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Abstract. In object detection, the anchor-based method relies on too much man-
ual design, and the training and prediction process is too inefficient. In recent years,
one-stage anchor-free methods such as Fully Convolutional One-stage Object
Detector (FCOS) and CenterNet have made a splash in object detection. They
not only have a simple structural design, but also demonstrate competitive perfor-
mance. They have exceeded many two-stage or anchor-based approaches. How-
ever, in industrial applications, the design of its multiple output heads hinders the
installation of the model. At the same time, different output heads mean a com-
bination of multiple loss functions. This introduces problems in training. Here,
we propose an anchor-free object Detector with Only Heatmaps (DetOH) to solve
object detection. Bounding box parameters are calculated by post-processing. The
design of the single output head allows object detection to use a semantic seg-
mentation network, realizing the unification of the two frameworks. In addition,
compared with CenterNet, we have greatly improved the speed of object detection
(6 vs. 32 Frames Per Second) with 3.2% Average Precision boost. The proposed
DetOH framework can be applied to multi-target tracking, key point detection and
other tasks.
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1 Introduction

Object detection is an algorithm that predicts the bounding box position and category
label for each instance of interest in an image. The classical algorithms mainly rely on
sliding windows [1, 2], which classify every possible position and therefore require high
speed. This also established the position of the anchor in object detection. After the
advent of deep learning, detection has shifted to the use of FCN (Fully Convolutional
Networks) since Faster R-CNN [3]. Many current anchor-based detectors such as Faster
R-CNN, SSD [4], YOLOv2 [5], and v3 [6] rely on a predefined set of anchor boxes.

Many anchor-free detectors have also appeared in recent years, and their performance
has gradually surpassed that of anchor-based detectors. For example, CenterNet [7, 8]
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predicts promising performance with hourglass for predicting center, offsets, and object
size. Fully Convolutional One-stage Object Detector (FCOS) [9, 10] uses a FCN to
demonstrate the commonality between semantic segmentation tasks and object detection
tasks. However, compared with the simple output head and loss function of semantic
segmentation, an anchor-free detector requires multiple loss function combinations to
assist training due to its multiple outputs. It is natural to ask the question: can we really
do object detection like semantic segmentation? The answer is yes.

We found that the reason for the multiple outputs of the anchor-free detector is the
deviation of the center positioning and the parameters of the object box. The former is
caused by the output featuremap being smaller than the input. The latter can be solved by
mining information in classification heatmaps. Therefore, we designed the polynomial
heatmaps so that the boundary of the object box can be obtained by post-processing.
At the same time, their size is equal to the input, thus avoiding the offset of the center
positioning. To highlight the portability and speed/precision balance of our model, we
applied it to a smart security system. The detailed contributions are as follows.

1) We proposed an anchor-free object detector with only heatmaps. This not only sim-
plifies the process of object detection but also allows for greater flexibility in detecting
objects of varying sizes and shapes. We also introduced the concept of polynomial
heatmaps for object detection which helps in post-processing and precise predictions of
object boundaries.
2) We designed the Center Point (CP) loss function to effectively improve the detector
performance. It draws on the positioning of theCP in the inference process and effectively
alleviates the problem of CP offset. This greatly improves model accuracy.
3) We conducted experiments on the Microsoft COCO (Common Objects in COntext)
dataset and applied the model to embedded devices to demonstrate the effectiveness of
our work. Compared to CenterNet that use the same backbone network, we improved
model performance by 3.2% Average Presicion (AP), increasing speeds from 6 to 32
FPS (Frames Per Second).

This paper is organized as follows. Relatedwork andmethods are analyzed in Sect. 2.
In Sect. 3, the specific methods and core innovations are introduced. The experiments
are shown in Sect. 4 followed by the ablation study in Sect. 5.

2 Related Work

In this section, we introduce some work related to our method. They are mainly divided
into two parts: anchor-based detectors and anchor-free detectors.

2.1 Anchor-Based Detectors

Many anchor-based detectors achieve a good balance of speed and accuracy, such as Fast
Region-based Convolutional Network (R-CNN) [13] and Deconvolutional Single Shot
Detector (DSSD) [15]. Anchor boxes can be considered suggested regions, and they
are classified as correct or negative patches. The anchor utilizes and avoids duplicate
feature calculations, greatly speeding up the detection process. But it is worth noting
that anchor-based detectors have some drawbacks:
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As shown by Faster R-CNN [3] and RetinaNet [11], the performance of the detection
is sensitive to the size, proportion, and number of anchor boxes. These hyperparameters
can greatly affect the AP performance on the COCO dataset [12]. Therefore, these
hyperparameters need to be fine-tuned in anchor-based detectors.

Detectors difficulty handling object candidateswith large shape variations, especially
small objects. Therefore, they need to set different sizes or aspect ratios for the same
kind of object. To achieve high accuracy, anchor boxes need to be densely placed on
the input image. Meanwhile, a lot of negative samples are generated, which brings
imbalance problems to training. Anchor boxes also introduce complex computations
into the training process and loss functions, such as calculating IoU (Intersection over
Union).

2.2 Anchor-Free Detectors

The earliest anchor-free detector was probably YOLOv1 [6], which predicts points near
the center of the object’s bounding box because they are believed to be able to produce
higher quality detections. But using only points close to the center resulted in low
recall. CornerNet [16] uses a pair of corner points to detect boundaries and groups
them to form the final detected box. CornerNet learns an additional distance metric, the
purpose of which is to find pairs of corner points belonging to the same instance. This
requires more complex post-processing. Another detector, Unitbox [17], is based on
DenseBox [18]. Unitbox is considered unsuitable for general object detection because
of the difficulty of handling overlapping bounding boxes and the relatively low recall.
Feature Selective Anchor-Free (FSAF) [19] proposes to add an anchor-based detection
branch to anchor-free detectors. As they consider that completely anchor-free detectors
do not achieve good performance, they also utilize feature selection modules to improve
the performance of anchor-free branching. So anchor-free detectors have comparable
performance to anchor-based detectors. RepPoints [20] indicates that the box consists of
a set of points and uses a conversion function to obtain the object box. Corner Proposal
Network (CPN) [21] and HoughNet [22] require grouping or post-voting processing, so
they are quite complex and slow. CenterNet [7] is a concurrent anchor-free detector. It
uses a clean network structure to demonstrate the performance to be expected. A similar
model, FCOS [9] adds center-ness branching, enabling a better accuracy/speed trade-off.
There are many subsequent work based on FCOS [25, 26]. These models enhance the
detection characteristics, loss function or allocation strategy of FCOS to further improve
the performance of anchor-free detectors.

However, these detectors often have complex output heads which bring trouble to
model training and loss function design. Besides, its multiple output heads are usually
not supported by embedded chips, making it difficult for industrial applications.

3 Our Approach

In this section, our approach is divided into four parts. The model overview is first
introduced, followed by our heatmaps and the calculation of the object size, and finally
the loss function in our work.
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3.1 Model Overview

In this paper, we propose an anchor-free object detection method with only heatmaps.
Similar to other object detectors that use heatmaps, our model is divided into two parts,
the feature extraction backbone network and the output head. The backbone network
is mainly used to extract the image features of various scales, mostly using mature
convolutional networks, such as ResNet [28], Deep Layer Aggregation (DLA) [29]
and Hourglass [30]. FPN (Feature Pyramid Network) [23] or BiFPN [24] are sometimes
added. The output head converts the feature map extracted by the backbone into a feature
map that can obtain object box information. This is the main difference between these
detectors. CenterNet and FCOS are the most representative models that use heatmaps
for object detection.
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Fig. 1. Output head structure in different models. (a) shows CenterNet’s output head, the
prediction module that contains Heatmaps, Object size, and Offsets. (b) shows the output head of
FCOS that contains Classification, Center-ness and Regression at different scales. (c) shows the
output head of our method, the prediction module only contains Classification Heatmaps.

As shown in the Fig. 1, CenterNet’s output head, i.e., the predictionmodule, contains
three branches: Heatmaps, Object size, and Offsets. The center of the object is obtained
through the heatmaps, and then the offset is corrected moderately. Finally, the size of
the object is added to get a complete object box. For an input image of 512 × 512 ×
3 pixels, the output heatmaps size is 128 × 128 × C pixels, where C is the number of
categories.

The output head of FCOS also contains three parts, i.e., Classification, Center-ness
and Regression. The center of the object is obtained through the product feature maps
of classification and center-ness, and then the offset and size information are obtained
by regression. Then a complete object box is obtained, which utilizes a feature pyramid
structure and thus contains several output heads ofmultiple scales. The size of the feature
map varies from 1/8 to 1/128 of the input image.

However, the output head of our model only contains Classification Heatmaps, from
which the object size can be calculated by post-processing. It is worth noting that the
classification heatmaps and input images are of equal size.

We design the heatmaps to be as large as the input image, so that we can directly
get to the object CP without offsets according to the heatmaps. Meanwhile, unlike the
Gaussian circles generated byCenterNet, we plan to generate polynomial heatmaps. This
means that a heat spot representing an object is no longer isotropic. The rate at which it
decays in different directions is related to its dimensions in the corresponding direction,
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so that the width and height can be calculated from the parameters of the polynomial.
Thus, the output of object size feature map is not required. After removing the object
size feature map and the offset feature map, the model only needs one branch, i.e., the
classification heatmaps. This greatly simplifies the model.

This simplification is meaningful in many aspects. First, it can support more embed-
ded devices. Some embedded chips do not support models with multiple output heads,
which causes them to encounter some obstacles in industrial applications. Secondly, its
training mode is end-to-end, which can directly calculate the loss function between the
output value and the predicted value. Many models design different loss functions for
different output heads. And different positive and negative samples need to be generated
to meet their training requirements. This brings a lot of inconvenience to fine tuning in
industrial applications. Finally, since the input and output are equally large, the model
can be realized by using the FCN. There is little need to limit the size of the input image,
which does not need to be square. Moreover, the design of FCN enables the model to
use different sizes of pictures in training and testing. This enables high resolution image
applications.

3.2 Heatmaps

Before introducing our heatmaps, we can review how CenterNet generates heatmaps.
As CenterNet first filled the input image into a square and resize it to 512 × 512.

Its output heatmaps was 1/4 the size of the input after downsampling. Therefore, there
was a certain offset error between the position of the center from the heatmaps and the
real object center. The offset feature map was set to compensate for the offset error. At
the same time, the radius of the Gaussian heat circle was determined by the height and
width of the object. Thus, the object size feature map was needed to generate the height
and width (Fig. 2).

Fig. 2. Heatmap between CenterNet and our method. CenterNet limited the size of the input
image to 512 × 512 by padding and resizing. The heatmap size was 128 × 128, and the heat
spots of the two objects were circular. Our method does not need to limit the input image size,
and the heat map is of the same size. The heat spot shape of an object is related to its horizontal
and vertical sizes.

In our method, there is no need to fill the input image into a square. The size of
classification heatmaps is set to be equal to the input image, and the position of the
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center obtained from the heatmaps is the real object center without offset error. So
there is no need to output the offset feature map. Meanwhile, the way we generate the
heatmaps is different from CenterNet. It used Gaussian distributions in heatmaps, but
we use polynomial heatmaps. The radius of the Gaussian circle is jointly determined
by the height and width of the object. The polynomial heatmaps in our method can be
correlated with the length and width in the corresponding direction. Then the object size
feature map is not needed, because the length and width of the object can be calculated
according to the polynomial heatmaps.

To calculate the size parameters in both horizontal and vertical directions from the
heatmaps, we define a simple polynomial which is related to the width and height of
the object. For the object box whose CP is located at (xc, yc) and whose width is w and
height is h, we define the probability heat value generation mode as polynomial. It can
be expressed as,

v = 1 − α(
|x − xc|

w
)r − α(

|y − yc|
h

)r (1)

where v represents the probability heat value at the position (x, y), r represents the degree
of the polynomial, α represents the size attenuation coefficient, and its value should be
greater than 0.5. When its value is 0.5, the probability heat value attenuates to 0 at the
midpoint of the edge of the object box. All values greater than 0 form an inscribed graph
of the object box. To avoid having a heat value less than zero, we set the value less than
0 to 0, to keep the probability between 0 and 1.

By adjusting r (the degree of the polynomial) and α (the attenuation coefficient) in
Eq. (1), we can get different types of heat spots. A few examples of the heatmaps that
can be generated with different hyperparameters are shown in Fig. 3.

Fig. 3. Examples of the heatmap with different r and α. The luminance in the figure reflects
the magnitude of the probability heat value. (a) is the image slice of an object box; (b) and (c) are
the heatmaps when r is 1, but their α are different with values of 0.5 and 1, respectively; (d) is
the heatmap when r is 0.5; (e) and (f) are the heatmaps when r is 2, but their α are different with
values of 0.5 and 1, respectively.

When two objects are too close, the problem of overlapping heat regions occurs. Our
approach is to take the larger value at the overlapping position. This tries to avoid the
influence of one on the other. As long as the centers do not coincide exactly, we can
locate the centers of both. But when it comes to calculating the size of an object, it might
oversize.
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3.3 Object Size

The whole process is divided into three parts: Locating the CP of the object; Calculating
its width and height according to the heatmaps; Finally, fine-tuning the boundaries of
the object.

CP Position. The process for locating the CP of an object is slightly different from
CenterNet. Before the maxpooling step, we first perform a large kernel mean filtering
on the heatmaps. This is because there are multiple identical maximum values near the
CP of the large object, causing duplicate object boxes. After that, it is maxpooled. By
comparing the maxpooling result with the mean filtering result, the position with the
same value is the local maximum point, which is the center of the object.

Size Parameters. After locating the center of the object box, we need to get the width
and height of the object. On the heatmaps, the probability heat value decreases in the
corresponding direction from the center of the object. When traversing from the center
of the object along the horizontal or vertical direction, the probability heat value change
at this time is independent of the coordinates in the other direction. This is easy to get
from Eq. (1). According to the mapping relationship between the value and the distance
from the CP, the corresponding direction size parameter is determined. The width can
be calculated by the following formula:

w =
r
√

α

2

(
(xc − xl)
r
√
1 − vl

+ (xr − xc)
r
√
1 − vr

)
(2)

where vl represents the probability heat value at the position (xl, yc) on the left of the
center, vr represents the probability heat value at the position (xr , yc) on the right of
the center, and α is the attenuation coefficient. When the probability heat value decays
to a more reliable value, i.e., the probability threshold such as 0.5, the width of the
object frame can be calculated by Eq. (2). Similarly, the height can be calculated by the
following formula:

h =
r
√

α

2

(
(yc − yt)
r
√
1 − vt

+ (yb − yc)
r
√
1 − vb

)
(3)

where vt represents the probability heat value at the position (xc, yt) on the top of the
center, vb represents the probability heat value at the position (xc, yb) below the center,
and α is the attenuation coefficient.

Bounding Box. With the CP position and width and height, it is easy to calculate the
position of the object’s bounding box. However, in the experiment, we found that fine-
tuning the bounding box can alleviate the problem of CP positioning bias. For example,
when the CP is unbiased, the values of the two terms in parentheses in Eq. (2) should
be equal. But when offset, the two are unequal. Taking the left border as an example, its
value is considered to be related to the width calculated by the left position (xl, yc). The
formula is expressed as:

bl = xc −
r
√

α

2

(xc − xl)
r
√
1 − vl

(4)

where bl represents the left boundary of the object.
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This way, when the CP is left off, the left border is skewed to the right accordingly,
and vice visa. The other three boundaries can be calculated in a similar way. With all
the boundary parameters, we get a complete object box.

3.4 Loss Function

The loss function adopted in this paper is a combination of two loss functions. One is the
MSE (Mean Squared Error) loss, and the other is the CP Loss designed for the model
proposed in this paper. The linear combination of the two functions is the loss function
adopted in the training of our model, which can be expressed by the formula:

L(y, p) = a · LMSE(y, p) + LCP(y, p) (5)

where y is the ground truth, p is the predicted value, and a is a hyperparameter used to
coordinate the difference of orders of magnitude between the two loss functions. In this
paper, the value is set to 100.

The reason why the MSE loss is selected is that the probability heat value is continu-
ous. While the classical CE (Cross Entropy) loss function is suitable for the calculation
of discrete variables, i.e., the case of only 0 or 1. Similarly, the Dice loss [31] widely
used in image segmentation is less applicable to continuous variables. To confirm this,
we conducted ablation experiments on the loss function to prove its effectiveness, as
detailed in Subsect. 5.2.

During the experiment, we found that if the CP position of a object deviated, it would
lead to problems in the calculation of width and height, and thus greatly reducing the
accuracy. To alleviate this problem, we propose a CP loss function, which draws on the
center position in model inference and the Dice loss design.

The specific method is as follows: Firstly, the maxpooling layer with step size of
one is used to process the maximum value of the neighborhood of the output heatmaps.
Secondly, the mask matrix is defined as the position of the maximum point. In other
words, the position of the pooled heatmaps that is equal to the original heatmaps is
assigned the value of 1, and the rest is 0. It can be expressed by the following formula:

mask(x, y) =
{
0, mp(hm(x, y)) �= hm(x, y)
1, mp(hm(x, y)) = hm(x, y)

(6)

where, mask(x, y) represents the mask matrix value at the position (x, y), hm(x, y)
represents the output heatmaps value at the position (x, y), and mp() represents the
maxpooling operation, whose kernel size is set to the same as in the locating CP.

After obtaining the mask matrix, we can calculate the cross entropy of the predicted
value and the true value after the mask. Specifically, multiplying the predicted value and
the true value by the mask matrix and dividing the calculation result of the cross-entropy
loss function by the modulus of the mask matrix, we can get the CP loss function in
Eq. (7).

LCP(y, p) = LCE(y · mask, p · mask)
mask

(7)
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In other words, the CP loss function only considers the error at the maximum point
of the classification heatmaps. When the maximum point is closer to the object center,
the loss function value is smaller, and vice versa. Meanwhile, it also limits the number of
maximum points. Too many maximum values will lead to the increase of 1s of the mask
matrix, thus increasing the value of the loss function. The loss function of CP greatly
improves the CP positioning, which is also confirmed by the ablation experiments.

4 Evaluation

This section shows the experimental result: firstly, data and experimental environment
we adopt and its settings, and then the accuracy and speed of each model.

4.1 Data and Settings

The experimental data set uses the COCO dataset [12]. We use the COCO train2017
split for training and val2017 split as validation for our evaluation study. We report our
main results on the test-dev split by uploading our detection results to the evaluation
server. All models are trained on the PyTorch 1.9.1 framework and an NVIDIA 2080Ti
GPU with 11 GB memory.

4.2 Accuracy and Speed

The accuracy index we use is mAP (mean Average Precision). The speed uses the
common metric FPS. AP50 refers to the AP when the value of the IoU is 50%, and the
same is true for AP75. APS, APM and APL are the AP values of three different scale
objects of small, medium and large. The speed/accuracy comparison shows between
DetOH and some of the most recent detection methods in Fig. 4.

Using the backbone DLA-34 [29], DetOH can achieve 40.3% of AP at 68 FPS on a
single 2080Ti GPU graphics card. We further replaced DLA-34 with a deeper network
DLA-60, resulting in a better speed/accuracy trade-off (43.3%AP at 32 FPS). Compared
to CenterNet [32], we improved network performance by 3.2% AP, increasing speeds
from 6 to 32 FPS. This means that with improved accuracy, DetOH is 433% faster
than CenterNet when using the same backbone network. DetOH also outperforms other
methods in terms of speed and accuracy, including anchor-based methods.

To achieve higher accuracy, we use deeper backbone networks and a more efficient
feature extraction structure. The specific results are shown in Table 1. As it can be
seen„ our model AP is higher than all classic models. Specifically, it is 1.2% AP higher
than CenterNet and 2.9% AP higher than FCOS. It is worth noting that our approach is
significantly ahead in the performance of small objects. This may be due to the beneficial
gain brought about by increasing the output resolution. Some of the latest methods [27]
with a particularly high AP use a lot of tricks, such as data augmentation during the
testing phase, increasing deformable convolution.
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Fig. 4. Speed/accuracy trade-off between DetOH and several recent methods: FCOS [9],
CenterNet [7], YOLOv3 [6] and RetinaNet [11]. Speed is measured on a NVIDIA 2080Ti GPU.
For fair comparison, we only measure the network latency for all detectors. DetOH achieves
competitive performance compared with recent methods including anchor-based ones.

Table 1. DetOHvs.Other State-of-the-art Two-stage orOne-stageDetectors.DetOHoutperforms
a few recent anchor-based and anchor-free detectors.

Method Backbone AP AP50 AP75 APS APM APL

Two-stage methods:

Faster
R-CNN by
G-RMI [33]

Inception-ResNet-v2 [28] 34.7 55.5 36.7 13.5 38.1 52.0

Faster
R-CNN + +
+ [28]

ResNet-101 34.9 55.7 37.4 15.6 38.7 50.9

Faster
R-CNN w/
FPN [23]

ResNet-101-FPN 36.2 59.1 39.0 18.2 39.0 48.2

Faster
R-CNN w/
TDM [14]

Inception-ResNet-v2-TDM 36.8 57.7 39.2 16.2 39.8 52.1

One-stage methods:

YOLOv2 [5] DarkNet-19 21.6 44.0 19.2 5.0 22.4 35.5

SSD [4] ResNet-101-SSD 31.2 50.4 33.3 10.2 34.5 49.8

YOLOv3 [6] Darknet-53 33.0 57.9 34.4 18.3 35.4 41.9

DSSD [15] ResNet-101-DSSD 33.2 53.3 35.2 13.0 35.4 51.1

(continued)
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Table 1. (continued)

Method Backbone AP AP50 AP75 APS APM APL

RetinaNet
[11]

ResNet-101-FPN 39.1 59.1 42.3 21.8 42.7 50.2

CornerNet
[16]

Hourglass-104 40.5 56.5 43.1 19.4 42.7 53.9

FSAF [19] ResNeXt-101-FPN 42.9 63.8 46.3 26.6 46.2 52.7

FCOS [9] ResNet-101-FPN 43.2 62.4 46.8 26.1 46.2 52.8

CenterNet [8] Hourglass-104 44.9 62.4 48.1 25.6 47.4 57.4

DetOH Hourglass-104 44.7 63.1 48.1 28.3 48.4 54.7

DetOH ResNet-101-BiFPN 46.1 65.3 49.8 29.2 49.6 56.5

4.3 Application

In the multi-source sensor intelligent security system, we apply the DetOH model to
detect objects in the image stream. We apply the trained model to the digital processing
chip Hi3519AV100 and successfully achieve object detection, proving a good balance of
speed and accuracy. Although Hi3519AV100 has 1.7 TOPS neural network compu-ting
performance, it supports the Caffe framework only and is based on Caffe-1.0. It does not
support the attention mechanism and channel shuffling, which makes most of the recent
mobile models difficult to apply. Considering the huge data processing tasks with only
1 GB memory, it is unfriendly to large models.

Our model runs on the chip’s AI-accelerated unit, while post-processing can run on
CPU. This is another advantage of DetOH, which can handle different detection pro-
cesses with different arithmetic units. We used pipeline acceleration for model inference
and post-processing. For a single frame size of 1920 × 1080 pixels, the processing time
can be reduced to 380 ms.

5 Ablation Study

In this section, we conduct an ablation study on the threemain ideas in this work. The first
is to compare different heatmaps. The effects of different loss functions on the results
are then compared. Finally, we look at the difference that boundary fine-tuning brings.

We adjusted the dataset for faster ablation studies. The COCO dataset was too large
and the training time was too long, so we replaced it with a small private dataset. The
training set of this dataset contains 3,518 images, and the test set contains 704 images,
all of which are of 640 × 360 pixels. And the data set covers only three categories:
person, vehicle, and aircraft. At the same time, we used a smaller backbone network,
MobileUnet [32]. It has fewer parameters and is easier to converge. This means that the
training time per ablation experiment can be reduced.
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5.1 Heatmaps

This section will introduce the influence of heatmap hyperparameters on the object
detection, i.e., the degree of polynomial and the attenuation coefficient in Eq. (1). To
see the change of its probability heat value more conveniently, the change curve of the
probability heat value with coordinates is plotted. Figure 5 shows the probability heat
value curves with different hyperparameters.

From the derivative at the CP, it is not derivable when the polynomial degree is 1 or
0.5, and its value is 0 when the polynomial degree is 2. Our experiments show that neural
networks fit a derivable function more easily. To evaluate the impact of heatmaps gener-
ated by different hyperparameter combinations on object detection accuracy, an ablation
study was conducted. The statistical results of the influence of different hyperparameter
combinations on accuracy are shown in Table 2.

From the degree of polynomials, the best performer is the quadratic elliptic heatmaps,
followed by the linear diamond heatmaps, and the worst is the square star heatmaps. It
can be seen that CNNs are better at fitting derivable convex function graphs. When the
probability heat value does not fall smoothly at the CP, it is difficult to simulate the effect
of this mutation.

From the attenuation coefficient, when it is large, the heat spot area will be more
concentrated near the center of the object, and the accuracy rate is higher. When it is
small, the heat spots are more dispersed and the accuracy rate decreases. This is because
there is overlap between multiple objects of the same kind. When the two object areas
partially overlap, the scattered hot spots will also be more likely to intersect. Although
the probability heat value of the intersection area to the maximum value can reduce
the influence of the CP position offset, it still brings trouble to the calculation of size
parameters. If the two targets are too close together, the size calculation will be on the
larger side.

Fig. 5. Curve of probability heat value as a function of abscissa. This is a target with a width
of 101 and the ordinate is on the central axis. (b) (c) (d) (e) (f) corresponds to that in Fig. 3,
respectively.
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Table 2. Quantitative results from Different Hyperparameter Combinations.

Degree of polynomial Attenuation coefficient AP AP50 AP75

(b) r = 1 α = 0.5 66.6 96.0 73.9

(c) r = 1 α = 1 72.5 98.3 84.3

(d) r = 0.5 α = 0.5 52.2 94.1 49.2

(e) r = 2 α = 0.5 72.3 93.7 86.8

(f) r = 2 α = 1 74.4 97.5 92.7

5.2 Loss Function

The loss function adopted in this work is a combined loss function, which is replaced
by a different loss function to study its effect on the result. The statistical results of the
influence of different loss functions on accuracy are shown in Table 3.

Table 3. Quantitative Results from Different Loss Functions.

Loss Function AP AP50 AP75

CE loss 28.0 71.1 22.3

Dice loss 0.483 2.45 0.121

Focal loss 23.7 61.5 24.4

MSE loss 56.0 94.7 45.0

Focal loss + CP loss 44.3 82.3 39.6

CE loss + CP loss 55.3 91.8 58.6

MSE loss + CP loss 66.6 96.0 73.9

By comparing the MSE loss + CP loss with the MSE loss alone, the improvement
of the CP loss function is huge. The AP as the main evaluation indicator is improved
by 18.9%. In AP75, it has been improved by as much as 64.2%. This shows a huge
improvement in size calculations by fine-tuning the position of the CP. But in AP50, it
brought only 1.4% improvement. This is because the AP with a large IoU threshold is
much more sensitive to the size accuracy than the AP with a small IoU threshold.

Comparing the CE loss + CP loss with the performance using the CE loss alone, it
can be found that this improvement is more pronounced. It improved by 97.5% in AP
and 162.8% in AP75. In AP50, the addition of the CP loss function brought a 29.1%
boost. This shows that the CP loss function can significantly improve the accuracy of
size calculation, making the prediction box closer to the bbox then improving the IoU.

5.3 Boundary Fine-Tune

To evaluate the impact of boundary fine-tuning on object detection accuracy, an ablation
study was conducted.
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Table 4. Quantitative Results from Boundary Fine-tuning.

Boundary Fine-tune AP AP50 AP75

74.4 97.5 92.7

✓ 76.5 97.6 94.5

As can be seen from Table 4, boundary fine-tuning brings improvement to AP at high
IoU threshold, which illustrates its effectiveness in bounding box fitting. These findings
suggest that boundary fine-tuning can play a critical role in improving the accuracy of
object detection algorithms.

6 Conclusion

In this work, we propose an anchor-free object detector with only heatmaps (DetOH).
Our experiments demonstrate that DetOH is superior to widely used anchor-free object
detectors, including CenterNet and FCOS, but with much less model complexity. The
single-head design makes it easier to be applied to embedded devices. Now it has been
applied to the field of security, making human life more secure. Its network architecture
is also suitable for other intensive prediction tasks, such as semantic segmentation. Given
its effectiveness and efficiency, we hope it soon be applied to high-level tasks such as
multi-object tracking, motion recognition, and behavior understanding.

Acknowledgments. This work was supported inpart by the National Natural Science
Foundation of China (61972219), the Research and Development Program of Shenzhen
(JCYJ20190813174403598), the Overseas Research Cooperation Fund of Tsinghua Shen-
zhen International Graduate School (HW2021013), the Guangdong Basic and Applied
Basic Research Foundation (2022A1515010417), the Key Project of Shenzhen Municipal-
ity (JSGG20211029095545002), the Science and Technology Research Project of Henan
Province(222102210096).

References

1. Viola, P., Jones, M.J.: Robust real-time face detection. Int. J. Comput. Vision 57, 137–154
(2004)

2. Doll´ar, P., Appel, R., Belongie, S., Perona, P.: Fast feature pyramids for object detection.
IEEE Trans. Pattern Anal. Mach. Intell. 36(8), 1532–1545 (2014)

3. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with
region proposal networks. In: Advances in Neural Information Processing Systems, vol. 28
(2015)

4. Liu,W.,Anguelov,D., Erhan,D., Szegedy, C., Reed, S., Fu, C.-Y., Berg,A.C.: Ssd: Single shot
multibox detector. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) Computer Vision –
ECCV 2016. Lecture Notes in Computer Science, vol. 9905, pp. 21–37. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-46448-0_2

https://doi.org/10.1007/978-3-319-46448-0_2


166 R. Wu et al.

5. Redmon, J., Farhadi, A.: Yolo9000: better, faster, stronger. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pp. 7263–7271 (2017)

6. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified, real-time
object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 779–788 (2016)

7. Zhou, X., Wang, D., Krähenbühl, P.: Objects as points. arXiv preprint: arXiv:1904.07850
(2019)

8. Duan, K., Bai, S., Xie, L., Qi, H., Huang, Q., Tian, Q.: CenterNet: keypoint triplets for object
detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision,
pp. 6569–6578 (2019)

9. Tian, Z., Shen, C., Chen, H., He, T.: FCOS: fully convolutional one-stage object detection. In:
Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 9627–9636
(2019)

10. Tian, Z., Shen, C., Chen, H., He, T.: FCOS: a simple and strong anchorfree object detector.
IEEE Trans. Pattern Anal. Mach. Intell. 44(4), 1922–1933 (2020)

11. Lin, T.Y., Goyal, P., Girshick, R., He, K., Doll´ar, P.: Focal loss for dense object detection.
In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2980–2988
(2017)

12. Lin, T.-Y.,Maire,M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P., Zitnick, C.L.:
Microsoft coco: Common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars,
T. (eds.) ECCV 2014. Lecture Notes in Computer Science, vol. 8693, pp. 740–755. Springer,
Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

13. Girshick, R.: Fast R-CNN. In: Proceedings of the IEEE International Conference onComputer
Vision, pp. 1440–1448 (2015)

14. Shrivastava, A., Sukthankar, R., Malik, J., Gupta, A.: Beyond skip connections: top-down
modulation for object detection. arXiv preprint: arXiv:1612.06851 (2016)

15. Fu, C.Y., Liu, W., Ranga, A., Tyagi, A., Berg, A.C.: DSSD: deconvolutional single shot
detector. arXiv preprint: arXiv:1701.06659 (2017)

16. Law,H., Deng, J.: CornerNet: detecting objects as paired keypoints. In: Ferrari, V., Hebert,M.,
Sminchisescu, C., Weiss, Y. (eds.) Computer Vision –. Lecture Notes in Computer Science,
vol. 11218, pp. 765–781. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01264-
9_45

17. Yu, J., Jiang, Y.,Wang, Z., Cao, Z., Huang, T.: Unitbox: an advanced object detection network.
In: Proceedings of the 24th ACM International Conference on Multimedia, pp. 516–520
(2016)

18. Huang, L., Yang, Y., Deng, Y., Yu, Y.: DenseBox: unifying landmark localization with end to
end object detection. arXiv preprint: arXiv:1509.04874 (2015)

19. Zhu, C., He, Y., Savvides, M.: Feature selective anchor-free module for single-shot object
detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 840–849 (2019)

20. Yang, Z., Liu, S., Hu, H., Wang, L., Lin, S.: RepPoints: point set representation for object
detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision,
pp. 9657–9666 (2019)

21. Duan, K., Xie, L., Qi, H., Bai, S., Huang, Q., Tian, Q.: Corner proposal network for anchor-
free, two-stage object detection. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.)
ComputerVision –ECCV2020. LectureNotes inComputer Science, vol. 12348, pp. 399–416.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58580-8_24

22. Samet, N., Hicsonmez, S., Akbas, E.: Houghnet: Integrating near and long-range evidence
for bottom-up object detection. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.)
ComputerVision –ECCV2020. LectureNotes inComputer Science, vol. 12370, pp. 406–423.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58595-2_25

http://arxiv.org/abs/1904.07850
https://doi.org/10.1007/978-3-319-10602-1_48
http://arxiv.org/abs/1612.06851
http://arxiv.org/abs/1701.06659
https://doi.org/10.1007/978-3-030-01264-9_45
http://arxiv.org/abs/1509.04874
https://doi.org/10.1007/978-3-030-58580-8_24
https://doi.org/10.1007/978-3-030-58595-2_25


DetOH: An Anchor-Free Object Detector with Only Heatmaps 167

23. Lin, T.Y., Doll´ar, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid
networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pp. 2117–2125 (2017)

24. Tan, M., Pang, R., Le, Q.V.: EfficientDet: scalable and efficient object detection. In: Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pp. 10781–10790 (2020)

25. Qiu, H., Ma, Y., Li, Z., Liu, S., Sun, J.: Borderdet: Border feature for dense object detection.
In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) Computer Vision – ECCV 2020.
Lecture Notes in Computer Science, vol. 12346, pp. 549–564. Springer, Cham (2020). https://
doi.org/10.1007/978-3-030-58452-8_32

26. Li, X., et al.: Generalized focal loss: Learning qualified and distributed bounding boxes for
dense object detection. In: Advances in Neural Information Processing Systems, vol. 33,
pp. 21002–21012 (2020)

27. Dai, X., et al.: Dynamic head:Unifying object detection headswith attentions. In: Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7373–7382
(2021)

28. Szegedy, C., Ioffe, S., Vanhoucke, V., Alemi, A.: Inception-v4, inceptionresnet and the impact
of residual connections on learning. In: Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 31 (2017)

29. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778
(2016)

30. Yu, F., Wang, D., Shelhamer, E., Darrell, T.: Deep layer aggregation. In: Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pp. 2403–2412 (2018)

31. Newell, A., Yang, K., Deng, J.: Stacked hourglass networks for human pose estimation. In:
Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) Computer Vision – ECCV 2016. Lecture
Notes in Computer Science, vol. 9912, pp. 483–499. Springer, Cham (2016). https://doi.org/
10.1007/978-3-319-46484-8_29

32. Abdollahi, A., Pradhan, B., Alamri, A.: VNet: an end-to-end fully convolutional neural
network for road extraction from high-resolution remote sensing data. IEEE Access 8,
179424–179436 (2020)

33. Jing, J., Wang, Z., R¨atsch, M., Zhang, H.: Mobile-Unet: an efficient convolutional neural
network for fabric defect detection. Text. Res. J. 92(1–2), 30–42 (2022)

34. Huang, J., et al.: Speed/accuracy trade-offs for modern convolutional object detectors. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7310–
7311 (2017)

https://doi.org/10.1007/978-3-030-58452-8_32
https://doi.org/10.1007/978-3-319-46484-8_29

	DetOH: An Anchor-Free Object Detector with Only Heatmaps
	1 Introduction
	2 Related Work
	2.1 Anchor-Based Detectors
	2.2 Anchor-Free Detectors

	3 Our Approach
	3.1 Model Overview
	3.2 Heatmaps
	3.3 Object Size
	3.4 Loss Function

	4 Evaluation
	4.1 Data and Settings
	4.2 Accuracy and Speed
	4.3 Application

	5 Ablation Study
	5.1 Heatmaps
	5.2 Loss Function
	5.3 Boundary Fine-Tune

	6 Conclusion
	References


