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Abstract. This study introduces a strategy for synthetic image gen-
eration aimed at enhancing the detection capability of facial authenti-
cation systems (FAS). By employing various digital manipulation tech-
niques, new synthetic fake images were generated using existing datasets.
Through experiments and result analysis, the impact of using these new
fake samples on improving the detection accuracy of FAS systems was
evaluated. The findings demonstrated the effectiveness of synthetic image
generation in augmenting the diversity and complexity of the training
data. Fine-tuning using the enhanced datasets significantly improved the
detection accuracy across the evaluated FAS systems. Nonetheless, the
degree of improvement varied among systems, indicating varying suscep-
tibility to specific types of attacks.
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1 Introduction

In the era of expanding intelligent workspace environments, the utilization of
technologies like facial recognition has witnessed a notable surge across diverse
domains, including but not limited to banking and security within restricted
zones [10]. However, with the increasing popularity of these systems, there
is a concurrent escalation in malicious activities aimed at compromising their
integrity. Cyber attackers employ a range of tactics, encompassing presentation
attacks utilizing printed photos or 3D facial masks [2,4], as well as digital manip-
ulation attacks involving the creation of forgeries, such as DeepFakes [7,24].
Face Anti-Spoofing (FAS) systems have been developed to safeguard facial
recognition systems. Early approaches in deep learning employed Convolutional
Neural Networks (CNNs) to detect identity spoofing [7]. More recent advance-
ments include anomaly detection methods [7] and liveness detection in images
[23]. These approaches have been supplemented with widely adopted datasets.
Notably, CASTA represents a comprehensive dataset for antispoofing model
development, encompassing diverse ethnicities, modalities, and attack types
[13,14,21]. However, the CASTA dataset lacks robust instances of digital manip-
ulation, which is a prevalent type of attack in practice. According to [18] the
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generation of DeepFakes have grown by 16%, and the percentage of people who
know how to create or use DeepFake applications has doubled since 2019, with
2% of the surveyed individuals in 2022 having this knowledge. Undoubtedly,
these trends increase the risk of attempts at synthetic generation-based forg-
eries.

To overcome this limitation, data augmentation techniques have been pro-
posed [5,22,25]. In this study, strategies for creating spoofing attack instances
are presented, involving both simple face substitution and digital manipulation
of images. Architectures based on probabilistic diffusion models for InPainting
[15] were employed. These methods enable the generation of partially modified
faces, which can be included as new examples of forgeries in existing datasets.
This represents the primary contribution of this work.

To assess the effectiveness of FAS systems against artificially generated attack
scenarios, three distinct FAS systems were chosen. Their performances were eval-
uated using metrics defined by the ISO/IEC 30107-3 standard. The selected FAS
systems were evaluated both before and after undergoing Fine Tuning with the
newly constructed datasets. The results of this evaluation, along with the corre-
sponding discussion, constitute the second contribution of this study.

The structure of this paper is as follows: Sect. 2 provides an overview of the
related work on FAS systems. Section 3 details the methodology employed for
dataset construction and the selected FAS systems. Section 4 presents the exper-
imental results. Subsequently, Sect.5 and 6 offers a comprehensive discussion,
future research directions, and concluding remarks, summarizing the key ideas
and findings presented throughout the paper.

2 Related Work

Numerous investigations have been conducted to evaluate Facial Authentication
Systems (FAS), with a particular emphasis on texture analysis to detect pre-
sentation attacks. Several approaches have focused on pixel-wise classification
techniques, such as the automatic discovery of optimal pixel labels through pyra-
mid supervision [24]. Additionally, there has been an exploration into effective
methods grounded in the concept of Meta Patterns for enhancing the detec-
tion of deep forgeries [1]. Within the spectrum of deep texture-based features
employed for robust forgery detection, notable techniques include Local Binary
Patterns (LBP), Speeded-Up Robust Features (SURF), and Difference of Gaus-
sians (DoG) [12].

The proliferation of digital manipulation attacks, predominantly facilitated
by Generative Adversarial Network (GAN) architectures, encompasses the pro-
duction of entirely or partially altered, photorealistic facial images through tech-
niques such as expression swapping, attribute manipulation, and complete face
synthesis. Confronting these attacks remains a formidable challenge for Facial
Authentication Systems (FAS) [22], given that digitally manipulated content of
this nature can be generated routinely via “no code” applications that effort-
lessly modify facial attributes through filter-based adjustments. The accessibility
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to digital manipulation technologies is widespread and does not necessitate spe-
cialized expertise or skills.

This presents both a potential hazard and an opportunity to bolster exist-
ing systems through the generation of additional training data. The generation
of synthetic images via digital manipulation to enhance training datasets has
received substantial attention across diverse domains. Synthetic imagery has
proven pivotal in supporting endeavors such as facial alignment, facial recogni-
tion, 3D facial pose estimation, pedestrian detection, action recognition, among
others [5]. Furthermore, these data can be continuously collected from diverse
systems, making them potentially suitable for semi-supervised learning [25], and,
in combination with adversarial learning could serve as a viable option to increase
model defense to a wider range of attack types [25].

To summarize, research indicates that utilizing data augmentation during
model training can yield advantages. It is suggested that the inclusion of syn-
thetic images depicting counterfeit samples can aid in the precise classification
of genuine samples [4,8,24]. This paper contributes to this line of research.

3 Methodology

This section outlines the methodology employed for generating synthetic
images used for substitution-based presentation attacks and digital manipulation
attacks. Furthermore, it elaborates on the training of models for facial authen-
tication systems (FAS) and the evaluation of these models.

3.1 Generation of Image Sets

Considering the difficulty and time-consuming process involved in creating and
subsequently classifying examples of presentation attacks [2,5,19,22], the fol-
lowing image sets were developed with the aim of generating a larger quantity
of forgery images covering various attack scenarios such as presentation attacks
and digital manipulation attacks.

Substitution-Based Image Set. This image set aims to provide many images
for substitution-based presentation attacks while maintaining the image condi-
tions by not covering the surrounding environment of the subject to be imper-
sonated. The construction process of this dataset begins with the recognition
of the face of the person whose face is to be substituted (see Fig.1 - Person X
(a)), and in the same frame (where the face is recognized), the face of the person
to be impersonated is placed (see Fig.1 - Person y (b)), which was previously
recognized, resulting in images with direct substitution (see Fig.1 - (c)).

To generate the dataset, different combinations of x/y were created using 20
individuals from the CASIA dataset [13,14,21]. For each of these 20 individuals,
the first 8 videos were taken, resulting in the creation of approximately 6,900,000
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images, which allows for the creation of around 25,000 videos. This approach
enables the preservation of various impersonation contexts originally present in
the CASIA image set, such as mask printing with and without simulated eye or
facial movement (Fig. 2a), as well as recordings on a mobile device with different
camera angles (Fig. 2b).

Fig. 1. Face substitution

Fig. 2. Examples of face substitution

Regeneration-Based Image Set (InPainting). This image set is generated
using probabilistic diffusion models for noise removal (RePaint) [15]. It requires
an input image of a person X (see Fig.3 - Person X (a)) and a binary black
and white mask (see Fig.3 - Binary Mask (b)), which is used to determine
the segments that need to be regenerated in the image. Once the repainting
model is applied, a new image is obtained (see Fig. 3 - Resulting Image (¢)). By
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using appropriate masks with this method, we can preserve the original envi-
ronment of the image and focus exclusively on facial elements. For generation,
high-resolution images from CASIA were used, which had to be adjusted to allow
the model to regenerate the image borders, resulting in a square resolution of
256 x 256.

(b)

Fig. 3. Face InPainting

To generate the images, four different binary masks (Fig.4) were used, each
with different coverage of the face. Initially, masks were auto-detected using the
OpenCV library'. However, due to the lack of accuracy, manual modifications
were made to the mask as follows: coverage of eyes and mouth (a), coverage of
eyes, nose, and mouth (b), coverage of eyes (c) and coverage of left eye (d).

From each mask, seven subsets were obtained, each consisting of approxi-
mately 400 images. As a result, a total of 8368 repainted images were generated.

The choice of these masks was based on the intention to replicate scenarios
where facial authentication systems could be challenged by realistic presentation
attacks. By creating masks that cover specific parts of the face, such as eyes,
nose, and mouth, or even just one eye, the aim is to mimic the manipulations
an attacker might perform to deceive the system.

In addition to the image sets generated in this research, the ffhq dataset from
StyleGAN [11] was used. This dataset provides an additional set of images of
digital manipulation attacks. In Table1 a summary of the resulting datasets is
shown. The total number of images in each set was randomly divided into three
subsets: training, validation, and testing.

! https://github.com/opencv/opency /tree/master.
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(a) (b) () (d)

Fig. 4. Examples of images generated by the diffusion model

Table 1. Division of image sets

Image sets | Training | Validation | Testing | Total
CASIA 82536 16507 20635 | 119678
Substitution | 4772300 | 954460 1193077 | 6919837
StyleGAN | 160160 |32032 40040 | 200200
Diffusion 5355 1339 1674 8368

3.2 Selected Models of FAS Systems

The selection of the FAS systems was based on the premise of addressing
the issues present in the literature, particularly focusing on texture-based FAS
approaches, which are widely used [5,19]. Within this category, the Silent FAS
and Object FAS models were chosen. Additionally, FAS systems with face
recognition capabilities, such as Liveness Detection FAS and Object FAS, were
selected to determine the advantages and disadvantages of face detection in syn-
thetically generated facial images, which are becoming increasingly sophisticated
[3,22].
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Silent Face Anti Spoofing. This model is primarily based on auxiliary super-
vision of the Fourier spectrum map in model training to perform liveness detec-
tion in an image in the frequency domain. The Silent FAS model adopts a silent
or texture-based liveness detection approach. Firstly, the face is detected in the
image, and then a scale of 2.7 and 4 is taken to increase the surrounding range.
Prediction is performed by weighting two trained models, one with a scale of 2.7
and the other with a scale of 4. This model was trained using a derivation of
CASIA and is available as open-source code?.

Liveness Detection Face Anti Spoofing. This model is based on face detec-
tion and is used in a web application for biometric authentication®. The process
begins with face detection, followed by validation using a deep neural network.
This model was trained using the Replay-Attack image dataset* and is available
as open-source code, implemented in Python using the TensorFlow and Keras
libraries.

Objects Face Anti Spoofing. This model is based on the combination of two
different color spaces: CIE L*u*v* and Y CyC),., using histograms to classify an
image as real or fake. It was trained using the Replay-Attack image dataset and a
private database. This model utilizes an ensemble method with 10 decision trees
and is implemented in Python using the ExtraTreesClassifier classifier from the
sklearn library. The source code is openly available®.

3.3 Datasets Preparation

The Sustitution, StyleGAN, and Diffusion datasets only contain examples of fake
images (i.e., positive samples). To perform Fine Tuning of the FAS models, data
balancing is necessary. A subset of real images from the CASIA* dataset was
randomly selected for this purpose. Additionally, downsampling was applied to
the generated fake images. The sizes of the resulting datasets after balancing are
presented in Table 2.

Table 2. Size of datasets after balancing

Image Dataset | Fake | Real

Substitution | 21000 | 20753*
StyleGAN 21000 | 20753*
Diffusion 6694 | 6694*

2 https://github.com/minivision-ai/Silent- Face- Anti-Spoofing/.

3 https://github.com /birdowl21/Face- Liveness- Detection- Anti-Spoofing- Web- App.
* https://www.idiap.ch/en/dataset /replayattack.

5 https://github.com/ee09115 /spoofing_detection.
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Additionally, to perform the Fine Tuning process, the images need to be
transformed according to the expected input of each FAS model, and in some
cases, the output (i.e., labels). Table3 provides a summary of the expected
inputs/outputs for each model.

Table 3. Input and output formats for each FAS model

Silent FAS Liveness Detection FAS | Object FAS

Input: 3D tensor (80, Input: 3D tensor (32, Input: Vector (1536)

80, 3) 32, 3)

Output: Binary Output: One-hot Output: Binary
encoding

3.4 Model Evaluation

The evaluation of the models was performed using test datasets that included
both substitution-based presentation attacks and digital manipulation attacks.
The comparison will be made in terms of metrics outlined in ISO/TEC30107-3.
For this research, the standard labeling convention will be followed, where fake
images are assigned the label 0 and real images are assigned the label 1. The
metrics used for evaluation are detailed below:

— Attack Presentation Classification Error Rate (APCER): It is the
proportion of presentation attacks incorrectly classified as genuine presenta-
tions (i.e., the error rate of fake images classified as real).

APCER = FP/(TN + FP) (1)

— Average Classification Error Rate (ACER): It is the average of the two
error rates mentioned above.

ACER = (APCER + NPCER)/2 2)

where, T'P is the number of fake images classified as fake (true positives), TN is
the number of real images classified as real (true negatives), F'P is the number
of real images classified as fake (false positives), and FN is the number of fake
images classified as real (false negatives).

4 Experimental Setup

In this section, different experiments are conducted to evaluate the performance
of the FAS models before and after Fine Tuning using the generated image sets.
The experiments were conducted on three selected FAS models: Silent FAS,
Liveness Detection FAS, and Object FAS.

5 https://www.iso.org/standard /79520.html.
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4.1 Experiment 1: Evaluation of the Performance of FAS Models
Without Fine Tuning

In Experiment 1, the FAS models without Fine Tuning were evaluated. We
aimed to observe the behavior of the models, without additional training rounds
on our generated datasets. As shown in Table4, the results demonstrate that
all models achieved high error rates (APCER, ACER) in most of the evaluated
image sets. Silent FAS achieved the best performance with an error of 0 in the
CASITA dataset, but it clearly exhibited poor performance in the other datasets.
This can be interpreted as a limitation in detecting digital manipulation attacks.

On average, Silent FAS exhibitedan average APCER of 0.6795 and an average
ACER of 0.3326. Liveness Detection FAS and Object FAS demonstrated aver-
age APCER values of 0.8141 and 0.6122, and average ACER values of 0.4820
and 0.3545, respectively. These results underscore the importance of consid-
ering the performance of FAS models across diverse image sets, as each model
exhibits strengths and weaknesses in different scenarios. These findings highlight
the importance of evaluating and comparing multiple FAS models on different
datasets to gain a more comprehensive understanding of their performance and
select the most suitable model for a specific presentation attack detection appli-
cation.

Table 4. Experiment 1: Results of FAS models without Fine Tuning. The test subset
was used for each dataset.

Image Dataset | Silent FAS Liveness Detection FAS | Object FAS
APCER | ACER | APCER | ACER APCER | ACER
CASIA 0 0 0.4496 | 0.5247 0.61 0.4986
Substitution |0.7517 |0.3758 |0.9099 | 0.455 0.8227 |0.4114
StyleGAN 0.9729 | 0.4577 |0.9153 |0.4577 0.4681 |0.2341
Diffusion 0.9934 |0.4967 |0.9815 |0.4907 0.5478 | 0.2739
Averages 0.6795 | 0.3326 | 0.8141 | 0.4820 0.6122 | 0.3545

4.2 Experiment 2: Models Fine Tuning

In Experiment 2, the Fine Tuning process of the models was carried out using
different image sets. Each image set’s corresponding training set was used to
fine-tune the model. The results are presented for both training and validation.
The results on the test datasets are reserved for Experiment 3. For the models
based on neural architectures, the number of epochs corresponding to the best
checkpoint obtained in validation is reported, without exceeding 50 epochs.
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Silent FAS. The results are presented in Table5. Overall, it can be observed
that the model achieved high accuracy (Acc) values and low loss values both in
the training and validation sets for all evaluated image datasets.

Specifically, in the CASTA image dataset, the model with a scale of 4 achieved
a training accuracy of 0.9968 and a loss of 0.0071, while in the validation set,
it achieved an accuracy of 0.9938 and a loss of 0.0105. On the other hand, the
model with a scale of 2.7 achieved a training accuracy of 0.996 and a loss of
0.0098, and a validation accuracy of 0.9948 and a loss of 0.0142.

For the Sustitution, StyleGAN, and Diffusion image datasets, the model also
demonstrated solid performance in terms of accuracy and loss. These results
indicate that the Fine Tuning process improved the performance of the Silent
FAS model in detecting presentation attacks, demonstrating the effectiveness of
this approach in fine-tuning the model for specific image datasets.

Table 5. Experiment 2: Accuracy/Loss obtained in the Fine Tuning process of Silent
FAS using each image dataset

Image Dataset | Model with 4-scale Model with 2.7-scale

Epochs | Acc Loss Acc-val | Loss_val | Epochs | Acc Loss Acc-val | Loss_val
CASIA 4 0.9968 | 0.0071 | 0.9938 | 0.0105 4 0.996 0.0098 | 0.9948 | 0.0142
Substitution 10 0.976 0.0335 | 0.9666 | 0.0462 9 0.9782 | 0.0295 | 0.9703 | 0.0395
StyleGAN 4 0.9999 | 0.0026 | 0.9991 0.0033 3 0.9975 | 0.0066 | 0.9961 0.0103
Diffusion 4 0.9998 | 0.0031 | 0.9981 | 0.0036 3 0.9986 | 0.0051 | 0.9992 | 0.005

Liveness Detection FAS. The results obtained are shown in Table6. It can
be observed that the model achieved high accuracy (Acc) values and low loss
(Loss) values both in the training and validation sets for all evaluated image
datasets.

Specifically, in the CASIA image dataset, the model achieved a training accu-
racy of 0.999 and a loss of 0.0008, while in the validation set, it achieved an accu-
racy of 0.9979 and a loss of 0.0007. In the Sustitution image dataset, the model
exhibited a training accuracy of 0.9862 and a loss of 0.0362, and a validation
accuracy of 0.9904 and a loss of 0.0215. As expected, similar to the Silent FAS
model, the fine-tuning process proves to be effective with all datasets, indicating
its effectiveness in handling different types of attacks.

Object FAS. The results obtained are shown in Table7. The CASIA image
dataset achieved the highest level of accuracy with a value of 0.9976, followed
by the Sustitution image dataset with 0.9971, the Diffusion image dataset with
0.997, and finally the StyleGAN image dataset with 0.9976. These results indi-
cate that the Fine Tuning process was effective in improving the performance
of the Object FAS model in detecting fake images. Additionally, the accuracy
values in the validation set (Acc_val) are also high, indicating that the model
generalizes well to previously unseen data.
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Table 6. Experiment 2: Accuracy/Loss obtained in the Fine Tuning process of Liveness
Detection FAS using each image dataset

Image Dataset | Liveness model

Epochs | Acc Loss | Acc_val | Loss_val
CASIA 40 0.999 |0.0008{0.9979 |0.0007
Substitution | 40 0.9862 | 0.0362 | 0.9904 | 0.0215
StyleGAN 50 0.9993 | 0.0025 | 1 0.0009
Diffusion 40 0.867 |0.2867|0.8734 |0.2873

Table 7. Experiment 2: Accuracy obtained in the Fine Tuning process of Object FAS
using each image dataset

Image Dataset | Decision Trees
Acc Acc_val
CASIA 0.9976 | 0.9967
Substitution | 0.9971 | 0.9944
StyleGAN 0.9976 | 0.9887
Diffusion 0.997 1 0.991

4.3 Experiment 3: Evaluation of FAS Model Performance After
Fine Tuning

In Experiment 3, the Fine Tuning process was performed using all image datasets
on the models. In contrast to Experiment 2, where Fine Tuning was conducted on
individual datasets, in this experiment, Fine Tuning was performed collectively
using all datasets, and evaluation was done on the test sets. The results obtained
are summarized in Table 8. In terms of the APCER metric (Attack Presentation
Classification Error Rate), both the Silent FAS and Diffusion models achieved
an APCER of 0, indicating no false positives were detected in the classification
of attacks. On the other hand, the StyleGAN model obtained an APCER of
0.2629, and the Sustitution model achieved an APCER of 0.4857.

Regarding the ACER (Average Classification Error Rate), the averages
obtained were 0.1086 for Silent FAS, 0.0050 for Liveness Detection FAS, and
0.4814 for Object FAS. This indicates that the Liveness Detection FAS model
had the best performance in terms of the average error rate, while the Silent FAS
model had the lowest performance. Overall, it is evident that the Fine Tuning
process improved the performance of the models when compared to the results
of Experiment 1 (without Fine Tuning).
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Table 8. Experiment 3: Results on the test sets after Fine Tuning with all image
datasets

Image Dataset | Silent FAS Liveness Detection FAS | Object FAS
APCER | ACER | APCER | ACER APCER | ACER
CASTA 0 0.0602 |0 0.0003 0.7817 | 0.5444
StyleGAN 0.2629 [0.1314 |0 0 0.9201 |0.46
Diffusion 0 0 0 0 0.9502 |0.4751
Substitution | 0.4857 |0.2428 |0.0396 |0.0198 0.892 0.446
Averages 0.1872 | 0.1086 | 0.0099 | 0.0050 0.8860 |0.4814

5 Results Analysis

In this section, the analysis of the results obtained from the conducted experi-
ments will be presented. The most relevant findings will be discussed, and cor-
responding conclusions will be drawn.

Firstly, it was observed that the strategy of generating synthetic images using
presentation attacks and digital manipulation was effective in improving the
performance of the evaluated FAS systems. The generated datasets allowed for
increased diversity and complexity in the training data, resulting in an enhance-
ment in attack detection capability.

Regarding the individual experiments, it was found that Fine-Tuning using
presentation attack datasets had a positive impact on the Silent FAS and Live-
ness Detection FAS systems. These systems exhibited a significant improvement
in detection accuracy metrics, with an average reduction in APCER of 25% and
83%, respectively. On the other hand, the Object FAS system did not show a
significant improvement after Fine-Tuning with presentation attack datasets.

In the case of Fine-Tuning using digital manipulation datasets, it was
observed that the Silent FAS and Object FAS systems demonstrated an improve-
ment in detection metrics, with an average reduction in APCER. of 61% and
13%, respectively. However, the Liveness Detection FAS system did not show a
significant improvement after Fine-Tuning with digital manipulation datasets.

Regarding the analysis of the combined results from all datasets, it was found
that the Liveness Detection FAS system showed the most significant improve-
ment, with an average reduction in APCER of 83%. The Silent FAS system also
exhibited a considerable improvement, with an average reduction in APCER of
25%. On the other hand, the Object FAS system showed a limited improvement,
with an average reduction in APCER of 10%.

In conclusion, the results obtained demonstrate the effectiveness of the strat-
egy of generating synthetic images in improving attack detection capability in
the evaluated FAS systems. However, it was observed that the type of image
dataset used in Fine-Tuning can have a significant impact on the results. Fur-
ther research is needed to determine the most appropriate type of image dataset
for each specific FAS system.
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6 Conclusions and Future Work

This study employed strategies to artificially simulate presentation attacks and
digital manipulation, resulting in the generation of new fake samples to comple-
ment existing anti-spoof datasets. The explored strategies have demonstrated
improvements in the detection performance of three selected FAS systems, and
the results are anticipated to provide a valuable resource for future research in
the field.

FAS models trained without fine-tuning on the generated data exhibited
a bad performance in terms of APCER metrics, with an average rate of 70%
across the three FAS systems. However, after applying fine-tuning techniques, a
noteworthy enhancement in APCER was achieved, with an average rate of 53%
for the three FAS systems. The implementation of data augmentation techniques
utilizing synthetic image generation exhibited positive outcomes, particularly for
the Silent FAS and Liveness Detection FAS models. The Average Presentation
Classification Error Rate (APCER) demonstrated improvements of 25% and
83% respectively.

In future research, further exploration will be conducted to investigate the
correlation between the optimal type of image dataset for augmentation and
the prevailing landscape of FAS architectures documented in the existing lit-
erature. Drawing from the knowledge obtained through the literature review,
it is planned to assess FAS architectures that utilize feature extraction tech-
niques, such as Local Binary Patterns (LBP) [17], Speeded-Up Robust Features
(SURF) [20], and Difference of Gaussians (DoG) [9], for image representation.
These approaches effectively capture the intrinsic textures inherent in the images.
Lastly, to explore novel possibilities in synthetic image generation, we plan to
implement and investigate state-of-the-art architectures such as CUT [16], Cycle-
GAN [26], and DCLGAN [6]. Building upon recent successes reported in the lit-
erature, these approaches offer the potential for advancing the field of synthetic
image generation for FAS systems.
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