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Abstract. Music Emotion Recognition involves the automatic identifi-
cation of emotional elements within music tracks, and it has garnered
significant attention due to its broad applicability in the field of Music
Information Retrieval. It can also be used as the upstream task of many
other human-related tasks such as emotional music generation and music
recommendation. Due to existing psychology research, music emotion is
determined by multiple factors such as the Timbre, Velocity, and Struc-
ture of the music. Incorporating multiple factors in MER helps achieve
more interpretable and finer-grained methods. However, most prior works
were uni-domain and showed weak consistency between arousal mod-
eling performance and valence modeling performance. Based on this
background, we designed a multi-domain emotion modeling method for
instrumental music that combines symbolic analysis and acoustic analy-
sis. At the same time, because of the rarity of music data and the diffi-
culty of labeling, our multi-domain approach can make full use of limited
data. Our approach was implemented and assessed using the publicly
available piano dataset EMOPIA, resulting in a notable improvement
over our baseline model with a 2.4% increase in overall accuracy, estab-
lishing its state-of-the-art performance.

Keywords: Piano emotion recognition · Music information retrieval ·
Multi-domain analysis

1 Introduction

The emotional aspect of music, commonly known as its affective content, holds
significant importance and is often regarded as the essence of musical expres-
sion. The recognition of emotions in music, known as Music Emotion Recogni-
tion (MER), has emerged as a prominent topic and crucial objective within the
field of Music Information Retrieval (MIR). This recognition process assumes
paramount significance due to its widespread application in various scenarios
involving emotion-driven music retrieval and recommendation. Restricted by the
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complexity of emotion, research on MER has encountered great difficulties [9,31].
Emotion is a very complex psychological state, and different people have differ-
ent emotional thresholds [32]. This makes emotional annotation more difficult
and emotional data more scarce.

The recognition and understanding of the intricate interplay between vari-
ous factors within music and their impact on music emotion constitute a cen-
tral concern in ongoing research on MER. Investigating this matter not only
facilitates the advancement of more efficient and nuanced MER techniques but
also contributes to the development of comprehensive insights into the complex
nature of music emotion. Existing research usually applies disentanglement or
multi-domain analysis to modeling music emotion from multiple aspects. Berar-
dinis et al. [1] applies Music Source Separation during pre-processing and ana-
lyze the emotional content in vocal, bass, drums, and other parts separately,
their proposed method shows promising performance. Zhao et al. [37] provide a
new perspective by modeling music emotion with both music content and music
context, their proposed method applies multi-modal analysis on audio content,
lyrics, track name, and artist name of the music.

To further explore the essence of music emotion, research was also carried
out on instrumental music. In the field of psychology and affective computing,
Laukka et al. [18] proposed a convincing music emotion perception model for
instrumental music and concluded six factors that affect music emotion: Dynam-
ics, Rhythm, Timbre, Register, Tonality, and Structure. Those factors reflect
both the acoustic characteristics and the structural characteristics of the music.
Laukka’s model indicates the importance of incorporating both acoustic analysis
and symbolic analysis for MER. Acoustic factors such as Dynamics and Timbre
are highly related to the Arousal expression of the music but are not included in
the symbolic representations of music. Therefore symbolic-only methods show
relatively weaker performance on Arousal detection. Structural factors such as
Tonality and Structure are highly related to the Valence expression. Although
those factors are included in the acoustic domain, existing acoustic analysis
methods can hardly learn the structural information without extra supervision.
To incorporate all the important factors, both acoustic analysis and symbolic
analysis are needed.

However, most existing MER methods for instrumental music are uni-domain
and fail to model music emotion from multiple aspects. Existing researches
mainly apply deep-learning-based methods on the acoustic domain or uses
sequence-modeling methods on the symbolic domain representations of the
music. In their recent publication on emotion recognition in symbolic music, Qiu
et al. [30] introduced a pioneering approach utilizing the MIDIBERT model [4],
a large-scale pre-trained music understanding model. At present, no existing
research on Music Emotion Recognition (MER) for instrumental music inte-
grates both acoustic and symbolic analyses. As a result, we present an innovative
method in this study that encompasses music emotion modeling from both acous-
tic and symbolic perspectives. Given the representative nature of piano music
within the instrumental domain, we implemented and conducted an evaluation
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of our proposed approach using the publicly available piano emotion dataset
EMOPIA [16].

Our contribution can be summarized as follows:

– Inspired by existing psychology and affective computing research, we proposed
a multi-domain emotion modeling method for instrumental music, which only
needs audio input. Our method used a pre-trained transcription model to
obtain symbolic representation, therefore can be used on each instrument
that can be automatically transcripted.

– We designed a refined acoustic model with mixed acoustic features input and
a transformer-based symbolic model. Both models showed promising perfor-
mance.

– We implemented and evaluated our proposed method on the public piano
emotion dataset EMOPIA [16]. Our method achieved state-of-the-art perfor-
mance on EMOPIA with better consistency between Valence detection and
Arousal detection performance.

2 Related Works

There have been many studies in the research field of MER. According to the
different domains of focus, these studies include MER with acoustic-only and
MER with symbolic-only studies. These works have promoted progress in MER,
and there are also some points that can be improved.

2.1 MER with Acoustic-Only

In order to explore which part of the vocal or accompaniment music carries more
emotional information, Xu et al. [36] used the sound source separation technol-
ogy, combined with the 84-dimensional manual low-level features (such as Mel
frequency cepstrum coefficient (MFCC), spectral center, spectral attenuation
point, spectral flux, and other similar measures.), and then used a classifier to
recognize music emotion. Coutinho et al. [6] extracted 65 Low-level Descriptors
(LLDs) in a time window of 1 s and calculated their first-order difference to
obtain a total of 130 low-level features, then calculated the mean and standard
deviation of each LLD in one second, and finally formed a 260-dimensional fea-
ture vector, and then used Long Short-term Memory (LSTM) network to carry
out regression prediction of dynamic V/A (Valence/Arousal) value. Fukayama
et al. [8] proposed a method to adapt to aggregation by considering new acous-
tic signal input based on multi-stage regression. At the same time, a method of
adjusting the aggregation weight is introduced to deal with the emotion caused
by the new input that cannot be known in advance, and the deviation observed
in the training data is utilized by using Gaussian process regression. Li et al. [19]
introduced a novel approach to tackle dynamic emotion regression by leverag-
ing Deep Bi-directional Long Short-term Memory (DBiLSTM) in a multi-scale
regression framework. Moreover, the author also examined the influence of dis-
similar sequence lengths between the training and prediction stages on the overall
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performance of DBiLSTM. By investigating this aspect, the study aimed to gain
insights into the effects of such variations on the efficacy of the model. [23]
uses the CNN network that can process local information with fewer parameters
and the RNN network that can process context information, that is, the CRNN
structure, which uses the least parameters than Media Eval 2015.

Other methods have achieved the best results in the dynamic regression
prediction of emotion at that time. Huang et al. [14] introduced the atten-
tion mechanism into the music emotion classification task, and introduced the
attention layer with short-term and short-term memory units into the deep con-
volution neural network for music emotion classification. Different weights are
allocated on different time blocks (chunks), and the song-level emotion clas-
sification prediction is obtained through fusion. Liu et al. [22] regards music
emotion recognition as a multi-label classification task, and uses convolutional
neural networks and spectrum diagram to complete end-to-end classification.
Chen et al. [2] considered the complementarity between CNN with different
structures and between CNN and LSTM, and combined multi-channel CNN
with different structures and LSTM into a unified structure (Multi-channel Con-
volutional LSTM, MCCLSTM) to extract advanced music descriptors. Choi et
al. [3] employed a pre-trained convolutional neural network (CNN) feature, which
was initially trained for music auto-tagging purposes. They then successfully
transferred this CNN to various music-related classification and regression tasks,
showcasing its adaptability and versatility. Similarly, Panda et al. [27] introduced
a collection of innovative affective audio features to enhance emotional classifica-
tion in audio music. The authors observed that conventional feature extractors
primarily focus on low-level timbre-related aspects, neglecting essential elements
like musical form, texture, and expressive skills. To address this limitation, the
authors devised a novel set of algorithms specifically designed to capture infor-
mation related to music texture and expression, effectively compensating for the
significant gaps in music emotion recognition research.

2.2 MER with Symbolic-Only

Previous research employed manual extraction of statistical musical characteris-
tics, which were subsequently inputted into machine learning classifiers to fore-
cast the emotional aspects of notated music. Grekow et al. [10] conducted an
analysis on classical music in MIDI format and extracted 63 distinct features.
In a similar vein, Lin et al. [20] conducted a comparative investigation involv-
ing multiple features (audio, lyrics, and MIDI) extracted from the same music.
Remarkably, they discovered that MIDI features exhibited superior performance
in emotion recognition. Building upon this finding, the researchers utilized the
JSymbolic library [25] to extract 112 advanced music features from MIDI files.
Subsequently, Support Vector Machine (SVM) was employed to classify the data.
Similarly, Panda et al. [28] employed various tools to extract features from MIDI
files and utilized SVM for classification purposes.

More recent studies demonstrate a growing adoption of a symbolic music
encoding technique similar to MIDI [26], which is gaining popularity among
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researchers. Additionally, deep learning models have emerged as the promi-
nent approach in this field. Ferreira [7] devised a method to encode MIDI files
into MIDI-like sequences, leveraging LSTM and GPT2 for sentiment classifi-
cation purposes. This approach offers simplicity and efficiency. Drawing inspi-
ration from the remarkable achievements of BERT, Chou et al. [5] introduced
MidiBERTPiano, a large-scale pre-trained model utilizing CP representation.
The proposed model showcases promising outcomes in various domains, includ-
ing symbolic music emotion recognition. Highlighting the paramount importance
of emotional expression in music’s intrinsic structure, Liu et al. [30] proposed a
straightforward multi-task framework for the symbolic MER task. Notably, this
approach benefits from readily available labels for auxiliary tasks, eliminating
the need for manual annotation of labels beyond emotion classification.

3 Methodology

The complete diagram illustrating the overall architecture of our proposed app-
roach can be observed in Fig. 1. The structure contains two branches: the acoustic
domain branch (marked in yellow) applies acoustic analysis on mixed acoustic
features with a Conv-based acoustic encoder, and the symbolic domain branch
(marked in blue) applies symbolic analysis on music score sequence by using a
Transformer-based symbolic encoder. It is worth noting that the outputs of the
two branches come from the same modality, that is, from the acoustic input, so
they belong to different domains of the same modality.

Fig. 1. The overall structure. The feature representations of the two domains are gen-
erated by the acoustic domain branch and the symbolic domain branch in the model,
and the fusion process is completed in CDA.
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3.1 Acoustic Domain Analysis for Arousal Modeling

For the acoustic domain analysis, we want to explicitly extract the information
that relates to music emotion expressions, such as Timbre and Dynamics [18]. We
use a mixed feature as input, which consists of the Mel-frequency Cepstral Coeffi-
cient (MFCC), Mel-spectrogram, Spectral Centroid (SC), and Root Mean Square
Energy (RMSE) of the audio input. SC and RMSE reflect the energy distribution
and changes of the audio, which is strongly correlated to music emotion expres-
sion. We use mel-spectrogram instead of STFT spectrogram because it better
fits the human auditory perception process. We also calculate a 20-dimensional
MFCC with librosa [24]. After these features are obtained, we resize and align
them in the time dimension. The mixed feature can be obtained by splicing these
features.

The processing flow of the acoustic domain branch is shown at the top of
Fig. 1. We use a 2D-ConvNet module as the acoustic encoder for its great ability
to encode temporal and frequency domain information simultaneously. After the
feature extraction process, the extracted features are flattened and combined in
the channel dimension to form the acoustic domain output. A comprehensive
summary of the settings used in the experiment can be found in Table 1.

Acoustic domain analysis shows better performance on Arousal detection
than symbolic domain analysis. Arousal is mainly decided by acoustic attributes
such as Dynamics, Energy, and Timbre, which are not included in symbolic
domain representation. Therefore we calculate an extra arousal classification
loss function using Binary Cross Entropy (BCE) on the acoustic domain analysis
branch during the training process.

3.2 Symbolic Domain Analysis for Valence Modeling

As mentioned above, our proposed method is designed to perform both acoustic
and symbolic domain analysis with only audio input. That is to say, our symbolic
part uses the automatic piano transcription module to form the symbolic domain
representation instead of directly using the MIDI files in the EMOPIA dataset.
This provides a common paradigm for other transcribable musical instruments.
Therefore for the symbolic domain analysis branch, we use a pre-trained auto-
matic transcription model to perform piano transcription. Specifically, we use
the refined version of Onsets and Frames [11,12] proposed by Zhao et al. [38],
which shows better generalizability and costs fewer computation resources. The
transcripted piano score is converted into MIDI format, which includes the onset,
offset, duration, and velocity of each note.

The music score is the “language” of the music and is a semantic sequence
similar to natural language. Therefore the symbolic representation of the music
score is similar to that of the natural language.

In this work, we use a refined MIDI-like representation for note embedding,
which is shown in Fig. 2. Unlike the original MIDI-like [26] representation, we
add an attribute named “harmonic” which explicitly denotes the number of
sounding notes at the onset of a note. Since harmonic is an important part of
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musical performance, we decide to add extra information about it. Therefore,
the symbolic domain representation for a single note consists of the onset time,
harmonic, velocity, time shift, and offset time of the note.

Fig. 2. The refined MIDI-like symbolic representation we used.

The structure of the symbolic domain analysis branch is shown at the bottom
of Fig. 1. After the note embeddings are obtained, we input them into a Trans-
former encoder module [34] to extract the emotional representation of the piano
score. The Transformer encoder module consists of four original Transformer
encoder layers adopted in [34]. We pre-trained the encoder with the MIDI data
from the MAESTRO dataset, for there are not enough samples in EMOPIA to
train our Transformer encoder module.

Symbolic domain analysis mainly focuses on the high-level semantics of the
note sequences, which leads to better Valence detection accuracy than acoustic
analysis. As we want to make use of its advantage, we calculate an extra valence
classification loss on the symbolic domain analysis branch during the training
process.

3.3 Combining Symbolic and Acoustic Analysis

The final purpose of our method is to perform 4-Quadrant (4Q) classification
concerning both Arousal and Valence, therefore the cross-domain feature fusion
method is important. When combining extracted acoustic domain features and
symbolic domain features, the Cross-domain Attention (CDA) module is used for
cross-domain feature fusion. CDA has a similar mechanism to multi-head cross-
modal attention [33]. In CDA module, Query and Key-Value pairs come from
two different domains instead of different modalities in cross-modal attention.
Each attention head can be calculated separately:

Attention(FQ, FK , FV ) = softmax(
FQ(FK)T

√
d

)FV

= softmax(
FαWQ(FβWK)T

√
d

)FβWV (1)

Let FQ, FK , and FV denote the vectors for Query, Key, and V alue, respec-
tively. Within the attention mechanism, these input vectors are obtained by
multiplying the extracted features of the α and β domains, represented as Fα

and Fβ , with their respective learnable weight matrices WQ, WK , and WV . Here,
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d represents the dimension size of the Key vector. The multi-head attention can
be defined as the concatenation of each individual head:

MultiHead(Fα, Fβ) = Concat(head1, ..., headH)WO (2)
headi = Attention(FαW i

Q, FβW i
K , FβW i

V ) (3)

The learnable weight matrix WO and the number of attention heads H play
crucial roles in this multi-head attention mechanism. By leveraging multiple
attention heads, this mechanism effectively highlights the significant aspects of
each domain, which cannot be achieved through simple concatenation alone.

As shown in Fig. 1, in each processing procedure, our model calculates the
CDA mechanism twice. We calculate an acoustic cross-domain attention mecha-
nism and a symbolic cross-domain attention mechanism separately. This bidirec-
tional CDA fusion strategy brings higher fusing efficiency. The output of acoustic
CDA and symbolic CDA are concatenated and input into a classifier for 4Q emo-
tion classification. During the training process, we calculate a 4Q Label loss on
this classifier using Cross Entropy (CE) loss function.

4 Experiments

To assess the effectiveness of our proposed model, we conducted two primary
types of experiments in this study: comparative studies and ablation studies.
These experiments were designed to thoroughly evaluate and analyze the per-
formance of our model from different perspectives.

4.1 Expriments Setup

We use the EMOPIA [16] dataset, which is an open-source dataset for piano-
based emotion recognition. EMOPIA contains 1087 piano clips from 387 songs,
all piano clips are annotated with their MIDI files and emotion labels. As only
music metadata is available, we collect all music files by their corresponding
YouTube ID with the ‘youtube-dl’ package. Following the configuration employed
in [16], the dataset was divided into train-validation-test splits with a ratio
of 7:2:1, ensuring appropriate proportions for training, validation, and testing
stages. However, due to the unavailability of several music pieces on YouTube,
we’re only able to use approximately 90% data of the whole dataset. Similarly,
we not only perform the classification of 4 quadrants but also carry out the
binary classification tasks of high/low Valence and high/low Arousal. For the
pre-training phase of the Automatic Piano Transcription model, we utilized the
MAESTRO dataset (“MIDI and Audio Edited for Synchronous TRacks and
Organization”) [12], encompassing a comprehensive collection of more than 200 h
of meticulously paired audio and MIDI recordings.
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Table 1. Acoustic Encoder Settings.

Layer Channel Kernel Size Stride Maxpooling

conv1 64 3× 3 1 2× 2

conv2 128 3× 3 1 2× 2

conv3 256 3× 3 1 2× 2

During the training process, the training data is divided into mini-batches
with a batch size of 64. The Adam optimizer [17] is employed, utilizing a learning
rate of 0.0001. To implement all experiments, the PyTorch framework [29] is
utilized.

It is important to note that MIDI files from the EMOPIA dataset were not
utilized in our experiments. As our proposed model exclusively takes audio files
as input, our aim is to evaluate the overall performance of the complete model,
including the refined AMT module.

Table 2. Comparison with symbolic-domain methods on EMOPIA.

Method 4Q A V

LSTM-Attn [21]+MIDI-like [26] .684 .882 .833

LSTM-Attn [21]+REMI [15] .615 .890 .746

symbolic-LR [16] .581 .849 .651

MIDIBERT [4] .634 / /

MT-MIDIBERT [4,30] .676 / /

proposed model .708 .874 .869

4.2 Comparative Studies

We compared our proposed model with other existing methods on the same
EMOPIA dataset. To the best of our knowledge, there is no existing multi-
domain piano emotion recognition research. So we compared our model with
several uni-domain symbolic-domain models proposed in [16] and [30], including
two models based on BLSTM and self-attention mechanism (LSTM-Attn for
short) using MIDI-like and REMI symbolic representation, a linear regression
model based on hand-crafted features, and two pre-trained Bert-like models. For
a fair comparison, we directly used the original results announced in their works.
In [4,30], valence metrics and arousal metrics are not provided, therefore are not
shown in the table.
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Table 2 shows the comparison between our method and the other five
symbolic-domain methods. All the methods show high and similar performance
on Arousal detection, which indicates that Arousal detection is a relatively sim-
ple task. Due to the strong sequence-modeling ability of our transformer-based
symbolic domain model, our method shows the highest Valence detection per-
formance and outperforms the LSTM-Attn+MIDI-like model by 3.6%. On 4Q
classification metrics, our model also achieves state-of-the-art performance and
outperforms the LSTM-Attn+MIDI-like model by 2.4%.

We also compared our model with two existing acoustic-domain models, one
uses linear regression on hand-crafted features and the other uses a ResNet-
like network. Table 3 shows the comparison between our method and the other
two acoustic-domain methods. All acoustic-domain methods show strong perfor-
mance on Arousal detection as well. This is in line with common sense, because
Arousal is greatly affected by energy, velocity, and dynamics, and this informa-
tion is evident in acoustic information. Though our method is slightly weaker on
Arousal detection, it still outperforms the Short-chunk ResNet model by 3.1%
on the 4Q metrics.

Table 3. Comparison with acoustic-domain methods on EMOPIA.

Method 4Q A V

Audio-LR [16] .523 .919 .558

Short-chunk ResNet [13,35] .677 .887 .704

proposed model .708 .874 .869

4.3 Ablation Studies

We designed and carried out a series of ablation studies to test the effect of our
improvements. In the symbolic-only model and acoustic-only model, we use our
symbolic branch and acoustic branch individually in order to test the effect of
combining them. In the STFT-input model, we use an STFT spectrogram as
input instead of the mixed acoustic feature. In the Single-loss model, we do not
calculate the extra loss on the two branches and only calculate the Label loss.

The experimental results of the ablation studies are shown in Table 4. Com-
pared to the two uni-domain models, our cross-domain fusion strategy costs per-
formance loss on Arousal and Valence detection. However, our proposed model
outperforms these two models by over 5% on the overall 4Q accuracy metrics.
This indicates that our model is able to make better decisions by considering
both symbolic and acoustic information.

The STFT-input model shows huge performance loss on Arousal metrics,
which proves that using mixed acoustic features can improve Arousal detection
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performance. When using the STFT spectrogram as input, a deeper network
is needed to extract the acoustic features. By using hand-crafted features, our
method shows strong acoustic modeling ability with only three Conv layers. The
single-loss model also shows over 2.5% performance loss on both 4Q and Arousal
metrics, which indicates that our strategy of calculating the extra loss function
works.

Table 4. Ablation studies trained and evaluated on the EMOPIA dataset.

Method 4Q A V

Symbolic-only .651 .843 .891

Acoustic-only .630 .902 .697

STFT-input .689 .804 .871

Single-loss .683 .845 .883

proposed model .708 .874 .869

5 Conclusion

In this study, we introduce a novel multi-domain approach for piano emotion
recognition, which can also be extended to other instruments with automatic
transcription capabilities. Our proposed model leverages a pre-trained tran-
scription model, enabling multi-domain analysis solely based on audio input.
To the best of our knowledge, there is a lack of research specifically addressing
piano emotion recognition. Our proposed model capitalizes on the complemen-
tary and redundant aspects between the acoustic and symbolic domains, leading
to improved consistency in valence detection and arousal detection. Experimental
results demonstrate that our proposed model surpasses the baseline approaches
in terms of Valence classification and 4Q classification metrics. Moving forward,
our future work will focus on designing enhanced symbolic representations for
music, investigating superior cross-domain fusion strategies to enhance overall
performance, and developing a universal framework for addressing the emotional
aspects of transcribed musical instruments.
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