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Abstract. Online gesture recognition is a challenging task in prac-
tical application scenarios since the gesture is not always directly in
front of the camera. In order to solve the challenges caused by mul-
tiple viewpoints of skeleton data, in this paper, we proposed a novel
view-invariant method for online skeleton gesture recognition. The whole
skeleton sequence data as a point set in our method and a PCA-based
view-invariant data preprocessing algorithm is proposed and applied in
this paper. We can transform similar skeleton data to relatively stable
viewpoints by applying the PCA algorithm according to the similarity
of distribution features of the point set, which can ensures the view-
point stability of our gesture recognition model. We conduct extensive
experiments on the NTU RGB+D and Northwestern-UCLA benchmark
datasets which contain multiple viewpoints and the results have demon-
strated the effectiveness of the method proposed in this paper.
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1 Introduction

The view-invariant gesture recognition algorithm has a wide range of applica-
tions. When applying the gesture recognition model to real scenarios, the person
doing the gesture action often does not happen to be standing directly in front
of the camera. For example, in a robot scenario, the robot may need to respond
to a user’s waving gesture, and the user doing the waving gesture may not nec-
essarily be directly in front of the robot, although he or she is within the robot’s
view. Another example is that when a self-driving car needs to detect the traffic
police action, the location of the traffic police may not be right in front of the
car’s camera either.

Due to the change of viewpoint, the estimated skeleton coordinates from
different viewpoints sometimes differ greatly, which seriously affects the recog-
nition performance of the action recognition model. In addition, the movements
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from different viewpoints are affected by self-occlusion, which causes the esti-
mated skeleton to be disturbed by different degrees of noise. Therefore, gesture
recognition with a constant viewpoint is a challenging problem.

The problem of view-invariance can be hardly solved by data enhancement
due to the diversity of viewpoints. Some researchers try to weakens the effect of
viewpoint variation on action representation by designing view-invariant features
[8,15,25], but this approach can only handle small magnitude viewpoint changes.
Other researcher split the skeleton into multiple parts and deal with viewpoint
changes by modeling the geometric relationships and cannot really address the
viewpoint change problem [23,26]. There is also literature on building new coor-
dinate systems from the first frame or the skeleton of the previous frames [14,24],
however this approach is highly sensitive to the onset motion of the gesture. Deep
learning has achieved great success in many fields in recent years, and more and
more researchers seek deep learning solutions. One solution is to use feature
migration to seek a common feature space from data with different perspective
[7], and other solution is to learn perspective-invariant representation from data
[18]. However, the biggest problem with the learning-based approach is that the
dataset used to train the model contains only a limited number of perspectives.

Unlike these approaches mentioned above, the basic idea of our method is
that, the same action, although it may have various intra-class differences, is
still composed of many similar motion states from a global perspective. If the
whole motion sequence is treated as a point set, then these point sets tend to
have similar shape characteristics. The difference in veiwpoint is reflected in the
point set as a different in rotation direction. Therefore, if a way can be found
to rotate this point set to a stable orientation, then this orientation can be
considered as the standard viewpoint of this skeleton sequence. In this way the
gesture recognition model can obtain an input source with a stable viewpoint.
Moreover, this method only needs to be added to the preprocessing process of
the data and can be applied directly to almost any existing gesture recognition
method.

Based on the above ideas, we propose a view-invariant algorithm based on
PCA. Principal Components Analysis(PCA) can compute a set of basis vectors
from the point set that reflect the characteristics of the data distribution. In this
paper, this set of basis vectors is used to transform the point set to a new basis
coordinate space. Since this set of basis vectors is determined by the distribution
characteristics of the data, data with similar distribution characteristics also have
similar distribution characteristics in the new base coordinate space.

Our contribution is as follows:

1. For the multi-view problem of skeleton data, we propose a novel solution
by applying the PCA algorithm to rotate similar skeleton sequences to rela-
tively stable viewpoints based on the similarity of point set distribution, thus
achieving view-invariant gesture recognition based on skeleton;

2. we demonstrate the effectiveness of the algorithm in several experiments on
the multi-view datasets NTU RGB-D and Northwestern-UCLA, which con-
tain multiple viewpoints for action recognition.
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2 Related Work

Since the coordinates of the skeleton nodes obtained by the skeleton estimation
algorithm vary greatly from viewpoint to viewpoint, and the differences in motion
occlusion also cause the estimated skeleton to be disturbed by different degrees
of noise. The viewpoint-invariant gesture recognition algorithm investigates the
method that gestures taken from different angles from the training data can also
be classified accurately.

Xia et al. [24] proposed method is to establish a spherical coordinate system
in a specific direction on the skeleton. Specifically, they chose the hip center joint
of the human skeleton as the midpoint, defined the horizontal reference vector
as a vector projection from the left hip center joint point to the right hip center
joint point onto the horizontal plane (parallel to the ground), and the zenith
reference vector was defined as a vector perpendicular to the ground plane. Then
they discretized the 3-dimensional space into n small intervals and discretized the
joint point coordinates into these small intervals. Finally, they do probabilistic
voting on these discretized coordinates to increase the stability of the features,
use Linear Discriminant Analysis (LDA) to extract more discriminative features,
k-Means clustering into dictionaries, and finally use Discrete Hidden Markov
Model (DHMM) to do the classification. Zhang Yi et al [30] proposed to map
the gesture trajectory features to be represented as global invariants based on
the Centroid Distance Function (CDF). The center-of-mass distance function is
the distance from each point on the trajectory point to the centroid, and the
authors in the paper take the center of the hand as the centroid. Pei Xiaomin
et al. [16] added the angle between the trajectory point and the centroid on
top of this. Ghorbel et al. [6] proposed to independently fuse two multi-view
invariant methods: the Ghorbel et al. [5] and Vemulapalli et al. [21]’s approach
to perspective invariant classification. Ji et al [7] proposed using an attention
mechanism to focus on the most critical joint points in the skeleton of multiple
views and the relationship between them. Li et al. [14] create a new coordinate
system from the first few frames of the camera view of the skeleton, and then
convert the skeleton sequence to an orthographic view on this coordinate system,
so that the skeleton has a stable view.

3 Method

It is known that the PCA algorithm can calculate from the data a set of basis
vectors that reflect the characteristics of the data distribution, and the set of
basis vectors is the eigenvectors of the covariance matrix of the data.

3.1 Calculate the Eigenmatrix

For a sequence of skeletons it can be considered as a point set P =
[p1, p2, . . . , pN ] ∈ R

3×N . Firstly, we center the point set P , i.e., for any point
pi ∈ P
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p̂i = pi − 1
n

n∑

i=1

pi (1)

thus forming the new point set P̄ = [p̂1, p̂2, . . . , p̂n] ∈ R
3×n. Then we eignde-

compose the covariance matrix of the point set P̄ , i.e.

P̄ P̄T = RΛRT (2)

Here, the matrix R = [r1, r2, r3] ∈ R
3×3 is the eigenmatrix and its three eigenvec-

tors(also called the principal axes), and the diagonal matrix Λ = diag(λ1, λ2, λ3)
are three eigenvalues (also called the principal values) corresponding to the eigen-
vectors.

The point set Pcan with rotational invariance can be obtained by aligning the
principal axes with the world coordinate, that is, by computing Pcan = RTP .

Theorem 1. The point set Pcan is rotation invariant.

Proof. Assume that Q ∈ SO(3) is an arbitrary rotation matrix, then QP is the
set of points after rotation of the point set P . The centerized point set QP̄ can
be obtained from Eq. (1), then the covariance matrix of this point set can be
convert to

QP̄ (QP̄ )T = QP̄ P̄TQT

= Q(RΛRT )QT

= (QR)Λ(QR)T
(3)

At this point, QR becomes the new principal axes. Therefore, after rotating the
point set QP and aligning it with new main axis

(QP )can = (QR)TQP

= RTQTQP

= RTP = Pcan

(4)

This means that rotating the matrix Q has no effect.

3.2 Ambiguity of the Feature Matrix

However, if we use the eigenmatrix as a transformation matrix directly, we will
suffer from two kinds of ambiguities: sign ambiguity and order ambiguity. The
sign ambiguity refers to the fact that, for a given eigenvector ri, it can take
either +ri or −ri under the condition that the eigendecompose is satisfied. By
assigning the positive or negative sign to eigenvectors, then the transformed
skeleton sequence will yield 8 possible perspectives. The order ambiguity refers to
the problem of the order of the eigenvectors, which is not specified to be arranged
in the order of the eigenvalues. In this case, 6 possible views will be generated
when computing the standard view. That is, when changing the positive and
negative signs of the eigenvectors or the order of the eigenvectors, it still produces
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Fig. 1. Rotation and mirroring comparison of the eigenmatrix

a point set with many different rotations. In fact, a total of 48 views are possible
after the eigenmatrix transformation.

As Li et al [12] pointed out, among the 8 sign ambiguities, some cases are
in fact not rational transformations. Specifically, if the combination of some
eigenvector R = [r1, r2, r3] and its determinant is 1, then only four of the eight
ambiguities with a determinant of 1 are true rotation, and the other determi-
nant values of −1 are a combination of rotation and mirror transformation(see
Figure 1). Table 1 list all of sign ambiguities.

Table 1. The sign ambiguities of eigenmatrix

Eigenmatrix Determinant Rotation

[+r1,+r2,+r3] +1 Yes
[−r1,+r2,+r3] −1 No
[+r1,−r2,+r3] −1 No
[+r1,+r2,−r3] −1 No
[−r1,−r2,+r3] +1 Yes
[+r1,−r2,−r3] +1 Yes
[−r1,+r2,−r3] +1 Yes
[−r1,−r2,−r3] −1 No

If mirroring is included, then for some gestures in opposite directions, such
as waving to the left and waving to the right, these actions will not be distin-
guishable. After removing the sign ambiguity with the mirror transformation,
the PCA-based perspective algorithm produces

4(sign ambiguity) × 6(order ambiguity) = 24. (5)
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Fig. 2. The 24 ambiguities of the eigenmatrix

The ambiguities are listed in Fig. 2, which contains these 24 transformations.

3.3 Flow of Algorithm

To solve the ambiguity problem arising from PCA transformation, the solution
proposed in this paper is to add as many ambiguous cases as possible to the
training data during training, while only the order of the feature vectors is
processed or not at all during testing. Although such an approach is similar
to data augmentation of the viewpoints of the skeleton sequence, conventional
multi-viewpoint data augmentation methods often enable the model to learn
only a limited number of viewpoints, and in fact, it is impossible to learn all of
them. In contrast, the preprocessing algorithm proposed in this paper enables
the model to learn only a limited number of cases to be able to cover all viewpoint
cases. The specific process is shown in Algorithms 1 and 2.
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Data: Train model M , train set Dtrain ∈ R
B×3×T×N

Result: Models with perspective invariance M
for X ∈ Dtrain do

P ← Reshape(X, (3,−1)); /* P ∈ R
3×(T×N) */

P̄ ← P − Mean(P );
P̂ ← P̄ P̄T ;
L,Q ← Eign(P̂ ); /* L is eigenvalues, Q is eigenmatrix */
/* The function PcaAmbiguity returns the disambiguation of

the feature matrix on demand */
Rs ← PcaAmbiguity(L,Q);
for R ∈ Rs do

P ′ ← RTP ;
X ′ ← Reshape(P ′, (3, T,N));
Train(M,X ′);

end
end

Algorithm 1: Training process of PCA-based view-invariant algorithm

Data: Test model M , test set Dtest ∈ R
B×3×T×N

for X ∈ Dtest do
P ← Reshape(X, (−1, 3));
P̄ ← P − Mean(P );
P̂ ← P̄ P̄T ;
L,Q ← Eign(P̂ ); /* Optional: Sort the vectors in Q by the
size of L */
P ′ ← QTP ;
X ′ ← Reshape(P ′, (3, T,N));
Test(M,X ′);

end
Algorithm 2: Testing procedure of PCA-based view-invariant algorithm

3.4 Experiment and Analysis

In order to verify the effectiveness of the PCA-base view-invariant algorithm pro-
posed in this paper, this section applies the algorithm to two datasets with multi-
ple views, NTU RGB+D and Northwestern-UCLA for experiments. The dataset
Northwestern-UCLA is a relatively small action recognition dataset, while the
dataset NTU RGB+D is a large action recognition dataset. This section first
introduces these two multiview datasets, then presents implementation details
used in this section, and finally, the experimental results and analysis are pre-
sented.
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3.5 Dataset

NTU RGB+D. NTU RBG+D [17] is a large dataset designed from human
action recognition, containing a total of 56880 3D skeleton sequences. It contains
60 action categories, including “drinking”, “snacking”, “brushing teeth”, “combing
hair ”, “picking things up”, and so on. The sample actions are performed by a
total of 40 volunteers, and a maximum of 2 people in a sample is guaranteed.
Each action sample was simultaneously captured by 3 different views of the
Microsoft Kinect v2 camera. The different people and perspectives presented a
significant challenge in discriminating between intra- and inter-class differences.
NTU RGB+D is quite a challenging dataset considering the size of the dataset,
the effect of similar actions and the noise in the dataset. To experiment the
viewpoint invariant algorithm proposed in this paper, we use the recommended
cross-view (X-View) benchmark test for this dataset: training data from camera
views #2 and #3, and test data from camera view #1.

Northwestern-UCLA. The Northwestern-UCLA multi-view 3D event dataset
[23] is a multi-view multimodal dataset containing RGB, depth, and human
skeleton data captured by three Kinects simultaneously. The dataset contains
a total of 1494 video clips, covering 10 action categories, each performed by 10
different volunteers. The full list of actions and the corresponding sample sizes
are shown in Table 2. In this paper, we use the recommended evaluation of this
dataset: training data from the first two cameras and test data from the latter
one.

Table 2. Gesture information for Northwestern-UCLA

No. Gesture Amount

1 pick up with one hand 150
2 pick up with two 152
3 drop trash 141
4 walk around 173
5 sit down 148
6 stand up 149
7 donning 142
8 doffing 142
9 throw 145
10 carry 142

3.6 Implementation Details

The experimental gesture recognition model in this paper is DD-Net [27], and the
Stochastic Gradient Descent(SGD) algorithm is chosen as the optimizer during
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training, the base learning rate is set to 0.1, each experiment is trained for
100 rounds, and the warm up strategy is used in the first 5 rounds followed
by the ReduceLROnPlateau is used as the learning rate adjustment strategy to
reduce the learning rate from 10−1 to 10−5, and cross-entropy is used as the loss
function. To test the effectiveness of the perspective invariant algorithm, both
the training and test data are randomly rotated and scaled in this paper.

Because the dataset NTU RGB+D contains 2 skeletons per frame on some
action categories, i.e., it contains actions done by two people together, and DD-
Net does not consider this situation, a simple strategy is proposed here to fix this
problem. Suppose the input data size is B ×C ×T ×N ×M , where B represents
the size of a training batch, C represents the dimension of the skeleton sequence
(usually 3), T represents the duration of the skeleton sequence, N represents the
number of joint points of the skeleton, and M represents the number of people
contained in the frame. Then, before feeding into the model, this paper first
adjusts the input data to the shape of (B ×M)×C ×T ×N , which is equivalent
to expanding the batch size by a factor of M . Then the M in B×M is eliminated
using the mean function when the data enters the final fully connected layer
stage.

3.7 Experimental Results and Analysis

Different Data Preprocessing Methods. To test which of the two ambigu-
ities, signed ambiguity or order ambiguity, is more important for the accuracy
of the result, and to find a balance between improving the performance and
reducing the data expansion(for a dataset with large sample size). To find a
balance between improving performance and reducing data augmentation(for
a dataset with a large sample size, excessive data augmentation can seriously
increase training time), we first conduct several comparative experiments on
Northwestern-UCLA.

In this paper, we use the DD-Net (filters=32) model to conduct comparative
experiments. The way of experimentation is to design three levels of elimination
schemes for sign ambiguity and order ambiguity, which also affect the expansion
of the number of samples in the training set. For sign ambiguity, three expan-
sion options are designed: randomly assigning positive and negative signs to the
three eigenvectors, using all combinations of positive and negative signs for the
rotation cases, and using all combinations of positive and negative signs. For
order ambiguity, three expansion options are designed, namely, random order of
eigenvectors, following the order of eigenvalues from smallest to largest, and all
possible orders. In the test set, if the order ambiguity uses the ranking of eigen-
values, then the eigenvectors of the test set are treated similarly; otherwise, the
default computed eigenvectors are used (as the default computed eigenvectors
are in random order).

Specific expansion schemes and resulting expansion scale to the training
dataset are listed below:

1. Direct use of feature matrix (no expansion)
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2. Eigenvectors are sorted by eigenvalue only(no expansion)
3. Eigenvectors sorted by eigenvalue, positive and negative signs for all rotation

cases(expanded by a factor of 4)
4. Eigenvectors sorted by eigenvalue, positive and negative signs of all eigenvec-

tors(expanded by a factor of 8)
5. All sorting of feature vectors(expanded by a factor of 6)
6. All ordering of feature vectors, positive and negative signs of all rotation

cases(expanded by a factor of 24)
7. All ordering of feature vectors, positive and negative signs of all feature vec-

tors(expanded by a factor of 48)
8. Positive and negative signs for all rotation cases(expanded by a factor of 4)
9. Positive and negative signs of all eigenvectors(expanded by a factor of 8)

10. Control group, without any special treatment(no expansion)

Table 3. Results of different experiments on Northwestern-UCLA

No. Sign Ambiguity Order Ambiguity Result/%
Random Rotation All Random Eigenvalue All

1 � � 91.8
2 � � 91.6
3 � � 94.2
4 � � 92.9
5 � � 92.9
6 � � 92.9
7 � � 94.4
8 � � 94.2
9 � � 93.1
10 89.7

Finally, the experimental results obtained are shown in Table 3. From the
experimental results, the following conclusions can be drawn:

1. Overall, the results processed by the PCA-based view-invariant algo-
rithm(Exp 1-9) are generally better than the results without any process-
ing(Exp 10). Even the eigenmatrix generated directly using PCA (i.e., the
order and sign of the eigenvectors are variable, Exp 1) also improves the
accuracy much more than the control experiment(Exp 10). This comparison
demonstrates the effectiveness of our method.

2. In terms of the importance of elimination order ambiguity(Exp 2 and 5) v.s.
sign ambiguity(Exp 8 and 9), eliminating Sign ambiguity is more effective in
improving the model’s performance. Intuitively, order ambiguity changes the
overall orientation of the point set, which has a greater impact on the overall
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distribution of the point set than sign ambiguity, which is only rotation and
mirroring around the axes, thus affecting the performance improvement of
the classifier.

3. The results sorted by eigenvalue are essentially equivalent to those without
any treatment(Exp 1 and Exp 2). This is because even for the same actions,
the overall distribution of the point set is different due to intra-class differ-
ences in the actions, and the eigenmatrix sorted based on the magnitude of
the eigenvalues does not allow them to have similar orientations (e.g, so the
heads of the skeletons are all oriented on the z-axis)

4. The comparison between Exp 3 and Exp 4, as well as the comparison between
Exp 8 and Exp 9, verified the analysis done in sect. 3.2 of this paper, where
the mirror transformation of the skeleton leads to some direction-dependent
actions that are indistinguishable (eg, stand up actions and sit down actions),
i.e., the non-rotating eigenmatrix has a certain degree of negative impact on
performance.

5. However, when eliminating the sign ambiguity along with the order ambigu-
ity(Exp6 and Exp 7), the non-rotating eigenmatrix is much higher than the
rotating eigenmatrix. Considering that Exp 6 is already a larger expansion(24
times), Exp 7 is twice as large, Exp 7 likely has a larger amount of training
data resulting in a more generalized model. In fact, Exp 7 has both the most
expanded data and the best results of all the experiments.

Table 4. Results of different experiments on NTU RGB-D

No. Sign Ambiguity Order Ambiguity Result/%
Random Rotation All Random Eigenvalue All

1 � � 85.7
2 � � 86.0
3 � � 89.6
4 � � 90.0
5 � � 88.5
6 � � 88.5
7 � � 91.0
8 � � 89.3
9 � � 90.0
10 86.4

In order to test the generalizability of the above findings, the above experi-
ments were redone on the NTU RGB-D, and the results are shown in Table 4.
The main difference between this dataset and Northwestern-UCLA is in the sam-
ple data size, which is much higher than the latter. The performance impact of
data expansion cannot be ignored when expanding exponentially on a dataset
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with an already large sample size base. In general, the larger the sample size
of the dataset, the less likely the trained model is to be overfitted, resulting in
better model performance. In addition, the intra-class differences of each action
will be highlighted by the increased sample size.

ForNTURGB-D, the result ofExp10 is slightlybetter than the result of directly
using the PCA sign matrix(Exp 1) and eigenvalue ranking(Exp 2). We analyze that
this is due to the intra-class variation in this dataset. The same class of actions has
been transformed by the eigenmatrix due to the different distributions aggravating
the differences between them, which leads to performance degradation.

The conclusion that the elimination of sign ambiguity is more important than
the elimination of order ambiguity still holds for NTU RGB-D. However, the
eigenmatrix of rotation in the sign ambiguity is not higher than the eigenmatrix
of all symbols. We analyze that for this dataset, the data expansion have a
more important impact on the performance improvement, e.g, the accuracy of
experiments without data expansion is around 86% (Exp1, Exp 2, and Exp 10)
the accuracy of experiment with 4 times expansion is around 89%(Exp 3 and
Exp 8) accuracy of experiments with 8 times expansion is 90%(Exp 4 and Exp
9), while the accuracy of the experiment with a 48-fold expansion was 91%(Exp
7). There are some exceptions to the results for the 6-fold and 24-fold expansions,
both of which have an accuracy of 88.5%, which we estimate to be due to random
factors when using the model.

Combining the experimental result of both datasets, the implementation of the
sign ambiguity data expansion is more helpful to improve the model performance,
while the maximum expansion(48 times) gives the best results. If it is necessary to
find a balance between training time, we recommend using the 4-fold expansion of
Exp 3, i.e., sorting the eigenvectors by eigenvalues, with all rotated eigenvectors. In
addition, although the increase in the amount of training data has an impact on the
experimental results, the above comparison experiments can still fully demonstrate
the effectiveness of our PCA-based view-invariant algorithm.

Table 5. Results of comparison with other methods on the dataset NTU RGB-D

Methods X-View/%

Ind-RNN [13] 88.0
HCN [11] 91.1
ST-GCN [26] 88.3
AGC-LSTM [19] 95.0
DDGCN [9] 97.1
CA-GCN [29] 91.4
SGN [28] 94.5
Shift-GCN [3] 96.5
CTR-GCN [1] 96.8
DD-Net(filters=64) 89.6
DD-Net(filters=64, Exp 7) 91.2
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Table 6. Results of comparison with other methods on the dataset Northwestern-
UCLA

Methods X-View/%

Actionlet ensemble [22] 76.0
Lie Group [20] 74.2
HBRNN-L [4] 78.5
Ensemble TS-LSTM [10] 89.2
AGC-LSTM [19] 93.3
Shift-GCN [3] 94.6
DC-GCN+ADG [2] 95.3
CTR-GCN [1] 96.5
DD-Net(filters=64) 89.7
DD-Net(filters=64, Exp 7) 94.4

Comparison with Other Methods. Tables 5 and 6 show the results of this
paper’s gesture recognition method before and after using PCA-based view-
invariant algorithm, compared with other methods. On the large skeleton action
recognitiondataset,DD-Netdoesnotstandoutcomparedtoothermethods,because
it is designed to be lightweight and efficient without using complex feature learning
methods and deep neural networks, so the difference with the best method on the
relatively small datasetNorthwestern-UCLA is not as large as that on another large
dataset.However, after applying thePCA-based view-invariant algorithm, the ges-
ture recognition algorithm still has significant improvement.

4 Conclusions

In this paper, a PCA-based view-invariant algorithm is proposed. The method
treats the whole skeleton sequence as a point set, obtains the feature matrix
of the point set using the PCA algorithm, and then uses the feature matrix
as a transformation matrix to transform the skeleton sequence to a relatively
stable viewpoint. However, there are two kinds of ambiguities in the eigenma-
trix generated from PCA, namely sign ambiguity and order ambiguity. In order
to eliminate the effects of these two ambiguities, we propose to add all possi-
ble ambiguities to the training set to enhance the generalization ability of the
model. We design several sets of experiments on two multi-view action recog-
nition datasets to verify the effectiveness of this approach and analyze which
ambiguities have a more significant impact on the performance, so as to find a
balance between improving the performance and expanding the data. Finally, the
PCA-based view-invariant algorithm is applied to the proposed gesture recogni-
tion model and compared with other methods. Although the gesture recognition
performance of this paper still differs from the best method after applying the
algorithm, there is still a significant improvement compared with that before
applying the algorithm.
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