
Path Integration Enhanced Graph
Attention Network

Hui Wang1,2 , Peng Zhou1,2 , and Junbo Ma1,2(B)

1 Key Lab of Education Blockchain and Intelligent Technology, Ministry of
Education, Guangxi Normal University, Guilin 541004, China

nudt mjb@outlook.com
2 Guangxi Key Lab of Multi-Source Information Mining and Security, Guangxi

Normal University, Guilin 541004, China

Abstract. Graph attention networks are a deep learning method for
processing graph data. By learning the relationships between neighbour-
ing nodes in the graph, GATs have been widely used in many fields.
However, the graph attention network has the problem of information
lag in the process of information aggregation, which degrades the per-
formance of the graph attention network. Referring to the ideas of Feyn-
man path integral theory in physics, we proposed a new graph attention
method called PaInGAT to solve the above issue by introducing a new
neighbor information aggregation mechanism. Specifically, we improve
the neighbour node aggregation mechanism of traditional graph atten-
tion networks by calculating the path integral from the source node to
the target node to obtain the attention factor, and update the infor-
mation of multi-order neighbours to the central node directly by the
attention factor of the current state at each layer. Through experimen-
tal demonstration combining different downstream tasks, our method
achieves excellent results on several datasets, demonstrating its effec-
tiveness and advancement.

Keywords: Graph Attention Networks · Graph Data · Information
Lag · Aggregation Mechanism

1 Introduction

In real word, data often has quite complex relationships and irregular struc-
tures, typically represented as graph structures on non-Euclidean space. The
graph data structure can represent the characteristics of nodes and the relation-
ships between nodes. It is often used in a wide range of data representations in
various fields, such as index graphs between papers, wiring graphs of the circuit,
membership graphs of social networks, molecular graphs of chemical substances,
etc. Learning graph data representation has therefore become a popular topic of
interest to researchers in recent years [23,45].

Graph neural networks (GNNs) [33] constitute an effective framework for
learning graph representations and have been successfully applied to a variety
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
X. Yang et al. (Eds.): ADMA 2023, LNAI 14179, pp. 312–324, 2023.
https://doi.org/10.1007/978-3-031-46674-8_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-46674-8_22&domain=pdf
http://orcid.org/0009-0007-6192-1507
http://orcid.org/0000-0001-9342-6024
http://orcid.org/0000-0002-5859-8389
https://doi.org/10.1007/978-3-031-46674-8_22

Path Integration Enhanced Graph Attention Network 313

of graph-based tasks. GNNs work by iteratively updating node or subgraph rep-
resentations through message passing between neighboring nodes. Each node
aggregates information from its neighbors and updates its representation based
on the received messages. This process is repeated multiple times, allowing
nodes to propagate information throughout the graph and refine their represen-
tations. Graph Convolutional Networks (GCNs) [28] are the basis for many com-
plex graph neural network models, including autoencoder-based models [29,42],
generative models [24] and spatio-temporal networks [43]. It can be divided
into two main categories [38], spectral-based and spatial-based. Spectral-based
approaches [28] define graph convolution by introducing filters from the per-
spective of graph signal processing, where the graph convolution operation is
interpreted as removing noise from the graph signal. Spatial-based approaches
[3,17] represent graph convolution as the aggregation of feature information from
neighbourhoods. When algorithms for graph convolution networks run at the
node level, graph pooling modules can be interleaved with the graph convolu-
tion layer to coarsen the graph into high-level substructures.

One of the most popular variants of GNNs is Graph Attention Networks
(GATs) [37], which addresses the shortcomings of GCNs that treat all neigh-
bours equally. Essentially, both GCNs and GATs aggregate features from neigh-
bouring vertices onto the central vertex, but the difference is that GCNs uses a
Laplace matrix and GATs uses attention coefficients. Specifically, GATs uses a
self-attention mechanism, which means that each node in the graph computes
its own attention coefficients based on the similarity between its own features
and the features of its neighboring nodes. These attention coefficients are then
used to compute a weighted sum of the neighboring node features, which is com-
bined with the original node features to obtain a new representation of the node
[37]. Because in real-world scenarios, each of the neighbouring nodes may play a
different roles in the influence on the core node, while GCNs simply ignore the
correlation of spatial information between nodes and focus only on the topol-
ogy of the graph when combining the features of neighbouring nodes making
the model less generalisable and performance. Overall, GAT has been shown to
be effective in a wide range of graph-based learning tasks, such as node clas-
sification, graph classification, and link prediction. It has also been extended
to handle more complex graph structures, such as heterogeneous graphs and
dynamic graphs, and has been combined with other deep learning techniques,
such as convolutional neural networks, to achieve state-of-the-art performance
on a variety of benchmarks.

However, GATv2 [4] argue that the attention score computed by GAT [37]
is only a restricted static attention and does not compute a dynamic attention
that can truly express the relevance of nodes, because the attention function
computed by GAT is monotonic for any query node with respect to the key,
i.e., for different query nodes, the attention score ranking of their neighbouring
nodes is fixed [4]. The GATv2 method performance is improved by modifying
the internal order of operations to obtain a more expressive approximation of the
attention function. Although it computes more expressive attention scores, we

314 H. Wang et al.

found that GAT and GATv2 still suffer from information lag in the computation
of attention scores, and that the attention scores used in the computation lagged
by K − 1 layers (K is the path length between two nodes). We will elaborate on
this in Sect. 3.

To overcome these drawbacks, we propose a new path integral based graph
attention network(PaInGAT). Inspired by ideas from Feynman’s path integral
theory in physics, we calculate a more effective attention factor by considering
the influence of the path length between nodes on the weights when weight-
ing sums in a graph attention networks aggregating information. In continuous
space we calculate the transformation of the energy of the path between two
points by integration, extending to the discrete space of the graph structure
we use the summation operation instead of the integration operation. In addi-
tion, by increasing the nonlinear transformation of neighbourhood information,
the model can aggregate the neighbourhood information more effectively and
improves the expressiveness of the model. At the same time, in traditional GNNs,
after propagating multiple base layers, the node information is globally over-
smoothed to white noise, resulting in a severe performance degradation. This is
because the message passing mechanism of GNNs is based on a plain assumption
that neighbouring nodes usually have the same category information. A shallow
GNN therefore allows for more cohesive information within categories. Deepen-
ing GNNs, on the other hand, means expanding the receptive field of information
and inevitably absorbing much inter-category information, which leads to each
node tending to be similar. Our proposed method can naturally alleviate this
problem, as aggregated higher-order neighbourhood information decays with the
edge length of the path, especially when the attention value between some two
intermediate nodes on the path drops sharply.

In summary, our main contribution is to propose a new graph attention
framework called PaInGAT. Unlike previous graph attention networks, we use
node features to compute the path integral between nodes as the attention score
to update node representations to obtain new graph representations. Essentially,
instead of training a separate feature vector for each node, we train a new set of
aggregation functions that aggregate feature information from the nodes’ local
neighbours of different hop numbers in a base layer. We evaluated our algorithm
on four node classification benchmarks and three graph classification bench-
marks that tested PaInGAT’s ability to generate useful embeddings. Experi-
mental results show that our approach is more effective than previous graph
attention models, achieving more expressive graph embeddings.

2 Related Work

Graph neural networks(GNNs) [33] play a very important role for the application
of non-Euclidean data in deep learning. Generating node representations that
actually rely on graph structure and feature information through graph neural
networks is a hot topic of interest for researchers. Various graph neural networks
have been proposed in recent years, with both spectral-based approaches [5,11,

Path Integration Enhanced Graph Attention Network 315

21,31,42] represented by GCN and spatial-based approaches [1,3,8,10,18,19,26,
30,46] represented by GAT achieving outstanding graph embedding results in
the field of graph representation learning. Among them, GAT uses self-attentive
mechanism to achieve modelling of relations for graph data.

Attention mechanisms have been used extensively in the field of deep learning
in recent years, whether for computer vision [7,36], speech processing [9,44],
natural language processing [12,22] or a variety of other tasks. The operation of
introducing attention mechanism in GNNs can be traced back to GAT, which
introduced the self-attention mechanism into GNNs replacing the convolution
operation in GCNs. Subsequently various graph attention methods have been
proposed by researchers. AGNN [35] removes all intermediate fully connected
layers of the GCN and calculates the attention factor by cosine similarity. The
work on SuperGAT [27] summarises four attention scoring functions, respectively
the original GAT function (GO), the node vector dot product function (DP), the
scaled dot product function (SD) and the mixed function (MX), and adds a self-
supervised task of link prediction to the model to better learn graph embeddings.
There are also researchers who have introduced graph attention mechanisms
into the field of heterogeneous graphs, such as RGAT [6]. GATv2 [4] computes
improved dynamics of attention by modifying the order of operations of the
linear mapping and nonlinear transformations of GAT.

3 Preliminaries

In this setion, we first introduce previous work on GAT and GAT2, then explain
the existence of information lag in the attentional scores in GATs by analysing
the process of aggregation of neighbourhood information.

In the following, we define the problem of interest and the corresponding
notations that will be used in this paper. For convenience, we introduce the
model on an undirected graph. Like GAT, our method can also be used for
digraphs.

G = (V, E) is a undirected graph, where node V = {1, 2,, n}, edge E ⊆
V × V. In special, for undirected graphs, we consider each edge as two directed
edges with opposite directions. Define the central node i and its neighbour node
j, and their corresponding feature vectors are denoted by �hi and �hj (�hi, �hj ⊆ RF)
respectively, and (j, i) denotes the edge from node j to node i.

GAT. It adopts a graph attention layer to update the node representation of
a graph G by successive applications of the layer. A set hi ∈ RF (i ∈ V)and a
corresponding set of edges ε(ε ⊆ E) are taken as input to the layer, and the
updated node embedding representation h′ ∈ RF is output after one or more
layers of superimposed base layers.

In the graph attention layer, each node gives its own query representation
for its neighbours, (its own node intermediate representation as query, and its
neighbour node intermediate representation as key), i.e. for each vertex i, the

316 H. Wang et al.

similarity coefficients between his neighbours (j ∈ Nj ∪ i) and itself is computed
by learning the parameters W and the mapping a(·) as follows:

eij= LeakyReLU
(
�aT · [Whi || Whj]

)
, j ∈ Nii (1)

where ·T represents matrix transpose and [·——·] denotes the concatenation
operation. Then normalize them across all choices of j by using the softmax
function:

αij = softmaxj(eij) =
exp

(
LeakyReLU

(
�aTΔ

[
W�hi || W�hj

]))

∑
k∈Ni

exp
(
LeakyReLU

(
�aTΔ

[
W�hi || W�hk

])) (2)

Finally, the standardized attention coefficient is combined with the input features
of the linear mapping, and then the nonlinear mapping is used to obtain the final
graph embedding representation.

�h′
i = σ

⎛

⎝
∑

j∈Nj

αijΔW�hj

⎞

⎠ (3)

GATv2. The type of attention computed by GAT is restricted because the
attentional scores is unconditional on the query node and the attentional func-
tion is monotonic with respect to the neighbourhood (key), thus limiting the
expressiveness of the model. To address this problem, Shaked Brody et al. pro-
pose an improvement to the calculation of attention scores: changing the order
of operation of the non-linear transformation and mapping �a in Eq. 1.

eij = �aTLeakyReLU (WΔ[hi||hj]) , j ∈ Ni (4)

They believed that using the learning layers W and �a consecutively could
collapse into a single linear layer, affecting the calculation of attention scores.
Like the attention mechanism in Transformer, both GAT and GATv2 also con-
sider the multi-heads attention. The output results of multiple attention heads
are obtained through the concate operation or their average value is taken to
obtain the output of the GAT layer.

�h′
i =

K

||
k=1

σ

⎛

⎝
∑

j∈Nj

αijW
k�hj

⎞

⎠ (5)

Information Lag in the Aggregation Process. Taking the two-order neigh-
bourhood information aggregation of node i in Fig. 1b as an example, according
to the information aggregation formula of GAT and GATv2 we can obtain the
representation of nodes i, j after the first base layer aggregation of its own and
neighbourhood information as:

Path Integration Enhanced Graph Attention Network 317

Fig. 1. Aggregation process of GATs

x1
i = σ(ai,iWxi +

∑

j∈Ni

ai,jWxj) (6)

x1
j = σ(aj,jWxj +

∑

h∈Nj

aj,hWxh) (7)

where σ(·) indicates a layer of nonlinear transformation. After the second base
layer, the representation of node i is:

x2
i =a1

i,iW
1x1

i +
∑

j∈Ni

a1
i,jW

1x1
j

=a1
i,iW

1(ai,iWxi +
∑

j∈Ni

ai,jWxj) +
∑

j∈Ni

a1
i,jWa1(aj,jWxj +

∑

h∈Nj

aj,hWxh)

=a1
i,iW

1ai,iWxi + a1
i,iW

1
∑

j∈Ni

ai,jWxj +
∑

j∈Ni

a1
i,jW

1aj,jWxj

+
∑

j∈Ni

a1
i,jW

1
∑

h∈Nj

aj,hWxh

=a1
i,iW

1ai,iWxi + (a1
i,iai,j + a1

i,jaj,j)
∑

j∈Ni

W 1Wxj

+
∑

j∈Ni

∑

h∈Nj

a1
i,jaj,hW 1Wxh

(8)
For ease of representation, we omit the operation of the non-linear transforma-
tion in Equation(8). We can intuitively know that our conclusions are unaffected
due to the monotonically increasing nature of LeakyReLU.

It can be seen from the above calculation process that: The graph attention
network uses the attention factors a1

i,j of the current state and aj,h of the previous
state to calculate the representation of the node when aggregating information
from the second-order neighbour node h to the central node i. This implies

318 H. Wang et al.

that there is a lag in the update of information from node i to node h. When
expanding to kth order neighbours, we can obtain that the process lags by k-1st
order.(K represents the path length between two nodes). In order to avoid the
problem of information lag in the calculation process, in our method, we use the
path integral method to update the node representation of the central node with
the inter-node attention value of the current state.

4 Proposed Method

In this section, we first describe the structure of the base layer of the PaInGAT
network.

Our model will be based on two illuminating assumptions:

1. Information exchange will exist between the nodes on each path in the graph.
2. Information transfer is not only a function of paths, but can be further under-

stood as a function of path length.

We compose paths between nodes by edges on the graph. Generally, for two
nodes in a graph, there are multiple paths between them. By the different paths
they can be classified as neighbours of different orders. It is even possible to
change into more jumping neighbours by using oneself as a folding point. Then
we define the length of the path between central node i and neighbouring node
j as K, i.e. set the perceptual field size of the model as K, and aggregate the
1st to Kth order neighbourhood information of the central node i through the
attention mechanism.

4.1 Attention Module

In the previous graph attention methods, in order to obtain sufficient expres-
siveness, the input raw features need to be transformed in a learnable way to
get intermediate representations. Finally the intermediate representation will be
aggregated into the representation of the central node by using the attention
factor as a coefficient. However, this transformation uses only a linear trans-
formation of a fully connected layer and not a non-linear transformation, so it
yields a limited expressive power. For this reason, we set up a separate feature
transformation module W(·), which further improves the expressiveness of the
features by boosting the linear transformation of the input features through
two fully connected layers and adding an activation function between the two
fully connected layers to do non-linear transformation (we use the LeakyReLU
function with negative input slope α = 0.2 in our experiments).

gi = W (hi) ∈ R
N×F ′

(9)

We then use the transformed input features to calculate the attentional fraction
between adjacent nodes. The attention score is:

eij = �aTLeakyReLU
([

g′
i || g′

j

])
, j ∈ Ni (10)

Path Integration Enhanced Graph Attention Network 319

It represents the importance, i.e. the degree of influence, of node i on adjacent
node j. Where �a ∈ R

2F ′
denotes a fully connected layer. Then the attention

score is normalised by the softmax function as follows.

aij =
exp (eij)∑
k∈Nk∪i eik

(11)

4.2 Information Aggregation Module

Finally, we weight the aggregated neighbourhood information by the computed
attention score. Feynman path integral theory tells us that the probability ampli-
tude of a particle moving from A to B in continuous space is the integral of all
possible paths, which is defined as summation in discrete space. Inspired by
Feynman’s path integral theory and PanConv [32], we extend the rule of motion
of particles in space to the propagation of information in graph networks.

Similarly, then the propagation coefficient of the message from node i to its
kth order neighbour node j is the sum of the coefficients on each path between
them. Intuitively, we represent the attentional score p(i, j; k) of a single path
passing through multiple nodes as the product of the attentional scores of each
edge on this path. For example, assuming that a particular path of length 2 from
i to j goes through node h, then p (i, j; 2) = aihahj for that path. By this method
we can work out the attention fraction of any path between two nodes. Finally
the information passed on all paths (including the node’s own information) is
summed to obtain the final node representation. By correcting the path length
K, we can control the perceptual field of the model.

�h′
i =

K∑

k=1

∑

j∈Nk(i)∪i

∑
p(i, j; k)g′

i (12)

where
∑

p(i, j; k) denotes the sum of the attention scores of all paths of length k
between nodes i, j. In graph data, a node can often be considered as a neighbour
of a different order to the central node by following different paths, or even as a
neighbour of a higher order by repeatedly passing an intermediate node in the
path. Also inspired by the theoretical minimum action principle in physics, we
determine the order between nodes in terms of their shortest path lengths in the
real calculation process.

5 Experiments

In this section, we show test results of PaInGAT on graph datasets for node
classification and graph classification tasks, and demonstrate the advanced per-
formance of our approach by rigorously comparing it with previous graph atten-
tive methods and other no-attention methods. All experiments were done with
code written in pyTorch Geometric. Table 1 shows our dataset specifications for
the node classification task, and Table 2 shows our dataset specifications for the
graph classification task.

320 H. Wang et al.

Table 1. Specification of the dataset used in the node classification task

Cora Citeseer Pubmed ogbn-arxiv

Nodes 2708 3327 19717 169343

Edges 5429 4732 44338 2315598

Features 1433 3703 500 128

Classes 7 6 3 40

Table 2. Specification of the dataset used in the grpah classification task

PROTEINS MUTAG PTC

#Graphs 1113 188 344

#Nodes ∼39.1 ∼17.9 ∼25.6

#Edges ∼39.1 ∼39.6 ∼2.0

#Features 3 7 19

#Classes 2 2 2

5.1 Node Classification

We chose four commonly used graph datasets, Cora, Citeseer, Pumbed [34],
and ogbn-arxiv. We tested the node classification task for graph data on the
these datasets, comparing PaInGAT with GCN [28], GraphSAGE [19], Diff-Net
[39], TAGCN [14], Graph-Bert [40], AGNN [30], SuperGAT [27], GAT [37], and
GATv2 [4], which were previously graph neural network models. To be fair, we
used the same datasets divisions as in the GAT experiments. Also, to prevent
interference from other conditions, the same content was used for all parts of
our code except for the model.

Table 3 shows our final experimental results. It can be seen that our model
achieves the best experimental results compared with other models. In addition,
we tested the effect of different attention heads for model performance on the
ogbn arxiv dataset. The experimental results are shown in Table 4. It can be
seen that the number of attention heads has an effect on the performance of the
model.

5.2 Graph Classification

To further evaluate the effectiveness of our model, we implemented experiments
on several real-world graph classification problems. PROTEINS [13] dataset is a
collection of protein molecules that are classified as enzymes or non-enzymes.
MUTAG [25] and PTC [20] datasets are composed by small molecule com-
pounds. In the former dataset, the task is to identify mutagenic molecular com-
pounds for potentially commercial drugs, while in the latter the goal is to identify
chemical compounds based on their carcinogenicity in rodents. Three different
sizes of graph classification datasets were chosen to validate the performance of

Path Integration Enhanced Graph Attention Network 321

Table 3. Results of node classification tests on the Cora, Citeseer, Pumbed

Method Cora Citeseer Pubmed

GCN 81.5% ± 0.7% 70.3% ± 1.0% 79.0% ± 0.7%

GraphSAGE 82.1% ± 0.6% 71.9% ± 0.9% 78.0% ± 0.7%

Diff-Net 85.1% ± 0.4% 72.7% ± 0.6% 78.3% ± 0.6%

TAGCN 83.3% ± 0.7% 71.4% ± 0.5% 81.1% ± 0.5%

GRAPH-BERT 84.1% ± 0.9% 71.0% ± 0.5% 79.5% ± 0.4%

AGNN 81.0% ± 0.3% 69.8% ± 0.4% 78.0% ± 0.5%

SuperGAT 84.3% ± 0.6% 75.6% ± 0.8% 81.7% ± 0.5%

GAT 83.0% ± 0.4% 72.5% ± 0.5% 79.0% ± 0.4%

GATv2 83.5% ± 0.3% 72.6% ± 0.3% 79.3% ± 0.6%

PaInGAT(ours) 85.4% ± 0.7% 74.1% ± 0.3% 81.8% ± 0.6%

Table 4. The effect of different heads on classification accuracy

Method head number ogbn-arxiv

GAT 1 70.71 ± 0.19

8 70.73 ± 0.18

GATv2 1 71.01 ± 0.14

8 70.91 ± 0.20

PaInGAT(ours) 1 72.13 ± 0.41

8 72.33 ± 0.15

our model. We chosed no-attention method SPI-GCN [2], GCN [28], DGCNN
[41], GIN [15], PANConv [32] and attentional methods hGANet [16], GAT [37],
GATv2 [4] to compare with our model, the experiments results show that our
method outperforms other graph attention methods under the same experimen-
tal conditions (Table 5).

Table 5. The Result of graph classification on Dataset

Method PROTEINS MUTAG PTC

SPI-GCN 74.05% 85.30% 57.72%

GCN 76.23% 84.33% 63.45%

DGCNN 76.26% 85.83% 58.59%

GIN 72.32% 89.47% 64.86%

PANConv 74.60% 88.54% 65.92%

hGANet 77.64% 88.96% 64.76%

GAT 74.54% 89.63% 66.40%

GATv2 76.83% 89.94% 67.22%

PaInGAT(ours) 78.76% 91.26% 68.58%

322 H. Wang et al.

6 Conclusion

In this paper, we analyse previous work on GATs and find that they fail to com-
pute better attention scores and do not efficiently aggregate information about
the higher-order neighbours of nodes. In order to solve these problems, we add
a non-linearly transformed node embedding module to the process of computing
attention scores, and use the attention product on the path to compute atten-
tion scores among higher-order neighbours, allowing PaInGAT to implement the
approximator attention function.

It has been demonstrated experimentally that our model achieves good per-
formance on various datasets. However, we have to admit that PaInGAT has a
higher computational complexity compared to other models such as GAT, which
will be the next direction of our research.

Acknowledgment. This work is supported in part by the Project of Guangxi Science
and Technology with Grant Number GuiKeAB23026040, the Research Fund of Guangxi
Key Lab of Multi-source Information Mining & Security with Grant Number MIMS20-
04 and the Research Fund of Guangxi Key Lab of Multi-source Information Mining &
Security with Grant Number 20-A-01-02.

References

1. Abu-El-Haija, S., et al.: Mixhop: higher-order graph convolutional architectures via
sparsified neighborhood mixing. In: International Conference on Machine Learning,
pp. 21–29. PMLR (2019)

2. Atamna, A., Sokolovska, N., Crivello, J.C.: SPI-GCN: a simple permutation-
invariant graph convolutional network (2019)

3. Atwood, J., Towsley, D.: Diffusion-convolutional neural networks. In: Advances in
Neural Information Processing Systems, vol. 29 (2016)

4. Brody, S., Alon, U., Yahav, E.: How attentive are graph attention networks? arXiv
preprint arXiv:2105.14491 (2021)

5. Bruna, J., Zaremba, W., Szlam, A., LeCun, Y.: Spectral networks and locally
connected networks on graphs. arXiv preprint arXiv:1312.6203 (2013)

6. Busbridge, D., Sherburn, D., Cavallo, P., Hammerla, N.Y.: Relational graph atten-
tion networks. arXiv preprint arXiv:1904.05811 (2019)

7. Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.: End-
to-end object detection with transformers. In: Vedaldi, A., Bischof, H., Brox, T.,
Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12346, pp. 213–229. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-58452-8 13

8. Chen, J., Ma, T., Xiao, C.: FastGCN: fast learning with graph convolutional net-
works via importance sampling. arXiv preprint arXiv:1801.10247 (2018)

9. Chorowski, J., Bahdanau, D., Cho, K., Bengio, Y.: End-to-end continuous speech
recognition using attention-based recurrent NN: First results. arXiv preprint
arXiv:1412.1602 (2014)

10. Dai, H., Kozareva, Z., Dai, B., Smola, A., Song, L.: Learning steady-states of iter-
ative algorithms over graphs. In: International Conference on Machine Learning,
pp. 1106–1114. PMLR (2018)

http://arxiv.org/abs/2105.14491
http://arxiv.org/abs/1312.6203
http://arxiv.org/abs/1904.05811
https://doi.org/10.1007/978-3-030-58452-8_13
http://arxiv.org/abs/1801.10247
http://arxiv.org/abs/1412.1602

Path Integration Enhanced Graph Attention Network 323

11. Defferrard, M., Bresson, X., Vandergheynst, P.: Convolutional neural networks on
graphs with fast localized spectral filtering. In: Advances in Neural Information
Processing Systems, vol. 29 (2016)

12. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: Bert: pre-training of deep bidirec-
tional transformers for language understanding. arXiv preprint arXiv:1810.04805
(2018)

13. Dobson, P.D., Doig, A.J.: Distinguishing enzyme structures from non-enzymes
without alignments. J. Mol. Biol. 330(4), 771–783 (2003)

14. Du, J., Zhang, S., Wu, G., Moura, J.M., Kar, S.: Topology adaptive graph convo-
lutional networks. arXiv preprint arXiv:1710.10370 (2017)

15. Fey, M., Lenssen, J.E.: Fast graph representation learning with pytorch geometric.
arXiv preprint arXiv:1903.02428 (2019)

16. Gao, H., Ji, S.: Graph representation learning via hard and channel-wise attention
networks. In: Proceedings of the 25th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, pp. 741–749 (2019)

17. Gasteiger, J., Weißenberger, S., Günnemann, S.: Diffusion improves graph learning.
In: Advances in Neural Information Processing Systems, vol. 32 (2019)

18. Gilmer, J., Schoenholz, S.S., Riley, P.F., Vinyals, O., Dahl, G.E.: Neural message
passing for quantum chemistry. In: International Conference on Machine Learning,
pp. 1263–1272. PMLR (2017)

19. Hamilton, W., Ying, Z., Leskovec, J.: Inductive representation learning on large
graphs. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

20. Helma, C., King, R.D., Kramer, S., Srinivasan, A.: The predictive toxicology chal-
lenge 2000–2001. Bioinformatics 17(1), 107–108 (2001)

21. Henaff, M., Bruna, J., LeCun, Y.: Deep convolutional networks on graph-structured
data. arXiv preprint arXiv:1506.05163 (2015)

22. Hu, D.: An introductory survey on attention mechanisms in NLP problems. In:
Bi, Y., Bhatia, R., Kapoor, S. (eds.) IntelliSys 2019. AISC, vol. 1038, pp. 432–448.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-29513-4 31

23. Hu, R., et al.: Graph self-representation method for unsupervised feature selection.
Neurocomputing 220, 130–137 (2017)

24. Hu, Z., Dong, Y., Wang, K., Chang, K.W., Sun, Y.: GPT-GNN: generative pre-
training of graph neural networks. In: Proceedings of the 26th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining, pp. 1857–1867
(2020)

25. Kazius, J., McGuire, R., Bursi, R.: Derivation and validation of toxicophores for
mutagenicity prediction. J. Med. Chem. 48(1), 312–320 (2005)

26. Kearnes, S., McCloskey, K., Berndl, M., Pande, V., Riley, P.: Molecular graph
convolutions: moving beyond fingerprints. J. Comput. Aided Mol. Des. 30(8), 595–
608 (2016)

27. Kim, D., Oh, A.: How to find your friendly neighborhood: graph attention design
with self-supervision. arXiv preprint arXiv:2204.04879 (2022)

28. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional
networks. arXiv preprint arXiv:1609.02907 (2016)

29. Kipf, T.N., Welling, M.: Variational graph auto-encoders. arXiv preprint
arXiv:1611.07308 (2016)

30. Li, R., Wang, S., Zhu, F., Huang, J.: Adaptive graph convolutional neural networks.
In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32 (2018)

31. Li, Y., Yu, R., Shahabi, C., Liu, Y.: Diffusion convolutional recurrent neural net-
work: data-driven traffic forecasting. arXiv preprint arXiv:1707.01926 (2017)

http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1710.10370
http://arxiv.org/abs/1903.02428
http://arxiv.org/abs/1506.05163
https://doi.org/10.1007/978-3-030-29513-4_31
http://arxiv.org/abs/2204.04879
http://arxiv.org/abs/1609.02907
http://arxiv.org/abs/1611.07308
http://arxiv.org/abs/1707.01926

324 H. Wang et al.

32. Ma, Z., Xuan, J., Wang, Y.G., Li, M., Liò, P.: Path integral based convolution
and pooling for graph neural networks. Adv. Neural. Inf. Process. Syst. 33, 16421–
16433 (2020)

33. Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The graph
neural network model. IEEE Trans. Neural Networks 20(1), 61–80 (2008)

34. Sen, P., Namata, G., Bilgic, M., Getoor, L., Galligher, B., Eliassi-Rad, T.: Collec-
tive classification in network data. AI Mag. 29(3), 93–93 (2008)

35. Thekumparampil, K.K., Wang, C., Oh, S., Li, L.J.: Attention-based graph neural
network for semi-supervised learning. arXiv preprint arXiv:1803.03735 (2018)

36. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information
Processing Systems, vol. 30 (2017)

37. Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., Bengio, Y.: Graph
attention networks. arXiv preprint arXiv:1710.10903 (2017)

38. Wu, Z., Pan, S., Chen, F., Long, G., Zhang, C., Philip, S.Y.: A comprehensive
survey on graph neural networks. IEEE Trans. Neural Networks Learn. Syst. 32(1),
4–24 (2020)

39. Zhang, J.: Get rid of suspended animation problem: deep diffusive neural network
on graph semi-supervised classification. arXiv preprint arXiv:2001.07922 (2020)

40. Zhang, J., Zhang, H., Xia, C., Sun, L.: Graph-Bert: only attention is needed for
learning graph representations. arXiv preprint arXiv:2001.05140 (2020)

41. Zhang, M., Cui, Z., Neumann, M., Chen, Y.: An end-to-end deep learning architec-
ture for graph classification. In: Proceedings of the AAAI Conference on Artificial
Intelligence, vol. vol. 32 (2018)

42. Zhang, X., Liu, H., Li, Q., Wu, X.M.: Attributed graph clustering via adaptive
graph convolution. arXiv preprint arXiv:1906.01210 (2019)

43. Zheng, W., Zhu, X., Zhu, Y., Hu, R., Lei, C.: Dynamic graph learning for spectral
feature selection. Multimedia Tools Appl. 77(22), 29739–29755 (2018)

44. Zhou, P., Yang, W., Chen, W., Wang, Y., Jia, J.: Modality attention for end-to-
end audio-visual speech recognition. In: ICASSP 2019–2019 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 6565–6569.
IEEE (2019)

45. Zhu, X., Zhu, Y., Zhang, S., Hu, R., He, W.: Adaptive hypergraph learning for
unsupervised feature selection. In: IJCAI, pp. 3581–3587 (2017)

46. Zhuang, C., Ma, Q.: Dual graph convolutional networks for graph-based semi-
supervised classification. In: Proceedings of the 2018 World Wide Web Conference,
pp. 499–508 (2018)

http://arxiv.org/abs/1803.03735
http://arxiv.org/abs/1710.10903
http://arxiv.org/abs/2001.07922
http://arxiv.org/abs/2001.05140
http://arxiv.org/abs/1906.01210

	Path Integration Enhanced Graph Attention Network
	1 Introduction
	2 Related Work
	3 Preliminaries
	4 Proposed Method
	4.1 Attention Module
	4.2 Information Aggregation Module

	5 Experiments
	5.1 Node Classification
	5.2 Graph Classification

	6 Conclusion
	References

