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Abstract. The existing deep learning works mainly capture breast can-
cer histopathology image features in the spatial domain, and they rarely
consider the frequency domain feature representation of histopathology
images. According to the classical digital signal processing theory, fre-
quency domain features may outperform spatial domain features in ana-
lyzing texture images. Motivated by this, we attempt to mine frequency
domain features for the breast cancer histopathology image classifica-
tion application, and further propose a novel frequency-attention convo-
lutional network called SeFFT-Net by combining the Fourier transform
with the channel attention mechanism. The core of SeFFT-Net consists
of a newly constructed frequency-based squeeze and excitation (SeFFT)
module, which first performs Fourier transform with residual construc-
tion to capture deep features in the frequency domain of histopathol-
ogy images, followed by a squeeze-and-excitation attention operator to
further enhance important frequency features. We extensively evaluate
the proposed SeFFT-Net model on the public BreakHis breast can-
cer histopathology dataset, and it achieves the optimal image-level and
patient-level classification accuracy of 98.67% and 98.16%, respectively.
Meanwhile, ablation studies also well demonstrate the effectiveness of
introducing frequency transforms for this medical image application.
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1 Introduction

Globally, breast cancer is the most common malignancy in women and the cancer
with the highest mortality rate [1]. Early diagnosis and treatment of breast
cancer is essential in augmenting the survival rate of patients, while pathological
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diagnosis is still seen as the definitive method for breast cancer diagnosis [2].
Since the traditional pathological diagnosis mainly relies on the experience of
pathologists, which is time-consuming and laborious, with the rapid growth of
the demand for pathological diagnosis, computer-aided diagnosis of breast cancer
histopathology images is becoming more and more important.

Recently, breast cancer histopathology image classification methods related
to deep learning have achieved great success and gradually become the main-
stream. Among them, some works employ typical convolutional neural networks
(CNN), such as AlexNet, VGGNet, and ResNet, to pre-train on large-scale nat-
ural image datasets as feature extractors, and then use machine learning clas-
sifiers to distinguish the extracted deep feature image [3,8]. Deniz et al. uti-
lize pre-trained AlexNet and VGG16 models to capture deep features of breast
cancer histopathology images, and then employ support vector machine to dis-
tinguish the deep features [8]. As a counterpart, Gupta and Bhavsar employ
residuals and dense networks to capture deep features of histopathology images,
followed by XGBoost as a feature classifier, and they achieve the best patient-
level classification result of 96.76% [3]. In order to narrow the gap between the
extracted image features and the classifiers, researchers further leverage learnable
CNNs for breast cancer histopathology image classification. Considering that the
histopathological images used for model training are limited, transfer learning is
usually used to improve performance. For example, Shalu and Mehra explored
the effect of transfer learning on breast cancer histopathology images compared
with fully trained networks using VGG16, VGG19 and ResNet50 models [5].
Subsequently, Chukwu et al. utilize pre-trained DenseNet and transfer learn-
ing technology to obtain the best accuracy rate of 97.42% on the public breast
cancer histopathology image dataset [6]. Meanwhile, considering the character-
istics of breast cancer histopathology images, some works attempt to build novel
CNN models for this medical task. Spanhol et al. [7] construct a simple plain
CNN model with five trainable layers, and experimental results demonstrate
that it outperforms conventional methods. Likewise, Budak et al. [8] propose a
learnable model combining fully convolutional networks and bidirectional long-
short-term memory, and they achieve average results of 94.98% on the breast
cancer histopathology image database. Moreover, to focus on important discrim-
inative deep features, attention mechanisms are also widely introduced to classify
histopathology images with excellent performance [9]. In general, deep learning-
related models have recently greatly promoted the development of computer-
aided histopathology diagnosis of breast cancer, showing obvious advantages in
classification accuracy compared with traditional work [10–12].

However, current deep learning-related breast cancer histopathology image
classification methods are mainly implemented in spatial domain, while rarely
consider the frequency domain features of histopathological images. According
to the theory of digital signal processing, frequency domain is more suitable
for analyzing texture images than spatial domain. Actually, some researchers
have recently attempted to explore frequency-domain deep learning methods for
computer vision applications [13–15]. Gueguen et al. learn CNNs directly on the
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Fig. 1. Overall architecture of SeFFT-Net for breast cancer histopathology image clas-
sification. SeFFT-Net leverages ResNet18 as the backbone and embeds SeFFT modules
at multiple layers that integrate residual Fourier transform (ResFFT) with channel
attention to compute important frequency-domain features.

discrete cosine transform (DCT) of deep features for effective image classification
[13], while Ehrlich et al. [14] propose a new method using frequency-domain
compressed the image is used as input to the residual network. Additionally,
Zhong et al. [15] explore frequency domain features as additional cues to better
solve camouflaged object detection task.

Inspired by these works, we try to study breast cancer histopathology image
classification task by introducing frequency domain deep features. In this work,
we propose a novel frequency-domain attention convolutional network, namely
SeFFT-Net, which firstly utilizes Fourier transform to capture the frequency-
domain deep features of histopathology images, followed by an attention module
[16] is used to further enhance important frequency features. The overall archi-
tecture of the given SeFFT-Net model is shown in Fig. 1. The main contributions
of this paper can be encapsulated in three facets.

(1) This work attempts to explore frequency-domain deep features for breast
cancer histopathology image classification applications, and further utilizes
Fourier transform and channel attention mechanism to propose a novel
frequency-domain attention convolution network called SeFFT-Net.

(2) SeFFT-Net first performs a Fast Fourier transform operator combined with
residual construction (ResFFT) to compute deep features in the frequency
domain of histopathology images, and then further enhances high-valued
frequency feature impact with a squeeze and excite attention module to
obtain more promising classification results.

(3) We extensively evaluate SeFFT-Net on the public BreakHis dataset. Abla-
tion studies demonstrate the effectiveness of introducing frequency-domain
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features for the classification of breast cancer histopathology image. Fur-
thermore, comparing the experimental results with state-of-the-art spatial
domain models further demonstrates its competitive performance in this
task.

2 Method

In this section, we first introduce the overall structure of the proposed SeFFT-
Net for breast cancer histopathology image classification. Then, the Fourier
transform is briefly described, followed by the introduction of the frequency
residual module as well as frequency attention module.

2.1 Overall Structure

As shown in Fig. 1, SeFFT-Net is composed mainly of two components, i.e.,
a backbone model and a SeFFT module. ResNet18 [17] is used as the back-
bone model owing to its superiority in the breast cancer histopathology image
classification task. Actually, breast cancer pathological images have complex
frequency distributions, and the essential information of such images is mainly
concentrated in the low-frequency area. Therefore, capturing frequency domain
features becomes critical, how to interact with convolutional features should be
deeply considered.

We achieve that by proposed SeFFT module. We endeavor to replace the
residual module of the backbone model with the newly constructed SeFFT
module, which well integrates Fourier transform and channel attention mecha-
nism, thereby capturing the frequency domain depth features of histopathologi-
cal images and interacting with convolutional features. Specifically, the frequency
domain is applied by the ResFFT module in SeFFT module, which can simul-
taneously process the images in the space domain and the frequency domain.
Frequency domain features are captured by Fast Fourier Transform (FFT) and
Inverse Fast Fourier Transform (IFFT). Initial interaction Y between frequency
domain features and convolutional features is obtained here by element-wise
addition. In addition, in order to enhance high-value information consequences
and neglect low-value information consequences, we present a channel attention
module, i.e., Squeeze-and-Excitation module, on the result of the ResFFT mod-
ule. This will further interaction between the two types of features. It is note-
worthy that our SeFFT-Net network structure is very flexible and can insert
any convolutional neural networks applied to other medical image classification
tasks.

2.2 Fourier Transform

The Fourier transform is the most basic and widely used frequency transform
operator in image processing and analysis. During image processing and analysis,
the Fourier transform decomposes the image into sine component and cosine
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component. The frequency feature of the digital image after Fourier transform
is a complex numbers. The frequency domain network [13–15,18] can perform
various operations on real and imaginary images on the basis of the original
network architecture, such as complex number operations, so as to learn more
robust frequency domain features. In addition, we can transform the image from
the spatial domain to the frequency domain using the Fourier transform, and
processing the image in the frequency domain. Afterwards, the frequency domain
image is restored to the space domain image by inverse Fourier transform. Given
an input image patch m, of size M × N , denoted as fm(x, y), the following is
the calculation expression of the discrete Fourier transform [18]:

fm(u, v) =
M−1∑

x=0

N−1∑

y=0

fm(x, y)e−j2π(ux
M + vy

N ) (1)

The Fast Fourier Transform (FFT) is a fast algorithm for the discrete Fourier
transform. It is obtained by improving the original algorithm according to the
characteristics of discrete Fourier transform, which greatly reduces the calcula-
tion amount of the computer. Efficient fast Fourier transforms can model interac-
tions between spatial locations with log-linear complexity. By using Fast Fourier
Transform (FFT), the image is divided into real image and imaginary image, so
that a series of feature extraction operations such as convolution, batch normal-
ization, and activation can be performed on the image in the frequency domain.
This enables the network to extract richer frequency feature information. After-
wards, the real and imaginary images are mixed. Finally, the Inverse Fast Fourier
Transform (IFFT) can effectively aggregate local information and improve the
learning ability of non-local information.

2.3 SeFFT Module

In this section, we mainly present the specific structure of SeFFT module. The
SeFFT contains a ResFFT module and a channel attention module. The main
purpose of ResFFT module is to capture frequency domain features. In ResFFT
module, the Fourier transform is responsible for this purpose. The channel atten-
tion module aims to highlight important features from the ResFFT module or
submitting for a classifier.

In Fig. 1, the SeFFT module integrates Fast Fourier Transform with the chan-
nel attention mechanism, which outputs meaningful frequency domain informa-
tion by processing images in both spatial and frequency domains simultane-
ously. As shown in the blue box in the Fig. 1, to obtain more detailed frequency
domain features, we add the Fourier Transform operation to the residual block of
ResNet18 backbone [17], which can assist the network to concentrate on critical
local features and enhance recognition accuracy. We first give the formulation of
the classical residual block in the ResNet architecture. The conventional residual
block is expressed as:

Y = X + F (X). (2)
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Here, X ∈ RC×H×W and Y ∈ RC×H×W are input and output tensors, where
C, H, W are channel number, height and width, respectively. Besides, F is a
residual learning block. Then, ResFFT module improves the above residual block
by adding a frequency domain branch that captures representative frequency
domain features of breast cancer histopathological images. It is formulated as:

Y = X + F (X) + FDF (X) (3)

FDF (X) = IFFT (conv(FFT (X))) (4)

From above equation, ResFFT module fuses the input X, convolution learn-
ing block F and frequency domain features learning block FDF , also provid-
ing interaction between convolution features and frequency domain features.
For capturing frequency domain features, ResFFT module first performs fast
Fourier transform FFT to convert images from the space domain to the fre-
quency domain, then applies efficient 1 × 1 convolution (conv.) to compress the
number of channels and add network nonlinearity, and finally utilises inverse
fast Fourier transform IFFT to convert the information in frequency domain
to space domain. By doing so, the operation done in the frequency domain is
presented on the image after inverse fast Fourier transform.

Next, after the ResFFT module, we introduce a classic Squeeze-and-
Excitation module [16] to further enhance deep features. Specifically, the squeeze
operation compresses image features from outputs of the ResFFT module by
average pooling, followed by two FC layers and Relu layers for interaction
between channel responses and increasing nonlinearity respectively. The exci-
tation operation generates weights via sigmoid function for each feature chan-
nel, which fully captures the dependency between channels and outputs the same
number of weights as the input characteristics. Thus, it automatically obtains the
importance spatial and frequency information of each channel through learning,
and suppresses the characteristics that are useless for the current task according
to this. And then, in the weighting operation before output, we establish the
connection of input, ResFFT module and SeFFT module, which is helpful for
the reverse propagation of gradient in the training process and the realization
of feature reuse through the connection of features.

3 Experimental Results and Discussion

First, we describe the public breast cancer histopathology image dataset used
to evaluate the SeFFT-Net model. Then, the parameter settings and evaluation
metrics are briefly introduced. Finally, we report and analyze the experimen-
tal results in detail, including ablation experiment results, Comparison with
advanced spatial domain methods, as well as visualization results.
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Fig. 2. Typical breast cancer histopathology images at four magnification factors in
the BreakHis dataset.

3.1 Dataset

A commonly used breast cancer histopathological image dataset, namely
BreakHis, is adopted to evaluate SeFFT-Net in this work. The BreakKHis
dataset is a publicly available large-scale non-global breast cancer histopathology
image dataset (http://web.inf.ufpr.br/vri/databases/breast-cancer-histopatho
logical-database-breakhis), which provides a good benchmark for this medical
application. The BreakHis dataset contains 7909 histopathological images from
82 patients, each of which is labeled with benign tumors (fibroadenoma, ade-
noma, tubular adenoma and trichoma) or malignant tumors (lobular carcinoma,
ductal carcinoma, papillary carcinoma and mucinous carcinoma). In addition,
2480 samples belong to benign images, and the remaining 5429 samples are
malignant images. Each sample image has an RGB channel mode with the size
of 700× 460 pixels in size, and the color depth of each channel is 8 bits. Accord-
ing to the different magnification, the samples of each patient can be divided
into four groups of 40 times (40×), 100 times (100×), 200 times (200×) and 400
times (400×). Figure 2 shows some typical breast cancer histopathology images
at different magnification factors in the BreakHis dataset.

3.2 Experimental Settings

The original data set of BreakHis is randomly divided into a training set and a
test set at each magnification factor. The training set consists of 70% images,
and the rest 30% images constitute the test set. In addition, 25% of the train-
ing set images are retained for cross validation to select model parameters. All
experiments utilize the same training data set and test data set. In the image
preprocessing stage, to reduce the impact of possible over fitting problems, we
perform simple crop and flip operations to increase the sample size of the train-
ing set. For network training, the initial learning rate is set to LR = 0.001,
and the learning rate decays to half of the current learning rate after every five
iterations. The data set is randomly scrambled to avoid any negative impact on
learning by using orderly training data. Besides, the loss function is optimized

http://web.inf.ufpr.br/vri/databases/breast-cancer-histopathological-database-breakhis
http://web.inf.ufpr.br/vri/databases/breast-cancer-histopathological-database-breakhis
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using a stochastic gradient descent (SGD) algorithm with a batch size of 8. The
momentum factor is set to 0.9 to prevent the loss function from falling into a local
optimal solution, and control the loss function to reach the global minimum. All
models are trained for cosine annealing learning rate attenuation in 100 cycles.
All experiments are carried out on the server configured with NVIDIA GeForce
RTX 2080Ti using the Python deep learning framework. Additionally, we adopt
two commonly used classification accuracy indicators of image-level recognition
rate and patient-level recognition rate to evaluate the model performance.

Table 1. Ablation experiment results at image level.

Method 40× (%) 100× (%) 200× (%) 400× (%)

ResNet18 95.99 95.68 97.35 93.77

ResFFT-Net 96.49 96.80 98.01 94.87

SENet 96.49 96.96 98.01 94.87

SeFFT-Net 96.99 98.08 98.67 95.24

Table 2. Ablation experiment results at the patient level.

Method 40× (%) 100× (%) 200× (%) 400× (%)

ResNet18 95.62 96.06 97.57 94.52

ResFFT-Net 96.77 96.94 97.10 95.53

SENet 96.04 96.61 98.01 95.47

SeFFT-Net 96.44 98.16 98.14 95.57

3.3 Experimental Results

Ablation Experiment Results. To prove the effectiveness of SeFFT-Net as
well as the frequency domain features for this medical task, we first conduct
image-level and patient-level ablation experiments on the BreakHis dataset,
whose results are reported in Table 1 and Table 2, respectively. In the two tables,
we first employ the typical ResNet18 model as the baseline. Then, we embed the
Fourier transform module into the model to construct ResFFT-Net, and further
integrate the ResFFT module with squeeze-and-excitation channel attention to
construct SeFFT-Net. In addition, we also introduce SE-Net as a counterpart to
better show the effectiveness of frequency domain features.

As shown in Table 1, the baseline of ResNet18 achieves the image-level recog-
nition rates of 95.99%, 95.68%, 97.35% and 93.77% on 40X, 100X, 200X and
400X data sets, respectively. After introducing the frequency domain features,
the ResFFT model gains the corresponding accuracy results of 96.49%, 96.80%,
98.01% and 94.87%, which outperforms ResNet18 on the four data sets, thus
showing the effectiveness of introducing frequency domain features. By simulta-
neously integrating frequency transform and attention mechanism, SeFFT-Net
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Table 3. Comparisons with advanced spatial domain methods at both image-level and
patient-level.

Reference Year Image-Level (%) Patient-Level (%)

40× 100× 200× 400× 40× 100× 200× 400×
Spanhol et al. [7] 2017 84.60 84.80 84.20 81.60 84.00 83.90 86.30 82.10

Han et al. [23] 2017 95.80 96.90 96.70 94.90 97.10 95.70 96.50 95.70

Gupta et al. [3] 2018 – – – – 94.71 95.90 96.76 89.11

Lichtblau et al. [20] 2019 85.60 87.40 89.80 87.00 83.90 86.00 89.10 86.60

Alom et al. [24] 2019 97.95 97.57 97.32 97.36 97.60 97.65 97.56 97.62

Zhang et al. [19] 2020 95.03 90.41 88.48 85.00 95.50 91.57 89.20 89.20

Hou [21] 2020 90.89 90.99 91.00 90.97 91.00 91.00 91.00 91.00

Man et al. [28] 2020 99.13 96.39 86.38 85.20 96.32 95.89 86.91 85.16

Li et al. [27] 2021 87.85 86.68 87.75 85.30 87.93 87.41 88.76 85.55

Chukwu et al. [6] 2021 93.64 97.42 95.87 94.67 94.23 97.86 96.35 95.24

Sharma and Kumar [29] 2021 96.25 96.25 95.74 94.11 – – – –

Boumaraf et al. [26] 2021 98.13 97.39 96.63 94.05 – – – –

Saxena et al. [22] 2021 88.36 87.14 90.02 84.16 92.88 83.61 89.98 81.63

Xu et al. [30] 2022 94.94 94.18 95.38 92.64 – – – –

Hao et al. [25] 2022 96.75 95.21 96.57 93.15 96.33 95.26 96.09 92.99

Chhipa et al. [4] 2022 93.00 93.26 92.28 88.74 93.26 93.45 92.45 89.57

SeFFT-Net (Ours) – 96.99 98.08 98.67 95.24 96.44 98.16 98.14 95.57

further improves the classification performance to 96.99%, 98.08%, 98.67% and
95.24%, which is also better than the Squeeze-and-Excitation network (SENet)
[16]. Compared with the baseline, SeFFT-Net can gain classification accuracy
improvement of 1.00%, 2.40%, 1.32% and 1.47%, respectively. Thereby, the
image-level ablation experimental results well demonstrate the effects of the
frequency domain features as well as the proposed SeFFT-Net for breast cancer
histopathology image classification.

When it comes to the patient-level ablation results listed in Table 2, SeFFT-
Net respectively gains the accuracy values of 96.44%, 98.16%, 98.14% and 95.57%
on the 40X, 100X, 200X and 400X datasets, which also shows the best perfor-
mance among the four models. SeFFT-Net outperforms the baseline by 0.82%,
2.10%, 0.57% and 1.05% gains on the four data sets, respectively. Meanwhile,
it is superior to SENet with average accuracy improvement of 0.55%. Addition-
ally, ResFFT-Net averagely outperforms the baseline ResNet18 model by 0.64%
classification accuracy. The above results again well prove the effectiveness of
SeFFT-Net and the frequency domain features.

Comparison with Typical Spatial Domain Methods. To further show the
performance of SeFFT-Net on breast cancer pathological image classification
task, we compare it with a variety of advanced spatial domain methods proposed
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in recent years. The detailed results at both image-level and patient-level are
demonstrated in Table 3.

As shown in Table 3, SeFFT-Net has a notable competitive performance com-
pared to the previously representative spatial domain methods. Specifically, it is
worth noting that the given model achieves the image-level classification accu-
racy of 96.99%, 98.08%, 98.67% and 95.24% on 40×, 100×, 200× and 400×
data sets, which are significantly better than results in literature [7,8,19–22].
Besides, SeFFT-Net gains the best accuracy values on both 100× and 200×
data sets among all the works. Despite not achieving optimal results on the 40×
and 400× data bases, it ranks fourth and second on the two data sets at the
image level, respectively. Moreover, when it comes to the patient-level evalua-
tion results, SeFFT-Net achieves recognition rates of 96.44%, 98.16%, 98.14%
and 95.57% on four multiples, and it is also superior to other methods on 100×
and 200× data sets. Meanwhile, SeFFT-Net ranks the third place on both 40×
and 400× data bases. Among these spatial CNN-based methods, CSDCNN,
IRRCNN+Aug., VGG 19 and DenseNet in literature [6,23,24,26] obtain the
most promising results with the average recognition rate around 96%. However,
SeFFT-Net overall shows very competitive or better performance over the three
works. According to the above results, we can see that the SeFFT-Net model is
effective for breast cancer pathological image classification task, which can be
attributed to the frequency domain feature to some extent.

Fig. 3. Histopathological images that are incorrectly classified by ResNet18 but can
be correctly classified by SeFFT-Net.

Visualization Results. In this section, we manage these breast cancer pathol-
ogy tissue slices that are misclassified by the baseline but can be rightly distin-
guished by SeFFT-Net, and show eight typical images at four magnifications in
Fig. 3. In the figure, images in the first row are labeled as benign tumors, while
images in the second row belong to malignant tumors. Due to the complexity
and irregularity of breast cancer histopathology images, the baseline model can
not well distinguish some histopathology images, specially for those containing
blank areas. After introducing frequency transform and channel attention mod-
ules, the SeFFT-Net model can well classify these breast cancer pathology tissue
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Fig. 4. Visualized heatmap results of ResNet18 and SeFFT-Net deep feature activa-
tions at four magnifications.

slices, and the classification accuracy is significantly improved compared to the
baseline. Then, we also visualize heatmaps of deep features in Fig. 4, aiming to
further display the regions of interest of different networks and hope to provide
a valuable reference for classification results.

4 Conclusion

This paper attempts to explore the application of frequency domain related
deep learning methods in breast cancer histopathology image classification tasks,
and further propose a novel frequency attention network called SeFFT-Net by
combining the advantages of frequency transformation and channel attention
mechanism. SeFFT-Net adds Fourier transform on the spatial residual struc-
ture to extract the frequency-domain features of histopathology images, and
then enhances the feature representation with an attention operator to obtain
more promising classification performance. Experimental results on the public
dataset BreakHis demonstrate the effectiveness of SeFFT-Net in this medical
image application, while ablation studies on two landmark spatial counterparts
provide a good demonstration of the effect of introducing frequency-domain fea-
tures. In the future, we will attempt to capture more discriminant frequency
features for breast cancer histopathology image classification. Besides, it is also
interesting to explore the combination of frequency features with transformer
models.
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