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Abstract. Evaluating the robustness of deep neural networks (DNNs)
is crucial for ensuring the reliability and security of machine learning
systems. Prior approaches quantify the probability of a DNN being
compromised under a specified constraint. Despite their utility, these
techniques suffer from low efficiency and effectiveness in evaluating the
robustness of DNNs. The paper presents a promising evaluation app-
roach, named typeII-EvaA, for accurately and efficiently assessing the
robustness of DNNs against adversarial attacks. The typeII-EvaA over-
comes the limitations of existing evaluation methods by devising sev-
eral new assessment methods, called typeII-AssMs, which use attack suc-
cess rate (ASR) constraints to minimize perturbation magnitudes. Addi-
tionally, we introduce a more effective human imperceptibility metric,
CIEDE2000, which aligns with the human vision system to probe almost
all human-imperceptible areas for obtaining the most threatening adver-
sarial examples. Extensive experimental results corroborate that typeII-
EvaA has practical implications for improving the security of DNN-based
systems. And typeII-AssMs can achieve 100% ASR against various defense
mechanisms. Our intention is for the typeII-EvaA to serve as a benchmark
for future efforts toward developing robust DNNs that can withstand
adversarial examples.

Keywords: Deep neural networks · Robustness evaluation ·
Adversarial attacks · Human imperceptibility metric

1 Introduction

Deep neural networks (DNNs) have garnered significant attention in recent
years due to their superior performance and ability to address complex tasks
across various domains. However, their vulnerability to attacks from adversaries
has limited their deployment in security-critical applications [21]. Specifically,
adversarial attacks exploit the susceptibility of DNNs by introducing human-
imperceptible adversarial perturbations to natural examples, resulting in mis-
classifications from state-of-the-art (SOTA) DNNs [14,15,21]. As a result, there
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are significant incentives for researchers to explore the robustness of DNNs
against adversarial attacks [1,7,9,18].

The task of exploring the robustness of DNNs against adversarial attacks
primarily involves developing effective defense mechanisms and evaluation
approaches that are analogous to the training and validation methods used for
DNNs [2,12,14,17,21]. On the one hand, an ideal evaluation approach should
be capable of accurately and efficiently assessing the ground-truth robustness of
DNNs against adversarial attacks [2,14]. Evaluation methods that lack rigor are
inadequate for evaluating the effectiveness of defenses and can yield misleading
results, hampering progress in this field. On the other hand, evaluation methods
that are overly resource-intensive are impractical for real-world use due to their
high computational overhead.

This paper rethinks the effectiveness and efficiency of the existing evaluation
approaches, named typeI-EvaAs. TypeI-EvaAs generally involve the following two
steps: 1) generating threatening adversarial perturbations as much as possible
via maximizing an attack effectiveness metric, under a certain distance con-
straint (known as the human perceptibility metric) of magnitude ε, where ε has
to enable the resulting perturbations to be human-imperceptible; 2) adopting the
perturbations to produce adversarial examples and estimating the correspond-
ing probability of the DNNs being tricked, i.e., attack success rate (ASR). In
brief, typeI-EvaAs report the probability of the DNNs being fooled under a given
constraint, and we call these kinds of assessment methods typeI-AssMs. However,
typeI-EvaAs are of low efficiency and poor effectiveness.

Low Efficiency. Pre-setting an appropriate constraint magnitude ε is necessary
for typeI-EvaAs: a larger constraint magnitude allows a more broad search space
to be navigated that can in general raise attack effectiveness, but also easily
results in visually noticeable adversarial perturbations, i.e., viotibility; vice versa.
To determine the proper magnitude, empirical observations are typically used.
Evaluators observe and compare the crafted adversarial examples under various
constraint magnitudes and then manually select an optimal magnitude. It is
vastly cumbersome and computationally intensive, as crafting a single adversarial
example may require backpropagation up to hundreds or thousands of times.
Furthermore, many evaluators may not have the necessary expertise to efficiently
tune ε, which can lead to additional overhead, particularly for large-scale datasets
with modern ultra-huge DNNs.

Poor Effectiveness. TypeI-EvaAs commonly use norm-based constraints,
specifically ∞-norm constraint, to resultant adversarial perturbations human-
imperceptible. However, many more threatening and imperceptible adversarial
perturbations are beyond the ∞-norm constraint. Specifically, Fig. 1(b,c) shows
adversarial examples by common attacks with ∞-norm constraint of 16 and 32.
As can be seen, some adversarial ones are considerably different from the original
ones in vision and also cannot completely mislead models. In contrast, TypeII-
EvaA crafts adversarial ones (Fig. 1(d)) which perturbation beyond 16 and 32
but are also significantly effective to models and quite similar to original ones. In
fact, ∞-norm distance treats perturbations of different images, or even different
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Fig. 1. We craft adversarial examples for images from the leftmost column. (b) and
(c) are produced by PGD with perturbation budgets of 16 and 32. (d) is crafted by
TypeII-EvaA (inner-joint-optim version).

pixels in an image, as equally important, and this is barely established for the
human perceptual system. Therefore, typeI-EvaAs tend to overlook the area with
low human-imperceptible distance and high ∞-norm distance from the original
images, resulting in the failure to detect many threatening adversarial examples
and leading to a false sense of robustness.

To address the two above-mentioned limitations, we revisit typeI-EvaAs which
report ASR with a specified perturbation constraint (called typeI-AssMs) for the
robustness of DNNs. And a natural idea is that can we assess the robustness
of DNNs by estimating how much perturbations need to be imposed to reach a
given ASR? To achieve a specific ASR, we identify the most vulnerable sample
combination with minimal perturbations to induce full misclassification. How-
ever, finding the most vulnerable combination is challenging as enumerating all
combinations equals an NP-hard problem. We simplify the problem into finding
minimal threatening adversarial perturbations for each sample independently
with linear time complexity and the overhead is considerably lower than typeI-
AssMs that craft adversarial perturbations for each constraint magnitude over
all samples. For a specific ASR, the attackers are at least required to add adver-
sarial perturbations above the magnitude to reach the ASR. In a nutshell, our
technical contributions are threefold.

– We develop a novel evaluation approach, dubbed typeII-EvaA, that can effec-
tively and efficiently reap the accurate robustness estimations of DNNs.
TypeII-EvaA is the first work to explore novel and remarkably efficient assess-
ment methods called typeII-AssMs with a specific ASR. For the practicality
of typeII-EvaA, we craft fresh attack paradigms that minimize perturbation
magnitudes with ASR constraints.

– For the effectiveness of typeII-EvaA, we explore an effective human imper-
ceptibility metric compared to norm-based metrics, i.e., CIEDE20001, that
aligns well with the human vision system, such that the adversarial attacks
with CIEDE2000 are allowed to probe almost all human-imperceptible areas
for obtaining most threatening adversarial examples.

1 CIEDE2000 is a perceptual color distance recently released by International Com-
mission on Illumination.



Rethinking the Evaluation of Deep Neural Network Robustness 535

– We design several proxy functions for finding adversarial examples. Addi-
tionally, we devise four search algorithms with various strategies in order to
determine the perturbations of adversarial examples. We systematically eval-
uate these designs and show that typeII-EvaA can comprehensively evaluate
the efficacy of defense mechanisms.

The rest of the paper is organized as follows. In the following section, we intro-
duce the background, e.g., DNNs and adversarial examples. Section 3 formulates
the challenge for typeII-AssMs. Section 4 develops the human imperceptibility
and attack effectiveness metrics. We design search algorithms consisting of three
ingredients: initialization strategy, search direction, and step size in Sect. 5 fol-
lowed by experimental evaluation of typeII-EvaA in the large-scale CIFAR10 and
ImageNet datasets in Sect. 6. Finally, the conclusion of this paper is made in
Sect. 7.

2 Background

2.1 Deep Neural Networks

Deep neural networks (DNNs) are highly intricate mathematical models com-
posed of numerous layers. Each layer is typically comprised of a linear function
and an activation function. We denote a DNN with parameter θ by Fθ(·) ∈ R

m

and Fθ(x)[i] (i = 1, 2, · · · ,m) denotes the prediction confidence of the DNN for
classifying x into i-th category, where m is the total number of categories. In
order to obtain a probability distribution over all potential categories as the final
prediction result, it is frequently customary to incorporate a softmax function to
standardize the level of confidence in the prediction. Softmax function outputs
the probability of i-th category as follows:

softmax(Fθ(x))[i] =
eFθ(x)[i]

∑m
i=1 eFθ(x)[i]

. (1)

Given a dataset D = {(xi, yi), i = 1, 2, · · · , n, xi ∈ R
c×h×w, yi ∈ R

m} where
c, h, w denote the channel, height, width of the input image, and the performance
of DNNs is quantitated by accuracy as follows:

acc =
∑n

i=1 I((argmaxj=1,··· ,m Fθ(xi)[j]) = yi)
n

, (2)

where I(·) is a characteristic function that outputs 1 when the condition holds
and otherwise outputs 0. Then, to make the optimal performance of the DNN
over D, standard practice is leveraging the mini-batch gradient descent algorithm
or its variants to optimize θ associated with accuracy in an end-to-end fashion.
But the gradient-based optimization algorithms cannot be directly applied to
optimize θ since accuracy blocks the gradient propagation process. Thus, accu-
racy generally is replaced with a differentiable objective function while the most



536 M. Fan et al.

frequently-used objective function is the cross-entropy function shortened by
CE(·, ·).

CE(x, y) = −log(softmax(Fθ(x))[y]). (3)

The quality of objective functions has a huge influence on the resultant DNN
and an inferior objective function probably leads to a worse θ.

2.2 Adversarial Examples

Adversarial examples are malicious inputs that are artificially synthesized with
clean inputs and specific perturbations crafted by the attacker. With adversarial
examples, the attacker can fool the target DNN model to output attacker-chosen
(or random) predictions, as defined in Definition 1.

Definition 1 (Adversarial Attacks). Given a DNN model Fθ(x) with param-
eter θ and an input x, the adversarial attack aims to find a specific perturbation
δ for x that satisfies:

δ = argmin
δ

M(x, x + δ), s.t., argmax
j=1,··· ,m

Fθ(x + δ)[j] �= y, (4)

where m is number of classes, the function M(·, ·) evaluates the distance between
x and x + δ, which also reflects the human imperceptibility of the generated
adversarial example [12].

Generally, most adversarial attacks follow the below paradigm to approxi-
mately resolve Eq. 4:

δ = argmax
δ

L(Fθ(x + δ), y), s.t.,M(x, x + δ) ≤ ε, (5)

where L(·, ·) is a proxy function of argmaxj=1,··· ,m Fθ(x+ δ)[j] �= y like CE(·, ·),
and ε is the perturbation budget that constraints the distance between x and
x + δ. Commonly, L(·, ·) is positively correlated with the misclassification rate
of the model and referred to as the attack effectiveness metric.

Definition 2 (Adversarial Perturbations and Examples). Given an input
x with the ground-truth label y and a target DNN, if perturbations δ are crafted
by adversarial attacks, δ and x + δ are referred to as adversarial perturbations
and adversarial examples. Furthermore, if the target DNN misidentifies x+δ, the
δ is threatening adversarial perturbations; otherwise, the δ is weak adversarial
perturbations.

If adversarial perturbations are described as minimal for input x, this implies
that such perturbations result in the lowest possible value for M(x, x + δ).

Different adversarial attacks can be reduced by solving Eq. 4. An intuitive idea of
solving Eq. 4 is to impulse samples to move in the direction that makes the loss of
the sample higher as possible, i.e., Eq. 5, and gradient directions can effectively
match the direction. The fast gradient sign method (FGSM) harnesses the idea
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and approximately solves Eq. 5 by directly setting δ = ε ∇xL(Fθ(x), y), where
L(·, ·) commonly is CE(·, ·) [21]. As suggested in its name, the main merit of
FGSM is efficiently crafting adversarial examples due to backpropagation only
being required to implement once. But, when a bigger tolerance for pertur-
bations is allowed, FGSM performs poorly, as ε is seemingly too big and the
gradient direction only works around the small neighborhood of x. Accordingly,
the basic iterative method (BIM) [11] and projected gradient descent (PGD)
[12] improve FGSM by using an iterative way with a small step size to solve
Eq. 4. In detail, given total iterations T , BIM crafts δ = δT by iteratively updat-
ing δt = Clipε(δt−1 + ∇x+δt−1L(Fθ(x + δt−1), y)) (t = 0, 1, 2, · · · , T ), where
Clipε(·) draws the perturbations back to the constraint domain, where the ini-
tial perturbations δ0 are full-zero vectors. Due to the local extreme points in the
vicinity of x, the PGD incorporates a randomized perturbation into the initial
perturbation δ0 to evade these local extreme points [12]. Apart from the above
adversarial attack methods, another famous and effective adversarial attack is
C&W attack [2]. Rather than optimizing perturbations subject to constraints,
the C&W attack approach entails simultaneous optimization of both the loss
function and perturbations, formulating various loss functions and choosing the
optimal one experimentally to replace the traditional cross-entropy loss function
[3].

3 Assessment Method

3.1 Problem Formulation

The objective of typeII-AssMs is to obtain the least adversarial perturbations
on the dataset D to achieve the specified ASR p. This can be formulated as
optimizing the following task to obtain adversarial perturbations δ1, ..., δn:

δ1, · · · , δn = argmin
δ1,...,δn

n∑

i=1

Ii · M(xi, xi + δi)

s.t.,
∑

Ii(argmax
j=1,··· ,m

Fθ(xi)[j] �= yi) = n · p,

I1 + · · · In = n · p and Ii = 0 or 1,

(6)

where n · p is assumed to be an integer and Ii is an indicator function that
outputs 1 if the input condition establishes otherwise outputs 0. After obtaining
the solution for Eq. 6, d = M(x1, x1 + δ1) + · · · + M(xn, xn + δn) can be used
to assess the robustness of DNNs against adversarial attacks.

3.2 Solution to Equation 6

Before developing the solution to Eq. 6, we consider a special case of it, where
p = 100%. If p = 100%, there is Ii = 1 for ∀i and we then search for the
adversarial perturbations δi that cause the misclassification of xi from the DNN
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Fθ(·) and minimize M(xi, xi + δi). Since searching for adversarial perturbations
δi for different xi is independent, Eq. 6 can be simplified to solve the following
optimization task for each xi.

δi = argmin
δi

M(xi, xi + δi)

s.t., argmax
j=1,··· ,m

Fθ(xi)[j] �= yi.
(7)

Assuming that the adversarial perturbations δi for ∀i, are obtained by solving
Eq. 7 with p = 100%. The objective is to find the most vulnerable combination of
n·p′ instances after resetting p to a new value p′. To achieve this, one can greedily
set n ·(p−p′) elements with the maximum M(xi, xi+δi) in {δ1, · · · , δn} to zero,
which results in a minimal

∑n
i M(xi, xi + δi) among all combinations of size

n · p′ as the generation of each δi is independent. The resulting perturbations
{δ1, · · · , δn} are exactly the solution of Eq. 6 with p′. Furthermore, shrinking
δi results in an increase in M(xi, xi + δi), implying that the model Fθ(·) will
correctly identify xi.

Time Complexity Comparison. Supposing that the time complexity of gen-
erating δi is O(1). Then, the expected time complexity of solving Eq. 6 with our
method is O(n), whereas the expected time complexity of directly solving Eq. 6
is O(Ck

n) = O(n!).

The Relationship to typeI-AssMs. We demonstrate that the results of typeI-
AssMs can be readily obtained from the results of typeII-AssMs. Specifically,
for typeI-AssMs, the objective is to determine the maximum achievable ASR
under a given perturbation budget ε. By leveraging the fact that typeII-AssMs
with ASR=100% generates the minimal magnitude of threatening adversarial
perturbations for each instance xi, imposing perturbations below this magnitude
ensures that xi is classified correctly. Therefore, the maximum achievable ASR
can be computed as the ratio of samples for which the minimal magnitude of
the threatening adversarial perturbations is smaller than ε. Consequently, we
conclude that leveraging typeII-AssMs for evaluations is always preferable to
typeI-AssMs, as the latter can be effortlessly derived from the former, but not
vice versa. Furthermore, typeII-AssMs eliminate the significant burden of tuning
the hyperparameter ε.

3.3 Solution to Equation 7

To simplify the notation, we omit the subscript i in Eq. 7. The problem we need
to solve can be stated as follows:

δ = argmin
δ

M(x, x + δ)

s.t., argmax
j=1,··· ,m

Fθ(x)[j] �= y.
(8)

Intuitively, except directly optimizing M(x, x + δ) under the opti-
mization constraint, an alternative is to slack the constraint, putting
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argmaxj=1,··· ,m Fθ(x)[j] �= y into objective function as a punishment term, for-
mulated as follows:

δ = argmin
δ

M(x, x + δ) − αL(Fθ(x + δ), y), (9)

where Fθ(x + δ) �= y is substituted by differentiable L(Fθ(x + δ), y) for making
gradient-based optimization methods applicable to this task.

Equation 9 is a more efficient and effective way of searching for δ compared
to Eq. 8 for generating adversarial examples that are both effective and imper-
ceptible to humans. The search direction2 used in Eq. 9 is informed by both the
attack effectiveness metric and human imperceptibility metric, while the search
direction in Eq. 8 only considers one of the two metrics. Therefore, crafting δ via
Eq. 9 appears to be a better option.

However, a significant challenge in solving Eq. 9 is determining an appropriate
value of α that balances the effectiveness of the attack and the human imper-
ceptibility metrics. We discuss the corresponding solution to this challenge in
Sect. 5. In the next section, we define the metrics for measuring the effectiveness
of the attack and the human imperceptibility of the perturbation.

4 Metric Design

Threatening adversarial examples possess two crucial characteristics: human
imperceptibility and attack effectiveness, which dominate the quality of resultant
adversarial examples.

4.1 Human Imperceptibility Metrics

The fundamental objective of human imperceptibility metrics is to approximate
the ground-truth human perception distance3 between two different images.
However, most previous works have conveniently adopted norm-based distance
functions as the similarity distance function as M(x, y) = ||x − y||a. The ∞-
norm distance function is the most widely used method, which calculates the
maximum absolute difference between the elements of two images |x − y|.

The primary flaw of norm-based distance functions is insufficiently aligned
closely with the human perceptible distance function. Therefore, we introduce
CIEDE2000, which has been shown to have better alignment with human per-
ception than norm-based distance functions, to replace norm-based distance
functions [19]. CIEDE2000 maps the two images from RGB space to CIELAB

2 Gradient-based optimization methods are commonly used and effective for solving
such tasks and we also follow it. Furthermore, the search direction of optimization
methods is the gradient direction of the objective function.

3 The similarity distance function in this paper is a loose version of the distance
measure defined in mathematics, as a strict distance measure should satisfy non-
negativity, symmetry, and triangle inequality but sometimes human perception dis-
tance may violate triangle inequality.
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space since the human perceptible distance between two images is not uni-
formly affected by the RGB space distance. Specifically, it computes the dis-
tance between the two images as a weighted sum of the differences in lightness,
chroma, and hue in CIELAB space. This mapping results in a distance metric
that more accurately reflects the human visual system’s response to differences
in color and brightness.

4.2 Attack Effectiveness Metrics

Proxy functions for ASR considerably influence the crafted adversarial examples,
motivating us to explore a variety of potential proxy functions to get better
results. We design 7 proxy functions, expressed as follows:

f1(x, y) = F (x)[y],
f2(x, y) = softmax(F (x))[y],
f3(x, y) = log(f2(x, y)),

f4(x, y) =
1

1 − f2(x, y)
f2(x, y),

f5(x, y) = f2(x, y) − argmax
j �=y

{f2(x, j)},

f6(x, y) = max{f4(x, y) + C, 0}, C ≥ 0,

f7(x, y) =
f2(x, y)

argmaxj �=y,j=1,··· ,m, f2(x, j)
.

(10)

Functions f1 and f2 directly penalize the prediction confidence, normalized pre-
diction confidence, and probability of the ground-truth label for input x. Func-
tion f3 is a negative cross-entropy loss function commonly used in many adver-
sarial attacks, such as FGSM, BIM, and PGD. Function f4 is an improved version
of f2, taking into account the observation that higher values of f2(x, y) indicate a
higher probability that x is correctly classified by the DNN. To account for this,
we scale the magnitude of f2(x, y) by a regulatory factor 1

1−f2(x,y) , which ampli-
fies the value of f2(x, y) when it is high. This weight tuning can be interpreted
as implicitly adjusting the step size during the search process.

The proxy functions f1 ∼ f4 have a limitation in that they only take into
account the correct category of the input and do not consider other category
information that could guide the search direction for effective adversarial exam-
ples. This can be addressed by incorporating similar information between cate-
gories. Therefore, we propose proxy functions f5 ∼ f7, which consider the cat-
egory most similar to the ground-truth label y that the model predicts as the
target category for the adversarial attack. To further improve the performance
of the proxy functions, we introduce an adaptive magnitude function in f6 and
f7 that takes into account the model’s confidence C in its misclassification of
x. Specifically, f6 disregards the attack effectiveness if the model confidently
misclassifies x while f7 always considers the attack effectiveness throughout the
search process.
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Notably, we derive f4 ∼ f7 based on f2 instead of f1 or f3 because we can
easily tune the hyperparameter C and observe the prediction change trend of
the model for x when the prediction is in probability form.

5 Search Algorithm Design

In the context of solving Eq. 8 and Eq. 9, the design of search algorithms is a
crucial step that involves three main components: initialization strategy, search
direction, and step size. The initialization strategy plays a critical role in deter-
mining the success of the search algorithm. There are two main types of ini-
tialization strategies: interior initialization and exterior initialization. For Eq. 8,
we use inner-optim and outer-optim to refer to the search algorithm with inte-
rior initialization and exterior initialization, respectively. Similarly, the terms,
inner-joint-optim and outer-joint-optim, are used for Eq. 9.

5.1 Inner-Optim

Initialization Strategy. In the inner-optim search algorithm, the initialization
of adversarial perturbations δ needs to conform to the restrict condition Fθ(x+
δ) �= y, which implies that the model should identify x+ δ as belonging to other
categories. To achieve this, a simple way is to initialize δ such that x+δ becomes
a sample belonging to a category different from y. Here, x′ can be extracted from
Dtrain and then δ = x′ − x.

Search Direction. We employ the gradient descent algorithm to move δ in
the direction that M(x, x + δ) decreases the most, i.e., the negative gradient
direction of M(x, x+ δ) with respect to δ. However, simply using this algorithm
can cause a violation of the optimization constraint since the similarity between
x and x + δ increases with the number of iterations, leading to the increasing
probability of x being correctly identified by the model. To prevent this issue,
before updating δ in each iteration, the algorithm examines whether this update
can result in Fθ(x + δ) = y. If Fθ(x + δ) = y, the update is abandoned, and the
search process is terminated. Otherwise, the algorithm runs normally.

Adative Step Size Strategy. The appearance of Fθ(x + δ) = y may be
attributed to the large initialization step size and the smaller step size is worth
exploring for searching more human-imperceptible δ. Therefore, the adaptive
step size strategy is introduced into the search process and the strategy allows
decreasing step size to implement more fine-grained search. In detail, if a certain
update leads to Fθ(x + δ) = y, the step size will be reduced to half of the origi-
nal one, and then examining the condition again. Also, the procedure is usually
implemented several times. If all attempts fail, the search process is terminated.

5.2 Outer-Optim

Initialization Strategy. In the outer-optim algorithm, the initialization of δ
should ensure that Fθ(x + δ) = y for δ, and not allow Fθ(x + δ) �= y. A simple
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approach to achieve this is to set δ as a full-zero vector, so that x + δ = x and
Fθ(x + δ) = y.

Search Direction. With the above initialization strategy, the objective function
can directly obtain the optimal value 0, but the perturbations are not threaten-
ing. Hence, outer-optim algorithm should move the perturbations towards the
direction that induces Fθ(x+ δ) �= y with minimal perturbations and this direc-
tion should be the optimal search direction. However, the gradient direction of
M(x, x + δ) alone is not sufficient to suggest the optimal direction because the
gradient direction of M(x, x+ δ) not contain any information about Fθ(·), con-
sidering the desired perturbations can give rise to Fθ(x + δ) �= y. There are two
alternatives to intuitively approximate the optimal direction. The first one is
to jointly optimize two metrics for attack effectiveness and human impercepti-
bility and this is our inner-joint-optim and outer-joint-optim search algorithms;
the last one is alternatively optimizing the two metrics and we discuss it in the
next section. Here we more focus on leveraging the gradient direction of one of
the two metrics as the search direction. The initial δ is the perturbations that
enable x and x+ δ to be most similar and thus we should attach more attention
to the constraint, i.e., how move δ to obtain Fθ(x + δ) �= y. If Fθ(x + δ) �= y is
differentiable, the most effective direction is its gradient direction, but, unfortu-
nately, it is not differentiable; thus, we use the gradient direction of the proxy
function of Fθ(x + δ) �= y. In addition, if x + δ is misclassified by the model,
the search process should be ended as earlier as possible, because intuitively the
move probably can increase M(x, x + δ).

Step Size Strategy. Similarly, we employ the adaptive step size strategy dis-
cussed in Sect. 5.1 to efficiently search for better adversarial perturbations.

5.3 Inner-Joint-Optim and Outer-Joint-Optim

Equation 9 generally performs better than individually optimizing one of the
metrics. However, a key challenge is determining an appropriate value for the
weighting parameter α. Setting a small α prioritizes human imperceptibility over
attack effectiveness, potentially leading to ineffective adversarial perturbations.
For instance, if α = 0, the algorithm will exclusively focus on making δ = 0.
Intuitively, there are two approaches to solving the problem: 1) Setting a large α
focuses solely on attack effectiveness and ignores human imperceptibility, result-
ing in overly perceptible perturbations; 2) An alternative approach of alternating
between optimizing the two metrics based on whether the adversarial example
is correctly classified has been proposed. Specifically, if the adversarial exam-
ple is correctly classified, we optimize the attack effectiveness metric, otherwise,
we optimize the similarity metric. This method still fails to fully explore the
relationship between the two metrics.

We propose an adaptive method to find the optimal value of α that balances
attack effectiveness and human imperceptibility. As α is increased, the model
transitions from correctly classifying the sample to misclassifying it. This indi-
cates that there is a tipping point to cause misclassification and the tipping point
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is the optimal value for α. With the optimal value for α, the produced adver-
sarial perturbations are most human-imperceptible and also remain threatening.
However, the optimal value of α is unknown in advance. Therefore, in each iter-
ation, we increase the weight of the human-imperceptible metric if the sample
with adversarial perturbations is misclassified, and we increase the weight of
the attack effectiveness metric otherwise. This adaptive approach enables us to
determine the optimal value of α and generate the optimal adversarial pertur-
bations.

Initialization Strategy and Step Size. We introduce two variations of
the joint optimization approach: inner-joint-optim when using the initialization
strategy of inner-optim, and outer-joint-optim otherwise. We additionally incor-
porate a step size tuning strategy into the optimization process, which linearly
decreases the step size to zero with iterations.

6 Experimental Evaluation

We implement a PyTorch-based prototype of typeII-EvaA based on CIEDE2000
to evaluate its performance on two commonly used benchmark datasets, CIFAR10
[10] and ImageNet [5]. We assess the effectiveness of typeII-EvaA attack meth-
ods against SOTA defense mechanisms, as Huang2021Exploring [8], Srid-
har2021Robust [20], Pang2022Robustness [13] and Dai2021Parameterizing [4]
for CIFAR10, and Standard, Wong2020Fast [22], Salman2020Do [16], and
Engstrom2019Robustness [6] for ImageNet. To ensure fairness, the experimen-
tal model settings are consistent with those used in prior works and the step
size is 0.005. Additionally, four advanced attacks are considered as baselines to
estimate the effectiveness of our typeII-EvaA: FGSM [21], BIM [11], PGD [12],
and C&W [2]. For all experiments, ASR, indicating the accuracy success rate, is
regarded as the evaluation metric of typeII-AssMs. The typeII-AssMs’ goal is to
maximize ASR.

Evaluation of Attacks. We leverage four perturbation δ search algorithms
of typeII-EvaA to evaluate the performance of SOTA defense mechanisms. We
report the ASR in Fig. 2 over CIFAR10 and Fig. 3 over ImageNet along with var-
ious proxy functions. The results of Fig. 2 almost reaffirm the fact that, as the
perturbation δ increases, the ASR of typeII-EvaA also increases. Obviously, The
inner-joint-optim and outer-joint-optim outperform the inner-optim and outer-
optim, respectively. This means that the strategy of slacking the constraint is
more effective when against the defense mechanisms. For ImageNet dataset, we
concentrate on inner-joint-optim and outer-joint-optim with the f4 and f7 func-
tions. The effectiveness of inner-joint-optim with f4 is dramatically improved.
More specifically, when δ = 6.16, the ASR of inner-joint-optim search algorithm
with f7 is 0.46, while when δ = 1.13, the ASR of inner-joint-optim search algo-
rithm with f4 is up to 0.89. Additionally, the trend in ASR of outer-joint-optim
search algorithm is the same as that over CIFAR10.
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Fig. 2. The performance of SOTA defense mechanisms against typeII-EvaA over
CIFAR10 dataset.

Fig. 3. The performance of SOTA defense mechanisms against typeII-EvaA over Ima-
geNet dataset.
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Table 1. Evaluation between typeII-EvaA and advanced attacks with various pertur-
bation parameter (para.) δ and proxy functions (ASR: %).

CIFAR10 Para. [4] [8] [13] [20] Attack Para. [4] [8] [13] [20]

FGSM δ = 1 14.96 11.27 14.84 17.3 PGD δ = 1 14.96 11.27 14.84 17.3
δ = 2 16.18 14.06 15.74 19.08 δ = 2 16.18 14.17 15.85 19.2
δ = 4 20.76 17.86 20.65 21.99 δ = 4 20.98 18.97 21.54 22.66
δ = 8 29.24 26.79 29.58 30.8 δ = 8 33.93 33.26 33.37 36.05
δ = 12 40.4 33.04 39.4 38.17 δ = 12 50.22 53.68 48.88 50.56
δ = 16 47.1 40.07 45.76 44.53 δ = 16 65.74 70.31 67.3 66.18

BIM δ = 1 14.96 11.27 14.84 17.3 C&W δ = 1 15.18 11.72 15.07 17.52
δ = 2 16.18 14.06 15.85 19.2 δ = 2 16.52 14.4 16.63 19.31
δ = 4 20.98 18.97 21.54 22.66 δ = 4 21.76 19.87 22.54 23.21
δ = 8 33.82 33.15 33.15 35.71 δ = 8 35.94 34.6 36.5 38.5
δ = 12 50.22 52.79 48.66 50.33 δ = 12 52.23 57.03 53.79 54.13
δ = 16 65.62 69.53 66.96 65.62 δ = 16 68.86 75.22 71.54 70.65

Inner-joint f1 100 100 100 99.33 Outer-joint f1 100 100 100 99.89
f2 100 100 100 97.43 f2 100 100 100 100
f3 100 100 100 99.33 f3 100 100 100 99.89
f4 90.4 100 97.54 99.78 f4 91.29 100 100 100
f5 100 100 100 97.77 f5 99.89 100 100 100
f6 96.88 98.1 100 96.65 f6 99.89 100 100 100
f7 100 100 100 98.44 f7 98.88 100 100 100

ImageNet Para. Standard [22] [6] [16] Attack Para. Standard [22] [6] [16]
FGSM δ = 16 93.15 92.64 88.51 94.46 PGD δ = 16 100 98.89 98.89 99.19
BIM δ = 16 100 98.89 98.79 99.19 C&W δ = 16 100 99.4 99.6 99.7
Inner-joint f4 100 100 100 100 Outer-joint f4 100 100 100 100

f7 100 99.9 99.9 100 f7 100 100 100 100

Comparison with SOTA. We report the evaluation results compared with
existing attacks against defense mechanisms and demonstrate the superiority of
the typeII-EvaA in Table 1. We evaluate the quality of the adversarial examples
found on the CIFAR10 and ImageNet datasets. The parameters, like proxy func-
tions and perturbation δ are identical between the two datasets, so for brevity, we
report partial results for ImageNet. For CIFAR10, all of the previous attacks fail
to find adversarial examples. In contrast, our inner-joint-optim and outer-joint-
optim can achieve 100% ASR when against various defense mechanisms. For
ImageNet, prior work achieves approximate 99% ASR against advanced defense
mechanisms when δ = 16. While our inner-joint-optim and outer-joint-optim
succeed with 100% success probability for each of the seven proxy functions.

7 Conclusion

The vulnerability of deep learning models to adversarial examples presents a
major challenge for their practical application in security-critical domains. In
order to ensure the reliability and safety of these models, it is crucial to evaluate
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their robustness against adversarial attacks. In this paper, we propose power-
ful attacks typeII-EvaA that defeat advanced defense mechanisms, demonstrating
that typeII-EvaA more generally can be used to evaluate the efficacy of poten-
tial defenses. By systematically comparing many attack approaches, we settle
on one that can consistently find better adversarial examples than all existing
approaches with linear time complexity. We encourage those who create defenses
to perform the four evaluation approaches with various proxy functions we use
in this paper.
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