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Abstract. The generation of schedules is a complex challenge, particu-
larly in academic institutions aiming for equitable scheduling. The goal
is to achieve fair and balanced schedules that meet the requirements of
all parties involved, such as workload, class distribution, shifts, and other
relevant criteria. To address this challenge, a genetic algorithm specifi-
cally designed for optimal schedule generation has been proposed as a
solution. Adjusting genetic algorithm parameters impacts performance,
and employing parameter optimization techniques effectively tackles this
issue. This work introduces a genetic algorithm for optimal schedule gen-
eration, utilizing suitable encoding and operators, and evaluating quality
through fitness techniques. Optimization efforts led to reduced execution
time, improved solution quality, and positive outcomes like faster execu-
tion, fewer generations, increased stability, and convergence to optimal
solutions.

Keywords: Equitable schedules + Genetic algorithm optimization -
Resource allocation * Scheduling generation

1 Introduction

Scheduling generation is a complex challenge faced by various institutions and
organizations in their day-to-day operations, including academic, professional
fields, and other contexts where coordinating and allocating resources is necessary.

The problem lies in the need to find an appropriate combination of elements
and constraints to meet the demands and needs of all involved parties. It is
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crucial to ensure that schedules are fair and equitable, avoiding situations where
individuals or groups are disadvantaged in terms of workload, class distribution,
shifts, or any other relevant criteria.

In the Mechatronics Engineering school at the International University of
Ecuador, scheduling for courses and activities presents a complex challenge due
to the variety of resources, constraints, and preferences of students and profes-
sors. Efficient schedule planning is crucial to ensure a fair distribution of subjects,
avoid conflicts, and optimize resource allocation. To address this problem, the
optimization of a genetic algorithm (GA) is proposed, aiming to find optimal or
near-optimal solutions using techniques inspired by evolutionary computation.

Currently, various research studies are related to automatic schedule genera-
tion using GAs and other optimization techniques. These approaches have proven
to be effective in solving resource allocation and scheduling problems in different
academic contexts, which could be classified into two categories: classical genetic
algorithms ([1-4]) and hybrid genetic algorithms ([5-7]).

A common problem found in the explored works is the adjustment of the
involved parameters, such as population size, mutation rate, and the number of
generations, which can significantly affect the performance of the algorithm for
automatic schedule generation. To address this issue, techniques like parameter
optimization can be employed to find the required parameter values.

The project aims to contribute to the generation of optimal schedules in the
field of Mechatronics Engineering at the International University of Ecuador. To
achieve this, the development of a GA is proposed, employing an appropriate
encoding to represent schedules and using genetic operators such as selection,
reproduction, and mutation to generate new solutions. Evaluation and fitness
techniques will be applied to assess the quality of each solution, and multiple
iterations of the algorithm will be performed to gradually improve the results.
The goal is to obtain optimal or near-optimal schedules that meet all the estab-
lished constraints and preferences, thereby enhancing the efficiency of course
planning and resource allocation.

The obtained results so far support the feasibility and effectiveness of the
proposed GA for schedule generation in the field of Mechatronics Engineering
at the International University of Ecuador, resulting in reduced execution time
and improved solution quality. The algorithm demonstrated positive outcomes,
including lower average execution time, fewer required generations to find a
solution, increased stability, and convergence towards optimal solutions. Our
results are attributed to a higher number of elite schedules, increased mutation
rate, and random class selection during mutation, leading to improved stability
and reduced computational resources required.

This document is organized as follows: In Sect.2, a brief overview of the
current state of research is provided. Section 3 includes the description of the
database used for experimentation, along with the definition of parameters and
characteristic operators of the GA. The experimentation process and the met-
rics employed to evaluate the GA’s performance are described in Sect.4. The
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obtained results and the various comparisons conducted are presented in Sect. 5.
Finally, Sect. 6 gathers the concluding remarks.

2 Related Works

The use of GAs in timetable generation has become an active and constantly
evolving area of research, with numerous practical applications and possibilities
for future development.

In the field of optimization, GAs have proven to be a powerful tool for solv-
ing complex problems. In particular, the generation of schedules is a task that
can be solved using GAs and that has been the object of investigation in several
studies. For instance, [1] and [8] described the implementation of a GA to gener-
ate university timetables with the goal of producing accurate solutions, although
its implementation can be complicated and may require exhaustive tuning and
testing. Authors in [9] described the application of a GA for teaching planning in
a university, which, like the previous ones mentioned, can generate precise and
efficient solutions, but its implementation may require a large amount of com-
puting resources. Starting from the latter in terms of the limitation presented, it
is similar to the one described in [6], with the difference that the work involved
a hybrid GA to program the schedules of nurses in a hospital considering the
nurse fatigue.

In the field of assigning academic timetables, various investigations have been
carried out by using GAs. Among them are ’Assignment of academic schedules
for the School of Civil Engineering in Computing of the University of Talca [10],
which described the implementation of a GA to assign schedules in a school
engineering. The advantage of this approach is that it can generate accurate
solutions in a reasonable amount of time, although it may require adjustment to
suit the specific needs of an engineering school. Other relevant articles presented
in [11] and [12] described the planning of university timetables using GAs with
an approach similar to [10], although with a complex implementation of the
algorithm, which can require a large amount of computing resources as [9].

Authors in [3,13] reported the application of a GA to generate exam schedules
in a university, with precise and optimal solutions, although its algorithm can
be difficult to fit in. The work introduced in [13] presented the generation of
schedules in a highschool with time efficient solutions, but with an algorithm
that may require tuning and testing. Both works are relevant to this project, as
they are part of the main literature to improve the selected algorithm.

In [5], the authors proposed a hybrid approach that combines a GA with
a greedy approach to generate school and exam timetables efficiently but with
a limitation on the greedy approach that can lead to sub-optimal solutions.
Authors in [2,7] and [14] introduced an intelligent system based on a GA to
plan schedules in various educational fields with optimal time solutions. With
the limitation of being difficult to adjust the algorithm to adapt to the specific
needs of the field to be applied. The GA introduced in [15] yield school timetables
involving advanced technical knowledge.
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Moreover, in the medical field, authors in [16] presented an appointment
scheduling system for medical treatment using GAs presenting efficient solutions
in terms of the use of time and medical resources, but using a large amount of
information resources.

Based on the way of operating the works explored from the literature, we have
identified two categories: 1) Classical GAs, which are capable of handling large
search spaces and allow high-quality solutions to be found in a reasonable time,
but can fall into local minima and do not always find the global optimal solution.
Within this category we can find some articles such as [1,2] and [3]. 2) Hybrid
GAs, which combine different techniques to improve the precision and efficiency
in solving the problem, as well as they can improve the quality of the solutions
found by classical genetic algorithms and reduce the time needed to find them,
but their implementation may require more effort and technical knowledge than
conventional GAs. Some of the articles categorized in this second point are [5,6]
and [7].

3 Materials and Methods

3.1 Data

The database collects the information from seven semesters of the School of
Mechatronics of the International University of Ecuador, as is shown in Table 1.

Table 1. Description of the data that will be used.

Data Description Value

Subjects Subjects that need to |3 Subjects
use the classrooms

Students per | Number of students 1st Semester: 25, 2nd Semester: 35,
Semester per semester 3rd Semester: 25, 4th Semester: 30,
5th Semester: 35, 6th Semester: 45
and Tth Semester: 45

Classrooms Maximum Capacity of | Al: 25, A2: 45

students per and A3: 35
classroom
Professors Professors who can 4 Professors

impart the classes

Meeting Time | Times in which classes | 4 Meeting Times
can be carried out

Each of the chosen parameters are described in a general way, in [17] you can
find the database in detail.
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3.2 Proposed Algorithm

The proposed GA depicted in Fig. 1 was inspired by the work titled “Develop-
ment of an exam scheduling system using genetic algorithm” [3], and aims at
finding the best assignment of available subjects and resources.

Database: Within the database there are 5 academic objects: subjects,
semesters, classrooms, teachers, and meeting schedules; these data will be
imported into the GA as arrays.

Initialization of Population: A initial population of 9 random schedules based
on the 5 aforementioned objects were created. This initial population served as
a starting point for the search and optimization process that follows in the GA.

Fitness Calculation: The goal was to find the optimal schedule removing con-
flict with the objects that compose it. These conflicts can arise from conflicting
reservations of professors or classrooms, classroom capacity, and professor avail-
ability. When the number of conflicts was zero, the problem was considered
solved.

Parent Selection: If a schedule with zero conflicts was not found, parent selec-
tion by tournament was performed. This step selected randomly three schedules
from the population in order to find the two best parents for the next generation.

Crossover: Each class in the new schedule, made up of the 5 aforementioned
objects, was crossed with a randomly selected class from the parent schedules,
thus producing reproduction through a crossing point.

Mutation: For schedules in the population that are not part of the elite, random
classes are mutated with a probability determined by the mutation rate. If a
mutation occurs, the selected class is replaced with a random class from another
schedule generated by the population initialization method.

Elitism: This ensured that the best fitness schedule obtained so far was kept in
the population and transmitted to future generations without changes, avoiding
the loss of high-quality solutions.

3.3 Changes Applied to [3]

We conducted a set of experiments to improve the overall performance of the
work proposed in [3], which involved adjustments to the elitism parameter and
mutation rate, as well as a modification to the mutation operator technique.

The number of elite schedules was increased from 1 to 2. This means that the
two best schedules from each generation will be preserved in the next generation.
The mutation rate was increased from 0.1 to 0.2 aiming at promoting greater
solution diversity.

Regarding the mutation technique, the probabilistic approach to determin-
ing which classes will be mutated was maintained. However, a change was intro-
duced in the mutation process. In [3], mutation was performed sequentially, that
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DATABASE
(5 OBJECTS)
Subjects
Classes
Rooms
Teachers
Meeting Times

INITIALIZE PARAMETERS
Population Size =9
Elite Schedules = 2

Tournament Size = 3
Mutation Rate = 0.2

INITIAL POPULATION
X1=[S$1.1 C1.1 R1.1 T1.1 M1.1; ...Sn.n Cn.n Rn.n Tn.n Mn.n]
X2=[S2.1 C2.1 R2.1 T2.1 M2.1; ...Sn.n Cn.n Rn.n Tn.n Mn.n]
Xn=[Sn.1 Cn.1 Rn.1 Tn.1 Mn.1; ...Sn.n Cn.n Rn.n Tn.n Mn.n]

SELECTION
Best 2 Parents by Tournament(SIZE=3) ELITISM
X4=[S4.1 C4.1 R4.1 T4.1 M4.1; S4.2 C4.2 R4.2 T4.2 M4, BEST 2 SCHEDULES
X7=[S7.1 C7.1 R7.1 T7.1 M7.1; S7.2 C7.2 R7.2 T7.2 M7

CROSSOVER
New schedules randomly inherit input schedules objects by
crossing point
X1=[S7.1 C7.1 R7.1 T7.1 M7.1; S4.2 C4.2 R4.2 T4.2 M4.2;...]
X2=[S4.1 C4.1 R4.1 T4.1 M4.1; S7.2 C7.2 R7.2T7.2 M7 ]
Xn=[Sn.1 Cn.1 Rn.1 Tn.1 Mn.1; Sn.2Cn.2Rn.2Th.2 M

MUTATION
Replace class(5 Objects) at index i with a random class from
a random schedule .
X3=[S2.1 C2.1 R2.1 T2.1 M2.1; S4.2 C4.2 R4.2 T4.2 M4,
X5=[S4.1 C4.1 R4.1 T4.1 M4.1; S6.2 C6.2 R6.2 T6.2 M6,
Xn=[Sn.1 Cn.1 Rn.1 Tn.1 Mn.1; Sn.2 Cn.2 Rn.2 Tn.2 Mn.2

Fig. 1. Flowchart of the proposed genetic algorithm to generate the academic schedules.
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is, class by class. In this work, we maintained the ordered sequence of the algo-
rithm that will be mutated, but a random position within the schedule to be
introduced was chosen. With these changes, it was expected to explore different
schedule combinations and increased solution diversity in the search for improved
optimization.

4 Experimental Setup

For experimental purposes, the hardware resources involved an 8-core AMD
Ryzen 7 5800X processor, 16 GB of RAM, and an LG 20MP38HQ-B monitor.
The software resources involved Windows 10 Pro x64-bit, Python in Google
Colab, and Opera web browser. The algorithm was implemented through Python
software routines. In the development of the proposed algorithm, the following
libraries were employed: time, math, sqlite3, prettytable, random, and enum.

4.1 Metrics

— Generations: The number of generations required to find the solution to the
problem.

— Execution Time: The execution time is an important indicator of the algo-
rithm’s efficiency in obtaining high-quality schedules within a reasonable time.

— Overall Entropy: An algorithm that tends to generate similar solutions
in each iteration is less desirable than one that produces diverse solutions.
The diversity of the population was measured using the population’s entropy,
represented by (1).

H=-=>Y (p-log,(p)) (1)

where:

p proportion of each type of solution in the population;

log, logarithm base 2.

The values of H can range from 0 to logy(N), where N is the size of the
population. A value of H close to 0 indicates a homogeneous population,
while high entropy indicates a more diverse population.

— Overall Convergence: Convergence refers to how quickly the genetic algo-

rithm finds an optimal solution or one close to it. The convergence speed was
measured by the fitness improvement rate represented by (2).

Fitness improvement rate

current generation avg. fitness — avg. fitness of the previous generation (2)

avg. fitness of the previous generation

— Average Fitness: It measures how well a schedule meets the established
requirements and constraints, i.e., its quality. In this case, the average fitness
of each generation was calculated, and then an overall average was obtained.
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4.2 Parameters of the Evolutionary Algorithm

Table 2 includes the comprehensive set of parameters utilized in our algorithm.
These parameters hold significant importance in driving the optimization process
effectively. The parameter values were carefully established experimentally and
were also drawn from literature as shown the column value selection protocol in
Table 2.

Table 2. Parameters values used in the proposed algorithm.

Name Description Value | Value Selection Procedure
POPULATION. | Size of population in |9 Based on the problem and
SIZE each generation available resources. Larger
populations can explore
more search space but
require more computation [3]
NUMB_OF. The number of elite 1 Based on the problem and
ELITE_ schedules that are experimentation
SCHEDULES preserved without
changes in each
generation
TOURNAMENT._ | The size of the 3 Based on the problem and
SELECTION_ tournament experimentation
SIZE selection pool
MUTATION_ The probability of a | 0.1 Based on the problem and
RATE gene in an experimentation
individual being
mutated
VERBOSE_ Flag to control the False | Based on the user’s
FLAG output of detailed preference
information during
the execution of the
algorithm

The code is available at the following link: source code.


https://github.com/SammySam11/Streamlining-Schedule-Generation.git
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5 Experimental Results

5.1 The Proposed Algorithm vs. [3]

The increase to two elite programs permitted our algorithm to retain high-quality
solutions from one generation to the next one, accelerating the convergence of the
algorithm. Although there could have been an effect on the population entropy
due to the repetition of solutions, this problem did not arise.

The increase in the mutation rate, specifically from 0.1 to 0.2 permitted
our algorithm to explore more solutions. It is important to note that a high
mutation rate can make it difficult to find the solution and generate less stable
or suboptimal solutions. However, in this particular case, this problem was not
experienced.

The change applied to the mutation operator favored greater diversity and
increased the chances of finding optimal solutions. Although there is a possibil-
ity of generating less coherent schedules or schedules that do not meet certain
restrictions, it was established that the random position should be within the
allowed values in the schedule, thus avoiding this situation.

In summary, the changes proposed in our algorithm provided benefits such as
faster convergence, wider exploration of solutions and greater diversity, without
generating significant problems in solution quality or schedule coherence.

Table 3 and 4 depict the results obtained from 10 iterations of each algorithm.
In order to facilitate the comprehension of the outcomes for each scenario, Fig. 2
provides a visual comparison of both algorithms across various metrics.

Table 3. Overall performance of the algorithm presented in [3] through 10 executions.

Execution | Generations | Execution Overall Overall Average
Time [s] Entropy Convergence | Fitness
1 9 0,048 1 1,235 0,366
2 13 0,062 1 1,377 0,379
3 9 0,081 1 1,230 0,273
4 7 0,325 1 1,614 0,375
5 36 0,170 1 1,473 0,350
6 26 0,136 1 1,606 0,368
7 37 0,200 1 1,458 0,318
8 193 1,021 1 2,501 0,370
9 19 0,167 1 1,498 0,364
10 38 0,183 1 1,545 0,334
Average |46 0,239 1 1,554 0,350
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Table 4. Overall performance of the proposed algorithm through ten executions.

Execution | Generations | Execution | Overall | Overall Average
Time [s] Entropy | Convergence | Fitness
1 10 0,047 1 1,525 0,325
2 4 0,024 1 0,880 0,259
3 8 0,054 1 1,367 0,286
4 9 0,046 1 1,368 0,300
5 7 0,036 1 1,112 0,299
6 9 0,047 1 1,120 0,327
7 10 0,049 1 1,461 0,292
8 8 0,040 1 1,311 0,315
9 0,028 1 1,093 0,226
10 10 0,063 1 1,215 0,280
Average |8 0,043 1 1,245 0,291

5.2 Discussion

From the obtained results Fig. 2 and Table 4, it can be observed that the proposed
algorithm achieved a significant improvement in terms of the evaluated metrics.
Firstly, it reduced the average algorithm execution time, which led to a decrease
in the average number of generations required to find the solution. In [3], a
maximum of 193 generations and a minimum of 9 generations were required,
while in our algorithm, these values were reduced to a maximum of 10 generations
and a minimum of 4 generations as can be seen in Table 3 and 4.

In addition, the obtained results depicted in show greater stability in the
search for the solution in the optimized algorithm compared to the original as
can be seen in Fig. 2. In the original algorithm, there were cases where the results
were considerably dispersed, while in the optimized algorithm, this dispersion
was significantly reduced.

Regarding entropy, it remained at the same level as in the original algorithm
since it was already at its maximum value as shown in Fig. 2c. Therefore, the
changes made did not affect this aspect.

In terms of the overall convergence of the algorithm, the optimized algo-
rithm has achieved similar convergence to the original algorithm but in fewer
generations as seen in the Fig.2d. This means that the solutions obtained in
each generation were optimal and approached closer to the final solution as the
execution of the algorithm progressed.

In both algorithms, a very good average fitness has been obtained with an
almost linear trend Fig. 2e. This indicates that the algorithm has been effective
in improving solutions generation after generation.

In summary, the experiment has demonstrated an improvement in evaluated
metrics such as execution time, number of required generations, result in stabil-
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ity, and quality of obtained solutions. These results support the effectiveness of
changes implemented in genetic algorithms.

6 Conclusion

In conclusion, this work aimed to optimize a GA for scheduling, seeking to
reduce execution time and improve the quality of obtained solutions. The results
obtained were very positive, showing a clear improvement in evaluated metrics.
A significant reduction was achieved in the average execution time and the num-
ber of generations required to find the solution, as well as greater stability and
convergence towards optimal solutions in fewer generations. The main advantage
of the proposed algorithm lies in the combination of a higher number of elite
schedules preserved in each generation, a higher mutation rate, and a random
selection of classes during mutation, achieving greater stability and reduction
of computational resources compared to the original algorithm. This allows a
greater diversity of solutions and a more efficient search. However, a possible dis-
advantage of the algorithm could be its lack of generalizability to other databases
since the algorithm would have to be adapted to the constraints of the new data
which may imply changes in the implemented code.

As a future improvement, it is suggested to consider incorporating crossover
operators into the proposed genetic algorithm. This would allow combining fea-
tures of elite schedules and exploring new solutions, which could further increase
diversity and quality of obtained solutions. Overall, the obtained results and
possible future improvements highlight the effectiveness and potential of the
proposed genetic algorithm in scheduling.
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