
Wavelet-SVDD: Anomaly Detection
and Segmentation with Frequency

Domain Attention

Linhui Zhou1, Weiyu Guo1(B), Jing Cao2, Xinyue Zhang1, and Yue Wang1

1 School of Information, Central University of Finance and Economics, Beijing
102206, People’s Republic of China

zhoulinhui@email.cufe.edu.cn, weiyu.guo@cufe.edu.cn
2 China United Network Communications Group Co., Ltd., Beijing, China

caoj33@chinaunicom.cn

Abstract. Anomaly detection is a formidable challenge that entails
the formulation of a model capable of detecting anomalous patterns in
datasets, even when anomalous data points are absent. Traditional algo-
rithms focused on learning knowledge regarding the typical features that
arise in images, such as texture, shape, and color, to distinguish between
normal and anomalous examples. However, there is untapped potential
in frequency domain features for differentiating anomalous patterns, and
current methodologies have not exhaustively exploited this avenue. In
this work, we present an extension of the deep learning version of sup-
port vector data description (SVDD), a prevalent algorithm used for
anomaly detection, through the introduction of Wavelet transformation
and frequency domain attentions in the feature learning network. This
extension allows for the consideration of frequency domain patterns in
defect detection, and improves detection performance significantly. We
performed extensive experiments on the MVTecAD dataset, and the
results revealed that our approach attained advanced performance in
both anomaly detection and segmentation localization, thereby confirm-
ing the efficacy of our proposed innovative designs.

Keywords: Anomaly detection · Wavelet transformation · Frequency
domain attention

1 Introduction

Anomaly detection constitutes a pivotal binary classification issue that aims
to detect the abnormalities in the data. This challenge persists across various
industries such as finance, manufacturing, and video surveillance. Notably, a
significant number of abnormal instances are either unattainable or inadequate
for distribution modeling during training, anomaly detection is typically formu-
lated as a semi-supervised or one-class classification task [8]. The identification
of anomalies is particularly challenging in image data, as the difference between
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
X. Yang et al. (Eds.): ADMA 2023, LNAI 14177, pp. 230–243, 2023.
https://doi.org/10.1007/978-3-031-46664-9_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-46664-9_16&domain=pdf
https://doi.org/10.1007/978-3-031-46664-9_16


Wavelet-SVDD 231

high-frequency

Normal

“semantic”

(low-frequency)

Abnormal

Distribution-specific

correlation

How a human understands

the data

Fig. 1. Distribution of different frequencies

normal and anomalous patterns is often subtle, and defects can be nuanced, par-
ticularly in high-resolution images. Consequently, anomaly detection represents
a distinctive binary classification problem that requires careful consideration,
particularly in image data analysis.

Considering the diversity and scarcity of anomaly samples, a common strat-
egy in such cases is to model the distribution of normal data and detect anomalies
by identifying outliers. The pivotal aspect of this approach is to learn a concise
boundary for normal data. In this regard, the support vector data description
(SVDD) [12] and its extensions [10,15] have been employed as classical algo-
rithms for one-class classification. These methods construct a data-enclosing
hypersphere in the kernel space, enveloping most of the normal samples, for
the purpose of anomaly detection. Nonetheless, existing works primarily focus
on detecting semantic outliers, such as visual objects from distinct classes, in
object-centric natural images, with little regard for the finer details, such as
changes in texture, within an image. However, recent study [13] has illuminated
that the features which can afford insight into the rate of transitions between pix-
els in an image are also useful to distinguish the abnormality from normal data.
The potential for frequency domain features to effectively distinguish between
normal and abnormal images deserves consideration.

As shown in Fig. 1, the low-frequency portion of an image is the primary
source of semantic information perceived by the human visual system. This
implies that, in anomaly detection tasks, the low-frequency features of normal
images, which are consistent with the human visual system, share the same dis-
tribution, whereas its high-frequency features may not. However, tranditional
Convolutional Neural Networks (CNNs) are probably capable of learning fea-
tures that contain mixed high-frequency information [13], which may interfere
with the construction of distribution of normal samples with the ability to dis-
tinguish abnormal samples by the deep SVDD model. In this work, we aim to
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tackle the challenges related to the detection of image abnormalities and seg-
mentation by means of integrating frequency domain features into CNNs. We
present an innovative Wavelet attention that enables a more sophisticated dis-
tinction between normal and abnormal instances by incorporating frequency
domain features. In this regard, a Wavelet Transform based network is proposed
that extends the deep SVDD model to learn a precise boundary for normal data
by considering both visual objects and frequency domain features. In a nutshell,
our contributions in this work can be summarized as follows:

• We investigate the impact of frequency domain characteristics on the efficacy
of anomaly detection, and put forward a multi-stage wavelet network that
employs Wavelet attention to acquire knowledge pertaining to both the fre-
quency domain features and visual objects, with the goal of improving image
anomaly detection.

• We extend the classical method of Deep SVDD [10] for anomaly detection
to frequency domain learning, and propose our Wavelet SVDD, which makes
a good distinction between normal and anomalous in the feature space con-
taining frequency domain features.

• A series of experiments are conducted to validate the effectiveness of the
proposed method and the key designs, which demonstrate that our approach
attained advanced performance in both anomaly detection and segmentation
localization.

2 Related Works

This work aims to enhance the precision of anomaly detection through the incor-
poration of frequency domain feature learning into the framework of deep neural
network-based Support Vector Data Description (SVDD). Its related work can
be classified into three distinct categories: distance metric, frequency domain
analysis, and frequency domain learning methods.

2.1 Distance Metric Based Methods

Distance-based methods focus on the training of a feature extractor that learns
compact distribution of feature vectors derived from normal images by minimiz-
ing intra-class distances between samples. During the testing phase, the majority
of methods employ the distance between the features of the sample undergoing
evaluation and the normal features as a metric for detecting anomalies.

Deep support vector data description (Deep SVDD) [10] is a widely used
technique in this domain. The authors of this approach artificially assign a point
in the feature space as the feature center, and reduce the distance between the
normal sample features and the center by mapping them to the center. Jihun
et al. [15] expanded Deep SVDD to operate at the patch level by learning of
the relative position semantics of patches through a self-supervised approach,
thus avoiding the use of artificial centers by minimizing the distance between
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semantically similar patches. However, notwithstanding the efficacy of the fre-
quency domain feature analysis in detecting anomalies, existing distance-based
methodologies have demonstrated a proclivity towards neglecting this avenue.

2.2 Frequency Domain Analysis Based Methods

The focus of frequency domain analysis based methods is on identifying irreg-
ularities in areas with regular textures. Previous methods [6,14] primarily rely
on the manipulation of frequency spectrum information of the image, with the
aim of removing periodic background textures and enhancing the visibility of
anomalous regions. For example, Tianxiao et al. [14] involves the removal of fre-
quency spectrum information of the background to highlight abnormal regions,
while Chenlei et al. [6] employ only the phase spectrum to eliminate repetitive
backgrounds in the inverse Fourier transform. However, these techniques have
certain limitations in the case of image backgrounds and often require man-
ual intervention for constructing periodic images. In contrast, our method learn
the frequency domain features of the image, rather than relying solely on the
spectrogram of the image.

2.3 Frequency Domain Learning Based Methods

The discrete Wavelet transform (DWT) [1] and Fourier transform (FT) [11]
are widely employed image processing technique utilized for frequency domain
analysis, which can transform an image from spatial domain to the frequency
domain. Since the DWT can easily realize with the multi-level downsampling
style, which is harmonious with deep convolutional neural networks (CNNs), it
has been frequently combined with convolutional networks to deal with the tasks
of computing vision.

For example, in order to enhance performance in the tasks of texture classifi-
cation and image annotation, Shin et al. [5] proposed a wavelet-CNN architecture
which incorporates a multiscale wavelet transform applied to the input image.
This design has demonstrated superior performance compared to non-wavelet
CNNs in these areas. Li et al. [9] presented an innovative solution to counter-
act the problem of feature loss encountered in wavelet-CNN [5]. They proposed
to replace the downsampling features of CNNs with the low-frequency compo-
nent of the discrete wavelet transform (DWT) and combining it with regular
convolution, as opposed to spanwise convolution, resulting in improved feature
retention. For a better fusion of spatial features and frequency domain features of
the image, Zhao et al. [16] proposed an attention based network structure , i.e.,
Wavelet Attention (WA) block. The WA block first effectuates a decomposition
of the feature map into low and high-frequency components through DWT’s
down-sampling operation. Subsequently, the high-frequency details of the fea-
ture map in the high-frequency component are selectively captured, while the
essential information of the feature map residing in the low-frequency component
remains undisturbed.
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Previous research has demonstrated that high frequency information sig-
nificantly impacts image classification, whereas we proposed a Wavalet Atten-
tion based SVDD approach to utilize an attention mechanism on the frequency
domain to identify the relevant part of the high-frequency information for
anomaly detection.

3 Methodology

Problem Formulation. The task of detecting anomalies is akin to binary
classification in that it involves accurately distinguishing between normal and
anomalous data. In the case of image anomaly detection, images that exhibit
minor defects or those that fall outside the semantic distribution are typically
deemed anomalous. To this end, various techniques have been proposed to learn
a score function Aθ to assess the level of anomaly in an image. Specifically, a high
value of Aθ(x) indicates that the image is anomalous during testing. Presently,
the area under the receiver operating characteristic curve (AUROC) [3] is the
standard metric employed to evaluate the efficacy of the Aθ function in detecting
anomalies, which is defined as:

AUROC(Aθ) = P (Aθ(Xnormal) < Aθ(Xabnormal)) (1)

Ideally, an effective score function should be capable of assigning low and
high scores to normal and anomalous input images, respectively. Moreover, for
anomaly localization, the corresponding anomaly score is determined for each
pixel.

Model Overview. As shown in Fig. 2, the proposed Wavelet SVDD involves
two primary components: feature learning and anomaly calculation. Initially,
the model employs a novel wavelet attention network to learn the feature dis-
tribution of normal images from both frequency domain features and visual
objects. During the testing phase, we follow the pradigm of patch SVDD [15]
to divide trained images into several patches and acquire the feature vectors of
these patches by the Wavelet SVDD network, thereby enabling the separation
of normal images into distinct patch distributions. Next, we extract the features
of a testing image by the Wavelet SVDD network in manner of sliding windows.
Finally, the distance between these extracted features from the testing image and
the distribution of normal patches is treated as the abnormality score. The seg-
mentation of abnormal pixels and the abnormality score of the entire image can
be realized in manner of differentiation between testing image and the trained
normal images.

3.1 Wavelet Transformation Network

The previous work [13] has demonstrated that the low-frequency portion of an
image is the primary source of semantic information perceived by the human
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Fig. 2. Overall flow of the proposed model

visual system, and highlighted that high-frequency features are not extraneous
noise; rather, a substantial number of them are correlated with the data distri-
bution. Thus, we aim to enhance discrimination between normal and abnormal
feature distributions by learning to filter out high-frequency information from
the features obtained by CNNs, and select the effective high-frequency informa-
tion from the filtered information.

The use of Discrete Wavelet Transform (DWT) in image processing has
proven to be effective in obtaining high-quality down-sampling information while
minimizing information loss in Convolutional Neural Networks (CNN). In this
study, we aim to integrate the Discrete Wavelet Transform (DWT) into con-
volutional neural network (CNN) for frequency domain learning to enable the
CNN to autonomously learn the components proficient in distinguishing anoma-
lies among the frequency features generated by DWT. Specifically, we propose
a Wavelet block which incorporates DWT operations into the feature extraction
layers of CNN to enhance its performance. As illustrated in Fig. 3, we applies
the DWT technique [1] with CNN to extract relevant features in the frequency
domain. The Wavelet block first decomposes feature maps of CNN into low-
frequency and high-frequency components by the DWT. The low-frequency com-
ponent (Xll) retains the primary information structure of feature maps, while
the high-frequency components (Xlh, Xhl, and Xhh) store detailed information
along with noise. Following the DWT, a 1 × 1 convolution layer and an Inverse
Wavelet Transform (IWT) operation are stacked to select frequency features and
convert them back into the spatial domain, respectively.

In line with previous work [9], the input of 2D-DWT X ∈ Rn×n can be
obtained as follows:

Xll = LXLT, Xlh = HXLT

Xhl = LXHT, Xhh = HXHT
(2)

As a result of the biorthogonal property inherent in the Discrete Wavelet Trans-
form (DWT), it is possible to reconstruct the original feature X with high accu-
racy and without any loss of information using the Inverse Wavelet Transform
(IWT). The 2D-IWT is applied in accordance with the following procedure:

X = LTXllL + HTXlhL + LTXhlH + HTXhhH (3)
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where L and H are cyclic matrices composed of wavelet low-pass filter {lk}k∈Z

and high-pass filter {hk}k∈Z , respectively. Both these matrices have a size of
�N/2 � × N . L and H can be expanded as follows:

L =

⎛
⎜⎜⎝

· · · · · ·
· · · l0 l1 · · ·

· · · l0 l1 · · ·
· · · · · ·

⎞
⎟⎟⎠ , H =

⎛
⎜⎜⎝

· · · · · ·
· · · h0 h1 · · ·

· · · h0 h1 · · ·
· · · · · ·

⎞
⎟⎟⎠ (4)

The Discrete Wavelet Transform (DWT) and Inverse Wavelet Transform
(IWT) can be implemented as DWT and IWT layers in deep learning frame-
works such as PyTorch, respectively. These layers operate on multichannel data
on a per-channel basis. It should be noted that the wavelets chosen for use
must possess finite filters to ensure that the size of the generated matrices is
�N/2 � × N . An example of a simple wavelet family is the Haar wavelet, which
is characterized by a low-pass filter of {lk}k∈Z = {1/

√
2, 1/

√
2} and a high-pass

filter of {hk}k∈Z = {1/
√

2,−1/
√

2}.
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3.2 Wavelet Attention

In the presented network architecture, discerning and extracting valuable fea-
tures from the frequency domain that are pertinent to anomaly detection has
been successfully achieved. Nevertheless, Wang et al. [13] have observed that
convolutional neural networks (CNNs) tend to prioritize learning low-frequency
features in images. However, for anomaly detection, identifying high-frequency
features, such as minute defects, is crucial in discriminating between anomalous
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and normal instances. As a remedy, we further introduce an attention mecha-
nism into the proposed Wavelet block to enable its CNN to concentrate more
attention on the high-frequency elements.

Inspired by the Wavelet Attention mechanism proposed by Zhao et al. [16],
we propose an enhanced Wavelet block based Wavelet Attention, which captures
the detailed information of feature maps in the high-frequency component as
the attention information, and the main information of feature maps in the
low-frequency component Xll = {xll}Np

i=1, is not affected. As Fig. 4 shown, the
high-frequency components, i.e., Xlh = {xlh}Np

i=1, Xhl = {xhl}Np

i=1 and Xhh =
{xhh}Np

i=1, are selected and integrated into the low-frequency feature maps by an
attention structure, which can be defined as:

zi = xll
i +

exp(xhl
i + xlh

i + xhh
i )

ΣNp

m=1 exp(xhl
m + xlh

m + xhh
m )

xll
i (5)

where Np = H × W is the number of elements on frequency feature maps.

DWT

•

Softmax

X

Z

Fig. 4. Wavelet attention, ⊕ denotes broadcast element-wise addition, and � denotes
broadcast element-wise multiplication.

3.3 Wavelet SVDD

After analyzing the above information, we replaced the DWT decomposition
part of our wavelet network with our wavelet attention to form our basic wavelet
attention block. This basic wavelet attention block is then superimposed with
the above wavelet network block to form a deep wavelet attention network as
a feature learning network. We experimented with the depth and size of the
network, as well as the number of wavelet attention network additions. Ulti-
mately, we determined our feature learning network to be a network consisting
of 4 layers of wavelet attention blocks and 4 layers of wavelet network blocks.
Wavelet attention is placed in layers 2, 3, 6, and 7 after our experiments. The
final network structure is shown in Fig. 5.
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To enable our network to learn the distribution of normal images, we referred
to the training method of patch svdd [15] and trained our network to collect
semantically similar patches by itself. These semantically similar patches are
obtained by sampling spatially adjacent patches. The encoder is then trained to
minimize the distances between their features using the following loss function:

LSVDD =
∑
i,i′

‖fθ (pi) − fθ (pi′)‖2 (6)

where pi′ is a patch near p and fθ is the wavelet attention network. Further-
more, to enforce the representation to capture the semantics of the patch and
improve the structure of the anomalous and normal distributions, Wavelet SVDD
appends the following self-supervised learning.

We followed the practice in patch SVDD based on Doersch et al. [4] and
trained an encoder and classifier pair to predict the relative positions of two
patches. A well-performing encoder pair means that the trained encoder can
extract useful features for location prediction. For a randomly sampled patch
p1, Doersch et al. [4] drew another patch p2 from a 3 × 3 grid in one of its 8
neighborhoods. If we let the true relative position be y ∈ {0, ..., 7}, the classifier
Cφ is trained to correctly predict y = Cφ(fθ(p1), fθ(p2)). We added a self-
supervised learning signal by adding the following loss term:

LSSL = Cross-entropy (y, Cφ (fθ (p1) , fθ (p2))) (7)

As a result, the encoder is trained using a combination of two losses with the
scaling hyperparameter λ, as presented in Eq. 8. This optimization is performed
using stochastic gradient descent and the Adam optimizer [7].

LWavelet Psvdd = λLSVDD + LSSL (8)
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3.4 Calculate Anomaly Score

After training the feature learning network, the representations from the network
are used to detect anomalies. First, the representation of every normal train
patch [15], fθ(pnormal )|pnormal ), is calculated and stored. Given a query image
x, for every patch p with a stride s within x, the L2 distance to the nearest
normal patch in the feature space is defined as its anomaly score using Eq. 9.

Apatch
θ (p) .= min

pnormal
‖fθ(p) − fθ (pnormal )‖2 (9)

At the same time, to improve the stability of our method and avoid the
appearance of query patches being affected by noise in the normal distribution,
we also set another anomaly score calculation function A2patchθ . The difference
between this and the above anomaly score calculation function is that A2patchθ

considers the next closest patches in addition to the closest patches to the query
patches. This reduces the influence of noise in the training data to a certain
extent. Therefore, A2patchθ is defined as:

A2patchθ (p) .=
1
2

× min
pnormal1pnormal2

‖fθ(p) − fθ (pnormal1) − fθ (pnormal2)‖2 (10)

Patch-wise calculated anomaly scores are then distributed to the pixels. As
a result, pixels receive the average anomaly scores of every patch to which they
belong. We use M and M2, calculated from the two scoring methods A and A2,
respectively, to represent the resulting anomaly maps.

We divided the size of 32 and 64 patches input into the network, respectively,
to obtain different sizes of anomaly maps. We aggregate multiple maps using
element-wise multiplication. The resulting anomaly map, Mmulti, provides the
answer to the problem of anomaly segmentation:

M1multi
.= M1small � M1big

M2multi
.= M2small � M2big

Mblendmulti
.= M1multi � M2multi

(11)

where Msmall and Mbig are the generated anomaly maps with different scales of
patches, respectively. The pixels with high anomaly scores in the map Mmulti =
{M1multi ,M2multi ,Mblendmulti} are deemed to contain defects.

It is straightforward to address the problem of anomaly detection. The max-
imum anomaly score of the pixels in an image is its anomaly score, which can
be expressed as:

Aimage
θ (x) .= max

i,j
Mmulti (x)ij (12)

4 Experiments

We selected the MVTecAD dataset [2] to test the effect of our improvements.
This dataset consists of 15 classes of industrial images, each class categorized
as either an object or texture. Ten object classes contain regularly positioned
objects, while the texture classes contain repetitive patterns.
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Table 1. Detection and segmenta-
tion performance on MVTec AD

Classes Det. Seg.

bottle 0.996 0.987

cable 0.953 0.969

capsule 0.935 0.962

carpet 0.946 0.964

grid 0.949 0.965

hazelnut 0.964 0.978

leather 0.975 0.976

metal nut 0.963 0.986

pill 0.946 0.965

screw 0.934 0.959

tile 0.984 0.941

toothbrush 1.000 0.983

transistor 0.943 0.969

wood 0.974 0.962

zipper 0.983 0.958

Average 0.963 0.968

Table 2. Detection and segmen-
tation performance compared with
baselines

Method Det. Seg.

InTra 0.950 0.966

PyramFlow 0.960 0.945

RegAD 0.927 0.966

CutPaste 0.961 0.883

Patch SVDD 0.921 0.951

Wavelet SVDD (Ours) 0.963 0.968

4.1 Anomaly Detection and Segmentation Results

Table 1 shows the detection performance of our method in each type of
MVTecAD dataset in terms of AUROC. As shown in Fig. 6, the anomaly maps
generated using the proposed method indicate that defects are properly localized,
regardless of their size. Table 2 shows the detection and segmentation perfor-
mances for the MVTecAD dataset compared with baselines in terms of AUROC.
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4.2 Effect of Wavelet Attention

To explore the effect of our Wavelet attention block, we compared the perfor-
mance of the network without the Wavelet attention block to that of the network
with the Wavelet attention block added at different positions. Our network has
mainly 8 wavelet layers. We compared the network without the Wavelet atten-
tion block to the network with the Wavelet attention block in layers 2, 3, 6, and
7, as well as in layers 3 and 6, in layers 2 and 7, and in all layers, respectively.
The results on MVTec are shown in Fig. 7.

0.963 0.968 0.946 0.962 0.927 0.957 0.921 0.959
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0.50
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Fig. 7. Effects of different attention layers

The experimental results show that the accuracy of anomaly detection and
segmentation can be improved by adding a Wavelet attention block in layers 2,
3, 6, and 7, respectively. The improvement of WA blocks in layers 2, 3, 6, and 7 is
better than that in layers 2 and 7. In contrast, adding Wavelet attention blocks
in all layers decreases accuracy. One possible explanation is that the influence of
multiple Wavelet attentions creates a shortcut path dependence, which weakens
the learning effect. Additionally, the frequency domain information in shallow
layers may not be as useful for distinguishing anomalies as in deep layers. In
conclusion, this experiment verifies the usability of Wavelet attention.

5 Conclusion

In this work, we present a novel technique for image anomaly detection and
segmentation called Wavalet Attention SVDD. Instead of only relying on the
conventional features extracted by convolutional network, we improve the patch
SVDD [15] by involving the frequency domain characteristics of images to dif-
ferentiate anomalies. We extensively evaluated our method on the MVTecAD
dataset and observed that our approach outperformed existing techniques in
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both anomaly detection and segmentation localization. These results validate the
effectiveness of our innovative designs. However, the present approach inherits
the inference architecture of patch SVDD, which necessitates anomaly detection
inference based on feature database retrieval, thus resulting in time consump-
tion. In future work, we plan to enhance detection inference by incorporating an
Auto-Encoder structure into our detection model and accomplishing end-to-end
learning and inference.
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