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Abstract. In this paper we implement a portfolio optimization model that inte-
grates the robust portfolio optimization approach and the Bayesian approach with
the purpose ofmodeling the uncertainty of the estimatedparameters in the expected
returns and in the covariance matrix. The proposed model is implemented using
theWishart and Gamma distribution functions to model the uncertainty with ellip-
soidal or quadratic type sets. To do that, we choose a portfolio made up of the
shares of the USA DJI index. The results confirm the advantages of the robust
approach compared to the traditional mean-variance model, both in performance
evaluation and in its diversification.
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1 Introduction

The mean-variance (MV) model developed by Markowitz [1, 2] represents the most
important theoretical development of the modern portfolio theory (MPT) by providing
the general formulation for constructing optimal investment portfolios.However, theMV
model presents important limitations [3–6], since the MV model generates low diver-
sified portfolios and achieve low performance compared to benchmarks or compared
to other more robust portfolio formulations. These limitations are due to the exclusive
dependence of the MVmodel on historical data, which are used to obtain the parameters
of expected returns and the covariance matrix, which causes a high sensitivity of the
model to these parameters. These limitations have been partially overcome through the
approach of robust optimization (RO) of portfolios introduced by [7, 8]. The imple-
mentation of this RO approach is based on the formulation of a maximum-minimum
problem, known as the worst-case scenario. In this approach, the optimal weights of
each asset are obtained when the expected returns take the worst value within the spe-
cific uncertainty set, like [9, 10] argued. Thus, by considering parameter uncertainty,
RO provides a more consistent solution compared to the MV model. Furthermore, as
stated by [11], the RO approach represents a significant advancement of MPT in better
adapting to the dynamics of the financial market.
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Since its adoption, RO has offered an intuitive solution supported by convex opti-
mization techniques such as quadratic programming (QP) and second-order cone pro-
gramming (SOCP), considering the specification of the uncertainty sets and problem
constraints [10, 11]. [8] introduced a significant number of RO formulations using con-
vex programming. Later, [12] presented robust formulations for the MV model and
portfolio Value-at-Risk (VaR) using ellipsoidal uncertainty sets, while [13] considered
interval uncertainty sets for expected returns and the covariance matrix. Based on these
works, there has been significant growth in RO to enhance the solutions of theMVmodel
[14] or its extensions using risk measures such as VaR or CVaR [15, 16], as well as in
performance measures [17, 18]. Thanks to advances in mathematical programming and
the use of computational tools, the RO approach has been progressed, as stated by [10,
11].

On the other hand, RO can be improved from a Bayesian framework, as suggested by
[19],who found that expert knowledge can be introduced into the optimization process by
incorporating the investor’s subjective expectations. This approach is known as Bayesian
robust optimization. To do that, [19] incorporated ellipsoidal uncertainty sets from a
posterior distribution function resulting from implementing a Bayesian process within
the reformulation of the optimization problem to obtain the robust counterpart.

Building on these developments, this study adopts the RO and Bayesian approaches
for constructing an optimal portfolio to overcome the limitations identified in the MV
approach. For this purpose, the model proposed by [19] is adopted and integrated with
the RO approach to achieve the construction of the robust-Bayesian portfolio (RBP). In
that sense, we use the Gamma distribution function to improve the portfolio’s sensitivity
and diversification. The proposed model allows for achieving an RBP for a set of assets
in the US market that improves the results of both the MV and RO portfolios.

2 Portfolio Theory

2.1 Mean-Variance (MV) Model

Markowitz [1, 2] developed an optimal solution for the selection of a portfolio of risky
assets. TheMarkowitz formulation considered as inputs of the model the expected return
of assets (μi) and covariances (σij), under the assumption that the returns follow a normal
distribution. Thus, a portfolio of n risky assets with expected return E(RP) = w′µ = μp

and variance σ 2
P = w′�w, where µ ∈ R

n×1 is the vector of expected returns, � ∈ R
n×n

is the covariance matrix, and w ∈ R
n×1 is the vector of weights. The optimization

problem is a quadratic programming (QP) problem and is solved by minimizing σ 2
P for

a given level of expected return (μp0) given by:

min{w}
{
w′�w

}
s.t. µ′w = μp0 and w′1 = 1 (1)

where, 1 ∈ R
n×1 is a vector of ones. Additionally, Eq. 1 can also incorporate the

restriction on negative or short weights, that is, it is solved for w ≥ 0, however, the
solution is no longer analytical. Despite the developments that theMVmodel represents,
it has important limitations. For example, using only historical data for the estimation
of µ or � does not adequately incorporate future uncertainty, resulting in very sensitive
or noisy solutions.
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2.2 Portfolio Robust optimization

TheRO is an optimization approach for portfolio under uncertainty introduced by [7] and
[8] and represents an intuitive and efficientway to handle uncertainty forµ and� through
uncertainty sets [10, 11]. Like the Bayesian approach, RO assumes thatμ and � are ran-
dom variables; however, RO offers an intuitive solution that can be implemented through
convex programming, such as quadratic programming (QP) or second-order cone pro-
gramming (SOCP). Following [20], RO involves formulating a maximum-minimum or
minimum-maximum problem and solving it for the entire uncertainty set, even ifμ takes
its worst possible value. Since the robust counterpart requires reformulating the original
optimization problem considering the uncertainty set, the most used types of uncertainty
sets are interval sets and ellipsoidal or quadratic sets. The following steps are carried out
to implement this: i) defining the uncertainty set for µ and �; ii) reformulating the origi-
nal optimization problem to include the uncertainty set; and iii) solving the reformulated
problem to obtain the robust optimal portfolio.

By considering the uncertainty set, RO approach provides a more robust and stable
solution compared to the traditional mean-variance (MV) approach. It allows for incor-
porating parameter uncertainty and mitigating the adverse effects of estimation errors.
Furthermore, RO can be implemented using various optimization techniques, making
it versatile and practical for portfolio optimization under uncertainty. This procedure
allows solving the problem that determines the worst possible realization of the param-
eters before solving the original portfolio selection problem. [12] developed the first
comprehensive formulations of this method based on the MV model. However, as sug-
gested [20], the formulation of the robust model depends on the objective function that
describes the problem and the specified uncertainty set. For example, if we considered
the quadratic utility function of the MV model and the interval-type uncertainty Uμ, the
original optimization problem is reformulated in a max-min type as follows:

max{w} { min
{μ||μ−μ̂|≤δ}

(w′µ) − λw′�w} s.t. w′1 = 1 (2)

Therefore, the robust version of the problem is given by:

max{w}
{
w′µ − λw′�w − δ|w|} s.t. w′1 = 1 (3)

Now, if the ellipsoidal uncertainty set is implemented in the same objective function

Uμ =
{
µ|(µ − µ̂

)′
�−1

µ

(
µ − µ̂

) ≤ δ2
}
, we obtain the following max-min problem,

and the robust version of the problem are given by:

max{w} { min
{µ|(µ−µ̂)

′�−1
µ (µ−µ̂)≤δ2}

(
w′µ − λw′�w

)}s.t. w′1 = 1 (4)

max{w}

{
w′µ − λw′�w − δ

√
w′�μw

}
s.a. w′1 = 1 (5)

where: �µ represents the diagonal matrix of the estimation errors of the covariances
or uncertainty matrix. Under the assumption of a multivariate normal distribution(
µ − µ̂

)′
�−1

µ

(
µ − µ̂

)
is estimated as aχ2 distribution with n degrees of freedom. Given



Optimal Portfolio Selection Using a Robust-Bayesian Model 73

the advantages of the ellipsoidal set over the interval set, as stated by [9, 12, 20, 21], this
ellipsoidal set is recommended in the RO. Additionally, [9] found that robust portfolios
can perform better than MV portfolios by exhibiting greater stability in their composi-
tion over time, which can significantly reduce portfolio rebalancing and thus risk losses.
Transaction costs. These results highlight the advantages of the RO approach over the
MV model. [11] confirmed the previous results and find that robust portfolios are supe-
rior in the design of risk management strategies. Furthermore, [20–22] also found that
robust portfolios present superior results to MV portfolios in terms of performance and
greater stability over time.

2.3 Bayesian Formulation of the Robust Portfolio

Meucci [19] demonstrated that the Bayesian approach can be integrated into the RO
by introducing the prior probability distribution of µ and �, which generates an RBP.
To do that, the author used ellipsoidal sets to obtain the robust counterpart by using a
conjugate distribution function within the reformulation of the optimization problem.
In that sense, RBP combines the investor’s subjective beliefs and generates an optimal
solution for the uncertainty set used. Following the same assumptions from the MV and
ROmodels, [19] incorporates the investor’s prior beliefs using aWishart inverse-normal

distribution: µ ∼ N(v0, �/T0) and �−1 ∼ W
(
v0, �

−1
0 /v0

)
, where v0 and T0 are the

hyper parameters. Furthermore, by using the ellipsoidal set of the posterior marginal
distribution of µ, [19] get the estimator of the expected value of μ̂ce = μ1 and the
estimator of the scattering matrix Sµ. The uncertainty of �, like the previous ellipsoidal
set, is also described by the estimator of the expected value ofµ and the scatteringmatrix
estimator as follows:

�̂ce = v1
v1 + N + 1

Σ1 (6)

S� = 2v21
(v1 + N + 1)3

(
D′
N(�−1

1 ⊗ �−1
1 )DN

)−1
(7)

where, ⊗ is the Kronecker product. Finally, the robust counterpart is developed. The
optimal solution for the established parameters and sets of the PRB is given by:

max
{w′�1w≤γ

(i)
Σ }

{
w′µ1 − γμ

√
w′�1w

}
s.t. w′1 = 1 (8)

where:

γμ ≡
√
q2μ
T1

v1
v1 − 2

and γ
(i)
� ≡ v(i)

v1
v1+N+1 +

√
2v21q

2
Σ

(v1+N+1)3

(9)

The above formulation is obtained for an inverse Wishart distribution. However, other
distribution functions, such as the Gamma, can also be used. As an extension of the
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previous RBP, we propose a model using the Gamma distribution named as RPBg. This
adjustment is made on �, which is given by:

f Γ
α,β,v,Σ (Γ ) = 1

k
|�|−α|�|α− 1

2 (ρ+1) 1

βρα
e

−1
β
tr

(
�−1�

)
(10)

where: �−1 ∼ �(α, β, (v1,�1)
−1) and α and β are the shape and scale parameters,

respectively. In that sense, we extended the Meucci’s model by using the ellipsoidal
uncertainty set. With this adjustment, we found:

�̂ce =
(

α

β(2α + ρ + 1)

)
Σ1 (11)

S� = 2α2

β2(2α + ρ + 1)3
(D′

N

[
�−1

1 ⊗ �−1
1

]
DN )−1 (12)

By incorporating these adjusted into the optimization model, the PRBg is obtained as:

max
{w′�1w≤γ

(i)
Σ }

{
w′µ1 − γμ

√
w′�1w

}
s.t. w′1 = 1 (13)

where:

γμ ≡
√

αq2μ
βT1(2α − ρ)

and γ
(i)
Σ ≡ v(i)

α
β(2α+ρ+1) +

√
2α2q2Σ

β2(2α+ρ+1)3

(14)

It should be noted that, if the RBPg model uses the parameters β = 2 and α = υ/2, the
same results from the RBP model.

3 Numerical Implementation and Results

3.1 Data

The proposed model is implemented for the USA stock market and is taken as the Dow
Jones Industrial Average (DJIA) index, which is made up of the 30 most important
and representative industrial companies in the USA. In addition, the in-sample analysis
period covers from January 2011 to December 2020 and the out-of-sample period covers
from January 2021 to December 2022. The data sample is developed by taking the
monthly adjusted closing prices of the assets and the index.

3.2 Comparison of Results

We made a comparison of the models and the proposed approach. To do that, we com-
pared theMarkowitz MV portfolio and its robust counterparts: the robust portfolio (RP),
the RBP and the RBPg taking long positions (w ≥ 0) in all of cases; both in the optimal
solution and in the performance evaluation in-sample and out-of-sample. Additionally,
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both the RBP and RBPg portfolios are implemented following the recommendations of
Meucci’s approach. The results obtained are presented below. Results show significant
differences in portfolio composition of the traditional MV model and the robust port-
folios. In addition, a notable improvement in the performance results from the RB and
RBP portfolios for the out-of-sample period is identified as listed in Table 1b, as well as
an improvement in all the optimal portfolios related to the benchmark (DJI), as listed in
Table 1 (Fig. 1).

(a) MV (b) RP

(c) RBP

Fig. 1. Optimal weights of portfolios

This performance is measured through risk-adjusted returns using the Sharpe
coefficient.

Table 1. Results of the optimal portfolios

In-sample Out-sample

MV RP RBP DJI MV RP RBP DJI

Return: 0.0115 0.0128 0.0169 0.0081 0.0044 0.0047 0.0051 0.0033

Risk: 0.0280 0.0281 0.0326 0.0393 0.0442 0.0452 0.0502 0.0522

Sharpe Coef.: 0.41 0.4538 0.5177 0.2058 0.0995 0.1047 0.1009 0.0636

Figure 2 shows the historical behavior of the cumulative returns for the optimal
portfolios and the benchmark in the in-sample (2a) and out-of-sample (2b) periods. In
both cases, a better performance of the RBPg portfolio is identified. In particular, the
RBPg portfolio for the out-of-sample period is highlighted. For most of this period,
this portfolio achieves a higher cumulative return and presents lower decreases than the
others.
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(a) In-sample (b) Out-of-sample

Fig. 2. Cumulative return of portfolios

Results confirm the advantages of robust portfolio models compared to the MV
model. Additionally, we implemented a monthly rebalancing exercise of optimal port-
folios for the in-sample analysis period. In this exercise, a rolling period of five years is
considered for the calculation of the optimal weights, which gives a result of 60 updates
for the entire period. Figure 3 illustrates the rebalancing or updating process in the
composition of each of the three portfolios (MV, RP, and RBP).

(a) MV

Portfolios

(b) RP

Portfolios

(c) RBP

Portfolios

Fig. 3. Portfolio rebalancing
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Figure 3a shows the frequent changes that theMVportfolio presents, which confirms
the sensitivity problem that this model has compared to the estimated parameters as
pointed out above. In addition, the exclusion of a large part of the assets that make up
the portfolio is identified. But although the RP portfolio also has a high sensitivity, this
is significantly reduced in the RBP portfolio. Figure 3c indicates a small adjustment of
the weights of all the assets for the entire period. This consistency of the robust models
can also be confirmed by using a concentration indicator, which is useful to identify the
high deviation that portfolios can present. For this, we use the Herfindahl–Hirschman
index (HHI) measured as the sum of the squares of weights of each n assets that make
up the portfolio:

HHI =
∑n

i=1
w2
i (15)

The HHI index is calculated for all portfolios of the previous rebalancing exercise.
Figure 4 shows the HHI index for the 60 portfolios. In this case, the HHI indicator is
calculated for the RBP portfolio between 700 and 1050, while the indicator for the MV
and RP portfolios is higher than these levels. Apart from portfolios 29–30, the RBP
portfolio presents lower concentration levels or greater diversification. This is consistent
with the better performance of the RBP portfolio, since, in a bearish and high-volatility
period such as the one identified for the year 2022, the robust model developed from the
worst-case scenario approach minimizes the potential losses that the portfolio may face.
However, the variability experienced by the HHI indicator is high, which can lead to a
rebalancing of portfolios, although less frequently than the RP and MV models.

Fig. 4. HHI Index of the portfolios

On the other hand, the RBPg model is implemented following the proposed adjust-
ment by using the gamma distribution. Figure 5 shows the results from the RBPg port-
folio, and it is compared with the RBP portfolio. Figure 5a and b confirm a further
diversification of the RBPg portfolio. In the first case, this is due to an increase in the
assets that are part of the optimal portfolio. In the second case, a lower variability of
the HHI index is observed. These results confirm the improvements of the RBP model
when using gamma distribution compared to the model proposed by Meucci (2011).
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(a) weights of RBP and RBPg portfolios (b) HHI index of RBP and RBPg portfolios

Fig. 5. RBPg portfolio results

4 Conclusions

In this work, amodel integrating the RPO andBayesian approacheswas implemented for
the development of an optimal portfolio to overcome the limitations of the MV model.
RBP was implemented following the original proposal of Meucci (2011). However, an
extension was conducted by replacing the Wishart distribution with the gamma distri-
bution to represent the previous and subsequent distribution of the robust counterparts
of the portfolio.

This new approach made it possible to build a RP for the USmarket based on the DJI
index, whose results overcome the sensitivity and diversification problems. This means
that the robust Bayesian model created a highly consistent portfolio that minimizes
rebalancing over the period assessed and achieves better levels of diversification and
better performance. Therefore, the proposed approach offers important advantages over
Markowitz’sMVmodel by overcoming itsmain limitations such as the high sensitivity of
the portfolio to the estimated parameters and its poor performance outside of the sample.
The advantage of the proposedmodel is that it can be easily replicated in differentmarkets
and asset classes. For future work, we recommend adopting alternative approaches to
incorporate risk aversion into themodel, as well as evaluating themodel sensitivity to the
distribution parameters. For this, Bayesian models based on the Monte Carlo simulation
technique can be implemented. We also recommend reviewing the consistency of the
model during recession and crisis periods.
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