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Abstract. Website fingerprinting enables eavesdroppers to identify the
website a user is visiting by network surveillance, even if the traffic is pro-
tected by anonymous communication technologies such as Tor. To defend
against website fingerprinting attacks, Tor provides a circuit padding
framework as the official way to implement padding defenses. However, the
circuit padding framework can not support additional delay, which makes
most defense schemes unworkable. In this paper, we study the patterns of
HTTP requests and responses generated during website loading and ana-
lyze how these high-level features correlate with the underlying features
of network traffic. We find that the HT'TP requests sent and responses
received continuously in a short period of time, which we call HT'TP burst,
have a significant impact on network traffic. Then we propose a novel web-
site fingerprinting defense algorithm, Advanced Adaptive Padding(AAP).
The design principle of AAP is similar to Adaptive Padding, which works
by obfuscating burst features. AAP does not delay application packets
and is in line with the design philosophy of low latency networks such as
Tor. Besides, AAP uses a more sensible traffic obfuscation strategy, which
makes it more effective. Experiments show that AAP outperforms other
zero-delay defenses with moderate bandwidth overhead.

Keywords: Website fingerprinting defense - Tor - Circuit padding
framework - Traffic analysis

1 Introduction

Tor is an anonymous communication system based on the second-generation
onion router [1]. In the Tor network, communication data is first encrypted at
multiple layers and then forwarded by several proxies called onion routers. Onion
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routers are randomly selected and no single node can know the IP addresses of
both the source and the destination. The purpose of Tor is to protect people from
third-party trackers, surveillance, and censorship. Due to its high security, easy
deployment, and low latency, Tor has become the most popular anonymous com-
munication system today. Tor has over 6,000 intermediate server nodes world-
wide, and over 3 million people use Tor clients to communicate anonymously.
However, recent studies [2] have shown that Tor is not resistant to website fin-
gerprinting attacks. Using the Tor network to access the web is still at risk of
privacy leakage. Website fingerprinting attacks have been proven to be applied
in real scenarios with a high success rate [3].

Most existing defenses work in the network layer by traffic padding and traffic
delaying, they incur too much bandwidth overhand or latency overhead that makes
them difficult, even impossible, to deploy in real-world environments. To counter
website fingerprinting attacks, Tor provides a circuit padding framework for imple-
menting defenses. The framework does not provide any mechanism to delay actual
user traffic deliberately, which makes delay-based defenses unworkable.

Tor developers prefer Adaptive Padding [4] style defenses, the most famous of
which is WTF-PAD [5]. However, WTF-PAD fails to defend against advanced web-
site fingerprinting attacks. In this paper, we analyze burst features in the network
traffic and propose a new website fingerprinting defense scheme Advanced Adaptive
Padding(AAP). AAP obfuscates traffic features by sending fake bursts in the gap
between real bursts, changing the size and number of bursts. It only sends dummy
packets without delaying user traffic. Besides, AAP has a finite state machine like
WTF-PAD, which makes it can be deployed by circuit padding framework. We
conduct comprehensive experiments to evaluate AAP. Experimental results show
that AAP can achieve a good defensive effect with moderate overhead.

In summary, we make the following contributions:

— We analyze the distribution patterns of HTTP requests and responses during
the loading of different websites and their correlation with network traffic.
We find that the HT'TP requests sent and responses received continuously in
a short period of time, which we call HT'TP burst, have a significant impact
on network traffic.

— We propose a novel website fingerprinting defense scheme called AAP. AAP
changes burst patterns of website traffic by sending dummy packets without
delaying user traffic. Our experiments show that AAP can outperform other
zero-delay defenses with moderate bandwidth overhead.

— We collect a new dataset in the live Tor network. The dataset contains in
total of 20,000 instances with 100 monitored websites (each load 100 times)
and 10,000 non-monitored websites (each loaded once).

The structure of this paper is as follows. We first introduce the background
knowledge in Sect. 2, then we discuss related works in Sect. 3. We illustrate the
motivation in Sect.4 and details of AAP in Sect.5. We introduce the dataset
we collected in Sect.6. Then we present the experiment settings and results in
Sects. 7 and 8. Finally, we summarize our work in Section 9.
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2 Background

In this section, we report preliminary notions related to Tor and website finger-
printing largely used in the paper, with the aim to make the paper self-contained.

2.1 Tor

Tor [1] is currently the most popular anonymous communication system, which
consists of more than 6,000 volunteer nodes distributed around the world. The
anonymity of Tor is guaranteed by multiple proxies. The proxy in Tor is called
onion router (OR). A Tor circuit contains three ORs selected from volunteer
nodes randomly, each of which knows only the IP addresses of the previous and
next hops. These three ORs are the entry node, middle node, and exit node.
Application traffic is transmitted through three ORs in turn, so that no one
can obtain the identity of end users at the same time. The structure of the Tor
circuit is illustrated in Fig. 1.

Tor sends data using 512-byte fixed-length cells. Each cell contains a header
and a payload. There are two fields in the header, the first field is circuit ID,
indicating which circuit the cell belongs to, and the second is the command field,
indicating the type of the cell. Based on their command, cells are either control
cells or relay cells. The control cell is responsible for circuit establishment and
destruction, and each OR needs to resolve and perform related operations. The
relay cell carries end-to-end stream data.

Tor Network

-0

Entry Node Exit Node Web Server

Tor User
Middle Node

(>

Adversary

Fig. 1. Tor circuit and website fingerprinting attack model.

2.2 Website Fingerprinting

Website fingerprinting is a technique for traffic analysis. It can be seen as a clas-
sification problem that determines which website a user has visited by analyzing
encrypted network traffic. Potential attackers include anyone that can sniff the
communication between the user and the entry node of Tor, such as Internet Ser-
vice Provider (ISP) and local network administrator because these individuals
have access to the user’s IP address and can observe the network traffic. Figure 1
shows the threat model of website fingerprinting. The attacker is passive, mean-
ing that he only observes and records the traffic traces that pass through the
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network and does not have the ability to drop, delay, or modify packets in the
traffic stream.

In order to conduct a website fingerprinting attack, the attacker needs to
collect a dataset of website traffic first. Then he can use the dataset to train
a machine-learning-based or deep-learning-based classifier. Finally, the attacker
sniffs network traffic when victims visit websites and uses the trained classifier
to determine which websites victims have visited.

3 Related Work

Website fingerprinting defenses defend against website fingerprinting attacks by
changing traffic patterns observed by attackers. To ensure that website con-
tent is loaded correctly, the original application traffic cannot be modified or
discarded. Common methods of website fingerprinting defense include sending
dummy packets and delaying packet delivery.

Regularization defenses use fixed patterns for sending packets, they mini-
mize information leakage and provide strong security guarantees. BuFLO fam-
ily defenses [6,7] send packets with the same packet length and time interval.
They send data even after the website has finished loading to mask the total
load time. TAMARAW [8] performs best among them by using different send-
ing rates at different directions. Lu et al. [9] introduce DynaFlow, which is a
defense with dynamically-changing intervals and fixed burst patterns. GLOVE
[10] and Supersequence [11] cluster websites according to their similarity, then
calculate the super sequence of each class. The traces in the same class are mor-
phed into the super sequence so they can not be distinguished. Walkie-Talkie
[12] modifies the browser in half-duplex mode to produce easily moldable burst
sequences, then it uses burst molding to change burst patterns. Regularization
defenses typically have high latency and bandwidth overhead and are therefore
not suitable for low overhead networks like Tor.

Distribution-based defenses work by sending dummy data to change the traf-
fic features. Some function at the network layer and others function at the
application layer. Application layer defenses include Decoy [13], HTTPOS [14],
LLaMA [15] and ALPaCA [15]. While a website is loading, Decoy loads another
page in the background to camouflage. HTTPOS uses a variety of strategies
such as enabling HTTP pipeline and sending invalid requests to change traffic
patterns. It was defeated by Cat et al. [16]. LLaMA is a client-side website finger-
printing defense, it works by adding extra delay to HT'TP requests and sending
redundant requests. ALPaCA is a server-side website fingerprinting defense, it
works by morphing the size of HTTP objects in the web server, which makes
it hard to deploy. Others work in the network layer. WTF-PAD [5] is an app-
roach based on adaptive padding [4]. It decides whether to send dummy packets
based on the difference between the sampled time interval and the real time
interval. However, it fails to defend against deep learning-based website finger-
printing attacks [2]. FRONT [17] is a lightweight defense method proposed in
recent years. It aims to obfuscate the feature-rich front part of the trace.
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Multipath defenses establish multiple links to transmit a website through dif-
ferent links, ensuring that an attacker can only observe part of the traffic. Henri
et al. [18] introduce a defense named HyWF that exploits multihoming. HyWF
requires user devices to establish multiple different physical links to the entry
node and assign network traffic to different physical links. Another multipath
defense is TrafficSliver [19]. TrafficSliver requires users to establish multiple Tor
connections simultaneously, each passing through a different entry node, so a
malicious entry node can only get part of the traffic. Multipath defenses require
extra infrastructure or modify Tor’s protocol. Therefore, they are difficult to be
implemented.

In recent years, deep learning has made rapid progress and achieved excellent
results in the field of website fingerprinting. Many defenses use adversarial-based
techniques to defend against deep learning-based website fingerprinting attacks.
Hou et al. [20] propose WF-GAN to fight back against website fingerprinting
attacks. The structure of WF-GAN is based on AdvGAN [21] with improve-
ments. Mockingbird [22] fools deep learning-based classification models with
adversarial examples. Both of them take the entire web traffic trace as input
to produce perturbations which makes them impossible to deploy in practice.
Other adversarial-based defenses [23] achieve good defensive effectiveness with
a small amount of overhead. However, if the attacker knows the defense scheme
used by the victim and trains attack models with the defended data, adversarial-
based defenses become ineffective.

4 Motivation

There are two commonly used methods in designing website fingerprinting
defense algorithms.

— Make different website traffic the same, including converting the traffic pat-
tern from one website to another or regularizing traffic across multiple web-
sites. [6,7,11]

— Randomize website traffic to hide features in network traffic that are valid
for website fingerprinting. [5,17]

Since website content is constantly changing, more latency and bandwidth over-
heads need to be added to make all website traffic the same. Usually low overhead
website fingerprinting defense algorithms are randomized algorithms. Therefore
we choose to use randomization to implement website fingerprinting defense.
The traffic generated in website loading is mainly generated by HTTP requests
and responses, so we analyze the association between HTTP and website traffic,
and then explore the website traffic characteristics.

Table1 shows HTTP requests and responses generated when loading the
homepage of Google. Some of these HTTP request and response transmission
times are very close or even overlap. We define HT'TP requests sent in a short
time period as an HTTP burst. There are 6 HT'TP bursts in this website, which
can be denoted as [(1),(2-5),(6),(7-9),(10),(11)]. In each HTTP burst, the sum
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Table 1. HTTP requests and responses recorded when visiting https://www.google.
com/ Request time indicates the time from the headers sent to the last byte sent.
Response time indicates the time from the headers received to the last byte received.
Time is in seconds and size is in bytes.

ID | Request Time | Response Time | Request Size | Response Size
1 ]0.0-0.001 0.372-0.664 422 48362
2 |1.268-1.278 1.663-1.667 693 6723
3 11.276-1.278 1.667-1.674 709 352
4 11.277-1.278 1.777-1.859 687 1414
5 |1.276-1.278 1.858-1.859 824 352
6 |2.163-2.164 |3.012-3.014 645 2304
7 13.473-3.475 3.873-3.874 501 1524
8 |3.457-3.460 3.756-3.875 506 66251
9 |3.556-3.557 | 3.872-3.986 388 1376
10 | 4.064-4.065 4.556-4.557 842 352
11 | 5.977-6.055 6.493-6.494 769 37654

of the HTTP request size determines the amount of data sent, and the sum of the
HTTP response size determines the total amount of data received. We count the
total size of requests and responses in an HTTP burst. The size of each HTTP
burst is shown on the left-hand side of Fig. 2. The right-hand side of Fig. 2 shows
the trend of the traffic rate during the loading of www.google.com.
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Fig. 2. The left graph shows the size of the six HT'TP bursts generated when access-
ing www.google.com. The right graph shows the trend of network transfer rate when
accessing www.google.com. It can be clearly seen that there is a correlation between
the two graphs.
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5 AAP

AP algorithm chooses an expected inter-packet interval(EIPI) after receiving
a packet and decides whether to send a dummy packet based on EIPI. Tor
developers are interested in deploying AP-style defenses because they have no
latency overhead. We propose a new website fingerprinting defense, Advanced
Adaptive Padding(AAP). AAP is an AP-style defense that tries to obfuscate
burst patterns by sending fake bursts, it does not bring any latency overhead.
The state of AAP is shown in Fig. 3. AAP has three modes: real burst mode,

fake burst mode, and gap mode.
Start

True Real Burst

Mode

Real Burst
End

True

Fake Burst 7 Real Burst
Mode =

y

Gap Mode

True f False

Fig. 3. Finite state machine to illustrate the AAP algorithm.

Real Burst Mode. In the real burst mode, the browser is performing network
activities, such as sending HTTP requests or receiving HTTP responses. User
traffic is being transmitted and the network utilization is high. Therefore, in this
mode, AAP only forwards user traffic and does not send dummy packets to avoid
network congestion which affects the real user traffic. AAP uses a sliding window
to determine whether to be in the real burst mode. We denote the window size as
W. If at least K application packets have been forwarded in the past W seconds,
AAP is in the real burst mode. When the real traffic forwarding is completed,
i.e., less than K packets have been sent in the past W seconds, the real burst
mode ends and AAP switches to Gap mode.

Gap Mode. In the gap mode, the browser is idle, so no user traffic is currently
being transmitted. AAP needs to decide when the next fake burst will be sent.
For the randomness of the burst interval, AAP samples ¢t from the distribution
of real burst intervals and uses g = ¢ * () as the time interval between two
bursts. Q is a parameter greater than 0 and less than 1. Q is used to control the
expectation of the time interval and has an impact on the bandwidth overhead.
When AAP enters the gap mode, it immediately calculates g and starts timing.
If a real burst starts before g expires, then AP transfers to the real burst mode,
otherwise, it transfers to the fake burst mode.
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Fake Burst Mode. In the fake mode, AAP generates a fake burst and sends it.
AAP uses the feature distribution of real bursts to generate fake bursts, in order
to prevent attackers from being able to distinguish the fake bursts. First, AAP
randomly selects the fake burst length k from the length distribution of real
bursts. Then, AAP selects k — 1 time intervals as the intervals between packets
in the fake burst. Due to significant differences in burst characteristics between
incoming and outgoing directions, it is necessary to use different distributions for
each direction. During the process of sending a fake burst, AAP always detects if
a real burst is sent. If so, AAP stops sending fake bursts and switches to the real
burst mode. In this case, the sent dummy packets and the application packets
sent later together form a large burst, changing the length of the real burst.
When the fake burst is sent, AAP switches to the gap mode.

The first few seconds of each trace leak the most useful features, because
the first request sent by each website is a request for an HTML file which is
relatively stable and sent separately. So AAP starts in the fake mode to obfuscate
the feature-rich front part of a trace. In particular, the first fake burst does not
terminate early, even if it encounters a real burst.

To control the bandwidth overhead, AAP uses a parameter N to limit the
total number of dummy packets. To increase the intra-class variance, an intuitive
idea is to use random N for different instances of the same website. But after
trying different random strategies, we find that using a fixed IV is more effective
and stable. As the proportion of incoming and outgoing packets is an important
feature, we use a random value P to determine the ratio of outgoing packets. P
is sampled from a uniform distribution between 0 and 1 for each trace.

6 Dataset

In this section, we describe the dataset collection process and the data represen-
tation in our dataset.

6.1 Data Collection

We collect a new dataset between November and December 2022 to investigate
the association of HT'TP requests and responses with network traffic characteris-
tics. During access to the website, we not only capture the generated packets on
the network card but also record the HTTP requests sent and responses received.

For the data collection process, we used 10 virtual machines in a cloud envi-
ronment, each virtual machine is provisioned with 2 CPUs and 4GB of RAM.
We select 100 popular websites from Alexa! as the monitored set, each visited
100 times, and 10,000 other websites as the non-monitored set, each visited once.
We use selenium to control Firefox for web access. We use mitmproxy [24] to
log the information of HTTP requests and responses. At the same time, we use
tecpdump to capture packets on the net card and save them in pcap files. Since

! www.alexa.com.
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the packet payloads are encrypted and thus have no value for the adversary, we
extract metadata from the traffic traces and discard pcap files for saving storage.
Each website is given 180s to load before the browser is killed, and the timeout
is marked as invalid. Upon loading the page, it is left open for additional 10s,
after which the browser is closed and any profile information is removed. Besides,
we remove pages with request failure rates greater than 50%.

6.2 Data Representation

We follow the approach proposed by Wang and Goldberg [25] to process data
and extract Tor cells from the captured pcap file. We use a sequence of cells as a
traffic trace, denoted as T' = [(t1,d1), (t2, d2)...(t7|, dj7|)] where |T| is the total
number of cells in the trace, t; is the timestamp of the i-th cell, d; shows the
direction of the i-th cell. The incoming and outgoing cells are represented as -1
and +1, respectively.

6.3 Ethical Consideration

Since large-scale data collection may have some impact on the Tor network, we
try to mitigate the adverse effects on the Tor network. We use scripts to directly
drive website visiting, so none of those visits come from real users. We just keep
the minimal information that is necessary for our experiment. We only visit one
web page at a time, there is no parallel processing, so for Tor, it is just one more
user visiting and no additional burden.

7 Experiment Settings

To evaluate the improvements in performance offered by AAP. We use CUMUL
[26], k-FP [26], DF [2] as attackers to evaluate AAP. Because these methods
are state-of-the-art for different times and all achieve a high level of accuracy.
CUMUL derives features from the cumulative representation of the trace and
uses LibSVM with a Radial Basis Function (RBF) for classification. k-FP uses
random forests to extract a fingerprint for each trace and uses KNN for classifica-
tion. DF is the current state-of-the-art website fingerprinting attack algorithm,
which is based on deep learning. It uses packet direction sequence as input and
uses CNN for feature extraction and uses fully-connected layers for classification.
We choose four defenses, TAMARAW [11], WTF-PAD [5], FRONT [17] and
WPF-GAN [20] as competitors to our defenses. TAMARAW is a regularization
defense with high bandwidth overhead and latency overhead. TAMARAW has
high security, so it is often used as a benchmark for comparison. WTF-PAD,
FRONT and WF-GAN are lightweight obfuscation defenses, they all have no
latency overhead without delaying user traffic. WTF-PAD is an improvement on
AP, and it is the main subject of our comparison. FRONT obfuscates the front
part of the trace, it is the state-of-the-art zero-delay defense. WF-GAN is an
adversarial-based defense that has very low bandwidth overhead.
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We use simulation experiments to verify the effectiveness of website finger-
printing defenses. For each trace, we generate post-defense traces based on dif-
ferent defense protocols. Then we use attack methods to validate their defensive
effect on the defended dataset. To ensure the accuracy of the results, we perform
10-fold cross-validation on the dataset. We evalute them in both closed world
scenario and open world scenario.

Closed World Scenario. In the closed world scenario, the victim is restricted
to access only the websites in the monitored set, the attacker’s goal is to identify
which website the victim has visited. So it can be seen as a multi-classification
problem. The closed world scenario is an ideal scenario for testing website fin-
gerprint attacks and defenses.

Open World Scenario. In the open world scenario, the victim can access any
of the websites on the Internet, the goal of the attacker is to determine whether
the website visited by the victim is in the monitored set or not. So it can be
seen as a binary classification problem. The open world scenario is a relatively
realistic scenario.

Metrics. Website fingerprinting defenses should be evaluated in terms of both
overhead and defense effect. Overhead includes latency overhead and bandwidth
overhead. Latency overhead is the additional time needed to load the website as
a percentage of the original loading time. Bandwidth overhead is the ratio of the
additional traffic transferred to the original website traffic. Defense effect can be
shown by attack effect. In the closed world scenario, the effect of website finger-
printing is usually judged using accuracy. Accuracy is the proportion of correctly
classified traces to the total number of traces. In the open world scenario, we use
TPR, FPR, and F1 to judge the effect of website fingerprinting attacks. TPR is
the percentage of samples in the monitored traces that are correctly classified.
FPR is the percentage of samples in the non-monitored traces that are wrongly
classified. F1 is the reconciled average of precision and recall.

8 Experiment Results

In this section, we provide our experiment results and compare the performance
of AAP with other defenses.

8.1 Overhead

Table2 summarizes the bandwidth overhead and latency overhead for each
defense on our data set. With the exception of TAMARAW, other defenses
have no latency overhead due to the fact that they do not intentionally delay
sending packets. TAMARAW uses a fixed time interval to send packets, so it
delays the delivery of user traffic, causing it takes too long to load websites. Its
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bandwidth and latency overheads are 85.92% and 73.66%, respectively, which
are too high to be deployed in Tor. WTF-PAD is relatively lightweight, and
it results in 66.59% bandwidth overhead. FRONT uses parameters to control
the number of injected packets, with the default parameters, it incurs 54.42%
bandwidth overhead. WF-GAN uses Generative Adversarial Networks to gen-
erate small perturbation. It has the lowest bandwidth overhead 6.17%. We set
N = 4000,Q = 0.4, which makes AAP have a relatively small overhead com-
pared to FRONT. In this setting, AAP incurs 40.37% bandwidth overhead. The
parameters we used are shown in Table 2.

Table 2. Parameters and overheads of different defenses. BO for bandwidth overhead
and LO for latency overhead. Overheads are all percentages.

Defenses Parameters BO |LO
No defense | None 0 0
TAMARAW | pin, = 40, pour = 12, L = 100 85.92 | 73.66
WTF-PAD | nomal_rcv 66.59 | 0
FRONT Ns = Ne = 2500, Wipin =1, Wines = 14 54.42 |0
WF-GAN a=1,=3 891 |0
AAP N = 4000,Q = 0.4 40.37/0

8.2 Closed World

The closed world setting is useful for illustrating the effectiveness of website
fingerprinting attacks and defenses. Table 3 shows how well website fingerprinting
attacks perform against our evaluated defenses in the closed world setting.

Table 3. Accuracy of website fingerprinting attacks against different defenses in the
closed world setting.

CUMUL | k-FP DF

No defense |94.55% |93.18% |97.10%
TAMARAW | 16.19% 9.35% 5.19%
WTF-PAD |75.49% |74.38% | 86.57%
FRONT 31.23% |59.27% |41.07%
WF-GAN 83.75% [89.17% |92.62%
AAP 31.24% | 47.49% | 36.35%

All attacks achieve high accuracy of over 93% on the undefended dataset.
DF is the strongest attack since its accuracy is 97.10% and k-FP is the weakest
attack with 93.18% accuracy.
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The performance of AAP is worse compared to TAMARAW. However,
TAMARAW has the highest bandwidth overhead and latency overhead, which
makes it impossible to be deployed in practice. The other three defense schemes
have cheaper bandwidth overhead and no latency overhead, but they are less
effective than AAP. FRONT is the most effective method of them and has a
similar overhead to AAP, but it has a lower defensive success rate against k-FP
than AAP by 11.78%.

We find that AAP is less effective against k-FP and more effective against
CUMUL and DF. Since AAP does not delay user traffic delivery, it leaks some
time features, which k-FP can use effectively. CUMUL and DF use cumulative
packet length and packet direction as features, respectively, and thus cannot

exploit these time features, resulting in their poor effectiveness in combating
AAP.

8.3 Open World
Table 4 shows how well website fingerprinting attacks perform against our eval-

uated defenses in the open world scenario.

Table 4. Defense performances in the open world scenario. A low F1 score represents
a better defense. TPR and FPR are in percentage.

Defenses CUMUL k-FP DF

TPR |FPR |F1 TPR |FPR |F1 TPR |FPR |F1
No defense |57.40 |31.82 |0.61 |86.81 | 5.68 0.90 94.26 |13.59 |0.91
TAMARAW | 12.80 {21.90 | 0.19 ' 52.85 47.22 |0.53 |23.10 |82.20 |0.23
WTF-PAD |50.79 |33.20 | 0.55 |52.82 | 7.30 |0.66 70.63 | 23.72 |0.72
FRONT 58.52 |45.29 |0.57 136.92 | 8.50 |0.51 |70.39 |45.49 |0.64
WF-GAN 54.70 |42.31 |0.59 87.03 | 9.35 |0.85 [92.45 |82.20 |0.91
AAP 52.34 1 46.31|0.53 | 52.00 | 28.02 | 0.52 | 61.83 | 16.00 | 0.57

When no defense is implemented, DF is the strongest website fingerprinting
attack with a 0.91 F1 score and 94.26% TPR. CUMUL performs worst, it only
has 57.40% TPR and 0.61 F1 score.

In the open world scenario, AAP can reduce the F1 score from 0.91 to 0.57
when defending against DF. AAP is still worse compared to TAMARAW, but
better than the other defense schemes.

8.4 Discussion

AAP is a distribution-based defense with randomness, which produces different
results for the same input. So it does not provide a theoretically provable security
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guarantee. In terms of defensive effectiveness, AAP is inferior to defense algo-
rithms that can provide theoretical security guarantees, such as TAMARAW.
However, these defense algorithms have a heavy overhead, which is not tolerated
by Tor. As a result, these methods exist only on paper and cannot be deployed
on Tor.

AAP and WTF-PAD are based on AP, but AAP outperforms WTF-PAD for
many reasons. First, WTF-PAD uses packets interval to determine the interval
of bursts. This approach is problematic due to the presence of background noise
in the network. AAP uses a sliding window to make the distribution of bursts
more reasonable. Besides, AAP uses a more random strategy, such as controlling
the proportion of packets going in and out of the direction which increases intra-
class variation. Finally, AAP only sends fake bursts between real bursts, when
a real burst starts, it stops sending fake bursts. This avoids network congestion
and improves network quality.

FRONT only obfuscates the front part of the trace, it sends a lot of noise
when the website starts to load, without taking into account the impact on
network congestion. The latter part of trace still gives away information. AAP
only sends fake bursts when the network is idle and covers a larger area, so it
works better.

Adversarial-based defenses such as WF-GAN can spoof fixed attack models
with low overheads. However, when training with defended data, adversarial
defenses perform poorly.

9 Conclusion

In this paper, we propose a new concept, HT'TP burst, and analyze its asso-
ciation with network traffic. We find that HT'TP burst is a key feature affect-
ing network traffic, and based on this, we propose a new website fingerprinting
defense method AAP. AAP obfuscates burst patterns by sending fake bursts in
the long gap between real bursts. We evaluate AAP in both closed world scenario
and open world scenario. Experiment results show that AAP outperforms other
zero-delay defenses with lower overhead. AAP does not delay user traffic and it
only incurs moderate bandwidth overhead, which makes it highly available to
be adopted by Tor.
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