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Abstract. Medical Visual Question Answering (Med-VQA) is a
domain-specific task that answers a given clinical question regarding a
radiology image. It requires sufficient prior medical knowledge, resulting
in additional challenges compared to general VQA tasks. However, the
lack of well-annotated large-scale datasets makes it hard to learn suf-
ficient medical knowledge for Med-VQA. To address the challenge, this
paper employs a large-scale medical multi-modal dataset to pre-train and
fine-tune an effective model, denoted by ROCOGLoRIA. The model can
locate semantic-rich regions implied in medical texts and extract local
semantic-focusing visual features from the image. We propose to com-
bine the global visual features with the weighted local visual features,
for capturing fine-grained semantics in the image. We further incorpo-
rate ROCOGLoRIA as the visual encoder into baselines, to investigate
whether it benefits Med-VQA. We conduct extensive experiments on
three benchmark datasets and the results show that the method using
ROCOGLoRIA as a pre-trained visual encoder outperforms strong base-
lines in the overall accuracy.

Keywords: Medical visual question answering · pre-trained visual
encoder · fine-tuning · transfer learning

1 Introduction

Medical visual question answering (Med-VQA) aims to answer a given ques-
tion based on a medical image. It has become a hot research topic in computer
vision and natural language processing, which processes multi-modal informa-
tion of visual images and textual language. Med-VQA task has great potential
to benefit medical practice. It may aid doctors in interpreting medical images
to obtain more accurate diagnoses with responses to closed-ended questions
or help patients with urgent needs get timely feedback on open-ended ques-
tions raised. Different from general VQA, Med-VQA requires substantial prior
domain-specific knowledge to thoroughly understand the contents and semantics
of medical visual questions.

Inspired by general VQA, Med-VQA systems have witnessed great successes
in recent years while still hindered by challenges [9]. These systems generally need
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to be trained on well-annotated large-scale datasets to learn enough domain-
specific knowledge for understanding medical visual questions. Although bench-
mark datasets [10,13,19,23] have been published, such as VQA-RAD, SLAKE,
and PathVQA, we still suffer from the problem of data limitation on Med-VQA
[7]. To tackle the problem, a native solution is data augmentation. VQAMix [9]
focused on generating new Med-VQA training samples. However, it may incur
noisy samples that affect the performance of models [9]. Recent studies adopted
deep encoders to interpret the image and question for predicting an answer. They
typically contain four main components: visual feature extraction, textual fea-
ture extraction, multi-modal fusion, and answer prediction [22]. Several studies
adopted meta-learning to pre-train a visual encoder [6,24]. However, they did not
consider the impact of linguistic representation on Med-VQA [9], or pre-trained
the visual encoder for specific body regions, limiting the generalization ability to
other settings [7]. Current studies adopt transfer learning to pre-train a visual
encoder on external medical image-text pairs to capture suitable visual represen-
tations for subsequent cross-modal reasoning [4,7,9,20]. These approaches have
been particularly successful by performing pre-training using large-scale medical
image-text pairs without additional manual annotations. Following such stud-
ies, we investigate to what extent using external medical multi-modal datasets
without any manual annotation can contribute to Med-VQA.

In this paper, we propose an effective and generic model, denoted by
ROCOGLoRIA, to extract useful visual features for Med-VQA. We employ
a large-scale medical multi-modal dataset, named by ROCO [26], to train
ROCOGLoRIA. ROCO includes a diverse range of body organs and image
modalities. Especially, we perform multi-task learning to pre-train an effective
visual encoder by fine-tuning the GLoRIA model [12], which has been pre-trained
on a medical dataset. We first fine-tune it using ROCO and output semantic-
oriented visual features, which are then used as the input of the R2Gen [2] model
to generate a medical report about the medical image. We consider both losses
of GLoRIA and R2Gen to pre-train the final visual encoder and output both
global and local weighted visual features in the medical image. These features
are combined and fused with question features to predict a final answer. We
further investigate the performance gains when incorporating our ROCOGLo-
RIA as a visual encoder into state-of-the-art Med-VQA methods. Overall, our
contributions are summarized as follows:

– We propose an effective model to perform multi-task learning for pre-training
an effective visual encoder for Med-VQA. The model is trained using a large-
scale medical multi-modal dataset without additional manual annotations,
which can overcome the data limitation problem for Med-VQA.

– Different from previous visual encoders used in Med-VQA, ROCOGLoRIA
is pre-trained using medical images from a diverse range of body regions,
which can achieve better generalization ability to a wide range of Med-VQA
datasets.

– ROCOGLoRIA can locate semantic-rich regions implied in medical texts, and
extract local semantic-focusing visual features from the medical image. This
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can help understand the contents and semantics of the medical image for
predicting a correct answer to the clinical question.

– We conduct extensive experiments on three public datasets. The results show
that incorporating ROCOGLoRIA as the visual encoder into baselines can
benefit Med-VQA. Our model also shows the new state-of-the-art perfor-
mance over all three benchmark datasets, which may indicate a better gen-
eralization ability.

2 Related Work

2.1 Medical Visual Question Answering

Current Med-VQA systems mainly consist of four components [21]: visual fea-
ture extraction, textual feature extraction, multi-modal fusion, and answer pre-
diction.

To address the challenge of lacking well-annotated large-scale datasets for
Med-VQA, a native solution is to use data augmentation (e.g. VQAMix [9]).
However, such methods may generate noisy training samples which hinder
the Med-VQA models from learning effective visual representations. Therefore,
recent studies adopted deep encoders to interpret the image and question for
predicting an answer. As the textual feature extraction module was reported
to have less impact on the Med-VQA task, most existing studies focused on
improvements of the visual feature extraction [7].

Medical image features are crucial for Med-VQA. Early studies attempted to
use pre-trained models based on large-scale natural scene image datasets (e.g.
ImageNet [30]) as the visual extractor. However, they cannot achieve satisfactory
performance on Med-VQA due to the data limitation problem [7]. Several stud-
ies improved the visual feature extraction module by adopting meta-learning,
such as MEVF [24] and MMQ [6]. However, they did not consider the impact of
linguistic representation on Med-VQA [9]. Besides, some studies pre-trained the
visual encoder for specific body regions. For example, CPRD [22] utilized a large
number of unlabeled radiology images to train three teacher models and a stu-
dent model for the body regions of the brain, chest, and abdomen through con-
trastive learning, limiting the generalization ability to other settings [7]. Recent
studies employed transfer learning by using medical image-text pair datasets to
fine-tune the cross-modal pre-trained models [4,7,9,20]. For example, Eslami et
al. [7] fine-tuned the CLIP [27] model using the ROCO dataset [26], demon-
strating its effectiveness on Med-VQA. These approaches had been particularly
successful by performing pre-training using large-scale medical image-text pairs
without additional manual annotations. Along this line, we further investigate
what extent using external medical multi-modal datasets without any manual
annotation can contribute to Med-VQA.

With the effective visual encoder, existing systems employed multi-modal
fusion models to generate representations for final answer prediction. SAN [32]
and BAN [17] are two representative models, which are effective for Med-VQA.
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However, they only support two modalities. MTPT-CMSA [8] introduces a cross-
modal self-attention model to capture the long-range contextual relevance from
more modalities. While the multi-modal fusion module in M3AE [3] consists of
two transformer models.

Several studies are focusing on the improvements of model framework and
model reasoning. For example, MMBERT [16] used the transformer framework
instead of the typical deep learning framework and employed the image fea-
tures of Med-VQA for mask language modeling. This work also used ROCO
[26] for pre-training. CR [33] proposed a novel conditional reasoning framework,
which aimed to automatically learn effective reasoning skills for various Med-
VQA tasks. Its research ideas had been adopted in many studies to improve the
accuracy of Med-VQA models [7,8,22].

2.2 Transfer Learning

As Med-VQA suffers from the general lack of well-annotated large-scale datasets
for training, most studies adopted transfer learning. For multi-modal tasks in
the general domain, many studies have proposed multi-modal self-supervised
models, such as CLIP [27], simCLR [1] and DALLE [28], to overcome the chal-
lenge of requiring additional annotated data. These models can be transferred
to most tasks and are competitive with fully supervised methods. Tasks such as
VQA, image captioning, and image-text retrieval, can benefit from these models.
Inspired by this, current studies have emerged to pre-train effective visual rep-
resentations. conVIRT [34] contrasts the image representations with the paired
descriptive texts via a bidirectional objective between two modalities. GLoRIA
[12] is a framework for jointly learning multi-modal global and local represen-
tations of medical images by contrasting attention-weighted image regions with
words in the paired reports. In this paper, we use ROCO [26] to fine-tune GLo-
RIA [12] pre-trained on CheXpert [14]. Specifically, we perform the multi-task
pre-training based on GLoRIA. The original GLoRIA can learn more image
types after fine-tuning, and hence it can be applied to various datasets while
ensuring the effectiveness of the extracted visual features.

3 Methodology

This paper proposes an effective model, denoted by ROCOGLoRIA, to extract
semantic-oriented visual features for Med-VQA. Figure 1 provides an overview
of our model architecture. We first perform multi-task pre-training to extract
visual features by fine-tuning the GLoRIA model [12] and then incorporate our
ROCOGLoRIA as a visual encoder into state-of-the-art Med-VQA methods for
improving the answer prediction accuracy.

3.1 Multi-task Pre-training

The GLoRIA used for fine-tuning is trained based on CheXpert [14] which con-
tains a total of 224,316 chest radiographs from 65,240 patients. We fine-tune it
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Fig. 1. Model architecture

using the ROCO dataset [26]. As shown in Fig. 2, during multi-task pre-training,
we have two pre-training objectives: GLoRIA-based text-image pair similarity
calculation [12] and R2Gen-based image report generation [2].

Fig. 2. Multi-task pre-training

GLoRIA-Based Similarity Calculation. Texts and images from ROCO are
respectively encoded by the text encoder and the image encoder in GLoRIA. For
texts, GLoRIA extracts the word embeddings denoted by fword and the sentence
embeddings denoted by fs. For images, GLoRIA extracts the global features
denoted by fglobal from the final adaptive average pooling layer of ResNet50,
and the local features denoted by flocal from an intermediate convolution layer.
The local features are vectorized to the C-dimensional feature map for each of
M image sub-regions. The generated fword, fs, fglobal, and flocal are used in the
GLoRIA model for similarity calculation between text-image pairs. At the same
time, in the process of fine-tuning GLoRIA, we output word-based attention
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maps, which are subsequently multiplied with the image local features of flocal
to obtain the attention-weighted local features denoted by fweighted local.

R2Gen-Based Image Report Generation. This task is designed to further
ensure the effectiveness of the visual features outputted by fine-tuned GLoRIA.
The visual features are obtained by concatenating the global features of fglobal
and the weighted local features of fweighted local produced by GLoRIA. We feed
them into R2Gen to generate a report about the medical image and calculate the
loss denoted by LR2Gen. Specifically, we replace the visual extractor in R2Gen
with visual features generated by GLoRIA. Formally, the multi-task loss function
is defined as:

Lpretrain = LGLoRIA + LR2Gen. (1)

It is worthwhile to continuously fine-tune the GLoRIA model by using the
reports generated from R2Gen. We use the fine-tuned GLoRIA model as a visual
feature extractor in our proposed ROCOGLoRIA. The results in Sect. 4.6 also
verify the effectiveness of our fine-tuned version, compared with the original
GLoRIA model.

3.2 Our Med-VQA Model

In this paper, we evaluate the effectiveness of our proposed ROCOGLoRIA by
incorporating it as a visual encoder into three advanced Med-VQA methods:
CR [33], VQAMix [9] and M3AE [3]. In Fig. 1, Our Med-VQA model consists of
four main components: visual feature extraction for capturing visual features of
the medical image, textual feature extraction for generating the embedding of
the given question, fusion module for visual-textual feature fusion, and answer
prediction.

We follow existing studies (e.g., [6,8,24]) to define the Med-VQA task as
a classification task. Given an image denoted by v and an associated question
denoted by q, the goal is to select a correct answer from a set of candidate
answers denoted by A. F denotes our model, and α denotes the attention maps.
Thus, the predicted answer denoted by â is formulated: â = arg max

a∈A
F (a|v, q, α).

Visual Feature Extraction. Most existing studies obtained the global visual
features by averaging the visual feature vectors of different local regions in the
medical image [6,24,29]. Existing studies found that the semantic-oriented med-
ical content for general VQA may only lie in a particular area of the image
[4]. Thus, the need arises to focus on local semantic-rich features in the med-
ical image. However, it is much more challenging for Med-VQA, as the range
of semantic-oriented regions associated with various types of questions can be
very different. Single-use of global features or semantic-rich local features cannot
achieve a satisfactory result. To tackle this problem, we propose ROCOGLoRIA,
which can simultaneously extract global features and weighted local features of
the medical image. The extracted features are then combined to capture useful
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visual information, which can help understand the contents and semantics of the
medical image for predicting a correct answer to the clinical question.

Given an image-text pair, the original GLoRIA [12] model considers each
word in the text to generate attention maps denoted by α ∈ R

L×H×W , L denotes
the length of the text. Considering that the lengths of questions in a Med-VQA
dataset are different, we need to ensure the dimensions of the weighted local
features generated later are consistent. Thus, we convert raw attention maps to
average attention maps denoted by α

′ ∈ R
1×H×W , where H × W is the shape

of the input medical image. The weighted local features can be calculated as
fweighted local = α

′
fT
local, where fweighted local ∈ R

1×C , flocal ∈ R
C×H×W , and C

is the image feature dimension.
In this way, we exploit the attention maps in the question to localize the

semantic-oriented regions in the medial image. We concatenate the global fea-
tures of fglobal, and the weighted local features of fweighted local to generate
fgloria, which can be concatenated with the features extracted by CDAE [24]
denoted by fauto to generate the final visual features: fv = [fgloria; fauto], where
fauto ∈ R

1×C and fglobal ∈ R
1×C . Finally, a linear layer is used to convert fv to

f
′
v for multi-modal fusion.

Textual Feature Extraction and Multi-modal Fusion. We follow the
MEVF [24] to perform textual feature extraction and multi-modal fusion. Specif-
ically, each word of the question is represented as a 600-D vector, and then the
word embedding denoted by fw is fed into a 1024-D LSTM [31] to produce the
question embedding denoted by fq ∈ R

12×1024. We do not directly use the text
encoder in ROCOGLoRIA to generate question embeddings as the text encoder
is trained on lengthy medical reports which may incur noisy information for
embedding questions in Med-VQA. Subsequently, question embedding of fq and
visual features of f

′
v are fed into the BAN [17] to generate the joint feature

denoted by fj . Noted that for M3AE, we keep other modules in it and only
replace its visual encoder with ROCOGLoRIA.

Multi-task Learning. The joint features of fj are fed into a classifier for
Med-VQA answer prediction. Existing studies showed that introducing multi-
task learning into Med-VQA can effectively improve the accuracy of the model
[4,8]. In this paper, to ensure the effectiveness of the visual features generated
by the visual extraction component, we use the generated visual features of f

′
v to

perform the task of image classification for predicting the image type in parallel.
Meanwhile, we also incorporate the CDAE into Med-VQA to adjust the loss
function [24], and finally, our multi-task loss function is defined:

Lall = Lvqa + βLimg + Lrec, (2)

where Lvqa is a cross-entropy loss for VQA classification, Lrec stands for the
reconstruction loss of CDAE, and Limg represents the loss for image type clas-
sification. β is a hyperparameter for balancing the three loss terms. Noted that
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the Limg in the loss function is not used in our subsequent experiments in the
PathVQA dataset [10] as no image type label is provided in this dataset.

4 Experiments

4.1 Datasets

For pre-training, we use a large-scale publicly available medical dataset, named
ROCO [26]. It contains image-text pairs that are collected from PubMed articles,
which cover a variety of imaging modalities such as X-Ray, MRI, angiography,
etc. It also widely covers diverse body regions, such as the head, neck, teeth, etc.
We select 87,952 non-compound radiological images with the associated captions,
which provide rich semantic information about the content of images. This paper
follows the training and validation data splits from the original paper [4].

Three benchmark Med-VQA datasets of VQA-RAD [19], SLAKE [23], and
PathVQA [10] are used to train and evaluate our ROCOGLoRIA model. The
VQA-RAD dataset contains 315 images and 3,515 corresponding questions
posted and answered by clinicians. In this paper, we utilize the English subset
of SLAKE dataset, denoted by SLAKE-EN. The SLAKE-EN dataset comprises
642 images and more than 7,000 question-answer pairs. The PathVQA dataset
consists of 32,799 question-answer pairs generated from 1,670 pathology images
collected from two pathology textbooks and 3,328 pathology images collected
from the PEIR digital library1. For a fair comparison, we use the same data
splits by following previous studies to partition the VQA-RAD dataset [6,24],
the SLAKE-EN dataset [7], and the PathVQA dataset [6].

Medical visual questions are usually divided into two types: closed-ended
and open-ended questions. Closed-ended questions are typically answered with
“yes/no” or other limited choices; while open-ended questions do not have a
restrictive structure and can have multiple correct answers.

4.2 Metrics

To quantitatively measure the performance of Med-VQA models, we use accu-
racy as the evaluation metric by following previous studies [6,8,24]. Let Pi

and Li denote the prediction and the label of sample i in the test set, and
T represents the set of samples in the test set. The accuracy is calculated as:
accuracy = 1

|T |
∑

i∈T l(Pi = Li).

4.3 Competitors

We incorporate ROCOGLoRIA into three strong baselines for Med-VQA: CR
[33], VQAMix [9] and M3AE [3]. Our adapted methods are named ROCOGLo-
RIA+BAN+CR, ROCOGLoRIA+BAN+VQAMix and ROCOGLo-
RIA+M3AE. We replace the visual encoder in these three methods using our
1 https://peir.path.uab.edu/library/.

https://peir.path.uab.edu/library/
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model. Our competitors are as follows:
MEVF [24] leverages the meta-learning MAML and deploys the auto-encoder
CDAE for image feature extraction to overcome the data limitation problem.
CR [33] proposes a question-conditioned reasoning module and a type-
conditioned reasoning module to automatically learn effective reasoning skills
for various Med-VQA tasks.
CPRD [22] leverages large amounts of unannotated radiology images to pre-
train and distill a lightweight visual feature extractor via contrastive learning
and representation distillation.
MMBERT [16] is pre-trained using the ROCO dataset with masked language
modeling using image features for Med-VQA.
MMQ [6] increases metadata by auto-annotation, dealing with noisy labels, and
output meta-models which provide robust features for Med-VQA.
PubMedCLIP [7] is a fine-tuned version of CLIP in the medical domain based
on PubMed articles.
MTPT-CMSA [8] reformulates image feature pre-training as a multi-task
learning paradigm.
VQAMix [9] combines two training samples with a random coefficient to
improve the diversity of the training data instead of relying on external data.
MKBN [11] is a medical knowledge-based VQA network that answers questions
according to the images and a medical knowledge graph.
M3AE [3] learns cross-modal domain knowledge by reconstructing missing pix-
els and tokens from randomly masked images and texts.

4.4 Implementation Details

All the models in this paper are implemented based on the PyTorch library [25]
and run on a Ubuntu server with NVIDIA GeForce RTX 3090 Ti GPUs. The
detailed training process is described below.

Pre-training. The pre-training model in this paper is implemented based on
the ViLMedic library [5]. GLoRIA [12] was pre-trained on CheXpert [14] with
ResNet50 as the visual feature extractor and R2Gen [2] was pre-trained on
MIMIC-CXR [15]. The model is trained by the Adam optimizer [18] with an
initial learning rate of 5e-5, and the learning rate is decreased by loss plateau
decay.

Med-VQA Model. When adopting CR, the model is trained by the Adam
optimizer [18] with an initial learning rate of 0.0009 on both VQA-RAD and
SLAKE-EN, and an initial learning rate of 0.002 on PathVQA. When adapt-
ing VQAMix, we follow the original experimental settings for VQA-RAD and
PathVQA. For SLAKE-EN, we set the epoch to 80 and the learning rate to 0.02.
When adapting and reproducing M3AE on PathVQA, the batch size is set to
16.
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4.5 Performance

Table 1 summarizes the results of our model compared against the competitors
on three benchmark datasets. We provide overall accuracy along with accuracy
in answering open-ended and closed-ended questions. Our proposed model can
achieve the best overall accuracy on three datasets, and yield the highest accu-
racy for open-ended and closed-ended questions. Other observations are summa-
rized as follows:

(1) The performance of CR, VQAMix, and M3AE is improved when adopting our
ROCOGLoRIA as the pre-trained visual encoder. This verifies the effective-
ness of ROCOGLoRIA for Med-VQA. And as shown in Table 1, the improve-
ments in our model are effective for both open-ended and closed-ended ques-
tions.

(2) Our ROCOGLoRIA+BAN+CR achieves better overall accuracy than our
ROCOGLoRIA+BAN+VQAMix on SLAKE-EN and PathVQA. On VQA-
RAD, ROCOGLoRIA+BAN+VQAMix achieves better overall accuracy than
ROCOGLoRIA+BAN+CR. This suggests that there may be underlying dif-
ferences in the question type distribution in these datasets. It also verifies that
VQAMix can give full play to its advantages on the small labeled dataset of
VQA-RAD, by using data augmentation. While on large datasets like SLAKE-
EN and PathVQA, this strategy may introduce noise to degrade the perfor-
mance. Anyway, our ROCOGLoRIA can further enhance VQAMix by cap-
turing both global and weighted local information, which helps to distinguish
meaningless pairs and avoid introducing noise during training.

(3) Existing Med-VQA systems have shown too limited performance on
PathVQA, as the pathological images contained in PathVQA are quite dif-
ferent from the clinical images contained in VQA-RAD and SLAKE-EN.
The superior advantage of our model on PathVQA also indicates that our
model can achieve better generalization ability to a wide range of Med-VQA
datasets.

(4) Our model achieves the most significant improvements on open-ended ques-
tions in PathVQA. We achieve 289%, 38.8% and 9.5% absolute open-ended
questions accuracy gain on CR, VQAMix, and M3AEon PathVQA respec-
tively.

(5) ROCOGLoRIA not only far outperforms classical MEVF, but also compares
very well to the multi-stage pre-trained model M3AE [3] and CPRD [22].
CPRD is pre-trained on head, abdomen, and chest images. In contrast, the
pre-training images we use target a larger range of body parts. In other
words, our model can achieve good results on more datasets. The pre-training
of CPRD is more tailor-made for datasets of the three parts of the head,
abdomen, and chest. Taking the SLAKE dataset as an example, the head,
abdomen, and chest account for 88% of the total.

(6) Compared to advanced models that improve Med-VQA using ROCO, such
as PubMedCLIP [7]), ROCOGLoRIA achieves 3.5% and 3% absolute overall
accuracy gain on VQA-RAD and SLAKE-EN respectively. This verifies the
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Table 1. Comparisons with competitors on three benchmark datasets. The highest
and the second-highest accuracy are respectively marked in bold and by an underline.
* indicates the reproduced results. The proposed methods yield the highest overall
accuracy on every dataset and achieve the highest accuracy for each kind of questions
in the datasets. Differences between the highest and second-highest accuracy are shown
in brackets.

Dataset Models VQA accuracy (%)

Open Closed Overall

VQA-RAD MEVF+SAN 49.2 73.9 64.1

MEVF+BAN 49.2 77.2 66.1

MMQ+SAN 46.3 75.7 64.0

MMQ+BAN 53.7 75.8 67.0

CPRD+BAN 52.5 77.9 67.8

PubMedCLIP 48.9 76.7 65.5

MTPT-CMSA 61.5 80.9 73.2

MMBERT 63.1 77.9 72.0

PubMedCLIP+CR 58.4 79.5 71.1

MEVF+BAN+CR 60.0 79.3 71.6

CPRD+BAN+CR 61.1 80.4 72.7

MEVF+SAN+VQAMix 60.0 77.2 70.4

MEVF+BAN+VQAMix 62.4 81.2 73.8

M3AE 67.2 83.5 77.0

ROCOGLoRIA+BAN+CR 60.6 82.3 73.6

ROCOGLoRIA+BAN+VQAMix 62.6 83.8(+0.1) 75.4

ROCOGLoRIA+M3AE 67.6(+0.4) 83.7(-0.1) 77.4(+0.4)

SLAKE-EN MEVF+SAN 75.3 78.4 76.5

MEVF+BAN 77.8 79.8 78.6

CPRD+BAN 79.5 83.4 81.1

PubMedCLIP 76.5 80.4 78.0

MKBN MGE 77.7 85.1 80.6

PubMedCLIP+CR 78.4 82.5 80.1

MEVF+BAN+CR 78.8 82.0 80.0

CPRD+BAN+CR 81.2 83.4 82.1

MEVF+SAN+VQAMix* 76.3 79.6 77.6

MEVF+BAN+VQAMix* 77.4 79.1 78.0

M3AE 80.3 87.8 83.3

ROCOGLoRIA+BAN+CR 81.7(+0.5) 83.7 82.5

ROCOGLoRIA+BAN+VQAMix 80 84.9 81.9

ROCOGLoRIA+M3AE 81.1 88.5(+0.7) 84.0(+0.7)

PathVQA MEVF+SAN 6.0 81 43.6

MEVF+BAN 8.1 81.4 44.8

MMQ+SAN 9.6 83.7 46.8

MMQ+BAN 11.8 82.1 47.1

MEVF+BAN+CR* 7.3 84.0 45.8

MEVF+SAN+VQAMix 12.1 84.4 48.4

MEVF+BAN+VQAMix 13.4 83.5 48.6

M3AE* 26.3 90.3 58.4

ROCOGLoRIA+BAN+CR 28.4(-0.4) 85.5 57.1

ROCOGLoRIA+BAN+VQAMix 18.6 83.3 51.1

ROCOGLoRIA+M3AE 28.8(+0.4) 90.8(+0.5) 59.9(+1.5)
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effectiveness of our proposed pre-training and fine-tuning model that may
capture more useful semantic information from Med-VQA.

Table 2. Ablation study on ROCOGLoRIA+BAN+CR. “GLoRIA” means using the
original Gloria model as the visual encoder. “global” means using only global features.
“local” means only using weighted local features. “w/o img classify” means not per-
forming the image type classification.

VQA-RAD SLAKE-EN PathVQA

ROCOGLoRIA+BAN+CR 73.6 82.5 57.1

GLoRIA 72.3 79.7 54.0

global 69.8 81.1 50.5

local 72.3 78.8 54.5

w/o img classify 69.8 81.5 –

4.6 Ablation Study

To verify the effectiveness of each component in our model, we conducted an
ablation study based on our adapted method of ROCOGLoRIA+BAN+CR.
The results are shown in Table 2. We observe that:

(1) Adopting ROCOGLoRIA as the pre-trained visual encoder in existing Med-
VQA systems can further boost the overall accuracy of 1.3%, 2.8%, and 3.1%
on VQA-RAD, SLAKE-EN, and PathVQA, respectively, compared to those
by adopting the original GLoRIA.

(2) We evaluate the impact of global features and weighted local features on
Med-VQA. Using only global features in our model, the performance drops
by 3.8%, 1.4%, and 6.6% on VQA-RAD, SLAKE-EN, and PathVQA, respec-
tively; while using only weighted local features, the performance of our model
drops by 1.3%, 3.7%, and 2.6%, respectively. The most frequently asked ques-
tions in VQA-RAD are about the presence of an abnormality in the images.
This requires the visual encoder to detect local features and abnormalities in
the image. In this case, our model with better visual localization outperforms
that using only the global features. Similarly, the frequently asked questions in
PathVQA are about the abnormality in the images. Hence our model using
only the local features also performs better in this dataset than that with
global ones. However, on SLAKE-EN, the most frequently asked questions
ask about the presence of organ type in the image. In this case, the visual
encoder needs the overall understanding of the image content, and thus our
model using only the global visual features achieves better accuracy than that
using only the local ones.
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(3) Employing image type classification in our multi-task learning scheme helps to
boost the performance of Med-VQA. The results are consistent with previous
studies [4,8]. After removing the image type classifier, the performance of our
model drops by 3.8% and 1% on VQA-RAD and SLAKE-EN, respectively.
No result is shown in PathVQA as no image type label is provided in this
dataset.

4.7 Qualitative Analysis

We provide a qualitative comparison of our model with two competitors. Our
goal is to illustrate the performance of the original MEVF and VQAMix in com-
parison with VQAMix when adopting ROCOGLoRIA as the visual encoder for
Med-VQA. Examples from three datasets in Fig. 3 show that the MEVF model
fails to answer Med-VQA questions. It cannot correctly understand the content
of the medical image. For example, in the second left image in Fig. 3, we observe
that the given image is from the lung, but the predicted answer from MEVF
relates to the heart. In the same image, the original VQAMix model provides
answers that located the correct organ to the given image. However, it fails to

Fig. 3. Examples from VQA-RAD, SLAKE-EN, and PathVQA

Fig. 4. Visualization of attention maps
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predict a correct answer by pointing to a wrong region. In contrast, adopting
ROCOGLoRIA as the visual encoder in VQAMix shows an improvement and
results in providing answers that are correct throughout all examples. This also
indicates that our model not only correctly captures image content holistically
but also understands regions of interest as specifically associated with the ques-
tions to provide correct answers.

Moreover, we select an image from SLAKE-EN to visualize the attention
maps of α generated by ROCOGLoRIA. In Fig. 4, we ask one question “does this
picture show brain edema” for the left first medical image namely source img.
ROCOGLoRIA can correctly identify the semantic focusing regions of the image
corresponding to each word in the question, and the region identified by “edema”
is basically consistent with the annotated region of the image namely mask img
provided by SLAKE-EN. Correct attention maps guarantee the correctness of
weighted local features of fweighted local, which helps to predict a correct answer.

5 Conclusion

To address the problem of data limitation problem on Med-VQA, this paper
employs a large-scale medical multi-modal dataset to fine-tune an effective
model, denoted by ROCOGLoRIA, which can be used as a pre-trained visual
encoder for enhancing existing Med-VQA systems. The model can locate
semantic-rich regions implied in medical texts. Experimental results show that
our model outperforms the state-of-the-art models. Considering global features
and weighted local features at the same time can ensure our model has a better
generalization ability.
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