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Abstract. Image-text retrieval has been a crucial and fundamental task
in multi-modal field. Benefiting from the superiority of Transformer
encoder in modeling multimodal information, the Transformer-based
alignment model has become the mainstream of image-text retrieval.
However, current Transformer-based alignment models suffer from two
major limitations: (1) The redundancy of modal features and the com-
plexity of correlations between modalities restrict the performance of the
model. (2) Current researches are typically limited to a single viewpoint
during the modal alignment. To address these issues, in this paper we pro-
pose a image-text retrieval model SSM based on Semantic Selection and
Multi-view alignment. Specifically, we introduce a gated attention unit to
filter unnecessary information, and design an adaptive weighted similar-
ity calculation method to dynamically adjust the importance of different
features during the alignment process. On the other hand, we design a
multi-view cross-modal alignment method that considers different gran-
ularity and different level of information to provide complementary ben-
efits in representation learning. We compare SSM with other advanced
image-text retrieval models in MS-COCO and Flickr30K datasets, and
the results show that the SSM model has competitive performance with-
out much interaction.

Keywords: Image-text retrieval · Multi-modal · Semantic selection ·
Multi-view · Contrastive learning

1 Introduction

With the growth of multimedia data on the Internet, cross-modal retrieval has
been widely noticed [20]. Cross-modal retrieval aims to understand the natural
semantic correlations between different modalities and hence search for seman-
tically similar instances of different modalities. As the core task of cross-modal
retrieval, the challenge of image-text retrieval is to accurately learn the semantic
relatedness between image and text, and bridge the semantic gap between the
two heterogeneous modalities.
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Early researches on image-text retrieval focus on alignment-based models,
which encode image and text independently as feature vector representations
and calculate image-text matching score via a similarity function. Faghri et
al. [6] encodes the image and text as a global feature vector and aligns the
features by contrastive learning. Lee et al. [11] proposes a fine-grained feature
alignment method to further improve the performance of the alignment-based
model. However, these works remain very inefficient for large scale image-text
retrieval, limited by the weakness of CNN and RNN feature encoding capability.
Chen et al. [2] proposes an interaction-based model to match image and text
features by multiple iterations of neural interaction units, which fully explores
the semantic association between the two modalities. But the interaction-based
model, while obtaining significant gains in retrieval performance, also leads to
a dramatic increase in computational cost and poses challenges for practical
deployment in production environments.

In recent years, the successful deployment of Transformer models in the nat-
ural language processing [3,27] and multimodal [5,14,26] has demonstrated the
superiority of Transformer modeling visual and text information. Transformer
employs a multi-head attention mechanism where each part of the input rep-
resentation interacts with other parts, to obtain better feature representations.
Messina et al. [16] improves the alignment model using Transformer and applies
it to an image-text retrieval task. Remarkably, their methods maintain the fast
inference speed of the alignment-based model while achieving performance close
to that of more complex interaction-based models.

Although Transformer-based alignment method has achieved acceptable per-
formance, the current study suffers from two major drawbacks, as shown in Fig. 1:
(1) The correlations between image and text are usually complex. In a mutually
matching image-text pair, the text may describe only the main content of the
image, and an image may require multiple sentences to be described correctly.
Therefore, not all regions of image and words of text have matching relationship,
especially there will be some region features in image with low contribution to
retrieval. Furthermore, current researches commonly employ the Faster-RCNN
model to extract image features [1,2,11,16,17], it may lead to excessive border
overlap and result in the extraction of image features with redundant infor-
mation. (2) Multi-layer Transformer in the process of encoding features, the
vectors encoded in different layers contain different levels of information [8,22].
For example, the lower layer tend to encode basic features, and the higher layer
capture complex semantic information. The previous Transformer-based align-
ment models [7,17,28], which commonly use the output features of the last layer,
ignore the semantic differences between different layers, and these model make
limited exploitation of the transformer architecture. Meanwhile, previous mod-
els [16] typically focus on local features alignment and ignore the guiding role of
global features, which may lead to ambiguous representation due to local features
not fully integrated with contextual information.

In this paper, we propose a novel image-text retrieval model SSM. Referring
to past work, our model employs Faster-RCNN and Transformer for image fea-
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ture encoding and BERT pre-trained model for text encoding. To address the
redundancy of modal features and the complexity of correlations between modal-
ities, the SSM model introduces a gated attention mechanism to filter the redun-
dant features in image modalities. In addition, we propose an adaptive weighted
similarity calculation method to dynamically attend on representative features
and cast aside the interferences of uninformative features in the alignment pro-
cess. In order to integrate the modal features of different views and learn the
ideal modal feature representation, we propose a multi-view cross-modal align-
ment method to align global features and local features at the semantic level
and the feature level to achieve accurate matching of image-text pairs.

Summarizing, the contributions of this paper are the following:

(1) We introduce gated attention units and adaptive weighted similarity calcula-
tion method for cross-modal semantic selection.

(2) We propose a multi-view cross-modal alignment method that captures the
modal correlations of different views.

(3) We have conducted extensive experiments on two benchmark datasets to
validate the effectiveness of SSM. The experimental results show that our
methods can significantly improve the metrics of cross-modal retrieval.

2 Related Work

2.1 Image-Text Retrieval

Image-text retrieval is a fundamental task in the field of multimodal where the
target is to find a suitable text description for an image or to find a corresponding
image for a given text. Existing approaches can be divided into two main types:
alignment-based and interaction-based. Notably, due to its low computational
cost and fast response speed, the alignment-based method has been widely used
in industry and has attracted a lot of attention in academia. The alignment-based
method leverages a neural network model to encode images and text as feature
representations separately and performs inter-modal alignment by contrastive
learning. However, the results achieved by alignment-based method in earlier
researches are not satisfactory due to encoder performance limitations [6,10,11].

Benefiting from the excellent performance of the Transformer encoder, recent
studies have applied it to cross-modal alignment. Messina et al. [17] first applies
Transformer as a modal encoder for image-text alignment. Qu et al. [23] enhances
the feature representation capability of the model by leveraging the BERT pre-
trained model and the feature summarization module. Messina et al. [16] pro-
poses a fine-grained alignment model based on Transformer encoder to align
regions of image and words of text, and achieves approximate results with the
interaction model of that time. The Transformer-based alignment model has
achieved promising results. However, its retrieval accuracy still has much space
for improvement. In this paper, we introduce a gated attention unit and an
adaptive weighted similarity calculation method to better align the image-text
semantics.
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2.2 Contrastive Learning

Contrastive learning is a representation learning method. It essentially aims to
learn a better representation of the input by maximizing agreement between two
similar data samples. The concept of contrastive learning is widely applied in
cross-modal alignment. Radford et al. [24] implements the idea of contrastive
learning based on large scale image-text datasets, achieving excellent perfor-
mance on several multi-modal downstream tasks. Shukor et al. [25] introduces
a novel triplet losses with dynamic margins that adapt to the difficulty of the
task. In this work we follow the line of previous work on image-text retrieval and
use triplet loss as contrastive learning loss [2,6,11,16]. Different from previous
work, we design a multi-view cross-modal alignment by considering the features
of different Transformer layers and the information of different granularities to
obtain a high-quality modal representation.

3 Methodology

The overall framework of SSM is shown in Fig. 2, it contains three parts: image
encoder, text encoder, and alignment module. In this section, we elaborate our
proposed methods. Firstly, we introduce the image encoder and text encoder in
Sect. 3.2 and 3.3. We then describe the adaptive weighted similarity calculation
method (AWS) for local feature alignment in Sect. 3.4. Finally, we introduce
the multi-view cross-modal alignment method (MVA) and objective function for
image-text retrieval in Sect. 3.5.

3.1 Problem Definition

Formally, given an image-text pair, the image is represented as a visual feature
of regions I = {ri|i ∈ [1,m]} and the text is represented as a text feature of
words T = {wi|i ∈ [1, n]}, where m and n denote the number of image regions
and text words, respectively. The object of the task is to evaluate the matching
score between them, thus enabling cross-modal retrieval from the database.

3.2 Text Encoder

SSM uses the pre-trained BERT as a text encoder. Considering that image
features are generated by pre-trained deep neural networks, this paper uses a
deeper text encoder to model the semantic relationships between words. Con-
cretely, for the input text, each word is mapped to the embedding representation
T e = {T e

i |i ∈ [1, n]} as the input to the text encoder. We add an embedding T e
0

at the first position to aggregate the global representation of the text. The text
embedding T e consists of three parts: word embedding, position embedding, and
segment embedding.

T e = W + P + S (1)
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Fig. 1. Illustrations of major drawbacks for Image-Text Retrieval.

Fig. 2. Model framework of SSM.

In the Transformer architecture, different layers capture information with
various semantic clues. SSM uses the first 8 layers of BERT as the low layer
text encoder (BERTL) to obtain a feature-level representation of the text T f =
{T f

i |i ∈ [0, n]}.
T f = BERTL(T e) (2)

The last 4 layers of BERT are used as the high layer text encoder (BERTH) to
obtain the semantic-level features of the text T s = {T s

i |i ∈ [0, n]}.

T s = BERTH(T f ) (3)
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3.3 Image Encoder

Following recent work, we leverage Bottom-up Attention model to pre-extract
features from image regions with high confidence [2,4,11]. Specifically, we pre-
extract features from the image I by Faster-RCNN to obtain a set of visual
sequence features Ie = {ri|i ∈ [1,m]}. Notably, we add an embedding Ie0 at the
first position of the visual sequence feature to aggregate the global representa-
tion.

In order to filter noise and redundant information in image features, we intro-
duce the gated attention unit (GAU) as the image encoder. The gated atten-
tion unit, which is based on the Transformer architecture, controls the internal
information flow through a gate mechanism to adaptively capture contextual
information and refine high-quality image representations.

The GAU firstly projects Ie through three linear layers to obtain Q, K, and
V , respectively.

⎧
⎨

⎩

Q = WqI
e + bq

K = WkI
e + bk

V = WvI
e + bv

(4)

where Q, K and V respectively denote the query, key, and value, and Wq, Wk,
Wv, bq, bk, bv are learnable parameters.

The attention weight matrix attn is then calculated. The formula is as follows:

attn = relu2(
QKT

√
d

) (5)

The GAU adds a gated linear unit for filtering unnecessary information.
Specifically, Ie is linearly projected to obtain the gating weights U , after which
the intermediate features Ih are obtained by the gated self-attention calculation.

U = WuIe + bu (6)

Ih = Wh(U ⊗ attnV ) (7)

where Wu, Wh, bu are learnable parameters.
Subsequently, the image features are mapped into the same vector space as

the text feature dimension by linear projection layer. The feature-level represen-
tation If = {Ifi |i ∈ [0,m]} of the image is calculated as follows:

If = WfIh + bf (8)

where Wf , bf are learnable parameters.
The SSM model uses another GAU module as a high layer encoder of image

features to obtain the semantic-level image features Is.

Is = GAUH(If ) (9)
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3.4 Adaptive Weighted Similarity Calculation

For the image-text retrieval task, different regions of the image and different
words of the text make different contributions to the image-text alignment, as
shown in Fig. 3. In this paper, we devise an adaptive weight similarity calculation
method (AWS) to balance the importance of different features in the similarity
calculation.

First, given an image I and a text T , compute the similarity matrix M ∈
Rm×n between all regions and words.

Mij =
ITi Tj

||Ii||||Tj || i ∈ [1,m], j ∈ [1, n] (10)

where Mij denotes the similarity between the i-th region feature and the j-th
word feature.

We use the combination of linear layer and softmax function to measure the
weight α of different features in similarity matching, this process is represented
as:

α = softmax(WoIi + bo) i ∈ [1,m] (11)

where Wo, bo are learnable parameters.
The final image-to-text similarity score can be calculated as:

Simi2t =
∑m

i=1
αimaxn

j=1(Mij) i ∈ [1,m], j ∈ [1, n] (12)

For text-to-image similarity calculation, we use the same calculation as above
to obtain the word-region similarity score Simt2i. The final similarity score is
calculated as follows:

Sim = Simi2t + Simt2i (13)

3.5 Multi-view Alignment

In this paper, we propose a multi-view cross-modal alignment method (MVA) for
image-text retrieval that combines the hierarchical and granular information. We
use the low-layer information for feature-level multi-grained alignment, and the
high-layer information is used for multi-grained alignment at the semantic-level.

Specifically, we perform feature-level alignment using the image features If

and text features T f obtained from the low-layer encoder. For the local features,
we use the adaptive weighted similarity calculation method proposed above to
obtain the image-text similarity matrix Sfl ∈ RB×B, where B denotes the batch
size and Sfl

ij denotes the local matching score of the i-th image and the j-th text
within the same batch at the feature-level. For the global features, we calculates
the cosine similarity between the feature-level global representations If0 and T f

0

as follows:

Sfg =
IfT0 T f

0

||If0 ||||T f
0 || (14)



146 B. Yu et al.

where Sfg ∈ RB×B and Sfg
ij denotes the feature-level global matching score of

the i-th image and the j-th text within the same batch.
For the semantic-level alignment, we use the last layer features as the seman-

tic features of the image and text and calculate the global similarity matrix Ssg

and the local similarity matrix Ssl. We only consider the local similarity at the
semantic-level during the model validation process, the similarity of the other
views is only used for the calculation of the alignment loss during model training
process.

In this paper, we use a triplet contrastive loss as the optimization objective.
Following Faghri et al. [6], we focus the attention on hard negatives. Our triplet
contrastive loss is defined as:

L∗ = [λ + S∗
ij′ − S∗

i+]+ + [λ + S∗
i′j − S∗

+j ]+ (15)

where S∗ ∈ {Sfl, Sfg, Ssl, Ssg}, [x]+ = max(x, 0), S∗
i+ denotes the similar-

ity between the i-th image and the matched text, S∗
ij′ denotes the similarity

between the i-th image and the hardest negative sample of text within the same
batch. λ defines the minimum distance that should be maintained between a
truly matched text-image positive sample pair and a negative pair. The hardest
negative samples i′ and j′ are denoted as:

{
i′ = argmax(S∗,j) i′ �= j
j′ = argmax(Si,∗) j′ �= i

(16)

The overall training objective of our model is:

L = Lfl + Lfg + Lsl + Lsg (17)

4 Experiments

We evaluate our methods on two widely used benchmark datasets including MS-
COCO [13] and Flickr30K [21], and compare the SSM model to current advanced
models. We also conduct ablation studies to incrementally verify our methods.

4.1 Datasets

MS-COCO is a more general dataset for image-text retrieval, with a total of
123,287 images. Each image is given a set of 5 manual descriptions. Following
the split by Karpathy and FeiFei [9] we utilize 5,000 images for validation and
5,000 images for testing and the rest for training. Flickr30K contains 31,783
images collected from social network, and each image is associated 5 captions.
We use 1,000 images for validation, 1,000 images for testing and the rest for
training.
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4.2 Evaluation Metric

We measure the model performance with R@k(k = 1, 5, 10) and R@sum. where
R@k denotes the fraction of queries for which the correct item is retrieved in
the closest k points to the query, and R@sum denotes the sum of recall rates of
retrieval tasks.

4.3 Implementation Details

The SSM model is trained on an A5000 graphics card for 50 epochs. The batch-
size is set to 30 for all experiments. The initial learning rate is set to 0.00001
and then decay to 0.1 times every 20 epochs. For the text, we utilize BERT for
feature encoding, where the feature dimension is 768. For the image, we take
the Faster-RCNN detector for feature pre-extraction. Each image has 36 region
proposals, where the feature dimension is 2048. After feeding the region features
into a GAUL module, we add a linear layer to transform the GAUL output to a
768-dimension vector. The layer of GAUL and GAUH is set to 4. The margin λ
for the triplet contrastive loss is set to 0.2.

4.4 Main Results

We compare the model SSM proposed in this paper with other baseline models
on two benchmark datasets, include the traditional alignment-based VSE++
[6] and SCAN [11], the interaction-based IMRAM [2] and SGRAF [4], and the
Transformer-based alignment model TERN [17]. The results show that SSM
significantly outperforms all other baseline models.

Table 1 shows the performance of SSM with the baseline model on the
Flickr30k dataset, achieving 80.3%, 94.9%, and 98.2% for R@1, R@5 and R@10 in
text retrieval, the metric on image retrieval is 62.3%, 85.9%, and 91.4% for R@1,

Fig. 3. Adaptive weighted similarity calculation method (AWS).
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Table 1. The experimental results on Flickr30K dataset.

Models Text Retrieval Image Retrieval R@sum

R@1 R@5 R@10 R@1 R@5 R@10

VSE++ [6] 52.9 80.5 87.2 39.6 70.1 79.5 409.8

SCAN [11] 67.4 90.3 95.8 48.6 77.7 85.2 465

VSRN [12] 70.4 89.2 93.7 53.0 77.9 85.7 469.9

IMRAM [2] 74.1 93.0 96.6 53.9 79.4 87.2 484.2

TERN [17] 53.2 79.4 86.9 41.1 71.9 81.2 413.7

MMCA [28] 74.2 92.8 96.4 54.8 81.4 87.8 487.4

CAMERA [23] 76.5 95.1 97.2 58.9 84.7 90.2 502.6

TERAN [16] 75.8 93.2 96.7 59.5 84.9 90.6 500.7

GASA [18] 74.9 92.7 96.8 55.3 82.5 89.3 491.5

SGRAF [4] 77.8 94.1 97.4 58.5 83.0 88.8 499.6

SSM(Ours) 80.3 94.9 98.2 62.3 85.9 91.4 513.9

Table 2. The experimental results on MS-COCO 1K dataset.

Models Text Retrieval Image Retrieval R@sum

R@1 R@5 R@10 R@1 R@5 R@10

VSE++ [6] 64.6 90.0 95.7 52.0 84.3 92.0 478.6

SCAN [11] 72.7 94.8 98.4 58.8 88.4 94.8 507.9

VSRN [12] 76.2 94.8 98.2 62.8 89.7 95.2 516.9

IMRAM [2] 76.7 95.6 98.5 61.7 89.1 95.0 516.6

TERN [17] 63.7 90.5 96.2 51.9 85.6 93.7 481.6

MMCA [28] 74.8 95.6 97.7 61.6 89.8 95.2 514.7

CAMERA [23] 75.9 95.5 98.5 62.3 90.1 95.2 517.5

TERAN [16] 77.7 95.9 98.5 65.0 91.2 96.4 524.7

GASA [18] 77.9 96.5 98.8 63.4 90.7 96.0 523.3

SGRAF [4] 79.6 96.2 98.5 63.2 90.7 96.1 524.3

SSM(Ours) 82.2 97.7 99.4 68.2 92.6 97.2 537.3

R@5 and R@10. Compared to the traditional interaction method IMRAM, SSM
improves retrieval speed while maintaining higher accuracy without the complex
interactions. Compared with CAMERA, which also uses the BERT pre-trained
model, SSM achieves a 3.4% improvement in R@1 for text retrieval and an even
greater improvement (3.8%) for image retrieval. The SSM model also has better
evaluation metrics than the Transformer-based fine-grained model TERAN [16].
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Table 3. The experimental results on MS-COCO 5K dataset.

Models Text Retrieval Image Retrieval R@sum

R@1 R@5 R@10 R@1 R@5 R@10

VSE++ [6] 41.3 71.1 81.2 30.3 59.4 72.4 355.7

SCAN [11] 50.4 82.2 90.0 38.6 69.3 80.4 410.9

VSRN [12] 50.3 79.6 87.9 37.9 68.5 79.4 403.6

IMRAM [2] 53.6 83.2 91.0 39.7 69.1 79.8 416.4

TERN [17] 38.4 69.5 81.3 28.7 59.7 72.7 350.3

MMCA [28] 54.0 82.5 90.7 38.7 69.7 80.8 416.4

CAMERA [23] 53.1 81.3 89.8 39.0 70.5 81.5 415.2

TERAN [16] 55.6 83.9 91.6 42.6 72.5 82.9 429.1

GASA [18] 56.7 84.8 91.8 42.3 71.2 83.1 429.9

SGRAF [4] 57.8 - 91.6 41.9 - 81.3 -

SSM(Ours) 60.1 86.3 92.7 45.5 75.7 85.0 445.3

Table 2, Table 3 show the bidirectional retrieval results on MS-COCO dataset
with 1K and 5K test images. The results show that R@1 is 68.2% for image
retrieval and R@1 is 82.2% for text retrieval on MS-COCO 1K. For MS-COCO
5K, our proposed SSM model still has a performance advantage over other mod-
els. It demonstrates that the SSM model has great generalization and robustness.
Meanwhile, the performance achieved by SSM on R@1 verifies that the proposed
methods in this paper can effectively enhance the ability of encoder.

4.5 Ablation Studies

To demonstrate the effectiveness and stability of each component in the SSM
model, we carry a series of ablation experiments on the Flickr30K dataset in this
section. The baseline model for comparison utilizes BERT as the text encoder
and Transformer as the image encoder, and uses only the normal local align-
ment method during the similarity calculation. Table 4 investigates the impact
of each component, where GAU denotes gated attention units, AWS denotes the
adaptive weighted similarity calculation method, MVA denotes the multi-view
alignment method, and w/o denotes that the current component is not used.
For example, w/o AWS denotes that the adaptive weighted similarity calcula-
tion is replaced with the mainstream adopted Max-Sum fusion method, while
the multi-view alignment and gated attention units are retained.
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Table 4. Ablation study on Flickr30K to investigate contributions of each component.

Models Text Retrieval Image Retrieval R@sum

R@1 R@5 R@10 R@1 R@5 R@10

Baseline 75.0 92.3 95.7 59.1 83.6 90.1 495.8

w/o GAU 78.7 94.5 97.5 61.4 85.3 91.1 508.5

w/o AWS 77.2 93.8 96.5 60.7 84.6 90.6 503.4

w/o MVA 78.4 94.2 96.9 61.1 84.8 91.0 506.4

SSM(Ours) 80.3 94.9 98.2 62.3 85.9 91.4 513.9

In Table 4 we can observe that each strategy brings an improvement on
the baseline model. GAU improves 1.6% for text retrieval and 0.9% for image
retrieval on R@1, demonstrating that gated attention units can filter redun-
dant information and bring positive profits. AWS achieves a more comprehensive
improvement in all metrics. It indicates that the adaptive weighted similarity cal-
culation method, compared to the common local alignment method, is able to
highlight the role played by important information in the alignment process. The
results of whether or not to use MVA demonstrate that the different view infor-
mation can be complementary. Finally, the final SSM model using all strategy
achieves optimal result.

Table 5. Model performance with different fusion methods on Flickr30K.

Methods Text Retrieval Image Retrieval R@sum

R@1 R@5 R@10 R@1 R@5 R@10

Mean-Mean 66.6 90.0 94.5 54.2 80.8 88.1 474.2

Max-Max 73.9 93.1 96.6 56.0 82.4 89.3 491.3

Max-Mean 71.7 92.5 96.5 56.6 82.3 89.3 488.9

Max-Sum 75.0 92.3 95.7 59.1 83.6 90.1 495.8

AWS(Ours) 77.3 94.1 97.0 60.2 84.1 90.6 503.3

Table 5 explores the effectiveness of the proposed AWS compared to the con-
ventional Max-Mean and other variants on the baseline model without any strat-
egy. We can observe the Mean-Mean fusion strategy is less effective, and the
Max-Mean, Max-Sum and Max-Max achieve better retrieval accuracy. This may
be because the Mean-Mean strategy considers the value of each feature com-
pletely equally, leading to the interference of some unnecessary features. The
best performance is achieved by the AWS strategy, which indicates that our
methods is able to dynamically consider the importance of different features
compared to the Mean strategy. Meanwhile, compared to the Max-Max strategy
which only considers the features with the highest similarity scores, our strategy
is able to better utilize the information of each feature.
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Table 6. Ablation study on Flickr30K to investigate contributions of multi-view align-
ment.

Methods Text Retrieval Image Retrieval R@sum

sl fl sg fg R@1 R@5 R@10 R@1 R@5 R@10

� 78.4 94.2 97.5 61.1 84.8 91.0 506.4

� � 80.1 94.6 97.9 61.6 85.4 91.2 510.8

� � � 79.9 94.7 98.0 61.9 85.8 91.5 511.8

� � � � 80.3 94.9 98.2 62.3 85.9 91.4 513.9

Table 6 explores the impact of different view alignment on the Flickr30K
dataset, where sl denotes semantic-level local alignment, fl denotes feature-
level local alignment, sg denotes semantic-level global alignment, and fg denotes
feature-level global alignment. The experimental results verify that MVA can
improve the retrieval accuracy of the model.

5 Conclusion

In this paper, we present a Transformer-based image-text retrieval model SSM
based on semantic selection and multi-view alignment. SSM utilizes gated atten-
tion units and the adaptive weighted similarity calculation method for semantic
selection and performs cross-modal alignment in multiple views. The experi-
mental results on MS-COCO dataset and Flickr30K dataset show that SSM has
excellent cross-modal retrieval performance, and the ablation experiments also
demonstrate the effectiveness of each component. Our next work will explore the
effectiveness in our methods on multimodal pre-trained models and investigate
how to distill the knowledge from the interaction-based model to alignment-
based models to achieve an overall improvement in accuracy and speed.
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