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Abstract. Obesity is a condition characterized by the excessive accu-
mulation of adipose tissue. However, directly measuring adiposity can
be challenging, especially in epidemiological and clinical settings. There-
fore, simple anthropometric measurements are commonly used to assess
fat quantity and distribution. The Body Mass Index (BMI) is a widely
used measure for estimating total fat quantity. Additionally, indicators
such as waist circumference and waist-to-height ratio (WHtR) provide
valuable insights into the distribution of visceral, central, or abdominal
fat. These measurements play a crucial role in understanding and evalu-
ating health risks associated with obesity. This study utilized a dataset
consisting of 1978 participants, anthropometric measurements, includ-
ing height, weight, body circumferences, and body folds, were collected
from each participant. The research aimed to classify individuals with
impaired WHtR using artificial neural networks (ANNs) based on anthro-
pometric parameters. Multiple tests were conducted using Monte Carlo
cross-validation with different training and testing ratios. The architec-
ture of the ANN was modified by varying the number of hidden layers.
The results showed an accuracy exceeding 82.4%. The sensitivity values
consistently surpassed 79.9%, indicating the model’s effective detection
of positive cases. The model also demonstrated excellent specificity, with
a score exceeding 85%. Positive and negative predictive values showed
slight improvements as the training data expanded. The F1 score, which
considers both precision and sensitivity, was above 0.794, indicating a
favorable balance in classifying individuals with impaired WHtR. The
model’s performance remained consistent across different training-test
splits, suggesting stability and reliability in its predictions.
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1 Introduction

Obesity has reached alarming levels among adults, adolescents, and children.
Excess weight and obesity, along with a sedentary lifestyle and a family history
of cardiovascular disease [6], contribute to a significant prevalence of metabolic
disorders such as Metabolic Syndrome (MS) [23,25], Insulin Resistance (IR) [33,
34], atherosclerosis [41], and impaired glucose tolerance [14,32]. These conditions
significantly increase the risk of developing type 2 diabetes and cardiovascular
disease [24]. The high prevalence of cardiovascular diseases (CVD) and diabetes
poses a significant public health concern, as they are the primary causes of
disability and mortality in many countries worldwide.

The excessive accumulation of adipose tissue characterizes obesity [21]. How-
ever, in epidemiological and clinical contexts, assessing fat quantity and dis-
tribution relies on simple anthropometric measurements due to the challenges
posed by direct adiposity measurement [20]. The Body Mass Index (BMI) [3]
is a prevalent measure for estimating total fat quantity. Moreover, indicators
such as Waist Circumference (WC), Waist-to-Hip Ratio (WHR), and the more
recently introduced Waist-to-Height Ratio (WHtR) offer valuable insights into
the distribution of visceral, central, or abdominal fat [10]. These measurements
play a crucial role in understanding and assessing obesity-related health risks.

While WC is considered a valuable indicator for CVD, IR, and MS, its use-
fulness is limited due to variations in diagnostic cut-off points based on ethnic
and racial backgrounds [22]. The literature suggests that a better predictor in
this regard is the WHtR, which is a universal index with gender-specific varia-
tions. A WHtR value of 0.50 or higher is associated with cardiometabolic risk
in individuals aged 18 and above [8]. Young adults with a normal BMI and a
WHtR above 0.50 exhibit elevated IR, insulin plasma concentration, triglyceride
levels, and lower HDL cholesterol levels compared to those with a WHtR below
0.50 [17]. Furthermore, research evaluating the predictive value of WHtR as a
predictor of coronary heart disease has shown a higher prevalence of this dis-
ease among individuals with a WHtR of 0.50 or higher (indicating abdominal
obesity) [4].

Various research studies demonstrate the potential of integrating machine
learning into medical tasks, including disease diagnostics and personalized treat-
ment provision. Incorporating machine learning techniques into clinical infor-
mation processing offers several advantages. Firstly, it enables the analysis of
datasets with high dimensionality. Additionally, it allows for analyzing informa-
tion in diverse formats, such as images [9,15] and electrical data [19]. Moreover,
machine learning algorithms can identify intricate patterns and relationships
within the data [26].

The application of artificial neural networks (ANN) in the diagnosis of obe-
sity [30], MS [37], and metabolic diseases have shown promising results in the
field of medical research. ANNs, known for their capacity to learn and recognize
complex patterns, have been used to analyze large datasets of various metabolic
parameters, including BMI [28], WC [38], blood glucose levels [27] and lipid
profiles [11]. By training these networks with relevant data, they can effectively
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identify patterns and relationships that contribute to diagnosing obesity, MS,
and related metabolic disorders. The integration of neural networks in this diag-
nostic process has the potential to enhance accuracy and efficiency, ultimately
leading to improved patient outcomes and personalized treatment strategies.

Hence, the primary objective of this research is to utilize anthropometric
parameters and the ANN technique as a classifier to categorize individuals
with impaired WHtR. A comprehensive database comprising 1978 subjects was
employed, encompassing 26 different anthropometric variables for achieving this
goal. The subsequent section of this study provides a detailed account of the
methodology used. Section 3 elaborates on the main findings obtained from the
analysis. Furthermore, Sects. 4 and 5 delve into the discussion of these findings
and present the concluding remarks, respectively. By employing the ANN tech-
nique and leveraging the extensive dataset, this study aims to contribute to the
understanding and identifying individuals with impaired WHtR, thereby aiding
in the diagnosis and management of related health conditions.

2 Methodology

2.1 Database

The dataset used in this study comprises a total of 1978 individuals, with 678
being male and the remaining participants being female. The Nutritional Eval-
uation Laboratory of Simón Boĺıvar University collected this dataset between
2004 and 2012 [12]. The data collection protocol included 28 anthropometric
measurements, covering parameters such as height, weight, body circumferences,
and body folds. Carefully recorded, these measurements were part of the com-
prehensive assessment during the data collection period. Together with a wide
range of anthropometric variables, this dataset provides a robust foundation for
analyzing and investigating various aspects of body composition and nutritional
evaluation. Additionally, Eq. (1) calculated the WHtR.

WHtR =
Waist

Height
(1)

where Waist is the circumferential perimeter of the waist (measured in centime-
ters) and the Height is the tall (measured in centimeters) [5,7]. In this research,
the inclusion criteria for impaired WHtR were based on [4,16], where a WHtR
above 0.5 is considered indicative of an increased risk of health issues like obesity,
cardiovascular diseases, and metabolic disorders.

All methodologies employed in this research adhered to the ethical guidelines
set forth by the Bioethical Committee of Simon Boĺıvar University, following the
principles outlined in the 1964 Helsinki Declaration and its subsequent revisions
or any equivalent ethical standards. Before they participated in the study, all sub-
jects provided their informed consent by signing the necessary documentation.
This ensured that the participants were fully aware of the nature of the study, its
objectives, and any potential risks or benefits associated with their involvement.
By upholding these ethical standards and obtaining informed consent, the study
aimed to protect the rights, privacy, and well-being of the individuals involved.
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2.2 Classifier Assessment Metrics

In order to evaluate the ANNs classifiers, the true positives (TP), false positives
(FP), true negatives (TN), and false negatives (FN) were measured [35]. The
accuracy (ACC), specificity (SPE), sensitivity (SEN), positive predictive value
(PPV), negative predictive value (NPV), and F1 score (F1) were calculated using
the Eqs. (2), (3), (4), (5), (6), and (7) respectively.

ACC =
(TP + TN)

(TP + FP + TN + FN)
(2)

SEN =
TP

(TP + FN)
(3)

SPE =
TN

(TN + FP )
(4)

PPV =
TP

(FP + TP )
(5)

NPV =
TN

(FN + TN)
(6)

F1 = 2
(PPV ) (SEN)
(PPV + SEN)

(7)

2.3 ANN Implemented

Artificial neural networks (ANNs) are computational frameworks that draw
inspiration from the intricate structure and functional mechanisms of the human
brain. Comprising interconnected nodes, often referred to as “neurons”, these
networks possess the ability to process and transmit information. Engineers
specifically design ANNs to acquire knowledge and generate predictions by dis-
cerning intricate patterns within complex datasets. This learning process, com-
monly known as training, enables ANNs to uncover underlying relationships and
make accurate predictions based on the acquired knowledge [39].

ANNs can detect and categorize patterns present in data by training to
identify and classify input patterns by analyzing their inherent features and
attributes [2]. ANNs find utility in various applications, including image recog-
nition, speech recognition, and data analysis. They consist of multiple intercon-
nected layers of nodes, or neurons, which process and evaluate the input data [2].
During the training phase, the network adjusts the weights and biases of its con-
nections to optimize its capability for pattern recognition and classification. Once
trained, the network can effectively classify new and unseen patterns based on
the knowledge it acquired during training [42].

ANNs have emerged as highly effective instruments in diverse domains,
encompassing computer vision, natural language processing, and bioinformatics.
They facilitate automated and efficient examination of intricate data, enabling
tasks like object recognition, handwriting recognition, and disease diagnosis [13].
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Monte Carlo Cross Validation (MCCV). The MCCV, widely employed in
machine learning, evaluates model performance. It entails conducting the cross-
validation process multiple times using distinct data splits. This methodology
effectively reduces performance estimate fluctuations and offers a more depend-
able evaluation of the model’s generalization. By averaging the outcomes across
numerous iterations, MCCV provides a reliable measure of the model’s antici-
pated performance on unseen data [1]. This method is notably effective when
dealing with limited data or in cases of significant variability in performance
estimates.

Characteristics of ANN Implemented. In this study, a feedforward neural
network was employed in conjunction with a training function that effectively
updates weight and bias values using the scaled conjugate gradient technique to
classify individuals with impaired WHtR. This approach allows the network to
iteratively adjust its weights and biases, facilitating effective navigation through
complex and multidimensional input spaces. This adaptive capability enhances
the network’s flexibility and promotes robust learning from the available data. To
further improve classification accuracy, a Monte Carlo cross-validation (MCCV)
technique was implemented [36]. Figure 1 depicted the methodology research
followed in this study.

The feedforward neural network classifier was trained and tested, first, ran-
domly dividing the dataset into two groups: one for training and the other for
testing. This random partitioning was repeated 100 times to ensure the reliability
and robustness of the results. In each iteration, the different performance metrics
were calculated. The partitions processed were for 90% training and 10% testing,
80% training and 20% testing, 70% training and 30% testing, 60% training and
40% testing, and 50% training and 50% testing. The random partitioning allows
a comprehensive evaluation of the ANN’s performance under various training
and testing scenarios.

Furthermore, the procedure was repeated for the feedforward neural networks
with different numbers of hidden layers, ranging from 10 to 100 layers. This
extensive analysis enabled a thorough examination of the ANN’s performance
across different configurations.

2.4 Statistical Tests

In order to make a statistical comparison of the metrics from each experiment,
the researchers utilized the Mann-Whitney U test. This particular test was
selected because it assumes that the samples being compared are not paired
and have distributions that deviate from the normal distribution. The statistical
significance was given considering a p-value lower than 5%, as stated by [18].
Tables 1, 2, 3, 4, and 5 are presented as mean and standard deviation values
(mean ± STD).
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Fig. 1. General methodology schematics for the ANN classification.

3 Results

Tables 1, 2, 3, 4, and 5 present the area under the ROC curve of ANNs classi-
fication, accuracy, sensitivity, specificity, positive predictive value, negative pre-
dictive value, and F1 score obtained from applying ANNs to classify subjects
with impaired WHtR. These results correspond to different training and testing
percentage values used in the experiments and the best amount of hidden layer
in ANN.

4 Discussion

This research used ANNs to classify impaired WHtR based on anthropometric
parameters. In order to achieve this classification, several testing was conducted
using MCCV (Monte Carlo cross-validation) with different ratios for training
and testing. Furthermore, the ANN architecture was modified by varying the
number of hidden layers. The performance of the model was evaluated using
various metrics, including accuracy, sensitivity, specificity, positive predictive
value, negative predictive value, and F1 score.
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Table 1. Monte Carlo cross-validation test results for 90% training and 10% test and
70 hidden layers.

Training%-Test% 90%-10%

AUC 0.903 ± 0.023

Sensitivity 0.799 ± 0.065

Specificity 0.875 ± 0.050

Accuracy 0.843 ± 0.025

F1 Score 0.815 ± 0.033

Negative Predictive Value 0.850 ± 0.037

Positive Predictive Value 0.839 ± 0.048

Table 2. Monte Carlo cross-validation test results for 80% training and 20% test and
70 hidden layers.

Training%-Test% 80%-20%

AUC 0.900 ± 0.014

Sensitivity 0.797 ± 0.059

Specificity 0.860 ± 0.048

Accuracy 0.833 ± 0.017

F1 Score 0.806 ± 0.023

Negative Predictive Value 0.848 ± 0.033

Positive Predictive Value 0.821 ± 0.044

Table 3. Monte Carlo cross-validation test results for 70% training and 30% test and
70 hidden layers.

Training%-Test% 70%-30%

AUC 0.899 ± 0.014

Sensitivity 0.798 ± 0.047

Specificity 0.852 ± 0.044

Accuracy 0.829 ± 0.016

F1 Score 0.804 ± 0.020

Negative Predictive Value 0.846 ± 0.026

Positive Predictive Value 0.813 ± 0.037

The analysis of accuracy revealed that the model’s predictive performance
exhibited a marginal enhancement with an increase in the percentage of training
data. Nevertheless, no statistically significant differences were observed between
each experiment. This implies that the model’s performance remained stable
across various training ratios. Generally, the accuracy metric is an evaluator for
a classification model’s ability to predict the class labels of the data. In this
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Table 4. Monte Carlo cross-validation test results for 60% training and 40% test and
50 hidden layers.

Training%-Test% 60%-40%

AUC 0.898 ± 0.013

Sensitivity 0.787 ± 0.040

Specificity 0.860 ± 0.035

Accuracy 0.828± 0.015

F1 Score 0.799 ± 0.018

Negative Predictive Value 0.840 ± 0.023

Positive Predictive Value 0.814 ± 0.034

!t

Table 5. Monte Carlo cross-validation test results for 50% training and 50% test and
30 hidden layers.

Training%-Test% 50%-50%

AUC 0.895 ± 0.012

Sensitivity 0.784 ± 0.039

Specificity 0.855 ± 0.035

Accuracy 0.824 ± 0.013

F1 Score 0.794 ± 0.017

Negative Predictive Value 0.838 ± 0.021

Positive Predictive Value 0.808 ± 0.034

specific study, the model achieved an impressive level of classification accuracy,
surpassing 82.4% [29].

Concerning the sensitivity, our experiments consistently showed that using
a 90% for training and 10% for testing split resulted in values exceeding 79.9%,
indicating the model’s effective and accurate detection of positive cases. The
consistent sensitivity observed across all experiments suggests that our model is
a good classifier identifying individuals with impairments [29].

The measure of specificity refers to the accurate identification of the true
negative cases by the model [29]. Our research findings demonstrate a slight
enhancement in specificity as the training dataset expands. The model showcases
excellent performance in correctly categorizing negative cases, as evidenced by
its impressive score exceeding 85%.

As the amount of training data increases, the PPV, also known as preci-
sion, exhibits a slight improvement. PPV reflects the proportion of predicted
positive instances that are truly positive. A high PPV value exceeding 80.8%
indicates that the likelihood of false positives in the model’s predictions is only
19.2% citeumberger2017understanding. False positives may lead to unnecessary
medical treatments for subjects with normal WHtR.



224 E. Severeyn et al.

Similarly, NPV represents the proportion of predicted negative instances that
are truly negative. The results indicate a slight increase in NPV as the training
data expands. With an NPV exceeding 83.8%, the model effectively identifies
negative instances, with only a 16% probability of false negatives in its predic-
tions [31]. False negatives can result in delayed or missed diagnoses, preventing
patients from receiving timely treatment and care. This can lead to developing
obesity, and MS among others.

The F1 score is a metric that assesses a classification model’s performance
by considering both precision and sensitivity. It provides an overall evaluation
of how well the model achieves a balance between accurately identifying posi-
tive instances (precision) and capturing all relevant positive instances (sensitiv-
ity) [40]. In this particular study, obtaining an F1 score above 0.794 suggests that
the model exhibits a favorable balance between precision and sensitivity when
classifying impaired WHtR subjects. This indicates that the model can accu-
rately identify positive instances while also capturing a significant proportion of
the actual positive instances.

It is important to highlight that the standard deviations associated with accu-
racy, specificity, positive predictive values, and F1 score values are relatively low.
This indicates that the model’s performance remains consistent across multiple
runs, regardless of different training-test splits of the database. The low standard
deviations suggest that the results are reliable and not significantly affected by
random variations. In other words, the model’s performance can be considered
stable and not heavily influenced by chance fluctuations in the data.

5 Conclusions

In conclusion, this research utilized ANNs to classify impaired WHtR based on
anthropometric parameters. Multiple tests were conducted using MCCV with
different training and testing ratios, and the ANN architecture was modified
by varying the number of hidden layers. The model exhibited an impressive
level of classification accuracy, surpassing 82.4%. Sensitivity values consistently
exceeded 79.9%, indicating the model’s effective detection of positive cases. The
model also demonstrated excellent specificity, with a score exceeding 85%. Pos-
itive and negative predictive values showed slight improvements as the training
data expanded. The F1 score, which considers both precision and sensitivity, was
above 0.794, indicating a favorable balance in classifying impaired WHtR sub-
jects. The model’s performance remained consistent across different training-test
splits, suggesting stability and reliability.

In future work, we will apply this methodology to different demographic
groups, cultural contexts, or environmental conditions. By doing so, we can gain
a deeper understanding of the model’s generalizability and identify any potential
biases or limitations that may arise in specific contexts.
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