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Abstract. Dual-view contrast-enhanced ultrasound (CEUS) has been
widely applied in lesion detection and characterization due to the pro-
vided anatomical and functional information of lesions. Accurate delin-
eation of lesion contour is important to assess lesion morphology and
perfusion dynamics. Although the last decade has witnessed the unprece-
dented progress of deep learning methods in 2D ultrasound imaging
segmentation, there are few attempts to discriminate tissue perfusion
discrepancy using dynamic CEUS imaging. Combined with the side-by-
side gray-scale US view, we propose a novel anatomical-functional fusion
network (AFF-Net) to fuse complementary imaging characteristics from
dual-view dynamic CEUS imaging. Towards a comprehensive character-
ization of lesions, our method mainly tackles with two challenges: 1)
how to effectively represent and aggregate enhancement features of the
dynamic CEUS view; 2) how to efficiently fuse them with the morphology
features of the US view. Correspondingly, we design the channel-wise per-
fusion (PE) gate and anatomical-functional fusion (AFF) module with
the goal to exploit dynamic blood flow characteristics and perform layer-
level fusion of the two modalities, respectively. The effectiveness of the
AFF-Net method on lesion segmentation is validated on our collected
thyroid nodule dataset with superior performance compared with exist-
ing methods.

Keywords: Multi-modality Fusion · Nodule Segmentation ·
Contrast-enhanced ultrasound · Co-attention

1 Introduction

Ultrasound (US), as the first-line diagnostic tool in early screening and diagnosis,
has become increasingly important in clinical assessment due to the advantages
of cost-effectiveness, portability, non-ionizing radiation, and real-time assess-
ment. Thyroid nodule are a common finding in the general population with a
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detection rate of 50% to 60% [1,2]. Ultrasonic features like nodule size, location,
shape regularity, margin smoothness, and extra-thyroidal extension are impor-
tant imaging findings for malignancy risk prediction [3], postoperative assess-
ment [5], and fine-needle aspiration biopsy planning [4]. Thus, accurate nodule
segmentation is an indispensable step in clinical practice. In addition to tradi-
tional anatomical imaging (B-mode ultrasound, BUS), the emerging functional
imaging (contrast-enhanced ultrasound, CEUS) allows for a real-time observa-
tion of microvascular perfusion within thyroid gland by enhancing blood flow
signals from small vessels [6,7]. Generally, radiologists perform a comprehen-
sive analysis of morphology features in gray-scale US and perfusion features in
contrast-enhanced US, but this step requires a high level of expertise and is
susceptible to subjective errors.

Although several machine learning or deep learning techniques have been
proposed for segmenting thyroid nodules using US imaging, including active
contours [10], fuzzy clustering [9], and fully convolution network [8,11–13] etc.,
segmentation performances of these methods are still limited. One major limi-
tation is that these methods have not fully exploited ultrasonic characteristics
complementarity in the segmentation task. Taking cystic nodules as example,
gray-scale US is more sensitive to internal hypoechoic regions. Nevertheless,
due to the infiltrative growth pattern, we might observe a vague or incomplete
boundary since marginal echoic intensity differences become much smaller. In
case of that, contrast-enhanced US could complement this by highlighting the
varying hemodynamic changes around marginal regions, assisting nodule local-
ization and boundary delineation. Another limitation is that existing CEUS
based segmentation methods depend on a preselected a reference frame with rel-
atively distinguished contours, ignoring dynamic blood perfusion information.
Actually, perfusion discrepancy might consists in initial enhancement, progres-
sion to ultimate wash out. Therefore, it is necessary to reason over the whole
perfusion process to sufficiently mine enhancement discrepancy between nodule
and thyroid gland.

From the perspective of multi-modality imaging segmentation, it is of great
importance to exploit the complementarity of different sort of imaging. Towards
this goal, Dolz et al. [39] extend the definition of dense connectivity to multi-
modal streams, such that dense connectivity within each stream and across dif-
ferent streams could enhances the modality information flow while facilitates the
network training. On the other hand, attention mechanism also arouse consid-
erable interest in exploiting inter-dependencies of different modalities, instead
of simple summation or concatenation operation. Chen et al. [40] proposes a
3D convolutional block to produce the spatial map highlighting relevant image
regions from multiple sources. According to imaging prior knowledge, one MR
modality is picked as the master modality and the other is treated as an assis-
tant modality. Information fusion is conducted by transferring the attention map
learned from the master stream (teacher network) to supervise the training of the
assistant stream (student network). Intuitive, sufficient inter-modality interac-
tion at different-level feature abstraction could ensure enough freedom to capture
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Fig. 1. Illustration of the proposed Anatomical-Functional Fusion Network (AFF-Net).

complex dependencies between modalities. Nonetheless, the optimal layer-level
fusion method would vary with specific modalities, leaving an open question for
our dual-view CEUS segmentation problem.

In this paper, we propose an anatomical-functional fusion network (AFF-Net)
for thyroid nodule segmentation using dual-screen CEUS imaging. For simplic-
ity, we term the morphological and echoic characteristics in gray-scale US view
as anatomical features, and dynamic enhancement patterns depicting the real-
time blood supply in contrast-enhanced US view as functional features. Figure 1
shows a schematic diagram of our AFF-Net model, which consists of modality-
specific encoders and reconstruction decoder, as well as the specifically designed
anatomical-functional fusion (AFF) module. By sequentially attending to feature
representations of dynamic enhancement patterns and static morphological fea-
tures, the introduced co-attention mechanism in AFF module integrates multiple
US modalities in a layer-level fusion manner. To fully exploit enhancement char-
acteristics, we also introduce a channel-wise enhancement (CE) gate to jointly
model enhancement appearances at single point and intensity variations among
adjacent frames. We validate the model performance on our collected dual-view
thyroid dataset.

2 Related Work

2.1 Medical Imaging Segmentation

For almost a decade, deep learning methods represented by fully convolutional
networks (FCN) have pushed medical imaging segmentation into a considerable
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maturity level both in accuracy and robustness [21,22]. Characterized by a U-
shape encoder-decoder architecture, FCN has becomes the basic architecture in
various medical segmentation tasks, including cardiac MRI [23], thyroid US [24]
and abdominal CT [25]. The former encoder is responsible for representation
learning by enhancing pixel-wise discrimination ability, while the latter decoder
is the founding part to fuse features from multiple encoding hierarchies. To be
aware of different-scale objects, a series of multi-scale representation learning
strategies have been proposed, including Gaussian (Laplacian) image pyramid
[26,27], atrous spatial pyramid pooling [28], dilated convolution [29], and pyrami-
dal convolution [30]. As for the global context modeling, global context network
(GCNet) combines a simplified self-attention mechanism and squeeze-excitation
mechanism. As for the basic convolution operation, SEgmentation TRansformer
(SETR) [32] replaces it with a pure transformer structure, which also achieves
competitive performance.

2.2 Multi-modality Imaging Segmentation

Multi-modal medical imaging (e.g., CT, PET, MRI and US, et al.) has achieved
extensive application in comprehensive characterization of morphological, patho-
physiological and molecular features of tumors. To exploit the complementarity
of different sort of imaging, an increasing number of deep multi-modal methods
have emerged recently [33–35]. As mentioned above, feature fusion can be real-
ized at three stages. Among which, early-fusion refers to stacking raw imaging or
low-level features channel-wisely by assuming a linear inter-modality relationship
[36]. Actually, imaging characteristics from distinct modalities are heterogeneous
more than complementary since the imaging acquisition processes differ greatly
from each other. To model inter-modality correlation in a higher level feature
space, the rest two fusion strategies adopt a multi-path network structure so
as to extract a hierarchical representation separately using the state-of-the-art
design of each modality. For late fusion, high-level feature maps from different
paths are fused only at the stage of model prediction. To facilitate knowledge
transfer among different streams (modalities), information fusion is performed
in a hierarchical way in the layer-level fusion. As suggested in studies [37] [38],
layer-level fusion has the potential to be the optimal fusion way.

3 Materials and Method

3.1 Dataset

In this study, we totally collected 114 dual-screen CEUS videos from patients
who attended xx Hospital for thyroid ultrasound examination. All examinations
were performed on a Philips iU22 scanner (Philips Medical Systems, Best, the
Netherlands) at a low mechanical index ≤ 0.12 using the second-generation con-
trast agents SonoVue (Bracco SpA, Milan, Italy). Dual-screen CEUS videos were
exported as AVI video files with the spatial resolution 600× 800. Each video has
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a duration at least 3 min with a framerate of 15 fps, recording the complete
thyroid perfusion process. Each examination was performed by an expert with
over 10-year clinical experience, and annotated by at least two senior radiol-
ogists to reduce inter-observer variabilities. Each radiologist first reviewed the
whole CEUS video, and then selected an optimal frame to contour the bound-
ary. Approval was obtained by the ethics review board of local hospital and the
informed consent was obtained from patients before this study.

3.2 Anatomical-Functional Fusion Network (AFF-Net)

Architecture. As illustrated in Fig. 1, we adopt a two-stream U-shape struc-
ture to construct our AFF-Net model. In the encoding phase, the backbone of
Anatomical Encoder consists of four residual blocks separated by 2 × 2 max-
pooling layer. Each block has two 3 × 3 Conv layers (all with unit stride and
zero-padding), followed by the batch normalization and ReLU activation. Each
layer is connected to the input of the previous layer. The number of chan-
nels is [16, 16; 32, 32; 64, 64; 64, 64]. As for Functional Encoder, we adopt three
stacked residual blocks with the channel number [16, 16; 32, 32; 64, 64]. Besides,
we introduce the channel-wise enhancement (CE) gate to explicitly represent
inter-frame intensity variations. In the decoding phase, anatomical-functional
fusion (AFF) module is used to fuse dual-modal feature maps from multiple
encoding scales. Along the up-sampling path, to-be-fused ultrasonic representa-
tions comprise three components, 1) up-sampled anatomical map generated by
the deconvolution layer; 2) high-resolution anatomical map passed by the skip
connection; and 3) down-scaled multi-modal map output by the AFF module.
The up-sampling path is composed of three sequential residual blocks (channels:
[64, 64, 32, 32, 16, 16]) separated by the deconvolution layer. Finally, pixel-wise
category map P is reconstructed on the fused multi-modal features using a 1-
channel 1 × 1 Conv layer, normalized by a sigmoid layer.

Channel-Wise Enhancement Gate. Given sequential enhancement appear-
ance feature maps M ∈ RT×C×H×W , where T,C,H,W denote the temporal,
channel and two spatial dimensions respectively, we first apply a 1×1 2D convo-
lution to reduce feature channels Mr(t) = Convr∗M(t), r is the reduction factor
set to 4. Based on that, feature-level enhancement dynamics E (t) is approxi-
mately represented as inter-frame feature difference between time step t and
t + 1,

E (t) = Convc ∗ Mr (t + 1) − Mr(t), t ∈ [1, T − 1] (1)

where E (t) ∈ RC/r×H×W is the enhancement map at time step t, Convc is a
3 × 3 channel-wise convolution. In this way, we could obtain T − 1 enhancement
variations representations. To keep temporal consistency, we append an all-zero
enhancement map E(T ) at time step T . Then, sequential variations represen-
tation maps are convolved by a 1 × 1 Conv layer to restore channel dimension
to C. Finally, we obtain the combined perfusion representation F = M + E via
an element-wise summation between the input enhancement appearance M and
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the sequential enhancement variation E = [E(1),E(2), . . .E(T )] ∈ RT×C×H×W.
The behind intuition is that significant intensity variations of contrast-enhanced
US view correlate with the real-time changes of spatial distribution of contrast
agents, which is expected to trace enhancement discrepancy between lesion and
normal tissues.

3.3 Anatomical-Functional Fusion Module

It is worth noting that conventional gray-scale US and contrast-enhanced US
actually reflect the thyroid nodule status by complementarily different views.
That is, morphological features in gray-scale US are intrinsically correlated with
blood flow features in contrast-enhanced US. Therefore, leveraging the semantic
consistency between modalities, alternating co-attention mechanism is adopted
in our anatomical-functional fusion (AFF) module, which co-attends to both
modalities sequentially to distinguish important components for nodule bound-
ary recognition.

Multi-scale Fusion and Grid Split. Given anatomical (functional) features
As (F s

t ) from different scales s, we rescale them into a common resolution (equal-
ing to the output of the first residual block) by bilinear interpolation, and merge
them along channels, Am = Convr

[
A1;A2;A3

]
(Fm,t = Convr

[
F 1
t ;F 2

t ;F 3
t

]
),

where r is channel reduction factor set to 16. Considering the spatial corre-
spondences, our AFF module restricts inter-modal interactions within the same
region, which is greatly different from co-attention mechanism in Visual Ques-
tion Answering [14,15,19,20] that builds associations between all pairs of image-
question locations. Thus, we split the multi-scale anatomical (functional) map
A(F) into N regular grids to co-attend both modalities.

Anatomical-Guided Temporal Attention. To evaluate which contrast
frames should be attended or overlooked, the first step is to generate temporal
attention under the anatomical guidance. For each i-th grid, we summarize the
anatomical-guide attention operation as F̂i = L

(
Fi, pi

)
, where i = {1, 2, . . . N},

Fi and pi denote the combined enhancement representation and anatomical fea-
ture, respectively. Specifically, global average pooling (GAP) is used to summa-
rize the spatial information of Ai, which is then transformed by a fully-connected
layer WA to generate the anatomical guidance pi,

pi = WA ∗ GAP
(
Ai

)
(2)

Based on that, temporal attention score s is calculated by the dot-product
between pi and the respective enhancement descriptor f i

t = GAP
(
Fi

)
, aiming at

highlighting temporal points with significant appearance or intensity variations.

st = σ
(〈

pi, f i
t

〉)
(3)

where σ (·) denotes the sigmoid function for normalization. And thus, atten-
tive enhancement representation F̂i is calculated by the weighted sum F̂i =∑T

t=1 st · Fi
t.
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Functional-Guided Channel Attention. Apart from identifying salient con-
trast frames to focus on, we also need to emphasize important channels of
gray-scale US map, which are closely associated with essential attributes, such
as some kind of edges, low echoes, and boundaries. Similar to [17], we pro-
pose the functional-guide channel attention operator in each grid, described as
Âi = G

(
Ai, qi

)
, where qi is the functional guidance from the global average

pooling of F̂i, Âi is the recalibrated anatomical map.
To generate recalibration signal, we first squeeze the spatial information of

Ai into the deep anatomical descriptors ai using GAP, and then predict a joint
representation based on anatomical descriptor ai and functional guidance qi as
follows,

K = WF

[
ai; qi

]
(4)

where K ∈ RCB

, WF ∈ RCB×CF+B

. Finally, K is normalized by sigmoid layer
to recalibrate the anatomical map, producing the recalibration representation
Âi = Ai � σ (K), where � denotes the channel-wise product operation.

As described above, the alternating anatomical-functional attention mech-
anism is independently performed in each spatial grouping. Finally, the AFF
module outputs the fused representation XAF by combining attended anatomical
and functional features Âi and F̂i via element-wise summation. In the decoding
stage, XAF is rescaled to the match the resolution before each residual block.

3.4 Implementation and Loss Function

The proposed AFF-Net was implemented using deep learning framework Pytorch
and run on a single GPU (NVIDIA TITAN RTX, 24 GB). Considering temporal
redundancy of raw CEUS videos, we adopted a temporal pruning strategy [18] to
screen out informative contrast subsequences with the length of T = 7. Accord-
ingly, one single gray-scale US image and the accompanying contrast-enhanced
US subsequence were fed as two modalities into our AFF-Net, as was common
in the baseline and competing methods. Model parameters are updated using
the Adam optimizer with the default parameters. The learning rate was initial-
ized to 0.001 and adjusted using cosine annealing schedule every 30 epochs. We
used a small batch size of 2 and terminated the learning process when validation
performance begins to convergence. Our AFF-Net was trained using the Dice
loss,

LDice = 1 − 2
∑N

i=1 piyi + ε
∑N

i=1 pi +
∑N

i=1 yi + ε
(5)

where N is the number of pixels in the image, pi ∈ [0, 1] is the predicted proba-
bility of ith pixel belonging to the lesion area, yi ∈ {0, 1}.

4 Experiments and Results

Experimental Setup. In our experiments, we adopted the standard setup of 5-
fold cross-validation for performance evaluation and comparison of our method
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Table 1. Comparison with State-of-the-art Methods and Baselines on the task of
thyroid nodule segmentation.

Methods Fusion Thyroid nodule

DSC(%) IoU(%) HD p ≤ 0.05

MC-CNN Conv0 75.36 ± 2.38 61.17 ± 3.10 9.39 ± 0.51 �

Conv1 76.38 ± 2.43 62.53 ± 3.13 8.95 ± 0.41 �

MB-CNN Average 76.99 ± 2.42 63.09 ± 3.09 8.75 ± 0.28 �

Majority 76.10 ± 2.08 61.84 ± 2.60 9.151 ± 0.45 �

HyperDenseNet – 79.76 ± 1.99 66.54 ± 2.55� 8.22 ± 0.37 –

Co-learning – 77.34 ± 2.19 63.76 ± 2.83 9.39 ± 0.47 �

MMTM – 78.04 ± 2.81 64.26 ± 3.61 9.33 ± 0.41 �

AFF-Net – 81.74± 1.73 69.40± 2.18 8.50± 0.36 –
� denotes a significant difference compared with our method, the last column
denotes significant comparisons for all three metrics.

and competing methods, as well as all baselines. In this paper, segmentation
performance was evaluated by three metrics, including Dice Similarity Coefficie
(DSC), Intersection over Union (IoU) and Hausdorff distance (HD) [16]. The
first three metrics measures the degree of overlap between segmentation result S
and ground truth Y , and HD measures boundary distances. For all experimental
comparisons, we computed the p-value with the two-sample t-test.

We first compared our AFF-Net method with several fusion baselines. 1)
Multi-channel (MC) CNN, implementing multi-modal US fusion via channel-
wise concatenation at the network input (Conv0) or after first convolution block
(Conv1); 2) Multi-channel (MB) CNN, implementing a late fusion of segmenta-
tion results by average or majority voting, where each modality was processed
separately. Then, we compare it with more complex layer-wise fusion structures,
including 1) HyperDenseNet that extends the dense connectivity to a multi-
branch structure; 2) Co-learning Network that derives a spatially varying fusion
map at each decoding scale; 3) Multimodal transfer module (MMTM) that recal-
ibrates multi-modal tensors along the channel dimension. In our implementation,
we replace the original 2D convolution with 3D ones, aiming at learn spatial-
temporal features from dynamic contrast-enhanced US view.

Baselines and Competing Methods: Quantitative segmentation results are
summarized in Table 1. We observe that the layer-level fusion of deep features
from different modalities achieves a superior performance over the manner of
early-level and late-level fusion. And our proposed AFF-Net achieves the largest
overall improvements, these improvements are statistically significant compared
to all baselines, verifying the effectiveness of cross-modality imaging fusion
and enhancement dynamics representation in the task of thyroid nodule seg-
mentation. By allowing dense connectivity between encoding streams, Hyper-
DenseNet achieves the smallest mean boundary distance of 8.22, and comparable
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Table 2. Comparative results of ablation analysis.

Methods Thyroid nodule

DSC(%) IoU(%) HD p ≤ 0.05

A-Net 74.22 ± 3.13 59.72 ± 4.03 9.65 ± 0.36 �

F-Net 73.88 ± 2.77 59.40 ± 3.54 9.43 ± 0.44 �

AFF-Net-C 79.08 ± 1.79 65.70 ± 2.26� 8.74 ± 0.42� –

AFF-Net 81.74± 1.73 69.40± 2.18 8.50± 0.36 –
∗ denotes a significant difference compared with our method, the
last column denotes significant comparisons for all three metrics.

Fig. 2. (a) Gray-scale US; (b–d) Dynamic contrast-enhanced US; (e) Ground-truth; (f)
Highlighted anatomical channel Ac; (g)Significant enhancement point Ft; (h) Attend
anatomical map Â; (k) Temporally aggregated functional map F̂; (L)Segmentation
result P. For illustration, we normalize the feature values into the range of [0 − 1].

performances in terms of mean DSC 79.76% vs. 81.74% and IoU 66.54% vs.
69.40%, respectively. Another interesting finding is that channel-wise attention
in MMTM outperforms spatial-channel-wise attention in Co-learning method. It
indicates that deriving a more complex weighting tensor might not be well suit-
able for feature fusion in the task of nodule segmentation using dual-screen CEUS
imaging. For an more intuitive understanding, we provide an visualization of our
model in Fig. 2, including the model prediction and the intermediate feature maps
generated by the AFF module.

Ablation Analysis: To evaluate the usefulness of multi-modal US fusion and
two major components of our method (i.e., CE gate and AFF module), we
compare AFF-Net with its three variants, i.e., 1) A-Net, which removes the
branch of enhancement features learning from contrast-enhanced US view; 2)
F-Net, which removes the branch of morphological features representation from
gray-scale US view; 3) AFF-Net-C, which removes CE gate for enhancement
variations modeling.
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From Table 2, we observe that fusing deeper-layer features of gray-scale US
and contrast-enhanced US provides a clear improvement over the single-path
version, with an increase on performance of nearly 7%. Even compared with
MC-CNN with early fusion in Table 1, depending on single US modality (A-
Net or F-Net) still show inferior performance, further validating the advantage
of fusion of morphological features and microvascular perfusion features in our
task of thyroid nodule segmentation. When adding channel-wise enhancement
gate for explicit perfusion differences representation learning, we could see a
significantly higher IoU score (p ¡ 0.05) 69.4% than that of the baseline AFF-
Net-C that removes CE gate directly, demonstrating its effectiveness to capture
enhancement discrepancy between thyroid nodules and normal gland.

5 Conclusion

In this paper, we have proposed an anatomical-functional fusion network to
automatically segment thyroid nodules using dual-screen contrast-enhanced US
imaging. Experimental results on our collected datasets have demonstrated the
effectiveness of our method in both dynamic enhancement modeling and com-
plementary feature fusion (morphology and perfusion). As the future work, we
will extend our current model to a multi-task architecture that jointly detects
lesion regions and predicts clinical status for thyroid nodule treatment.
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