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Abstract. Temporal knowledge graph representation learning mod-
els can capture more comprehensive semantic information, which has
higher practical application value and gradually attracts wide attention.
However, the existing temporal knowledge graph representation learn-
ing models usually have challenges in encoding temporal information
and capturing rich structural information. In this paper, we propose a
novel temporal knowledge graph representation learning model, named
TKGAT, which is based on graph neural networks using Bochner’s the-
orem to design time encoding function that can flexibly learn relative
time information. Furthermore, attention network is adopted to model
different relations features and the self-attention mechanism is optimized
by the decoupled attention method, so that the attention weight matrix
incorporates more extensive temporal and structural information and
learns the correlations between entity and temporal features. The exten-
sive experiments have shown that the proposed model can consistently
outperform state-of-the-art models over all benchmark datasets.

Keywords: temporal knowledge graph · representation learning ·
decoupled attention

1 Introduction

A great amount of data generated in daily life often takes the form of graph
structure, such as social networks, financial transactions and literature cita-
tions. Researchers have adopted the form of triple (subject, relation, object)
to represent semantic information in data, and construct large-scale knowl-
edge graphs (KG) such as DBpedia, FreeBase, and WordNet [25]. However,
the KGs are usually incomplete due to data sparsity, which makes knowledge
graph completion (KGC) a priority task. Knowledge graph representation learn-
ing expresses underlying semantic information by mapping the triples into con-
tinuous low-dimensional vector spaces, which is proved to be an efficient method
for KGC [11].
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Static KG representation learning models that ignore the temporal informa-
tion, which can lead to an inaccurate semantic representation. As depicted in
Fig. 1 (a), there are three relations Praise or endorse, Make optimistic comment
and Criticize or denounce between Barack Obama and Iran, such knowledge

Fig. 1. Example of the temporal knowledge graph

can cause confusion when temporal information is neglected since these three
relations are in conflict. Figure 1 (b) depicts a sample of the temporal knowledge
graph (TKG), the relations between Barack Obama and Iran made clarity as
the temporal information has been added. We can also observe that Iran has an
Express intent to cooperate with China, Consult with Afghanistan and Host a
visit with Syria, these three relation types will have various impacts on Iran, and
the topology of countries and relations around Iran also determines the character
of Iran. Therefore, effectively modeling the topological features of KG is essential
for KG representation learning. Besides, capturing temporal features in TKG is
also crucial. As shown in Fig. 1 (b), the relation Make a visit between Barack
Obama and South Korea occurred at time 2014-08-16, however, Barack Obama
has an relation Make optimistic comment with Iran at time 2014-12-29, since
the long time interval between the two events, the former will have less influence
on the latter as time passes, which also reveals that more significant temporal
characteristics are typically provided by the relative time. Our model aims to
well capture the topological and temporal features in TKG, in contrast to the
static KG representation learning models, which ignore temporal information
and process the TKG directly in a static manner, resulting in incomplete and
inaccurate expression of semantic information.

In recent years, TKG representation learning has received extensive atten-
tion from both academia and industry [7], which incorporates the corresponding
temporal features when expressing the semantic information in data. However,
most of the current TKG representation learning models usually face many chal-
lenges. (1) The sensible time encoding, since the TKG topology is dynamic,
entities should have various features at different times. Besides, time encoding
should satisfy the inherent properties of time, such as the relative time can usu-
ally carry more meaningful information than absolute time, for example, when a
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user buys a product on the internet, the temporal information of browsing and
staying on a certain product is more important than the order of browsing the
products. However, the previous models mostly used simple feed-forward neu-
ral networks or recurrent neural networks to capture temporal features, which
lack of in-depth theory; (2) Modeling relations appropriately, distinct relations
around an entity should have different influences on current one, most of exist-
ing models fail to take into account relation attention. Topological information
incomplete when various relations are addressed with the same attention weights;
(3) Effectively modeling structure, the most TKG representation learning mod-
els extend on those in static KG, which focus more attention on quadruples
inherent characteristics and treat the quadruples independently while ignoring
structural information, and the model should also capture correlations between
entity intrinsic features and temporal features when modeling structure, which
is still challenging.

A TKG attention networks, named TKGAT, is proposed to solve the common
problems in existing TKG representation learning models. The time encoding
function based on the Bochner’s theorem [23] has been adopted to capture
temporal features, which is well suited to model the properties of relative time
and has a deep theoretical foundation. The weights of the different relation types
are constructed by the attention network to reflect the relevant to central entity.
The self-attention mechanism [19] has proved its powerful ability in various tasks,
the position encoding is replaced by time encoding and decoupled attention
[6] is applied to optimize self-attention, which can incorporate more extensive
knowledge graph features and effectively capture the correlations between entity
and time. Our contributions in this paper can be summarized as follows.

(1) We propose a novel temporal knowledge graph representation learning model,
TKGAT, which encodes temporal information based on Bochner’s theorem
and uses attention networks to capture different relations weight in order to
efficiently model relational information and improve model performance.

(2) By separating structure and time encoding to optimize the traditional self-
attention mechanism, a decoupled attention approach is designed, which com-
bines graph neural networks to efficiently capture correlations between entity
and temporal features.

(3) The model proposed in this paper achieves the best experimental results on
three public datasets, further demonstrating the effectiveness of the model
and outperforming baseline methods.

The rest of this paper is organized as follows. Section 2 presents related works.
We introduce preliminaries in Sect. 3. We describe the proposed model in detail
in Sect. 4. Section 5 reports the experimental results, and we conclude in Sect. 6.

2 Related Work

In this section, the traditional static KG representation learning models and the
TKG representation learning models are introduced.
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2.1 Static Knowledge Graph Representation Learning

At present, most of the existing knowledge graph representation learning models
are suitable for static KG, which can be classified into three categories. The first
category is the translation-based model, which makes the head and tail entities
satisfy the translation constraints of the relation, and measure the truth of the
triples by calculating the Euclidean distance between the head and tail entity
vectors after the translation. TransE [1], TransH [20], and TransR [13] are the
most representative models, since the simple and efficient nature of TransE, there
are a series of subsequent works that extended on TransE. The second category
is the semantic matching based model, which evaluates the plausibility of a fact
by matching the underlying semantic information of entities and relations in the
vector space. RESCAL [15], DistMult [24], ComplEx [18], and SimplE [9] are the
simplest and most widely used models. The third category is neural network-
based model, which mainly takes advantage of the excellence of neural networks
in feature extraction and non-linear fitting to model KG features, representative
models include ConvE [3], ConvKB [14], and RGCN [16]. However, all these
models ignore the temporal information and fail to reflect the real-world change
properties, resulting in lower accuracy in TKG.

2.2 Temporal Knowledge Graph Representation Learning

In recent years, temporal knowledge graph representation learning has gradually
become a hot research topic. Most existing models primarily focus on extending
static KG representation learning to TKG. TTransE [7] adds temporal informa-
tion to the score function of the TransE and makes it satisfy the temporal infor-
mation based translation constraint. HyTE [2] extends the TransH model, which
projects entities and relations to a time-specific hyperplane to realize the embed-
ding of temporal information. TA-TransE [4] represents the relation type and
temporal information as a sequence of characters, then uses the LSTM to learn
the time-aware representation of relation types. TComplEx [10] extends Com-
plEx and considers the score of each quadruple as fourth-order tensor decom-
position. TeRo [21] borrows ideas from TransE and RotatE [17], which defines
the temporal evolution of entity embedding as a rotation and regards relation
as translation. ATiSE [22] incorporates temporal information into entity and
relation representations by using additive time series decomposition and uses
a multi-dimensional Gaussian distribution to represent temporal uncertainty.
Inspired by diachronic word embedding, DE-SimplE [5] incorporates temporal
information into diachronic entity embedding and has the capability of modeling
various relation patterns. Compared to our model, these models fail to capture
the rich structural information and the correlations between entity and temporal
features. Another line of work on TKG representation learning employs neural
networks, RE-NET [8] adopts a R-GCN based aggregator and recurrent event
encoder to model the historical information. RE-GCN [12] learns the evolutional
representations of entities and relations by capturing the structural dependencies
and sequential patterns. However, those models focus on TKGC extrapolation
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task, i.e., inferring the feature facts in a sequence, which are fundamentally dif-
ferent from our work.

3 Preliminaries

In this section, we present the preliminaries of our work, including the definition
of temporal knowledge graph and graph neural network.

3.1 Temporal Knowledge Graph

In this paper, we represent a temporal knowledge graph as G = {(s, r , o, t)} ⊆
V × R × V × T , where V, R and T indicate the sets of nodes, edges, and times-
tamps, respectively. Temporal knowledge graph completion (TKGC) is to solve
the problem of incompleteness in TKG. Assume that the whole true facts set
is F ⊆ V × R × V × T , TKG should be a subset of the whole true facts set
since the incompleteness of TKG, i.e., G ⊆ F . TKGC is the reasoning from G
to F . According to the time range, TKGC has two settings, interpolation and
extrapolation. Given a temporal knowledge graph G with timestamps t range
from t1 to tT , for the interpolation setting, TKGC predicts missing fatcs with
t1<t<tT ; In contrast, for the extrapolation setting, TKGC predicts missing fatcs
with t>tT , i.e., predicting future facts based on past ones. More formally, the
purpose of TKGC is to predict either the subject in a given query (?, r, o, t) or
the object in a given query (s, r, ?, t). Our work is focus on the TKGC for the
interpolation settings.

3.2 Graph Neural Network

Graph neural network (GNN) enjoys several advantages such as the ability to
effectively handle non-Euclidean data, which makes it a great success in process-
ing graph data. The core idea of GNN is the message propagation mechanism,
i.e., the central node features are constructed by aggregating information from
neighbors. In order to obtain the features of the central node i through multi-
ple layers of GNN, each GNN layer will implement the following two steps: (1)
Message Propagation, get messages from all neighbors of node i; (2) Message
Aggregation, aggregate messages from all neighbor nodes then combines with
the features of node i in the previous layer to obtain the features in the current
layer. The above processes are defined as follows:

hl
N k

i
← AGG

({
hl−1

j ,∀j ∈ N k
i

})
(1)

hl
i ← σWl

(
hl−1

i ||hl
N k

i

)
(2)

Steps (1) and (2) correspond to the Eqs. 1 and 2, respectively. Where N k
i denotes

the k neighbors of node i, hl
i denotes the hidden layer state of node i at l-th layer,

and AGG is a specific function for aggregating the features of neighbors, which
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can be implemented using long short term memory (LSTM), self-attention mech-
anisms, etc. In this paper, we use a decoupled attention approach to implement
AGG, which is able to capture more extensive features. The representative GNN
models include graph convolutional networks (GCN) and graph attention net-
works (GAT), both of which assign weights to neighbors explicitly or implicitly
during the aggregating features.

4 Our Approach

The Fig. 2 depicts the architecture of our model. Overall, the model is based on
the encoder-decoder architecture. The encoder module maps entities into a con-
tinuous low-dimensional vector space and incorporates structural and temporal
features simultaneously. In view of the fact that the relations are usually irrele-
vant to the temporal information, the temporal features are integrated into the
vector of the entity in our model. Since the different relation types have different
impacts on subject, the encoder module first integrates the relation features into
the objects according to the type attention weights, then employs a decoupled
attention method to learn the interactions between the subjects and objects in
terms of structure and time. Finally, the quadruple based (s, r , o, t) is converted
into the triple (st , r , ot ), decoder module can directly evaluate triples using the
static KG embedding methods.

Fig. 2. The architecture of the TKGAT model. In this figure, in order to evaluate the
truth of the quadruple (Barack Obama, Make optimistic comment, Iran, 2014-12-29 ).
Firstly, we find the temporal neighbors where the interaction time with Barack Obama
before 2014-12-29, encoded relation module combines the vectors of the subject Barack
Obama, relations and temporal neighbors together to calculate attention weights and
integrates the relation features into the temporal neighbors. Secondly, time encoding
function based on Bochner’s Theorem is applied to capture relative time features.
Thirdly, decoupled attention module learns vector of Barack Obama by capturing the
structural and temporal feature, an analogous approach is used for Iran. Finally, static
KGs embedding model ConvKB is adopted to evaluate score of triple that integrated
temporal features.
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4.1 Encoded Relation Information

Assume that there are |R| relation types and |V| entities in the temporal knowl-
edge graph G, the initial vectors of all entities and relations are represented as
sets E = {ei}|V|

i=1 and R = {ri}|R|
i=1 respectively, where ei ∈ R

de represents the
initial vector of i-th entity and ri ∈ R

dr represents the initial vector of i-th
relation, de and de represent the initial vectors dimension of entity and relation
respectively. Given a quadruple (s, r , o, t), according to the inherent character-
istics of time, i.e., information about future events cannot influence the ones
of the present moment, the temporal neighbors of subject s are denoted as
N tk<t

s = {(ri, oj , tk)| (s, ri, oj , tk) ∈ G, tk < t}. Since various relation types have
different effects on the subject, we combine the subject vector es, relation vec-
tor ri, and the object vector ej together and calculate the attention weights by
the sofmax function. Finally, the relation feature is incorporated into the corre-
sponding object vector, where the attention weights are calculated as follows.

uri,oj
= W1 (es || ri || ej) (3)

αi,j = softmax
(
uri,oj

)
=

exp
(
σ

(
p · uri,oj

))
∑

(rm,on,ti)∈N ti<t
s

exp (σ (p · urm,on
))

(4)

where W1 ∈ R
de×(2de+dr), p ∈ R

de are parameters learned during the model
training, σ employs the LeakyReLU activation function. After obtaining the
attention weights αi,j of the relation type, the temporal neighbors vectors that
incorporated relation types features are calculated as follows:

xi,j = αi,jW2 (ri || ej) (5)

where W2 ∈ R
de×(de+dr) is model parameter matrix.

4.2 Encoded Temporal Information

Having obtained the vectors of entitits that incorporated the relations informa-
tion, our aim is to further integrate the temporal information. Since the TKG’s
structure are no longer static and the entity features may change, the time
encoding should be able to show temporal characteristics, e.g. the events that
happened a long time ago have less impact on the current events. We employ
the time encoding function mapping from the time domain to the continuous
differentiable functional domain proposed by literature [23], which is based on
Bochner’s Theorem and can be compatible with gradient descent in model train-
ing, we denoted it as Φ(t) and the definition as follows:

t → Φ(t) :=
√

1
dt

[cos(ω1t), sin(ω1t), ..., cos(ωnt), sin(ωnt)] (6)

where ω = [ω1, ..., ωdt
]T are learnable parameters.
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4.3 Encoded Structural Information

Since the topology of the TKG contains important information, we borrow the
core idea of GNN, i.e., using message propagation mechanism to capture the
structural information. In order to aggregate the messages from neighbors cou-
pled with attention weights, we adopt the decoupled attention method based on
self-attention mechanism.

Given a quadruple (s, r , o, t), the temporal neighbors of subject s are N tk<t
s .

At time t, the vector of the subject s at layer l-th is represented as hl, when
l = 1, hl = es, i.e., the initial vector of s. The subject s corresponding object
under relation rj is oi, and its vector at lth layer is represented as hl

i, when
l = 1, hl

i = xi,j , which is obtained by the encoded relation module. Since
the relative time, rather than absolute time, usually reveals critical temporal
information, we directly encode the relative time {t − t1, t − t2, .., t − tk} using
the time encoding function, then we obtain the temporal encoding of neighbors
{Φ(t − t1), Φ(t − t2), ..., Φ(t − tk)}, where k denotes the number of neighbors of
s at time t.

The traditional self-attention mechanism are used to process sequence struc-
ture, which add or combine the two vectors that are used to represent the con-
tent and position information of the token to construct its feature. However, this
approach can’t effectively capture the correlation between content and position
features. Inspired by DeBERTa [6], we apply time encoding to replace position
encoding and calculate the weights by decoupled attention method.

The query vector at layer l is q = Wqhl−1,Wq ∈ R
dh×de is the model

parameter matrix, the vector of temporal neighbours and temporal encoding are
constructed as matrices ZE and ZT respectively, which are represented at the
l − 1 layer as:

ZE =
[
h(l−1)
1 ,h(l−1)

2 , ...,h(l−1)
k

]
∈ R

de×k (7)

ZT = [Φ(t − t1), Φ(t − t2), ..., Φ(t − tk)] ∈ R
dt×k (8)

Applying linear transformation on matrices ZE and ZT :

K = WKZE ,P = WTZT ,V = WV ZE (9)

where WK ,WV ∈ R
dh×de , WT ∈ R

dh×dt are model parameters, the attention
matrix obtained by the decoupled attention approach as following:

Ã0,j = [q]T Kj + [q]T Pj (10)

the attention matrix Ã ∈ R
1×k, where Kj and Pj denote the j-th column

of the matrix K and P respectively. In the process of calculating attention,
[q]T Kj is used to capture the correlation between the subject s and the j-
th neighbour object in terms of structure, and [q]T Pj is used to capture the
correlation between the subject s and the j-th neighbour object in terms of
time, the final attention matrix is obtained by adding the two above. We apply
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the softmax function to get the weights, then the final feature vector of temporal
neighbors is obtained by weighted sum.

hl
N <t

s
= softmax

(
Ã0,j√
2dh

)

V (11)

In order to maintain the original features of the subject s, we concatenate the
final feature vector of temporal neighbors with the s hidden vector at (l − 1)-th
layer, then pass it to a multilayer perceptron to capture non-linear interactions.

hl = MPL
(
hl

N τk<τ
s

||hl−1
)

= ReLU
([

hl

N τk<τ
s

||hl−1
]
Wl

0 + bl
0

)
Wl

1 + bl
1

(12)
Wl

0 ∈ R
2dh×dh ,bl

0 ∈ R
dh ,Wl

1 ∈ R
dh×do ,bl

1 ∈ R
do

where Wl
0, bl

0, Wl
1 and bl

1 are model parameters, do denotes the dimension
of the final output vector. We also show that the proposed model can be easily
extended to the multi-head setting which can improve performance and stability.
Suppose there are m different head, and head(i) = hl(i)

N tk<t
s

, we concatenate the
m head outputs with s and then carry out the same procedure as Eq. 12.

h̃l = MPL
(
head(1) || , ..., ||head(m) ||hl−1

)
(13)

4.4 Decoder and Training

Given a quadruple η = (s, r , o, t), the encoder module of the TKGAT provides
vectors with temporal information (s̃t, r, õt). Since the temporal information has
been incorporated into the entity vector, the static KG model score function can
be used to evaluate the triples. Among the currently existing methods, TKGAT
adopts ConvKB as the decoder, the score function defined as following:

f (η) =

(
|Ω|
||

n=1
g ([st, r,ot] ∗ ωn)

)

W (14)

where Ω denotes the set of convolution kernels, ωn denotes the n-th convolution
kernel, and ω ∈ Ω. Wc denotes the parameters matrix of the linear transfor-
mation, Ω and Wc share parameters during the model training, the activation
function g(·) employs ReLU, ∗ denotes the convolution operation. The output
vectors of the |Ω| convolution operations are concatenated into a single vector,
then linear transformation is applied to obtain the final score.

During the model training, the parameters of are learned using gradient-
based optimization in mini-batches. For each quadruple η = (s, r, o, t) ∈ G, we
sample a negative set of entities S = {o′|(s, r, o′, t) 	∈ G}, then the cross-entropy
loss function is used to train the model, which defined as follows:

L = −
∑

η∈G

exp (f (s, r, o, t))

exp
(∑

o′ �∈Gf (s, r, o′, t)
) (15)

Note that, without losing generality, we used the above loss and negative samples
for subject queries. The algorithm 1 shows the training process in detail.
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Algorithm 1: TKGAT training algorithm
Input: Temporal knowledge graph G, initialization vector dimension for entity,

relation, and timestamp de, dr, and dt, number of negative samples n,
number of iterative rounds niter, number of batches nb, batch size mb

Output: Vector representation of entities, vector representation of relations

Initialize the vector of entity ei with N
(
0, 1

de

)
;

Initialize the vector of relation ri with N
(
0, 1

dr

)
;

for n = 1, ..., niter do
for i = 1, ..., nb do

Dbatch ← Sample(Dtrain, mb) ;
// Sample mb instances from training set

for (s, r, o, t) ∈ Dbatch do
Dbatch ← D′

train ∪ {s′, r, o′, t} ;
// Negative samples by replacing the subject and object

xi,j ← αi,jW2 (ri || ej) ;
// Encoded relation information according to Equation 5

Φ(t − ti) ← relative time encoding according to Equation 6;

h̃ ← vector of entity according to Equation 10, 11, 13 ;

end
Training the model according to the Equation 14, 15 ;

end

end

5 Experiments

In this section, to verify the effectiveness of the proposed model, we conduct
experiments on link prediction tasks on three public datasets. We first introduce
the experimental setup, including datasets, evaluation metrics, baselines, and
implementation, and then analyze the experimental results. Furthermore, we
perform several ablation studies to demonstrate the effectiveness of each main
component of the proposed model.

5.1 Experimental Setup

Datasets. We evaluate our proposed models on the link prediction tasks, and
three public TKGs datasets are used in our experiments. The statistics of the
datasets are summarised in Table 1. For the Integrated Crisis Early Warning
System (ICEWS) dataset, we use two subsets provided by [4]: ICEWS14, corre-
sponding to facts in 2014, and ICEWS05-15, corresponding to facts between 2005
and 2015. For the Global Database of Events, Language, and Tone (GDELT)
dataset, we use subsets which corresponding to facts from 1 April 2015 to 31
March 2016, each piece of data has a corresponding timestamp. We use the same
splits of training, validation, and testing sets as provided by [5].
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Evaluation Metrics. For each quadruple (s, r, o, t) ∈ Dtest, where Dtest rep-
resents the test dataset, we generate two queries: (s, r, ?, t) and (?, r, o, t). For
the first query, the model evaluates all entities and obtains scores f (s, r, o′, t),
∀o′ ∈ E , with an analogous approach used for the second query. According to
the final scores, the rank of the given quadruple is obtained, and we report mean
reciprocal rank (MRR) which is defined as:

MRR =
1

2 |Dtest|
∑

η∈Dtest

(
1

rank (o|s, r, t) +
1

rank (s|r, o, t)

)
(16)

where η = (s, r, o, t), |Dtest| denotes the size of the test dataset. We also report
Hits@1, Hits@3, and Hits@10 measures where Hits@k represents the percent-
age of correct quadruple in the k highest ranked predictions, Hits@k defined
as:

Hit@k =
1

2 |Dtest|
∑

η∈Dtest

I(rank(o|s,r,t)≤k) + I(rank(s|r,o,t)≤k) (17)

where I(·) is an indicator function, I(cond) is 1 if cond holds and 0 otherwise.

Table 1. Statistics of datasets.

Dataset Entities Relations Training Validation Test

ICEWS14 6,869 230 72,826 8,941 8,963

ICEWS05-15 10,094 251 368,962 46,275 46,092

GDELT 500 20 2,735,685 341,961 341,961

Baselines. We test the performance of the proposed model against a variety of
strong baselines, including static KG representation learning models and TKG
representation learning models. Note that all these static models are applied
without considering the time information in the input, including: TransE [1],
DistMult [24], ComplEx [18], and SimplE [9]. The other TKG representation
learning baselines models include: TTransE [7], HyTE [2], TA-TransE [4], DE-
SimplE [5], ATiSE [22], and TeRo [21]. As TGAT [23] is specifically designed to
handle dynamic network graphs not TKG, we have not compared with it.

Implementation. We implemented our model and the baselines in PyTorch
and conducted the experiments on an NVIDIA Tesla V100 GPU. The vectors
dimension of the entity, relation, and time are fixed to 128. We also tried to
use different score functions to train the model, finally, we chose the ConvKB
model as our decoder. The number of temporal neighbors samples is set to 20 for
ICEWS14 and ICEWS05-15 datasets, 50 for the GDELT dataset. Theoretically,
the information from multi-hop neighbors can be aggregated in our model, to
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Table 2. Evaluation results on link prediction. The best results are in bold and the
second-best results are underlined.

Dataset ICEWS14 ICEWS05-15 GDELT

Metrics MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10

TransE 0.280 0.094 - 0.637 0.294 0.090 - 0.663 0.155 0.060 0.178 0.335

DistMult 0.439 0.323 - 0.672 0.456 0.337 - 0.691 0.210 0.133 0.224 0.365

ComplEx 0.474 0.370 0.523 0.689 0.485 0.377 0.531 0.702 0.213 0.132 0.234 0.374

Simple 0.478 0.373 0.530 0.689 0.486 0.376 0.535 0.705 0.211 0.128 0.231 0.382

TTransE 0.255 0.074 - 0.601 0.271 0.084 - 0.616 0.115 0.0 0.160 0.318

HyTE 0.297 0.108 0.416 0.655 0.316 0.116 0.445 0.681 0.188 0.0 0.165 0.326

TA-TransE 0.275 0.095 - 0.625 0.299 0.096 - 0.668 - - - -

TA-DistMult 0.477 0.363 - 0.686 0.474 0.346 - 0.728 0.206 0.124 0.219 0.365

DE-TransE 0.326 0.124 0.467 0.686 0.314 0.108 0.453 0.685 0.126 0.0 0.181 0.350

DE-DisMult 0.501 0.392 0.569 0.708 0.484 0.366 0.546 0.718 0.213 0.130 0.228 0.376

DE-SimplE 0.526 0.418 0.592 0.725 0.513 0.392 0.578 0.748 0.230 0.141 0.248 0.403

ATiSE 0.550 0.436 0.629 0.750 0.519 0.378 0.606 0.794 - - - -

TeRo 0.562 0.468 0.621 0.732 0.586 0.469 0.668 0.795 - - - -

TKGAT (ours) 0.574 0.502 0.655 0.752 0.607 0.504 0.676 0.813 0.256 0.154 0.290 0.441

speed up training, only the information about the 2-hop neighbors is aggregated.
The number of attention heads and negative samples is set to 4 and 200 respec-
tively, and the Adam SGD optimizer is applied to train model, we set 0.001 as
the learning rate for all datasets.

5.2 Results and Analysis

Table 2 shows the experimental results of link prediction on ICEWS14,
ICEWS05-15, and GDELT datasets. From the result, we can observe that the
static KG representation learning models fell behind TKG models in most cases.
The primary reason is static KG models only learned one representation for each
entity or relation, without taking into account the temporal information.

The results also demonstrate the state-of-the-art performance of our app-
roach for link prediction tasks. As we can see, the TKGAT model significantly
improves on the suboptimal TeRo model for most metrics. The typical TKG
representation learning models DE-SimplE, ATiSE, and TeRo, which pay more
attention to model temporal information while ignoring to capture of the TKG
topology structural information. In contrast, our model is based on the GNN
framework, which has the advantage of building structural features. Besides,
our model adopted attention networks to model relation weights and decou-
pled attention is applied to incorporate more extensive TKG structural features,
which allowed our model accurately to describe entities and relations character-
istics. TKGAT obtained central entity features by aggregating temporal neigh-
bours, a large number of network parameters were used to learn the features,
which increased a little model complexity but improved the accuracy. Mean-
while, time encoding function based on Bochner’s theorem was employed to
model relative time features, which further improved the model performance.

The experimental results also exhibt that the improvement in ICEWS05-15
and GDELT is greater than ICEWS14 dataset. the main reason is the compara-
tively small scale of the ICEWS14 dataset, in order to achieve the best prediction
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results, a large amount of training data is required. In addition, the results show
that the model performance on the ICEWS14 and ICEWS05-15 datasets are
better than those on the GDELT datasets, the major reason is the quite small
scale of the entities and relation types in the GDELT dataset, however, the
interactions between entities are extremely complex, which makes challenging to
extract effective information from the extremely complex interactions. Further-
more, the quality of the GDELT dataset is slightly lower, resulting in a relatively
lower accuracy.

Fig. 3. Ablation study on three datasets

5.3 Ablation Study

To verify the effectiveness of each component in TKGAT, firstly, we implemented
a version of TKGAT with all temporal attention weights set to the same value (-
Time) to prove the validity of the time encoding function based on Bochner’s the-
orem. Secondly, we removed the decoupled attention module (-Decoupled) and
adopted the traditional self-attention mechanism directly to calculate attention
scores between different entities. Finally, we incorporated relations information
directly into the object using a linear transformation (-Linear) to verify the
effectiveness of modeling relation weights.

As shown in Fig. 3, the TKGAT-Time model significantly reduced on MRR
metric in all datasets, which proved the effectiveness of the time encoding func-
tion, and we can also notice that building temporal features in TKG is essential.
In addition, the results show that the TKGAT-Decoupled model performed worse
than the TKGAT model, which proved that the decoupled attention method is
beneficial for improving the performance of the attention mechanism, and the
correlations between entity and temporal features captured by decoupled atten-
tion are effective for TKG representation learning. We can also observe that the
TKGAT-Linear model worked slightly worse than the TKGAT model, which
indicates the effectiveness of capturing relations weights.
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6 Conclusion

In this paper, we present a novel model, called TKGAT, for temporal knowl-
edge graph representation learning. Specifically, time encoding function based
on Bochner’s theorem was applied to efficiently model relative time information,
decoupled attention was adopted to capture the correlations between entity and
temporal features, and the different relations influences were learned by atten-
tion network. Experimental results show that the TKGAT can effectively model
temporal knowledge graph features. The ablation study also demonstrates the
effectiveness of each component of TKGAT. For future work, the generation of
time-aware discriminative negative samples is worth exploring.
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