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Abstract. Representation Learning (RL) of knowledge graphs aims to project
both entities and relations into a continuous low-dimension space. Most methods
concentrate on learning entities’ representations with structure information indi-
cating the relations between entities (Trans- methods), while the utilization of
entity multi-attribute information is insufficient for some scenarios, such as cold
start issues or zero-shot problems. How to utilize the complex and diverse multi-
attribute information for RL is still a challenging problem for enhancing knowl-
edge graph embedding research. In this paper, we propose a novel RL model
Duet Entity Representation Learning (DERL) for knowledge graphs, which takes
advantage of entity multi-attribute information. Specifically, we devise a novel
encoder Entity Attribute Encoder (EAE), which encodes both entity attribute
types and values to generate the entities’ attribute-based representations. We
further learn the entities’ representations with both structure information and
multi-attribute information in DERL. We evaluate our method on two tasks: the
knowledge graph completion task and the zero-shot task. Experimental results on
real-world datasets show that our method outperforms other baselines on two
downstream tasks by building effective representations for entities from their
multi-attribute information. The source code of this paper can be obtained from
https://anonymous.4open.science/r/DUET-adma2023/.
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1 Introduction

Knowledge graphs (KGs) provide a massive amount of structure information for entities
and relations, which have been successfully utilized in various fields such as knowledge
inference [21] and question answering [23]. Typical KGs like Freebase [1], or YAGO3
[8] usually model the multi-relational information with many structure triples repre-
sented as (head entity, relation, tail entity), which is also abridged as (h, r, t).

Currently, most RL methods focus on structure information but ignore attribute
information in KGs. For example, in Fig. 1, we show two entity multi-attribute informa-
tion in a structure triple sampled fromDWY100K [13]. Although some works have real-
ized the importance of multi-attribute information such as DT-GCN [11], they haven’t
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Fig. 1. Example of entity multi-attribute information in DWY100K.

fully used the rich semantic information. First, they didn’t embed the attribute types and
attribute values jointly and applied them to improve the entity representation semantic
accuracy directly. Second, they didn’t consider using both structure information and
multi-attribute information to improve the overall RL effect. In addition, entity multi-
attribute information is generally stored in KGs in the form of triples and the attribute
triples can not tackle successive attribute values and might suffer from issues like one-
to-multi or multi-to-one relations in KGs. Furthermore, entity multi-attribute informa-
tion is usually diverse and complex: different entities may have multiple attribute types
in KGs, and even different attribute values may have various data structures and value
granularities. For example, in Fig. 1, Babyfather (song) and Sade (singer) have
different attribute types; the three attribute types of Sade (singer) that correspond to
attribute values have different forms and structures. Entity multi-attribute information
is too complex to use for learning embeddings directly. In the meanwhile, intuitively,
different attribute types and values play different degrees of importance in the enti-
ties’ representations. If entity multi-attribute information cannot be used reasonably,
the entities’ representations will lose a large amount of accurate semantic information
thus reducing their semantic accuracy.

To address those problems, we first design a novel encoder EAE, which can encode
the complex and diverse entity multi-attribute information to generate the entities’
attribute-based representations. Moreover, we propose a novel RL model DERL for
KGs, combining structure and multi-attribute information to improve KG embedding.
In the DERL model, an entity’s representation is responsible for jointly modeling the
corresponding structure information and multi-attribute information.

For learning structure information, we follow a typical RL method TransE [2] and
regard the relation in each structure triple as a translation from the head entity to the tail
entity. For learning multi-attribute information, we use the EAE to learn the entities’
attribute-based representations. In our EAE, we set up a training model that contains
two embedding components. One component embeds the entity’s different attribute
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types, and the other component uses the bi-directional Long Short-Term Memory (Bi-
LSTM) to characterize the attribute values. Attribute types and values apply an attention
mechanism to learn their different importance for entities’ representations individually.
Finally, we use the embeddings of these two parts to generate the entities’ attribute-
based representations.

We evaluate our model on the knowledge graph completion task and the zero-shot
task. Experimental results demonstrate that our model achieves state-of-the-art perfor-
mances on both tasks. Our experimental results indicate that our model can use entity
multi-attribute information to improve the overall KG embedding effect and verify the
importance and necessity of attribute information for entity representation. We demon-
strate the main contributions of this work as follows:

– We design a novel encoder Entity Attribute Encoder (EAE), which uses both the
entity’s attribute types and values to generate the entity’s attribute-based representa-
tion. We adopt the attention mechanism for attribute types and values to distinguish
the importance of different attribute information to the entity’s representation.

– We propose a novel RL model Duet Entity Representation Learning (DERL), which
utilizes both entity structure information and multi-attribute information for enhanc-
ing RL’s effect.

– We evaluate the DERL model’s effectiveness on the knowledge graph completion
and zero-shot tasks. Experimental results on real-world datasets illustrate that the
DERL model consistently outperforms other baselines on these two tasks. To the
best of our knowledge, this is the first work attempt to use entity multi-attribute
information to solve the zero-shot problem.

2 Problem Formulation

We first introduce the symbols used in this paper. Given a structural triple (h, r, t) ∈ T ,
while h, t ∈ E stand for entities, r ∈ R stands for the relation. Respectively, h and t are
the head entity and the tail entity. a ∈ A stands for the attribute type and v ∈ V stands
for the attribute value. c ∈ v stands for the attribute value character. T stands for the
whole training set of structural triples. E is the set of entities, R is the set of relations,
A is the set of attribute types, and V is the set of attribute values. We propose two kinds
of representations for each entity to utilize structure information and multi-attribute
information in DERL.

Definition 1. Structure-Based Representations: es represents the entity’s structure-
based representation. esh and est are the structure-based representations based on the
head entity and the tail entity. r represents the relation’s representation. These represen-
tations could be learned through existing translation-based models.

Definition 2. Attribute-Based Representations: ea represents the entity’s attribute-
based representation. eah and eat are the attribute-based representations based on the
head entity and the tail entity. We will propose an encoder to construct this kind of
representation in the following section.
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Fig. 2. The Overall Architecture of DERL Model

3 Methodology

3.1 Overall Architecture

We attempt to utilize entity structure information as well as multi-attribute information
in the DERL model. Following the framework of translation-based methods, we define
the overall energy function as follows:

S(h, r, t) = Ss + Sa, (1)

where Ss = ||esh+r−est||. Ss is an energy function based on structure-based represen-
tations, which is the same as the translation-based methods. Sa is an energy function
based on attribute-based representations and structure-based representations. To make
the learning process of Sa compatible with Ss. We define Sa as:

Sa = Sas + Ssa + Saa, (2)

where Sas = ||eah+ r− est|| and Ssa = ||esh+ r− eat||, in which one of the head entity
or the tail entity is the structure-based representation, and the other is the attribute-
based representation. Saa = ||eah + r− eat||, the head entity and the tail entity are both
attribute-based representations. According to the overall energy function, the overall
architecture of the DERL is demonstrated in Fig. 2. We learn the entities’ structure-
based representations and relations’ representations from TransE. And we learn the
entities’ attribute-based representations from EAE. Under the overall energy function,
we can get the attribute-based representations and the structure-based representations
simultaneously. The overall energy function will project these two types of entities’
representations into the same vector space with relation representations shared by all
four energy functions, which will be promoted between two types of representations.

3.2 Entity Attribute Encoder

Entity multi-attribute information is difficult to use due to its complexity, heterogene-
ity, and different levels of importance. These problems directly lead to the difficulty
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of learning multi-attribute information into entities’ representations. Therefore in our
EAE, we consider the encoding of attribute types and attribute values respectively. The
framework of the EAE is demonstrated in Fig. 3. The Attribute Type Embedding (ATE)
learns the entity attribute type embeddings, and the Attribute Value Character Embed-
ding (AVCE) learns the entity attribute value character embeddings. In the Attribute
Value Embedding (AVE), we use the Bi-LSTM to capture the attribute value charac-
ters’ information and generate the attribute value embeddings. We apply the attention
mechanism to combine the attribute types and values for enhancing KG embedding.
Finally, we combine the attribute type embeddings and the attribute value embeddings
to generate the entities’ attribute-based representations.

Attribute Type Embedding (ATE). We first count the attribute types and randomly
generate an embedding for each attribute type. Because each entity has a different num-
ber of attribute types and values, we adopt the zero-filling strategy to unify the numbers.
To prevent the zero-filling strategy from affecting the model’s training, we separately
generate the same embedding for all zeros to prevent problems such as vanishing gradi-
ents. Given the entity’s M attribute types: A = (a0, a1, ..., aM ), we obtain the following
embeddings of the entity’s M attribute types:

A = (a0,a1, ...,aM ). (3)

Attribute Value Character Embedding (AVCE). We first count the characters that
appear in the attribute values. Then we randomly generate an embedding for each
attribute value character. Because the numbers of characters in each attribute value are
different, we also utilize the zero-filling strategy and generate the same embedding for
all zeros. Given the attribute value N characters: vi = (c0, c1, ..., cN ), we get the fol-
lowing attribute value character embeddings:

vi = (c0, c1, ..., cN ). (4)

Attribute Value Embedding (AVE). We observe that the different attribute values
might appear differently in KGs. For example: “2012-12-12” and “180 cm” represent a
person’s birthday and height respectively. In mono-lingual KGs, the attribute value can
be considered as a sequence of characters with the same vocabulary. [15] proves that the
LSTM can effectively capture the sequence information between characters. Therefore
we choose the Bi-LSTM to learn the sequence information between characters from
beginning to end. The following equations define the Bi-LSTM cell:

ft = σ(Wf [ht−1, ct] + bf ), (5)

it = σ(Wi[ht−1, ct] + bi), (6)

H̃t = tanh(WH [ht−1, ct] + bH), (7)

Ht = ft � Ht−1 + it � H̃t, (8)
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Fig. 3. The Framework of Entity Attribute Encoder

ot = σ(Wo[ht−1, ct] + bo), (9)

ht = ot � tanh(Ht), (10)

where � denotes a vector multiplication, ft, it, ot are the forget gate, input gate, and
out gate of the Bi-LSTM cells.Wf ,Wi,WH ,Wo are weight matrices. σ is the sigmoid
function. bf , bi, bH , bo are biases. Bi-LSTM is divided into the forward LSTM (F-
LSTM) and the backward LSTM (B-LSTM). The F-LSTM reads the input character
embeddings. For example, the F-LSTM reads the attribute value character embeddings
vi = (c0, c1, ..., cN ) from left to right. The B-LSTM reads the attribute value character
embeddings reversely. The outputs of the F-LSTM and B-LSTM are:

hf = F-LSTM(cN ,hf−1), (11)

hb = B-LSTM(c0,hb+1). (12)

The initial states of the Bi-LSTM are set to zero vectors. After reading the embed-
ding of all characters contained in an attribute value, we concatenate the final hidden
states of the two-direction LSTM outputs to generate the attribute value embedding:

vi = [hf ;hb]. (13)

Given the entity’s M attribute values: V = (v0, v1, ..., vM ), we get the following the
attribute value embeddings:

V = (v0,v1, ...,vM ). (14)

Attention for Attribute Types and Attribute Values. An entity’s attribute-based rep-
resentation assembles all the entity attribute information, but not all attribute infor-
mation is equally important to an entity’s representation. To learn the importance of
different attribute types and attribute values for an entity’s representation, we adopt the
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attention mechanism to solve this problem [22]. Given the entity attribute type embed-
dings: A = (a0,a1, ...,aM ), we calculate their attention weights:

βi = softmax(ATWtai), (15)

where Wt is the weight matrix of ai. Here we utilize the attribute type embeddings to
get the attention weights. The attention weights of attribute value should be consistent
with that of its attribute type:

etype =
M∑

i=0

βiai, (16)

evalue =
M∑

i=0

βivi, (17)

we concatenate etype and evalue to get the entity’s attribute-based representation:

ea = [etype;evalue]. (18)

3.3 Objective Formalization

We utilize a margin-based score function as our training objective, which is defined as
follows:

L =
∑

(h,r,t)∈T

∑

(h′ ,r′ ,t′ )∈T ′
max(γ + S(h, r, t) − S(h

′
, r

′
, t

′
), 0), (19)

where margin γ means the artificially defined minimum distance between positive and
negative examples. S(h, r, t) is the overall energy function, in which both head and tail
entities have two kinds of representations: structure-based representations and attribute-
based representations. The above energy functions are defined as the L1-norm. It is
verified by experiments that the DERL’s effects based on L1-norm are better than the
DERL’s effects based on L2-norm. T

′
is the negative sample set of T , which we define

as follows:

T
′
= (h

′
, r, t)|h′ ∈ E ∪ (h, r

′
, t)|r′ ∈ R ∪ (h, r, t

′
)|t′ ∈ E, (20)

which means one of the entities or relations in a triple can be randomly replaced by
another one. Since we have two entities’ representations, if a triple already exists T , it
will not treat it as a negative sample because the entity can be either a structure-based
representation or an attribute-based representation.

3.4 Optimization and Implementation Details

DERL model can be defined as a parameter set θ = (E, R, A, C,W, B). E stands for the
embedding set of entities and R stands for the embedding set of relations. They can be
randomly initialized or trained by previous translation-based methods such as TransH
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[18] and TransR [7]. A stands for the embedding set of attribute types and C stands for
the embedding set of attribute value characters and they are initialized randomly.W and
B represent the weight set and bias set of Bi-LSTM and attention mechanism in EAE,
which can be initialized randomly. We utilize the mini-batch stochastic gradient descent
(SGD) to optimize our model, where chain rules are applied to update the variables and
parameters. We use GPU to accelerate training.

4 Experiments

4.1 Datasets and Experiment Settings

Datasets. In our experiments, we use the DWY100K [13] to evaluate our models’
knowledge graph completion effect. For the zero-shot task, we build a new dataset
FB24K-New based on FB24K [6] to simulate a zero-shot scenario. We select 12,789
entities as In-KG entities in FB24K and select 5,179 entities in FB24K that are related
to In-KG entities as Out-of-KG entities. We extract the structure triples which contain
In-KG entities and Out-of-KG entities and add them to the test set. Our test set is split
into 4 types: ( I - I ), ( O - I ), ( I - O ), and ( O - O ). I represent an In-KG entity, and O
represents an Out-of-KG entity. The DWY100K, FB24K, and FB24K-New details are
listed in Table 1 and Table 2.

Table 1. Statistics of DWY100K

Datasets #Ent #Rel #Attr #Attr tr #Rel tr

DBP-WD-Dbpedia 100,000 330 351 381,166 463,294

DBP-WD-Wikidata 100,000 220 729 789,815 448,774

DBP-YG-Dbpedia 100,000 302 334 451,646 428,952

DBP-YG-Wikidata 100,000 31 23 118,373 502,563

Experiment Settings. In the DERLmodel, the margin γ set among {1.0, 2.0, 3.0}. The
learning rate λ set among {0.0005, 0.0003, 0.001}. We set different learning rates for
different representation type combinations. The optimal configurations of the DERL
are: λ = 0.001, γ = 1.0. We set the size of character embedding and attribute type
embedding to 32. We set the attention weight size to 64 and the size of the hidden layer
of Bi-LSTMs to 16. The dimensions of the attribute-based representation and structure-
based representation are set to 64. The dimension of the relation’s representation is
set to 64. We set two evaluation settings named “Raw” and “Filter”: “Filter’ drops the
repeated triples in the training stage (when we alternate the entities and relations, the
reconstructed triple has a chance to be an existing triple), while “Raw” does not.
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Table 2. Statistics of FB24K and FB24K-New

Dataset #Ent #Rel #Attr #Attr tr #Rel tr

FB24K 23,634 673 314 207,610 216,409

Dataset #Ent #I - I #O - I #I - O #O - O

FB24K-New 17,968 100,249 12,699 400 135

4.2 Knowledge Graph Completion Task

Due to the incompleteness and complexity of KGs, many KGs are missing triples, and
a large number of potential relations between entities in the KGs are not discovered.
Knowledge graph completion aims to learn appropriate entities’ and relations’ repre-
sentations to discover the latent, correct triples. In addition, the knowledge graph com-
pletion task has been widely used to evaluate the quality of knowledge representations
[24].

Evaluation Protocol. We will report four prediction results based on our models. The
DERL(Structure) only utilizes structure-based representations for all entities when pre-
dicting the missing ones. While DERL(Attribute) only utilizes attribute-based represen-
tations. The DERL(Union) is a simple joint method considering the weighted concate-
nation of both entities’ representations. The DERL(Ablation) only uses attribute infor-
mation for training. We use three measures as our evaluation indicators: Mean Rank,
Hits@10 and Hits@1 [19,20]. In our experiment, we select TransE [2], ComplEx [16],
SimplE [5], RotatE [14], QuatRE [9], ParamE [3], TransRHS [24], DT-GCN [11], and
HittER [4] as baselines, which will be discussed in the Related Work.

Experimental Results. Table 3 and Table 4 present the entity and relation prediction
results respectively. Our analysis draws the following conclusions: (1) most DERL
models outperform all baselines on both Mean Rank, Hits@10, and Hit@1. It indi-
cates that the entities’ representations with multi-attribute information perform better in
knowledge graph completion, which not only proves that EAE can effectively encode
attribute information but also shows that DERL model can learn an accurate entity’s
representation. (2) DERL(Structure) shows good performance, although it is inferior
to some experimental results. After the mutual promotion of two kinds of information,
compared with some models (such as TransE, ComplEx, DT-GCN) performance effects
have been improved. The results indicate that two entities’ representations can learn and
share the same vector space. This proves that two kinds of information can be jointly
trained to improve the RL’s overall effect. (3) The DERL models’ results outperform
baselines on Mean Rank. The Mean Rank can well reflect the overall quality of knowl-
edge representation and determine the prediction results. In this paper, we use entity
multi-attribute information as semantics information to improve the entity representa-
tion semantic precision. Therefore, the DERL models’ results are much better than the
baselines’ results on Mean Rank. The case studies indicate that we may not know the
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Table 3. Entity Prediction Results in Knowledge Graph Completion Task

Model DBP-WD-Dbpedia DBP-WD-Wikidata DBP-YG-Dbpedia DBP-YG-Wikidata

Mean Rank Hits@10(%) Mean Rank Hits@10(%) Mean Rank Hits@10(%) Mean Rank Hits@10(%)

Raw Filter Raw Filter Raw Filter Raw Filter Raw Filter Raw Filter Raw Filter Raw Filter

TransE 343 242 30.1 41.9 341 254 30.1 41.4 354 258 28.9 40.3 445 379 14.4 27.8

ComplEx 341 240 30.3 41.7 338 259 30.3 42.3 349 261 29.3 39.6 443 381 13.9 27.6

SimplE 332 251 29.8 40.5 356 287 28.4 40.3 402 301 26.4 39.1 487 392 11.9 25.6

RotatE 314 229 33.4 45.2 322 244 31.8 46.9 341 249 30.9 45.2 432 377 14.6 30.1

QuatRE 322 261 27.3 38.1 354 287 26.7 38.5 371 270 24.3 36.5 447 379 14.8 30.2

ParamE 437 311 22.3 31.1 367 298 22.7 32.4 381 331 20.3 30.5 533 401 10.7 21.2

TransRHS 310 237 33.5 45.9 327 245 31.2 47.2 345 251 29.9 44.2 431 379 14.1 29.7

DT-GCN 351 245 32.1 33.2 519 388 31.7 33.3 354 287 30.3 45.3 455 367 14.0 22.6

HittER 401 302 27.8 44.7 444 363 30.7 45.1 368 311 26.4 46.9 384 357 13.8 28.6

DERL(Ablation) 310 241 33.9 49.8 320 251 33.2 44.1 345 251 29.9 44.2 422 370 14.5 29.5

DERL (Structure) 330 245 31.9 41.4 341 251 30.5 43.1 342 249 29.5 43.7 443 382 14.3 27.1

DERL (Attribute) 311 236 34.9 50.8 317 239 34.3 47.6 321 247 34.1 46.8 429 371 14.9 30.5

DERL (Union) 307 221 35.1 51.7 318 245 34.1 50.5 312 240 34.4 47.1 381 352 14.8 30.1

Improv. 1.0% 3.5% 4.8% 12.6% 1.6% 2.1% 7.0% 7.8% 8.5% 3.6% 8.5% 0.4% 0.8% 1.4% 0.7% 1.0%

entities’ details only by using the structure information, but we may know the entity
better by learning rich potential information from entity multi-attribute information.

Table 4. Relation Prediction Results in Knowledge Graph Completion Task

Model DBP-WD-Dbpedia DBP-WD-Wikidata DBP-YG-Dbpedia DBP-YG-Wikidata

Mean Rank Hits@1(%) Mean Rank Hits@1(%) Mean Rank Hits@1(%) Mean Rank Hits@1(%)

Raw Filter Raw Filter Raw Filter Raw Filter Raw Filter Raw Filter Raw Filter Raw Filter

TransE 4.01 3.53 37.3 41.1 3.97 3.58 32.2 43.5 4.22 3.52 30.4 41.7 6.13 5.51 18.8 29.2

ComplEx 3.98 3.55 36.8 46.8 3.92 3.54 36.4 45.8 3.91 3.56 35.6 42.7 6.19 5.42 18.4 26.4

SimplE 4.45 3.98 31.8 35.8 4.91 4.53 33.4 34.6 4.78 4.56 32.3 43.6 7.19 6.58 10.4 23.1

RotatE 3.54 3.21 41.4 50.8 3.51 3.09 44.9 54.1 3.76 3.32 43.9 50.1 6.02 5.52 18.6 33.4

QuatRE 4.21 3.93 38.6 47.2 3.87 3.51 41.4 50.5 4.02 3.88 36.6 44.3 7.14 6.11 16.9 30.9

ParamE 4.54 3.99 36.4 43.2 3.57 3.14 44.1 54.8 4.54 3.91 34.3 41.2 8.24 6.31 13.9 25.9

TransRHS 3.72 3.51 42.8 51.4 4.55 4.05 35.1 46.7 3.79 3.36 39.2 51.3 6.17 5.55 16.7 31.6

DT-GCN 5.28 5.05 21.3 29.4 6.91 5.53 23.4 34.1 6.98 6.56 20.1 23.4 7.48 6.52 11.7 17.8

HittER 4.07 3.43 43.5 50.3 5.48 4.56 39.6 54.9 5.48 5.01 37.7 49.8 5.58 5.33 14.5 33.6

DERL(Ablation) 3.54 3.31 41.8 50.4 3.61 3.19 44.1 50.7 3.51 2.99 47.2 54.6 5.82 5.46 18.2 30.9

DERL (Structure) 3.91 3.55 37.4 48.2 3.96 3.51 40.5 45.4 3.97 3.64 38.1 44.1 6.21 5.57 17.8 25.5

DERL (Attribute) 3.61 3.22 46.5 53.3 3.41 3.02 46.1 56.6 3.51 3.07 44.1 54.8 5.94 5.69 18.8 32.9

DERL (Union) 3.53 3.09 47.7 51.9 3.57 2.98 45.7 55.3 3.34 2.89 47.8 56.1 5.51 5.17 18.9 34.3

Improv. 0.3% 3.7% 9.7% 4.0% 2.8% 3.6% 2.7% 3.1% 11.2% 13.0% 8.9% 9.4% 1.3% 3.0% 0.5% 2.9%

4.3 Knowledge Graph Completion in Zero-Shot Task

How to embed the new entities in the KGs and apply them is the main purpose of the
zero-shot task. However, it is difficult to embed the Out-of-KG entities directly, and effi-
ciently finding the latent relations between Out-of-KG and In-KG entities is difficult.
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In this paper, we use multi-attribute information to learn the Out-of-KG entities’ repre-
sentations, which solves the problems that the Out-of-KG entities can’t embed directly
and the knowledge graph completion in zero-shot tasks.

Evaluation Protocol. We select DKRL [19], ConMask [12], and OWE [10] as our
baselines which will be discussed in the RelatedWork. We utilize Hits@10, and Hits@1
[19] for entity and relation prediction. We only present the results on the “Filter” setting.
We present four results in the experiment, and the (O - I), (I - O), and (O - O) have been
explained above; the Total is the combined result of these three test sets.

Experimental Results. Fig. 4 shows the experimental results of (O - I), (I - O), (O - O),
and Total. We can observe that: (1) In most cases, DERL significantly outperforms other
models on all four types of test sets. DERL achieves about 16.2% improvement in entity
prediction and 5.7% improvement in relation prediction. It demonstrates that DERL can
effectively utilize the Out-of-KG entity multi-attribute information into the entity’s rep-
resentation to handle the zero-shot problem. (2) The entity description information and
multi-attribute information belong to the text information of the entity, but the DERL
model performs better in entity prediction, relation prediction, and Mean Rank. It not
only shows the effectiveness of the DERL model in embedding text information and
capturing entity semantic information but also explains the advantages of using entity
attribute information to solve the zero-shot problem. (3) From Fig. 4, we can see that
some DERL’s results are not ideal, which may be because two entities belong to two
entity spaces. Therefore, the connections between In-KG and Out-of-KG entities are
still in need of enhancement.

5 Related Work

5.1 Knowledge Graph Embedding

In recent years, knowledge graph embedding methods have achieved great success and
promotion. TransE [2] follows the rule (h + r ≈ t) to embed the entities and relations.
SimplE [5] not only uses the Polyadia-Score but also utilizes the inverse of the relation.
ParamE [3] extends current embedding methods by combining the nonlinear-fitting
ability of neural networks and translational properties. ComplEx [16] first introduces
the Complex-Spaces to capture symmetric and antisymmetric relations. RotatE [14]
treats the relation as a rotation from the head entity to the tail entity. QuatRE [9] defines
the Quaternion-Space with Hamilton-Product to enhance correlations between head and
tail entities. TransRHS [24] utilizes the relative positions between vectors and spheres to
enhance the generalization between relations. HittER [4] proposes a Transformer-based
RL model to enhance the effects of entities and relations. DT-GCN [11] makes full use
of the advantages of multiple-types entity’s attribute values to explore the expressive-
ness of the entity’s representation.
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Fig. 4. Entity and Relation Prediction Results in Zero-Shot Task

5.2 Zero-Shot Problem

Zero-shot problem is a key issue in Knowledge Graph Completion because of the data
sparsity (including entity and relations). Currently, few models are in a position to solve
the zero-shot problem by using ancillary information. DKRL [19] proposes to use entity
description information to generate entities’ representations to solve the zero-shot prob-
lem. ConMask [12] comprehensively utilizes entities’ names and textual information to
deal with zero-shot situations. OWE [10] combines the entities’ names and description
information in the Transformation Space to improve open-world link prediction. To
benefit the zero-shot problem in KGs, we utilize ancillary information directly to learn
attribute-based representation and structure-based representation jointly, thus enriching
the sparse information hidden in knowledge graphs.

6 Conclusion

In this paper, we propose a novel RL model (DERL) that utilizes both structure and
multi-attribute information to improve the RL’s effect in KGs. To effectively encode
entity multi-attribute information, we also design an attribute information encoder EAE.
Experimental results on real-world datasets demonstrate that the DERL model consis-
tently outperforms other baselines on the knowledge graph completion task and zero-
shot task. [17]
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