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Abstract. In this paper, we explore the use of General Unary Hypothe-
ses Automaton (GUHA) quantifiers, explicitly implicational quantifiers,
for analyzing specific relational dependencies. We discuss their suitabil-
ity in fuzzy modeling and demonstrate their integration with appropriate
fuzzy rules to create a new class of weighted fuzzy rules. This study con-
tributes to the advancement of fuzzy modeling and offers a framework
for further research and practical applications.
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1 Introduction

There exist various approaches to modeling dependencies between input and
output domains of interest that are applicable, e.g., in the process of gaining
knowledge in databases or for confirmation of assertions about patterns in an
analyzed database. These assertions can often be expressed using a logical calcu-
lus, and items in a database serve as basic observations that allow us to support
or reject them. Certain patterns of interest with fuzzy attributes can be analyzed
involving a four-fold table, which gathers information from the database about
the number of objects that satisfy both the antecedent “A” and the consequent
“B”, only “A”, only “B” or neither, where “A” and “B” can be of a vague nature.
This is a key component of both the fuzzy association rules [1,12,13] and the
fuzzy GUHA method [5,7,15,17]. Note that fuzzy association rule mining is part
of the GUHA method, so we will only report on this broader method below.

Both of the above methods test automatically generated hypotheses, and
these hypotheses can take the form of a single fuzzy rule [8,16]. Testing is carried
out based on a suitably chosen quantifier [10,11]. In practical applications that
generate fuzzy rules using the GUHA quantifier [18], mainly bivalent quantifiers
have been used. However, GUHA quantifiers are defined using statistics and can
be identified with functions having values in [0, 1].

In this paper, we use GUHA quantifiers that are suitable to analyze the
dependence of the form

“If antecedent then consequent”.
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These quantifiers are referred to as implicational [6,19]. Next, we show their suit-
ability in fuzzy modeling. We combine the values of this implicational quantifier
with the appropriate fuzzy rules to obtain a new class of weighted fuzzy rules.
This expansion provides a promising avenue for diverse applications in various
fields; for example, the integration of weighted fuzzy rules can contribute to
more precise and robust data mining processes, enabling the discovery of intri-
cate relationships within complex datasets; due to assigning different weights
to individual fuzzy rules, the classification system can establish finer decision
boundaries, which enables more precise classification of data points that fall
within ambiguous or overlapping regions of the feature space.

2 A Four-Fold Table and Implicational Quantifiers

In the sequel, we will use the following symbols:

& left continuous t-norm
→ residuum of &
¬ involutive negation
∧ minimum
∨ maximum

(1)

For simplicity of exposition, consider the following data matrix

D = {(xi, f(xi)}i∈I ,

where xi ∈ X, f(xi) ∈ Y , I = {1, 2, . . . n}, X,Y �= ∅ and f : X → Y . This D can
be visualized as follows:

D =

⎡
⎢⎢⎢⎣

x1 y1 = f(x1)
x2 y2 = f(x2)
...

...
xn yn = f(xn)

⎤
⎥⎥⎥⎦ . (2)

Definition 1 (4ft-table). Let A,B be fuzzy sets on X,Y �= ∅, respectively, and
D be a data matrix. We define a four-fold table for A,B w.r.t. D as a matrix
2 × 2

4ft(A,B) =
[
a b
c d

]
, (3)

where

a =
∑
i∈I

(A(xi) & B(yi)), (4)

b =
∑
i∈I

(A(xi) & ¬B(yi)), (5)

c =
∑
i∈I

(¬A(xi) & B(yi)), (6)

d =
∑
i∈I

(¬A(xi) & ¬B(yi)). (7)
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The values of the matrix 4ft(A,B) are connected to the fuzzy cardinalities of
the data matrix within the corresponding fuzzy Cartesian product. For example,
the value a is computed as the fuzzy cardinality of D over the fuzzy Cartesian
product of A and B.

The following definition (taken from [11]) of implicational quantifiers was
designed to provide a versatile tool for expressing and quantifying various degrees
of dependency and causality between (fuzzy) sets based on observations from the
data matrix.

Definition 2 (Implicational quantifier). Let q be a function valued in the
interval [0, 1] defined for all pairs (a, b) of real numbers such that a + b > 0.

We say that q is an implicational quantifier if it satisfies the following prop-
erty:

if a ≤ a′ and b′ ≤ b then q(a, b) ≤ q(a′, b′), (8)

is valid for all a, b, a′, b′ ∈ R.
For a particular 4ft(A,B) of the form (3), we often write q(A,B) instead of

q(a, b).

It has been established [11] that there is a direct relationship between impli-
cational quantifiers and fuzzy implications, so that for every fuzzy implication,
there is a corresponding way to construct an implicational quantifier.

Example 1. The following are examples of implicational quantifiers:

q1(a, b) = a/(a + b), (9)

q2(a, b) = (0.9a+1) →L (0.6b+1), (10)

q3(a, b) = (0.8a+1) →P (0.8b+1), (11)
q4(a, b) = (b/(a + b)) →L (a/(a + b)), (12)
q5(a, b) = (b/(a + b)) →P (a/(a + b)), (13)

for all a, b being positive reals, where →L is �Lukasiewicz residuum and →P is
the product residuum defined as

x →L y = min(1, 1 − x + y), (14)
x →P y = min(1, y/x), (15)

for all x, y ∈ [0, 1].

Example 2. – Consider fuzzy sets A from Fig. 2(a), B,C from Fig. 2(c), and
input data D from Fig. 1. Suppose the data from Fig. 1 illustrates commodity
sales over time. In this context, the fuzzy set A represents a time segment,
while the fuzzy sets B and C represent commodity sales, all characterized by
imprecise boundaries. The values {a, b} of the four-fold table for A,B w.r.t. D
are {a, b} = {2.76, 10.64}, and for A,C w.r.t. D, we obtain {a, b} = {0, 13.4}.
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Fig. 1. Input data.

(a) (b) (c)

Fig. 2. Fuzzy sets A (Figs. 2(a) and 2(b)) related to Example 2, Fuzzy sets C (blue
line) and B (green line). (Color figure online)

The values of quantifiers q1, q2. . . . , q5 defined by (9)–(13), respectively, are
the following:

i 1 2 3 4 5
qi(A,B) 0.21 0.33 0.17 0.41 0.26
qi(A,C) 0.0 0.1 0.05 0.0 0.0

– Consider fuzzy sets A from Fig. 2(b), B,C from Fig. 2(c), and input data D
from Fig. 1. The values {a, b} of the four-fold table for A,B w.r.t. D, we obtain
{a, b} = {6.61, 6.79}, and for A,C w.r.t. D, we obtain {a, b} = {2.95, 10.45}.
The values of quantifiers q1, q2. . . . , q5 defined by (9)–(13), respectively, are
the following:

i 1 2 3 4 5
qi(A,B) 0.49 0.57 0.96 0.99 0.97
qi(A,C) 0.22 0.34 0.19 0.44 0.28

Let us recall from [11] that we have two ways of generating implicational
quantifier using fuzzy implication, that is,

– Let p, r ∈ (0, 1) be weights. Then

qp,r(a, b) = (pa+1) → (rb+1), (16)
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is the implicational quantifier.
For quantifiers obtained by this construction, we have the following property:
If a+1

b+1 ≥ log r
log p then qp,r(a, b) = 1. For equal weights p = r the threshold

log r
log p = 1, so, in this case, we obtain qp,r(a, b) = 1 whenever a = b.

– The following is an implicational quantifier:

q(a, b) =
( b

a + b

)
→

( a

a + b

)
. (17)

These quantifiers are not as interesting for the residual implication → because
q(a, b) = 1 whenever a ≥ b. It is more suitable for non-residual implications,
such as the Kleene-Dienes implication for which q(a, b) = 1 iff b = 0 (for more
details, see [11]).

By observing the above special constructions of the implicational quantifier, we
found that there is a large class of implicational quantifiers that are based on
some order-reversing mapping.

Proposition 1. Let D be a data matrix and g : R 
→ [0, 1] be a decreasing func-
tion. Then

qg(a, b) = g(a) → g(b), (18)

is the implicational quantifier.

Proof. It follows from the monotony of → in the second argument and the
antitony in the second. If a ≤ a′ and b′ ≤ b then g(a′) ≤ g(a) and g(b) ≤ g(b′),
and consequently

g(a) → g(b) ≤ g(a′) → g(b),
g(a′) → g(b) ≤ g(a′) → g(b′).

Hence,
g(a) → g(b) ≤ g(a′) → g(b′),

which shows that qg(a, b) ≤ qg(a′, b′), which means that qg is an implicational
quantifier.

Example 3. Let n = |D|, where D is a data matrix. For example, we can use to
construct (18) the following strictly monotone order-reversing functions:

g1(x) = 1 − (x/n)2, (19)
g2(x) = (n − x)/n, (20)
g3(x) = exp(−x), (21)

g4(x) =
√

(1 − (n − x)2/n2), (22)
g5(x) = − ln(n − x + 1)/ ln(n + 1). (23)
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3 Fuzzy Rules with Weights Given by an Implicational
Quantifier

Weighted fuzzy rules are often used in fuzzy logic systems to improve the accu-
racy and reliability of the system output [2,9,14]. By adjusting the weighting
factors of the fuzzy rules, it is possible to fine-tune the behavior of the system
and to adjust its sensitivity to different input conditions. This can be done at
several levels, the antecedent level, the subsequent level or the whole rule [4].
The last level will be considered later.

Provided we know the dependency to be modeled, the fuzzy rules can be
set without any additional computational effort, as, for example, in the case of
monotonic dependency depicted in Fig. 3(a).

In reality, this situation appears rare. Therefore, a number of methods have
been developed during the last decades to create a fuzzy rule base (including a

(a) Implicational rules.

(b) Fuzzy intervals on X. (c) Fuzzy intervals on Y .

Fig. 3. An implicational model in Fig. 3(a) utilizing fuzzy sets depicted in Figs. 3(b)
and 3(c) for monotonic dependency of the form y = x2 together with the noisy data
{xj , x

2
j + RandBetween(−xj , xj)}65j=1 (scatter plot).
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weighted one) based on the input data. One of such models is shown in Fig. 4,
where we construct neighborhoods S(x, p) and S′(y, q) using some preset sim-
ilarity relations S, S′ for each data entry (p, q) for all x ∈ X, y ∈ Y , we join
them with the implicative rule S(x, p) → S′(y, q), and finally the minimum is
taken over all (p, q) ∈ D. For D as in Fig. 1, we obtain the implicative model
as in Fig. 4. We can observe that the more data in the data matrix, the smaller
the degrees of the final implicative model. Moreover, we lose simplicity of the
resulting rule base and interpretability.

In some cases it is advantageous to use a fixed number of fuzzy rules in a rule
base or to use fuzzy sets with preset linguistic interpretation. Therefore, in the
following, we propose a new model that allows one to combine arbitrarily fuzzy
sets from the input and output domains, and additionally, there are weights
attached that tell us how much the rules suit the input data.

Fig. 4. Example of implicational model based on similarity and input data in Fig. 1.

This new model opens up a new approach to weighted fuzzy rules. Note that
basically we have two main interpretations of fuzzy IF–THEN rules. One uses
& to join the inner parts of a particular rule and then

∨
to glow the outer

parts. Here, we focus only on the model that uses → within the rules and
∧

to join the rules together, and therefore we call it the implicational model. A
generalization of this model to the weighted implicational model was provided,
e.g., in [3]. In the following, we introduce a weighted implicational data model
based on implicational quantifier values.

Definition 3. Let D be a data matrix of the form (2), Ai and Bi be fuzzy sets in
X and Y , respectively, for all i ∈ I, where I is a finite set of indexes. Moreover,
let q be an implicational quantifier. Then

GRulesD
q (x, y) =

∧
i∈I

(
q(Ai, Bi) → [Ai(x) → Bi(y)]

)
, (24)
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for all x ∈ X, y ∈ Y .
We call GRulesq the weighted implicative model w.r.t. q and D.

Since the implicational quantifier is a measure of dependence between two pred-
icates based on observations, it works as a “switch” of the rule in the graded
implicative data model. Observe the following (Fig. 5): if q(A,B) = 1 then the
weighted fuzzy rule q(A,B) → (A(x) → B(y)) becomes the standard fuzzy rule
A(x) → B(y), while if q(A,B) = 0 then the weighted fuzzy rule is evaluated at
1 everywhere, which corresponds to the fact that no implicational dependency
was observed between A and B in the given data. In general, we can state that
more data supporting the dependency we have higher the weight of the fuzzy
rule, and consequently, closer we are to the nonweighted fuzzy rule as stated in
the following proposition.

(a) A (blue) and B (orange). (b) 1 → (A(x) → B(y)).

(c) 0.5 → (A(x) → B(y)). (d) 0.1 → (A(x) → B(y)).

Fig. 5. Example of weighted fuzzy rules. (Color figure online)
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Proposition 2. Let D,D′ be data matrices of the form (2), Ai and Bi be fuzzy
sets on X and Y , respectively, for all i ∈ I, where I is a finite set of indexes.
Furthermore, let q be an implicational quantifier and ai (a′

i), bi (b′
i) be values of

a four-fold table for Ai, Bi w.r.t. D (D′) given by (3) for all i ∈ I.
If ai ≤ a′

i and b′
i ≤ bi for all i ∈ I then

GRulesD′
q (x, y) ≤ GRulesD

q (x, y), (25)

is valid for all x ∈ X, y ∈ Y , where GRulesD(D′) is the weighted implicative
model w.r.t. q and D (D′) given by (24).

Proof. Due to the antitony of → in the first argument.

4 Conclusions

We showed a new construction of a subclass of implicational quantifiers using
residual operators (see Proposition 1). This method is within the framework of
standard fuzzy logic (the truth values are from [0, 1]) and is based on a construc-
tion introduced in [11]. Additionally, we proposed a well-suited fuzzy relational
model (see Definition 3) that utilizes implicational quantifiers as weights. We
have provided a justification for this model (see Proposition 2) to establish a
new well-founded class of weighted fuzzy rules that precisely align with intuitive
expectations for their behavior.
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