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Abstract. This paper proposed a new classification method using a rule
table and demonstrated how to derive the rule table from the Rakuten
Travel dataset that represents real-world datasets and how to use it
for classification problems. The usefulness of the proposed method was
shown using the classification rate referring to the random forest method.
The proposed rule table concept showed the expansion of the if–then rules
induced by the previous statistical test rule induction method including
basic rules called trunk rules behind the dataset and the usefulness for
various levels of rule description for real-world datasets.
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1 Introduction

With the growth of various network societies, numerous electric datasets are
generated and stored for use under different policies and/or business strategies,
and such datasets are often arranged in each suitable form for the application.
This paper considered a Rakuten Travel dataset (R-dataset) [1,12] which is a
real-world dataset (RWD) of questionnaire surveys with the accommodation
(object) rating some feature items of each object and its overall category, and
a typical decision table (DT) in the field of the Rough Sets (RSs) [2]. This
paper proposed a new method for arranging the R-dataset into a rule table
(RT), presenting the relationships between the feature items of each object and
the overall category, and applying these relationships for classifying a new object
into its belonging overall category. The classification results were evaluated using
the random forest (RF) [3].

In addition, as mentioned in the principle of incompatibility [4], accurate
arrangement and/or summarization against the dataset as well as the compre-
hensive expressions for decision making are necessary to support real-world activ-
ities. However, the arrangement using the RT was too complex for human beings,
as also in the case of RF, and lost comprehensibility. After showing that the RT
includes if-then rule candidates (RCs) with a proper statistical significance level
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induced by the previous statistical test rule induction method (STRIM) [5–20]
and RCs without it, the former RCs were also pointed out including the intu-
itively comprehensive basic rules. These three types of RCs in the dataset can
organize the rule set, balancing accuracy and comprehensibility depending on
the target matter. Meanwhile, RF does not provide such knowledge or informa-
tion behind the dataset, although it remains a useful method for classification
problems. In this way, the usefulness of the proposed method was confirmed.

2 Conventional RS and Its Rule Induction Method

The R-dataset is a typical DT in the field of the RSs [2] and the DT is for-
mulated with an observation system S as follows: S = (U,A = C ∪ {D}, V, ρ),
where U = {u(i)|i = 1, ..., N = |U |} is a dataset, u(i) denotes an object in a
population, A denotes a set of given attributes of U , C = {C(j)| j = 1, ..., |C|}
denotes a set of the condition attribute C(j), and D denotes a decision attribute.
Meanwhile, V denotes a value set of the attribute, i.e., V =

⋃
a∈A Va, where

Va denotes the set of values for an attribute a and ρ : U × A → V is called
an information function. For example, let a = C(j) (j = 1, ..., |C|), then
Va = {1, 2, . . . ,MC(j)}. If a = D, then Va = {1, 2, . . . ,MD}. Corresponding
relationships with the R-dataset are given as follows: |C| = 6, A = {C(1) =
Location, C(2) = Room, C(3) = Meal, C(4) = Bath (HotSpring), C(5) =
Service, C(6) = Amenity, D = Overall}, and Va = {1 : Dissatisfied, 2 :
Slightly Dissatisfied, 3 : Neither Dissatisfied nor Satisfied, 4 :
Slightly Satisfied, 5 : V ery Satisfied}, a ∈ A , i.e., |Va=D| = MD =
|Va=C(j)| = MC(j) = 5.

The conventional RS theory finds the following subsets of U through C and D:

C∗(Dd) ⊆ Dd ⊆ C∗(Dd). (1)

Here, C∗(Dd) = {ui ∈ U |[ui]C ⊆ Dd}, C∗(Dd) = {ui ∈ U |[ui]C ∩ Dd �=
∅}, [ui]C = {u(j) ∈ U |(u(j), ui) ∈ IC , ui ∈ U} , and IC = {(u(i), u(j)) ∈
U2|ρ(u(i), a) = ρ(u(j), a),∀a ∈ C}, where [ui] denotes the equivalence class
with the representative ui induced by the equivalence relation IC , and Dd =
{u(i)|(ρ(u(i),D) = d}. In equation (1), C∗(Dd) and C∗(Dd) are called the lower
and upper approximation of Dd, respectively, and (C∗(Dd),C∗(Dd)) is the rough
set for Dd. Being found C∗(Dd) = {u(i)| ∧j (ρ(u(i), C(j)) = vjk

)} by using the
DT, the following if–then rule with necessity is obtained using the inclusion
relation in equation (1): if CP then D = d, where the condition part (CP ) is
specifically CP = ∧j(C(j) = vjk

). Similarly, the if–then rule with possibility is
induced using C∗(Dd). Thus, the conventional RS theory derives relationships
between C = (C(1), . . . , C(6)) and D. The specific algorithm and RSs can be
respectively referred to in the literature [2,21].

However, in most cases, u(i) = (uC(i), uD(i)) is randomly collected from a
population of interest so that the attribute values uC(i) = (vC(1)(i), ..., vC(6)(i))
(vC(j)(i) (∈ VC(j))) or uD(i) = vd(i) (∈ VD) follow random variations. The col-
lection of the dataset from the same population indicates that U will variate
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Fig. 1. Data generation model: Rule Box contains if-then rules and Hypotheses regulate
how to apply rules for Input and transform Input into Output.

such that the corresponding induced rules also variate since the conventional
RS theory directly uses the DT attribute values [5,8,13]. As a result, the rules
induced by the conventional RSs do not fulfill the function, e.g., for the classi-
fication problem. In statistics, C(j) and D are recognized as random variables,
and vC(j)(i) (∈ VC(j)) and vd(i) (∈ VD) are their respective outcomes. The con-
ventional RS theory lacks these statistical views and does not have a model for
collecting the DT values.

3 Outlines of Data Generation Model

The previous STRIM proposed a data generation model as shown in Fig. 1 in
which Rule Box and Hypotheses transformed an input uC(i) into the output
uD(i). Here, Rule Box contains pre-specified if-then rules and Hypotheses reg-
ulate how to apply those rules for the input and transform the input into the
output. The model was used for generating a dataset on a simulation exper-
iment as follows: (1) specifying some proper if-then rules in Rule Box, (2)
randomly generating an input and transforming it into the output based on
those rules and Hypotheses, (3) repeating (1) and (2) N times and forming
U = {u(i) = (uC(i), uD(i))|i = 1, ..., N = |U |}. The generated U was used for
investigating the rule induction abilities by applying it for any rule induction
method (see details [5–20]). The previous STRIM [20] could induce the pre-
specified rules while the rules induced by the method like RSs [15,21], CART
[14,22] or association rule [19], [23] included a lot of meaningless rules and hardly
corresponded with the pre-specified rules.

4 Introduction of RT and Its Application for Classification
Problem

The validity and usefulness of the previous STRIM have been confirmed in sim-
ulation experiments which generate the dataset obeying pre-specified rules, that
is, a well-behaved dataset. This paper newly expanded Rule Box and Hypothe-
ses in Fig. 1 so as to adapt the R-dataset as one of RWD which includes an
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ill-behaved dataset caused by various raters with different rating standard, and
investigated its rule induction abilities. Generally, the result of the rule induc-
tion from an RWD cannot be directly ascertained and increases the complexity
of rules’ description. This paper investigates the ability in the classification prob-
lem having the complimentary relation to the rule induction problem in which
induced rules directly affect the classification rate.

Let there be a new relationship between C(j) (j = 1, ..., 6) and D by using the
R-dataset. This section shows how to form the RT and apply the new relationship
for a classification problem. The R-dataset of N= 10,000 was first formed by
randomly selecting 2,000 samples, each of D = m (m = 1, . . . , 5) from about
400,000 surveys in the 2013–2014 dataset. The R-dataset was randomly divided
into two groups. One is the RL-dataset with NL=5,000 for learning the R-dataset
and the other is the RC-dataset with NC=5,000 for the classification experiment.

Regarding the learning process, let us consider a specific example of learning
data: (C(1), . . . , C(6),D) = (1, 2, 3, 4, 5, 1, 3). This data can be derived by an
if–then rule: if CP = (C(1) = 1) ∧ (C(2) = 2) ∧ (C(3) = 3) (hereafter denoted
with CP = (123000)) then D = 3. This rule is called the rule with rule length 3
(RL = 3) as it involves three conditions. Assuming RL = 3, CP = (023400) can
be considered another RC. Thus, all the RCs with RL = 3 in this example can
be 6Cr|r=3 = 20 different ways. Accordingly, all the possible RCs with RL = 3
is 6Cr(5)r|r=3 = 2, 500. The RL-dataset was arranged in the RT with RL = 3
(RT (r = 3)) as shown in Table 1. The first row of the table (1,2,3) = (1,1,1) rep-
resents the CP : (C(1) = 1) ∧ (C(2) = 1) ∧ (C(3) = 1). Meanwhile, (79,0,0,0,0)
is the frequency distribution of D satisfying the condition in the RL-dataset. In
other words, D = 1 represent the maximum frequency (if there are the same fre-
quencies, D is randomly selected between them). Most of the distributions of D
in Table 1 widely fluctuate corresponding to the same CP , which was caused by
different raters with varying standards. If an RC has a frequency of (0,0,0,0,0), it
is called the empty RC. In Table 1, each RC is called a sub-rule of the RT. In addi-
tion, by using the RT (r), the rule set ∪|C|=6

r=1 RT (r) includes all the rules behind
the RL-dataset. This RT is the newly expanded Rule Box in Fig. 1.

With respect to the classification process of transforming an input uC(i) into
the outputuD(i), sub-rules of 6Cr|r=3 = 20 that match the input pattern should
be considered to adapt to different rating standards. Therefore, this paper adopted
the vote of each sub-rule’s output. Figure 2 provides a specific example where the
input uC(i) = (4, 5, 1, 4, 4, 3) (uD(i) = 4) is classified by 20 sub-rules with RL = 3
using the RT in Table 1. In the first row, the input values (C(1) = 4, C(2) =
5, C(3) = 1) correspond to the CP of the sub-rule: (1,2,3) = (4,5,1) in the RT.
It is classified as D = 1 by selecting the maximum frequency. Similarly, in the
19th row, D = 2 or 3 is randomly selected. By arranging non-empty cases (i.e.,
deleting empty sub-rules) and by counting the votes, the maximum frequency is
9 at D̂ = 4, which is the final result that happens to coincide with uD(i). In the
case of same values, one of them is randomly selected. These processes are the new
Hypotheses in Fig. 1.
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Table 1. Example of RT with RL = 3 of the RL-dataset.

Condition Part
(C(j1), C(j2), C(j3))(j1 <
j2 < j3) (j1, j2, j3) =
(k1, k2.k3)

Frequency of
D(n1, n2, ..., n5)

Decision Part D

(1,2,3) = (1,1,1) (79, 0, 0, 0, 0) 1

(1,2,3) = (1,1,2) (9, 2, 0, 0, 0) 1

(1,2,3) = (1,1,3) (9, 0, 0, 0, 0) 1

... ... ...

(1,2,3) = (5,5,5) (8, 6, 4, 28, 445) 5

(1,2,4) = (1,1,1) (82, 1, 0, 0, 0) 1

... ... ...

(1,2,4) = (5,5,5) (10, 9, 5, 19, 393) 5

... ... ...

(4,5,6) = (1,1,1) (188, 17, 0, 0, 0) 1

... ... ...

(4,5,6) = (5,5,5) (4, 5, 5, 23, 409) 5

Fig. 2. Example of classification process by RT with RL = 3

5 Classification Experiments on R-Dataset Using RT
and Comparison With RF

The RT accompanied with the classification method proposed in Sect. 4 was
applied for the R-dataset to investigate its ability and confirm the usefulness. The
experiment was executed for every RT (r) (r = 1, . . . , 6) as follows: 1) composing
RT (r) using the RL-dataset, 2) forming the classification dataset by randomly
sampling Nb = 500 from the RC-dataset, 3) classifying the Nb dataset according
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to the classification process (see Fig. 2), and 4) repeating the previous three
procedures by Nr = 50 times. Table 2 summarizes one of the results classified
by RT (r) (r = 1, . . . , 6) with (mRT (r), SDRT (r)) [%]. Here mRT (r) and SDRT (r)

denote the Nr times mean of the classification rate and its standard deviation,
respectively. The following represents the comparisons between the results by
RT (RL = r) ( r = 1, . . . , 6):

(1) When RL is small, sub-rule accuracy tend to be low, while their cover-
age tends to be high. Consequently, there are rarely any empty sub-rules,
and the frequency distribution bias of D is low, leading to a lower clas-
sification ability. Here, accuracy = |U(d)

⋂
U(CP )|/|U(CP )| = P (D =

d|CP ), coverage = |U(d)
⋂

U(CP )|/|U(d)| = P (CP |D = d), U(d) =
{u(i)|uD=d(i)}, U(CP ) = {u(i)|uC(i) satisfiesCP}.

(2) When RL becomes too high, the sub-rule accuracy tend to increase, while
the coverage decreases. Consequently, there are many empty sub-rules, lead-
ing to a decrease in the classification ability.

(3) Suppose that Xr1 ∼ N(μr1, σ
2
r1) and Xr2 ∼ N(μr2, σ

2
r2). Here, Xr1 and Xr2

denote random variables of the classification rate by RT (r1) and RT (r2),
respectively. The Nr times mean Xr1and Xr2, and their normalized differ-
ence Xr1 − Xr2 is given as follows

Z =
Xr1 − Xr2 − (μr1 − μr2)

(
σ2

r1
Nr

+ σ2
r2

Nr

)0.5 . (2)

Under null hypothesis H0: μr1 = μr2, Z = Xr1−Xr2(
σ2

r1
Nr

+
σ2

r2
Nr

)0.5 ∼ N(0, 1).

For example, placing Xr1 = mRT (4), σr1 = SDRT (4), Xr2 = mRT (3),
σRT (3) = SDRT (3), z =2.83 with p-value = 2.31E-3, resulting in the rejec-
tion of H0, i.e., statistically μRT (4) > μRT (3).

Accordingly, RT (r = 4) was used for the classification experiment in the RC-
dataset due to the highest classification rate. Table 3 presents one of the results
classified by RT (r = 4), arranged as the confusion matrix of all the datasets
(500 × 50). For example, the first row shows the total data number of D = 1 is
(3,827+1,032+95+66+52) = 5,072, the rate classified D = 1 is 3,827/5,072 =
0.755, D = 2 is 1032/5,072 = 0.203, and the class error is 0.245.

The same experiment was conducted for the same RL-dataset and RC-dataset
by RF for comparison with the classification results by the RT method. Specif-
ically, the same RL-dataset was first used for the learning RF model as shown
in Fig. 3: classmodel = randomForest(x, y, mtry = 2). Here, the function: ran-
domForest is in the R-language library [24], {uC(i) ∈ RL-datase} was set to x,
and {uD(i) ∈ RL-datase} was set to y after changing their data classes appro-
priately. The parameter mtry = 2 was found to be the least error rate of out of
bag (OOB) in the preliminary experiment. Figure 3 shows one of the outputs of



New Classification Method Using Rule Table 61

Table 2. Summary of classification experiment for R-dataset by RT (r), RF and tr-
STRIM.

r RT (1) RT (2) RT (3) RT (4) RT (5) RT (6) RF tr − STRIM

(mr, (56.0, (63.0, (67.4, (68.6, (65.2, (56.1, (68.6 (60.5,

SDr) 2.08) 2.07) 2.09) 2.25) 1.95) 2.16) 1.70) 2.12)

Table 3. Results of R-dataset classification experiment by RT (r = 4).

D 1 2 3 4 5 class error

1 3827(0.755) 1032(0.203) 95(0.019) 66(0.013) 52(0.010) 0.245

2 1336(0.266) 2718(0.542) 770(0.153) 155(0.031) 38(0.008) 0.458

3 169(0.034) 994(0.203) 3099(0.632) 575(0.117) 67(0.014) 0.368

4 30(0.006) 86(0.017) 750(0.147) 3412(0.670) 813(0.160) 0.330

5 8(0.002) 6(0.001) 61(0.012) 739(0.150) 4102(0.834) 0.166

“classmodel” is (729 + 201 + 32 + 15 + 11) = 988 for the dataset of D = 1 and
class error = (201+32+15+11)/988 = 0.262. Table 4 corresponding to Table 3
shows one of the results of the classification experiment by the RF implemented
in Fig. 3 and each class error is similar as that in Fig. 3. The Nr times mean
rate of the classification rate and its standard deviation was (mRF , SDRF ) =
(68.6,1.70) [%], as shown in Table 2.

The comparison of the classification results of the R-dataset between RT (r =
4) and RF revealed no significant difference between μRT (4) > μRF and μRT (4) <
μRF using equation (2) (z = 0.075), indicating that μRT (4) = μRF for time being.
Figure 4 also shows the comparison of class errors with D between Table 3 (by
RT (r = 4)) and Table 4 (by RF) which shows the same tendency and both
appears to execute the classification based on the close rules each other. RF
is also one of the classification methods which uses the voting result through
a large number of decision trees with randomly selected variables to decrease
the correlation among those decision trees, improving the CART method by
constructing a tree structure [3,22]. However, the difference between them is
that the RT explicitly induces rules whereas RF cannot.

6 Proposal of Trunk Rules and Its Consideration

The classification experiments on the R-dataset by the RT method accompanied
with classification procedures showed the equivalent ability to that by RF. How-
ever, the RT method arranged the R-dataset into numerous sub-rules and used
the RT for voting to obtain the classified result, although the method was adap-
tive to the ill-behaved RWD, resulting in RT losing comprehensibility for human
beings. Meanwhile, the previous STRIM [5–19] used the following principle for
exploring the CP of if–then rules: P (D = d|CP ) �= P (D = d), setting the null
hypothesis H0: the CP is not a rule candidate (P (D = d|CP ) = P (D = d))
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Fig. 3. Results of error rate of OOB and confusion matrix in RL-dataset.

Table 4. Results of classification experiment for RC-dataset by RF

D 1 2 3 4 5 class error

1 3785(0.744) 1066(0.209) 149(0.029) 56(0.011) 33(0.006) 0.256

2 1316(0.261) 2821(0.559) 752(0.149) 135(0.027) 22(0.004) 0.441

3 156(0.032) 936(0.190) 3200(0.650) 555(0.113) 77(0.016) 0.350

4 7(0.001) 98(0.019) 821(0.162) 3283(0.649) 848(0.168) 0.351

5 5(0.001) 8(0.002) 51(0.010) 760(0.156) 4060(0.831) 0.169

Fig. 4. Class error tendency corresponding to Tables 3 and 4

and executing the statistical test using the RL-dataset. The frequency distribu-
tion of D, e.g., (79,0,0,0,0) at the first row in Table 1, rejects the null hypoth-
esis, i.e., it is a rule candidate. However, H0 cannot be rejected by the second
(9,2,0,0,0) and the third (9,0,0,0,0) as they do not satisfy the necessary test
sample size n (in this specification, approximately n ≥ 25 and the sample size
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of the second is 9 + 2 = 11 (see [13])). Thus, the RT can be divided into two
types of sub-rules: rejecting H0 and not rejecting. Table 5 shows the number of
induced RCs from the whole of RT: ∪|C|=6

r=1 RT (r), which satisfies the principle
with p− value < 1.0E − 5. It arranges the induced RCs by every RL = r, which
coincides with the result by the previous STRIM. That is, the RT expands the
range of RCs by the previous STRIM, and the RT with RL = r method was
labeled as expanded STRIM (ex − STRIM |RL = r).

Although the details were omitted due to space limitations, all the induced
RCs with RL = 1 in Table 5 are of the following form:

if C(j) = d then D = d (j = 1, . . . , 6, d = 1, . . . , 5). (3)

Table 6 shows the RCs with RL ≥ 2, having only C(j) = d, extracted from
Table 5 and arranged in the same manner as Table 5. The number of all RCs
with RL = r constructed by only C(j) = d is given by 6Cr and presented in
Table 6, except for the cases of D = 2 with RL = 4, 5, and 6. In addition,
eight RCs of D = 2 with RL = 4 were discovered: CP= (222002), (220202),
(220022), (022220),(022202), (022022), (020222), and (002222). The values in
both the condition and decision parts of the if–then rule coincide with each
other, considering that the rating scale of C(j) (j = 1, . . . , 6) is the same ordinal
scale including D. Consequently, the RT or the previous STRIM induced such
understandable RCs, which were labeled trunk rules, and an inducing method
trunk STRIM (tr-STRIM). As shown in Table 2, a classification result by the
tr-STRIM was (mtr−ST , SDtr−ST ) = (60.5,2.12) [%], which is positioned in the
middle of RT (r) with r= 1 and r= 2.

The inclusion relationship of RCs induced by the three types of STRIM is
arranged as follows:

(1) Rset(ex − STRIM |RL = r) ⊃ Rset(STRIM |RL = r) ⊃ Rset(tr −
STRIM |RL = r),

(2) ∪|C|=6
r=1 Rset(ex−STRIM |RL = r) ⊃ Rset(STRIM) ⊃ Rset(tr−STRIM),

(3) Rset(ex − STRIM |r = 1) ⊃ Rset(ex − STRIM |r = 2) ⊃, . . . , Rset(ex −
STRIM |r = 6).

In this context, Rset(method) refers to the rule set induced by a particular
method. The average classified results can be summarized as follows, includ-
ing no-show relationships due to space limitations: C(Rset(ex − STRIM |RL =
r), data) > C(Rset(STRIM |RL = r), data) > C(Rset(tr − STRIM |RL =
r), data), where C(Rset(method), data) represents the average classification
result against a dataset by Rset(method). To express the classification results
qualitatively, the trunk rules were improved by adding the branch rules with
statistical significance level and further by the leaf rules without it. These stud-
ies can be beneficial in considering a level of “the principle of incompatibility”
depending on the targeted matter. For instance, these studies can be useful in
various policies or business strategies where RF cannot explicitly induce rules,
indicating that the contents of the dataset and the level need to be considered.
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Table 5. Number of induced rules with statistical significance level from whole of RT.

RL = 1 2 3 4 5 6 Total

D = 1 6 81 226 78 13 2 406

2 6 61 158 49 1 0 275

3 6 43 124 134 33 3 343

4 6 45 149 141 22 2 365

5 6 50 142 151 53 5 407

Total 30 280 799 553 122 12 1796

Table 6. Number of extracted trunk rules for each RL from Table 5

RL = 1 2 3 4 5 6 Total

D = 1 6 15 20 15 6 1 63

2 6 15 20 8 0 0 49

3 6 15 20 15 6 1 63

4 6 15 20 15 6 1 63

5 6 15 20 15 6 1 63

Total 30 75 100 68 24 4 301

7 Conclusion

The validity and usefulness of the previous rule induction method, STRIM have
been confirmed using a simulation experiment. However, the examination of its
usefulness in an RWD was left for future study [8,13,20]. This study specifically
used the R-dataset with DT in the field of RS for experimentally addressing the
issue by newly proposing the RT method for adaption to the RWD. The validity
or usefulness of the method was confirmed by applying it to the classification
problem, as their confirmation of the rule induction from the RWD cannot be
generally ascertained, even though the result directly reflects the classification
result. The usefulness of the method was confirmed using the classification result
by RF. The following aspects were specifically considered:

(1) The newly proposed RT method demonstrated how to arrange the dataset
into RT (r) which is a set of sub-rules and all the possible RCs with RL = r,
and how to use RT (r) to classify a new object.

(2) The validity and usefulness of the RT method were experimentally examined
by applying it to the classification problem after selecting a proper RT (r).
The result of the classification rate showed equivalence to that by RF, i.e.,
μRT (r=4) = μRF .

(3) However, the induced RT (r) and the decision trees generated by RF are
increasingly difficult to understand. Both methods offer limited insights
and information regarding the dataset in the form of if–then rules. Thus,
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the whole of RT: ∪|C|=6
r=1 RT (r) was subsequently reviewed and then orga-

nized into trunk rules using the trunk-STRIM method. The relation-
ships between these rules were shown as Rset(ex − STRIM |RL = r) ⊃
Rset(STRIM |RL = r) ⊃ Rset(tr − STRIM |RL = r) and were useful in
providing “the principle of incompatibility” depending on the targeted mat-
ter. On the other hand, RF does not provide such knowledge, although it
remains a useful method for classification problems.

The investigation of the following points is recommended for future studies:

(1) To validate the findings of this study, future research should focus on apply-
ing the three types of STRIM, namely the previous, ex-STRIM, and tr-
STRIM, to various other RWDs and replicate the findings to validate the
findings of this study.

(2) When using ex-STRIM with RL = r as a classification method, whether
μ(ex−ST |r) = μRF is always equivalent or not should be studied, considering
factors, such as the size of the learning dataset and changes in RWD.
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