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Abstract. Link prediction plays an important role in the research of
complex networks. Its task is to predict missing links or possible new
links in the future via existing information in the network. In recent years,
many powerful link prediction algorithms have emerged, which have good
results in prediction accuracy and interpretability. However, the existing
research still cannot clearly point out the relationship between the char-
acteristics of the network and the mechanism of link generation, and the
predictability of complex networks with different features remains to be
further analyzed. In view of this, this article proposes the corresponding
link prediction indices Reg, DFPA and LW on regular network, scale-free
network and small-world network respectively, and studies their predic-
tion properties on these three network models. At the same time, we
propose a parametric hybrid index HEM and compare the prediction
accuracy of HEM and many similarity-based indices on real-world net-
works. The experimental results show that HEM performs better than
other indices. In addition, we study the factors that play a major role
in the prediction of HEM and analyze their relationship with the char-
acteristics of real-world networks. The results show that the predictive
properties of factors are closely related to the features of networks.

Keywords: Link Prediction · Complex Networks · Network
Evolution · Data Mining

1 Introduction

The network represents the relationship between entities in the form of connec-
tions, which is an effective and popular abstraction of the complex real world.
Network science has been involved in biological, social, communication and eco-
nomic fields and achieved fruitful achievement [1,2]. In network science, network
evolution and link prediction are two most challenging and attractive directions.

Network evolution mechanism is one of the most important aspect of the
research of complex networks. It aims to understand the root causes of changes
in network structure and function. Currently there have been a lot of models to
study network evolution mechanism. Such as ER, WS, BA and so on [3–6]. And
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link prediction is an attracted and challenge task in complex network. Link predic-
tion aims to predict missing links and new links in the network through existing
structural information in the network. Link prediction can helps us to understand
and infer the connection mechanism of complex networks. And Link prediction has
been applied into all kinds of fields.There are a lot of efficient research of linkpredic-
tion algorithms at present. No matter how a link prediction algorithm is expressed,
it is essentially a guess of network evolution mechanism. A good link prediction
algorithm can more accurately reveal the evolution behavior of a network [7].

The research of link prediction and complex networks is developing rapidly,
but it also faces many challenges. Firstly, the existing similarity algorithms often
perform well in the face of a few networks, but they are no longer effective when
dealing with a wider range of real-world networks, including directed networks,
weighted networks, heterogeneous edge networks and other complex situations
[8–10]. Secondly, there is a strong correlation between the link prediction algo-
rithm and the network structure characteristics and the link predictability of the
network in theory [11,12]. However, how to describe and express the relationship
between them is a challenging task. In addition, through link prediction, the evo-
lution characteristics of the network can be reproduced to a certain extent, and
the research on the evolution behavior of complex networks can be promoted,
but the research on this aspect is still relatively lacking; on the other hand, link
prediction needs to face large-scale real data at the application level, and our
algorithm needs stronger adaptability and more efficient calculation [13].

Therefore, starting from these challenges, this paper attempts to study
through the following aspects. Firstly, this paper studies the characteristics of
regular networks, scale-free networks and small-world networks. According to
these characteristics, we propose the corresponding link prediction indices Reg,
DFPA and LW. Through these indices, we aim to verify: link prediction indices
are often related to the characteristics of the network when predicting; a single
index often cannot cope with many networks, and indices that fit a certain net-
work characteristics will always be better for the network. After that, we propose
a parametric hybrid index HEM. We hope that through this hybrid index, we
can get a better generalization performance index that integrates the character-
istics of different networks. This index has better adaptability and more accurate
prediction effect on complex real-world networks.

In this article we first introduce some basic network evolution models, then
introduce the evaluation metrics of link prediction and some representative
similarity-based algorithms. Finally we introduce our proposed indices based
on network evolution mechanism.

2 Related Work

At present, link prediction has been applied widely in recommendation systems
[14,15], mining biological information [16,17], reconstructing network informa-
tion [18,19], and evaluating network evolution models [20,21]. Current link pre-
diction methods mainly include methods based on structural similarity, network
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embedding, matrix completion, ensemble learning and neural network methods,
etc. [22–24].

Among all the link prediction algorithms, the similarity-based algorithms are
favored in many fields because of its simplicity and good interpretability. The
similarity-based algorithms compute the similarity of each pair of nodes. Then
similarity is used for prediction. The similarity-based algorithms include local
similarity-based and global similarity-based indices. The local ones often take
“common neighbor” into mainly account, such as CN, Satlon, Jaccard, Sorensen,
HPI, HDI, LHN1, etc. [25]. The global ones always take higher-order paths into
consideration, like LP, Katz and LHN2 and LO [26–28]. And some indices predict
links by randomly walking, like LRW and SRW [23,29]. And Some takes other
global information [25]. The more information is considered, a better the perfor-
mance there will be, but it also brings higher computational cost.

All the link prediction algorithms calculate the connection probability
between nodes in the network and express the network connection mechanism
to some extent. Through the study of network evolution mechanism, if we can
deeply grasp the relationship between nodes in network evolution and deeply
understand the basis of connections in the network, we are more likely to pro-
pose an excellent link prediction algorithm. Based on this idea, we proposes the
link prediction algorithm via the evolution characteristics of the network.

So we firstly construct regular networks, scale-free networks and small-world
networks and proposes our algorithms accordingly. We then perform link pre-
diction on these networks to analyze the feature of indices.

Secondly, we propose an combined algorithm. The index sets two parameters
for the prediction factors. We sample the parameters and perform predictions on
some real-world networks. The results show that our index performs better than
many classical similarity-based indices. We hope that through the combination
of simple characteristic indices, we can conduct a more efficient and interpretable
index.

Finally, we analyze the dominant factors of the hybrid index. Experiments show
that the accuracy and the upper limit are determined by the main factors. In addi-
tion, we find that the main factors are always related to the characteristics of the
network, which coincides with the prediction properties of individual index.

When performing predictions, we often pay attention to the best results, and
parameter sampling should also be oriented to the upper limit of the index.
Finding the main factor can help to optimize the sampling problem.

3 Network Model and Link Prediction

In this section, we will briefly introduce some network evolution models, link
prediction evaluation metrics and similarity-based indices.

3.1 Network Evolution Model

The study of complex networks plays an increasingly important role in math-
ematics, statistical physics, computer science and other fields [30]. In order to
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study specific feature of networks, this article will focus on regular network,
small world network and scale-free network. We choose them because they have
the most common and basic characteristics of complex networks. And we hope
to simulate the feature of complex network by their simple features.

(1) Regular Network. In the regular network each node has the same num-
ber of neighbors. Many crystal networks or protein networks in the field of
chemistry can be regarded as regular networks.

(2) Scale-Free Network. Networks with power-law degree distribution are
called scale-free networks [31]. The scale-free network always can be generate
by preferential attachment, that is, new nodes tend to be connected to nodes
with high degree.

(3) Small-World Network. The small-world network depicts the phenomenon
of large clustering coefficient and small average short path length in the
real world network. Social networks, protein networks, food chain networks,
cultural networks and so on have been proved to have the characteristics
of small-world networks. In small-world network the nodes tend to connect
with their close neighbors.

3.2 Link Prediction Evaluation Metrics

Reference [23] proposed two methods to evaluate the accuracy of link prediction
algorithms, namely AUC (area under the receiver operating characteristic curve)
and Precision. The briefly review of them are below.

AUC. The AUC metric evaluates the accuracy of the algorithms by comparing
the score of missing links and the nonexistent links. Suppose there are n inde-
pendent comparisons in total. Among these comparisons, there are n1 times the
missing link having a greater score and n2 times missing link and nonexistent
link have the same score. Then the AUC value can be calculated as:

AUC =
n1 + 0.5n2

n
(1)

When AUC is equal to 0.5, the prediction accuracy of the algorithm is equiv-
alent to random prediction. The closer the AUC value is to 1, the better the
prediction accuracy of the algorithm is.

Precision. The Precision metric sorts the scores of missing links and nonexistent
links in descending order. We take the sorted top-L links as the predicted ones.
Among these L links, N links belong to the test set. Then the Precision can be
calculated as:

Precision =
N

L
(2)

Compared with AUC, the Precision only focuses on whether the top L links
are predicted accurately.
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3.3 Link Prediction Similarity-Based Algorithms

The similarity-based algorithms for link prediction compute a similarity score
Sxy for each pair of nodes x and y, which directly represent the link possibility
between x and y. The algorithms can be classified into two categories: local sim-
ilarity indices and global similarity indices. Here we choose some representative
indices to introduce (These indices are similar to the indices proposed in this
paper in terms of expression. So they are chosen to better analyze and explain
the differences. We ignore some indices that are not comparable). The details
are as follows.

3.4 Local Similarity Indices

(1) Common Neighbor (CN) [25]

SCN
xy = |Γ (x) ∩ Γ (y)| (3)

Γ (x) denotes the set of neighbors of the node x. In the CN index, the more
common neighbors two nodes have, the more likely they are to connect.

(2) Salton Index [25]

SSalton
xy =

|Γ (x) ∩ Γ (y)|
√

kx × ky

(4)

kx and ky denote the degree of nodes x and y, respectively.

(3) Resource Allocation Index (RA) [25]

SRA
xy =

∑

z∈Γ (x)∩Γ (y)

1
kz

(5)

The RA index defines the amount of resources x allocates to y.

(4) Cannistraci-Hebb index (CH) [32]

SCH
xy =

∑

z∈Γ (x)∩Γ (y)

1 + ki
z

1 + ke
z

(6)

where ki
z denotes the number of links of z with other common neighbors of x

and y, and ke
z denotes the number of links between z and nodes other than x

and y or their common neighbors.

(5) Local Path Index (LP) [25]

SLP (n) = A2 + εA3 + ε2 A4 + · · · + εn−2An (7)

where ε is a free parameter and n is the maximum order.
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3.5 Global Similarity Indices

(1) Katz Index [26]

SKatz
xy = (I − βA)−1 − I = βAxy + β2A2

xy + β3A3
xy + · · · (8)

β is the free parameter. I is the identity matrix. The contribution of higher
order path can be controlled by adjusting β. This index considers all path sets.
It calculates all the paths and assigns less weight to long paths in an exponential
decay.

(2) Linear Optimization index (LO) [28]

SLO = αA(αAT A + I)−1AT A = αA3 − α2 A5 + α3 A7 − α4 A9 + · · · (9)

α is a free parameter. I is identity matrix and A is adjacency matrix. When
α is small enough, LO degenerates to the index that calculates only the 3-hop
paths A3.

4 Link Prediction Based on Network Evolution
Mechanism

According to the characteristics of regular networks, scale-free networks and
small-world networks, this article proposes link prediction indices for these three
networks, and proposes a hybrid indices for complex networks based on the three
indices. Note that all the link prediction results in this article are obtained by
using the 10-fold cross-validation method on test networks.

4.1 Index Based on Regular Networks

According to the characteristics of regular networks, this article proposes a link
prediction index called Reg. Reg is expressed as follows:

SReg
xy =

1
√

kx × ky

(10)

kx and ky represent the degree of nodes x and y, respectively. In the formula,
the nodes with larger degree are less likely to be connected. Small nodes are
more likely to generate connections. By suppressing the connection probability
of large degree nodes and promoting the connection probability of small degree
nodes, the degree balance is achieved to a certain extent.

In order to study the performance of Reg index, we compared the link pre-
diction accuracies of Reg index, CN index and Salton index on random regular
network (see results in Table 1).

We can see that the Reg index is significantly better than other indices. Due
to the randomness of the regular network, the CN index has an AUC value
of only 0.5, while the Satlon index shows random results even with the same
computational factor (i.e., 1√

kx×ky

) as Reg index. As the degree of each node

increases, the prediction performance of Reg index will gradually decrease.
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Table 1. Accuracies on regular networks

Network Reg 3 Reg 8 Reg 13 Reg 18 Reg 23 Reg 28 Reg 33

Cn 0.500 0.497 0.493 0.493 0.494 0.492 0.489

Salton 0.500 0.498 0.493 0.496 0.500 0.503 0.506

Reg 0.942 0.839 0.784 0.752 0.729 0.712 0.698

Accuracies are measured by the AUC value. The number of nodes of the
network are all 2000. The results are calculated on random regular network
whose each node has 3, 8, 13, 18, 23, 28 and 33 neighbors, respectively.
And these 7 regular networks are denoted as Reg 3, Reg 8, Reg 13, Reg 18,
Reg 23, Reg 28 and Reg 33, respectively.

4.2 Index Based on Scale-Free Networks

In reference to the article [25], a link prediction index PA corresponding to the
preferential attachment principle is proposed. The expression of PA is as follows.

SPA
xy = kx × ky (11)

This article also proposes a link prediction algorithm called DFPA (Difference
Preferential Attachment) for scale-free networks. The expression is as follows.

SDFPA
xy =

max(kx, ky)
min(kx, ky)

(12)

Compared with PA index, DFPA index pays more attention to the connection
between nodes with large degree and nodes with small degree. Nodes with similar
degree are more stable and less likely to connect with each other. Therefore, small
degree nodes and large degree nodes develop faster according to DFPA index.
Besides, the connection probability between nodes with large degree is smaller
than PA.

We compare the link prediction accuracies of PA and DFPA on scale-free
networks constructed by BA model. The results are shown in Fig. 1. Note that
accuracies are measured by the AUC value. The number of nodes of the networks
are all 2000. Based on the BA model, each time the new nodes generate 1, 2, 4,
8, 16, 32 and 64 links, respectively. Thus there are 7 kinds of scale-free networks.

According to the prediction results of PA and DFPA in these scale-free net-
works, DFPA performs better when the network is sparse. As the degree of each
node increase, the performance of PA gradually becomes better, while that of
DFPA shows a downward trend. However, DFPA has a higher upper limit than
PA in prediction.

There is a definition of degree assortativity in article [33], when it is greater
than 0, nodes with similar degrees tend to connect with each other. When it is
less than 0, nodes with different degrees are more likely to connect with each
other. DFPA considers the latter case. In theory, the DFPA index also predicts
accurately on disassortative networks.
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Fig. 1. Accuracies of PA and DFPA on scale-free networks

4.3 Index Based on Small-World Networks

In small-world network, each node is connected to the nearest k nodes. Based on
that, this article proposes the LW (local world) index. The LW index considers
that when two nodes have paths of length less than k or k + 1, the two nodes
are possible to have connection. The expression of LW index is as follows.

SLW = Ak + Ak+1 (13)

k is the free parameter. A is the adjacency matrix of the network. Ak calcu-
lates the number of paths with length k between each pair of nodes. The paths
calculated by Ak may go back and forth on some edges. So in order to consider
both odd-order paths and even-order paths, LW calculates the sum of Ak and
Ak+1.

k in LW represents the breadth and scope of information, which is similar to
n in LP index. Compared with LP and Katz index, LW index does not consider
that the lower order path has a higher weight. The weight of the path is related to
the size of k and network structure. And the LW index has a small computational
complexity.

To facilitate the comparison of LP and LW indices, we define the LPK index
as:

SLPK = A2 + A3 + · · · + Ak + Ak+1 (14)

LPK is the case where the ε parameter of LP is set to 1 and the order n of
LP is set to k + 1.

For instance, we define LP2, LP4 and LP8 as the cases where the k value of
LPK takes 2, 4 and 8 respectively. Similarly, define LW2, LW4, and LW8 as the
cases where the k value of the LW index takes 2, 4 and 8, respectively.

We see that LPK and LW are basically equal. It is because Ak + Ak+1 are
almost cover the information of Ai when i less than k.

4.4 Hybrid Index Based on Complex Network

Among the above three indices, Reg and DFPA are indices based on degree
distribution, and LW is the index based on network topology. According to the
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three link prediction indices proposed by different network models, this arti-
cle proposes a hybrid index called HEM (Hybrid Evolution Mechanism). The
expression of HEM is as follows.

SHEM
xy = SReg

xy

α × SDFPA
xy

1−α × SLW
xy (15)

According to equation (10), (12) and (13), the above formula can be expanded
as:

SHEM
xy =

1
√

kx × ky

α

× max(kx, ky)
min(kx, ky)

1−α

× (Ak + Ak+1)xy (16)

There are two free parameters α and k in the HEM index. The α parameter
is used to balance the degree distribution. The role of the k parameter is the
same as in LW, representing the range of paths included.

By adjusting the α parameter, we can achieve the optimal balance of the
HEM index in the link prediction on the mixed networks of regular networks
and disassortative networks. When α is close to 1, the HEM index tends to
predict on regular networks; when α is close to 0, the HEM index tends to
predict on disassortative networks. The k parameter represents the path range
considered in the prediction of LW index. If the k value is set too small, some
high-order paths may not be taken into account for prediction. If it is too large,
the paths that should not be considered will be involved. Therefore, the α and
k parameters need to be adjusted simultaneously during the experiment.

In order to test the link prediction accuracy of the HEM index, this arti-
cle selects the following network data sets (see in Table 2). The multiple edges
are regarded as one single edge, and the directed edge is regarded as an undi-
rected edge. The self-connections are not taken into account. In addition, we
only consider the giant component when one network is not well connected.

Table 2. The features of 11 real-world networks

Network N M K Δ D C ρ

PPI 2375 11693 9.85 118 15 0.306 0.454

NS 1461 2742 3.75 34 17 0.694 0.462

Grid 4941 6594 2.67 19 46 0.08 0.003

INT 5022 6258 2.49 106 15 0.012 −0.138

PB 1222 16714 27.36 351 8 0.32 −0.221

Yeast 2361 6646 5.63 64 11 0.13 −0.099

FBC 4039 88234 43.69 1045 8 0.606 0.064

HSS 1858 12534 13.49 272 14 0.141 −0.085

GrQc 5242 14484 5.53 81 17 0.53 0.659

AS 6474 12572 3.88 1458 9 0.252 −0.182

ER 1174 1417 2.41 10 62 0.017 0.127
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Where N and M denote the number of nodes and edges of the network,
respectively; K denotes the average degree; Δ denotes the maximum degree; D
denotes the network diameter; C denotes the clustering coefficient; ρ denotes
the degree assortativity. PPI is a protein-protein interaction network [34]. NS is
a network of co-authorships in the area of network science [35]. Grid contains
information about the power grid of the Western States of the United States of
America [4]. INT represents the router-level topology of the Internet [36]. PB
is a network of hyperlinks between political blogs about politics in the United
States of America [37]. Yeast is a protein-protein interaction network in budding
yeast [38]. FB consists of “friends lists” from Facebook, whose data was collected
from survey participants using this Facebook app [39]. HSS represents the net-
work of friendships between users of the website hamsterster.com [40]. GrQc is
the collaboration network from the e-print arXiv and covers scientific collabo-
rations between authors papers submitted to General Relativity and Quantum
Cosmology category [40]. AS is the network of autonomous systems of the Inter-
net connected with each other [40]. ER is the international E-road network, a
road network located mostly in Europe [40].

There are many similarity indices in link prediction. This paper only selects
some indexes that are similar to the indexes proposed in this paper in terms of
expression. On the one hand, it is better to control variables and understand
the factors that cause the difference in accuracy between indexes. On the other
hand, some indices are quite different from the indicators in this paper in terms
of predictive properties and computational performance, so that the predictive
differences of the indicators cannot be accurately grasped, and the interpretabil-
ity is also poor.

So this article compares the prediction accuracies of the HEM index and other
similarity-based indices like CN, Salton, PA, RA, CH, LPK, Katz and LO on
these networks. In these 11 networks, we calculate the AUC value and Precision
value of these link prediction algorithms (see results in Table 3 and Table 4).
Where The L value of Precision is 100. The parameter values in both Katz
and LO indices are set to 0.01. The values of k parameter in LPK are selected
as 2, 4 and 8, respectively. In the HEM index, we simultaneously sampled the
α parameter and the k parameter. The values of α are selected as 0.0, 0, 25,
0.5, 0.75 and 1.0, respectively; and the values of k are selected as 2, 4 and 8,
respectively. Among the 15 results obtained by combining the two parameters,
we take the best result of the HEM index and record the α and k parameters
when the AUC value is maximized.
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Table 3. Algorithms’ accuracy quantified by AUC

Network PPI Grid INT PB Yeast FB HSS GrQc AS NS ER

Cn 0.893 0.589 0.559 0.919 0.706 0.992 0.805 0.922 0.696 0.943 0.526

Salton 0.892 0.588 0.559 0.875 0.705 0.992 0.789 0.922 0.676 0.944 0.526

PA 0.823 0.442 0.472 0.902 0.788 0.831 0.866 0.740 0.738 0.631 0.338

RA 0.894 0.589 0.559 0.923 0.706 0.995 0.809 0.923 0.700 0.944 0.526

CH 0.866 0.698 0.569 0.856 0.522 0.992 0.589 0.938 0.606 0.988 0.713

LP2 0.939 0.638 0.633 0.932 0.839 0.984 0.936 0.930 0.762 0.946 0.555

LP4 0.906 0.708 0.572 0.915 0.818 0.962 0.878 0.921 0.660 0.943 0.627

LP8 0.825 0.772 0.378 0.897 0.770 0.911 0.830 0.846 0.623 0.934 0.692

Katz 0.920 0.660 0.378 0.925 0.821 0.611 0.915 0.914 0.690 0.945 0.629

LO 0.935 0.560 0.623 0.929 0.813 0.986 0.952 0.846 0.787 0.852 0.486

α 0.50 0.75 0.50 0.75 0.00 1.00 0.75 1.00 0.00 1.00 1.00

k 2 8 2 2 2 2 2 4 2 4 8

HEM 0.958 0.902 0.922 0.936 0.869 0.989 0.953 0.961 0.944 0.987 0.858

Table 4. Algorithms’ accuracy quantified by Precision

Network PPI Grid INT PB Yeast FB HSS GrQc AS NS ER

Cn 0.474 0.000 0.008 0.078 0.003 0.040 0.003 0.354 0.059 0.200 0.000

Salton 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.011 0.000 0.046 0.000

PA 0.409 0.000 0.014 0.082 0.009 0.033 0.089 0.222 0.131 0.005 0.000

RA 0.002 0.000 0.000 0.028 0.001 0.041 0.000 0.000 0.016 0.004 0.000

CH 0.267 0.005 0.000 0.010 0.008 0.006 0.000 0.140 0.026 0.229 0.000

LP2 0.548 0.037 0.280 0.412 0.144 0.661 0.297 0.629 0.253 0.252 0.000

LP4 0.531 0.046 0.243 0.391 0.117 0.689 0.186 0.641 0.227 0.253 0.000

LP8 0.523 0.035 0.218 0.349 0.099 0.694 0.161 0.644 0.213 0.251 0.001

Katz 0.533 0.001 0.009 0.261 0.003 0.612 0.015 0.522 0.099 0.201 0.000

LO 0.603 0.046 0.379 0.414 0.198 0.037 0.964 0.301 0.185 0.230 0.001

α 0.50 1.00 1.00 0.75 0.75 0.00 1.00 0.50 0.00 0.75 0.00

k 2 4 2 2 2 2 2 8 4 4 4

HEM 0.978 0.051 0.159 0.524 0.178 0.993 0.731 0.759 0.081 0.273 0.002

According to the results of AUC, HEM performs much better than other
indices in Grid, INT, AS and ER networks. In PPI, PB, Yeast, HSS, GrQc and
NS networks, the prediction accuracies of HEM is also higher than other indices.
For FB network, HEM and many other indices perform very well, the prediction
accuracies are basically reaching 100%.

According to the results of Precision, the performance of HEM index on PPI,
FB, HSS networks is much better than other indices, especially on PPI and FB
networks, the Precision values of the HEM index are almost 1. HEM also has a
better improvement on PB and GrQC networks compared to the classic indices.
In contrast, in the AUC results, the HEM index outperforms in Grid, INT, and
AS networks, but underperform in Precision compared to other indices, which
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indicates that most of correct predictions from the HEM index for these networks
come from the second half of the lists of links.

Also in the tables we see that the parameters of HEM index differ when
taking the maximum AUC and Precision values. Therefore, we need to study
the role of parameters in the HEM index and their relationship with network
characteristics.

5 Analysis of HEM Index

In order to understand the influence of different parameters, study which factor,
including Reg, DFPA and LW, plays a major role in the prediction. Here we
propose two methods.

(1) Calculate the prediction accuracies of different factors separately, and choose
two factors with the highest accuracy.

(2) Sample α and k, then choose the top 5 combinations of α and k parameters
from where the HEM index has the highest prediction accuracy. Where α
takes the average value, and k takes the mode. If α is equal to 0.5, we only
consider the k. Or when α is close to 0, take the factor DFPA; when it close
to 1, take Reg.

The first method discusses the performance of individual factors, and the
second method calculates the parameters that have a greater impact on the
prediction. In practical considerations, The second method is used as the main
reference, and the results obtained by the first method can make us have a better
understanding of the characteristics of the network.

Here we discuss the situation when the prediction accuracy measured by the
AUC value. The results of two methods may be different when it measured by
the Precision value, but it has the same way. In this article we consider 5 factors,
they are Reg, DFBA, LW2, LW4 and LW8.

We compare the main factors of the 11 networks obtained by the two meth-
ods, results are shown in Table 5.

Table 5. The main factors of 11 networks obtained by the method 1 and method 2

Method PPI Grid INT PB Yeast FB HSS GrQc AS NS ER

1 LW2 LW8 DFPA, LW2 LW2 LW2 LW2 LW2 LW2 DFPA, LW2 LW2 REG, LW8

2 LW2 LW8 DFPA, LW2 LW2 DFPA, NW2 LW2 LW2 REG, LW4 DFPA, LW2 REG, LW4 REG, LW8

It can be seen that the results obtained by the two methods are basically
the same except for the three networks of Yeast, GrQc and NS. In Yeast, the
main factors calculated by method 2 has DFPA. While in method 1, DFPA
in yeast performs better than Reg. In GrQc and NS networks, the main factors
obtained by method 2 has Reg, while according to method 1, Reg factor performs
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worse than DFPA factor. Therefore, the influencing factors cannot be simply
determined by the individual prediction accuracy.

Observe the several networks with high clustering coefficient: NS, FB, PB
and GrQc, they have LW2 as their main factors based on the first method. LW2
performs very well on these networks, especially on FB. The FB network is the
dense network with high clustering coefficient, and the prediction accuracies of
LW indices basically reaches 1. So we guess that the LW index may be related
to the clustering coefficient of the network. Besides, we can also observe that
the density of the network also has a certain influence on the prediction of LW.
For example, although the NS network has the highest clustering coefficient, the
average degree of the network is only 3.75, far sparser than the FB network, and
the LW2 and LW4 indices perform less well than on the FB network. Moreover,
the main factors in the NS network obtained by the second method are Reg
and LW4, indicating that due to the sparsity, a wider k in LW and additional
consideration of regularity are needed to have a better prediction performance on
the NS network. In addition, although the clustering coefficient of HSS network is
low, the network is denser, then the performance of the LW index on the network
is as good as that on the PPI and PB networks, whose clustering coefficient are
much larger.

Both Grid and ER networks are sparse, and the diameter of the two networks
is very large compared to other networks. Therefore, LW index needs to consider
wider paths to predict the links. The main factors obtained in method 1 and
method 2 are both LW8. The degree assortativity of the INT and AS networks
is observed to be negative, indicating that the networks have the tendency of
differential connection. Thus in these two networks, DFPA as their main factor
performs the best among all the factors.

Moreover, the maximum degree of network AS is 1485, indicating that the
degree distribution is very unbalanced, and the preferential attachment is more
obvious. So the prediction performance of DFPA factor alone on AS network
is also better. The maximum degree of GrQc, ER and NS networks is rela-
tively small, indicating that the degree distribution of the network is relatively
balanced. So on these 3 networks, the corresponding results obtained in the sec-
ond method, Reg are their main factors. Though the Yeast network also has
a small maximum degree, the degree assortativity is negative, indicating that
connections on the network are still difference preferential. Correspondingly in
the second method, DFPA is the main factor on Yeast network.

In summary, the Reg factor often acts on networks with relatively
balanced degree distribution, that is, when the maximum degree is
relatively small, we can take the Reg index into account to predict
links. The DFPA index is usually more effective on networks with
negative degree assortativity. The prediction performance of LW index
is determined by clustering coefficient, average degree and network
diameter. When clustering coefficient is higher and the network is
denser, the link prediction of LW index is always more accurate. The
size of the k of LW index depends largely on the diameter and average
distance of the network.
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By arranging the above results, we compare the prediction results(measured
by the AUC value) of individual factors and hybrid index by tabular statistic
(see in Table 6).

Table 6. Results of individual factors and hybrid index

PPI Grid INT PB Yeast FB HSS GrQc AS NS ER

best of Factors 0.939 0.772 0.849 0.932 0.839 0.984 0.936 0.930 0.929 0.946 0.693

best of HEM 0.958 0.902 0.922 0.936 0.869 0.989 0.953 0.961 0.944 0.987 0.858

So we can see that the main factor largely determines the upper limit of the
prediction accuracy of the hybrid index.

In general, the hybrid index always has a better prediction perfor-
mance than the single index. The prediction performance is mainly
determined by the main factor, and other factors may have some influ-
ence to the prediction, which will help to improve the overall result.

If we can determine the factors that have a greater impact in the link predic-
tion of different networks, then we can save the sampling on the parameters of
the HEM index that have little impact and reduce the computational complex-
ity. Depending on the upper limit of the main factors, we can also have some
idea of the upper limit of the HEM index. Determining the main factors can also
give us some insight into the characteristics of the network.

6 Conclusion and Future Work

The link prediction indices proposed in this article, are based on the idea of
simulating evolution mechanism through simple rules.

Thus, we firstly proposes corresponding link prediction algorithms on regular
networks, scale-free networks and small-world networks respectively and stud-
ies their prediction properties on these three network models. Then we propose
a parametric hybrid index, which has higher prediction accuracy than many
similarity-based indices on real-world complex networks. Finally we studies the
main predictors in the hybrid index, and analyzes and summarizes their rela-
tionship with network features.

In the future work, we will further refine the link prediction algorithms
according to the network evolution mechanism. Firstly, we need to consider more
details of topology structure. After all, path information is not sufficient to define
the existence of links. Secondly, we only considers the mixed degree distribution
of the regular network and the disassortativitive network. Therefore, it is neces-
sary to consider the degree distribution more exactly in future research.
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