solution that can, on average, satisfy the group fairness constraints.
This approach provides more flexibility in meeting the fairness requirements. Take
fairness-aware product recommendations as an example. The objective is to suggest
a set of products to online consumers while ensuring that each group of sellers,
such as male and female sellers, is expected to have at least one of their products
recommended. Due to limited display space, suppose we can only display one product
to the consumer. In this scenario, it is not possible for any of the deterministic
solutions to fulfill the fairness requirement, however, a randomized solution can be
easily found to satisfy it. For instance, a product can be suggested from each group
with the same likelihood of occurrence. We next summarize the main contributions
of this paper.

1. We are the first to investigate the long-term fair submodular maximization prob-
lem, which presents a substantial challenge due to its exponential number of
variables. As a result, it is difficult to solve using traditional linear programming
(LP) solvers.

2. We develop a .(1 − 1/e)2-approximation algorithm that approximately satisfies
the fairness constraints. Specifically, our algorithm ensures that the number of

Achieving Long-Term Fairness in Submodular Maximization Through Randomization 163

selected items from group .Vt is within the range of .[[αt], [βt]]. Notably, if both
.αt and.βt are integers, our solution strictly satisfies the fairness constraints in the
original problem.

3. It is important to note that the previous algorithm requires optimizing a contin-
uous approximation of the underlying submodular function, referred to as the
multi-linear extension [6]. This is achieved by executing the continuous greedy
algorithm, whose implementation is computationally expensive in practice. Our
second contribution is the introduction of a fast greedy algorithm that achieves a
degraded approximation ratio of .(1 − 1/e)2/2.

4. We present a .(1 − 1/e)-approximation randomized algorithm. Our approach
involves utilizing the ellipsoid method and incorporating an approximate sep-
aration oracle for the dual LP of the original problem, which has a polynomial
number of variables and an exponential number of constraints. Unlike the deter-
ministic solutions, our randomized approach provides three key benefits. Firstly,
our solution does not depend on the assumption of non-overlapping groups. Sec-
ondly, our approach strictly satisfies all fairness constraints. Thirdly, we achieve
the optimal approximation ratio of .1 − 1/e.

2 Preliminaries and Problem Statement

A set .V of . n items is considered and there is a non-negative submodular utility
function . f : 2V → R+. The marginal utility of an item .e ∈ V on a set .S ⊆ V is
denoted as . f (e | S), i.e., . f (e | S) = f ({e} ∪ S) − f (S). The function . f is consid-
ered submodular if, for any sets .X,Y ⊆ V with.X ⊆ Y and any item.e ∈ V \ Y , the
following inequality holds: . f (e | Y) ≤ f (e | X). It is considered monotone if, for
any set .X ⊆ V and any item.e ∈ V \ X , it holds that . f (e | X) ≥ 0.

Assuming .V is divided into .m groups, .V1, V2, . . . , Vm , there is a specified lower
and upper bound on the expected number of items from each group that must be
included in a feasible solution. These bounds, referred to as .α ∈ R

m
≥0 and .β ∈ R

m
≥0,

represent group fairness constraints. In addition, there is a hard constraint . b on
the number of selected items. Let .F = {S ⊆ V | |S| ≤ b} denote the set of feasible
selections. The goal of the fair submodular maximization problem (denoted as.P.0) is
to determine a distribution.x ∈ [0, 1]F over sets from.F that maximizes the expected
utility, while ensuring that the expected number of items selected from each group
meets the fairness constraints. I.e.,

. P.0 max
x∈[0,1]F

∑

S∈F
xS f (S)s.t.

(
αt ≤ ∑

S∈F (xS · |S ∩ Vt |) ≤ βt ,∀t ∈ [m].∑
S∈F xS ≤ 1.

Here each decision variable.xS represents the selection probability of.S ∈ F . This
LP has a total of .2m + 1 constraints, excluding the obvious constraints that specify

164 S. Tang et al.

that .xS ≥ 0 for all .S ∈ F . Despite this, the number of variables in the LP problem
is equal to the number of elements in . F , which can be exponential in . n. As a result,
conventional LP solvers are unable to solve this LP problem efficiently. The next
lemma asserts that .P.0 is a problem that is NP-hard.

Lemma 1 Problem .P.0 is NP-hard.

Proof We demonstrate this by reducing it to the classic cardinality constrained mono-
tone submodular maximization problem, which we will describe below. ∎
Definition 1 The cardinality constrained monotone submodular maximization prob-
lem takes as input a collection of items . V , a monotone submodular function
. f : 2V → R+, and a cardinality constraint . b. The goal is to choose a subset of
items .S ⊆ V that maximizes . f (S) while ensuring that .|S| ≤ b.

To show the reduction, we take an instance of the cardinality constrained monotone
submodular maximization problem and create a corresponding instance of.P.0. To do
this, we consider only one group with no fairness constraints, meaning.V = V1, with
.α1 = 0 and.β1 = |V |. It can be easily verified that the optimal solution of this instance
is a distribution over a set of solutions, each of which is an optimal solution to the
instance of cardinality constrained monotone submodular maximization problem.
Additionally, although.P.0 allows for randomized solutions, there exists at least one
optimal solution that is a deterministic set. Specifically, every optimal solution of
the cardinality constrained monotone submodular maximization problem must be an
optimal solution to its corresponding instance of .P.0. Hence, these two instances are
equivalent. This concludes the proof of the reduction. ∎

3 Near Feasible Deterministic Algorithms

In this section, we present a deterministic algorithm for .P.0. Here we assume that
.m groups do not overlap with each other. To begin, we introduce the multilinear
extension of a monotone submodular function . f . Given a vector .y ∈ [0, 1]n , let . Sy
be a random set where each item.i ∈ V is independently added to.Sy with probability
. yi . Then we let .F(y) = E[f (Sy)] = ∑

S⊆V f (S)
∏

i∈S yi
∏

i /∈S(1 − yi).
We next introduce a new optimization problem.P.1. The goal of.P.1 is to compute a

vector .y ∈ [0, 1]n that maximizes .F(y) such that .αt ≤ ∑
i∈Vt

yi ≤ βt ,∀t ∈ [m] and
.
∑

t∈[m]
∑

i∈Vt
yi ≤ b.

. P.1 max
y∈[0,1]n F(y)s.t.

(
αt ≤ ∑

i∈Vt
yi ≤ βt ,∀t ∈ [m].∑

t∈[m]
∑

i∈Vt
yi ≤ b.

The following lemma establishes a connection between the optimal solution of
problem .P.0 and that of problem .P.1. This lemma serves as a crucial foundation
for understanding the relationship between the two problems and allows for the
development of a near optimal solution for .P.0 by solving .P.1.

Achieving Long-Term Fairness in Submodular Maximization Through Randomization 165

Lemma 2 Let .x∗ denote the optimal solution of .P.0 and .y∗ denote the optimal
solution of .P.1, it holds that

.(1 − 1/e)
∑

S∈F
x∗
S f (S) ≤ F(y∗). (1)

Proof Let . B be a polytope defined as the set of all vectors .y ∈ [0, 1]n that meet the
conditions in .P.1, i.e.,

.B = {y ∈ [0, 1]n | αt ≤
∑

i∈Vt
yi ≤ βt ,∀t ∈ [m];

∑

t∈[m]

∑

i∈Vt
yi ≤ b; 0 ≤ yi ≤ 1,∀i ∈ V }. (2)

Given the optimal solution.x∗ of.P.0, we then introduce a vector.ŷ ∈ [0, 1]n such that
.ŷi = ∑

S∈F x∗
S · 1i∈S where .1i∈S = 1 if .i ∈ S and .1i∈S = 0 otherwise. It is easy to

verify that the value of. ŷi represents the probability of item. i being selected according
to the distribution defined by . x∗. We next show that to prove this lemma, it suffices
to prove that

.ŷ ∈ B. (3)

As established in [2], if. f is monotone and submodular and.ŷi = ∑
S∈F x∗

S · 1i∈S , then
.(1 − 1/e)

∑
S∈F x∗

S f (S) ≤ F(ŷ). Here .1 − 1/e is also known as correlation gap of
monotone submodular functions. Suppose (3) is true and .y∗ is the optimal solution
of.P.1, it holds that .F(ŷ) ≤ F(y∗). Therefore, this lemma is a direct consequence of
the observation that .(1 − 1/e)

∑
S∈F x∗

S f (S) ≤ F(ŷ) ≤ F(y∗).
The rest of the proof is devoted to proving .ŷ ∈ B. First, because .x∗ is a feasible

solution of .P.0, it holds that .αt ≤ ∑
S∈F (x∗

S · |S ∩ Vt |) ≤ βt ,∀t ∈ [m]. It follows
that .αt ≤ ∑

i∈Vt
ŷi ≤ βt ,∀t ∈ [m], this is because . ∑S∈F (x∗

S · |S ∩ Vt |) = ∑
i∈Vt

ŷi
represents the expected number of items being selected from group .Vt according to
the distribution defined by . x∗. Second, because .x∗ is a feasible solution of .P.0, the
expected number of selected items according to the distribution defined by .x∗ is at
most. b. Hence,.

∑
t∈[m]

∑
i∈Vt

ŷi ≤ b. Third, it is trivial to show that. 0 ≤ ŷi ≤ 1,∀i ∈
V . This finishes the proof of .ŷ ∈ B. ∎

3.1 Algorithm Design

We next present our algorithm. Initially, we use a continuous greedy algorithm to
compute a fractional solution for .P.1, which we then round to obtain an integral
solution.

Continuous greedy algorithm. We first provide a detailed description of the
continuous greedy algorithm (listed in Algorithm 1). The framework of this algorithm
was first developed in [6] and we adapt it to find a fractional solution within polytope
. B (listed in (2)). Note that polytope. B is not downward-closed, which presents unique
challenges in our study. This algorithm maintains a fractional solution .yl ∈ [0, 1]n ,

166 S. Tang et al.

Algorithm 1 Continuous Greedy Algorithm
1: Set δ = 9n2, l = 0, y0 = [0]n .
2: while l < δ do
3: For each i ∈ V , estimate F(i | yl)
4: Find an optimal solution z ∈ [0, 1]n to P.A

5: P.A Maximizey
∑

i∈V yi F(i | yl) s.t. y ∈ B.

6: yl+1 = yl + z , increment l = l + 1
7: y' ← yδ

8: return y'

starting with .y0 = (0, 0, . . . , 0). In each round. l, it computes the marginal utility of
each item.i ∈ V on top of .yl with respect to .F as follows,

..F(i | yl) = F(ei ∨ yl) − F(yl). (4)

where.ei ∈ {0, 1}n is the vector with. 1 in the.i-th coordinate and. 0 elsewhere;. ei ∨ yl

denotes the element-wise maximum of two vectors . ei and . yl .
Then we solve the following linear programming problem P.A which assigns a

weight .F(i | yl) to each item. i and seeks the maximum weighted vector in . B.

. P.AMaximizey
∑

i∈V
yi F(i | yl)s.t.y ∈ B.

After solving P.A at round . l and obtaining an optimal solution .z ∈ [0, 1]n , we
update the fractional solution as follows: .yl+1 = yl + z. After . δ rounds where . δ =
9n2, .yδ is returned as the final solution . y'.

Rounding. We next employ pipage rounding [1], a simple deterministic procedure
of rounding of linear relaxations, to round .y' to an integral solution. This algorithm
is composed of three phases.

• Phase 1: For each .t ∈ [m], repeatedly perform the following until .Vt has no more
than one non-integral coordinate: Choose any two fractional coordinates. i , . j such
that .i, j ∈ Vt . Calculate .θ1 = min{1 − y'

i , y
'
j } and .θ2 = min{y'

i , 1 − y'
j }. Create

two vectors,.ya = y' + θ1(ei − e j) and.yb = y' + θ2(e j − ei). If.F(ya) ≥ F(yb),
set .y ← ya , otherwise set .y ← yb.

• Phase 2: Assume .y1, . . . , yk are the remaining fractional coordinates. Repeat the
same procedure as in the first phrase until. y has at most one non-integral coordinate.

• Phase 3: Let . i denote the last non-integral coordinate, if any. Set .yi = 1. Output
.A ⊆ V whose coordinate in . y is . 1.

Note that a similar framework has been utilized to tackle the fair submodular
maximization problem in a deterministic setting [7]. This problem aims to identify a
fixed set of items that optimize a submodular function while fulfilling group fairness
constraints. Their approach shares similarities with ours in the rounding stage, but

Achieving Long-Term Fairness in Submodular Maximization Through Randomization 167

does not require the third phase. This is because in their setting, both .αt and .βt are
integers, which allows them to ensure that no non-integral coordinates exist after the
first two rounding phases.

3.2 Performance Analysis

Recall that.x∗ denotes the optimal solution of.P.0, let.OPT = ∑
S∈F x∗

S f (S) denote
the utility of the optimal solution. The following theorem states that . A, the solution
set returned from our algorithm, is a near feasible solution of.P.0 and has a utility of
at least .(1 − 1/e)2OPT .

Theorem 1 Let .A be the set returned by our algorithm and .OPT be the utility of
the optimal solution of .P.0. It follows that:

. f (A) ≥ (1 − 1/e)2OPT . (5)

Moreover, . A always satisfies the cardinality constraint and nearly satisfies the fair-
ness constraints of .P.0, i.e., .|A| ≤ b and .[αt] ≤ |A ∩ Vt | ≤ [βt],∀t ∈ [m].
Proof We first prove that .|A| ≤ b always holds. Observe that the fractional solution
.y' found by the continuous greedy algorithm belongs to . B, hence, .

∑
i∈V y'

i ≤ b.
Moreover, phases 1 and 2 in the rounding stage do not change this value, and
phase 3 rounds the last non-integral coordinate, if any, to one. It follows that . |A| ≤
[∑i∈V y'

i] ≤ b where the second inequality is by the observations that .
∑

i∈V y'
i ≤ b

and . b is an integer.
We next prove that .A nearly satisfies the fairness constraints of .P.0, i.e., . [αt] ≤

|A ∩ Vt | ≤ [βt],∀t ∈ [m]. Because .y' ∈ B, it holds that . αt ≤ ∑
i∈Vt

y'
i ≤ βt ,∀t ∈

[m]. Observe that phase 1 does not change this value, phases 2 and 3 round at most
one fractional coordinate from each group to a binary value. Hence, . [∑i∈Vt

y'
i] ≤

|A ∩ Vt | ≤ [∑i∈Vt
y'
i],∀t ∈ [m]. This, together with.αt ≤ ∑

i∈Vt
y'
i ≤ βt ,∀t ∈ [m],

implies that .[αt] ≤ |A ∩ Vt | ≤ [βt],∀t ∈ [m].
At last, we prove the approximation ratio of . A. Recall that .y∗ denotes the opti-

mal solution of .P.1, [6] has proved that if . f is monotone and submodular, then
the fractional solution .y' returned from the continuous greedy algorithm has a util-
ity of at least .(1 − 1/e)F(y∗), i.e., .F(y') ≥ (1 − 1/e)F(y∗). This, together with
Lemma 2, implies that .F(y') ≥ (1 − 1/e)2

∑
S∈F x∗

S f (S) = (1 − 1/e)2OPT . To
prove . f (A) ≥ (1 − 1/e)2OPT , it suffices to show that . f (A) ≥ F(y'). We next
prove this inequality. Observe that in phases 1 and 2 of the rounding stage, we per-
form pipage rounding to round. y' to a vector. y that contains at most one non-integral
coordinate. According to [6], pipage rounding does not decrease the expected utility
of . y', that is, .F(y) ≥ F(y'). In phase 3, we round the last non-integral coordinate
in . y, if any, to one. This operation does not decrease the expected utility of . y by the
assumption that. f is monotone. Hence,.F(y) ≥ F(y') still holds. Recall that. y is the
indicator vector of . A, hence, . f (A) = F(y). Therefore, . f (A) = F(y) ≥ F(y'). ∎

168 S. Tang et al.

Remark 1 It follows immediately from the preceding theorem that if .αt and .βt are
both integers for all.t ∈ [m], then our solution strictly satisfies all fairness constraints
of problem.P.0.

3.3 A Fast Greedy Algorithm

Our prior algorithm involves solving a multi-linear relaxation problem, which can
be slow and computationally expensive, particularly for large scale problems. In this
section, we introduce a simple greedy algorithm that offers a significant increase in
speed but with a trade-off in the form of a decreased approximation ratio.

Even though.P.0 permits the use of randomized solutions, Theorem 1 shows that a
deterministic solution is sufficient for obtaining a constant-factor approximation for
.P.0. We next present a simple greedy algorithm that effectively finds a near optimal
deterministic solution, which in turn results in a constant-factor approximation for the
problem.P.0. To this end we introduce a new optimization problem.P.2, a deterministic
version of .P.0 (with relaxed fairness constraints).

. P.2max
S∈F

f (S)s.t.[αt] ≤ |S ∩ Vt | ≤ [βt],∀t ∈ [m].

Note that in.P.2we use.[αt] and.[βt] as lower and upper bounds, hence a feasible
solution of .P.2 is a near feasible solution of the original problem.P.0. The following
lemma states that the optimal solution of .P.2 attains a .(1 − 1/e)2 approximation of
the problem.P.0.

Lemma 3 Let .AP2 denote the optimal solution of .P.2, it holds that . f (AP2) ≥ (1 −
1/e)2OPT where .OPT is the optimal solution of .P.0.

Proof Recall that in Theorem 1, we show that . f (A) ≥ (1 − 1/e)2OPT where . A
satisfies all constraints in .P.2. Because .AP2 is the optimal solution of .P.2, we have
. f (AP2) ≥ f (A) ≥ (1 − 1/e)2OPT . ∎

We next present a simple greedy algorithm to attain a .1/2 approximation of .P.2.
First, we present .P.3, a relaxed problem of .P.2.

. P.3max
S⊆V

f (S)s.t.

(
|S ∩ Vt | ≤ [βt],∀t ∈ [m].∑

t∈[m] max{[αt], |S ∩ Vt |} ≤ b.

It is easy to verify that any feasible solution of .P.2 must be a feasible solution
of .P.3. Hence, . f (AP2) ≤ f (AP3) where .AP3 is the optimal solution of .P.3. It has
been shown that the constraints listed in.P.3 constitute a matroid [13]. Hence,.P.3 is a
classic submodular maximization problem subject to a matroid constraint. A simple
greedy algorithm guarantees a .1/2 approximation of .P.3 [17]. This algorithm works

Achieving Long-Term Fairness in Submodular Maximization Through Randomization 169

by iteratively adding items to the solution set such that at each step, the marginal
increase in the objective value is maximized, and the matroid constraint is satisfied,
and it terminates when the current solution set can not be expanded. Let .Ag denote
the solution returned from the greedy algorithm, it holds that

. f (Ag) ≥ (1/2) f (AP3) ≥ (1/2) f (AP2). (6)

Moreover, it is easy to verify that .Ag must be a feasible solution of .P.2.

Theorem 2 Let .Ag denote the solution of returned from the greedy algorithm, it
holds that . f (Ag) ≥ (1−1/e)2

2 · OPT . Moreover, .Ag always satisfies the cardinality
constraint and nearly satisfies the fairness constraints of .P.0, i.e., .|Ag| ≤ b and
.[αt] ≤ |Ag ∩ Vt | ≤ [βt],∀t ∈ [m].
Proof The proof of the first part of this theorem stems from inequality (6) and
Lemma 3. The second part of this theorem is because .Ag is a feasible solution to
problem.P.2. ∎

4 A Feasible .(1− 1/e)-Approximation Randomized
Algorithm

We now present a randomized algorithm for .P.0. In contrast to the results presented
in the previous section, our randomized solution offers three advantages: (1) our
solution does not rely on the assumption of non-overlapping groups, (2) our solution
satisfies all fairness constraints in a strict sense, and (3) we achieve the optimal
approximation ratio of .1 − 1/e.

As previously stated,.P.0 has a number of variables equal to the number of elements
in . F , which can become extremely large when . n is significant. This means that
standard LP solvers are unable to handle this LP problem effectively. To tackle
this issue, we resort to its corresponding dual problem (.Dual of P.0) and utilize the
ellipsoid algorithm [15] to solve it. In the dual problem, we assign two “weights”
.zt ∈ R≥0 and.ut ∈ R≥0 to each group.Vt and there is an additional variable.w ∈ R≥0.

.
Dual of P.0minz∈Rm

≥0,u∈Rm
≥0,w∈R≥0

∑
t∈[m](βt ut − αt zt) + w

s.t.w ≥ f (S) + ∑
t∈[m] |S ∩ Vt | · (zt − ut),∀S ∈ F .

The ellipsoid method determines the emptiness of a non-degenerate convex set
. C , such as the feasible region of.Dual of P.0. It defines an ellipsoid containing. C and
iteratively checks if the center is in. C . If feasible, it explores smaller objectives. If not,
it employs a (approx.) separation oracle, constructing smaller ellipsoids. This geo-
metric process continues until a feasible solution is found or . C is considered empty.
The method requires a poly-time (approx.) separation oracle and has polynomial
iterations for linear problems.

170 S. Tang et al.

In the context of our problem, we approximately solve the SubMax problem to
check the feasibility of the current solution and act as the separation oracle.

Definition 2 Given a utility function . f , a cardinality constraint . b, and two vectors
.z ∈ R

m
≥0 and .u ∈ R

m
≥0, SubMax.(z, u, b) aims to . maxS∈F (f (S) + ∑

t∈[m] |S ∩ Vt | ·
(zt − ut)).

SubMax.(z, u, b) asks for a set . S of size at most . b such that . f (S) + ∑
t∈[m] |S ∩

Vt | · (zt − ut) is maximized. Observe that. f is non-negative monotone and submod-
ular; and .

∑
t∈[m] |S ∩ Vt | · (zt − ut) is a modular function in terms of . S, hence,

SubMax.(z, u, b) is a classic problem of maximizing the summation of a non-
negative monotone submodular and a modular function under cardinality constraints.
Reference [19] developed a randomized algorithm that finds a set .A such that for
every .S ∈ F , it holds that

. f (A) +
∑

t∈[m]
|A ∩ Vt | · (zt − ut) ≥ (1 − 1/e) f (S) +

∑

t∈[m]
|S ∩ Vt | · (zt − ut). (7)

Now we are ready to present the main theorem of this section.

Theorem 3 There exists a polynomial time .(1 − 1/e)-approximation algorithm
(with additive error . ∈) for .P.0.

The rest of this section is devoted to proving Theorem 3, that is, we present a
polynomial .(1 − 1/e)-approximation algorithm for .P.0. Let .C(L) denote the set of
.(z ∈ R

m
≥0, u ∈ R

m
≥0,w ∈ R≥0) satisfying that

.

∑

t∈[m]
(βt ut − αt zt) + w ≤ L and w ≥ f (S) +

∑

t∈[m]
|S ∩ Vt | · (zt − ut),∀S ∈ F .

We use binary search to determine the smallest value of .L for which .C(L) is
not empty. Given a specific value of . L , we first check the inequality .

∑
t∈[m](βt ut −

αt zt) + w ≤ L . Then, we run algorithm from [19] (labeled as . A) to solve Sub-
Max.(z, u, b). Let . A be the solution set returned from. A.

• If. f (A) + ∑
t∈[m] |A ∩ Vt | · (zt − ut) ≤ w, then.C(L) is marked as non-empty. In

this case, we try a smaller . L .
• If. f (A) + ∑

t∈[m] |A ∩ Vt | · (zt − ut) > w, then.(z,w) /∈ C(L) and. A is a separat-
ing hyperplane. We identify a reduced-size ellipsoid whose center complies with
the given constraint. This process continues until a feasible solution in .C(L) is
found (in this case, we try a smaller . L) or the volume of the bounding ellipsoid is
so small that.C(L) is considered empty (in this case, it is evident that reaching the
current objective is not achievable and therefore, we will attempt a larger value
for . L).

To learn about the specific steps involved in running ellipsoid using separation
oracles and achieving (multiplicative and additive) approximate guarantees, we sug-
gest referring to Chap. 2 of [5]. Assume .L∗ is the minimum value of .L for which

Achieving Long-Term Fairness in Submodular Maximization Through Randomization 171

the algorithm determines that .C(L) is non-empty. Hence, there exists a . (z∗, u∗,w∗)
such that

.

∑

t∈[m]
(βt u

∗
t − αt z

∗
t) + w∗ ≤ L∗ (8)

and

. f (A) +
∑

t∈[m]
|A ∩ Vt | · (z∗

t − u∗
t) ≤ w∗ (9)

where .A is the output obtained from .A after solving SubMax.(z∗, u∗, b). Let . μ =
1 − 1/e, it follows that . ∀S ∈ F ,

. f (S) +
∑

t∈[m]
|S ∩ Vt | · (u∗

t − z∗
t)/μ ≤ (f (A) +

∑

t∈[m]
|A ∩ Vt | · (u∗

t − z∗
t))/μ

≤ w∗/μ (10)

where the first inequality is by (7) and the second inequality is by inequality (9). In
addition, inequality (8) implies that

.

∑

t∈[m]
(βt u

∗
t − αt z

∗
t)/μ + w∗/μ ≤ L∗/μ. (11)

In Eq. (10) implies .(z∗/μ, u∗/μ,w∗/μ) is a feasible solution of .Dual of P.0.
This, together with in Eq. (11), implies that the optimal solution of .Dual of P.0 and
thus the optimal solution of .P.0 (by strong duality) is upper bounded by . 1

μ
· L∗. By

solving.P.0 with a value of .L∗, we attain a .μ-approximation solution for the original
problem .P.0. Here, we explain how to compute such a solution using only feasible
solution sets corresponding to the separating hyperplanes found by the separation
oracle. Assume.L∗ − ∈ is the largest value of . L for which the algorithm determines
that .C(L) is empty, where . ∈ is decided by the precision of our algorithm. Let . F '
denote the subset of .F for which the dual constraint is violated during the execution
of the ellipsoid algorithm on .C(L∗ − ∈). Then, .|F '| is polynomial. We consider the
following polynomial sized .Dual of P.0 (labeled as .Poly-sized Dual of P.0), using
separating hyperplanes from.F '.

.
Poly-sized Dual of P.0minz∈Rm

≥0,u∈Rm
≥0,w∈R≥0

∑
t∈[m](βt ut − αt zt) + w

s.t.w ≥ f (S) + ∑
t∈[m] |S ∩ Vt | · (zt − ut),∀S ∈ F '.

Because.C(L∗ − ∈) is empty, the optimal solution to.Poly-sized Dual of P.0 is at
least .L∗ − ∈. Hence, the value of the dual of .Poly-sized Dual of P.0, which is listed
in .Poly-sized P.0, is at least .L∗ − ∈. Note that .Poly-sized P.0 is of polynomial size.

172 S. Tang et al.

.

Poly-sized P.0maxx∈[0,1]F '
∑

S∈F ' xS f (S)

s.t.

(
αt ≤ ∑

S∈F (xS · |S ∩ Vt |) ≤ βt ,∀t ∈ [m].∑
S∈F ' xS ≤ 1.

Recall that the optimal solution of .P.0 is upper bounded by . 1
μ

· L∗, obtaining
an optimal solution from .Poly-sized P.0 provides a .μ-approximation for .P.0 (with
additive error . ∈), where .μ = 1 − 1/e.

References

1. Ageev, A.A., Sviridenko, M.I.: Pipage rounding: a new method of constructing algorithms with
proven performance guarantee. J. Comb. Optim. 8, 307–328 (2004)

2. Agrawal, S., Ding, Y., Saberi, A., Ye, Y.: Correlation robust stochastic optimization. In: SODA,
pp. 1087–1096. SIAM (2010)

3. Bera, S., Chakrabarty, D., Flores, N., Negahbani, M.: Fair algorithms for clustering. NIPS 32
(2019)

4. Biddle, D.: Adverse impact and test validation: a practitioner’s guide to valid and defensible
employment testing. Routledge (2017)

5. Bubeck, S., et al.: Convex optimization: algorithms and complexity. Found. Trends® Mach.
Learn. 8(3-4), 231–357 (2015)

6. Calinescu, G., Chekuri, C., Pál, M., Vondrák, J.: Maximizing a submodular set function subject
to a matroid constraint. In: IPCO, pp. 182–196. Springer, Berlin (2007)

7. Celis, L.E., Huang, L., Vishnoi, N.K.: Multiwinner voting with fairness constraints. In: IJCAI,
pp. 144–151 (2018)

8. Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvtiskii, S.: Matroids, matchings, and fairness.
In: AISTATS, pp. 2212–2220. PMLR (2019)

9. Das, A., Kempe, D.: Algorithms for subset selection in linear regression. In: Proceedings of
the Fortieth Annual ACM Symposium on Theory of Computing, pp. 45–54 (2008)

10. Dueck, D., Frey, B.J.: Non-metric affinity propagation for unsupervised image categorization.
In: 2007 IEEE 11th International Conference on Computer Vision, pp. 1–8. IEEE (2007)

11. Dwork, C., Hardt, M., Pitassi, T., Reingold, O., Zemel, R.: Fairness through awareness. In:
Proceedings of the 3rd Innovations in Theoretical Computer Science Conference (2012)

12. El-Arini, K., Guestrin, C.: Beyond keyword search: discovering relevant scientific literature.
In: KDD, pp. 439–447 (2011)

13. El Halabi, M., Mitrović, S., Norouzi-Fard, A., Tardos, J., Tarnawski, J.M.: Fairness in streaming
submodular maximization: algorithms and hardness. NIPS 33, 13609–13622 (2020)

14. Golovin, D., Krause, A.: Adaptive submodularity: theory and applications in active learning
and stochastic optimization. J. Artif. Intell. Res. 42, 427–486 (2011)

15. Grötschel, M., Lovász, L., Schrijver, A.: The ellipsoid method and its consequences in combi-
natorial optimization. Combinatorica 1(2), 169–197 (1981)

16. Monroe, B.L.: Fully proportional representation. Am. Polit. Sci. Rev. 89(4), 925–940 (1995)
17. Nemhauser, G.L., Wolsey, L.A., Fisher, M.L.: An analysis of approximations for maximizing

submodular set functions-i. Math. Program. 14(1), 265–294 (1978)
18. Sipos, R., Swaminathan, A., Shivaswamy, P., Joachims, T.: Temporal corpus summarization

using submodular word coverage. In: Proceedings of the 21st ACM International Conference
on Information and Knowledge Management, pp. 754–763 (2012)

19. Sviridenko, M., Vondrák, J., Ward, J.: Optimal approximation for submodular and supermodular
optimization with bounded curvature. Math. Oper. Res. 42(4), 1197–1218 (2017)

Achieving Long-Term Fairness in Submodular Maximization Through Randomization 173

20. Tang, S.: Beyond pointwise submodularity: non-monotone adaptive submodular maximization
in linear time. Theoret. Comput. Sci. 850, 249–261 (2021)

21. Tang, S.: Beyond pointwise submodularity: non-monotone adaptive submodular maximization
subject to knapsack and k-system constraints. Theoret. Comput. Sci. 936, 139–147 (2022)

22. Tang, S., Yuan, J.: Influence maximization with partial feedback. Oper. Res. Lett. 48(1), 24–28
(2020)

23. Tang, S., Yuan, J.: Group equility in adaptive submodular maximization. INFORMS J. Comput.
(2023)

24. Tang, S., Yuan, J.: Optimal sampling gaps for adaptive submodular maximization. In: AAAI
(2022)

25. Yuan, J., Tang, S.: Group fairness in non-monotone submodular maximization. J. Comb. Optim.
45(3), 88 (2023)

On Syntactical Graphs-of-Words

Nabil Moncef Boukhatem, Davide Buscaldi, and Leo Liberti

Abstract A graph-of-words is a graph representation of natural language text based
on proximity in the linear text reading order: the vertices are the words, and edges
are induced by . k left and right neighbours of the words. Vertices representing same
or similar words are then contracted. We propose graphs-of-words where edges are
instead induced on paths in the syntax trees (we investigate both dependency and
constituency trees). We discuss some properties, advantages, and disadvantages of
classic and new graphs-of-words on texts extracted from literature, as well as from
a technical Q&A database.

1 Introduction

Natural language is human-specific, ambiguous, and often ungrammatical; its under-
standing is usually subjected to context knowledge. It is opposed to formal language,
which is computer-specific, unambiguous, and must be grammatically perfect to be
meaningful: its pragmatics are formally defined by the effect it has on an electronic
or mechanical system. In this paper we use formal language constructs to instruct
computers to deal with natural language text. More precisely, we focus on a very
specific and well-known task in Natural Language Processing (NLP), i.e. that of key-

N. M. Boukhatem · L. Liberti (B)
LIX CNRS, Ecole Polytechnique, 91128 Palaiseau, France
e-mail: leo.liberti@polytechnique.edu

N. M. Boukhatem
OneTeam, Paris, France

Present Address:
Lundimatin, Montpellier, France
e-mail: nboukhatem@oneteam.fr; moncef-nabil.boukhatem@lundimatin.fr

D. Buscaldi
LIPN CNRS, Université de Paris-Nord, Villetaneuse, France
e-mail: buscaldi@lipn.univ-paris13.fr

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
A. Brieden et al. (eds.), Graphs and Combinatorial Optimization:
from Theory to Applications, AIRO Springer Series 13,
https://doi.org/10.1007/978-3-031-46826-1_14

175

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-46826-1_14&domain=pdf
leo.liberti@polytechnique.edu
 854 45026 a 854 45026 a

mailto:leo.liberti@polytechnique.edu
nboukhatem@oneteam.fr
 854
51889 a 854 51889 a

mailto:nboukhatem@oneteam.fr
moncef-nabil.boukhatem@lundimatin.fr
 10919 51889 a 10919 51889 a

mailto:moncef-nabil.boukhatem@lundimatin.fr
buscaldi@lipn.univ-paris13.fr
 854 55874 a 854 55874
a

mailto:buscaldi@lipn.univ-paris13.fr
https://doi.org/10.1007/978-3-031-46826-1_14
https://doi.org/10.1007/978-3-031-46826-1_14
https://doi.org/10.1007/978-3-031-46826-1_14
https://doi.org/10.1007/978-3-031-46826-1_14
https://doi.org/10.1007/978-3-031-46826-1_14
https://doi.org/10.1007/978-3-031-46826-1_14
https://doi.org/10.1007/978-3-031-46826-1_14
https://doi.org/10.1007/978-3-031-46826-1_14
https://doi.org/10.1007/978-3-031-46826-1_14
https://doi.org/10.1007/978-3-031-46826-1_14
https://doi.org/10.1007/978-3-031-46826-1_14

176 N. M. Boukhatem et al.

word extraction: given a text in natural language, output .K keywords that a human
would find the most pertinent for the text. This obviously poses the issue of empir-
ical verification: since different humans would have different preferences, how do
we determine what keywords are “best”? In this paper we resort to ground truths put
together by a restricted number of humans (see Sect. 3).

The most established method for extracting keywords from natural language text
is probably based on ranking functions (see e.g. [14]) based on frequency of words
in documents with respect to a set of documents called corpus [11]. The main appli-
cation is automatic document indexing or summarization [12].

This paper replaces the concept of word frequency in documents with that of
vertex degrees in graphs that represent the text. Methodologically speaking, the main
contribution is a comparison between different graph representations of text. One of
the graph representations we consider is derived from constituency syntax trees (see
Sect. 1.3, which, to the best of our knowledge, has never been previously considered
for this purpose).

1.1 Ranking Functions for Text

The earliest cornerstone of information retrieval in text is perhaps the TF-IDF ranking
function. It consists of the product of two other functions: Term Frequency (TF)
and Inverse Document Frequency (IDF) [15]. We shall limit our introduction to
the functions we actually used in our computational experiments. In the following
formulæ, we let . C be a corpus (i.e., a set) of text documents, .D be a document in . C ,
and . t be a term (i.e., a word) in . D. Then:

.tf(t, D) = |(v ∈ D | v = t)| (1)

.TF(t, D) = 1 + ln(1 + max(0, ln(tf(t, D)))) (2)

.IDF(t,C) = ln(|C| + 1)
∑

D∈C tf(t, D)
(3)

are the basic building blocks for two well-known ranking functions. These are:

.TFIDF(t, D,C) = TF(t, D) IDF(t,C)

1 − b + (b|D|∑
P∈C |P|/|C|

) (4)

.BM25(t, D,C) = (k1 + 1)tf(t, D) IDF(t,C)

k1
(
1 − b + (b|D|∑

P∈C |P|/|C|
)) + tf(t, D)

, (5)

where .b = 0.5 and .k1 = 1.2. We aim at replacing .TF with the weighted degree
.tw(t, D) of a word vertex . t in a graph .G(D) representing a document, namely:

On Syntactical Graphs-of-Words 177

.tw(t, D) =
∑

v∈NG(D)(t)

dtv (6)

.TWIDF(t, D,C) = tw(t, D) IDF(t,C)

1 − b + b
(|D|∑

D∈C |P|/|C|
) , (7)

where .duv is the weight of the edge .{u, v} in the graph .G(D), and .b = 0.75. The
weights of the constants is taken from [16]. For unweighted graphs .G(D) we have
.duv = 1 for all edges .{u, v}.

1.2 Graph-of-Words

Graphs can be used to summarize and extract keywords from a text in natural language
[13]. In general, these graphs encode syntactical and sometimes semantic information
on the edges, that represent relations on the words inferred from the text. Here we
look at a purely syntactical construction proposed in Rousseau’s Ph.D thesis [16]
under the name graph-of-words.

In a graph-of-words (gow), the vertices are labeled by the words. The edges inci-
dent to each node are induced by the proximity of the words that are left and right of
the node word in the linear text reading order. For example, in the sentence “Com-
puters are close to understanding natural language”, the words “are” and “to” are .1-
proximal to “close”, and the words “computers” and “understanding” are.2-proximal
to “close”. In a gow with proximity parameter. 2, the node labelled by “close” would
be adjacent to the vertices labelled by “computers”, “are”, “to”, “understanding”.

Note that, if a word occurs more than once in a text, this construction creates
separate vertices referring to each occurrence. Moreover, the resulting graph would
be a simple chain of embedded cliques, where almost every vertex has the same
degree. This motivates a last contraction step in the construction of gows: if two or
more vertices represent different occurrences of the same word, they are contracted
to a single node. This last step is sometimes interpreted more broadly, for example by
contracting vertices having same lemmatized word (i.e. the stem of the word without
the desinences). An important pre-processing step to a useful gow is the removal of
stop-words: words that are very frequent in most texts, but do not carry keyword-
status information. Typically, stop-words are articles, auxiliary verbs or particles,
prepositions, conjunctions, common adverbs, and so on. An example of a gow is
given in Fig. 1. We note that gows of proximity . k have at least .2k adjacencies.

1.3 Syntax Trees

In the framework of formal languages, syntax trees are the trace of a parsing algo-
rithm for the sentences of the language. They also provide the mechanism by which

178 N. M. Boukhatem et al.

Fig. 1 A graph-of-word with proximity. 2 of the sentence “if two or more nodes represent different
occurrences of the same word, they are contracted to a single node”. Edges are weighted by the text
distance between the two word vertices, but this weighting is not essential. The node with largest
degree is labelled by the word “nodes” (in the above graph, the two nodes corresponding to “nodes”
and “node” were contracted)

computers assign semantics to high-level programs, or, in other words, execute code
[6, 10]. Parsing algorithms use a formal grammar in order to drive a recursive anal-
ysis of a formal language sentence. The grammar consists of a set of rules of the
form

. tag −→ comp11 . . . comp1n1 | . . . | comph1 . . . comphnk ,

which requires that a phrase tag be decomposed in one of . h ways, each of which
consists of a certain number of components, which can themselves be phrase tags
or words. The grammar includes rules for each of the component tags down to the
words, which are part of a given vocabulary. Each sentence input is assigned an
initial tag, e.g. . S for “sentence”. The parser resolves tags recursively in terms of the
component tags prescribed by the grammar rules, for as long as there are relevant
rules that apply. In so doing, the parser produces a syntax tree. If the parser stops
before all tags are resolved into constant words, the sentence does not conform to the
grammar rules (this is how interpreters and compilers flag syntax errors). Otherwise,
the recursive parsing process can also assign executable machine code to each of the
constant words (which may be loops, tests, assignments), and then compose the code
into an executable program (this is how interpreters and compilers turn a high-level
language program into a set of actions performed by the CPU).

Noam Chomsky is credited with the popularization of syntax trees applied to nat-
ural languages [1], where the sentence tag. S is usually mapped to the decomposition
.NP VP: i.e., a sentence corresponds to a noun phrase and a verb phrase. These two
tags are then recursively decomposed until the words are reached. Since natural lan-

On Syntactical Graphs-of-Words 179

Fig. 2 The constituency tree for the same sentence as in Fig. 1. The tags are: S (sentence), SBAR
(subordinate sentence), NP (noun phrase), VP (verb phrase), QP (quantificational phrase), PP
(propositional phrase)

Fig. 3 The dependency tree for the same sentence as in Fig. 1. The arcs are usually labeled by the
dependency tag of a child node to its parent node, not shown here because they are not used in this
paper

guage is not formal, in general there may be many possible recursive decompositions,
all leading to a different meaning, without an obvious way to choose between them.
Chomsky’s trees are called constituency trees (see Fig. 2 for an example).

Dependency trees are different types of trees originally introduced to linguistics
by Louis Tesnière. The root of the tree is the main verb of the sentence, which has
subject and main complement as child nodes. Each noun node has articles, adjectives,
adverbs as child nodes (see Fig. 3 for an example).

Our interest in syntax trees is that they provide a binary relation on words alter-
native to linear text order proximity. For dependency trees, this order is natural. For
constituency trees, the words in a sentence appear as leaf nodes. In both cases, since
(undirected) trees are connected, each word is adjacent to any other word by means

180 N. M. Boukhatem et al.

of the shortest path between the corresponding nodes. This allows us to define a
natural edge weight equal to the length of the shortest path.

Contributions of this paper. In this paper we present gows based on different syn-
tactical relations:.k-proximity, dependency, constituency. While.k-proximity [17] and
dependency-based gows [3] are not new, to the best of our knowledge, constituency
trees were never used to construct gows so far. We computationally evaluate gows
of these different types on several counts.

2 Graph-of-Words Construction Algorithms

By a sentence we mean a string that a human could correctly transform into a valid
syntax tree. A phrase is a sub-string of a sentence, which appears as a sub-tree of the
sentence’s syntax tree. Sentences are also assumed to be equivalent to lists of tokens,
where each token can be either a word or a punctuation symbol. Notation-wise, for
a sentence . s we let . si be the . i th token of . s for every .i ≤ |s|, which is the number of
tokens of . s.

All our gow construction algorithms have three main phases:

1. generation of a binary relationship on words;
2. projection over important words (and removal of non-important ones: typically

these includes punctuation and stop-words);
3. contraction of like words (typically words with the same lemmatization, or with

a similar meaning according to an existing vocabulary or encyclopedia [2]).

2.1 Proximity Gows

In proximity gows the two phases (generation, projection) may be carried out in either
order, but changing the order yields different weights (usefulness of edge weights
in proximity gow is doubtful, though [16]). For a string of . n tokens, the generation
phase is as follows. Initially, .V = {s1, . . . , sn} and .E is empty. Then we add edges
.{si , si−h} and .{si , si+h} for all .1 ≤ h ≤ k and for all .h < i < n − h.

The projection phase, if carried out before generation, simply removes the tokens
deemed unimportant from the sentence. s. The new list of tokens. s ' is then subjected
to the generation phase. Otherwise projection re-arranges edges incident to removed
token vertices: we iteratively replace pairs of edges .({v, u}, {u,w}) incident to a
removed vertex . u by means of an edge .{v,w} with weight .dvw = dvu + duw. Note
that the removal process may add an edge .{v,w} involving a removed vertex: this
edge will be part of a replaced pairs later in the iteration.

Proposition 1 Let .G = (V, E) be the the .k-proximity graph obtained from the sen-
tence .s = (s1, . . . , sn) by performing generation first, then projection; and . H =
(U, F) be obtained by projection then generation. We have .G = H.

On Syntactical Graphs-of-Words 181

Proof We have.V = U because projection removes the same vertices whether carried
out before or after generation. Let us now consider an edge.{u, v} ∈ E , where. u = si
and .v = s j for some .i < j . If . j − i ≤ k in the original sentence . s then projection
either leaves . j − i invariant or makes it smaller, so .{u, v} ∈ F . Assume now that
. j − i = k + 1. This means that there is an index . h with .i < h < j such that .sh is a
removed node. Then, after generation, there must be an edge pair . ({si , sh}, {sh, s j })
in the graph that is replaced by a single edge.{si , s j }: obviously, since .sh is removed
first in . H , this edge is also in . F . By induction, the same holds for any value of
. j − i > k. The argument showing that edges in .F must also be in .E is similar. ∎

Given a weighted graph .G = (V, E, d) where .V is a set of tokens of a string . s,
the contraction in. G of a subset.R ⊂ V s.t..|R| ≥ 2 is as follows: (i) a representative
.r ∈ R is chosen; (ii) in all edges .{v, u} ∈ E with .v /∈ R and .u ∈ R the symbol . u is
replaced by. r , with.dvr = dvu + dur ; (iii) all edges in the induced subgraph.G[R] are
removed from. E ; (iv) all vertices in . R except from. r are removed from. V .

Corollary 1 Before contraction, the token graph .G = (V, E) constructed by gen-
eration and projection has .|V | − 2k vertices (from the .(k + 1)-st to the .(n − k)th)
having the same node degree .2k.
Proof By Proposition 1, the graph.G = (V, E) can be constructed by projection first
and then generation. Therefore this graph is a.k-proximity graph, where the. i th vertex
has degree .2k for all .k < i ≤ n − k. ∎

Corollary 1 shows that the contraction step is essential to yielding proximity gows
with range of different vertex degrees. This feature is important insofar as our aim is
to look at word ranking functions based on vertex degrees in gows rather than word
frequencies in documents.

2.2 Dependency

A dependency tree is by definition a tree graph over the sentence tokens. The gen-
eration of dependency trees from sentences is carried out by either Probabilistic
Context-Free Grammar (PCFG) parsers [9] or appropriately trained neural networks
[5].

Projection and contraction are the same as for proximity-based gows. We note
that the projection step on dependency trees has a weak impact on connectivity,
since most of the important tokens are naturally set at nodes closer to the root than
non-important ones.

2.3 Constituency

A constituency tree is a tree graph over sentence tokens as well as syntax tags. In
this sense, constituency trees can be seen as “liftings” from dependency trees. To

182 N. M. Boukhatem et al.

a given constituency tree, one can retrieve the corresponding dependency tree 1 [7].
Vice-versa, there may be more than one constituency tree corresponding to a given
dependency tree [18]. Existing algorithms aim at finding the smallest corresponding
constituency tree.

The generation of constituency trees from sentences is carried out by either PCFG
parsers (see https://nlp.stanford.edu/software/srparser.html) or appropriately trained
neural networks (see https://pypi.org/project/benepar/).

Because constituency trees have more nodes than just tokens from the given sen-
tence, a preliminary projection step is necessary to remove all of the non-token nodes.
This is different from the projection step in proximity and dependency gows, because
the impact on connectivity when removing grammatical tag nodes is considerable.
We therefore defined a more connectivity-aware variant of projection: (i) for any
pair .(u, v) of leaf nodes (word tokens) in the constituency tree . T of the sentence . s,
compute the shortest path .u → v in . T having length . l, and add the edge .{u, v} with
weight .duv = l to the graph; (ii) remove all arcs adjacent to at least one non-leaf
node; (iii) remove all non-leaf nodes. This preliminary projection step transforms
the constituency tree into a graph on the word tokens from the sentence . s.

We note that the most efficient algorithm for computing shortest paths in trees
is by means of the Lowest Common Ancestor (LCA) of the origin and destination
nodes. This yields a linear-time shortest path algorithm.

Projection and contraction are the same as for proximity-based gows.

3 Computational Experiments

Our benchmark aims at establishing advantages and disadvantages of different types
of gows in keyword extraction tasks. We consider two corpora: a literary one, and
a technical one. We extract keywords from documents in these corpora using the
following rank functions: .TFIDF and .BM25 using term frequency, and .TWIDF on
.k-proximity, constituency tree, and dependency tree based gows (see Sect. 1.1).

Our code is written in Python 3.10. For dependency and constituency syntax trees
we made use of spaCy 3.4.4 [5] and benepar 0.2.0 [8]. Graphs were encoded and
handled in NetworkX [4] 2.8.6. Experiments were obtained on an Apple M1 Max
CPU with 64GB RAM and MacOS 12.6.3. See http://www.github.com/leoliberti/
syntaxGraphOfWords to access the code and the corpora.

3.1 The Literary Dataset

The literary corpus contains 18 short documents extracted from various literary work,
each consisting of a single paragraph. The lexical and grammatical quality of these

1 See https://github.com/wenkokke/dep2con.

https://nlp.stanford.edu/software/srparser.html
https://nlp.stanford.edu/software/srparser.html
https://nlp.stanford.edu/software/srparser.html
https://nlp.stanford.edu/software/srparser.html
https://nlp.stanford.edu/software/srparser.html
https://nlp.stanford.edu/software/srparser.html
https://nlp.stanford.edu/software/srparser.html
https://pypi.org/project/benepar/
https://pypi.org/project/benepar/
https://pypi.org/project/benepar/
https://pypi.org/project/benepar/
https://pypi.org/project/benepar/
http://www.github.com/leoliberti/syntaxGraphOfWords
http://www.github.com/leoliberti/syntaxGraphOfWords
http://www.github.com/leoliberti/syntaxGraphOfWords
http://www.github.com/leoliberti/syntaxGraphOfWords
http://www.github.com/leoliberti/syntaxGraphOfWords
http://www.github.com/leoliberti/syntaxGraphOfWords
https://github.com/wenkokke/dep2con
https://github.com/wenkokke/dep2con
https://github.com/wenkokke/dep2con
https://github.com/wenkokke/dep2con
https://github.com/wenkokke/dep2con

On Syntactical Graphs-of-Words 183

Table 1 Comparative results on a set of paragraphs from various literary sources, from which we
extracted the three highest-rank keywords with various methods. We report the number of keywords
given by each method that is in the list of three keywords in the ground truth

Instance TermFreq Graphs-of-words

Source kw TFIDF BM25 .1-prox .4-prox con dep

1177 b.C. 3 1 1 1 2 0 1

Crossings 3 1 1 1 1 0 0

The golden bough 3 1 1 0 0 0 0

Illuminating Eco 3 0 0 0 0 0 0

The island of the day before 3 1 1 1 2 1 1

The library of Babel 3 0 0 0 0 0 1

Media stories: Malvinas 3 1 1 1 1 1 0

Neverwhere 3 2 2 1 1 0 1

Nothing 3 0 0 0 0 0 0

Paine 3 0 0 0 0 0 0

Foucault’s Pendulum 3 0 0 0 0 0 0

The perks of being a wallflower 3 1 1 1 1 0 0

Quantum computing since Democritus 3 0 0 0 0 0 0

Richard III 3 1 1 1 1 0 1

The seventh function of language 3 0 0 0 0 0 0

Walden 3 1 1 0 0 0 0

When the sleeper wakes 3 1 1 1 1 0 0

Wisdom 3 0 0 0 0 0 1

Total 54 11 11 8 10 2 6

excerpts is perfect. The ground truth is a set of three keywords per document. These
keywords were established by the authors of this paper before obtaining the compu-
tational results (we admit nonetheless to a considerable risk of personal bias in our
ground truth).

The keywords extracted automatically from the literary corpus are the 3 topmost
ranking ones according to the values of term frequency and graph degree rank func-
tions. In Table 1 we report the number of keywords guessed by the automatic methods
that are part of the set of keywords in the ground truth.

We see from Table 1 that term frequency based ranking methods are better than
gow-based methods. Amongst the latter, .4-proximity gows yield the best perfor-
mance. We also note that the two term frequency based rankings have exactly the
same performance.

184 N. M. Boukhatem et al.

3.2 The Technical Dataset

The technical corpus consists of 449 documents, each of which is a client question
to technical support. The corresponding ground truth was collected by one of the
authors of this paper (NB) in the course of his work at OneTeam. The questions are “as
asked”, with the normal amount of lexical quirks and ungrammatical phrases. These
documents are short (.8.6 words on average). We therefore restricted .k-proximity
to .k = 1, otherwise the central word in the sentence would have ended up having
an abnormally high vertex degree in the .k-proximity gow. The average number of
keywords per document in the ground truth is.2.4, but the maximum is. 5: we therefore
allowed the extraction of up to . 5 keywords (the gows often had fewer than five
vertices, however).

In Table 2 we present comparative statistical distributions on the success scores
of each method on documents with a certain number of ground truth keywords. Each
entry has the format .x@y to mean that a given method was able to find . y correct
keywords. x times, when ranking the docs documents having.|GT| keywords in their
ground truth. The total.9 + 238 + 143 + 36 + 3 = 428 falls short of the total of. 449
documents since 21 documents had no keywords. Moreover, the marginal sums do
not match docs because we did not print the number of times methods found zero
correct keywords (it suffices to subtract the marginal sums from docs).

Table 2 Comparative statistics on the technical corpus. Under “Input” we report the number (docs)
of documents having.|GT| keywords in the ground truth. Each data entry.x@y in row (.|GT|, docs)
and method-indexed column means that the corresponding method found . y out of .|GT| ground
truth keywords in. x documents

Input Ranking method

.|GT| docs TermFreq Graphs-of-words

TFIDF BM25 .1-proximity Constituency Dependency

1 9 6@1 6@1 6@1 6@1 6@1

2 238 111@1 111@1 115@1 115@1 113@1

14@2 14@2 14@2 14@2 15@2

3 143 41@1 41@1 41@1 43@1 42@1

76@2 76@2 77@2 76@2 77@2
1@3 1@3 1@3 1@3 1@3

4 36 17@1 17@1 17@1 17@1 17@1

6@2 6@2 6@2 6@2 6@2

0@3 0@3 0@3 1@3 0@3

1@4 1@4 1@4 0@4 1@4

5 3 3@1 3@1 3@1 3@1 3@1

Total 428 276 276 281 282 281

On Syntactical Graphs-of-Words 185

In this experiment we find that gows are more effective at keyword extraction
than term frequency. Constituency tree based gows are marginally better than other
gows. We also note, again, that the two term frequency based methods attain equal
performance levels.

4 Conclusion

We looked at graphs-of-words constructed using syntax trees, and their performance
in extracting keywords from text. There is no clear dominance of term frequency
versus graph-of-words rankinds. Graph-of-words scored better with short ungram-
matical sentences, term frequency in literary texts. In the future, we may apply this
technique to structures such as “knowledge graphs”, which can be obtained by map-
ping the words in the text into structured knowledge sources.

References

1. Chomsky, N.: Syntactic Structures. Mouton, The Hague (1956)
2. Eco, U.: Semiotics and the Philosophy of Language. Indiana University Press, Bloomington,

IN (1984)
3. Franciscus, N., Ren, X., Stantic, B.: Dependency graph for short text extraction and summa-

rization. J. Inf. Telecommun. 3(4), 413–429 (2019)
4. Hagberg, A., Schult, D., Swart, P.: Exploring network structure, dynamics, and function using

NetworkX. In: Varoquaux, G., Vaught, T., Millman, J. (eds.) Proceedings of the 7th Python
in Science Conference (SciPy2008), pp. 11–15. Pasadena, CA (2008)

5. Honnibal, M., Montani, I.: Industrial-Strength Natural Language Processing in Python. spaCy
(2023)

6. Hopcroft, J., Ullman, J.: Introduction to Automata Theory, Languages, and Computation.
Addison-Wesley, Reading, MA (1979)

7. Johansson, R., Nugues, P.: Extended Constituent-to-Dependency conversion for English. In:
Proceedings of the 16th Nordic Conference of Computational Linguistics, NODALIDA, pp.
105–112 (2007)

8. Kitaev, N., Klein, D.: Constituency parsing with a self-attentive encoder. In: Proceedings of the
56th Annual Meeting of the Association for Computational Linguistics, vol. 1 (Long Papers),
pp. 2676–2686. ACL (2018)

9. Klein, D., Manning, C.: Accurate unlexicalized parsing. In: Proceedings of the 41st Meeting
of the Association for Computational Linguistics, pp. 423–430 (2003)

10. Levine, R., Mason, T., Brown, D.: Lex and Yacc, 2nd edn. O’Reilly, Cambridge (1995)
11. Meyer, F.: English Corpus Linguistics. CUP, Cambridge (2004)
12. Mihalcea, R.: Graph-based ranking algorithms for sentence extraction, applied to text summa-

rization. In: Proceedings of the 42nd Annual Meeting of the Association for Computational
Lingusitics, volume Companion Volume of ACL (2004)

13. Mihalcea, R., Tarau, P.: Textrank: bringing order into text. In: Proceedings of the Conference
on Empirical Methods in Natural Language Processing, pp. 404–411 (2004)

14. Pérez-Agüera, J., Arroyo, J., Greenberg, J., Perez Iglesias, J., Fresno, V.: Using BM25F for
semantic search. In: Proceedings of 3rd International Semantic Search Workshop, pp. 1–8
(2010)

186 N. M. Boukhatem et al.

15. Roelleke, T., Wang, J.: TF-IDF uncovered: a study of theories and probabilities. In: Proceedings
of the 31st Annual International ACM SIGIR Conference on Research and Development in
Information Retrieval, pp. 435–442 (2008)

16. Rousseau, F.: Graph-of-words: Mining and retrieving text with networks of features. Ph.D.
thesis, LIX, Ecole Polytechnique, France (2015)

17. Rousseau, F., Vazirgiannis, M.: Graph-of-word and TW-IDF: new approach to ad hoc IR. In:
Proceedings of CIKM, New York, 2013. ACM

18. Xia, F., Palmer, M.: Converting dependency structures to phrase structures. In: Allan, J. (ed.)
Proceedings of the First International Conference on Human Language Technology Research,
HLT, San Francisco, 2001. Morgan Kaufman

On the Optimality Gap of Full Airport
Slot Assignments: Capacity-Limited
Packing with Pareto Optimality
Constraints

Andreas Brieden, Peter Gritzmann, and Michael Ritter

Abstract We study a combinatorial packing problem with Pareto optimality con-
straints which arises naturally in the aviation industry. In fact, it has been observed
that the current practice of assigning takeoff and landing rights at major airports
may result in a significant gap between full and maximal flight schedules in practice.
We analyze the specific packing problem theoretically and, particularly, study the
occurring optimality gap under the prevailing regulatory regimes at the major air-
ports in Germany. Finally, we report on the findings of a computational study based
on real-world flight requests for one highly congested German airport.

1 Introduction

The allocation of takeoff and landing rights at congested airports is governed by
constraints which restrict the number of arrivals, departures and movements in time
intervals of specified length. More precisely, under the International Air Transport
Association’s (IATA) slot system, the aircraft movements at a so-called coordinated
airport are organized in the form of slots, which designate the right of an airline to
execute a landing or a takeoff at a specified time. The standard scheduling interval has
a length of 10 min, and can accommodate a specified number of arrivals, departures
or, generally, movements. Further restrictions apply for other time periods, e.g.,
for intervals of 30 or 60 min length. These intervals are usually “rolling”, i.e., the
specified bounds need to hold for each interval of that length starting at any of the

A. Brieden
Universität der Bundeswehr München, D-85579 Neubiberg, Germany
e-mail: andreas.brieden@unibw.de

P. Gritzmann · M. Ritter (B)
Department of Mathematics, TUM School of Computation, Information and Technology,
Technical University of Munich, Munich, Germany
e-mail: michael.ritter@tum.de

P. Gritzmann
e-mail: gritzmann@tum.de

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
A. Brieden et al. (eds.), Graphs and Combinatorial Optimization:
from Theory to Applications, AIRO Springer Series 13,
https://doi.org/10.1007/978-3-031-46826-1_15

187

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-46826-1_15&domain=pdf
andreas.brieden@unibw.de
 854 48568 a 854 48568
a

mailto:andreas.brieden@unibw.de
michael.ritter@tum.de
 854 53660 a 854 53660 a

mailto:michael.ritter@tum.de
gritzmann@tum.de
 854
56538 a 854 56538 a

mailto:gritzmann@tum.de
https://doi.org/10.1007/978-3-031-46826-1_15
https://doi.org/10.1007/978-3-031-46826-1_15
https://doi.org/10.1007/978-3-031-46826-1_15
https://doi.org/10.1007/978-3-031-46826-1_15
https://doi.org/10.1007/978-3-031-46826-1_15
https://doi.org/10.1007/978-3-031-46826-1_15
https://doi.org/10.1007/978-3-031-46826-1_15
https://doi.org/10.1007/978-3-031-46826-1_15
https://doi.org/10.1007/978-3-031-46826-1_15
https://doi.org/10.1007/978-3-031-46826-1_15
https://doi.org/10.1007/978-3-031-46826-1_15

188 A. Brieden et al.

Table 1 Reference value system applied at Frankfurt Airport. The R60M value of .106 includes. 2
movements reserved for ad-hoc operations

Name Length (min) Operation Type of constraint Upper bound

R10A 10 Arrival Fixed 13

R10D 10 Departure Fixed 13

R10M 10 Movement Fixed 20

R30A 30 Arrival Rolling 33

R30D 30 Departure Rolling 33

R30M 30 Movement Rolling 57

R60A 60 Arrival Rolling 60

R60D 60 Departure Rolling 60

R60M 60 Movement Rolling 106

10 min intervals, i.e., at the full hour, 10 min after the hour, 20 min after the hour etc.
Table 1 depicts the current slot regime or reference value system at Frankfurt Airport
as an example. Such reference value systems are designed to balance the number
of overall flights, arrivals and departures for safety, security, service, environmental
and other concerns.

At the beginning of the planning for a new season, all airlines submit either
single flight requests or flight series requests. The former concern a single arrival
or departure at a specified time or an arrival-departure pair with specified landing
and takeoff times. The latter demand a series of movements at given times and days
of the season. For instance, one such flight series request could ask for slots for the
following operation:

Arrival at 8:00, departure at 8:40 every Monday, Wednesday and Friday, starting June 1,
ending September 30.

In practice, the airlines usually allow some flexibility in terms of the arrival and
departure times, specify minimal ground time etc.; exact parameters are given with
the request in the form specified by the responsible authorities.

The coordination of all flight requests for all coordinated airports in Germany
is conducted by the “Flughafenkoordination Deutschland”, a federally owned com-
pany; similar institutions exist throughout the European Union and in other countries.
The final allocation which takes the inter-airport dependencies into account is then
negotiated at an international flight scheduling conference.

Under the so-called “use-it-or-lose-it” provision, airlines receive a grandfather
right for the upcoming summer or winter season for each flight request which was
already assigned in the previous summer or winter season, respectively, and in oper-
ation for at least 80% of the time. The slots with grandfather rights must be assigned
first before the remaining slot pool is allocated (with some additional constraints
concerning new entrants).

There are various reasonable objectives for the allocation including that of welfare
optimization (which, however, is currently hardly used in practice). Here, we will

On the Optimality Gap of Full Airport Slot Assignments … 189

mainly focus on the total number of flight movements that can be allocated and
refer to the underlying optimization problem as MaxMov. See [2] for background
information and detailed pointers to the literature, [2, 8, 9] for integer programming
models and [2] for a study of auction based allocation.

As it has been observed in practice, the “interplay” between the slot regime and
grandfather rights may lead to quite significant “blocking” which prevents any addi-
tional request from being assigned while the schedule contains a substantially lower
number of movements than expected.

The paper is organized as follows. In Sect. 2 we will provide a combinatorial pack-
ing model with Pareto optimality constraints, and state our main results. Section 3
addresses computational complexity issues. In Sect. 4 we study the blocking effect for
each fully coordinated airport in Germany based on its current individual reference
value system. We model the problem of minimizing the number of flight movements
under Pareto optimality as an integer programming problem and compute bounds for
the worst-case optimality gap which is caused by flight requests, i.e., of single move-
ments or arrival-departure pairs alone. We complement these results by reporting on
the findings of a computational study based on real-world flight series requests for
a major German airport in the presence of grandfather rights. Section 5 closes with
some final remarks.

2 Notation, Preliminaries, and Main Results

Mathematically, slot assignment is a specific packing problem, and grandfather rights
can be viewed as additional constraints which fix part of the packing. We will now
introduce a combinatorial packing model with Pareto optimality constraints. It is
slightly more general than what is required for our aviation problem. Its ingredients
will still be interpreted within the realm of slot assignments.

For .n ∈ N, let .[n] = {1, . . . , n}, let .1 = (1, . . . , 1)T ∈ R
n , and, for . j ∈ [n], let

.u j denote the . j th standard unit vector in .R
n . Now, for .m, n ∈ N, let

. A = (αi, j)i∈[m], j∈[n] =
⎛
⎜⎝
aT
1
...

aT
m

⎞
⎟⎠ ∈ Z

m×n, b =
⎛
⎜⎝

β1
...

βm

⎞
⎟⎠ ∈ Z

m, c =
⎛
⎜⎝

γ1
...

γn

⎞
⎟⎠ ∈ N

n
0.

As usual, in the following, inequalities are meant component-wise.
In the slot assignment problem, the columns of the matrix .A correspond to the

potential time slots for each flight request while the rows encode the constraints
imposed by the reference value system. The right hand side. b contains the individual
reference values, and. c is the objective function vector, e.g., .c = 1when the number
of allocated flight assignments has to be maximized.

190 A. Brieden et al.

In the following, the triple .(A, b, c) will be regarded as a packing task, and the
collection of all such tasks will constitute our packing problem. We will generally
suppose that the polyhedron

. P = {x ∈ R
n : Ax ≤ b ∧ 0 ≤ x ≤ 1}

contains at least one integer point, i.e., .P ∩ Z
n /= ∅. This is, of course, trivially

satisfied when.b ≥ 0 since the empty packing. 0 is always feasible then. Each vector
.g ∈ P ∩ Z

n is referred to as a packing while the objective function value.cT g is called
its density. We speak of .(A, b, c) as a combinatorial packing task if .A ∈ {0, 1}m×n ,
.b ∈ N

m , and .c = 1. Note that MaxMov, i.e., the slot assignment problem with the
goal to allocate as many movements as possible, is a combinatorial packing problem.

In the present paper we are particularly interested in the effect that grandfather
rights will have on the maximal density which can be achieved. More generally, we
study the worst-case gap between maximal and “full” packings. As usual, “maximal”
refers to the global maximum.max{cT g : g ∈ P ∩ Z

n} of the objective function over
all packings. On the other hand, “full” relates to a local optimum, i.e. a packing
which does not allow the addition of any further object without violating at least one
of the constraints.

Hence we say that a point .g ∈ P ∩ Z
n is full, if it is Pareto-optimal with respect

to all coordinate directions, i.e.,

. ĝ ∈ P ∩ Z
n ∧ ∀i∈[n] uT

i g ≤ uT
i ĝ =⇒ g = ĝ.

Let .GP denote the corresponding Pareto front, i.e., the set of all integer points in . P
which are full. Then we consider the following decision problem:

Problem 1 MinParetoMax

.

Input: γ ∈ N, A ∈ Z
m×n, b ∈ Z

m, c ∈ N
n
0 such that P ∩ Z

n /= ∅,

where P = {x ∈ R
n : Ax ≤ b ∧ 0 ≤ x ≤ 1}.

Task: Decide whether there exist g∗ ∈ P ∩ Z
n and g∗ ∈ GP such that

cT g∗ − cT g∗ ≥ γ ?

Of course, MinParetoMax is the decision version of computing

. max{cT x : x ∈ P ∩ Z
n} − min{cT x : x ∈ GP}

which asks for the optimality gap, i.e., the difference in the objective function values
of a maximal and a minimal full packing.

In slot allocation we are interested in the effect of a priority assignment for requests
which are endowed with grandfather rights. The optimality gap is then an upper bound
for the consequences of current assignment regimes for the degree of exhaustion of
airport capacity.

On the Optimality Gap of Full Airport Slot Assignments … 191

Gaps between global and certain local optima are well studied for packings of
objects of different sizes or weights, with a particular view on the behavior of specific
approximation algorithms. The area of bin packing, for instance, provides a large class
of examples; see, e.g., [4]. The existence and extent of such effects is, however, less
obvious for packings of objects of the same weight and same gain. To the best of our
knowledge, optimality gaps which are caused by the interplay of grandfather rights
with specific reference value systems have not been studied systematically before.

As it turns out, even quite restricted versions of MinParetoMax are .NP-
complete. For background material on computational complexity see [5].

Theorem 1 MinParetoMax is .NP-complete. The .NP-completeness persists even
if all instances are restricted to those for which .γ = 1, one integer solution is explic-
itly known, all integer solutions have the same cardinality, all entries of the matrices
and right hand sides are in .{0,±1}, .c ∈ {0, 1}n, and .(n,m) = (p2, 8p − 4) with
.p ∈ N.

The special case of the optimization version of MinParetoMax where all
instances are combinatorial packing tasks will be referred to as CombMinPare-
toMax. We show that CombMinParetoMax is hard to approximate, even when
the right hand side is restricted to the all-ones vector.

Theorem 2 CombMinParetoMax is.APX-hard even if all instances are restricted
to those for which .b = 1.

In the context of slot allocation, Theorem 2 can be viewed as an indication that
(unless.P = NP) there will never be a practically efficient deterministic algorithm for
computing the optimality gap in general. Note, however, that for any fixed reference
value system the number of different slot assignments within a season is a polynomial
in the number of flight requests whose degree is a function of the reference values.
Given the figures of Table 1 it is clear that the gigantic degrees of these polynomials
for real-world instances render any enumerative approach hopeless in practice.

In Sect. 4 we model the problem of minimizing the number of flight movements
under Pareto optimality as an integer programming problem and compute bounds
for the worst-case optimality gap. Our computations indicate that (even without the
presence of longer flight series) the potential blocking effect for each fully coordi-
nated airport in Germany based on its current individual reference value system is
at least 8.9% (with one notable exception) and may be as large as 15.9%, depending
on the slot regime. For details see Tables 3 and 4. These results are complemented
by the findings of a computational study for a major German airport based on the
real-world flight series requests.

192 A. Brieden et al.

3 Computational Complexity

Here we will only briefly indicate which problems are used for the reduction but refer
to the full version [3] of this paper for the details. First note that, while integer linear
programming is.NP-complete, it is not clear a priori whether the hardness persists in
our special situation. Accordingly, we use reductions from rather different problems
in order to establish our complexity results.

Obviously, MinParetoMax is in .NP. Its .NP-hardness can be proved by means
of a reduction from a specific uniqueness problem from discrete tomography, see
[1].

In order to show that CombMinParetoMax is .APX-hard even if all instances
are restricted to those for which .b = 1 we can use a reduction from the following
set packing problem.

Problem 2 Maximum .3- Set Packing

.

Input: A finite set C with |C | ≥ 4, and a set C /= ∅ of
nonempty subsets of Cof cardinality 3.

Task: Find the maximum cardinality of all packings in C,

i.e., of all subsets S of C whose elements are disjoint.

As [7] showed, Maximum .3- Set Packing is .APX-complete, even when
restricted to instances where, for some.q ∈ N with.q ≥ 3, no element of . C occurs in
more than. q of the subsets in. C. Let us remark that, by [6], Maximum .k- Set Pack-
ing can be approximated within a factor.k/2 + ε for any.ε > 0. However, this does not
seem to imply particularly strong approximation results for CombMinParetoMax.

4 Gap Potential at the German Level 3 Airports

In the following we will analyze the potential optimality gaps at all German Level 3
airports, i.e., airports operating at the limit of their capacity which are therefore sub-
ject to coordination (Berlin, Düsseldorf, Frankfurt, Hamburg, Hannover, München
and Stuttgart). The current reference value systems (summer season 2023) for these
airports are given in Table 2.

The table is slightly simplified: the figures apply only for the core times (in
reality, the limits sometimes vary slightly according to the time of day), slots for
ad-hoc operations are treated as regular slots, and specific values for flights on a
North Atlantic route are omitted; see https://fluko.org for the precise information.
Generally, the reference values are “rolling”, i.e., they apply for each interval of the
specified length beginning every 10 min (except for Düsseldorf airport).

First, we model the optimization version of MinParetoMax as an integer pro-
gramming problem. So, let .(A, b, c) be a given instance. Using the obvious decou-

https://fluko.org
https://fluko.org
https://fluko.org

On the Optimality Gap of Full Airport Slot Assignments … 193

Table 2 Reference value system for the summer season 2023, slightly simplified

10 min 20 min 30 min 60 min

A D M A D M A D M A D M

Berlin 12 12 15 – – – 32 32 45 50 50 78

Düsseldorf 8 7 12 – 13 – – – 27 33 36 47

Frankfurt 13 13 20 – – – 33 33 57 60 60 106

Hamburg 7 7 9 – – – 18 18 25 31 31 48

Hannover 6 6 8 – – – – – – 30 34 40

München 12 12 15 – – – – – – 58 58 90

Stuttgart 7 7 9 – – – – – – 35 35 48

pling into the maximization .max{cT x : x ∈ P ∩ Z
n} and the minimization problem

.min{cT x : x ∈ GP} it suffices to consider the latter.
Note that .y ∈ GP , if and only if .y ∈ P ∩ Z

n , but .y + u j /∈ P for any . j ∈ [n],
i.e., there exists an index .i ∈ [m] such that .A(y + u j) /≤ b or .y + u j /≤ 1. Hence,
.y ∈ GP , if and only if, .y ∈ P ∩ Z

n , and for every. j ∈ [n] with.uT
j y = 0 there exists

an index .i ∈ [m] such that

. aT
i (y + u j) = aT

i y + αi, j ≥ βi + 1,

where .aT
1 , . . . , aT

m denote again the rows of . A. Setting

. μi = αi, j − (βi + 1) + min{aT
i x : x ∈ P},

the condition can be written as

. aT
i y + μiδi, j ≥ βi + 1 − αi, j + μi (i ∈ [m], j ∈ [n])

δi, j ≤ 1 − uT
j y, δi, j ∈ {0, 1} (i ∈ [m], j ∈ [n]),

m∑
i=1

δi, j ≥ 1 (j ∈ [n]).

Note that the constraints .δi, j ≤ 1 − uT
j y imply that .δi, j = 0 if the . j th component of

. y is already . 1.
Hence, using linear programming to compute.μ1, . . . , μm , and setting. τi, j := βi +

1 − ai, j + μi for.i ∈ [m],. j ∈ [n], the minimization problem.min{cT y : y ∈ GP} can
be formulated as

. min
{
cT y : Ay ≤ b ∧ y ∈ {0, 1}n ∧ aT

i y + μiδi, j ≥ τi, j ∧ δi, j ≤ 1 − uT
j y

∧
m∑
i=1

δi, j ≥ 1 − uT
j y ∧ δi, j ∈ {0, 1} (i ∈ [m], j ∈ [n])}.

194 A. Brieden et al.

We used essentially this formulation to compute bounds on the optimality gap for all
level 3 airports in Germany based on their slot regime according to Table 2 and the
following assumptions:

• A complete day consists of 18 h (usually 5:00 a.m. to 10:59 p.m. but times may
vary from airport to airport due to nighttime flight restrictions).

• For each time during the hours of operation an arbitrary number of flight requests
for arrivals and departures is available (i.e., we are just concerned with the number
of arrivals and departures, not with actual flight or flight series requests comprising
additional constraints).

• A flight request involves either a single movement (arrival or departure) or a
tightly coupled arrival-departure pair where the departure is exactly 60 min after
the corresponding arrival (on the runway).

As, due to the Pareto constraints, the integer linear programs are computationally
too challenging for obtaining provably optimal solutions for the full range of operat-
ing hours within reasonable time we resorted to the following method for obtaining
lower bounds on the optimality gap:

• First, the maximum gap and corresponding maximal and minimal full solutions
were computed for all time periods between 1 and 4 h for each airport. The time
windows for the reference value systems were “wrapped around” to make sure
that these “patterns” could be concatenated to obtain a feasible solution for longer
time periods.

• A feasible solution for a period of exactly 18 h was subsequently obtained by
concatenating one of these solutions a sufficient number of times and then adding
additional 10-minute intervals to the beginning and the end of the time period such
that at least one full hour was still available both at the beginning and at the end
of that solution.

• Flight movements (arrivals and departures) for the intervals added at the begin-
ning and at the end were computed (using a straightforward modification of the
MinParetoMax integer linear program) such that the overall gap of the solution
over the total of 18 h was maximized. No coupling between arrivals and departures
was enforced for these additional flights.

The solutions obtained in this way naturally provide lower bounds for the possible
gap, and we selected those which provided the largest gap. The numbers of flight
movements for the so obtained full solutions, maximum solutions and the resulting
bound for the optimality gap are depicted in Tables 3 and 4. Of course, the actual
optimum might have an even larger gap.

As Table 3 shows the obtained bound for the optimality gap for Düsseldorf Airport
is. 0. In fact, a case analysis shows that, under our assumptions on the flight requests,
the optimality gap at Düsseldorf is actually. 0. The main difference of the slot regime
at Düsseldorf is that the bounds on the arrivals, departures and movements are not
required for rolling intervals while the reference values at the other airports are
rolling. Of course, coupling effects inflicted by complex flight series requests for

On the Optimality Gap of Full Airport Slot Assignments … 195

Table 3 A lower bound on the worst-case optimality gap for the valid reference value systems
under the conditions specified above for the case of no arrival-departure coupling

min. full Maximum Gap Ratio (% of max.)

Berlin 1202 1404 202 14.4

Düsseldorf 846 846 0 0

Frankfurt 1738 1908 170 8.9

Hamburg 745 864 119 13.8

Hannover 624 720 96 73.3

München 1362 1620 258 15.9

Stuttgart 786 864 78 9.0

Table 4 A lower bound on the worst-case optimality gap for the valid reference value systems
under the conditions specified above for the case where arrivals and departures are tightly coupled
with exactly 60 min between an arrival and its corresponding departure (except for the extra flights
added at the boundary)

min. full Maximum Gap Ratio (% of max.)

Berlin 1082 1404 322 22.9

Düsseldorf 743 846 103 12.2

Frankfurt 1665 1906 241 12.6

Hamburg 654 864 210 24.3

Hannover 538 720 182 25.3

München 1181 1616 435 26.9

Stuttgart 654 210 210 24.3

longer time periods may still result in significant blocking, but the reference value
system itself is “robust” at least against the most simple manipulation attempts.

To facilitate the understanding of the underlying patterns, let us take a look at an
explicit solution for Frankfurt airport for the case of tightly linked arrivals and depar-
ture pairs with exactly 60 min between an arrival and the corresponding departure.
As we will see, even in this extremely restricted situation the optimality gap is quite
significant. The solution is based on a pattern for 12 consecutive 10-minute intervals,
thus it is sufficient to look at four hours. We have selected the time period from 6:00
a.m. to 10:00 a.m. as that is usually a time of high traffic at Frankfurt airport and thus
the actual flight movements might be somewhat close to the “prototypical” case we
have computed.

In the slot assignment indicated in Table 5, in five out of six 10-minute intervals
either arrivals or departures are at their maximum value of. 13. The remaining move-
ments are determined such that R30M is at maximum for the first three intervals, thus
completely covering the first five 10-minute intervals. For the sixth such interval, the
numbers are chosen such that R60A is full for the intervals 1 to 6, i.e., 06:00 a.m.
to 06:50 a.m. and R60D is full for the intervals 6-12, i.e., 06:50 a.m. to 07:50 a.m.

196 A. Brieden et al.

Table 5 Part of the minimum full configuration computed for Frankfurt airport; arrivals and depar-
tures are tightly coupled with a difference of.60min. The gray overlays indicate that the correspond-
ing 10-minute intervals (rows) are “blocked” by an active rule, boldface indicates a rule at its limit.
The values for R10 rules are equal to the number of arrivals, departures and movements and are
thus not explicitly given. For the other rules, each component depicts the number of corresponding
flights in the rolling interval beginning at the time indicated in its row

Time A D M R30A R30D R30M R60A R60D R60M

06:00 13 7 20 33 24 57 60 36 96

06:10 13 4 17 33 24 57 54 42 96

06:20 7 13 20 33 24 57 45 51 96

06:30 13 7 20 27 12 39 51 45 96

06:40 13 4 17 21 18 39 45 51 96

06:50 1 1 2 12 27 39 36 60 96

07:00 7 13 20 24 33 57 36 60 96

07:10 4 13 17 24 33 57 42 54 96

07:20 13 7 20 24 33 57 51 45 96

07:30 7 13 20 12 27 39 45 51 96

07:40 4 13 17 18 21 39 51 45 96

07:50 1 1 2 27 12 39 60 36 96

08:00 13 7 20 33 24 57 60 36 96

08:10 13 4 17 33 24 57 54 42 96

08:20 7 13 20 33 24 57 45 51 96

08:30 13 7 20 27 12 39 51 45 96

08:40 13 4 17 21 18 39 45 51 96

08:50 1 1 2 12 27 39 36 60 96

09:00 7 13 20 24 33 57 36 60 96

09:10 4 13 17 24 33 57 42 54 96

09:20 13 7 20 24 33 57 51 45 96

09:30 7 13 20 12 27 39 45 51 96

09:40 4 13 17 18 21 39 51 45 96

09:50 1 1 2 27 12 39 60 36 96

This pattern of R60A/R60D alternates with one 10-minute interval overlap at 06:50
a.m., 07:50 a.m. etc. where R30M takes care of the intervals “in between”. In effect,
the rules are combined to obtain a full flight schedule with as few movements as
possible.

Table 6, on the other hand, depicts a maximum configuration for the same time
period. Note that all R60M rules are now binding, showing that the assignment is
indeed maximal. Also R10M is satisfied with equality as much as possible.

When we extend the depicted schedules to the full time period from 6 a.m. to
11 p.m. as described above, we obtain two different full schedules which however,

On the Optimality Gap of Full Airport Slot Assignments … 197

Table 6 Part of a maximum configuration computed for Frankfurt airport; arrivals and departures
are tightly coupled with a distance of.60min. The gray overlays indicate that the corresponding slots
(rows) are “blocked” by an active rule, boldface numbers indicate an active limit. The values for
R10 rules are equal to the number of arrivals, departures and movements and are thus not explicitly
given

Time A D M R30A R30D R30M R60A R60D R60M

06:00 7 13 20 24 33 57 48 58 106

06:10 7 13 20 30 22 52 54 52 106

06:20 10 7 17 33 19 52 60 46 106

06:30 13 2 15 24 25 49 57 49 106

06:40 10 10 20 24 30 54 46 60 106

06:50 1 13 14 27 27 54 46 60 106

07:00 13 7 20 33 24 57 58 48 106

07:10 13 7 20 22 30 52 52 54 106

07:20 7 10 17 19 33 52 46 60 106

07:30 2 13 15 25 24 49 49 57 106

07:40 10 10 20 30 24 54 60 46 106

07:50 13 1 14 27 27 54 60 46 106

08:00 7 13 20 24 33 57 48 58 106

08:10 7 13 20 30 22 52 54 52 106

08:20 10 7 17 33 19 52 60 46 106

08:30 13 2 15 24 25 49 57 49 106

08:40 10 10 20 24 30 54 46 60 106

08:50 1 13 14 27 27 54 46 60 106

09:00 13 7 20 33 24 57 58 48 106

09:10 13 7 20 22 30 52 52 54 106

09:20 7 10 17 19 33 52 46 60 106

09:30 2 13 15 25 24 49 49 57 106

09:40 10 10 20 30 24 54 60 46 106

09:50 13 1 14 27 27 54 60 46 106

accommodate.1738 and.1908flights, respectively. Even though not a single additional
arrival or departure can be incorporated in the first schedule, it contains .241, i.e.,
12.6% less flights than the second one. Similar examples provide the figures of
Tables 3 and 4 for the other level 3 airports in Germany.

Let us point out that, for various reasons, the derived ratios should only be viewed
as theoretical indication for potential blocking within the slot regimes. First, in prac-
tice, a flight can only be assigned if slots are requested by an airline. Second, in the
process of coordination one attempts to solve MaxMov (or a variant of it) and hence
tries to avoid “bad” solutions as far as possible. However, as we have seen, blocking

198 A. Brieden et al.

already occurs when only requests for single movements are considered and may
thus be introduced inadvertently into the scheduling process.

Even worse, in practice, the majority of requests is not for single movements
or arrival-departure pairs but for flight series at specified times, days and weeks
throughout the season. In effect, such series constitute a “wide range coupling”
throughout the season, which may result in a significantly higher optimality gap.
Further recall that grandfather rights can be viewed as fixing partial solutions which
may drive even best assignments of the remaining slot pool to full schedules of
smaller cardinality.

In order to assess how these conflicting effects act in practice, we studied opti-
mality gaps empirically at a major German airport under realistic assumptions and,
in particular, based on the real flight requests for a full season which included infor-
mation on the connection of arrivals and subsequent departures, on minimum ground
times requirements etc. Also, a tolerance of plus/minus 10 min for intercontinental
flights and of plus 10 min for continental flights compared to the requested slot time
was permitted.

In the first scenario we solved MaxMov under the assumption that no grandfather
rights had to be observed. In the second and third scenario, 40% and 50% of the
requests were endowed with grandfather rights, respectively. All computations were
carried out for a full season (which is roughly six months long). Due to the grandfather
rights, the maximum number of movements which could be scheduled in the second
scenario was by about 4000 less than the number in scenario one. The presence of
grandfather rights for 50% of the requests led to a reduction of about 6000 movements
in the season.

5 Final Remarks

As we have seen, even a simple regime of flight requests carries the potential for
significant optimality gaps. In the absence of grandfather rights suboptimal schedules
can be avoided by using state-of-the-art integer programming algorithms which are
capable of computing optimal schedules; see [2, 9].

In conjunction with the slot regime grandfather rights can act as additional con-
straints or can be viewed as a partial result of some scheduling heuristic and can hence
lead to significant gaps between full and maximal schedules. It might therefore be
advisable to study the effect of weakening grandfather rights to some extent. The
right to operate at times close to but not quite exactly at the time of the previous usage
will typically allow more flexibility in flight scheduling and thus lead to schedules
with additional flights if needed. The effect of such changes will, of course, depend
on the slot regime, the flight series requests, the amount and location of previous
grandfather rights etc. and may hence vary from airport to airport.

On the Optimality Gap of Full Airport Slot Assignments … 199

References

1. Alpers, A., Gritzmann, P.: On the reconstruction of static and dynamic discrete structures. In:
R. Ramlau, O. Scherzer (eds.) The Radon Transform: The First 100 Years and Beyond, pp.
297–342. De Gruyter, Berlin (2019). https://doi.org/10.1515/9783110560855-013

2. Bichler, M., Gritzmann, P., Karaenke, P., Ritter, M.: On airport time slot auctions: a market
design complying with the IATA scheduling guidelines. Transp. Sci. 57(1), 27–51 (2022).
https://doi.org/10.1016/j.tcs.2008.06.014

3. Brieden, A., Gritzmann, P., Ritter, M.: On capacity-limited packing with pareto optimality
constraints, and its application to airport slot assignments. Technische Universitä München,
Technical Report (2023)

4. Coffman Jr., E., Csirik, J., Galambos, G., Martello, S., Vigo, D.: Bin packing approximation
algorithms: Survey and classification. In: P. Pardalos, D. Du, R. Graham (eds.) Handbook of
Combinatorial Optimization, pp. 455–531. Springer, New York, NY (2013). https://doi.org/
10.1007/978-1-4419-7997-1_35

5. Garey, M., Johnson, D.: Computers and intractability. A guide to the theory of NP-completeness.
A Series of Books in the Mathematical Sciences. W. H. Freeman and Company, San Francisco
(1979)

6. Hurkens, C.A.J., Schrijver, A.: On the size of systems of sets every t of which have an SDR,
with an application to the worst-case ratio of heuristics for packing problems. SIAM J. Disc.
Math. 2, 68–72 (1989)

7. Kann, V.: Maximum bounded 3-dimensional matching is MAX SNP-complete. Inform. Pro-
cess. Lett. 37, 27–35 (1991)

8. Ribeiro, N., Jacquillat, A., Antunes, A., Odoni, A., Pita, J.: An optimization approach for airport
slot allocation under IATA guidelines. Transp. Res. B 112, 132–156 (2018)

9. Ritter, M.: Packing under Balancing Constraints. Applications in Semiconductor Design and
Flight Scheduling. Ph.D. thesis, Technical University of Munich (2008)

https://doi.org/10.1515/9783110560855-013
https://doi.org/10.1515/9783110560855-013
https://doi.org/10.1515/9783110560855-013
https://doi.org/10.1515/9783110560855-013
https://doi.org/10.1515/9783110560855-013
https://doi.org/10.1515/9783110560855-013
https://doi.org/10.1515/9783110560855-013
https://doi.org/10.1016/j.tcs.2008.06.014
https://doi.org/10.1016/j.tcs.2008.06.014
https://doi.org/10.1016/j.tcs.2008.06.014
https://doi.org/10.1016/j.tcs.2008.06.014
https://doi.org/10.1016/j.tcs.2008.06.014
https://doi.org/10.1016/j.tcs.2008.06.014
https://doi.org/10.1016/j.tcs.2008.06.014
https://doi.org/10.1016/j.tcs.2008.06.014
https://doi.org/10.1016/j.tcs.2008.06.014
https://doi.org/10.1016/j.tcs.2008.06.014
https://doi.org/10.1007/978-1-4419-7997-1_35
https://doi.org/10.1007/978-1-4419-7997-1_35
https://doi.org/10.1007/978-1-4419-7997-1_35
https://doi.org/10.1007/978-1-4419-7997-1_35
https://doi.org/10.1007/978-1-4419-7997-1_35
https://doi.org/10.1007/978-1-4419-7997-1_35
https://doi.org/10.1007/978-1-4419-7997-1_35
https://doi.org/10.1007/978-1-4419-7997-1_35
https://doi.org/10.1007/978-1-4419-7997-1_35
https://doi.org/10.1007/978-1-4419-7997-1_35

Author Index

A
Aprile, Manuel, 29

B
Boukhatem, Nabil Moncef, 175
Brieden, Andreas, 187
Buscaldi, Davide, 175

C
Ceselli, Alberto, 123, 135

F
Figueroa, José-L., 53

G
Gritzmann, Peter, 187

H
Hewetson, John, 41
Hiller, Michaela, 67
Hojny, Christopher, 95

I
Ibrahim, Hany, 15

K
Komusiewicz, Christian, 109

Koster, Arie M. C. A., 67
Krishna, Tarun, 81

L
Liberti, Leo, 175

M
Mensah-Boateng, Twumasi, 161
Messana, Rosario, 123
Michaeli, Peleg, 81

N
Nixon, Anthony, 41

O
Ondei, Cristina, 135

P
Pabst, Philipp, 67

Q
Quilliot, Alain, 53

R
Remke, Anne, 147
Ritter, Michael, 187

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer
Nature Switzerland AG 2024
A. Brieden et al. (eds.), Graphs and Combinatorial Optimization:
from Theory to Applications, AIRO Springer Series 13,
https://doi.org/10.1007/978-3-031-46826-1

201

https://doi.org/10.1007/978-3-031-46826-1
https://doi.org/10.1007/978-3-031-46826-1
https://doi.org/10.1007/978-3-031-46826-1
https://doi.org/10.1007/978-3-031-46826-1
https://doi.org/10.1007/978-3-031-46826-1
https://doi.org/10.1007/978-3-031-46826-1
https://doi.org/10.1007/978-3-031-46826-1
https://doi.org/10.1007/978-3-031-46826-1
https://doi.org/10.1007/978-3-031-46826-1
https://doi.org/10.1007/978-3-031-46826-1

202 Author Index

S
Sarantis, Michail, 81
Schestag, Jannik T., 109
Stübbe, Jonas, 147

T
Tang, Shaojie, 161
Tittmann, Peter, 15
Toussaint, Hélène, 53
Trubian, Marco, 135

V
Verhaegh, Ruben F. A., 1
Verhoeff, Tom, 95

W
Wagler, Annegret, 53
Wang, Fenglin, 81
Wang, Yiqing, 81
Wessel, Sten, 95

Y
Yuan, Jing, 161

	CTW 2023 Program Committee
	Preface
	Contents
	 The Algorithmic Complexity of the Paired Matching Problem
	1 Introduction
	2 Classical Complexity
	3 Solving Large Instances with Few Task Vertices
	4 Conclusion and Discussion
	References

	 Edge Contraction and Forbidden Induced Subgraphs
	1 Introduction
	1.1 The H-Split Graphs
	1.2 Critically H-Exist Graphs

	2 Special Graph Classes
	2.1 The 2 upper K 22K2-Free Graphs
	2.2 The upper C 4C4-Free Graphs
	2.3 The upper C 5C5-Free Graphs
	2.4 Split Graphs

	References

	 Exact Approaches for the Connected Vertex Cover Problem
	1 Introduction
	1.1 Preliminaries

	2 Mixed-Integer Programming Formulations
	2.1 A Smaller Mixed-Integer Formulation

	3 A Branch & Bound Algorithm
	4 Numerical Results
	5 Conclusion
	References

	 Rigidity of Frameworks on Spheres
	1 Introduction
	2 Rigidity on Non-concentric Spheres
	3 Rigidity of Nearly Monochrome Graphs
	4 Concluding remarks
	References

	 Managing Time Expanded Networks: The Strong Lift Problem
	1 Introduction
	2 A Reference TEN Relocation Model
	2.1 A TEN Relocation Commodity Flow Model
	2.2 The Projected IRP Model

	3 The Strong Lift Issue
	3.1 The Strong Lift Model
	3.2 A Necessary Condition for the Feasibility of the Strong Lift Problem: Enhancing the PIRP Model

	4 A MILP Formulation of the Strong Lift Problem
	4.1 Solving the Strong Lift Problem in an Exact Way
	4.2 Numerical Experiments

	References

	 kk-Slow Burning: Complexity and Upper Bounds
	1 Introduction
	2 Complexity
	2.1 Connecting the Paths
	2.2 kk-Slow Burning is Harder Than Graph Burning
	2.3 Checking Burning Sequences

	3 Upper Bounds
	4 Concluding Remarks
	References

	 Discrepancies of Subtrees
	1 Introduction
	2 Multicolour Discrepancy
	3 Oriented Discrepancy
	4 High Dimensional Discrepancy
	References

	 Handling Sub-symmetry in Integer Programming using Activation Handlers
	1 Introduction
	2 Sub-symmetry in Integer Programming
	3 Activation Handler
	4 Application
	4.1 Multiple Knapsack Problem
	4.2 Unit Commitment Problem

	5 Experimental Results
	6 Conclusion
	References

	 A Multivariate Complexity Analysis of the Generalized Noah's Ark Problem
	1 Introduction
	2 Preliminaries
	2.1 Problem Definitions, Parameters, and Results Overview
	2.2 Observations for GNAP

	3 Multiple-Choice Knapsack
	4 The Generalized Noah's Ark Problem
	5 Restriction to Two Projects per Taxon
	6 Discussion
	References

	 Comparing Ad-Hoc and MIP-Based Algorithms for the Online Facility Location Problem
	1 Introduction
	2 Problem Statement and Background
	3 Ad-Hoc OFLP Algorithms
	4 MIP-Based Algorithms for BOFLP
	4.1 Follow The Uniformly Perturbed Leader
	4.2 Follow The Clustered Leader

	5 Experimental Setting and Results
	5.1 Experimental Test Bed
	5.2 Evaluation of the Algorithms

	6 Conclusions
	References

	 Data-Driven Feasibility for the Resource Constrained Shortest Path Problem
	1 Introduction
	2 Problem Definition
	3 Feature Engineering
	4 Computational Experiments
	5 Conclusions
	References

	 Monte-Carlo Integration on a Union of Polytopes
	1 Introduction
	2 Preliminaries
	3 Monte-Carlo Integration on a Union of Polytopes
	3.1 Extending Markov Chain Monte Carlo
	3.2 Extending Multiphase Monte Carlo

	4 Evaluation
	5 Conclusion
	References

	 Achieving Long-Term Fairness in Submodular Maximization Through Randomization
	1 Introduction
	2 Preliminaries and Problem Statement
	3 Near Feasible Deterministic Algorithms
	3.1 Algorithm Design
	3.2 Performance Analysis
	3.3 A Fast Greedy Algorithm

	4 A Feasible left parenthesis 1 minus 1 divided by e right parenthesis(1-1/e)-Approximation Randomized Algorithm
	References

	 On Syntactical Graphs-of-Words
	1 Introduction
	1.1 Ranking Functions for Text
	1.2 Graph-of-Words
	1.3 Syntax Trees

	2 Graph-of-Words Construction Algorithms
	2.1 Proximity Gows
	2.2 Dependency
	2.3 Constituency

	3 Computational Experiments
	3.1 The Literary Dataset
	3.2 The Technical Dataset

	4 Conclusion
	References

	 On the Optimality Gap of Full Airport Slot Assignments: Capacity-Limited Packing with Pareto Optimality Constraints
	1 Introduction
	2 Notation, Preliminaries, and Main Results
	3 Computational Complexity
	4 Gap Potential at the German Level 3 Airports
	5 Final Remarks
	References

	Author Index

