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Abstract. The rapid proliferation of video applications in recent years
has triggered an unprecedented surge in Internet video traffic, which
in turn has presented substantial challenges for effective network man-
agement. However, existing methods for extracting features from video
traffic primarily focus on conventional traffic attributes, resulting in sub-
optimal identification accuracy. Furthermore, the challenge of handling
high-dimensional data is a common hurdle in video traffic identification,
necessitating a robust approach to select the most pertinent features cru-
cial for accurate identification. Despite the abundance of studies utiliz-
ing feature selection to enhance identification performance, there exists
a notable lack of research that addresses the quantification of feature
distributions with small or no overlap. This study proposes, firstly, the
extraction of features relevant to videos, thereby assembling an expan-
sive feature repertoire. Secondly, in the pursuit of forming an effective
subset of features, the current research introduces the adaptive distri-
bution distance-based feature selection (ADDFS) methodology. Using
the Wasserstein distance metric to quantify the differences between fea-
ture distributions. To gauge the efficacy of this proposal, a dataset com-
prising video traffic from various platforms within a campus network
environment was collected, and a series of experiments were conducted
using these datasets. The experimental results indicate that the proposed
method can achieve highly accurate identification performance for video
traffic.

Keywords: Feature selection · Feature extraction · Video traffic
identification · Network management

1 Introduction

At present, most Internet users watch videos daily, resulting in a rapid increase in
video traffic. According to Ericsson’s mobility report, video traffic is anticipated
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to comprise 80% of the complete mobile data traffic by the year 2028. Therefore,
effective identification and management of video traffic, particularly game video
traffic, have become an important research topic for network management.

Some researchers have explored video traffic identification over the past
decade. In the early research of computer vision, video content identification
often uses image shapes, textures and other features to complete [1]. However,
this method is not applicable from the network traffic perspective. The rapid
development of network traffic identification is helpful in solving this problem.
Most existing researchers have extracted traffic features related to video trans-
mission, such as application data unit, burst, etc., and used them thereafter to
complete the prediction of video QoS and QoE, identification of video applica-
tion type. Unfortunately, they did not focus on identifying video scene traffic.
Additionally, cloud game, as an emerging game mode, is essentially a way of
video flow transmission, which is potentially harmful to teenagers. As far as we
know, there is no research reported about identifying cloud game traffic. Some
researchers have also begun to focus on improving the QoE and QoS of cloud
game traffic, but they have not approached it from the perspective of network
traffic. Thus, to extract effective features for video identification becomes an
urgent concern.

A key issue is that current research studies mainly focus on traditional fea-
tures, these features can not achieve the ideal video identification effect, and
further research on video scene traffic feature extraction is needed. Besides,
another key problem that should be further discussed is that the quality of
extracted or selected features can significantly and directly impact the perfor-
mance of identification. Irrelevant or redundant features can cause unnecessary
cost and time overhead, even negative impact for the model identification. Thus,
a high-performance feature selection method is crucial for traffic recognition.

In response to the challenges outlined above, we present the following con-
tributions.

– A novel method for adaptive distribution distance-based feature selection
(ADDFS) is introduced.

– A new feature extraction method based on video traffic peak point is pro-
posed, which can be used as an effective supplement of traditional packet and
flow level features.

– Different kinds of video traffic data are collected, including cloud game video
traffic and video scene traffic.

Roadmap: Sect. 2 introduces the related research. Sect. 3 reviews the video
traffic identification method. Sect. 4 presents the experimental results. Lastly,
this paper is concluded in Sect. 5.

2 Related Research

2.1 Video Traffic Identification

Three kinds of traffic identification methods have been used for video traffic iden-
tification: port-based, deep packet inspection, and machine learning algorithms.
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The first two methods have become ineffective owing to the dynamic port and
encryption techniques, making machine learning-based method a widely used
technology. In 2012, Ameigeiras et al. [2] analyzed YouTube’s video traffic gen-
eration pattern to predict the quality of video watching experience. Given that
early YouTube videos were based on Flash, which is no longer used, this method
is no longer effective for current video traffic. Reed et al. [3] proposed a new bit
per peak feature extraction method, and used these features for classifying video
stream titles.

At present, only a few researches focus on cloud gaming video traffic iden-
tification, and the existing study has primarily concentrated on the analysis
and modeling of cloud gaming traffic and improving the cloud gaming experi-
ence. Suznjevic et al. [4] collected cloud gaming video samples to calculate video
indicators from the time and space dimensions. Thereafter, they analyzed the
relationship among game types, cloud gaming video traffic features, and video
indicators. In 2015, Amiri et al. [5] proposed a paradigm for SDN controller to
reduce cloud gaming delay. These studies rarely focus on identifying cloud game
video traffic and video scene traffic, and this paper will focus on it.

2.2 Feature Selection

Feature selection is vital for traffic identification because all types of features are
extracted from raw traffic data. Many of these features are redundant or with no
contribution for identification. Therefore, researchers have attempted to develop
effective methods to evaluate and select traffic features in recent years. Zhang et
al. [6] and Mousselly et al. [7] used KL and JS divergence respectively to analyze
the correlation and redundancy of different class labels, which can effectively
deal with the fluctuation of feature samples. Nevertheless, their research did not
address the issue of small overlap or no overlap between feature distributions.

Recently, certain researchers have started employing feature selection tech-
niques for video traffic identification. Dong et al. [8] combined ReliefF and PSO
to solve the excessive dimensionality problem in network traffic classification. Wu
et al. [9] used a linear consistency-constrained method to select features for mul-
timedia traffic classification and completed instance purification in the selection
process. As far as we know, no study using has been conducted on distribution
distance to measure the similarity between video traffic feature distributions.
Therefore, this paper overcomes this drawback, by using Wasserstein distance
to adaptively measure the similarity between feature distributions, and build an
effective feature selection algorithm thereafter.

3 Methodology

This section describes the framework for video traffic identification, as shown in
Fig. 1.
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Fig. 1. The framework of the proposed video traffic identification method.

3.1 Data Collection

Only a few public video traffic data sets are available for video traffic identifica-
tion research. Thus, a cloud gaming video traffic data set (CG-UJN-2022) and
video scene traffic data set (VS-UJN-2022) in a controlled campus environment
was collected.

Video Scene Traffic Data Collection. The collected video scene traffic data
can be divided into two categories: static and action scene videos. The action
scene video mainly consists of fragments from science fiction action films, such
as Pirates, Transformers, The Avengers, etc. However, static scene videos have
a simple scene, such as light music video, natural views, and class scenes. We
collected both types of data from YouTube and Bilibili.

Videos from the mentioned categories will be initially downloaded to the
client computer, followed by using FFmpeg to segment the original video into
clips with a consistent duration of 120 s. We regard a 120 s video segment as a
scene because such a segment can provide sufficient network features for coarse-
grained video scene identification.

Secondly, with the Selenium library and Xpath Helper, fixed video clips are
automatically uploaded to YouTube and Bilibili. With t-shark, we achieved auto-
matic on-demand delivery of targeted videos and automatic collection of video
traffic while playing the videos. During video playback on the client’s computer,
all other network applications are shut down to prevent the generation of extra-
neous traffic.

Cloud
Gaming Video Traffic Data Collection. YOWA cloud gaming, Tencent
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Start, MiguPlay, and Tianyi cloud gaming are the four cloud gaming platforms
we visited. To compare with other data features, wireshark was set to automat-
ically save collected data as a.pcap file every 120 s. Similar to video scene traffic
data collection, other applications were closed while collecting target traffic. Seg-
ments of the background traffic were also captured, primarily encompassing the
most prevalent application categories. Detailed information about the collected
traffic data is presented in Tables 1 and 2.

3.2 Data Preprocessing

First, We group the collected traffic data into flows based on five tuple infor-
mation: {src IP, src port, dst IP, dst port, protocol (TCP/UDP)}. Since that
YOWA, MiguPlay, and TianyiPlay use UDP as the transport layer protocol, we
focus on UDP packets when analyzing the three platforms and TCP packets for
the rest of the traffic.

Second, elephant flows are selected from the mice flows. Elephant flows is an
important focus in this study, as video traffic is mostly elephant flows. The num-
ber of non zero payloads is used to eliminate mice flow. According to experience,
those flows with under 500 packets are considered mice flows to be eliminated.

Lastly, the SNI extension field within the Client Hello packet serves the pur-
pose of identifying whether the captured flow corresponds to the intended target
flow.

Table 1. The details of video scene traffic data

Data Set Platform Flows Bytes

VS-UJN-2022 YouTube Action 4,994,062,797
Static 3,294,957,584

Bilibili Action 5,956,426,782
Static 7,672,791,660

CG-UJN-2022 START 83 3,401,167,754
YOWA 58 2,116,354,048
MiguPlay 61 2,548,042,936
TianyiPlay 63 3,132,444,936

3.3 Feature Extraction

A total of 89 statistical features are extracted from preprocessed data in this
study. We analyze the packet sequence features of each flow from three directions,
namely upstream, downstream, and all packets. The traditional traffic features
mainly include packet inter-arrival time (IAT), payload size, TCP window size,
TCP flag, packet number, packet header. The detail are shown in Table 3.
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Table 2. The details of background traffic data

Flows Bytes

Online Meeting 5 21,501,967
Chatting 56 134,386,569
PC Video 42 704,530,546
PC Live Steaming 40 397,123,864
Web Browsing 57 73,440,492
Online Shopping 42 142,277,293
File Download 40 57,409,424

Additionally, different video styles will lead to different traffic behavior pat-
terns. Therefore, the maximum data transmission amount over a period of time
will be defined as the peak point in this study.

Payload peak point (PPP). Assume there are d packets in a flow and the
packets is Pkt1,Pkt2, ...,Pktd. Payload size of the sth packet is presented as
pays. If pays � pays−1 and pays � pays+1 (1 < s ≤ d−1), then payload reaches
a peak in a certain period of time, which is defined as the PPP. A set of counters
cl
1, c

l
2, ..., c

l
θ was used to count the number of PPP every α s in the first β s of

the lth flow, then the θ is calculated as follows:

θ =
β

α
. (1)

Then, the count matrix CT can be obtained by traversing the entire flow
sequence.

CT =

⎡
⎢⎢⎢⎣

c1
1 c1

2 · · · c1
θ

c2
1 c2

2 · · · c2
θ

...
...

. . .
...

ct
1 ct

2 · · · ct
θ

⎤
⎥⎥⎥⎦ (2)

Based on CT , the std and mean of the PPP of the tth flow is obtained as
follows:

Mt =
1
θ

θ∑
a=1

ct
a, (3)

Stdt =

√
1
θ
[(ct

1 − Mt)2 + (ct
2 − Mt)2 + ... + (ct

θ − Mt)2]. (4)

In a similar vein, the standard deviation and mean of PPP for all flows can
be derived. Additionally, we extracted the maximum, minimum, and aggregate
count of PPPs in three orientations. Nevertheless, in cases where certain scene
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videos are being consistently transmitted, alterations in packet payload remain
insignificant. Hence, we introduce the concept of byte rate peak point (BRPP).

BRPP. Assuming that the summation of packet payloads (SPP) during period
T is calculated in the following manner:

SPP =
H∑

b=1

payb, (5)

where H is the total number of packets within T s, and payb is the size of the
bth packet payload. Thereafter, the definition of byte rate (BR) in T seconds is
as follows:

BR =
SPP

T
. (6)

Similarly, If BR satisfies the criteria of being a peak point, it is labeled as
BRPP. In this study, T is configured to be 1 s.

Table 3. The details of the extracted traditional features

Feature Name Description

UIAT_* Mean, Min, Max, Std of upstream IAT interval
DIAT_* Mean, Min, Max, Std of downstream IAT interval
IAT_* Mean, Min, Max, Std of all packets IAT interval
UWindow_* Sum, Mean, Min, Max, std of upstream TCP window sizes
DWindow_* Sum, Mean, Min, Max, std of downstream TCP window sizes
Window_* Sum, Mean, Min, Max, std of all packets TCP window sizes
*_pnum Number of packets for three directions
*_pnum_s The rate of packet number for three directions
UDpnum_s packets downstream to/packets upstream
*_cnt TCP flag count
UDPSH,UDURG_cnt Upstream and downstream PSH and URG count
Uhdr,Dhdr,hdr Sum of packet header length for three directions
*_hdrR the packet header length sum/the packet payload sum
Upay_* Mean, Min, Max, Std of upstream payload
Dpay_* Mean, Min, Max, Std of downstream payload
pay_* Mean, Min, Max, Std of all packets payload

BRPP with sliding windows (BRPPSW). To catch continuous video infor-
mation more accurately, we design sliding windows to extract the size of peak
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points as feature vectors based on BRPP. Length of the sliding window is L
and offset factor is denoted by Z. In this study, L and Z are set to 3 and 0.5,
respectively. For a packet sequence (Pkt1,Pkt2, ...,Pktd), we calculate the sum
of packet size under in time window L and use the offset factor thereafter to
move the window to calculate the total packet size in turn. The sum of packet
size in the zth window can be calculated as follows:

rz =
L∑

pt=0

pktLenpt, (7)

where pt is the arrival time of the packet and pktLenpt is the packet size at
ptth s. The processed sequence R= (r1,r2, ... ,rn) is obtained, where n is the
number of sliding windows. If the value in the sequence meets the definition of
the preceding peak point, then the point is defined as BRPPSW. Therefore, we
will obtain the sequence R_F=(r1,r2, ... ,ru) of BRPPSW, which is a subset of
R.

We calculate the mean, std, maximum and minimum values of BRPPSW
from three directions. The first, second, and third quartile of BRPPSW are also
extracted as features.

3.4 Feature Selection

By the previous step, a comprehensive feature set is obtained. However, note
that we do not consider whether these features are redundant or useless at the
extracting process. In order to choose a feature subset that is both effective and
concise, we introduce an approach called Adaptive Distribution Distance-Based
Feature Selection (ADDFS).

Assuming a dataset X = {X1,X2, ...,Xn}, where Xi (1� i � n) represents
the ith sample data, and m denotes the total number of samples. Moreover, xij

denotes the value of the jth feature for the ith sample.
First,we employ Min-Max scaling to standardize all feature values across the

dataset into the [0,1] interval. The formula for Min-Max scaling is as delineated
below:

Xij =
Xij − min(X.j)

max(X.j) − min(X.j)
, (8)

here, max(X.j) represents the maximum value of the jth feature, while min(X.j)
corresponds to the minimum value of the jth feature.

Second, the supervised ChiMerge algorithm [10] is used to divide each feature
into multiple consecutive intervals. For each feature, we first sort all values in
ascending order. Thereafter, we group the data with the same feature value
into the same interval, and calculate the chi-square value of the interval. Each
adjacent chi-square value is calculated and the smallest pair of intervals are
merged. This step is repeated until the set maximum binning interval or chi-
square stopping threshold is reached. Lastly, the chi-square binning interval of
each feature is obtained. According to empirical values, the maximum binning
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interval and stop confidence threshold in this paper are set to 15 and 0.95,
respectively. The chi-square calculation formula is as follows:

χ2 =
G∑

γ=1

C∑
ψ=1

(Aγψ − Eγψ)2

Eγψ
, (9)

Eγψ =
Nγ

N
× Cψ, (10)

where G stands for the number of intervals, and C represents the number of
classes, Aγψ represents the quantity of samples from the ψth class within the
γth interval, Eγψ is the expected frequency of Aγψ, and N , Nγ , and Cψ denotes
the overall sample count, the sample count within the γth interval, and the
sample count within the ψth class, respectively.

For each feature, the number of samples of a particular feature within the
chi-square binning interval in each class is counted. Take the feature Fj as an
example. For class C1, the distribution of feature Fj within the chi-square bin-
ning intervals (p11, p12, ..., p1k) can be acquired by tallying the occurrences of
feature Fj across each interval, in which k is the number of chi-square binning
intervals for this feature. For class C2, the distribution of feature Fj can be cal-
culated as (p21, p22, ..., p2k). On this basis, we can obtain the feature distribution
matrix P of feature Fj on n classes. In the same manner, the feature distribution
of other features on different classes can also be obtained.

Pn×k =

⎡
⎢⎢⎢⎣

p11 p12 · · · p1k

p21 p22 · · · p2k

...
...

. . .
...

pn1 pn2 · · · pnk

⎤
⎥⎥⎥⎦ (11)

The Wasserstein distance (EMD) is employed to quantify the distribution
disparity between every pair of classes. A higher EMD value for a given feature
across two classes indicates a more discerning characteristic. The computation
of EMD for each class pair is conducted as follows:

W (PU , PV ) = infγ∼Π(PU ,PV )E(U,V )∼γ [‖x − y‖] , (12)

where PU and PV are the feature distribution of a feature on two classes,
Π(PU , PV ) denotes the set of all potential joint distributions PU and PV , while
W (PU , PV ) signifies the mathematical lower bound of the expected value of
γ(x, y). The calculation of EMD for multi-class is detailed as follows:

EMD =
C∑

κ=1

C∑
λ=κ+1

W (Pκ, Pλ), (13)

Finally, calculate the EMD value for each feature. Subsequently, sort features
in descending order based on their respective EMD values. The pseudo-code of
ADDFS is shown in Algorithm 1.
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Algorithm 1. Adaptive distribution distance-based feature selection algorithm
Require: Feature set F , classes C
Ensure: The selected feature subset S

1: BEGIN
2: compute F according to euqation (8);
3: for each f ∈ F :
4: Interval=ChiMerge(f);
5: / / The ChiMerge algorithm is used to divide each feature into multiple consec-

utive intervals
6: for each c ∈ C:
7: Pc=count(f ,c,Interval);
8: / / Calculate the number of samples of the feature in the chi-square binning

interval of each class
9: end for;

10: for each p ∈ P :
11: for each p

′ ∈ P , p
′ �= p:

12: compute W(p,p
′
) according to equation; (12)

13: EMDf += W(p,p
′
);

14: end for;
15: end for;
16: end for;
17: S= sort(EMD);
18: END;

3.5 Machine Learning Model

This study employs six machine learning models for identification. Noted that
we do not focus on the actual machine learning model but on the effect of our
proposed method combined with the machine learning model on video traffic
identification. By comparing the identification results of different models, we
can choose the model with superior performance for video traffic identification.

4 Experiment

4.1 Performance Measures

In this paper, accuracy (ACC) and F1 score can be derived as the evaluation
criteria in our experiment. The accuracy (ACC) in a binary classification task
can be defined as follows:

ACC =
TP + TN

TP + FN + TN + FP
, (14)

Precision and recall can be defined as follows:

Precision =
TP

TP + FP
, (15)
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Recall =
TP

TP + FN
. (16)

With precision and recall, F1 score, a widely used performance measure, can
be derived as follows:

F1 = 2 × Precision × Recall

Precision + Recall
. (17)

4.2 Evaluation of ADDFS with Video Traffic Identification

The overall identification performance of video traffic is first evaluated by using
the selected learning models and proposed feature selection algorithms. ADDFS
is utilized to choose feature subsets comprising 10%, 20%, 30% . . ., and 90%
of the complete feature set. Thereafter, all selected learning models are used to
identify both types of video traffic. The results are presented in Fig. 2.

From the perspective of the number of selected feature set, for YouTube
and Bilibili, the identification effects of most of the learning models hit the
optimum at 20% and 60%, respectively, of the feature set and reach a steady
state thereafter. For cloud games, the recognition effect of the learning model
maintains a small range of fluctuations on different feature subsets.

From a learning model perspective, Random Forest (RF), Extremely Ran-
domized Trees (ET), and Adaptive Boosting (AdaBoost) perform well. In a sta-
ble state, RF and AdaBoost achieve accuracy levels exceeding 0.95 on YouTube.
Furthermore, the accuracies of RF, ET, and AdaBoost on Bilibili and cloud
gaming are above 0.92 and 0.99, respectively.

Fig. 2. Accuracy results with varying feature number percentage selected by ADDFS

4.3 Assessment of the Efficacy of Peak Point Features

This subsection assesses the influence of various sliding window sizes and off-
set factors on video flow identification in cloud gaming. The Random Forest
(RF) classifier is employed, and a 10-fold cross-validation approach is once again
implemented.
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Figure 3(a) and (b) shows the results of the comparison, in which FS is the
complete feature set with peak point features, and FS-PP is the feature set
without peak point features. The results of FS are observed to be better than
those of FS-PP, particularly for data of video scene traffic on the YouTube
platform. That is, ACC and F1 increased by over 3%. For the other two cases,
the two evaluation measures also improved slightly with the joining of peak
point features. Hence, the experimental outcomes unequivocally demonstrate
the efficacy of the proposed peak point feature for video traffic identification.

Fig. 3. The comparison results with/without peak point features

4.4 Evaluation of the Impact of Sliding Windows

This subsection evaluates the impact of different sliding window sizes and offset
factors on video flow identification on cloud gaming. RF is used as a classifier,
and 10-fold cross-validation is again applied.

Figure 4(a) demonstrates the impact of different sliding window sizes on iden-
tification accuracy. Offset factor is set to 0.5. As window size grows, identification
accuracy increases initially. Thereafter, it reaches the highest when window size
is set to 3. Accuracy decreases thereafter as window size increases. Therefore,
we obtain the empirical optimal window size of 3. Figure 4(b) shows the results
with the varying offset value. Note that when offset factor is 0.5, accuracy of
video traffic identification hits the highest value. When offset factor increases,
recognition accuracy tends to be stable. Thus, we set window size L to 3 and
the offset factor Z to 0.5 in our studies.
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Fig. 4. The impact of sliding window

4.5 Evaluation of the ADDFS Performance

To further verify the effectiveness of the feature selection algorithm ADDFS, we
conduct comparative experiments on 3 public datasets (wine, Mushroom and
QSAR_biodegradat, the first one is from KEEL, the last two are from UCI)
and 3 private traffic datasets (VS-UJN-2022-YouTube, VS-UJN-2022-Bilibili and
CG-UJN-2022) with 5 feature selection algorithms. The five compared feature
selection methods are Relief [11], Person [12], RFS [13], DDFS [14], and F-score
[15]. We employ Decision Tree (DT), as the classifier and compare the ACC
of the evaluated methods using 10-fold cross-validation. The classification ACC
outcomes are illustrated in Fig. 5.

As shown in Fig. 5, all compared methods will receive increasing accuracy as
the number of selected features increases for most data sets, and reach a relatively
steady state thereafter. In cases where the count of chosen features is limited,
ADDFS demonstrates superior accuracy when compared to the alternative meth-
ods. Note that it has consistently maintained efficient and stable performances
for the cases of the wine, Mushroom, QSAR_biodegradat, and VS-UJN-2022-
Bilibili datasets. Although there are numerous redundant and irrelevant features
in the CG-UJN-2022 dataset, ADDFS can still obtain a relatively stable classi-
fication accuracy in the early stage.

5 Conclusion

A comprehensive feature set is constructed in this study for identifying video
traffic. In order to obtain an efficient feature subset, a novel ADDFS method is
introduced. Moreover, we collected video traffic data from different platforms in
a campus network environment and used these data to conduct a set of exper-
iments. The experimental findings demonstrate a significant enhancement in
identification performance through the utilization of the proposed peak point
feature. The proposed ADDFS can also be considerably applied to the task of
video traffic identification.
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Fig. 5. Results of the compared feature selection methods
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