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Abstract. Currently, large-scale vision and language models has sig-
nificantly improved the performances of cross-modal retrieval tasks.
However, large-scale models require a substantial amount of comput-
ing resources, so the execution of these models on devices with limited
resources is challenging. Thus, it is paramount to reduce the model size
and minimize computing costs of a model without sacrificing its per-
formance. In this paper, we improved TERAN by dividing cross-modal
retrieval into two stages: image-text coarse-grained matching and image-
text fine-grained matching. Specifically, we present a novel approach
called Two-Stage Cross-Modal Retrieval network(TSCMR). To reduce
model size after model training, our approach utilized a new knowl-
edge distillation method for Transformer-based models. Experiments
have shown that our approach maintains a performance comparable to
TERAN on the MS-COCO 1K test set, while being 2x smaller and 3.1x
faster on inference.

Keywords: Cross-modal · Two-Stage Retrieval · Knowledge
Distillation

1 Introduction

The rapid development of mobile internet has fueled an explosive growth in
the volume of multimodal data comprised of images, text, and videos. Cor-
respondingly, the demands from users with regard to data modalities have
become increasingly diversified. Consequently, a significant shift towards cross-
modal retrieval from single-modal retrieval has been observed in users’ retrieval
requests. For instance, corporations like Google have recently attempted to
utilize textual descriptions to achieve cross-modal retrieval between text and
images. The concept of cross-modal retrieval is aimed at promoting information
interaction between different modalities, and as such, is focused on retrieving
other modality samples with similar semantics through a modality sample. Given
this aim, the presence of semantic relations between modalities becomes pivotal.
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In recent years, the mainstream method for cross-modal retrieval has been to
train large-scale pre-training models based on the Transformer [1] architecture to
learn the semantic relationships between different modalities. These models can
be divided into single-stream and dual-stream structures. However, to extract
meaningful information from highly redundant datasets, complex models and a
large amount of computational resources are required, regardless of the structure
used. At present, many models have billions of parameters and demand more
than 10GB of GPU memory for deployment, so it is difficult to efficiently execute
them on resource-restricted devices. Furthermore, retrieving information using
such models takes a long time. In light of these challenges, minimizing the stor-
age and computation costs of the model while ensuring optimal performance is
crucial.

TERAN utilizes the cosine similarity to generate the similarity score between
each region and word, thus forming a region-word similarity matrix. By applying
a pooling technique to the matrix, a global similarity score is obtained for the
image and text. Notably, the computational time involved in calculating the sim-
ilarity between an image and text is significantly higher than that of extracting
the features for both. Constructing a matrix for a single image and text pairing is
not time-consuming, but for a corpus of a hundred or more, the process becomes
protracted.

To optimise the inference speed. This paper proposes a two-stage cross-modal
retrieval model. Specifically, the two-stage cross-modal retrieval model divides
the retrieval task into coarse-grained and fine-grained matching stages. In the
first stage, global features representing images and text are added, and scores are
derived from these features to identify top-performing candidates for the second
stage. In the second stage, the model uses regional features of the images and
word-level features of the text to calculate fine-grained similarity scores, which
form the final basis for determining image-text similarity. By selecting top k
scoring items from the coarse-grained phase, the model can also attain infer-
ence acceleration. Notably, this two-stage process is designed to reduce time and
computational resource consumption during the fine-grained matching phase.
After training, this paper use a discussion of a newly-developed Transformer
distillation method to reduce model size.

2 Related Work

This section provides a comprehensive discussion of prior research on cross-
modal retrieval through the use of joint image and text processing. The main
architecture of this model, which is the Transformer Encoder architecture, was
introduced. Furthermore, we elaborated on knowledge distillation and its imple-
mentation in models employing the Transformer Encoder architecture.

2.1 Joint Image and Text Processing for Cross-Modal Retrieval

At present, Transformer-based pretrained models are highly esteemed in both
academia and industry for understanding visual and textual information due
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to their excellent performance in cross-modal retrieval, attracting attention of
researchers. These models are classified into two categories: single-stream struc-
ture models and dual-stream structure models, based on the current research.

The mainstream method for cross-modal retrieval is to train large-scale pre-
trained models based on the Transformer architecture to learn the semantic
correspondence between different modalities. These models are divided into
single-stream [2–4] and dual-stream [5–7] structures. Before inputting the model,
image-text pairs require image and text feature extraction. Image features may
be region features based on object detection [8], CNN-based global features or
patch features like ViT [9] whereas text features usually follow the preprocess-
ing method of BERT [10]. Single-stream structures combine text and image
features, inputting them into a single Transformer block, and fusing multiple
modality inputs through self-attention mechanisms. The final output value, iden-
tified by the cls token, determines the similarity of the inputted image-text pair.
Single-stream structures learn cross-modal feature information more effectively,
leading to better performance in the final evaluation metrics. Dual-stream struc-
tures input text and image features separately into two different Transformer
blocks. One block processes image features, the other processes text features,
and they each output the cls token representing the global feature for both
image and text, respectively. Cosine similarity is then utilized to calculate the
similarity between image-text pairs. However, the lack of interaction between
image and text features diminishes accuracy. To solve this problem, some mod-
els include additional Transformer blocks within the dual-stream structure to
achieve interaction between different modality features. Nevertheless, while per-
formance improves, model complexity and parameters increase as well.

The TERAN [11] model proposed by Nicola et al. belongs to a dual-stream
architecture that deals with cross-modal retrieval tasks via word-region align-
ment in image-text matching. The supervision is only employed at a global
image-text level in this model. Fine-grained matching is implemented between
the low-level components of images and texts, which includes matching of image
regions and words to maintain the richness of information in both modalities.
TERAN performs as well as single-stream models in image and text retrieval
tasks. The fine-grained alignment method from TERAN provides new ideas for
large-scale cross-modal information retrieval research.

2.2 Transformer Encoder

The model architecture we propose is mainly composed of Transformer [1]
Encoder. Specifically, as shown in Fig. 1, the Transformer Encoder layer mainly
includes two sub-layers: multi-head attention(MHA) layer and fully connected
feed-forward neural network(FNN) layer.

The Multi-Head Attention (MHA) is constructed by combining multiple self-
attention layers altogether. The objective of the attention layer is to gather
information on the connection between each token and other tokens to determine
their significance in the input sequence. We adopt three input vectors, namely,
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Fig. 1. Overview of Transformer Encoder.

the query(Q) vector, the key(K) vector, and the value(V) vector for our attention
layer. The attention function can be expressed as the following formula:

Attention (Q,K, V ) = softmax
(

QKT

√
dk

)
V (1)

where dk is the dimension of keys and acts as a scaling factor, and the factor√
dk is used to mitigate the vanishing gradient problem of the softmax func-

tion in case the inner product assumes too large values.In essence, querying is
akin to searching for information on a browser. The matching pages returned by
the browser are keys, but what we require are the values that carry the desired
information. By analyzing specific tokens and other tokens in a given sequence,
we can determine their relevance and interdependencies with respect to another
token. The self-attention mechanism involves multiple calculations, where differ-
ent weight matrices are used for Q, K, and V, to facilitate this analysis.

The Transformer encoder incorporates a feedforward neural network layer,
comprising of two linear transformation layers and a Rectified Linear Unit
(ReLU) activation function, to acquire more comprehensive information.

2.3 Knowledge Distillation

Large-scale models are typically constructed using a single intricate network, or
a composite of multiple networks. While these models demonstrate impressive
performance and generalizability, small-scale models are often less expressive due
to their smaller size. Knowledge distillation involves using knowledge gained from
large-scale models to aid training of small-scale models, achieving comparable
performance as large-scale models with reduced parameter size, thereby enabling
model compression and acceleration.

Hinton et al. introduced the concept of “knowledge distillation” in [12]. The
central idea is to improve the training of a small model by utilizing the knowl-
edge learned by a large model. Therefore, the knowledge distillation framework
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generally comprises a large model (known as the teacher model) and a small
model (known as the student model). To enhance the quality of distilled knowl-
edge and improve the performance of the student model, [13] proposed using an
ensemble of models as the teacher model. [14] presented a knowledge distillation
method based on the Transformer model structure that compresses and acceler-
ates the pre-trained BERT model. Although it introduced a new loss function,
[15] conducted experiments on the BERT model. In [16], a task-agnostic model
compression method based on the BERT model was proposed.

In the field of natural language processing, the scale of pre-trained lan-
guage models has been continuously expanding, and model compression has thus
become increasingly important. To address this, [17] introduced a structured
pruning method specifically designed for certain tasks called CoFi (Coarse and
Fine-grained Pruning). The method combines pruning of coarse-grained units,
such as self-attention layers and feedforward layers, with that of fine-grained
units, such as heads and hidden dimensions. In addition, the authors proposed
a hierarchical distillation method to dynamically learn the layer mapping rela-
tionship between the teacher and student models, which improves model perfor-
mance. CoFi-compressed models achieve more than 10 times model acceleration,
95% parameter pruning, and maintain an accuracy rate of over 90% of the orig-
inal model.

3 Method

In this section, we firstly introduce the model architecture. Then, we delin-
eate the training objectives of the TSCMR. Lastly, we provide a comprehensive
description of the knowledge distillation technique that was employed after com-
pleting the TSCMR training.

3.1 Model Architecture

Figure 2 displays TSCMR that includes the initial processing of images and
text, an image encoder, a text encoder, and a method for calculating image and
text similarity. Fast-Rcnn [8] is used for initial image processing and encodes
input image I into an embedding sequence: {r1, · · · , rn}. An image encoder
consisting of four transformer encoders and one transformer encoder with two
layers is used. The sequence is converted to {Icls, r1, · · · , rn}, where the token
Icls represents the global representation of the image, before inputting it into
the image encoder. The text encoder adopts a combination of a 6-layer BERT
model and one transformer encoder with two layers, converting input text T into
an embedding sequence {Tcls, w1, · · · , wn}. The token Tcls signifies the global
representation of the text.

3.2 Training Objectives

TSCMR has two training objectives: image-text coarse-grained matching task
(ITCG) and image-text fine-grained matching task (ITFG).
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Fig. 2. The proposed TSCMR architecture. ITFG stands for image-text fine-grained
matching, ITCG stands for image-text fine-grained matching. The orange boxes repre-
sents image region features and the green boxes represents word features. (Color figure
online)

Image-Text Coarse-Grained Matching. In contrast to the TERAN, our new
model architecture employs Icls and Tcls for two-stage retrieval in order to reduce
model inference time. After passing through the image and text encoders, we
obtain the final image embedded sequence {Icls, r1, · · · , rn} and text embedded
sequence {Tcls, w1, · · · , wn}. In the image-text coarse-grained matching stage,
the SIT similarity score is given by the cosine similarity between Icls and Tcls,
thus assigning higher scores to matched image and text pairs. The formula is as
follows:

SIT =
ITclsTcls

‖Icls‖‖Tcls‖
(2)

After computing the coarse-grained similarity between image and text, we
can employ the identical approach as described in [18] to compute the loss.
This approach involves utilizing the hinge-based triplet ranking loss and direct-
ing attention towards hard negatives. The formula for calculating the loss is
presented below:

LITCG = max
T ′

[α + SIT ′ − SIT ]+ +max
I′

[α + SI′T − SIT ]+ (3)

where [x]+ ≡ max (0, x) and α is a margin that defines the minimum separation
that should hold between the truly matching image-text pairs and the negative
pairs, and calculates the negative examples T ′ and I ′ using the following method:

T ′ = argmax
z �=T

S (z, T ) (4)

I ′ = argmax
y �=I

S (y, I) (5)
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where (I,T ) is a positive pair,z and y is negatives. During training, the dataset
is divided into batches, thus negative examples are sampled from each batch.

Image-Text Fine-Grained Matching. At this stage, we drew upon the simi-
larity matrix method employed in the TERAN, albeit abstaining from employing
the Icls and Tcls used in the previous phase. Cosine similarity is utilized to assess
the similarity between the i -th region in I and the j -th word in T. Furthermore,
the following approach is taken to compute the similarity matrix A:

Aij =
rTi wj

‖ri‖‖wj‖ ri ∈ I, wj ∈ T (6)

To calculate the global similarity between image and text, we used an appro-
priate pooling function to pool the similarity matrix. Inspired by [19,20], we
adopted the max-sum pooling method, which selects the maximum value of each
row in the similarity matrix A and sums them up. The specific formula is as fol-
lows:

SIT =
∑
wj∈T

max
ri∈I

Aij (7)

During this stage, we drew inspiration from the TopK algorithm. For each
image I, we selected the finest K texts from the image-text coarse-grained match-
ing scores to proceed to this stage. We calculated the fine-grained matching scores
between I and the selected texts by employing a similarity matrix. Likewise,
for each text T, we opt for the top M images with image-text coarse-grained
matching scores, enter this stage, and calculate the fine-grained matching scores
between T and these M images using similarity matrix. If the matching similar-
ity scores of the text or image that genuinely matches are not in the top K or
M sequence, we replace the lowest score with the newly found score. The hinge-
based triplet ranking loss method is also implemented in this phase to calculate
the loss, while the formula remains identical as follows:

LI2T−ITFG = max
T ′

[α + SIT ′ − SIT ]+ T ′ ∈ K (8)

LT2I−ITFG = max
I′

[α + SI′T − SIT ]+ I ′ ∈ M (9)

The full training objective of two-stage retrieval model is:

L = LITCG + LI2T−ITFG + LT2I−ITFG (10)

3.3 Distilling After Training

To minimize the model size, we utilized a Transformer-based knowledge distil-
lation method to compress TSCMR. Drawing from [14], this work employs a
hierarchical distillation technique to distill the multi-head self-attention mod-
ules, feedforward neural network modules, and embedding layers of every layer
in the model, which is shown in Fig. 3.
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Fig. 3. The details of distillation

Embedding-Layer Distillation. The loss calculation for the embedding layer
is as follows:

Lembd = MSE
(
ESWe, E

T
)

(11)

where ES and ET respectively represent the embeddings of the student network
and the teacher network. Since the embedding layer of the teacher network is
usually smaller than that of the teacher model to reduce model size, the embed-
ding of the student model is generally linearly transformed to project onto the
space where the embedding of the teacher model is located. Finally, the mean
squared error method is used to calculate the loss.

Transformer Encoder Distillation. We propose adopting the method of
distillation every k layers for the Transformer encoder. Specifically, the loss is
calculated every 3 layers when the teacher model consists of 12 layers while the
student model has only 4 layers. Correspondingly, the first layer of the student
model is aligned with the third layer of the teacher model, the second layer of the
student model with the sixth layer of the teacher model, the third layer of the
student model with the ninth layer of the teacher model, and the fourth layer of
the student model with the twelfth layer of the teacher model. The loss of each
Transformer encoder layer includes both the loss of the self-attention layer and
the feedforward neural network layer.

The loss calculation of the self-attention layer follows the method below:

Lattn =
1
h

h∑
i=1

MSE
(
AS

i , AT
i

)
(12)

where h denotes the number of attention heads, AS
i represents the attention

score matrix of the i -th attention head in the student model, and AT
i represents

the attention score matrix of the i -th attention head in the teacher model.
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The loss calculation method for the feedforward neural network layer is as
follows:

LFFN = MSE
(
HSWh,HT

)
(13)

where the matrices HS and HT refer to the hidden states of student and teacher
networks respectively. Similar to embedding-layer distillation, the output of the
student model is mapped to the same space as the output of the teacher network.
This mapping enables the student model to learn from the teacher network and
improve its performance.

Finally, by implementing the previously stated distillation objectives, we can
calculate the overall distillation loss:

L = Lembd + Lattn + LFFN (14)

4 Experiments

This section introduces the datasets, evaluation metrics, and training process
settings. The efficacy and efficiency of the cross-modal retrieval in TSCMR are
evaluated. Moreover, we investigates the performance of TSCMR with the imple-
mentation of knowledge distillation in retrieval tasks, and the reduction in model
size is also evaluated.

4.1 Datasets and Metric

This work employs two popular datasets, Microsoft COCO (MS-COCO) [21]
and Flickr30K (F30K) [22], to train and test cross-modal retrieval tasks and
investigate their effectiveness and efficiency. The MS-COCO dataset comprises
123,287 images, and each image has five corresponding texts. We utilize 113,287
images, 5,000 images, and 5,000 images for training, validation, and testing,
respectively. The F30K dataset consists of 31,000 images, with five correspond-
ing texts for each image. We select 29,000 images, 1,000 images, and 1,000 images
for training, validation, and testing, respectively. For evaluation, this study uses
Recall@K, a widely-used metric that precisely assesses the model’s performance.
The Recall@K value falls between 0 to 1 and indicates the proportion of appro-
priately identified positive samples in the model.

4.2 Settings

In the training of TSCMR, we use a image encoder consisting of a 4-layer trans-
former encoder and a 2-layer transformer encoder, and a text encoder consisting
of a 6-layer BERT and a 2-layer transformer encoder. Image features and text
features are projected into a common space of 1024 dimensions through a linear
transformation for the final similarity calculation. In the experiment, we set the
dropout rate to 0.1, use the Adam optimizer, set the epoch to 30, set the batch
size of the MS-COCO dataset to 40, and set the batch size of F30K to 30. The
learning rate is set to 1e−5 during the first 20 epochs of training and 1e−6 during



572 Z. Chen and H. Wang

the remaining 10 epochs. When selecting the top-k images and texts with high
similarity scores before entering the second stage, the k value is set to 15 for the
MS-COCO dataset and 10 for the F30K dataset. After completing the training
of TSCMR, we performed knowledge distillation. In the image encoder, we use
a combination of 2-layer transformer encoder and 1-layer transformer encoder,
while in the text encoder, we use a combination of 3-layer BERT and 1-layer
transformer encoder. The dimensions and hyperparameters are kept unchanged
during model training.

4.3 Results and Analysis

We compare our TSCMR method against the following baselines:VSRN
[23],CAMERA [24],PFAN [25],MMCA [26],and TERAN. For the MS-COCO
dataset, we present the result on the 1k test set. For 1k images, we computed
the result through five-fold cross-validation on the 5k test set while averaging
the obtained results.

Table 1. Results on the MS-COCO dataset,on the 1k test set

Image Retrieval Text Retrieval
Model R@1 R@5 R@10 R@1 R@5 R@10 SpeedUp

VSRN 62.8 89.7 95.1 76.2 94.8 98.2 -
CAMERA 63.4 90.9 95.8 77.5 96.3 98.8 -
PFAN 61.6 89.6 95.2 76.5 96.3 99 -
MMCA 61.6 89.8 95.2 74.8 95.6 97.7 -
TERAN 65 91.2 96.4 77.7 95.9 98.6 1.0x
TSCMR-100 63.6 90.1 95.6 75.2 95.1 98.5 6.7x
TSCMR-300 64.8 91.1 96.7 77.2 95.6 98.8 3.1x
TSCMR-500 64.9 91.3 96.8 77.4 95.8 98.9 1.9x

Table 1 reports the results on the MS-COCO dataset. The result reveals that
the recall value of our method has experienced a significant downfall particularly
in image retrieval with a drop of over a point in Recall@1, and over two points
in text processing, when k is fixed to 100. Despite our model furnishing a 6.7
times higher retrieval speed compared to TERAN’s method at k=100, our recall
value suffered a huge setback. Nevertheless, when k is 300, the recall accuracy
closely approximates that TERAN while maintaining a good balance between
efficacy and viability. At k = 500, there is a minor improvement in recall value,
however, the inference speed is only 1.9 times faster than TERAN.

Table 2 demonstrates that selecting at k of 100 results in a significant drop in
the recall value, particularly for text retrieval, similar to the MS-COCO dataset.
At k of 300 provides a well-balanced performance between recall value and effi-
ciency that is not significantly different from TERAN. Increasing the value of k
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Table 2. Results on the F30K dataset

Image Retrieval Text Retrieval
Model R@1 R@5 R@10 R@1 R@5 R@10 SpeedUp

VSRN 54.7 81.8 88.2 71.3 90.6 96 -
CAMERA 58.9 84.7 90.2 76.5 95.1 97.2 -
PFAN 50.4 78.7 86.1 70 91.8 95 -
MMCA 54.8 81.4 87.8 74.2 92.8 96.4 -
TERAN 59.5 84.9 90.6 75.8 93.2 96.7 1.0x
TSCMR-100 57.6 83.1 90.2 72.7 92.5 96.2 6.7x
TSCMR-300 59.2 84.8 90.7 74.9 93 96.6 3.2x
TSCMR-500 59.4 85 90.9 75 93.1 96.8 2x

to 500 does not substantially improve the recall value, but it significantly slows
down the inference speed when compared to k set at 300.

During the testing phase, we made multiple selections of the optimal value
of K for the MS-COCO and F30k datasets. Ultimately, we found that selecting
a K value around 33 % of the size of the test set achieved an optimal balance
between effectiveness and efficiency.

Table 3. Results on the MS-COCO dataset,on the 1k test set

Image Retrieval Text Retrieval
Model R@1 R@5 R@10 R@1 R@5 R@10 model size

TSCMR-300 64.8 91.1 96.7 77.2 95.6 98.8 100%
KL-TSCMR-300 64.1 91 96.5 76.2 94.8 98.3 50%

After the completion of the training phase for the two-stage retrieval model,
knowledge distillation was conducted on the MS-COCO dataset. Table 3 of the
report indicates that while the recall rate decreased slightly after the application
of knowledge distillation, the size of the model reduced by 50%. Overall, this is a
commendable achievement, especially for devices with GPU memory limitations.

5 Conclusions and Future Works

This paper proposes a new model architecture TSCMR for cross-modal retrieval,
which is different from TERAN. The model consists of two stages: a image-text
coarse-grained matching stage, based on global feature extraction, to filter irrel-
evant content before image-text fine-grained matching between word and image
regions. Moreover, knowledge distillation is employed to reduce the model size
after the training of the retrieval model. The experimental results demonstrate



574 Z. Chen and H. Wang

that our model is capable of achieving outcomes comparable to those of TERAN
on the MS-COCO 1K test set, with a 3.1x increase in inference speed and a 50%
decrease in model size.

For the future work, the similarity calculation method has space for further
improvement, and we plan to optimize it to enhance inference speed. We have
currently tested our method on two datasets, and we intend to extend the test-
ing to additional datasets in the future. To reduce model size, we will explore
combining knowledge distillation, quantization, and pruning with our method.
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