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Abstract. Head and neck (HaN) cancers are often treated with radio-
therapy. Since radiation inevitably causes damage to human organs, it is
necessary to control the dose of radiation in different areas during radi-
ation therapy to protect organs at risk (OARs). To solve these incom-
patible problems, we proposed an end-to-end spatial multi-view network
for head and neck organs at risk segmentation, named SpMVNet, to
take advantage of both spatial continuous context and multi-view rel-
evance in whole volume CT images. The proposed method includes a
symmetric segmentation network (SymNet) and a continuous context
network (CCNet), making full use of organs’ structural symmetry in CT
slices and spatial contextual information of volume data. Our proposed
method is validated on the MICCAI 2015 Head and Neck Automatic
Segmentation Challenge datasets. Extensive experiments show that it
achieves lower error range for most organ segmentation with better eval-
uation metrics than state-of-the-art methods. This proposed method is
helpful to improve the precision of organ segmentation in radiotherapy.

Keywords: Automated segmentation · Organs at risk · Head and
neck CT images

1 Introduction

Cancer is a common disease in the world, with a high fatality rate threatening
human life and health. More than millions of people die of cancer every year,
among which head and neck (HaN) cancer is one of the most difficult cancers
to treat because of its complex anatomical structure [15]. And for clinical treat-
ment, the high precision radiotherapy is often the preferred treatment for head
and neck cancer, but it is necessary to limit the radiation dose to avoid damage
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to the organs at risk (OARs), as well as reduce sequelae and complications. It
can be seen that accurately delineating the areas of organs at risk is particularly
important for the design of radiotherapy schedules. Organs at risk are highly
sensitive to radiation, such as the optic nerve and optic chiasm, which cannot
tolerate excessive radiation. And the key step in radiation therapy planning is
the identification of the boundaries of high-risk organs. Therefore, the automatic
segmentation of high-risk organs helps reduce the workload of doctors in radi-
ation therapy planning, resulting in a reduction in the overall cost of radiation
therapy from both a time and economic perspective.

CT imaging overcomes the problem of human anatomical structure informa-
tion overlapping in X-ray imaging, and has the characteristics of high acqui-
sition speed, high spatial accuracy and resolution. Its three-dimensional (3D)
data can clearly display the spatial density and accurate position information of
human organs, and two-dimensional (2D) plain scans can be used to detect suspi-
cious lesions. Therefore, computed tomography (CT)-based treatment planning
remains to be the mainstream in current clinical treatment.

For the multi-target segmentation task in this paper, how to extract the
representation of human organs from CT images is a thought-provoking problem
due to the large sizes and shape differences of human organs and the complex
spatial structure positions. For 2D neural network, it processes slice images layer
by layer, which cannot learn the correlation between successive slices, resulting in
the loss of spatial information. However, for the 3D framework of voxel-by-voxel
image processing, patch training is usually used to counter the large increase
in parameters caused by the network, and the maximum receiving range of the
network will be limited by computing resources, thus it is easy to lose the global
information of large organs.

In actual clinical practice, radiologists usually manually segment the OARs
on the each layer of CT images, which is time-consuming and lies on rich experi-
ence. Even so, this process of segmentation could also lead to incorrect and mis-
diagnosis problems. Our proposed method can accurately delineate the organs
at risk for radiotherapy schedules according to the prior knowledge of doctors,
which can save time and labor cost while explaining the objectivity and inter-
pretability of the method. The research in this paper is based on a publicly
available dataset. The aim is to perform the aforementioned blade segmenta-
tion on head and neck computed tomography (CT) images. The example of CT
images and labels are shown in Fig. 1.

Deep learning methods represented by convolutional neural networks (CNN)
in recent years, have made great achievements in the field of medical segmen-
tation [1,9,13,14,22], and CNN has also been applied for OARs segmentation
in head and neck CT images [10,18,20,23]. At present, some researchers have
completed the related works on this task. The first [10] using deep learning
methods proposed a 2D CNN for OARs segmentation from HaN CT images,
but it only got a slight improvement in right submandibular gland and right
optic nerve, and the performance for the other OARs was similar to that of the
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Fig. 1. Segmentation labels of nine organs at risk in head and neck CT images. (a)–(d)
are axial, coronal and sagittal views as well as 3D masks, respectively. Different colors
on the right represent relevant organs at risk.

traditional methods. Zhu et at. [23] proposed the end-to-end method Anato-
myNet, a three dimensional squeeze-and-excitation U-Net (3D SE U-Net) based
on the SE attention mechanism, combining dice loss and focal loss as optimiza-
tion constraints. Tong et at. [20] designed a fully convolutional neural networks
framework with stacked auto-encoder as a shape latent representation model for
HaN radiotherapy. However, these existing deep learning-based methods usually
produce accurate segmentation maps for large organs and ignore the character-
istics of different views of CT data, which have influence on accuracy of small
organs and may not be helpful for segmentation of symmetrical OARs.

In this paper, we proposed an end-to-end spatial multi-view network for
OARs segmentation, named SpMVNet. The challenging head and neck organs
segmentation problem is divided into three views as branches of processing. We
first design a symmetric segmentation network (SymNet) to take advantage of
the symmetric anatomical structure features of the axial and coronal views, and
divide the input network into two parts to make it easier for the network to
learn similar features of the symmetric structure. We raise a continuous context
network (CCNet) to make full use of the spatially continuous structural informa-
tion of CT images to make the segmentation masks to be continuous. And the
proposed method shows great performance on MICCAI 2015 challenge datasets.

2 Method

In this section, we describe the method of OARs segmentation for head and neck
CT images. Our strategy is to simulate the way experienced doctors observe, that
is, to predict and locate OARs in different views of volume CT and then output
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Fig. 2. Overall framework of our SpMVNet. The origin volume is preprocessed by
cropping and resampling to obtain the input volume of the network. The data of
axial, coronal and sagittal views are input into SymNet and CCNet module, then
corresponding prediction masks are output. The masks of the three views are fused
and used as the final mask prediction results.

the most probable segmentation results by fusing the masks of three branches
at the same spatial position. The overall framework of the proposed SpMVNet
has two main components, symmetric segmentation network (SymNet) and con-
tinuous context segmentation network (CCNet).

2.1 SpMVNet

We propose a novel end-to-end spatial multi-view network (SpMVNet) for HaN
OARs segmentation and its structure is illustrated in Fig. 2. The input volumes
are obtained from the origin volumes through image preprocessing, preserving
the information of the key parts in HaN CT volumes. After our observation and
consultation with hospital experts, we explore the segmentation network using
the features of different views and divide the segmentation task into two main
sub-networks, namely symmetric segmentation network (SymNet) and continu-
ous context segmentation network (CCNet). We notice that OARs such as the
parotid, optic nerve and submandibular have left-right symmetrical physiolog-
ical structures, so that the CT volumes divided into left and right slices along
the midline of the brain for feature learning in axial and coronal views.

SpMVNet for segmentation of HaN OARs can be interpreted as a mathe-
matical theoretical model: a CT medical image I as input and a group of repre-
sentation constraints Ci (i = 1, 2, · · · ), and the segmentation of I is to acquire a
delineation of it, which can be expressed by the following Eq. 1:

N⋃

x=1

Rx = I, Rx

⋂
Ry = ∅,

∀x �= y, x, y ∈ [1, N ].

(1)
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Fig. 3. The structure of our SymNet. The input volume is split into left and right
sectors by the brain midline and fed into the siamese network to get the predicted
masks of the left and right partitions respectively, and finally merged into the labels.

Fig. 4. Illustration of the proposed CCNet. It is on the basis of the segmentation
network 3D U-Net with a context block and a continuous block. Input volumes are fed
into a feature encoder module, where the ResNet-34 block pretrained from ImageNet [5]
is used to replace the original U-Net encoder block.

Herein, Rx satisfies both sets of pixels of the HaN CT images I in the con-
straint Ci and so does Ry. There is no intersection between Rx and Ry. And
x, y are used to distinguish the different regions. N indicates the number of
classification including background and nine OARs.

2.2 SymNet

The head and neck CT images have structural symmetry in the axial and coronal
views, so the images can be segmented along the midline of brains to obtain the
left or right OARs structures, which inspires us to design a symmetrical network
for organ feature extraction.
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We first calculated the midlines of 2D slices from HaN CT volumes in axial
and coronal views. The slices Is are processed via automatic nonparametric and
unsupervised threshold selection segmentation algorithm OTSU [16] to obtain
regions of whole brain Mh. We then perform image inflation with a small kennel
on the results of the last step and calculate the maximum connected regions
Rc. The outer contour of regions C will be saved to the matrix mc and filled,
eliminating the holes inside. The end points Pup and Pdown are searched up and
down in the matrix mc along the midpoint of the segmentation results Mh, and
the boundary position is used as the search termination condition, so that the
midlines lm of the HaN slices can be obtained.

Our symmetric segmentation network (SymNet) is composed of the same
shared weighted convolutional kernel of encoder and decoder based on the
Siamese Network [12], with paired (I1, I2) as the network inputs, which is shown
in Fig. 3. Siamese network uses shared weight convolution computation and max-
imum pooling procedures to calculate the similarity between the high-level fea-
tures (F1, F2) of the input images.

We then divide the two-dimensional slices along the dissection line into left
and right partition as input and joint the two prediction masks in spatial posi-
tion, which significantly reduces the amount of network parameters compared
with other methods. The L1 distance is used to estimate the similarity of high
level features, followed by weight multiplication and sigmoid function to map
the value into [0, 1]. The similarity function is formulated as Eq. 2:

p = σ(W · |f1 − f2|), (2)

where σ is the sigmoid activation function, W is the weight parameters, is matrix
product of two matrices, and fi is the high level feature F .

The SymNet employs the U-Net [19] with long skip-connections as the base-
line network. U-net consists of downsampling and upsampling processes to obtain
the predicted segmentation masks. The skip-connection from the downsampling
part to the upsampling part has several advantages in fusing local and global
features for accurate segmentation with details and resolving the gradient van-
ishing problem in deep learning models. In our approach, In our approach, the
network learns the similar anatomical shape of the left and right portions of the
HaN organs, reducing the difference in segmentation results while transferring
the convolutional features of the downsampling to the upsampling phase.

2.3 CCNet

The proposed CCNet consists of three major parts: Downsampling module, con-
text block, continuous block and upsampling module. And its detailed illustra-
tion are shown in Fig. 4.

A challenge in OARs segmentation is the large variation of object sizes in HaN
CT image. For example, a tumor in middle or late stage can be much larger than
that in early stage. Motivated by the feature pyramids and multi-scale feature
concatenation, we propose novel context block to encode the high-level semantic
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feature maps. For segmentation task, the receptive field of the high-level network
is relatively large, and the semantic information representation ability is strong,
but the representation ability of geometric information is weak while low-level
network is relatively small, and the geometric detail information representation
ability is strong. In order to enable the network to fully learn features of different
scales and improve the effectiveness of the features, our method extracts the
feature maps output by stage3, and stage5 based on the Resnet network. For the
input of 512× 512 size, the output feature map size They are 64 × 64 × 512 and
16 × 16 × 2048, which correspond to the shallow texture features, intermediate
transition features and deep semantic features of the image, and are input to
the subsequent self-attention module for each layer features for further channel
filtering. By combining the convolution of different rates, the context block is
able to extract features for objects with various sizes.

Vanilla convolutions in a U-Net [19] have no significant effect for multi-organ
segmentation. The inputs of skip connections are almost zeros thus cannot prop-
agate detailed color or texture information to the decoder of that region. There-
fore, We customize a continuous block with gated convolution and dilated gated
convolution [21]. Gated convolution learns a dynamic feature selection mecha-
nism for each channel and each spatial location and the mask feature output
OM can be formulated as Eq. 3.

GatingM =
∑∑

Wg · VHaN ,

F eatureM =
∑∑

Wf · VHaN ,

OM = φ(FeatureM ) � σ(GatingM ),

(3)

where GatingM and FeatureM represent two type of features extracted from
corresponding convolution filter Wg and Wf for the same input volume VHaN .
Besides, φ and σ mean sigmoid function and activation function.

For delineation boundaries of HaN OARs, our encoder-decoder architecture
equipped with context block and continuous block is sufficient to obtain reason-
ably continuous segmentation results.

2.4 Loss Functions

As illustrated in Fig. 2, our approach needs to train the proposed network to
predict each pixel in the CT images to be background or nine OARs, which is a
pixel-wise classification problem. And a widely used loss function is cross entropy
loss. However, the objects in this task such as chiasm and optic nerve often take
up small regions in the CT images. In this paper, we use the dice coefficient
loss function [2,4] to optimize network parameters, which helps to constrain
the multi-organ masks from the ground truth. The comparison experiments and
discussions are also conducted in the following section. The dice coefficient is a
measure of overlap widely used to assess segmentation performance when ground
truth is available, as in Eq. 4:
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Ldice = 1 −
K∑

k

2ωk

∑N
i p(k, i)g(k, i)

∑N
i p2(k,i) +

∑
i Ng2(k,i)

, (4)

where N is the pixel number, p(k, i) ∈ [0, 1] and g(k, i) ∈ 0, 1 denote predicted
probability and ground truth label for class k, respectively. K is the class number,
and

∑
k ωk = 1are the class weights. In our paper, we set ωk = 1

K empirically.
We use shape-aware loss [7] to take shape of organs into account. In general,

all the loss function values are calculated from the pixels in the image, but shape-
aware loss calculates the average point to curve Euclidean distance D among
points around curve of predicted segmentation Ĉ to the ground truth CGT and
use it as coefficient to cross-entropy loss function. It is defined as follows:

Ei = D(Ĉ, CGT ),

Lshape = −
N∑

i

[CE(ŷ, y) − iEiCE(ŷ, y)].
(5)

Using Ei the network learns to produce a prediction masks similar to the
training shapes.

The final loss function is defined as:

Lloss = Ldice + Lshape + Lreg. (6)

Herein, Lreg represents the regularization loss (also called to weight decay) [8]
used to avoid overfitting.

3 Experiments

In this section, we conduct evaluation experiments to evaluate the performance
of the different methods on MICCAI 2015 Head and Neck Auto-Segmentation
Challenge dataset [17]. Nine anatomical segmentation structures in the dataset
are highly relevant OARs for radiation therapy treatment in the head and neck,
including brainstem, mandible, chiasm, left and right optic nerves, left and right
parotid glands, as well as left and right submandibular. And manual contouring
data used are segmented by three different medical imaging experts. For fair
comparison, all methods are trained and validated using the same data and con-
dition settings. The predicted segmentation results are quantitatively evaluated
by two widely used metrics. Furthermore, we demonstrates the outperformance
of our proposed approach through segmentation visualization and ablation study.

3.1 Dataset Preprocessing

The dataset consists of 48 CT scan sequences, of which 38 cases are used as
training set and 10 cases as testing set following [6]. In this work, nine anatom-
ical structures are considered as segmentation targets, including brainstem,
mandible, chiasm, bilateral optic nerves, bilateral parotid glands, and bilateral
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Table 1. Dice score coefficient (%) ↑ of results by different compared methods on
MICCAI 2015 dataset. The larger the value, the more accurate the segmentation.

Organ 3D U-Net AnatomyNet FocusNetv2 Ours

Brain Stem 0.814 0.863 0.879 0.895

chiasm 0.508 0.541 0.708 0.719

Mandible 0.801 0.921 0.940 0.952

Optic nerve left 0.613 0.721 0.788 0.793

Optic nerve right 0.608 0.691 0.809 0.805

Parotid glands left 0.836 0.878 0.887 0.895

Parotid glands right 0.802 0.872 0.892 0.908

Submandibular glands left 0.759 0.808 0.836 0.842

Submandibular glands right 0.771 0.807 0.829 0.833

Table 2. 95% HD score (mm) ↓ of results by different compared methods on MIC-
CAI’15 dataset. The smaller the value, the more accurate the segmentation.

Organ 3D U-Net AnatomyNet FocusNetv2 Ours

Brain Stem 11.122 8.396 1.839 0.574

chiasm 4.418 1.741 1.144 0.996

Optic nerve left 3.539 2.549 2.980 2.080

Optic nerve right 1.157 2.827 1.909 0.855

Mandible 1.074 0.578 0.511 0.531

Parotid glands left 4.716 6.447 4.106 3.715

Parotid glands right 8.045 4.177 5.732 4.108

Submandibular glands left 5.479 2.938 1.819 1.406

Submandibular glands right 3.322 1.534 1.321 0.908

submandibular glands. We first convert the original imaging data to NIfTI for-
mat, keeping the same size 512 × 512 pixels with 110 − 190 slices. And in-plane
pixel spacing varied between 0.76 × 0.76 mm and 1.27 × 1.27 mm. We then nor-
malized the data to satisfy a standard normal distribution with a mean of 0 and
variance of 1. In addition, we normalized the grayscale values of the images.

3.2 Implementation Details

We implemented our model with PyTorch framework. Batch size was set to
be 1 because of different sizes of whole-volume CT images. We first used SGD
optimizer with momentum 0.9, learning rate 0.001 and the number of epochs
being 50. Then, Adam optimizer [11] was used for training, with β1 = 0.5 and
β2 = 0.999, and the number of epochs 600. During training process, we apply the
following image augmentations to enhance the training set: random resize with
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Fig. 5. Comparison of different methods for visualization on miccai dataset. (a)–(e) are
the mask predicition of 3D U-Net, AnatomyNet, FocusNetv2, the proposed SpMVNet
and ground truth, respectively.

Table 3. Dice score coefficient (%) ↑ of results by baseline and improved methods on
MICCAI 2015 dataset. The larger the value, the more accurate the segmentation.

Organ baseline baseline w CCNet baseline w SymNet Ours

Brain Stem 0.751 0.830 0.864 0.895

chiasm 0.424 0.575 0.617 0.719

Mandible 0.742 0.847 0.881 0.952

Optic nerve left 0.569 0.694 0.769 0.793

Optic nerve right 0.608 0.627 0.696 0.805

Parotid glands left 0.771 0.776 0.842 0.895

Parotid glands right 0.726 0.799 0.852 0.908

Submandibular glands left 0.637 0.706 0.788 0.842

Submandibular glands right 0.688 0.690 0.775 0.833

scale range [0.5, 2.0], crop, and horizontal flipping with probability 0.5. The label
images should do the same transformation as CT images. All the experiments
were performed on a standard desktop with Ubuntu 16.04, using one NVIDIA
GeForce RTX 3090 GPU with 24 GB memory.
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Table 4. 95% HD score (mm) ↓ of results by baseline and improved methods on
MICCAI 2015 dataset. The smaller the value, the more accurate the segmentation.

Organ baseline baseline w SymNet baseline w CCNet Ours

Brain Stem 14.227 5.733 3.357 0.574

chiasm 1.349 1.239 1.048 0.996

Optic nerve left 3.386 3.539 2.973 2.080

Optic nerve right 1.225 0.886 0.891 0.855

Mandible 1.234 0.974 0.612 0.531

Parotid glands left 6.852 5.496 3.909 3.715

Parotid glands right 9.645 6.594 5.394 4.108

Submandibular glands left 8.190 7.218 3.521 1.406

Submandibular glands right 1.839 1.241 1.091 0.908

3.3 Evaluation Metrics

In order to accurately evaluate the segmentation results, this article uses two
evaluation indexes, Dice Similarity Coefficient and 95% Hausdorff Distance, to
evaluate the segmentation results. They are the most common used metrics
for evaluating 3D medical image segmentations and include volumeand overlap-
based metric types. Multiple metrics are used because different metrics reflect
different types of errors. For example, when segmentations are small, distance-
based metrics such as HD are recommended over overlap-based metrics such as
Dice coefficient. Overlap-based metrics are recommended if volume-based statis-
tics are important. In the following, the metrics used are described in more
detail:

The Dice coefficient measures the volumetric overlap between the automatic
and manual segmentation. It is defined as:

Dice =
2|A ∩ B|
|A| + |B| , (7)

where A and B are the labeled regions that are compared and |.| is the volume
of a region. The Dice coefficient can have values between 0 (no overlap) and 1
(complete overlap).

The maximum HD measures the maximum distance of a point in a set A to
the nearest point in a second set B. Commonly it is defined as:

H(A,B) = max(h(A,B), h(B,A)),
h(A,B) = max

a∈A
min
b∈B

‖ a − b ‖,
(8)

where ||.|| is the Euclidean distance, a and b are points on the boundary of A
and B, and h (A, B) is often called the directed HD. It should be mentioned that
maximum HD is sensitive to outliers but appropriate for nonsolid segmentations.
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Fig. 6. Results of ablation experiments of our method. From top to bottom are the
axial, coronal and sagittal views as well as 3D mask results. (a)–(e) are the mask predici-
tion of baseline, baseline with CCNet, baseline with SymNet, our proposed method and
ground truth, respectively.

The 95% HD is similar to maximum HD. However, in contrast to maximum
HD, 95% HD is based on the calculation of the 95th percentile of the distances
between boundary points in A and B. The purpose for using this metric is to
eliminate the impact of a very small subset of inaccurate segmentations on the
evaluation of the overall segmentation quality.

3.4 Quantitative Comparison

We compared our framework with three head and neck relevant segmentation
methods, including 3D U-Net [3], AnatomyNet [23] and FocusNetv2 [6]. Note
that we used the official code and results of 3D U-Net [3], AnatomyNet [23]
as well as FocusNetv2 [6]. Compared with current state-of-the-art methods, our
approach achieves effective improvements in the quantitative metrics of most
OARs.
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Table 1 and Table 2 shows the quantitative comparison of these methods.
Most of the compared algorithms achieved above 0.7 on the Dice score coefficient
of organs at risk except for chiasm. 3D U-Net [3] treats small and large organs
equally, which will affect the segmentation results on small objects, and even
organs with symmetrical structures are far inferior to other methods. Compared
with FocusNetv2 [6], our framework achieves better performance on most organs
at risk without using a complex multiple network architecture, corroborating
that our strategy has the full capability to draw out the rich information from
the CT data.

3.5 Qualitative Comparison

As shown in Fig. 5, our method shows the best visualized on parotid gland and
optic nerve. As can be seen from the axial views in the first two rows, 3D U-Net [3]
cannot identify this OARs, thus losing the information of OARs segmentation,
and the segmentation on the mandible is discontinuous, so the OARs cannot be
segmented completely. The problem of discontinuous segmentation also exists
in AnatomyNet [23] and FocusNetv2 [6], and the segmentation information is
incorrectly labeled at the position of the crania, which affects the segmentation
results. Compared other methods, our method exploits the feature information
of symmetrical OARs in the head and neck to help train network better to
approximate the reference labels on left and right parotid. Our method extracts
spatial context structure information and obtains convincing continuous OARs
segmentation masks, which can achieve better segmentation results. Therefore,
Our method is able to produce higher-quality OARs segmentation masks com-
pared with other methods.

3.6 Ablation Study

We design ablation experiments to verify the effectiveness of each part of the
proposed method, as shown in Fig. 6. Firstly, the baseline method is to replace
SymNet and CCNet with U-Net [19] and 3D U-Net [3] for segmentation of three
views. However, the visualization results show that the baseline network does
not have sufficient ability to recognize some obvious OARs structures leading to
poor segmentation results.

Then we add our proposed SymNet and CCNet to the baseline model to
analyze the continuity and symmetry of the segmentation results. Figure 6(b)
and (c) show that CCNet and SymNet can make up for the lack of spatial
context information and the inability to identify symmetric organs in the baseline
method. It can be seen from the Fig. 6(d) that our proposed method is closer to
the ground truth and the brainstem segmentation is more complete, but there
is still the problem that small OARs cannot be identified.

Similar to the comparison method, we also calculated dice score coefficient
and 95% HD scores in the ablation experiments, as shown in Table 3 and Table 4.
Our method can take advantage of SymNet and CCNet to achieve promising
results.
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4 Conclusion

In this paper, we propose an end-to-end spatial multi-view network segmentation
framework SpMVNet. Focusing on head and neck CT images, we explore a Sym-
Net to combine multi-view probabilistic symmetry maps for mask predicition of
specific organ volumes symmetrically distributed along the midline of the brain.
The method innovatively improves the siamese network for OARs segmentation
and takes the 2D slices on the left and right sides as input, and then synthe-
sizes the 3D segmentation prediction results. We also solve the problem of lack
of continuity in the segmentation of some OARs and achieve higher segmenta-
tion metrics through CCNet. We also reduce the segmentation errors of existing
methods for OARs, and achieve a certain improvement in the accuracy of sym-
metric OARs segmentation. The evaluation results demonstrate the effectiveness
of the proposed method in our paper. In this paper, an effective method is pro-
posed to solve the difficulties of organ endangerment in radiotherapy, which will
be helpful to the analysis and processing of biological information.
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