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Abstract. Quantum machine learning has been developing in recent years,
demonstrating great potential in various research domains and promising applica-
tions for pattern recognition.However, due to the constraints of quantumhardware,
the input qubits are restricted caused by small circuit size, and the fuzziness in
all dimensions caused by the features that are difficult to be effectively mined.
Besides, previous studies focus on binary classification, but multi-classification
received little attention. To address the difficulty in multi-classification, this paper
proposed a hybridmulti-branches quantum-classical neural network (HM-QCNN)
that utilizes a multi-branch strategy to construct the convolutional part. The part
consists of three branches to extract the features of different scales and morpholo-
gies. Two quantum convolutional layers apply quantum CRZ gates and rotational
gates to design a random quantum circuit (RQC)with 4 qubits and full qubits mea-
surements. The experiments on three public datasets (MNIST, Fashion MNIST,
andMedMNIST) demonstrate that HM-QCNNoutperforms other prevalent meth-
ods with accuracy, precision, and convergence speed. Compared with the classical
CNN and the hybrid neural network without multi-branches, HM-QCNN reached
97.40% and improved the accuracy of classification by 6.45% and 1.36% on the
MNIST dataset, respectively.

Keywords: Quantum machine learning · Multi-classification · Hybrid quantum
neural network · Medical images

1 Introduction

As quantum computing improves by leaps and bounds, the development of quantum
algorithms that uses noisy intermediate-scale quantum (NISQ) to perform useful com-
putational tasks is entering a boom period [1]. In this stage, quantum machine learning
(QML) is a promising applications of quantum computing in the era of NISQ, which
attempts to use quantum hardware to achieve computational acceleration or better per-
formance for tasks in machine learning, while random quantum circuits (RQC) provide
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a prospective path [2–4]. Compared with classical machine learning, QML algorithms
based on RQC have two potential advantages, i.e., greater expressiveness [5] and more
computational power [6, 7], which originate from the superposition principle of quantum
mechanics.

Recently, inspired by CNNs, quantum convolutional neural networks (QCNNs) have
been proposed. These networks employed both classical and quantum hardware, and
encapsulated parts of complex neural networks in quantum devices to exploit the super-
position and entanglement of quantum systems, thus speeding up computation [8]. The
central idea is to implement a quantum convolutional layer by applying shallow RQC,
and the corresponding feature mapping is implemented by measuring the output quan-
tum state of the RQC. The output of the quantum convolutional layer is classical data
and thus can be directly adapted to the structure in CNNs, while also exploiting the
capabilities of hardware of the current NISQ.

A proliferation of studies using QCNNs for binary classification, and an increasing
number of research scholars devote themselves to studying the task of pattern recognition
on images. The research onmulti-classification is further complex because the distinction
between multiple categories needs to be considered, and the classifier needs to make
additional decisions. Therefore, for themulti-classification task, a framework combining
classical computer and quantum hardware is introduced, which has been widely used
in recent QML studies [9, 10], and the classifier needs to make more decisions, studies
on multi-classification are more complex and fewer than binary classification. For the
multi-classification task, a framework combined with classical computers and quantum
hardware is introduced, which has been widely used in recent QML studies, and helps
to explore the potential computational power of the NISQ computer. As shown in Fig. 1,
it can be divided into two parts: the encoding model and the HNN model. The former is
responsible for processing the input data, and the latter is the module for training.

Fig. 1. Framework of the quantum convolutional neural network

The contributions of the current study are summarized in the following four folds:

1. The proposed HM-QCNN introduces multiple branches to construct networks, which
implemented by RQCs, and two different scales of convolution kernels, in order to
learn the syncretic features.

2. To verify the applicability of the model to the multi-classification, the experiments
are conducted both on natural image datasets (MNIST, FashionMNIST) and medical
image dataset (MedMNIST).
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3. Compared with previous approaches, HM-QCNN achieves better performance of
accuracy, precision, and convergence speed.

4. To the best of our knowledge, this study is the first to explore the effectiveness of
QNNs on medical images.

The remainder of the paper is organized as follows. Recent works related to QML
andQCNNs are reviewed and summarized in Sect. 2. And Sect. 3 describes the encoding
model and proposed HM-QCNN architecture in detail. The experiments of this work are
presented in Sect. 4, comparing and demonstrating the various performances of HNN
for image classification, and discussing the results. In Sect. 5 conclusions are drawn and
directions for future work are suggested.

2 Related Work

The current volume of data is growing at an overwhelming rate, and the computational
power required by machine learning algorithms increases with the data, which is grad-
ually becoming limited for classical machine learning. And with the computational
potential of quantum computers exceeding that of any classical computer, QML as a
research frontier in AI has emerged as a prospective solution to the challenge of increas-
ing data volumes [11]. QML has received a lot of attention in recent years, including
quantum autoencoders [12, 13], quantumBoltzmannmachines [14], quantum generative
adversarial learning [7, 15, 16], and quantum kernel methods [17, 18].

Among them, lots of studies focused on the applications of QML in classification
tasks, such as Edward Grant et al. [19] concluded that more expressive circuits have
better accuracy and established hierarchical quantum circuits for binary classification of
classical datasets IRIS and MNIST. Moreover, Yang et al. [20] organized SRA images
into a data tensor andproposed adeep sparse tensorfilter network for image classification.

In addition, motivated by the learning capability of CNNs and the potential power of
QML, the hybrid quantum-classical neural network framework has emerged as a promis-
ing approach for classification tasks. Liu et al. [21] designed a hybrid quantum-classical
convolutional neural network (QCCNN) that is friendly to current NISQ computers in
terms of quantum bits and circuit depth, adapting to quantum computing to enhance the
process of feature mapping while retaining the nonlinearity and scalability of classical
CNN.Wei et al. [22] presented a quantum convolutional neural network (QCNN), which
greatly reduces the computational complexity compared to classical. And applied it for
image processing with numerical simulations for spatial filtering and edge detection.
Finally, the model was verified on MNIST to have some robustness in image recogni-
tion. Cong et al. [23] analyzed the performance of the QCNN beyond existing methods
and demonstrated that it could accurately identify quantum states associated with a one-
dimensional topological phases. Francesco et al. [24] proposed a network model based
on a variational circuit that reduces the circuit depth required for data encoding, using
quantum neural networks for classification methods on recent quantum hardware. Mac-
Cormack et al. [9] offered the branching quantum convolutional neural network bQCNN
inspired by QCNN with higher expressiveness.
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Most of the existing studies are focused on the tasks of pattern recognition and image
binary classification, the solution to multi-classification problems through quantum neu-
ral networks is still being explored, and the research on the recognition and classification
of traditional natural images is also deficient. This work explored and designed a network
model based on a quantum convolution filter fabricated by RQC combining a quantum
convolution layer with a traditional network model structure for the multi-classification
problems of handwritten digits and some natural images.

3 Method

3.1 Encoding Model

Quantum encoding is a process of converting classical information into quantum states,
which is a very important step in the process of solving classical problems using quantum
algorithms.Most encodingmethods could be seen as parameterized circuits acting on and
the parameters are determined by the classical information. The task of the encoding
model in the framework is to map classical morphological data to quantum states in
Hilbert space, and here three different encoding methods will be presented to achieve
this transformation.

The first and most efficient in spatial terms method is to encode classical data in
superimposed amplitudes by associating the normalized input data with the probability
amplitudes of the quantum states, called the amplitude encoding method (AE) [25].
This approach encodes an N-dimensional classical vector x to a quantum state with n
quantum bits, where n = log2(N ) and |x = ∑N

i xi|i . Here |i is a set of computational
bases in Hilbert space and needs to satisfy |x|2 = 1. However, depending on the quantum
classifier used, the computational cost of preparing the data to quantum form will offset
the speedup obtained in the classification process in general.

Another simpler approach is basic encoding, where the data is encoded onto the
substrate of a quantum state. Each classical data vector will be encoded in each quantum
bit, with the two fundamental states 0 and 1 will be considered as |0 〉 and |1 〉 of the
quantum bit. This type of encoding method transforms a binary string of length n into
a quantum state |x 〉 = |ix 〉 with n quantum bits, and is therefore inefficient in terms of
space, yet efficient in terms of time [25].

The third encodingmethod is angle encoding, which employs quantum rotation gates
to encode classical information x. The angle of these quantum gates is determined by the

classical information. |x 〉 = n⊗ R(xi)|0n 〉, here any one of Rx, Ry, and Rz can be used as
R. Usually the number of quantum bits is equal to the classical information dimension.

As the experimental framework shown in Fig. 1, this paper tried each of the above
three methods in the encoding module to compare and analyze their performance in
the multi-classification task. Among them, the basic encoding applied X gate and angle
encoding used Ry gate rotating around the y-axis. All of them are constructed by RQC,
whose circuits are shown in the Fig. 2.
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Fig. 2. Different encoding circuits

3.2 Hm-Qcnn

After encoding the classical data into quantum states, different gate operations are
employed to each qubit corresponding to these data to form a quantum convolutional
layer. In most previous works, the network is a quantum convolutional replacement of
one traditional convolutional layer in the traditional network structure so that the whole
structure contains at least onequantumconvolution.Thehybrid network structure applied
in this work is based on hybrid computation, which consists of two parts, quantum and
classical networks. The quantum part is responsible for the quantum convolution and
the classical network part uses the convolutional and fully connected layers with the
classical CNN structure. Here, unlike previous works, three branches are constructed
in the HM-QCNN model, as shown in Fig. 3, two of which are quantum convolutional
layers composed of quantum circuit and the other is a conventional convolutional layer.

Fig. 3. HM-QCNN architecture
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Themain point of convolution layers is utilized filter to analyze all patches of images.
This concept has been further developed in the background of quantum computing. The
difference between classical and quantum convolution is that quantum circuits can pro-
duce complex kernels to extract meaningful features, which are difficult to handle by
classical convolution. Quantum convolution is used as small RQCs to compute convolu-
tion operations, andmatch noisymesoscale quantum hardware, with the advantage that it
can work with a shallow depth quantum circuit and few quantum bits. The two quantum
convolution layers in HM-QCNN are computed by applying RQC to respectively build
kernel_size of 4with stride 2 and kernel_size of 2with stride 2 as themain part for convo-
lutional filters, which employs a series of unitary transform andmeasurements connected
by wires (qubits). The present model adopts pennyLane to initialize and simulate four
qubits, i.e., the constructed RQC consists of four qubits. As depicted in Fig. 3, in the
quantum convolutional filter, first a two-qubit CRZ quantum gate operation is employed,
in other words, CRZ quantum gates are operated on each pair of adjacent qubits, which
enables to capture of the relevant information on the same layer of the network. Then
the RX quantum rotational gates are applied to operate on each qubit, embedding valid
information into the quantum system. The final measurement phase, also known as the
decoding phase, refers to the conversion of the quantum data into classical form [26].
Pauli matrix can be used as a measurement method, unlike other works with single qubit
measurements, all-qubit are measured in this work, taking expectations by using Pauli-Z
measurements for each qubit to obtain enough hidden information from the quantum
system. The results of measurement are not yet direct representations of the predicted
labels and therefore need to be further input to the classical network for processing.

The classical convolution layer is the key and important layer to extract features
in the part of CNNs, which performs the convolution operation on the input features
with kernels. Features are extracted from the images and map them to the next layer as
complex features. The traditional convolutional layer branches in this model consist of
two convolutional kernels of sizes 1 and 4 with strides 1 and 2, respectively. After these
operations, the outputs of these three branches are concatenated and input to two fully-
connected layers for classifying, and leakyReLU are utilized as the activation function to
finally obtain the predicted results for the input images. The fully-connected layer is the
second part of the CNN structure, that performs the classification process by applying
weights to predict the classes. Classical CNN network with the equivalent structure and
hybrid quantum neural network (QUANV1 – CONV1 – FC1 – FC2) are compared in
this experiment.

In the learning phase, the cross-entropy loss is utilized as the loss function, andAdam
is adopted as the optimizer for parameter optimization. During training, the network
model is updated with parameters by backpropagation to minimize the error between
the output results and the real results.
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4 Experiments

4.1 Experiments Setting

Three independent models are compared in this paper, the proposed HM-QCNN, clas-
sical CNN with the equivalent structure, and HNN without multiple branches, i.e. HNN
(w/o multi). Accuracy, precision, recall, and F1 score are used as evaluation metrics to
assess classification performance of the model.

Setup. The experimental environment used in this work is Python 3.8, PyTorch 1.12.0,
CUDA 11.6, batch size set to 32, the learning rate of 0.5, with a total of 50 epochs
trained. Numerical simulations of the experiments are performed with PennyLane [27].

Datasets. Experiments are conducted on three public datasets MNIST, Fashion MNIST
andMedMNIST. Different triple-classification tasks are performed on different datasets
in this work. For example, the MNIST dataset is randomly generated in three exper-
iments, the first experiment contains numbers {1,7,9}, the second task kept numbers
{3,5,8}, and the third performed classification experiments on numbers {2,4,6}, which
are described as E1, E2, and E3, respectively. Similarly, three taskswere generated on the
Fashion MNIST dataset: the first task retained "T-shirt/top" "Trouser" and "Pullover";
the second task classified "Dress" "Coat" and "Sandal"; the third task kept the data of
"Shirt", "Sneaker" and "Bag", which are denoted as E4, E5, and E6, accordingly.

4.2 Results and Discussion

This section discusses the performance of HM-QCNN on image multi-classification
tasks. The experimental results demonstrate that the proposed model can be used to
solve many types of image classification problems, and good results can be obtained not
only on handwritten digital images, but also on natural images.

Three independent models are tested in the experiment with accuracy, precision,
recall and F1-score as evaluation indicators shown in Table 1. The number of optimal
performances is bolded. On MNIST dataset, HM-QCNN achieves 95.73%, 93.75%,
97.40% accuracy, which are 2.08%, 9.27% and 6.45% higher than the classical CNN
model, and better than the HNN (w/o multi) model by 2.6%, 2.6%, and 1.36%, respec-
tively. The optimal result is presented in E3 with accuracy, precision, recall and f1 scores
of 97.40%, 97.40%, 97.39% and 97.40%. Moreover, on Fashion MNIST dataset, HM-
QCNN performs slightly poor than HNN (w/omulti) in E4 and E5, but achieves 98.44%,
98.47%, 98.46% and 98.46% for accuracy, precision, recall and f1-score in E6, which
is the best result among these methods.
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Similarly, as shown inFig. 4, the experimental data aftermodel training are visualized
with the t-SNE technique. Combined with the results in Table 1 to analyze, the data of
E2 is not aggregated and also corresponds to the lower accuracy in the table. Compared
with other groups of experiments, considering the reason of which, the original data of
E2 is more disorganized, the results after classification are relatively poor.

Fig. 4. Visualization with t-SNE of experimental datasets after training

Meanwhile, as shown in Fig. 5, it can be clearly seen that the performance of HM-
QCNN is superior to classical CNN and the HNN without multiple branches, and all
the classification accuracy can reach more than 93%. It indicates that the proposed HM-
QCNN can effectively improve network performance and better solve classification
problems in images. In addition, from the comparison of running time in the Fig. 6, it
can be seen that the proposed model can significantly reduce training time and speed up
convergence, whichwill help to classify images faster in practical applications. However,
the gap between the execution time of HNN and the classical CNN is large, and the
reason for this is the experiments are conducted with quantum numerical simulation,
which speed cannot reach the real quantum computing hardware. Moreover, the speed
is also affected by the limitation on the input qubits. However, in the future, with the
development of quantum hardware, more qubits can be used to process images, thus
improving the performance of the HNN.
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Table 1. Performance evaluation of experiments

Experiment Model Acc. (%) Pre. (%) Re. (%) F1-score (%)

MNIST CNN 93.65 93.66 93.48 93.55

E1 HNN (w/o multi) 93.13 92.95 92.03 92.97

HM-QCNN 95.73 95.66 95.64 95.65

CNN 84.48 84.54 84.51 84.52

E2 HNN (w/o multi) 91.15 91.13 91.24 91.26

HM-QCNN 93.75 93.75 93.73 93.74

CNN 90.94 90.95 90.96 90.94

E3 HNN (w/o multi) 96.04 96.10 96.03 96.05

HM-QCNN 97.40 97.40 97.39 97.40

Fashion
MNIST

CNN 94.06 94.08 94.01 94.02

E4 HNN (w/o multi) 94.17 94.30 94.19 94.24

HM-QCNN 93.95 93.65 93.65 93.65

CNN 94.48 94.48 94.47 94.47

E5 HNN (w/o multi) 96.98 96.99 96.97 96.97

HM-QCNN 95.83 95.84 95.83 95.83

CNN 97.40 97.43 97.50 97.46

E6 HNN (w/o multi) 96.25 96.35 96.39 96.36

HM-QCNN 98.44 98.47 98.46 98.46

Fig. 5. Classification accuracy of different experiments
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Fig. 6. Comparison of the execution time

In addition, experiments were also conducted on different encoding methods for
triple-classification on MNIST and visualized the training results on the {1,7,9} sub-
dataset. The training accuracy of the three different encoding methods is depicted in
Fig. 7(a), and the training loss curves of the three different encoding methods with
continuous reduction are shown in Fig. 7(b). The figure demonstrates that the angle
encoding converges faster and achieves higher accuracy with smaller loss values. While
amplitude encoding converges slower, but the training accuracy exceeds basic encoding
to reach 99.98% at 25 epochs. Therefore, in this experiment, the angle encoding method
works better.

The HM-QCNNmodel is also tested on theMedMNIST- breastMNIST dataset, with
an accuracy of 73.08% on both the training set and testing set. Although the accuracy is
not as good as on the other two datasets, this is because biomedical images have more
special characteristics compared with other natural images. On the one hand, medical
images have higher noise and lower contrast, which may affect the performance of the
model. On the other hand, medical images represent structures inside the human body,
and the morphology and other features of these structures vary greatly from case to case,
which requires higher generalizability of the model. However, the HM-QCNN model
still offers the prospect of application for tasks such as classification and diagnosis in
medical images. The model can be improved in the future to enhance the generalization
performance and improve the analysis of medical images.
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Fig. 7. Visualization of the learning curve for different encodings

5 Conclusion

To effectively improve the efficiency of classical CNNswhile ensuring accuracy and pre-
cision, this paper develops the structure of hybrid quantum neural networks with multi-
branch by constructing parameterized quantum circuits. And conducts some experiments
for multi-classification tasks. The results indicate that the HM-QCNN model achieves
better accuracy in both MNIST and Fashion MNIST and outperforms the HNN without
branches in terms of execution time.

In the NISQ era, due to the limitations of the quantum hardware for the input
qubits, the size of natural images is too large for existing devices, so relevant opera-
tions like dimensionality reduction are required before inputting to the model, which
may adversely affect the model performance. However, in the near future, as the algo-
rithms continue to be explored, lower qubit algorithms suitable for quantum hardware
will be studied and designed.
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Furthermore, future work will aim to expand the diagnostic classification research
to more complex medical images. The potential of hybrid quantum neural networks for
various tasks in medical imaging will also be explored, including disease diagnosis,
lesion region localization, and tumor segmentation.
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