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Abstract. Machine reading comprehension (MRC) is a crucial and chal-
lenging task in natural language processing (NLP). In order to equip
machines with logical reasoning abilities, the challenging logical rea-
soning tasks are proposed. Existing approaches use graph-based neural
models based on either sentence-level or entity-level graph construction
methods which designed to capture a logical structure and enable infer-
ence over it. However, sentence-level methods result in a loss of fine-
grained information and difficulty in capturing implicit relationships,
while entity-level methods fail to capture the overall logical structure of
the text. To address these issues, we propose a multi-grained graph-based
mechanism for solving logical reasoning MRC. To combine the advan-
tages of sentence-level and entity-level information, we mine elementary
discourse units (EDUs) and entities from texts to construct graph, and
learn the logical-aware features through a graph network for subsequent
answer prediction. Furthermore, we implement a positional embedding
mechanism to enforce the positional dependence, which facilitates logical
reasoning. Our experimental results demonstrate that our approach pro-
vides significant and consistent improvements via multi-grained graphs,
outperforming competitive baselines on both ReClor and LogiQA bench-
marks.

Keywords: Machine Reading comprehension · Logical Reasoning ·
Multi-grained Graph

1 Introduction

Machine Reading Comprehension (MRC) is a fundamental task in Natural Lan-
guage Processing (NLP) that seeks to teach machines to comprehend the mean-
ing of human text and answer questions [50]. With the advancement of unsu-
pervised learning and pre-trained language models (LM), many neural methods
have achieved remarkable success on inchoate and simple datasets. For instance,
BERT [7] has outperformed human performance in SQuAD [27]. Recently, MRC
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tasks have become more challenging by raising the difficulty of contexts and
questions, which aim to better evaluate model capabilities, such as multi-hop
reasoning [17,23,39,43], numerical reasoning [8,52] and commonsense reason-
ing [13,35].

In addition to the above capabilities, logical reasoning is also a crucial aspect
of human intelligence that plays a significant role in cognition and judgment [21].
It was also a primary research topic in the early days of AI [12,22]. However,
most existing MRC models struggle to capture the logical structure of contexts
due to the lack of logical reasoning ability. This limitation often leads to poor
performance in logical reasoning MRC questions. To drive the development of
logical reasoning, ReClor [48] and LogiQA [21] were proposed. These two datasets
are multiple-choice MRC datasets, constructed by selecting logical reasoning
questions from standardized exams. A logical reasoning problem example from
LogiQA dataset is shown in Fig. 1. It contains a context, a question, and four
answer options, among which only one option is correct.

Fig. 1. A logical reasoning based MRC example from LogiQA dataset.

To solve this task, previous research has employed methods that involves min-
ing logical units and constructing a logical structure to facilitate reasoning over
the context and question, ultimately predicting the correct answer. The two main
granularities of information used are sentence-level and entity-level. For instance,
at the sentence-level, AdaLoGN [18] mines a set of elementary discourse units
(EDUs) from texts, converts discourse relations to logical relations to construct
graphs, and then extends the graphs based on some inference rules. Finally,
it uses a graph neural network (GNN) [32] to predict the answer. For another
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instance, at the entity-level, FocalReasoner [25] mines “Entity-Predicate-Entity”
triplets as fact units from each sentence in the context, and finds the co-reference
relations among entities in fact units. It then constructs a supergraph on the top
of fact units and enhances graph presentation by GNN to predict the answer.

Although previous works have made significant advancements in logical rea-
soning, they also have their limitations. The sentence-level method is at a coarse-
grained level, simply averaging the EDUs vector as the node representation,
which could cause the loss of fine-grained information [1,9], particularly for the
keyword in texts. Moreover, there are instances where there are no explicit log-
ical conjunctions like “because” and “if” in the texts, making it challenging for
prior works to mine explicit logical relations, as shown in the example in Fig. 1.
In the LogiQA dataset [21], 3092 data points out of 8678 data points could not
mine any explicit logical relations. If the logical relations cannot be extracted,
AdaLoGN can only rely on the adjacent relations between EDUs to construct
graphs and can’t derive implicit logical relation via logical reasoning, resulting in
sparse graph construction, significantly affecting graph information interaction
and answer prediction. Additionally, the entity-level method is at a fine-grained
level, ignoring the overall logical structure of texts. It only focuses on entity-level
information, neglecting sentence-level interaction.

Inspired by previous work [9,41,51], we found that combining sentence-level
and entity-level information can be more comprehensive and effective to make
full use of the information in the text, which can address the above problems.
In this paper, we present a new approach, MLGNet, for logical reasoning-based
MRC with a multi-grained graph, as the overall model architecture depicted
in Fig. 2. The aim is to combine the advantages of sentence-level and entity-
level information in texts to create a better logical reasoning-based MRC model.
We propose to construct graphs that contain EDUs and entities and present
their relations, and then use graph network to learn the logical-aware features
for subsequent answer prediction. With such multi-grained graphs, we can (i)
not only mine logical structure via sentence-level information but also focus
on local perception via entity-level information; and (ii) capture the implicit
relations of EDUs through entities simultaneously. Furthermore, nodes in graphs
are not arranged in a sequence, which may lead to a loss of order information for
EDUs mined from the text, especially with the introduction of entity nodes and
relations between EDUs and entities. Therefore, we propose a spatial encoding
mechanism to strengthen the positional dependency of EDUs.

The contributions of this paper are three-fold:

• We introduce a heterogeneous multi-grained logical graph (MLG) with a
graph-based neural network to model the logical relations of texts and offer
logical-aware features.

• We present a positional embedding mechanism to reinforce the positional
information to facilitate logical reasoning.

• Our experiment results demonstrate that MLGNet can boost the performance
compared with strong baselines on two datasets ReClor and LogiQA.
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Fig. 2. Overall architecture of MLGNet.

2 Related Work

2.1 Machine Reading Comprehension

In recent years, there has been a surge of interest in complex machine reading
comprehension (MRC) that evaluates model capabilities from various angles. For
instance, HotpotQA [43], WikiHop [39], OpenBookQA [23], and MultiRC [17]
require models to possess multi-hop reasoning capabilities, while DROP [8]
and MA-TACO [52] require models to perform numerical reasoning. Besides,
WIQA [35] and CosmosQA [13] test models’ commonsense reasoning abilities.
In addition to these abilities, logical reasoning is a crucial component of human
intelligence and is receiving significant attention from researchers. Several MRC
datasets that require logical reasoning have been proposed, including ReClor [48]
and LogiQA [21]. ReClor is based on standardized exams such as GMAT and
LSAT in the United States, while LogiQA is derived from the National Civil Ser-
vants Examination of China. These datasets contain 6138 and 8678 data points
respectively, providing ample data to support logical reasoning in MRC.

2.2 Reasoning-Based MRC

Previous work has attempted to use semantic information extracted from text to
construct logic graphs, which are then used to pass messages and update graph
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representations for answer prediction. These methods rely on two levels of infor-
mation to construct graphs, sentence-level, and entity-level. For sentence-level,
DAGN [14] constructs logic graphs using elementary discourse units split by dis-
course relations, but the chain-type graph is too sparse to facilitate effective node
interaction. On this basis, AdaLoGN [18] extends the graph using symbolic logi-
cal reasoning to make it more densely connected, and Logiformer [42] constructs
causal and syntax graphs simultaneously to capture logical and co-occurrence
relations. However, these methods simply average the sentence vector as node
representation, resulting in a loss of fine-grained information [1,9]. For entity-
level, FocalReasoner [25] extracts fact units in the form of entity-predicate-entity
triplets to construct supergraphs and updates nodes using GNNs, but it over-
looks the logical relationship between sentences, which does not fully emphasize
the logical structure of the text. Therefore, we propose to combine the advantages
of sentence-level and entity-level information to build a multi-grained graph.

3 Methodology

In this work, we consider the multiple-choice MRC task, which can be described
as a triplet 〈c, q, O〉, where c is a context, q is a question over c and O is a set
of options. Our goal is to find only one correct option in O. Our framework is
shown in Fig. 2. We first construct a multi-grained graph via texts, then conduct
encoding and graph reasoning to make information fully interactive, and finally
aggregate graph information for answer prediction.

3.1 Graph Construction

Multi-grained Logical Graph Definition. To model the logical informa-
tion from text, a Multi-grained Logical Graph (MLG) is constructed. MLG is
a directed graph, which can be represented as G = 〈V,E〉, where V is a set of
nodes and E is a set of edges. MLG has two different kinds of nodes: EDUs VE

and entities Ve, where VE ∪ Ve = V . And the edges E present the relationship
between EDUs and entities, which correspond to three situations.

• Logic Edge: Two EDUs having logical relation are connected with a logic
edge. Similar to AdaLoGN [18], we set five types of common logical relations
between EUDs as logical edge L = {conj, disj, impl, neg, rev}, where con-
junction (conj), disjunction (disj), implication (impl), and negation (neg)
are standard logical connectives in propositional logic and reversed implica-
tion (rev) is introduced to represent the inverse relation of impl.

• Context Edge: EDUs adjacent in the text, including the last EDU of c and
the first EDU of o, are connected with a context edge. In this way, the context
relations among the text could be modeled.

• Containment Edge: A EDU node is connected with a entity node if EDU
containing the entity. With such connections, entity can enhance the repre-
sentation of EDUs, at the same time EDUs containing the same entity can
interact through the entity directly.
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Multi-grained Logical Graph Construction. For each sample, we construct
graph based on context and option, since the question is usually doesn’t carry
logical units in existing datasets [14].

For EDUs nodes, we follow the method of AdaLoGN [18], using Graphene [2]
to mine EDUs from context and options, and mine the rhetorical relations
between them. Rhetorical relations are mapping to logical relations via Table 1.
For the relation 〈vi, impl, vj〉, we set the relation 〈vj , rev, vi〉. We also use syn-
tactic rules based on part-of-speech tags and dependencies to find the EDUs
which are negate each others, and connect them using neg relations.

Table 1. Mapping of logical relation with rhetorical relation.

Rhetorical relation Logical relation

LIST, CONTRAST conj

DISJUNCTION disj

RESULT impl

CAUSE, PURPOSE, CONDITION rev

And for entity nodes, we employ an entity extractor based on part-of-speech
tagging of each EDU, as nouns generally contain the richest semantic information
in a sentence. We then select the top k nouns with the most occurrences as
entity nodes, where k is a predefined hyper-parameter. For entities and EDUs
containing this entity, we establish an in relation to indicate the EDU-entity
containment relation.

To construct graph, we convert the relations extracted before to the edges
in MLG. The logical relations between EDUs are converted to logic edges, and
the in relations are converted into containment edge. Apart from that, for each
EDUs that adjacent in text but are not connected with logic edge, we connect
them with context edge. The last EDU of c and the first EDU of o are also
connected with context edge.

3.2 Multi-grained Logical Graph Network

We propose the Multi-grained Logical Graph Network with the constructed
graph to leverage the logical structure and multi-grained information of text
for subsequent answer prediction. It consists of three module: graph encoding,
graph filtering and graph pooling.

Graph Encoding. First of all, it’s necessary to initialize representation for
each node. Similar to previous works, we use RoBERTa [20] encoder to model
graph nodes. It takes graph nodes as input and computes a context-aware repre-
sentation for each token. Specifically, given Vc, Vo denoting EDUs nodes mining
from context and option and Ve denoting entities node where Vc ∪ Vo = VE and
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VE ∪Ve = V , we pack these nodes in to a single sequence and separate Vc, Vo, Ve

with special tokens:

[h〈s〉, hv11
, · · · , h|, · · · , h〈/s〉, hv|Vc|+11

, · · · , h〈/s〉, hv|VE |+11
, · · · , h〈/s〉]

=RoBERTa(〈s〉v11 · · · | · · · 〈/s〉v|Vc|+11 · · · 〈/s〉v|VE |+11 · · · 〈/s〉) (1)

where 〈s〉 and 〈/s〉 is the special tokens for RoBERTa and | is a special token
to separate nodes inside Vc, Vo, Ve. For the representation of each node vi ∈ V ,
we use the average hidden state.

hvi
=

1
|vi|

|vi|∑

j=1

hvij
(2)

For graphs always lack of sentence original position information, which aggra-
vated with introduction of the entities nodes, we use the spatial encoding mech-
anism proposed in [42,46] to keep the original order information of EDUs in the
text. Concretely, for each node vi ∈ VE we compute the positional embeddings
of vi:

h(0)
vi

= hvi
+ PosEmbed(idx(vi)) (3)

where idx(vi) returns the index of vi, and PosEmbed() provides a |VE |-
dimensional embedding for each EDUs node. We take the result h

(0)
vi as initial

representation of each node.
We also use the same pre-train language model RoBERTa as graph node

encoding to model the texts in context, question and options for subsequent
operation. Given context c = {ci}|c|

i=1, question q = {qj}|q|
j=1 and option o =

{ok}|o|
k=1, we calculate for each token a context-aware representation:

[h〈s〉, hc1 , · · · , h〈/s〉, hq1 , · · · , h〈/s〉, ho1 , · · · , h〈/s〉]
=RoBERTa(〈s〉 c1 · · · 〈/s〉 q1 · · · 〈/s〉 o1 · · · 〈/s〉) (4)

We take the average embedding as output of the representations of c, q, o:

hc =
1
|c|

|c|∑

i=1

hci
, hq =

1
|q|

|q|∑

i=1

hqi
, ho =

1
|o|

|o|∑

i=1

hoi
(5)

Graph Reasoning. We utilize an iterative neural reasoning method, proposed
in [18], to extend previous constructed graph, as well as update nodes repre-
sentation. We construct the graph described in Sect. 3.1 and then initialize the
nodes representation described in Sect. 3.2. Since the entities nodes may intro-
duce irrelevant information, we implement a entity selection strategy to filter the
entities nodes in the graph to avoid too much noise. For each candidate entity
node vi ∈ Ve, we calculate the matching score between entity and the text to
judge whether relevant to answering the question:

rele = sigmoid(linear(vi ||ho)) (6)



54 J. Wang et al.

where || represents vector concatenation. We set a predefined threshold τe to
judge which entity we choose to construct graph. If rele > τe, we select the
entity.

Then, we feed the filtered graph into the iterative reasoning mechanism. In
the (n + 1)-th iteration, we start graph reasoning with the node representation
h
(n)
vi from the n-th iteration. Since some logical relations are implicit in text

which is hard to mine from text, we perform logical inference over the extracted
explicit logical relations to derive implicit logical relation according to inference
rules. Here we apply three logical equivalence rules:

• Transposition:
vi → vj ⇒ ¬vi → ¬vj (7)

• Hypothetical Syllogism:

(vi → vj) ∧ (vj → vk) ⇒ vi → vk (8)

• Adjacency-Transmission:

(vi ∼ vj) ∧ (vj | vk) ⇒ vi ∼ vk (9)

where ∼∈ {∧,∨,→} and | represents the context edge, which is adjacency in
text.

While these rules may cause misleading, we introduce a mechanism to judge
whether the candidate extension is relevant to answering the question. For each
candidate extension ε applied inference rule over a set of nods Vε ∈ V , we
calculate the relevance score of ε:

relε = sigmoid(linear(hε ||ho)),

hε =
1
Vε

∑

vi∈Vε

h(n)
vi

(10)

where || represents vector concatenation. We set a predefined threshold τε to
judge which extension can be admitted to extend graph. If relε > τε, we accept
this extension.

After graph extension, we performs to fuse the multi-grained information by
interaction of nodes and update node representation from h

(n)
vi to h

(n+1)
vi . Let

N i indicate the neighbors of node vi, and N i
r ⊆ N i indicate the subset under

relation r ∈ R. The node representations are updated with message propagation
mechanism in R-GCN [?]:

h(n+1)
ui

= ReLU(
∑

r∈R

∑

vj∈N i
r

αi,j

N i
r

W (n)
r h(n)

vj
+ Wn

0 h(n)
vj

), where

αi,j = softmaxidx(ai,j)([· · · , ai,j , · · · ]T ), for all uj ∈ Ni,

ai,j = LeakyReLU(linear(h(n)
vi

||h(n)
vj

)),

(11)

where W
(n)
r ,W

(n)
0 are matrices and idx(ai,j) returns the index of ai,j .
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Graph Pooling. After N iterations, for each node vi we fuse the representation
over all iterations:

hfus
vi

= h(0)
vi

+ linear(h(1)
vi

|| · · · ||h(N)
vi

) (12)

In order to avoid the influence of entities on the text sequence, we only
consider the representation of the node vi ∈ VE and feed it into a bidirectional
residual GRU layer [4], ignoring the representation of nodes vi ∈ Ve.

[hfnl
vi

, · · · , hfnl
v|VE | ] = Res-BiGRU([hfnl

vi
, · · · , hfnl

v|VE | ]) (13)

We aggregate the node representations by computing an o-attended weighted
sum:

hVE
=

∑

vi∈VE

αih
fnl
vi

, where

αi = softmaxi([a1, · · · , a|VE |]T ),

ai = LeakyReLU(linear(ho ||hfnl
vi

))

(14)

We concatenate hVE
and the relevance scores to form the representation of

G:
hG = (hVE

|| relE(1) || · · · || relE(N)), where

relE(n) =
1

E(n)

∑

ε∈E(n)

relε
(15)

where E(n) is the set of candidate extensions in the n-th iteration.

3.3 Answer Prediction

To predict the correct answer, we concatenate the representation of text from
backbone pre-train model and the representation of our Multi-grained Logical
Graph.

scoreo = linear(tanh(linear(hc ||hq ||ho ||hG))) (16)

where hc, hq, ho is the results of Eq. 5 and scoreo is the final score of each option
in one example. Finally we choose the option with the highest score as the
predicted answer.

3.4 Loss Function

Let ot ∈ O be the ground truth of the sample. We use cross-entropy loss with
label smoothing optimizing.

L = −(1 − γ)score′
ot

− γ
1

|O|
∑

oi∈O

score′
oi

, where

score′
oi

= log
exp(scoreoi

)∑
oj∈O exp(scoreoj

)

(17)

where γ is a predefined smoothing factor.
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4 Experiment

4.1 Datasets

We evaluate the performance on two logical reasoning based MRC datasets:
ReClor [48] and LogiQA [21].

• ReClor: The Reading Comprehension dataset requiring logical reasoning for
reasoning-based MRC. It consists of 6138 four-option multi-choice questions
sourced from actual exams of GMAT and LSAT, which are split into 4638 for
training, 500 for validation and 1000 for testing. In order to fully assess the
logical reasoning ability, the dataset divided into EASY set and HARD set
according to the performance of pre-trained language models.

• LogiQA: It consists of 8678 four-option multi-choice questions sourced from
National Civil Servants Examination of China, which are split into 7376 for
training, 651 for validation and 651 for testing.

4.2 Baselines

To compare our multi-grained graph-based method with prior work, we main
employ several sentence-level and entity-level baselines on logical reasoning based
MRC task as follow:

• DAGN [14]: It propose a discourse-aware graph network that reasongs rely-
ing on the extracted discourse structure of texts, which used the sentence-
level information of texts, and facilitates logical reasoning via graph neural
networks.

• FocalReasoner [25]: It defines and extracts fact units from text, which are
the entity-level information of text, to construct a supergraph, and enhance
the supergraph with graph attention network.

• AdaLoGN [18]: It extracts the discourse structure and the explicit logical
relation, and further extend them to find implicit logical relation based on
several logical rules via a iterative mechanism, which is realized on sentence-
level information.

• Logiformer [42]: It utilizes two different strategies to extract logic and syntax
units, and construct the logical graph and the syntax graph respectively. After
that it feed the extracted node sequence to the fully connected transformer
to each graph, and use a dynamic gate mechanism to fuse the features from
two branches.

4.3 Overall Results

Table 2 presents the overall results of the logical reasoning-based MRC task,
comparing our method with baselines such as sentence-level methods DAGN,
AdaLoGN, Logiformer, and entity-level method FocalReasoner. Our multi-
grained graphs approach achieve the best performance among all other graph-
based method on both ReClor and LogiQA. MLGNet reaches 64.07% of test
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accuracy on ReClor, and reaches 43.39% of test accuracy on LogiQA. Specifi-
cally, MLGNet achieves the highest test accuracy among all models, with 64.07%
on ReClor and 43.39% on LogiQA. These results confirm our hypothesis that
multi-grained graphs are effective in capturing and utilizing the logical structure
of texts.

Table 2. Experimental results (accuracy %) compared with baselines on ReClor and
LogiQA.

Methods ReClor LogiQA

Valid Test Test-E Test-H Valid Test

DAGN 65.80 58.30 75.91 44.46 36.87 39.32

FocalReasoner 66.80 58.90 77.05 44.64 41.01 40.25

AdaLoGN 65.20 60.20 79.32 45.18 39.94 40.71

Logiformer 68.40 63.50 79.09 51.25 42.24 42.55

MLGNet 70.02 64.07 79.32 51.60 43.08 43.39

4.4 Ablation Study

We design an ablation study to verify the feasibility of the main contributions in
our method: multi-grained logical graph construction and positional embedding
mechanism. The results are reported in Table 3.

Table 3. Ablation study results (accuracy %) on LogiQA.

Methods Valid Δ Test Δ

MLGNet 43.08 43.39

multi-grained logical graph

MLGNet w/o entities 40.70 -2.38 41.08 -2.31

MLGNet w/ all entities 41.31 -1.77 42.20 -1.19

positional embedding

MLGNet w/o position 42.93 -0.15 42.93 -0.46

Multi-grained Logical Graph. In graph construction, we build multi-grained
graph by selecting and introducing entities as nodes on the existing methods
using EDUs, hence we ablate the effects of whether introducing entities nodes
and whether selecting entities nodes. Using the modified graphs with introducing
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no entities or introducing all extracted entities, the results show that the per-
formance all decrease whether introduce no entities or all entities. This verifies
the feasibility of multi-grained logical graph construction and entity selection
strategy.

Positional Embedding. We remove the positional embedding and only use
the average of RoBERTa outputs as node initial representation. The accuracy
results decrease 0.15% in dev set and 0.46% in test set, which indicates positional
embedding beneficial for subsequent graph reasoning and graph pooling.

4.5 Effect of Entities Nodes Introduction

To evaluate the effectiveness of entity nodes introduction, we compare MLGNet
with other MRC models. We suspected that our method would be more effec-
tive for data points where explicit logical relations could not be extracted. To
verify this, we split the original dev set and test set of LogiQA into four sub-
sets based on the number of extracted explicit logical relations, as the statis-
tics shown in Table 4. We display the accuracy of AdaLoGN and our proposed
MLGNet in Fig. 3, and find that our model outperforms the baseline models on
all divided subsets, demonstrating the effectiveness of our model for different
extracted explicit logical relations. While MLGNet performs better when the
number of extracted explicit logical relations is in the range of [0, 3) and [3, 6),
the reason for this could be that our method effectively supplements information
when the available information is less.

Table 4. Distribution of explicit logical relations on dev set and test set of LogiQA.

Dataset [0, 3) [3, 6) [6, 9) [9, ∞)

LogiQA-dev 55.4% 20.0% 12.1% 12.5%

LogiQA-test 52.8% 25.0% 11.8% 10.4%

4.6 Case Study

This section provides a case study, using the example described in Fig. 1 which
is fail with previous works but successful with our method, to vividly show the
effectiveness of our method. The case is shown in Fig. 4. We totally extract six
nodes based on Graphene and part-of-speech tags, including five EDUs nodes
and one entity node. Among them four pairs of context edges (U1-U2, U2-U3,
U3-U4, U4-U5) and two pairs of containment edges (U1-U6, U5-U6) are detected.
We can see that MLGNet can build a bridge for context and option to interact
with each other, i.e. the path U1-U6-U5, especially in the graph without logic
edge. In the same time, the entity “allergies” is the key word of sentence that it
appears, so the entity node can also enhance vital information to the sentences.
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Fig. 3. Accuracy of models on number of extracted explicit logical relations on dev set
(left) and test set (right) of LogiQA.

Fig. 4. A successful example in our method.

5 Conclusion

This paper presents MLGNet, a novel approach for logical reasoning based
machine reading comprehension (MRC) that leverages both sentence-level and
entity-level information. The approach involves the extraction of elementary dis-
course units (EDUs) and entity nodes, and the construction of multi-grained log-
ical graphs containing three types of relations between nodes. An entity selection
process is applied to filter the entity nodes, and the resulting graphs are used
to facilitate information interaction and prediction. The proposed multi-grained
graph-based mechanism effectively captures the logical structure of texts, and a
positional embedding mechanism is employed to intensify the positional depen-
dency of EDUs. The results show that MLGNet outperforms baseline models on
two datasets ReClor and LogiQA. This study represents the first exploration of
multi-grained graph-based methods for logical reasoning, which investigate and



60 J. Wang et al.

demonstrate the feasibility of multi-grained logical graphs for logical reasoning
MRC, opening up potential avenues for future research.
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