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Abstract. Link prediction tackles the prediction of missing facts in an
incomplete knowledge graph (KG) and has been widely explored in rea-
soning and information retrieval. The vast majority of existing meth-
ods perform link prediction on static KGs, with the assumption that
the relational facts are generally correct. However, some facts may not
be universally valid, as they tend to evolve. Despite the prevalence of
temporal knowledge graphs (TKGs) with evolving facts, the studies on
such data for temporal link prediction are still far from resolved. In this
paper, we propose SiepNet, a novel graph neural network for temporal
link prediction, driven by local Structural Information and Evolutionary
Patterns. Specifically, SiepNet captures the local structural information
based on a relation-aware GNN architecture, and incorporates temporal
attention to model long- and short-range historical dependencies hidden
in TKGs. Moreover, SiepNet integrates local structures and evolution-
ary patterns to enhance the semantic representation of evolving facts
in TKGs. The extensive experiments on five real-world TKG datasets
demonstrate the effectiveness of our approach SiepNet in temporal link
prediction, compared with the state-of-the-art methods.

Keywords: Temporal knowledge graph · Graph embedding ·
Temporal link prediction · Representation learn · Evolutionary patterns

1 Introduction

Knowledge graphs (KGs) organize and store real-world facts, enabling multifar-
ious downstream applications, such as knowledge retrieval, question answering,
and recommender systems [12]. KGs encode factual knowledge in the form of
triple (s, r, o) as directed graphs, where nodes correspond to the subject entity s
or object entity o, and edges represent the relation r among them. Owing to the
high cost of knowledge fusion and dynamics of facts, most KGs often suffer from
incompleteness [31]. Thus, link prediction becomes a crucial task, which intends
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to recover the most probable missing facts. Since real-world KGs contain mil-
lions of multi-relational facts, traditional symbolic and logic-based approaches
cannot be extended to large-scale KGs for link prediction.

Recently, KG embedding has emerged as a promising method for link predic-
tion. It attempts to learn multi-dimensional vectorial representations of entities
and relations in KGs, while using a scoring function to evaluate the plausibility of
a triplet. Represented by TransE [1], these translation-based approaches achieve
a good trade-off between model complexity and link prediction performance by
modelling relations as translation operations on entity embeddings. However, the
vast majority of existing embedding methods perform link prediction on static
KGs, with the assumption that the relational facts in KGs are generally correct.

Actually, facts always evolve over a specific period of time [3]. Therefore,
researchers construct temporal knowledge graphs (TKGs) to store ever-growing
temporal information either explicitly or implicitly, such as YAGO [24] and
ICEWS [16]. Figure 1 shows an example of a temporal knowledge graph (TKG),
where the fact (Donald Trump, president of, USA) was accurate only from 2017
to 2020. However, traditional KG embedding methods cannot address the issue
of TKGs, where facts often show temporal dynamics. For example, they often
confuse entities such as Trump and Biden when predicting (?, president of, USA,
2021). Additionally, TKG embeddings carrying temporal information are chal-
lenging due to the sparsity and irregularities of temporal expressions [5].
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Fig. 1. Example of temporal knowledge subgraphs.

To solve the challenges, Know-Evolve [27] and its extension DyRep [28] pre-
dict future events based on ground truths of preceding events at inference time.
As a result, these methods cannot predict missing events in future time-stamps
without ground truths. To capture more information based on past facts, Jin pro-
posed a novel autoregressive architecture RE-NET [14], which models facts as
probability distributions over TKGs. However, RE-NET learns representations
of entities and relations by implicitly exploiting temporal information without
distinguishing dynamic dependencies across facts.

In this work, we observe that TKGs are dynamically heterogeneous graphs
with multiple relationships, i.e., the local structures of graphs are always diverse
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under different time windows, and the facts evolve across time windows. As an
example in Fig. 1, the local structure information of the entity America comes
from 4 entities and 2 relations at t1. While at t2, the local structure of the entity
America changes significantly, resulting in not only the emergence of new entities
and relations but also the absence of some entities and relations at t1. Moreover,
the fact (Donald Trump, president of, America) at t1 evolves into (Joe Biden,
president of, America) at t2.

To this end, we propose SiepNet, a novel graph neural network for tempo-
ral link prediction, driven by local Structural Information and Evolutionary
Patterns. The main ideas of SiepNet are (1) capturing graph structure depen-
dencies based on a relation-aware GNN architecture, (2) learning long-range
and short-range evolutionary patterns of TKGs using an attention-based recur-
rent network, and (3) integrating local structures and evolutionary patterns to
strengthen the representation learning of facts, which improves the performance
of temporal link prediction. We summarize our main contributions as follows:

– We propose a representation learning model SiepNet for temporal link predic-
tion, which simultaneously considers local structures and evolutionary pat-
terns hidden in TKGs.

– We design an attention-based recurrent network to tackle dynamic depen-
dencies across entities over time, which helps to distinguish the impact of
different historical facts on future facts inference.

– To validate the effectiveness of our model, we conduct extensive experiments
on five real-world TKGs containing millions of multi-relational facts with dif-
ferent time intervals, where our model consistently outperforms other base-
lines in terms of temporal link prediction.

2 Related Work

Towards temporal link prediction, we restrict our focus to recent works on TKG
embedding methods, including geometric models and neural network models.

Geometric Models. These models attempt to minimize the distance between
two entity vectors translated by geometric transformations of relations. TTransE
[17] extends TransE [1] for static KGs to TKGs by adding temporal constraints.
TA-TransE [5] embeds temporal information into relation types, which can be
used with existing scoring functions for temporal link prediction in TKGs. HyTE
[3] utilizes time-specific normal vectors directly to generate representations of
entities and relations over different time-stamps. Nevertheless, these geometric
models cannot infer future facts according to past facts and cannot be further
extended to extrapolate settings.

Neural Network Models. These models use deep neural networks to learn
underlying features of time-stamps for link prediction. RE-NET [14] combines
a recurrent neural network and a neighborhood aggregator to model event
sequences. CyGNet [34] predicts future facts by modelling observed facts with a
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copy-generation network. TITer [25] continuously transfers query nodes to new
nodes through relevant temporal facts based on time-aware reinforcement learn-
ing strategies, and generates representation vectors of unseen entities using an
IM module. CluSTeR [19] performs temporal reasoning on TKGs by joint rein-
forcement learning and a graph convolution network. RE-GCN [20] learns evolu-
tionary representations of facts at each timestamp, by modelling KG sequences
recurrently using a recurrent evolutionary network. However, the performance
of these neural network models is limited by repetitive patterns.

3 Problem Definition

We consider a temporal knowledge graph as a sequence of graph snapshots,
ordered ascending based on time-stamps, namely G = {G1, G2, · · · , Gτ}, where
Gt = (Vt, Et) represents the snapshot at a particular time slice t (t ∈ 1, 2, · · · , τ)
with an entity set Vt and a relation set Et. Vt corresponds to the subject entity
s or object entity o at a time slice t, and Et represents the relation r between
them. Thus, a fact in Gt is denoted by a quadruple (s, r, o, t) with a time slice
t, in which s ∈ Vt, o ∈ Vt and r ∈ Et.

Given the preceding observed facts in G, the temporal link prediction aims
to predict the missing facts of the current time slice t, i.e., to predict the unseen
subject entity s given (?, r, o, t) (object entity o given (s, r, ?, t), and relation r
given (s, ?, o, t)) at a particular time slice t.

4 Methodology

4.1 The Model Architecture

The proposed model SiepNet depicted in Fig. 2 consists of two main components:
(1) Local Structural Information Aggregation, and (2) Evolutionary Patterns
Aggregation. First of all, we design a relation-aware GNN to capture the local
structural information from multi-relational and multi-hop neighbors of each sin-
gle graph snapshot. Then, we explore long-range and short-range evolutionary
patterns of TKGs using an attention-based recurrent network. In addition, we
integrate local structures and evolutionary patterns to strengthen the represen-
tation learning of facts, which in turn improves the performance of temporal link
prediction.
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Fig. 2. The architecture of the SiepNet temporal link prediction model.

4.2 Local Structural Information

To aggregate local structural information from multi-relational and multi-hop
neighbors in each graph snapshot Gt, SiepNet seeks to make two linked nodes
share similar representations. To achieve this, we let each node representation
h
(t)
o in Gt aggregates neighbors and past messages, and then calculate its new

representation. Initially, h
(0)
o is set to trainable embedding vector for each node.

SiepNet calculates the forward-pass update of an entity denoted by vo in a multi-
relational graph, based on the following message-passing neural network:

h(t)
o = σ(

∑

s∈Nt
o,r

Fstr(h(t−1)
s , r(t−1)) + W (t−1)

o h(t−1)
o ) (1)

where h
(t)
o is the intermediate representation of node vo at time slice t, combining

local structural messages h
(t−1)
s from all neighbors N t

o,r under relation r ∈ Et

and its past messages h
(t−1)
o . W

(t−1)
o is a learnable parameter, indicating the

past weight. To comprehensively aggregate the local structural messages of node
vo, we implement the message function Fstr(., .) by

Fstr(h(t−1)
s , r(t−1)) =

1
ct
o,r

W (t−1)
r [h(t−1)

s × r(t−1)] + bstr (2)

where h
(t−1)
s × r(t−1) is the local structural messages, while W

(t−1)
r and bstr are

the learnable parameters, indicating the local weight and bias. cs,r is a normal-
izing factor that can either be learned or chosen in advance (e.g., ct

o,r = |N t
o,r|).
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Unlike traditional GCNs, SiepNet accumulates and encodes features of
entities from local structural neighborhoods, i.e., 1

cs,r
W

(t−1)
r [h(t−1)

s × r(t−1)].
Intuitively, relations with different types and directions can derive vari-
ous local graph structures between entities. Therefore, SiepNet accumulates
the overall features of each entity by relation-specific transformations, i.e.,∑

s∈Nt
o,r

Fstr(h
(t−1)
s , r(t−1)). To calculate the past messages of an entity, Siep-

Net introduces a single self-connection to each node, i.e., W
(t−1)
o h

(t−1)
o . Finally,

SiepNet combines both the overall features and information from past steps,
and outputs a sequence of representations notated as

{
H(1), · · · ,H(t)

}
, where

H(t) =
{

h
(t)
1 , · · · , h

(t)
n

}
denotes the representations of entities in each single

graph snapshot Gt.

4.3 Evolutionary Patterns

Besides aggregating local structural information, previous facts also influence
current representations. Moreover, facts are always evolving over adjacent time
windows, further changing the local structural information of the current graph
snapshot. Intuitively, we should capture these two evolutionary patterns, i.e.,
long-range historical dependence and short-range structural dependence. To
achieve this, we design an attention-based recurrent block in SiepNet to capture
evolutionary patterns in TKGs. Formally, SiepNet combines the local structural
representation h

(t)
o and the historical representation (h(t−1)

o , Z(t−1)):

h(t)
o , Z(t) := Fevo(h(t)

o ,h(t−1)
o , Z(t−1)) (3)

where Fevo is a recurrent operator, which allows SiepNet to learn long-range
dependencies of sequence data and explore the evolving patterns of temporal
knowledge graphs to update current representations. When there are few struc-
tural dependencies from neighbor nodes (i.e., h

(t)
o −→ 0), current representations

(Z(t),h(t)
o ) will be greatly influenced by long- and short-range historical depen-

dencies (Z(t−1),h(t)
o ). Otherwise, local structural dependences h

(t)
o will have a

greater impact on current representations.
Most existing works use simple recurrent neural networks to implement Fevo

in message propagation, e.g., RE-NET [14] uses GRU [2], EvoNet [11] uses
LSTM [10], etc. For historical snapshot propagation, these methods only sum-
marize the current representations of nodes, i.e., Z(t) =

∑
o∈Vt

h(t)
o , ignoring

dynamic interactions of nodes across time windows. However, both long-range
historical dependence and short-range dynamic dependence present different
temporal information, influencing the evolution of facts. To improve the ability of
temporal link prediction, Fevo should consider historically long-range and short-
range dependence of previous facts G1:t when modelling snapshot propagation,
and thus influence current representations through local dynamic dependence of
node interactions. Specifically, Fevo can be implemented by
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Fevo(h(t)
o ,h(t−1)

o , Z(t−1)) =

⎧
⎪⎪⎨

⎪⎪⎩

Z(t) = RNN
(
Z(t−1), Gt ⊕ g(αt

∑
o∈Vt

h(t)
o )

)

h(t)
o = RNN

(
(1 − αt)h

(t−1)
o , h

(t)
o ⊕ g(αtZ

(t−1))
)

(4)
where ⊕ denotes the concatenation operator and g(∗) is an element-wise max-
pooling operator. We use a recurrent model RNN to update current represen-
tations h(t)

o based on historical representation (h(t−1)
o , Z(t−1)) and current local

structural representation h
(t)
o , and capture evolutionary patterns Z(t) based on

long-range and short-range dependencies (Z(t−1),h(t)
o ) as well as current facts

Gt.
Typically, the impact of long-range historical dependence and short-range

structural dependence on current representations varies over time. Accordingly,
we design the following temporal attention mechanism as follows to capture
temporal information in node interactions, which in turn helps to model the
long-range and short-range evolutionary patterns of facts.

αt = softmax(Wα(Z(t−1) ⊕
∑

s∈Nt
o,r

h(t)
s )) (5)

where Wα is a independent parameter matrix, updated automatically by back-
propagation. The attention score αt re-weights the two evolutionary patterns,
which is calculated based on long-range evolutionary dependencies and short-
range structural dependencies.

The recurrent model RNN aims at smoothing two input vectors at each time
step, which can be implemented using many existing methods. Here, we utilize
GRU to update h(t)

o as an example.

h(t)
o :

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

a(t) = h
(t)
o ⊕ g(αtZ

(t−1))
i(t) = σ(Wia

(t) + Uz(1 − αt)h
(t−1)
o )

r(t) = σ(Wra
(t) + Ur(1 − αt)h

(t−1)
o )

h(t)
o = (1 − i(t)) ◦ (1 − αt)h

(t−1)
o + i(t) ◦ tanh(Wha(t) + Uh(r(t) ◦ h(t−1)

o ))
(6)

where i(t) and r(t) are update gate and reset gate respectively, while ◦ is a
Hadamard operator. The current node representations are updated by receiving
their currently local structure dependencies and historical evolution dependen-
cies, with a temporal attention score regulating the weight of long-range and
short-range dependencies.

Consequently, both the representations h(t)
o and Z(t) capture the evolutionary

patterns and local structural dependencies up to the t-th time step, which in turn
can be used to predict the facts Gt+1 at the next time step. Then, we encode the
current graph snapshot Gt as representation H(t)

G with a fully connected layer,
which can be formulated as

H(t)
G = FCLn(Z(t) ⊕

∑

o∈Vt

h(t)
o ; θn) (7)
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where the input are the concatenated features of all h(t)
o and Z(t), while θn

denotes the parameters of FCLn. Then we use a classifier to estimate the prob-
ability of the next graph snapshot P(Gt+1 | H(t)

G ).

4.4 Model Optimization

As the topology of TKGs changes over time, SiepNet model should continuously
update its parameters to accommodate the evolutionary patterns of TKGs. Fur-
thermore, note that the snapshots closer to the next time slice (t + 1) have
more similar characteristics than those farther from the ground truth. Hence,
we introduce the first l graph snapshots Gt+1

t−l+1 = {Gt−l+1, Gt−l+2, · · · , Gt+1}
as the input, which is close to the next time slice (t + 1), based on minimizing
the cross-entropy loss L for training.

L = −
t∑

τ=(t−l)

Ĝτ+1logP(Gτ+1 | H(τ)
G )+ (1− Ĝτ+1)log(1−P(Gτ+1 | H(τ)

G )) (8)

where Ĝτ+1 ∈ R
|Gτ+1| is the label set of ground truths with elements of 1 if

the fact occurs and 0 otherwise. SiepNet can fully aggregate the latest tempo-
ral information of the dynamic network, according to the sequence of previous
snapshots Gt+1

t−l+1, which is considered as the most similar characteristics to the
actual snapshots of Gt+1.

As in previous work on regularization, we employ dropout [9] to alleviate
overfitting while capturing local structural information and evolutionary pat-
terns.

5 Experiments

5.1 Experimental Setup

Datasets. In our experiments, we used five widely use TKG datasets, including
three event-based TKGs (i.e., GDELT [18], ICEWS14 [27], and ICEWS18 [29])
and two public TKGs (i.e., WIKI [17] and YAGO [24]) specifically.

Evaluation Setting and Metrics. Following the prior work [34], we split each
dataset except ICEWS14 into a training set, a validation set, and a test set at a
ratio of 80%/10%/10%, respectively. For dataset ICEWS14, we directly utilize
the splitting provided in [27]. We report a widely used filtered settings [8,14,34]
of Mean Reciprocal Rank (MRR) and Hits at K (Hits@K), which are standard
evaluation metrics for link prediction.

Baselines. We compare our proposed model SiepNet with a variety of static KG
models and TKG models. Static KG models include DistMult [32], R-GCN [23],
ConvE [4] and RotatE [26]. TKG models include TTransE [13], TA-DistMult
[5], TA-TransE [5], HyTE [3], RE-NET [14], TeMP [30], RE-GCN [20], xERTE
[6], TANGO-TuckER [7], TANGO-Distmult [7], CyGNet [34], EvoKG [22] and
TLogic [21].
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Model Configurations. Initially, we set the length of the history l to 10,
which means that SiepNet saves the sequence of 10 previous snapshots. The
dropout rate is set to 0.5, and the embedding size is set to 200 to match the
baseline methods set in [34]. The model parameters are optimized using Adam
optimizer [15] with a learning rate of 0.001. The training epoch is set to 20,
which is sufficient for convergence in most cases. All experiments are conducted
on GeForce GTX 3080 Ti. The baseline results are also adopted from [33].

5.2 Performance Evaluation

Overall Performance. Table 1 and Table 2 show the temporal link prediction
performance of SiepNet and baselines on five real-world TKGs, where the best
results are shown in bold. We use “–” instead of experimental results that are
not run out within a day. Remarkably, SiepNet consistently outperforms the
baselines in most cases, which convincingly validates its effectiveness.

Table 1. Performance (in percentage) for temporal link prediction on YAGO and
WIKI datasets under the filtered settings

Method YAGO WIKI

MRR Hits@1 Hits@3 MRR Hits@1 Hits@3

DisMult [2015] 59.47 52.97 60.91 46.12 37.24 49.81

R-GCN [2018] 41.30 32.56 44.44 37.57 28.15 39.66

ConvE [2018] 62.32 56.19 63.97 47.57 38.76 50.10

RotatE [2018] 65.09 62.21 65.67 50.67 48.17 50.71

TTransE [2016] 32.57 27.94 43.39 31.74 22.57 36.25

TA-DisMult [2018] 61.72 50.57 65.32 48.09 45.97 49.51

TA-TransE [2018] 56.61 46.76 65.95 24.24 1.74 47.18

HyTE [2018] 23.16 10.78 45.74 43.02 28.81 45.74

RE-NET [2020] 65.16 63.29 65.63 51.97 48.01 52.07

TeMP [2020] 62.25 55.39 64.63 49.61 46.96 50.24

RE-GCN [2021] 65.29 59.98 68.70 44.86 39.82 46.75

xERTE [2021] 58.75 58.46 58.85 – – –

TANGO-TuckER [2021] 67.21 65.56 67.59 53.28 52.21 53.61

TANGO-Distmult [2021] 68.34 67.05 68.39 54.05 51.52 53.84

CyGNet [2021] 63.47 64.26 65.71 45.50 50.48 50.79

EvoKG [2022] 55.11 54.37 81.38 50.66 12.21 63.84

TLogic [2022] 1.29 0.49 0.85 51.07 50.13 51.18

SiepNet (ours) 73.7773.7773.77 71.6571.6571.65 74.65 54.4654.4654.46 52.3552.3552.35 62.73

Specifically, static KG methods usually show promising results, but lag
behind the best-performing TKG method SiepNet to a large extent, as they
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Table 2. Performance (in percentage) for temporal link prediction on ICEWS14,
ICEWS18 and GDELT datasets under the filtered settings

Method ICEWS14 ICEWS18 GDELT

MRR Hits@1 Hits@3 MRR Hits@1 Hits@3 MRR Hits@1 Hits@3

DisMult 19.06 10.09 22.00 22.16 12.13 26.00 18.71 11.59 20.05

R-GCN 26.31 18.23 30.43 23.19 16.36 25.34 23.31 17.24 24.96

ConvE 40.73 33.20 43.92 36.67 28.51 39.80 35.99 27.05 39.32

RotatE 29.56 22.14 32.92 23.10 14.33 27.61 22.33 16.68 23.89

TTransE 6.35 1.23 5.80 8.36 1.94 8.71 5.52 0.47 5.01

TA-DistMult 20.78 13.43 22.80 28.53 20.30 34.57 29.35 22.11 34.56

TA-TransE 15.99 0.00 26.39 17.69 0.01 30.14 19.18 0.00 33.20

HyTE 11.48 5.64 13.04 7.31 3.10 7.50 6.37 0.00 6.72

RE-NET 45.71 38.42 49.06 42.93 36.19 45.47 40.12 32.43 43.40

TeMP 43.13 35.67 45.79 40.48 33.97 42.63 37.56 29.82 40.15

RE-GCN 32.37 24.43 35.05 32.78 24.99 35.54 29.46 21.74 32.01

xERTE 32.92 26.44 36.58 36.95 30.71 40.38 – – –

TANGO-TuckER 46.42 38.94 50.25 44.56 37.87 47.46 38.00 28.02 43.91

TANGO-Distmult 46.68 41.20 48.64 44.00 38.64 45.78 41.16 35.11 43.02

CyGNet 48.63 41.77 52.50 46.69 40.58 49.82 50.29 44.53 54.69

EvoKG 18.30 6.30 19.43 29.67 12.92 33.08 11.29 2.93 10.84

TLogic 38.19 32.23 41.05 37.52 30.09 40.87 22.73 17.65 24.66

SiepNet 49.97 42.65 53.28 47.93 43.41 52.36 50.79 45.10 53.11

cannot capture the sequential patterns across time-stamps. Surprisingly, almost
static KG methods normally perform better than two TKG methods (i.e.,
TTransE and HyTE) on five TKG datasets. It owes to the fact that TTransE
and HyTE learn representations for each snapshot independently, instead of cap-
turing long-range historical dependencies. Besides, the experimental results of
TA-DistMult and DistMult validate the effectiveness of incorporating temporal
information for temporal link prediction, where TA-DistMult is a temporal-aware
version of static KG method DistMult.

In addition, SiepNet drastically outperforms other TKG methods, although
they all consider dynamic features of facts. Especially on YAGO dataset with the
most facts, SiepNet leads to improvements of 2.70% in MRR, 6.97% in Hits@1,
and 5.10% in Hits@3 compared with the best baseline. We believe this is due to
that SiepNet considers dynamic long-range and short-range historical dependen-
cies using temporal attention, while other TKG models ignore the evolutionary
patterns. The excellent performance of SiepNet and RE-NET validate the impor-
tance of long-range dependencies for link prediction. Although our performance
in Hits@3 of YAGO, WIKI, and GDELT dataset are not the best, the remark-
able performances in Hits@1 and MRR prove that our algorithm SiepNet is able
to predict future facts more accurately. The main reason is that there is a large
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number of repetitive facts in these datasets. Thus, CyGNet and EvoKG perform
well on Hits@3, but they cannot predict more accurate facts, resulting in Hits@1
much lower than ours. TeMP is designed to handle knowledge graph complemen-
tation tasks (graph interpolation) rather than predicting future events, so it does
not perform as well as extrapolation models. Although xERTE supports a cer-
tain degree of predictive interpretation capability, it cannot efficiently handle
large-scale datasets, such as GDELT and WIKI.

Note that static KG model and TKG model perform similarly well on
YAGO and WIKI, but poorly on ICEWS14, ICEWS18 and GDELT. As dis-
cussed in [22], the time intervals of YAGO and WIKI datasets are much larger
than other datasets. Therefore, each time-stamp in YAGO and WIKI has more
local structural information than the other three datasets. Besides, ICEWS14
and ICEWS18 are extracted from the Integrated Crisis Early Warning Sys-
tem (ICEWS), which records many recurring political events with time stamps.
Accordingly, only modelling repetitive patterns or 1-hop neighbors will lose a sig-
nificant amount of evolutionary patterns and structural information. The exper-
imental results show that SiepNet is able to better model these datasets, which
contain complex dynamic dependencies over concurrent facts.

Performance over Time. To further evaluate the performance of SiepNet over
time, we compared the performance in percentage of different timestamps, using
filtered Hits@3 on YAGO, WIKI, and ICEWS18. As shown in Fig. 3, SiepNet
consistently outperforms baselines over different timestamps. The performance
of each method varies with the entities in the test set at each timestamp. In
addition, the difference between our TKG model SiepNet and static KG model
ConvE evolves slowly as time goes by, as shown in Fig. 3. We believe that further
facts in the future are even harder to predict.
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Fig. 3. Performance over specific timestamps with filtered Hits@3.

Specifically, each method shows a significant performance improvement at a
particular timestamp in the future. We believe this is because facts from the past
tend to reappear at the future timestamps. As shown in Fig. 3(a), all methods
perform poorly in 2016, but in 2017 surpass their performance in 2013.
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5.3 Ablation Study

To eliminate the effect of different model components of SiepNet, we create
variants of SiepNet by adapting the use of model components and report the
performances (in percentage) on YAGO dataset.

Table 3. Ablation study for temporal link prediction

Method YAGO

MRR Hits@1 Hits@3 Hits@10

SiepNet w. R 66.25 64.92 66.53 68.54

SiepNet w. B 73.53 71.66 74.66 76.92

SiepNet w/o TA 64.30 62.41 64.86 67.52

SiepNet 73.77 71.65 74.65 77.24

Evolutionary Patterns. To demonstrate how evolutionary patterns affect the
final results of SiepNet, we conduct experiments using l random past graph
snapshots rather than l snapshots closest to the current graph snapshot. The
results denoted as SiepNet w. R are presented in Table 3. Obviously, SiepNet
w. R hurts model quality, suggesting that modelling the snapshots closer to the
current time slice can improve performance.
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Fig. 4. Performance over different lengths of time slice with filtered MRR.

As described in Sect. 4.5, graph snapshots of adjacent time slices tend to have
more similar characteristics. Thus, the length of previous time slice l affects the
performance of our proposed model SiepNet. Figure 4 shows the performance
of SiepNet on YAGO, WIKI and ICEWS18 datasets, with different lengths of
time slices l for temporal link prediction. As the length of time slices increases,
SiepNet performs better on MRR. Nevertheless, MRR tends to be stable when
the length of time slices is over 6. As a result, longer time slices introduce more
noise and lead to performance fluctuations of SiepNet.

Evolutionary Directions. SiepNet w. B in Table 3 indicates the variant of
SiepNet using Bi-GRU instead of GRU to explore evolving patterns of TKGs.
The experimental results of SiepNet w. B and SiepNet are similarly well on
YAGO, as compared with other variants of SiepNet. Therefore, combining for-
ward and backward snapshot information has less significant impacts on the
performance of SiepNet and more computational overhead.
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Temporal Attention. The results denoted as SiepNet w/o TA in Table 3
demonstrate the performance of SiepNet without temporal attention component.
It can be seen that SiepNet w/o TA performs noticeably worse than SiepNet on
YAGO datasets, which justifies the necessity of temporal attention component
to model long-range and short-range dependencies.

6 Conclusion

In this paper, we propose a novel temporal link prediction model SiepNet, which
adapts to the evolutionary process of dynamic facts by modelling temporal
adjacency facts with associated semantic and informational patterns. Specif-
ically, SiepNet explores the local structural information based on a relation-
aware GNN architecture. In addition, SiepNet incorporates temporal attention
to help with modelling long-range and short-range historical dependencies hid-
den in TKGs. The experimental results on seventeen baselines demonstrate the
significant advantages and promising performance of SiepNet in temporal link
prediction. In future work, we will explore the persistence modelling of facts,
rather than just predicting missing facts at a certain time slice t.
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