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Abstract. Sentence-level event detection has traditionally been carried
out in two key steps: trigger identification and trigger classification. The
trigger words first are identified from sentences and then utilized to
categorize event types. However, this classification hugely relies on a
substantial amount of annotated trigger words along with the accuracy
of the trigger identification process. This annotation of trigger words
is labor-intensive and time-consuming in real-world environments. As a
solution to this, we propose a model that does not require any triggers for
event detection. This model reformulates event detection into a two-tower
model that uses machine learning comprehension and prompt learn-
ing. Compared to the existing methods, which are either trigger-based
or trigger-free, experimental studies on two benchmark event detection
datasets (ACE2005 and MAVEN) reveal that our proposed method can
achieve competitive performance.

Keywords: Event detection · Prompt learning · Machine reading
comprehension

1 Introduction

Information extraction (IE) is an important application of Natural Language
Processing (NLP). Event detection (ED) is a fundamental part of IE, aiming at
identifying trigger words and classifying event types, which could be divided into
two sub-tasks: trigger identification and trigger classification [1]. For example,
consider the following sentence “To assist in managing the vessel traffic, Chod-
kiewicz hired a few sailors, mainly Livonian”. The trigger words are “assist”
and “hired”, the trigger-based event detection model is used to locate the posi-
tion of the trigger words and classify them into the corresponding event types,
Assistance and Employment respectively.

Contemporary mainstream studies on ED concentrate on trigger-based meth-
ods. These methods involve initially identifying the triggers and then categoriz-
ing the types of events [2–4]. This approach changes the ED task into a multi-
stage classification issue, with the outcome of trigger identification also impacting
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the categorization of triggers. Therefore, it is crucial to identify trigger words
correctly, which requires datasets containing multiple annotated trigger words
and event types [5]. However, it is time-consuming to annotate trigger words
in a real scenario, especially in a long sentence. Due to the expensive annota-
tion of the corpus, the application of existing ED approaches is greatly limited.
It should be noted that trigger words are considered an extra supplement for
trigger classification, but event triggers may not be essential for ED [6].

From a problem-solving perspective, ED aims to categorize the type of events
and therefore triggers can be seen as an intermediate result of this task [6]. To
alleviate manual effort, we aim to explore how to detect events without triggers.
Event detection can be considered a text classification problem if the event
triggers are missing. But three challenges should be solved: (1) Multi-label
problem: since a sentence can contain multiple events or no events at all, which
is called a multi-label text classification problem in NLP. (2) Insufficient event
information: triggers are important and helpful for ED [2,7]. Without trigger
words, the ED model may lack sufficient information to detect the event type,
and we need to find other ways to enrich the sentence semantic information and
learn the correlation between the input sentence and the corresponding event
type. (3) Imbalance Data Distribution: the data distribution in the real
world is long-tail, which means that most event types have only a small number
of instances and many sentences may not have events occurring. The goal of ED
is also to evaluate its ability in the long-tail scenario.

To detect events without triggers and solve these problems, we propose a
two-tower model via machine reading comprehension (MRC) [8] and prompt
learning [9]. Figure 1 illustrates the structure of our proposed model with two
parts: reading comprehension encoder (RCE) and event type classifier (ETC).
In the first-tower, we employ BERT [10] as backbone, and the input sentence
concatenates with all event tokens are fed into BERT simultaneously1. Such
a way is inspired by the MRC task, extracting event types is formalized as
extracting answer position for the given sequence of event type tokens. In other
words, the input sentences are deemed as “Question” and the sequence of event
type tokens deemed as “Answer”. This way allows BERT to automatically learn
semantic relations between the input sentences and event tokens through self-
attention mechanism [11]. In the second-tower, we use the same backbone of
RCE and utilize prompt learning methods to predict event types. Specifically,
when adding the prompt “This sentence describes a [MASK] event” after the
original sentence, this prompt can be viewed as a cloze-style question and the
answer is related to the target event type. Therefore, ETC aims to fill the [MASK]
token and can output the scores for each vocabulary token. We only use event
type tokens in vocabulary and predict event types that score higher than the
〈none〉 event type. In the inference time, only when these two-tower models
predict results are correct can they be used as the final correct answer. In our

1 For example, we convert event token employment to “〈employment〉” and add it to
vocabulary. All events operate like this. In addition, we add a special token “〈none〉”
that no events have occurred.
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Fig. 1. Overview of our proposed EDPRC. It consists of two modules: reading com-
prehension encoder (RCE) and event type classifier (ETC).

example from Fig. 1, RCE can predict the answer tokens are 〈assistance〉 and
〈employment〉 respectively. In addition, since 〈assistance〉 and 〈employment〉
both have higher values than 〈none〉, we predict Assistance and Employment as
the event type in this sentence.

In summary, we propose a two-tower model to solve the ED task without
triggers and call our model EDPRC: Event Detection via Prompt learning
and machine Reading Comprehension. The main contributions of our work are:
(1) We propose a trigger-free event detection method based on prompt learning
and machine reading comprehension that does not require triggers. The machine
reading comprehension method can capture the semantic relations between sen-
tence and event tokens. The prompt learning method can evaluate the scores
of all event tokens in vocabulary; (2) Our experiments can achieve competi-
tive results compared with other trigger-based methods and outperform other
trigger-free baselines on ACE2005 and MAVEN; (3) Further analysis of atten-
tion weight also indicates that our trigger-free model can identify the relation
between input sentences and events, and appropriate prompts in a specific topic
can guide pre-trained language models to predict correct events.

2 Related Work

2.1 Sentence-Level Event Detection

Conventional sentence-level event detection models based on pattern matching
methods mainly utilize syntax trees or regular expressions [12]. These pattern-
matching methods largely rely on the expression form of text to recognize triggers
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and classify them into event types in sentences, which fails to learn in-depth fea-
tures from plain text that contains complex semantic relations. With the rapid
development of deep learning, most ED models are based on artificial neural
networks such as convolutional neural networks (CNN) [2], recurrent neural net-
work (RNN) [3], graph neural network (GNN) [13] and transformer network [14],
and other pre-trained language models [10,15].

2.2 Machine Reading Comprehension

Machine reading comprehension (MRC) is a difficult task in natural language
processing (NLP) that involves extracting relevant information from a passage
to answer a question. The process can be broken down into two parts: identify-
ing the start and end points of the answer within the passage [16,17]. Recently,
researchers have been exploring ways to adapt event extraction techniques for
use in MRC question answering. One approach is to convert event extraction
into a MRC task, where questions are generated based on event schemas and
answers are retrieved accordingly [18]. Another approach is to utilize a mech-
anism like DRC, which employs self-attention to understand the relationships
between context and events, allowing for more accurate answer retrieval [19].

2.3 Prompt Learning

In recent years, there has been significant progress in natural language pro-
cessing (NLP) tasks using prompt-based methods [9]. Unlike traditional model
fine-tuning, prompt-tuning involves adding prompts to the raw input to extract
knowledge from pre-trained language models like BERT [10] and GPT3 [20].
This new approach allows for the creation of tailored prompts for specific down-
stream tasks such as text classification, relation extraction, and text genera-
tion. By doing so, it bridges the gap between pre-trained tasks and downstream
tasks, reducing training time significantly [21]. Additionally, prompt-based learn-
ing enables pre-trained language models to gain prior knowledge of a particular
downstream task, ultimately improving performance [22].

3 Methodology

In this section, we present the proposed EDPRC in detail for sentence-level event
detection without triggers.

3.1 Problem Description

Formally, denote X , Y as the sentence set and the event type set, respectively.
X = {xi|i ∈ [1,M ]} contains M sentences, and each sentence xi in S is a token
sequence xi = (w1, w2, ..., wL) with maximum length L. In sentence-level event
detection, given a sentence xi and its ground-truth yi ∈ Y, Y = {e1, e2, ..., eN},
we need to detect the corresponding event types for each instance. For sentences
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where no event occurred, we add a special token “〈None〉” as their event type.
This problem can be reformulated as a multi-label classification task with N +1
event types.

3.2 Reading Comprehension Encoder

Inspired by the MRC task, we employ BERT as backbone to design a reading
comprehension encoder due to its capability in learning contextual representa-
tions of the input sequence. We describe it as follows:

Input = [CLS] Sentence [SEP] Events (1)

where Sentence is the input sentence and Events is the event type set (also
including “〈None〉”). [CLS] and [SEP] stand for the start token and separator
token in BERT, respectively. For some event types such as “Business:Lay off”
fails to map to a single token according to the vocabulary. In this case, we
employ an angle bracket around each event type and remove the prefix, e.g.,
the event type of “Business:Lay off” is converted to a lower-case “〈lay off〉”.
Then, we add N + 1 event tokens to the vocabulary and randomly initialize its
embeddings. Our objective is to utilize BERT for understanding the correlation
between the event types and input sentence, producing accurate representations
of event tokens.

After that, we get the token representations by using BERT:

h[CLS], h
w
1 , ..., hw

L , h[SEP ], h
e
1, ..., h

e
N , he

N+1 = BERT (Input) (2)

where hw
i is the hidden state of the i-th input token. This setup is close to

MRC that chooses the correct option to answer question “What happened in the
sentence?”. Unlike traditional fine-tuning methods that utilize the [CLS] token
to complete classification, we use the hidden states of event tokens to predict the
probability of each token being the correct answer. The representation of event
tokens:

E = he
1, ..., h

e
N , he

N+1 (3)

where E ∈ R
N×D, D is the dimension of token representation. The probability

of each event token as follows:

P = softmax(E · W ) ∈ R
N×2 (4)

where W ∈ R
D×2 is a trainable weight matrix. During training time, we therefore

have the following loss for predictions:

LRCE = CE(P, Y ) (5)

where Y is the ground-truth label of each event token ei being the correct answer.
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3.3 Event Type Classifier

We describe the implementation of ETC in this subsection. Inspired by the cloze-
style prompt learning paradigm for text classification with pre-trained language
models, event type classification can be realized by filling the [MASK] answer
using a prompt function.

First, the prompt function wraps the input sentence by inserting pieces of
natural language text. For prompt function fp, as illustrated in Fig. 1, we use
“[SENTENCE] This sentence describes a [MASK] event” as a prompt function for
our model. Let M be pre-trained language model (i.e., BERT), and x be the
input sentence. The prediction score of each token v in vocabulary being filled
in [MASK] token can be computed as:

pv = M([MASK] = v|fp(x)) (6)

After that, the other key of prompt learning is answer engineering. We aim
to construct a mapping function from event token space to event type space.
In the first tower (RCE), it learns the relation between the input sentence and
event tokens. RCE and ETC share the same weights of BERT. Then, we only
select tokens in Y = {e1, e2, ..., eN} and compute the scores of event tokens:

pe = σ(pv|v ∈ Y) (7)

where σ(·) determines which function to transform the scores into the probability
of event tokens, such as softmax.

Finally, as shown in Fig. 1, we predict all event tokens that score higher
than the “〈None〉” token as the predicted result. In our example, since both
“〈assistance〉” and “〈employment〉” have higher scores than “〈None〉”, we pre-
dict Assistance and Employment as target event types.

In the process of training, we calculate two losses due to the problem of
imbalance data distribution. The first loss is defined as:

L1 =
1

|T |
∑

t∈T

log
exp(M([MASK] = t|fp(x)))∑

t′∈{t,〈none〉} exp(M([MASK] = t′|fp(x)))
(8)

where T is the set of event tokens that score higher than “〈None〉” in the sen-
tence. The second loss is defined as follows:

L2 = log
exp(M([MASK] = 〈none〉|fp(x)))∑

t′∈{〈none〉}∪T exp(M([MASK] = t′|fp(x)))
(9)

where T is the set of event tokens that score lower than “〈None〉” in the sentence.
Note that in Eq. 8, we only compare the prediction scores that higher than the
“〈None〉” event token. The reason is that we aim to improve the score of each
event token that is higher than “〈None〉”. In Eq. 9, we compare to event tokens
that lower than the “〈None〉”, which can decrease the score of them. The training
loss of ETC is defined as:

LETC =
1
M

∑

x∈S
(L1 + L2) (10)
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In the training time, the total loss of our model is defined as:

L = LRCE + LETC (11)

4 Experiments

In this section, we introduce the experimental datasets, evaluation metrics,
implementation details, and experimental results.

4.1 Dataset and Evaluation

To evaluate the potential of EDPRC under different size datasets, we conducted
our experiments on two benchmark datasets, ACE2005 [23] and MAVEN [24].
Details of statistics are available in Table 1.

– The ACE2005 is globally recognized as the primary multilingual dataset
applied for event extraction. Our use focuses on the English version that
includes 599 documents and 33 types of events. We engage two versions in
line with prior data split pre-processing: ACE05-E [25] and ACE05-E+ [26].
In contrast with ACE05-E, ACE05-E+ incorporates roles for pronouns and
multi-token event triggers.

– MAVEN, constructed from Wikipedia2 and FrameNet [27], is a vast event
detection dataset encompassing 4,480 documents and 168 different types of
events.

For data split and preprocessing, following previous work [24–26], we split
599 documents of ACE2005 into 529/30/40 for train/dev/test set, respectively.
Then, we use the same processing that splits 4480 documents of MAVEN into
2913/710/857 for train/dev/test set respectively.

To assess the performance of our event detection model, we employ three
commonly used evaluation metrics: precision (P), recall (R), and micro F1-score
(F1) [2]. These metrics provide a comprehensive picture of our model’s accuracy
and effectiveness.

4.2 Baseline

We compare our method to baselines with trigger-based and trigger-free meth-
ods. For trigger-based methods, we compare with: (1)DMCNN [2], which uti-
lizes a convolutional neural network (CNN) and a dynamic multi-pooling mecha-
nism to learn sentence-level features; (2) BiLSTM [28], which uses bi-directional
long short-term memory network (LSTM) to capture the hidden states of triggers
and classify them into corresponding event types; (3)MOGANDED [29], which
proposes multi-order syntactic relations in dependency trees to improve event
detection; (4)BERT [10], fine-tuning BERT on the ED task via a sequence label-
ing manner; (5)DMBERT [4], which adopts BERT as backbone and utilizes a
2 https://www.wikipedia.org/.

https://www.wikipedia.org/
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Table 1. Dataset statistics of ACE05-E, ACE05-E+ and MAVEN.

Dataset Split #Sentences #Events #Documents

ACE05-E Train 17,172 4,202 529

Dev 923 450 30

Test 832 403 40

ACE05-E+ Train 19216 4419 529

Dev 901 468 30

Test 676 424 40

MAVEN Train 32431 73496 2913

Dev 8042 17726 710

Test 9400 20389 857

dynamic multi-pooling mechanism to aggregate textual features. For trigger-
free methods, we compare with: (6)TBNNAM [6], the first work on detecting
events without triggers, which uses LSTM and attention mechanisms to detect
events; (7)TEXT2EVENT [30], proposing a sequence-to-sequence model and
extracting events from the text in an end-to-end manner; (8)DEGREE [31],
formulating event detection as a conditional generation problem and extracting
final predictions from the generated sentence with a deterministic algorithm.

We re-implemented some trigger-based baselines for comparison, including
DMCNN, BiLSTM, MOGANDED, BERT and DMBERT. The other baseline
results are from the original paper.

4.3 Implementation Details

We utilize the Transformers toolkit [32] and PyTorch to implement our proposed
model. Specifically, we employ the bert-base-uncased3 model as the backbone and
optimize it with AdamW optimizer, setting the learning rate to 2e-5, maximum
gradient norm to 1.0, and weight decay to 5e-5. We limit the maximum sequence
length to 128 for ACE2005 and 256 for MAVEN, and apply a dropout rate of 0.3.
Our model is trained on a single Nvidia RTX 3090 GPU for 10 epochs, selecting
the checkpoint with the highest validation performance on the development set.
Our code is publicly available at https://github.com/rickltt/event detection.

4.4 Main Results

Table 2 reports main results. Compared with trigger-free methods, we can find
out that our method achieves a much better performance than other trigger-free
baselines (TBNNAM, TEXT2EVENT and DEGREE). Obviously, ED PRC can
achieve improvements of 0.4% (73.3% v.s. 73.7%) F1 score of the best trigger-
free baseline (DEGREE) in ACE05-E, and 2.1% (71.8% v.s. 73.9%) F1 score of
3 https://huggingface.co/bert-base-uncased.

https://github.com/rickltt/event_detection
https://huggingface.co/bert-base-uncased
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Table 2. Event detection results on both trigger-based and trigger-free methods of the
ACE2005 corpora. “-” means not reported in original paper. ∗ indicates results cited
from the original paper.

Category Models ACE05-E ACE05-E+

P R F-1 P R F-1

Trigger-based DMCNN 74.3 66.8 70.3 67.0 73.5 70.1

BiLSTM 73.6 72.3 72.9 73.5 71.3 72.4

MOGANED 74.6 71.1 72.8 74.2 72.2 73.2

BERT 72.5 74.2 73.3 75.2 72.4 73.8

DMBERT 76.4 71.9 74.1 74.9 73.5 74.2

Trigger-free TBNNAM∗ 76.2 64.5 69.9 - - -

TEXT2EVENT∗ 69.6 74.4 71.9 71.2 72.5 71.8

DEGREE∗ - - 73.3 - - 70.9

ED PRC (Ours) 76.1 71.5 73.7 74.6 73.2 73.9

TEXT2EVENT in ACE05-E+. It proves the overall superiority and effectiveness
of our model in the absence of triggers. Compared to trigger-based methods,
despite the absence of trigger annotations, ED PRC can achieve competitive
results with other trigger-based baselines, which is only 0.4% (73.7% vs. 74.1%)
in ACE05-E and 0.3% (73.9% vs. 74.2%) in ACE05-E+ less than the best trigger-
based baseline (DMBERT). The result shows that prompt-based method can
greatly utilize pre-trained language models to adapt ED task and our MRC
module is capable of learning relations between the input text and the target
event tokens under low trigger clues scenario.

To further evaluate the effectiveness of our model on large-scale corpora, we
show the result of MAVEN on various trigger-based baselines and our model in
Table 3. We can see that our model also can achieve competitive performance
on various trigger-based baselines, reaching 69.1% F1 score. Compared with
CNN-based (DMCNN), RNN-based (BiLSTM) and GNN-based (MOGANED)
method, BERT-based methods (BERT, DMBERT and ED PRC) can out-
perform high improvements, which indicates pre-trained language models can
greatly capture contextual representation of input text. However, ED PRC can
achieve only improvements of 0.1% (67.2% v.s. 67.3%) F1 score on BERT and
is 0.8% (67.3% v.s. 68.1%) less than DMBERT. This can be attributed to more
triggers and events on MAVEN than that on ACE2005. We conjecture that
trigger-based event detection models can greatly outperform trigger-free models
when sufficient event information is available. All in all, our ED PRC is proven
competitive in both ACE2005 dataset and MAVEN dataset.
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Justice:Trial-Hearing  Justice:Charge-Indict Personnel:End-Position

None

Personnel:End-Position

Fig. 2. The ACE2005 examples visualization of attention weight in event tokens. We
show three cases, the first with only one event, the second with no events and the third
with multiple events.

5 Analysis

In this section, we demonstrate further analysis and give an insight into the
effectiveness of our method.

5.1 Effective of Reading Comprehension Encoder

Figure 2 shows a few examples with different target event types and their atten-
tion weight visualizations learned by the reading comprehension encoder. In the
first case, the target event type is “Personnel:End-Position” and our reading com-
prehension encoder successfully captures this feature by giving “〈end − org〉” a
high attention score. In addition, in the second case, it is a negative sample that
no event happened in this sentence and our reading comprehension encoder can
correctly give a high attention score for “〈none〉” and give low attention scores for
other event tokens. Moreover, three events occur in the third case, “Justice:Trial-
Hearing”, “Justice:Charge-Indict” and “Personnel:End-Position”, respectively.
Our approach can also give high attention scores to “〈trial − hearing〉”,
“〈charge − indict〉” and “〈end − org〉”. We argue that, although triggers are
absent, our model can learn the relations between input text and event tokens
and assign the ground-truth event tokens with high attention scores.

5.2 Effective of Different Prompts

Generally, as the key factor in prompt learning, the prompt can be divided into
two categories: hard prompt and soft prompt. The hard prompt is also called
a discrete template, which inserts tokens into the original input sentence. Soft
prompt is also called continuous template, which is a learnable prompt that does
not need any textual templates. To further analyze the influence of prompts, we
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Table 3. Event detection results
on MAVEN corpus.

Models P R F-1

DMCNN 66.5 58.4 62.2

BiLSTM 64.7 68.2 62.4

MOGANED 65.9 65.1 65.5

BERT 64.3 70.5 67.2

DMBERT 68.9 67.4 68.1

ED RRC (Ours) 66.0 68.7 67.3

Table 4. Results on ACE2005
datasets with different prompts.

Models P R F-1

Prompt 1 74.2 72.9 73.5

Prompt 2 75.6 71.4 73.4

Prompt 3 74.7 71.2 72.9

Prompt 4 74.1 73.5 73.8

Soft 73.5 72.7 73.1

design four different textual templates (hard prompt) to predict event types:
(1) What happened? [SENTENCE] This sentence describes a [MASK] event; (2)
[SENTENCE] What event does the previous sentence describe? It was a [MASK]
event; (3) [SENTENCE] It was [MASK]; (4) A [MASK] event: [SENTENCE]. For
soft prompt, we insert four trainable tokens into the original sentence, such as
“[TOKEN] [TOKEN] [SENTENCE] [TOKEN] [TOKEN] [MASK]”. The results of our
method on ACE2005 are shown in Table 4.

Prompt 1 and Prompt 2 perform similarly, and both of them work better
than Prompt 3. The reason for this may be that Prompt 3 provides less infor-
mation and less topic-specific. And both Prompt 1 and Prompt 2 add a common
phrase “sentence describe” and a question to prompt the model to focus on the
previous sentence. Unlike previous prompts, Prompt 4 puts [MASK] at the begin-
ning of a sentence, and the result indicates that it might be slightly better to
put the [MASK] at the end of the sentence. Compared with hard prompt, soft
prompt eliminate the need for manual human design and construct trainable
tokens that be optimized during training time. The result of soft prompt achieve
performance that was fairly close to the hard prompt.

6 Conclusion

In this paper, we transform sentence-level event detection to a two-tower model
via prompt learning and machine reading comprehension, which can detect
events without trigger words. By using machine reading comprehension frame-
work to formulate a reading comprehension encoder, we can learn the relation
between input text and event tokens. Besides, we utilize prompt-based learning
methods to construct an event type classifier and final predictions are based
on two towers. To make effective use of prompts, we design four manual hard
prompts and compare with soft prompt. Experiments and analyses show that
ED PRC can even achieves competitive performance compared to mainstream
approaches using annotated triggers. In the future, we are interested in explor-
ing more event detection methods without triggers by using prompt learning or
other techniques.
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