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Abstract. While deep neural networks have excellent results in many
fields, they are susceptible to interference from attacking samples result-
ing in erroneous judgments. Feature-level attacks are one of the effective
attack types, which target the learned features in the hidden layers to
improve their transferability across different models. Yet it is observed
that the transferability has been largely impacted by the neuron impor-
tance estimation results. In this paper, a double adversarial neuron attri-
bution attack method, termed ‘DANAA’  is proposed to obtain more
accurate feature importance estimation. In our method, the model out-
puts are attributed to the middle layer based on an adversarial non-linear
path. The goal is to measure the weight of individual neurons and retain
the features that are more important toward transferability. We have con-
ducted extensive experiments on the benchmark datasets to demonstrate
the state-of-the-art performance of our method. Our code is available at:
https://github.com/Davidjinzb/DANAA.

Keywords: Transferability - Adversarial attack - Attribution-based
attack

1 Introduction

Deep neural networks (DNNs) have been used in a wide range of applications in
different fields, such as face recognition [6], voice recognition [1] and sentiment
analysis [30]. DNNs can also achieve state-of-the-art performance in tasks such
as security verification in unconstrained environments where very low false pos-
itive rate metrics are required [6]. However, deep learning models are shown to
be vulnerable to interference from adversarial samples. Attackers can manipu-
late the model outcome by deliberately adding the perturbations to the original
samples to attack the models [28].

In general, the current approaches to attack models can be categorised into
two types: white-box attack [12] and black-box attack [22]. For white-box attacks,
the attacker knows the relevant parameters of the target model and can formulate
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the most suitable attack method. For black-box attacks, on the other hand,
the attacker does not have access to the model parameters. In terms of the
characteristics of the white-box and black-box attack methods, the black-box
attack provides the adversarial performance of the attacking samples, which
is useful for improving the robustness of deep learning models in real-world
scenarios. Specifically, the black-box attack methods have three types, including
query-based method [14], transfer-based method [8] and hybrid method [9].

The objective of the query-based method is to interrogate the model to
extract pertinent input or output information, and subsequently utilize this lim-
ited information to iteratively generate optimal adversarial samples. However,
such method is subject to restrictions imposed by access permissions and often
require multiple queries to obtain excellent adversarial samples. The transfer-
based method aims to train and generate adversarial samples on a known-
information local surrogate model, which are then transferred and tested on
the target black-box model for the attack success rate. Compared to query-
based methods, transfer-based methods do not require additional access to the
model and can bypass certain adversarial defense mechanisms aimed at queries.
The hybrid method combines the principles of query and transfer approaches.
Although it can achieve sufficiently high attack success rate, it also implies that
it is susceptible to adversarial defense mechanisms targeting both queries and
transfers. Therefore, in this paper, we focus on transfer-based method.

As a common approach of transfer-based attack, feature-level attack attempts
to maximise the internal feature loss by attacking intermediate layers’ features
to improve the transferability of the attack [32]. The aim is to increase the weight
of negative features in the middle layer of the model while decreasing the weight
of positive features. More negative features will be retained to assist the diver-
sion of the model’s predictions. However, it is still challenging to harmoniously
differentiate the middle-level features via feature-level attack method, which is
also prone to its local optimum [32]. Moreover, it is well-known that the effec-
tiveness of transfer-based black-box attacks is influenced by the overfitting on
surrogate models and specific adversarial defenses. To address these challenges,
we propose to utilise the information of neuron importance estimation for the
middle layer to identify the adversarial features more accurately. In addition, we
also evaluate the transferability of our proposed method on adversarially trained
models, which will be specifically discussed in Sect.4. The results demonstrate
that our method achieves favorable attack success rates even on target models
protected by adversarial defenses.

To obtain adversarial samples with higher transferability, this paper presents
a double adversarial neuron attribution attack (DANAA). DANAA method
attributes the model outputs to the middle layer neurons, thus measuring indi-
vidual neuron weights and retaining features that are more important towards
transferability. We use adversarial non-linear path selection to enrich the attack-
ing points, which improves the attribution results. Extensive experiments on the
benchmarking datasets following the literature methods have been conducted.
The results show that, DANAA can achieve the best performance for the adver-
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sarial attacks. We anticipate this work will contribute to the attribution-based
neuron importance estimation and provides a novel approach for transfer-based
black-box attack. Our contributions are summarised as follows:

— We propose DANAA, an innovative method of non-linear gradient update
paths to achieve a more accurate neuron importance estimation, for a more
in-depth study of the route to attribution method.

— We present both theoretical and empirical investigation details for the attri-
bution algorithm in DANAA, which is a core part of the method, in Sect. 3.

— A comprehensive statistical analysis is performed based on our benchmark-
ing experiments on different datasets and adversarial attacks. The results in
Sect. 4 demonstrates the state-of-the-art performance of DANAA method.

2 Related Work

In this section, we review the literature on white-box attacks, query-based black-
box attacks, transfer-based black-box attacks, and hybrid black-box attacks.

2.1 Common White-Box Attacks

Previous work has demonstrated that neural networks are highly susceptible
to misclassification by pre-addition of perturbed test samples. Such processed
samples are called adversarial samples. The emergence of adversarial samples has
led to the development of a range of adversarial defences to ensure the model
performance [16,28,29)].

Currently, adversarial attacks can be divided into white-box attacks and
black-box attacks depending on the level of available information for the
model being attacked. There are various approaches for white-box attacks, such
as gradient-based and GAN-based. Gradient-based white-box attacks include
FGSM [12], I.FGSM [16], PGD [20] and C&W [3]. Some recent GAN-based
white-box attack methods are AdvGAN [33], GMI [37], KED-MI [4] and
Plug& Play [24]. While white-box attacks are effective in measuring the robust-
ness of a model under attack, in real-world scenario, the parameters of the model
are often not accessible, leading to the development of black-box attacks.

2.2 Query-Based Black-Box Attacks

Query-based attacks are a branch of black-box attacks aiming to train an effec-
tive adversarial sample by performing a small-scale attack on the target model
to query the model parameters, such as the model labels and confidence lev-
els. These parameters can be used as part of the dataset to assist in training
the migration algorithm to verify the migration of the black-box model. Ilyas
et al. [14] were the first to propose a query-based black-box attack approach.
Following, they proposed combining prior and gradient estimation of historical
queries and data structures based on Bandit Optimization, which greatly reduces
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the number of queries [15]. Li et al. [17] proposed a query-efficient boundary-
based black box attack method (QEBA). It proved that the gradient estimation
of the boundary-based attack over the entire gradient space is invalid in terms
of the number of queries. Andriushchenko et al. [2] proposed the square search
attack method, which selects local square blocks at random locations in the
image to search and update the direction of the attack.

2.3 Transfer-Based Black-Box Attacks

The transferability of adversarial attacks refers to the applicability of the adver-
sarial samples generated by the local model to the target model for attack. The
attacker firstly uses the parameters obtained from the attack on the local model
to train the adversarial samples, then uses these samples to perform a black-box
attack on the target model to verify the success rate.

There are three main categories of transfer-based black-box attacks, namely
gradient calculation methods, input transformation methods and feature-level
attack methods. Gradient calculation methods such as MIM [7], VMI-FGSM [31]
and SVRE [35] improve transferability by designing new gradient updates. Input
transformation methods such as DIM [34], PIM [11] and SSA [18] boost the
transferability by using input transformations to simulate the ensemble process
of the model, while feature-level attacks focus on the middle-layer features.

Some state-of-the-art feature-level attack methods include NRDM, FDA, FIA
and NAA | etc. NRDM [21] attempts to maximise the degree of distortion between
neurons, but it does not take into account the role of positive and negative fea-
tures in the attack. FDA [10] averages the neuronal activation values to obtain
an estimate of the importance of a neuron. However, this method does not dis-
tinguish the degree of each neuron’s importance and the discrimination between
positive and negative features is still too low. FIA [32] multiplies the activation
values of neurons and back-propagation gradients for estimation, but its effect
on the original input is affected by over-fitting and the results are not accu-
rate. NAA [36] effectively improves the transferability of the model and reduces
computational complexity by attributing the model’s output to an intermediate
layer to obtain a more accurate importance estimation. However, its attribution
method focuses more on the gradient iteration process considering linear path,
and there is still room for improvement in the non-linear path condition.

2.4 Hybrid Black-Box Attacks

Hybrid method is a combination of query-based method and transfer-based
method. It not only considers the priori nature of the transfer but also utilizes
the gradient information obtained from the query, which resolves the challenges
of high access cost for the query attack and low accuracy for transfer attack.
Dong et al. [5] proposed a hybrid method named P-RGF, which used the
gradient of surrogate model as prior knowledge to guide the query direction
of RGF and obtained the same success rate as RGF with fewer queries. Fu
et al. [9] train Meta Adversarial Perturbation (MAP) on an surrogate model
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and perform black-box attacks by estimating the gradient of the model, which
has good transferability and generalizability. Ma et al. [19] introduced Meta
Simulator to black-box attacks based on the idea of meta-learning. By combining
query and transfer based attacks, the researchers not only significantly reduce
the number of queries, but also reduce the complexity of queries by transferring
the adversarial samples trained on the surrogate model to the target model.

While there are different types of black-box attack methods, transfer-based
attacks is considered as the most convenient method which doesn’t require addi-
tional information queries for the model. However, it poses the challenge of a
good transferability for the adversarial samples. Therefore, in this work, we tar-
get the transfer-based attack methods. Especially, we introduce the attribution
method for the middle-layer feature estimation, which shows a promising per-
formance with our experiments.

3 Method

3.1 Preliminaries

When an adversarial attack to the target model can be successfully launched
given an adversarial samples trained with a local DNN model, we consider there
is a strong transferability relationship between these two models. Formally, with
a deep learning network N : R® — R° and original image sample 2° € R,
whose true label is ¢, if the imperceptible perturbation ZZ;IO Az¥ is applied on
the original sample x°, we may mislead the network N with the manipulated
input 2t = 20+ ZZ_:B AzF to the label of m, which can also be denoted as z#.
Assuming the output of the sample x as N(z), the optimization goal will be:

[|* — ZCOHn < e subject to N(x')# N(z") (1)

where ||-||,, represents the n-norm distance. Considering the activation values in
the middle layers of network IV, we denote the activation value of y-th layer as
y and the activation value of j-th neuron as y;.

3.2 Non-linear Path-Based Attribution

Inspired by [25] and [36], we define the attribution results of input image z*(with
n X n pixels) as

" ON(x!
A;:Z/mg a:(ct ) at (2)
=1

As shown in Fig. 1, different from the NAA algorithm [36], our paper proposes
a new attribution idea that uses a non-linear gradient update path instead of
the original linear path, which allows the model to find the optimal path against
the attack itself. In Eq.2, the gradient of N iterates along the non-linear path
xt =20 + ZZ;B Ax* in which %(.) is the partial derivative of N to the i-th
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Fig. 1. Non-linear gradient update path diagram

pixel. For each iteration, Az! = szgn( ( )) + N(0,0). We further apply the
learning rate and Gaussian noise to update the perturbation.

Afterwards, we can approximate A as N(z) depending on basic advanced
mathematics and extend the attribution results to each layer. The formula of
attribution can then be expressed as:

_ z') Qy;(x)
- /Azay i et 3)

where A, represents the attribution of j-th neuron in the layer y, >~ A, =
A. We provide the relevant proof of our non-linear path-based attribution in
following section.

3.3 Proof of Non-linear Path-Based Attribution

Since we now have A, as Eq. 3, assuming that the neurons on the middle layer of
the deep neural network are independent from each other, A, can be expressed
as

at)

y; =

3y
Azt J 4
ayj ij (4)

2 t
where %ZZ(I v is the gradient of N (z*) to the j-th neuron, 371 | Az} L’éff ) is the
sum of the gradient of y; to each pixel on z*(z' € R™). Since the two gradient
sequences are zero covariance, we then convert Eq. 4 into:

f

Ay, = dt / ZA tayﬂ (5)

Combining the principles of calculus, we can prove that

0
/Zﬂt yj dt =yt — 49 (6)

then we denote y§ — y? as Ay?, Eq.5 can be converted into

ON (z?)
Ay, = Dyl ayj(xt)dt (7)
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t
Denoting | gg%it;dt as 7(y;), which means the gradient of network N along
our non-linear path with attention to the j-th neuron. Afterwards, we can get
Ay, = Ayl - ~(y;). Since the neuron y; is on the middle layer y, finally the
attribution result of the layer y can be expressed as

Ay =" Ay = Ayb-a(yy) =Dyt 4(y) (8)

Yi€yY Yj €Y

Algorithm 1. Double Adversarial Neuron Attribution Attack
Require: Deep network N, target layer y

Require: Manipulated input z' with label m

Require: Perturbation budget ¢ and iteration number T

Require: Original input z° and integrated step 7
adv

1:a:%77(yj):0790207/1/:171‘0 :mt
2: fort =0+ 7 do .
3 o = clipS {zt + Ir - sign(agif)) + N(0,0)}
4 (y) =) + Ty N ()
5: end for
6: fors=0—T—1do
T Ay =0y (y) B
. — . Vgt y
8: gs+1 =+ gs + ||vmfA?/H1
. adv __ . € adv .
9:  w5i = Clip;, {$s+1 + a- szgn(gs+1)}
10: end for

Algorithm 1 shows the specific pseudocode structure of our DANAA algo-
rithm with Non-linear Path-based attribution.

4 Experiments

Extensive experiments have been conducted to demonstrate the efficiency of our
method. Following sections cover the topic of leveraged datasets, benchmarking
models and incorporated metrics. We also provide the experimental settings. We
performed five rounds of benchmarking experiments to compare our algorithm
with other methods, demonstrating the superiority of our approach to the base-
lines in terms of transferability for adversarial attacks. Moreover, we conducted
the ablation study to investigate our approach, focusing on the impact of various
learning rates and noise deviation on attack transferability.

4.1 Dataset

Following other literature methods, the widely-used datasets from NAA work [36]
are considered in this paper. The datasets consist 1000 images of different cat-
egories randomly selected from the ILSVRC 2012 validation set [23], which we
called a multiple random sampling(MRS) dataset.
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4.2 Model

We include four widely-used models for image classification tasks, namely
Inception-v3 (Inc-v3) [27], Inception-v4 (Inc-v4) [26], Inception-ResNet-v2
(IncRes-v2) [26], and ResNet-v2-152 (Resl52-v2) [13], as source models for
assessing the attacking performance of our algorithm. We start with four
pretrained models without adversarial learning, which include Inc-v3, Inc-v4,
IncRes-v2, and Res152-v2. Later on, we construct more robust models for a in-
depth comparison, such as including adversarial training for the pretrained mod-
els. This results in two adversarial trained models, including Inception-v3(Inc-v3-
adv) and Inception-Resnet-v2 (IncRes-v2-adv) [16]. The remaining three mod-
els are based on the ensemble models: the ensemble of three adversarial trained
Inception-v3(Inc-v3-adv-3), the ensemble of four adversarial trained Inception-v3
(Inc-v3-adv-4), and the ensemble of three adversarial trained Inception-Resnet-
v2 (IncRes-v2-adv-3), following the work from [29]. In [29], the models are com-
bined by training the sub-models of the corresponding model independently and
finally weighting the results of each sub-model to increase the accuracy and
robustness of the model.

4.3 Evaluation Metrics

The attack success rate is selected as the metric to evaluate the performance.
It measures the proportion of the dataset where our method produces incorrect
label predictions after attacking. Hence, a higher success rate indicates improved
performance of the attack method.

4.4 Baseline Methods

For comparison in our experiment, we selected five state-of-the-art attack meth-
ods as the baseline, including MIM [7], NRDM [21], FDA [10], FIA [32], and
NAA [36]. Furthermore, to test the effect of each model after combining input
transformation methods and to verify the superiority of our algorithm, we apply
both DIM and PIM to the attack methods. The implementation details can
be found in the open source repository. Consequently, we extend the model
comparison set with MIM-PD, NRDM-PD, FDA-PD, FIA-PD, NAA-PD and
DANAA-PD, respectively.

4.5 Parameter Setting

In the experiment, we set the parameters as following: the learning rate (Ir) is
0.0025; the noise deviation is 0.25; and the maximum perturbation rate is 16,
which is derived from the number of iterations (15) and the step size (1.07). The
batch size is 10, and the momentum of the optimization process is 1. Since we
introduced the DIM and PIM algorithms to verify the superiority of our model
when combining input transformation methods, we set the transformation prob-
ability of DIM to 0.7, and the amplification factor and kernel size of PIM are 2.5
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and 3, respectively. For the target layer of the attack, we choose the same layer
as in NAA. Specifically, we attack InceptionV3/InceptionV3/Mixed_5b/concat
layer for Inc-v3; InceptionV4/InceptionV4/Mixed_-5e/concat layer for Inc-v4;
InceptionResnetV2/Ince-ptionResnetV2/Conv2d_4a_3x3/Relu layer for IncRes-
v2; the ResNet-v2-152/blo-ck2/unit_8/bottleneck_v2/add layer of Resl52-
v2 [36].

4.6 Result

All the experiments are carried out with the hardware of RTX 2080Ti card.
A detailed replication package can be found in the open source repository at
https://github.com/Davidjinzb/DANAA. We subsequently compile the results
of all the attack methods without and with the input transformation methods
(ending with PD) in Table 1.

In Table 1, we can see that, DANAA has retained a strong and robust
performance across all the models, in comparison with other attack methods.
Especially, DANAA demonstrated notable improvements on five models that
are adversarial trained. We can observe a largest improvement of the attacking
performance is between our method and NAA method [36], which is the gen-
erally second best attacking method in the comparison experiments. The ratio
of improvement is 9.0%. Across all local models, our approach demonstrated an
overall average improvement of 7.1% as compared to NAA on the adversarial
trained models. By introducing the PD concept, our method achieves a maxi-
mum improvement of 9.8% over NAA-PD and an overall average improvement
of 7.3% on the adversarial trained models.

4.7 Ablation Study

In this section, we investigate the impact of the learning rate and Gaussian noise
deviations on the performance of the proposed method.

The Impact of Learning Rates. Experiments are conducted using different
scales of learning rates, which are 0.25, 0.025, 0.0025 and 0.00025. In Fig. 2, the
DANAA method exhibits the highest attack success rate for nearly all models
when the selected learning rate was 0.0025. In Fig. 3, the highest attack success
rates are achieved on most models for DANAA-PD method.

Notably, when using Inception-ResNet-v2 as the source model, although at
a learning rate of 0.0025 DANAA-PD ranked second best in attack success rate
on the models without adversarial training, its effectiveness on the model with
adversarial training is still much higher than those at other learning rates.

The Impact of Gaussian Noise Deviation (Scale). To verify the effect of
adding Gaussian noise to the gradient update on model transferability in this
paper, we selected different noise deviations for testing in this subsection. As
shown in Fig.4 and Fig.5, five different scales of the Gaussian noise deviation
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ranging from 0.2 to 0.4 are used in this experiment. In general, higher value of
scale tends to have more superior results for the normal training model while
sacrificing performance for the more robust one. Conversely, a lower value of scale
results in less improvements for the normal trained model but better performance
for the adversarial trained model. Accordingly, the scale value of 0.25 is selected
for the optimal performance in this paper.

Table 1. Attack success rate of multiple methods on different models

Model Attack method | Inc-v3 | Inc-v4 | IncRes-v2 | Res152-v2 | Inc-v3-adv | IncRes-v2-adv | Inc-v3-adv-3 | Inc-v3-adv-4 | IncRes-v2-adv-3
Inc-v3 MIM 100 41.9 39.7 32.8 22.1 18.4 14.9 15.7 8.2
NRDM 90.4 61.4 52.5 49.9 26.1 19.2 9.5 12.9 4.7
FDA 81.7 429 37.1 35.1 19.4 12.6 9.3 12.2 5.0
FIA 96.5 79.1 77.8 71.8 54.8 53.9 43.1 44.2 23.2
NAA 97.0 83.0 80.6 4.7 56.2 59.4 49.5 50.4 3L.5
DANAA 98.1 86.8 |84.8 80.3 64.4 68.4 55.4 56.5 33.1
Inc-v4 MIM 58.2 99.9 |45 40.4 23.5 20.4 17.7 20.3 9.7
NRDM 780 [96.4 |62.8 62.3 26.1 25 17.3 16.6 6.8
FDA 846 [99.6 |71.8 68.8 28.2 26.1 174 17.1 7.0
FIA 746 |91.0 |69.6 65.7 43.5 47.3 39.3 39.9 23.5
NAA 833 [958 |77.9 73.3 49.5 53.2 48.0 46.5 31.4
DANAA 86.8 972 |82.4 76.9 54.9 61 53.8 53.5 35
IncRes-v2 | MIM 60 519 |99.2 42.2 25.9 30.5 21.7 23.3 12.3
NRDM 728 |67.9 |77.9 59.7 35.7 30.8 16.4 17.1 7.3
FDA 69.0 |68.0 |78.2 56.2 34.5 29.7 16.2 15.4 7.7
FIA 71.0 |682 |78.8 63.9 53.8 56.4 474 45.8 37.6
NAA 79.5 |76.4 |89.3 71.1 60.3 64.8 56.9 55.0 47.3
DANAA 82.7 [80.4 |91.5 7T 66.3 72.2 64.7 60.8 56
Res152-v2 | MIM 52.9 473 44.9 99.4 26.6 25.1 24.3 24.4 13.3
NRDM 72.7 68.8 59.5 89.9 39.1 31.0 20.3 18.1 9.3
FDA 15.7 9.2 8.3 26.2 13.1 6.8 9.3 9.7 4.0
FIA 80.7 78.2 77.5 98.0 58.5 58.2 53.0 48.4 34.4
NAA 84.7 |835 |82.3 97.6 61.8 67.0 59.1 58.1 46.1
DANAA 86.4 |86.8 |85.9 98.8 68.1 71.7 65.1 62.0 48.4
Inc-v3 MIM-PD 99.7 |72.8 |66.9 54.1 31.7 29.1 20.2 21.7 9.7
NRDM-PD 86.3 |68.6 |64.3 58.0 311 22.6 10.6 13.8 5.9
FDA-PD 747 493 | 46.5 40.9 23.7 15.4 10.5 13.1 6.2
FIA-PD 96.9 835 |82.7 79.8 61.4 62.1 47.0 48.2 27.5
NAA-PD 972 |87.0 |85.6 81.1 64.9 65.8 53.4 51.6 33.6
DANAA-PD |97.9 |89.4 |89.4 84.8 70.6 72.3 61.7 60.9 40.1
Inc-v4 MIM-PD 81.3 99.4 |71.0 59.7 31.6 28.0 22.9 23.3 12.7
NRDM-PD 90.3 97.0 79.5 76.8 34.1 34.4 21.1 19.7 8.6
FDA-PD 93.2 99.2 86.4 82.4 36.7 37.4 20.3 21.1 10.0
FIA-PD 84.0 92.4 81.2 7.1 55.2 58.6 48.9 47.5 29.3
NAA-PD 90.5 |96.9 87.6 83.9 58.4 64.3 54.0 53.4 34.6
DANAA-PD 90.4 96.5 87.9 84.9 63.9 71.0 61.9 60.1 42.7
IncRes-v2 | MIM-PD 80.7 76.5 98.0 65.8 36.9 42.7 29.4 28.6 17.1
NRDM-PD 76.4 | 741 | 787 64.1 40.7 324 17.5 18.8 6.7
FDA-PD 781 762 |80.7 66.5 41.3 35.6 18.4 17.0 7.6
FIA-PD 76.5 |73.4 |817 71.1 60.0 62.5 50.3 47.0 36.4
NAA-PD 81.4 |782 |89.9 76.4 65.2 67.7 59.9 57.1 46.0
DANAA-PD |83.7 |80.4 |89.8 80.6 70.3 73 65.8 63.1 55.8
Res152-v2 | MIM-PD 815 |77.5 |76.2 99.4 41.5 44.5 34.8 33.6 18.4
NRDM-PD 84.1 |821 |73.1 90.1 51.6 43.5 28.3 22.5 11.2
FDA-PD 22.1 12.7 11.4 234 19.6 10.4 9.9 11.7 5.4
FIA-PD 88.6 [86.1 |87.0 98.3 70.9 71.0 63.6 58.6 43.4
NAA-PD 90.2 |88.5 |89.0 98.0 73.5 76.1 70.3 66.3 52.2
DANAA-PD 92.0 [91.7 |91.8 98.7 79.3 82.1 76.1 73.4 60.8
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Fig. 2. DANAA attack success rate performance at different learning rates
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Inception-v3 Inception-v4
100

Attack Success Rate (%)

00

Scale=0.2
Scale=0.25
Scale=0.3

—— Scale=0.35
Scale=0.4

80 30

60
60

40

Attack Success Rate (%)

40

ENE NI SNy PPN 6 ) AN WL g b Al a0V )

00 e s" V5207 1 6‘1 av AV © eV aes V382V a0 9.a0) 6‘1 A

TR °NWS'\Z§°' W N SRR 0‘“?@ e e e
Inception-ResNet-v2 ResNet-v2-152

100 100

90

80

70 ‘ \

“\3\1 “CNA e %% a0 oY, éq—"ﬂ a8 A oad “\53\6 “CNA e %% a8y, (3\;3 A8 b oad
P est WS Y@s—w,&\“c\*“ s R Res W oRe e “0‘“ s

60

Attack Success Rate (%)

Attack Success Rate (%)
(=) ~ [} N}
(=] (=} (=3 (=3

Fig. 5. DANAA-PD attack success rate performance at different noise deviation



468 7. Jin et al.

5 Conclusion

In this paper, we propose a double adversarial neuron attribution attack method
(DANAA) to achieve enhanced transfer-based adversarial attack results. Com-
pared with other literature methods, our method obtains a better transferability
for the adversarial samples. To derive more accurate importance estimates for
the middle layer neurons, we firstly employ a non-linear path to the perturbation
update process. Considering the calculation of gradient on the non-linear path,
for all examined models, the performance of DANAA algorithm has substan-
tially improved by up to 9.0% in comparison with the second best method with
adversarial trained models, and has an average overall improvement by 7.1%.
With the information transformation methods of DIM and PIM, our DANAA-
PD algorithm also has a maximum enhancement of 9.8% and an average overall
improvement of 7.3% compared to NAA-PD algorithm. Extensive experiments
have demonstrated that the attribution model proposed in this paper achieves
the state-of-the-art performance, with greater transferability and generalisation
capabilities.
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