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Preface

The 19th International Conference on Advanced DataMining and Applications (ADMA
2023) was held in Shenyang, China, during August 21–23, 2023. Researchers and practi-
tioners from around the world came together at this leading international forum to share
innovative ideas, original research findings, case study results, and experienced insights
into advanced data mining and its applications. With the ever-growing importance of
appropriate methods in these data-rich times, ADMA has become a flagship conference
in this field. ADMA 2023 received a total of 503 submissions from 22 countries across
five continents. After a rigorous double-blind review process involving 318 reviewers,
216 regular papers were accepted to be published in the proceedings, 123 were selected
to be delivered as oral presentations at the conference, 85 were selected as poster pre-
sentations, and 8 were selected as industry papers. This corresponds to a full oral paper
acceptance rate of 24.4%. The Program Committee (PC), composed of international
experts in relevant fields, did a thorough and professional job of reviewing the papers
submitted to ADMA 2023, and each paper was reviewed by an average of 2.97 PCmem-
bers. With the growing importance of data in this digital age, papers accepted at ADMA
2023 covered awide range of research topics in the field of datamining, including pattern
mining, graph mining, classification, clustering and recommendation, multi-objective,
optimization, augmentation, and database, data mining theory, image, multimedia and
time series data mining, text mining, web and IoT applications, finance and healthcare.
It is worth mentioning that ADMA 2023 was organized as a physical-only event, allow-
ing for in-person gatherings and networking. We thank the PC members for completing
the review process and providing valuable comments within tight schedules. The high-
quality program would not have been possible without the expertise and dedication of
our PC members. Moreover, we would like to take this valuable opportunity to thank all
authors who submitted technical papers and contributed to the tradition of excellence at
ADMA.We firmly believe that many colleagues will find the papers in these proceedings
exciting and beneficial for advancing their research.Wewould like to thankMicrosoft for
providing the CMT system, which is free to use for conference organization, Springer for
their long-term support, the host institution, Northeastern University, for their hospitality
and support, Niu Translation and Shuangzhi Bo for their sponsorship. We are grateful
for the guidance of the steering committee members, Osmar R. Zaiane, Chengqi Zhang,
Michael Sheng, Guodong Long, Xue Li, Jianxin Li, and Weitong Chen. With their lead-
ership and support, the conference ran smoothly. We also would like to acknowledge
the support of the other members of the organizing committee. All of them helped to
make ADMA 2023 a success. We appreciate the local arrangements, registration and
finance management from the local arrangement chairs, registration management chairs
and finance chairs Kui Di, Baoyan Song, Junchang Xin, Donghong Han, Guoqiang Ma,
Yuanguo Bi, and Baiyou Qiao, the time and effort of the proceedings chairs, Bing Li,
Huaijie Zhu, and Ningning Cui, the effort in advertising the conference by the publicity
chairs and social network and social media coordination chairs, Xin Wang, Yongxin
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Tong, Lina Wang, and Sen Wang, and the effort of managing the Tutorial sessions by
the tutorial chairs, Zheng Zhang and Shuihua Wang, We would like to give very special
thanks to the web chair, industry chairs, and PhD school chairs Faming Li, ChiMan Pun,
SenWang, Linlin Ding,M. Emre Celebi, and Zheng Zhang, for creating a successful and
memorable event.We also thank sponsorship chairHua Shao for his sponsorship. Finally,
we would like to thank all the other co-chairs who have contributed to the conference.

August 2023 Xiaochun Yang
Bin Wang
Jing Jiang
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Abstract. Knowledge graph embedding (KGE) is critical in various
downstream applications as it represents entities and relations in a
knowledge graph as low-dimensional vectors. The embeddings of the
entities and relations denote their semantics on the knowledge graph,
which affects the effectiveness of the model. Recently, distance-based
(DB) models have demonstrated great explanatory power in KGE. How-
ever, most existing DB models focus solely on single triples to inde-
pendently optimize the scoring function, disregarding the interconnec-
tions among different triples. To address this issue, we propose CKGE,
a novel contrastive learning approach that enhances the performance of
DB models while remaining versatile enough to apply to different DB
models. Specifically, CKGE improves the alignment and uniformity of
DB models, meaning that the embedding of the same semantic entities
should remain close under different relations, and embeddings for ran-
dom entities should scatter on the hypersphere. Additionally, we present
a supervised contrastive learning approach to optimize in-batch negative
methods, thereby improving the learning of semantic entities. Exten-
sive experiments on four benchmark datasets demonstrate that CKGE
yields significant improvements in link prediction, especially for large-
scale datasets such as ogbl-wikikg2.

Keywords: Knowledge graph embedding · Distance based model ·
Contrastive Learning

1 Introduction

Knowledge graphs usually represent structured human knowledge in the form of
(head entity, relation, tail entity). Although knowledge graphs usually contain
billions of triples, they still suffer from the incompleteness problem due to a
lot of factual triples missing, which needs knowledge graph completion (KGC).
Knowledge graph embedding (KGE) has been proposed for this problem, which
embeds all entities and relations into a low dimensional space and aims to predict
missing links between entities.
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Fig. 1. A toy example showing how DB models can exhibit entities and relations rep-
resentation on KGs.

Recently, some distance based (DB) models, which use the spatial distance of
two entities after the transformation of the relation to judge whether two entities
have a certain relation or not, have shown great explanation and power in KGE. In
general, according to the way of manipulating relations, we divide the majority of
DB models roughly into two groups: translation families and rotation families. In
knowledge graph embeddings, translation models such as TransE [1], TransR [10],
and TransD [8] primarily focus on addressing relation mappings including 1-to-N,
N-to-1, and N-to-N relationships. Meanwhile, the newer rotation models, exem-
plified by RotatE [17] and PairRE [3], have expanded their scope to cater to a
range of relation patterns including symmetry/antisymmetry, inverse, composi-
tion, and subrelation. For both categories, the underlying assumption for a valid
triple (h, r, t) is that after undergoing a relational transformation r, the head
entity h should be proximate to the tail entity t. Intuitively, the smaller the spatial
distance between two entities post-transformation, the higher their likelihood of
representing a valid relationship in reality.

However, most existing DB models only focus on single triples to indepen-
dently optimize the scoring function while ignoring the interconnection among
different triples. Motivated by the sentence embedding representation [6], align-
ment and uniformity are also observed by KGE. As shown in Fig. 1, suppose that
some triples have different tail entities but share the same head entity and rela-
tion like (Steven, friend, Hayden) and (Steven, friend, John). For alignment,
the tail entities Hayden and John should be as close as possible to the head
entity Steven after relation friend transformation respectively. While the enti-
ties Steven, Hayden, and John should also maintain distance uniformity with
other entities in the knowledge graph after relation transformation, which is
beneficial to the link prediction task as a measure of the quality of KGE.

Here we propose CKGE, a novel method that effectively constrains entities to
improve the performance of KGE via contrastive learning, especially for the DB
models. Specifically, Our motivation is based on the observation that the same
semantic entities should keep alignment as shown in Fig. 1 and maintain dis-
tance uniformity with other entities in the knowledge graph. First, we abstract
key procedures from mainstream DB models and present a unified DB model
paradigm. Secondly, based on the above paradigm and analysis, we design an
in-batch division method for positive and negative samples without extra data.
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Thirdly, we further conduct a supervised contrastive learning method to opti-
mize the in-batch negative method using semantic labels, which is able to learn
the same semantic entities better. CKGE is widely applicable to various dis-
tance based models, including TransE, TransH, PairRE, etc. Experiments show
that CKGE yields consistent and significant improvements in datasets for the
knowledge graph completion task.

In summary, our main contributions are as follows:

– As far as we know, we are the first to propose the DB model framework with
contrastive learning. The proposed CKGE constrains the representation of
the same semantic entities in different triples.

– We present a unified DB model paradigm by abstracting diverse DB models,
and theoretically prove that CKGE is widely applicable to various DB models.

– Experiments show that CKGE yields consistent and significant improvements
on four benchmark datasets for link prediction tasks. It is worth noting that
CKGE improves nearly 6% on the large scale knowledge graph (ogbl-wikikg2).

2 Related Work

2.1 KGE Model

Knowledge graph embedding models can be broadly classified into three cat-
egories [15]: distance based models (DB), tensor decomposition models (TDB),
and neural network based Models (NN).

Distance Models project entities on the knowledge graph into space. Generally,
the closer the spatial distance between two entities after the transformation of
relation, the greater the probability of validity in the real world. And the score
function have the formulation of s(hi, rj , tk) = −‖Γ(hi, rj , tk)‖, where Γ is a
model-specific function. We divide the majority of DB models roughly into two
families according to the way they manipulate relations. Moreover, although
many research attempts to design more complicated scoring function [2,22], we
think that the aforementioned DB models are powerful enough and our proposed
unified DB model paradigm is based on these.

Tensor Decomposition Based Models formulate the KGC task as a triadic
binary tensor completion challenge. Within the framework of RESCAL [14], each
relationship is depicted using a matrix of full rank, with its scoring mechanism
defined through a bilinear approach, which is fr(h, t) = h�Mrt. However, full-
rank matrices are prone to overfitting, DistMult [21] defines Mr as a diagonal
matrix to solve it. ComplEx [19] emerged to tackle DistMult’s limitations in han-
dling antisymmetric relations, integrating complex-valued embeddings. However,
its ability to handle the composition pattern remains limited, and both its spatial
and temporal complexities have grown significantly.

Neural Network Based Models leveraging neural architectures have also
made good progress in recent years. ConvE [4], R-GCN [16], and KBGAT [12]
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have incorporated convolutional neural networks, graph convolutional networks,
and graph attention networks into KGE, respectively. Yet, due to the opaque
nature of NNs, they often lack clear interpretability.

2.2 Contrastive Learning

Contrastive learning seeks to optimize representations by drawing positive pairs
closer and distancing negative pairs. This process ensures that similar samples
cluster together while dissimilar ones remain distant. This approach has found
broad applications in both computer vision and natural language processing.
Acting akin to regularization techniques, contrastive learning leverages negative
samples to stabilize the loss function within mini-batches. In the realm of knowl-
edge graphs, [20] employs this method for efficient training with an expansive
set of negative samples. Yet, their model relies on textual data and pre-trained
models, overlooking semantically similar entities.

3 Methods

In this section, we present CKGE. Section 3.1 introduces a consolidated DB
model paradigm, encapsulating essential processes of prevalent translation and
rotation models. Subsequently, Sects. 3.2 and 3.3 detail unsupervised and super-
vised CKGE, respectively. The supervised approach utilizes semantically similar
entities as labels, enhancing the unsupervised version.

3.1 A Unified DB Model Paradigm

We provide a unified view of several DB models, by showing that they are
restricted versions under our paradigm. We first propose a unified version of
the distance scoring function:

fr(h, t) =
∥
∥r1 ◦ Mr (h) + br − r2 ◦ Mr (t) ‖1/2 (1)

where h, t represent entities embedding. Mr(·) represents the relation-specific
projecting matrix of entity vectors. Inspired by PairRE [3], each relation is char-
acterized as two weight vectors ( r1 and r2), corresponding to the transforma-
tions towards the head and tail entities, respectively. The symbol ◦ illustrates the
functional transition induced by relation r, understood as a rotation maneuver
within a complex space in RotatE. Next, we show that our unified DB Model
Paradigm can cover the ideas of most mainstream DB models.

TransE is the most classic translation based model, Given a triple (h, r, t),
in which entities and relations are projected in Euclidean Space. There is no
entity mapping and relation translation. Compared to Eq. 1, the score function
of TransE is trivial to be rewritten as removing r1, r2 and Mr . The distance
score is defined as:

fTransE(h, t) = ‖h + r − t‖1/2 (2)
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TransX includes TransH, TransR, and TransD, which represent different pro-
jection operations for entities. For example, for TransH, Mr(·) is supposed to
be projected to the hyperplane with Mr(h) = h−w�

r hwr . Compared to Eq. 1,
the score function of TransX is trivial to be rewritten as removing r1 and r2.
The distance score is defined as:

fTransX(h, t) = ‖Mr (h) + br − Mr (t) ‖1/2 (3)

RotatE and PairRE study more relationships pattern compared by TransE
and TransX. For a triple (h, r, t), the relation means the rotation of the entity,
which is different from the translation in TransE. Compared to Eq. 1, the score
function of RotatE/PairRE is trivial to verify as the score function can be rewrit-
ten as removing Mr . PairRE is the complete model of RotatE with paired vec-
tors for each relation representation, which rotates the head and tail entities
separately to better model the sub-relationship. The distance score is defined as:

fRotatE/PairRE(h, t) =
∥
∥r1 ◦ h + br − r2 ◦ t ‖1/2 (4)

3.2 Unsupervised CKGE

Fig. 2. Illustrations of unsupervised CKGE and supervised CKGE. The supervised
CKGE considers similar semantics entities as labels to improve the unsupervised
CKGE.

Now we introduce the unsupervised CKGE, and Fig. 2 shows the details. The
basic idea of our approach is to treat each triple itself as a positive sample pair
and different triples as negative sample pairs. Thus our method generates more
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negative samples to provide to the model for learning and is able to represent
alignment and uniformity better for sparse entities.

For the unified DB Model framework, we would split the distance scoring
function into two parts for (h, r, t): r1◦Mr (h)+br and r2◦Mr (t) (or r1◦Mr (h)
and br +r2◦Mr (t)). Note that we use fr(h) and fr(t) to replace r1◦Mr (h)+br
and r2 ◦ Mr (t) respectively. For DB models, the score function factually uses
the distance between fr(h) and fr(t) as a basis to judge whether (h, r, t) is valid.
For each triple, fr(h) and fr(t), the head entity and tail entity after the mapping
matrix and relation transformation, are used as positive sample pairs. For the
remaining triples in the same mini-batch, the head/tail entity pairs are used as
negative sample pairs. For unsupervised CKGE, triples within the same batch
are widely used as negative samples. With a mini-batch of N pairs, we adopt
the InfoNCE loss function to calculate a sample fri

(hi) and its positive sample
fri

(ti) as the contrastive loss:

CL(hi) = − log
esim(fri

(hi),fri
(ti))/τ

∑N
j=1(e

sim(fri
(hi),frj

(hj))/τ + esim(fri
(hi),frj

(tj))/τ )
, (5)

where τ is a temperature hyperparameter and sim(fr(h), fr(t)) is the cosine
similarity. As shown in Fig. 2, it illustrates unsupervised contrastive learning in
CKGE. For head entity and tail entity in the triple(hi, ri, ti), we have:

CL(hi , ri , ti) = CL(hi) + CL(ti) (6)

Within a mini-batch, for each entity after relation transformation, similar
semantic entities will have alignment, and the distribution of different semantic
entities will have more uniformity.

3.3 Supervised CKGE

Unsupervised CKGE optimizes the different triples associated with one mini-
batch, rather than separately during training. However, it still faces certain
issues. To take this for example, consider the case where two triples, such as
(tigers, is, mammals) and (lions, is, mammals), are valid but happen to be
in the same mini-batch. Due to tigers and lions having similar semantics in
the query of ”Which entities are mammals?”, we expect them to have similar
embeddings. However, as no labels are available, positive pairs come from the
same single triple, while negative pairs are chosen samples from the mini-batch.
This causes tigers and lions to be pushed apart as negative pairs due to their
presence in different triples, resulting in a negative gain.

To address the aforementioned issue, we draw inspiration from supervised
contrastive learning [9] and employ a supervised contrastive learning loss (Eq. 7)
to train the model. Specifically, we define the positive samples of those triples
that share the same relation and head entity/tail entity as the label. The triples
sharing the head or tail entities are treated as positive sample pairs like (tigers,
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is, mammals) and (lions, is, mammals). For a given triple, we use all its positive
samples in the same mini-batch, and define the improvement loss as follows:

CL(hi) = − log

∑

a∈P

(esim(fri
(hi),fra (ha))/τ + esim(fri

(hi),fra (ta))/τ )

∑N
j=1(e

sim(fri
(hi),frj

(hj))/τ + esim(fri
(hi),frj

(tj))/τ )
, (7)

where P is defined as the set in which triples have the same label in the same
mini-batch.

3.4 Training Objective

For a given training triple (hi, ri, ti) in a KG, our framework computes the joint
loss as follows:

L (hi, ri, ti) = Ls + λLcl (8)

where Ls signifies the scoring function of the DB model. Lcl represents the
weighted contrastive loss discussed in Sects. 3.2 and 3.3. λ is a balanced hyper-
parameter.

For the scoring function Ls, the self-adversarial negative sampling loss [17]
is typically employed for training purposes:

Ls = − log σ(γ − fr(h, t)) −
n∑

i=1

p(h
′
i, r, t

′
i) log σ(fr(h

′
i, t

′
i) − γ) (9)

where γ stands for a set margin, while σ denotes the sigmoid function. And
we introduce a weighted contrastive loss that assigns λ as a hyper-parameter.
(h

′
i, r, t

′
i) refers to the ith negative triple and p(h

′
i, r, t

′
i) indicates the weight

assigned to this negative sample. p(h
′
i, r, t

′
i) is defined as follows:

p ((h′
i, r, t

′
i) | (h, r, t)) =

exp fr (h′
i, t

′
i)

∑

j exp fr

(

h′
j , t

′
j

) (10)

4 Experiments

4.1 Experimental Setting

Dataset Setting. Our model’s effectiveness is assessed through link predic-
tion across four benchmark knowledge graphs: FB15k-237 [18], WN18RR [4],
YAGO3-10 [11], and ogbl-wikikg2 [7]. Table 1 offers a summary of these datasets’
statistical data. Compared to FB15k and WN18, FB15k-237 and WN18RR have
their inverse relations excluded, emphasizing primarily symmetry/antisymmetry
and composition patterns. Ogbl-wikikg2, derived from the Wikidata knowledge
base, surpasses the scale of other benchmarks by a considerable margin. Navigat-
ing complex relation mappings becomes an added challenge besides the standard
relation patterns.
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Evaluation Protocol. For link prediction evaluation, we employ MR, MRR,
and Hit@N as metrics. Given a test triple (h, r, t), the objective is to replace a
missing head or tail entity, resulting in pairs like (h, r,?) or (?, r, t). KGE models
rank these triples based on their scores. MR represents the mean rank of accurate
entities; a lower value is preferable. MRR calculates the average inverse rank of
these entities, while Hit@N determines the fraction of correct entities among the
top n. For both MRR and Hit@N, higher values indicate better performance.

Table 1. Entity, relation, and triple counts for the datasets utilized in our experiments.

Dataset #Entity #Relation #Train #Valid #Test

FB15k-237 14,541 237 272,115 17,535 20,466

WN18RR 40,943 11 86,835 3,034 3,134

YAGO3-10 123,182 37 1,079,040 5,000 5,000

ogbl-wikikg2 2,500,604 535 16,109,182 429,456 598,543

Implementation and Baseline. For the main experiments, we implement our
models based on the implementation of PairRE [3], which is the recent state-of-
the-art. In order to maintain a controlled test, all hyperparameters are kept the
same with origin experiments except the hyperparameters related to comparative
learning like t and λ. And We employ grid search, optimizing hyperparameters
based on the validation datasets’ performance. Specifically, we search temper-
ature hyperparameter in { 0.5, 0.1, 0.05, 0.01, 0.005 }, and search contrastive
learning loss coefficients in { 0.05, 0.1, 1 }. Our proposed models CKGE are
implemented by PyTorch 1.12.0 and trained on a Linux server with GTX 3090.
We compare the performance of CKGE against several KGE models with dif-
ferent families, including RotatE [17], RotatE3D [5], QuatE [22], DisMult [21],
ComplEx [19], ConvE [4], R-GCN [16], and ConvKB [13].

4.2 Main Results

Comparisons for FB15k-237, WN18RR, and YAGO3-10 datasets are shown
in Table 2. We can see that our model’s performance yields consistent met-
rics improvements using different datasets compared to other models. Since
our model shares the same hyper-parameter settings and implementation with
PairRE, comparing it with this state-of-the-art model is fair to show the advan-
tages and disadvantages of the proposed model. It is noteworthy that CKGE
works very well on the WN18RR dataset at Hit@1 than PairRE, but is lower
than RotatE. Compared to other datasets, the knowledge graph for the WN18RR
dataset is denser because the number of relations has only 11. As we will demon-
strate in the following experiments, CKGE can theoretically be integrated with
any model that fits this paradigm in Sect. 3.1.
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Table 2. Link prediction results on FB15k-237, WN18RR, and YAGO3-10. While
CKGE’s results are from our experiments, data for other models are sourced from
their respective papers.

Model FB5k-237 WN18RR YAGO3-10

Hits MR MRR Hits MR MRR Hits MRR

@10 @1 @10 @1 @10 @1

ConvE 0.491 0.239 246 0.316 0.520 0.400 4187 0.430 0.620 0.350 0.440

R-GCN 0.417 0.153 – 0.248 – – - - – – –

ConvKB 0.483 – 196 0.302 0.508 – 2741 0.220 - – –

DisMult 0.485 0.225 301 0.311 0.490 0.390 5100 0.430 0.540 0.240 0.340

ComplEx 0.486 0.227 376 0.313 0.510 0.410 5261 0.440 0.550 0.260 0.360

TransE 0.527 0.231 173 0.329 0.529 0.013 3414 0.223 0.673 0.391 0.492

TransH 0.534 0.236 171 0.335 0.499 0.010 3937 0.214 0.645 0.357 0.357

RotatE 0.533 0.241 177 0.338 0.552 0.417 2923 0.462 0.670 0.402 0.495

RotatE3D 0.543 0.250 165 0.347 0.579 0.442 3328 0.489 – – –

QuatE 0.495 0.221 176 0.311 0.564 0.436 3472 0.481 – – –

PairRE 0.544 0.256 160 0.351 0.522 0.400 2867 0.440 0.675 0.436 0.522

PairRE-CKGE 0.550 0.260 155 0.355 0.554 0.426 2651 0.463 0.687 0.446 0.531

Additionally, we run CKGE on many different relation mapping types, includ-
ing 1-1, 1-N, N-1, and N-N. The results of CKGE on different relation categories
on FB15k and ogbl-wikikg2 are shown in Table 3. We have observed that our
model exhibits excellent performance in heterogeneous relationships such as 1-N,
N-1, and N-N, particularly on the ogbl-wikikg2 dataset. This demonstrates that
CKGE improves the alignment and uniformity of the DB models.

Table 3. Experimental results on FB15k and ogbl-wikikg2 by relation mapping.

Model FB15k ogbl-wikikg2

1-1 1-N N-1 N-N 1-1 1-N N-1 N-N

TransE 0.887 0.822 0.766 0.895 0.074 0.063 0.400 0.220

ComplEx 0.939 0.896 0.822 0.902 0.394 0.278 0.483 0.504

RotatE 0.923 0.840 0.782 0.908 0.164 0.144 0.431 0.261

PairRE 0.785 0.899 0.872 0.940 0.262 0.270 0.594 0.587

PairRE-CKGE 0.919 0.846 0.964 0.935 0.589 0.549 0.696 0.759

4.3 Model Analysis

To demonstrate the generality of our approach, we applied CKGE to TransE,
TransH, and PairRE in the ogbl-wikikg2 dataset respectively. Table 4 shows the
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effectiveness of CKGE. We think CKGE will play a huge potential role in the
large-scale model in the future. It is worth noting that TransE-CKGE gets an
MRR score of 0.355, but TransH-CKGE only gets an MRR score of 0.337. Incor-
porated with CKGE, TransE gets a 9.2% improvement on MRR, which outper-
forms the improvement 7.3% score of TransH. Because for TransE, CKGE can
constrain more samples, including triples with identical head entities and those
with identical head entities and relations. But for TransH, the conditions for
CKGE to be effective are more rigorous, only including the samples with the
same head entity and relation.

Table 4. Added CKGE to TransE, TransH, and PairRE. Experiment results show that
metrics MRR and Hit are significantly improved.

Model ogbl-wikikg2

MRR Hit@10 Hit@3 Hit@1

TransE 0.263 0.360 0.286 0.206

TranE-CKGE 0.355 0.395 0.360 0.329

TransH 0.264 0.360 0.287 0.208

TransH-CKGE 0.337 0.388 0.347 0.304

PairRE 0.522 0.621 0.539 0.469

PairRE-CKGE 0.582 0.699 0.607 0.520

We compare unsupervised CKGE and supervised CKGE in Table 5. The dif-
ference between unsupervised CKGE and supervised CKGE is used unsupervised
contrastive learning and supervised contrastive learning. We add them to TransH
and PairRE in the FB15k-237 dataset. For TransH-CKGE and PairRE-CKGE
used the unsupervised contrastive learning method, the version that used the
supervised contrastive learning method brings consistent improvements. There-
fore, we adopt supervised CKGE with training as much as possible.

Table 5. Results on unsupervised CKGE and supervised CKGE for FB15k-237 dataset.

Model FB5k-237

MR MRR Hit@1 Hit@3 Hit@10

TransH +unsupervised CKGE 170 0.335 0.236 0.374 0.531

+supervised CKGE 168 0.336 0.238 0.375 0.533

PairRE +unsupervised CKGE 156 0.353 0.258 0.389 0.548

+supervised CKGE 155 0.355 0.260 0.394 0.550
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4.4 Visualization

We employed T-SNE to visualize triples, highlighting how CKGE promotes
consistency and uniformity by aligning entities with analogous semantics post-
relation transformation.

Given a query, (hi, rj , ?) - with hi and rj as the head entities and relations
respectively - the goal of link prediction is to determine the valid tk. From ogbl-
wikikg2, we randomly picked 10 queries having a 1-to-N relation mapping type.
The entity embeddings generated by TransE are visualized using T-SNE. In
Fig. 3, every entity is depicted as a 2D point; points of the same color and num-
ber represent different (hi, rj , ?) contexts. As evident in Fig. 3, CKGE ensures
that entities within the same (hi, rj) context have closely aligned and compact
representations.

Fig. 3. We visualized the embeddings of tail entities using T-SNE. Points sharing a
color and number correspond to the same (h, r) context.

5 Conclusion and Future Work

In this study, we introduce CKGE, a contrastive learning framework tailored
for distance-based knowledge graph embedding models. We noted that in such
models, positive pairs often diverge into subsets: one closely tied to the head
entity and the other to the tail entity following a relationship shift. Experimen-
tal results reveal that CKGE enhances the efficiency of distance-based models
on standard datasets, notably in large-scale graphs. The efficacy of contrastive
learning suggests its potential applicability in various other domains, warranting
future exploration. Given the power of contrastive learning, a potential avenue
for future research is to extend this approach to models in other fields.
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Abstract. At present, knowledge graph completion (KGC) is mainly
divided into structure-based methods and language-based methods,
which characterize the structural information and semantic information
of knowledge graphs, respectively. Though existing works have devel-
oped methods to integrate both information, we argue their end-to-
end training manner suffers discrepancy, compatibility, resources redun-
dancy issues. Therefore, we propose a novel two-stage training paradigm
for tackling KGC task, i.e. information adaptation and refinement
(KGCIAR). Specifically, KGCIAR has two stages, 1) adaptation and 2)
refinement. In the adaptation stage, we fine-tune the PLM with the input
of descriptive information and supervised by the KG structural informa-
tion. In the second refinement stage, we freeze the adapted PLM model
and infer the description embeddings of entities and relations. Then,
those embeddings are leveraged as the entity/relation initial embed-
dings. Finally, we train a lightweight KGC model. Moreover, we devise
two novel objectives for knowledge adaptation, which are self-supervised
adaptation and structure-aware contrastive adaptation. Furthermore, we
systematically compare the performance of different lightweight KGC
models for information refinement. The experiments on KGC task and
various variants analyses demonstrate that KGCIAR is effective in har-
nessing both structure and language information in KG.

Keywords: Knowledge graph completion · Pre-trained Language
Model · Knowledge Adaptation

1 Introduction

In recent years, knowledge graphs massively contribute to the rapid develop-
ments of artificial intelligence, digitization and big data [18,38]. A knolwedge
graph (KG) is a semantic structure [28] for storing, representing and reason-
ing knowledge, which enables computers to understand human knowledge, and
improves the organization of complex data. Generally, a knowledge graph con-
sists of entities, attributes, and relations. By modeling these entities, attributes,
and relations as semantic networks, knowledge graphs can enhance the per-
formance in question answering [16], recommendation systems [35], language
understanding [18], and etc.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
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Knowledge graphs are usually implemented manually or semi-automatically.
However, due to the sparsity issue, some hidden relations are unable to be fully
captured [35], which leads to the incompleteness of the knowledge graph. More-
over, expansion of the knowledge graph increases its size and complexity. This
induces more missing and incomplete information, which impairs the quality of
knowledge graphs. Therefore, automatically discovering and completing missing
information [32,33,44], i.e., knowledge graph completion (KGC), is necessary.

Existing KGC methods lay in two directions [33]: 1) structure-based KGC
and 2) language-based KGC. Structure-based methods learn representation of
entities and relations via their IDs and structure information [7,12,17,29,39,42].
Then they predict missing entities and relations using various scoring functions.
In those language-based approach [11,32,33,37,41,44], textual descriptive infor-
mation of entities and relations are incorporated to supplement the semantic
information for the KGC task. Structure-based methods is effective in capturing
the connectivity information among entities and relations. For example, distance-
based models, such as TransE [7], TransH [39], TransD [17] and RotatE [29],
define different metric spaces for learning embeddings. However, they are unable
to leverage the descriptive semantics. To cope with this problem, language-based
KGC method has emerged [11,32,41]. The descriptive information are encoded
by language models [44] and optimized with the distance objective functions.
Recently, the incredible successes of pre-trained language foundation models [6]
provides off-the-shelf powerful tools to represent those descriptive information.
KG-BERT [44] and SimKGC [33] directly optimizes the pre-trained BERT mod-
els with KGC objectives. StAR [32], BLP [11] and KEPLER [37] add the loss
function of the embedding-based model in order to simultaneous harness struc-
tural information and descriptive information.

Most existing methods integrate the structure and descriptive information in
an end-to-end training manner, which are however problematic. Firstly, there is
discrepancy between structure and descriptive information. Two entities may be
described similarly, while they share few common structure semantics. In this
sense, directly integrating the structural and descriptive information leads to
a contradicting optimization. Consequently, the KGC performance is hindered.
Secondly, there is compatibility issue if simultaneously characterizing structural
information and descriptive information. Existing works [7,17,39] demonstrates
a simple model with only trainable embedding layers for entities and relations
is effectively in modeling structural information. In contrast, a large-size lan-
guage model [13,22] is required to well characterize the descriptive informa-
tion. Therefore, it is incompatible to harness both information with one single
model. Finally, the resources redundancy issue is ignored in existing text-based
KGC models. Recent works [32,33,44] fine-tune a large pre-trained language
model (PLM) with loss functions designed for KGC tasks. Since those PLMs are
pre-trained with massive language corpus and various tasks [25], most param-
eters are irrelevant to a specific KG and KGC task. During inference stage,
those large language models are required to load into memory, which results in
unnecessary resources consumption.
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Fig. 1. The training paradigm of KGCIAR. In the adaptation stage, we fine-tune
the PLM with the input of descriptive information and supervised by the KG struc-
tural information. In the refinement stage, we freeze the adapted PLM and train a
lightweighted KGC model.

To this end, this paper investigates a new KGC training paradigm, i.e. infor-
mation adaptation and refinement, which is named as KGCIAR. As illustrated
in Fig. 1, KGCIAR has two stages, 1) adaptation and 2) refinement. In the adap-
tation stage, we fine-tune the PLM with the input of descriptive information and
supervised by the KG structural information. In this way, we adapt the PLM to
be aware of the KG-based information. In the second refinement stage, we first
freeze the adapted PLM model and infer the description embeddings for entities
and relations. Then, those embeddings are leveraged as the entity/relation initial
embeddings. Finally, we train a lightweight KGC model. KGCIAR is an effec-
tive training paradigm. Firstly, the adaptation stage fuses the descriptive and
structural information via the structure-guided fine-tuning of the PLM, which
alleviates the discrepancy problem. Additionally, the refinement stage refines
the knowledge from adapted PLM by completing KGC task. Since we freeze the
parameter of PLM and only train a lightweight KGC model, there is no compat-
ibility issue. Moreover, we only use the lightweight KGC model for completing
knowledge, which is rather resources efficient.

In this paper, we investigate the potentials of adapting different PLMs to
KGC tasks. We identify it is still challenging in knowledge adaptation stage.
Firstly, if enforcing the PLM to optimize over the KG structure, there is a
knowledge collapse problem [19]. Secondly, the critical sparsity issue leads to the
lack of adaptation supervision signals. Therefore, we devise two objectives for
adaptation, which are Self-Supervised Adaptation (SSA) and Structure-aware
Contrastive Adaptation (SCA). By simultaneously optimizing both targets, the
PLM is well adapted to the information in KG. Moreover, regarding the refine-
ment stage we systematically compare the performance of different lightweight
KGC models in refining the knowledge for KGC tasks, including translation-
based methods, convolution-based methods, and etc. Overall, the main contri-
butions of this paper are as follows:

– We identify three critical issues when incorporating both structural and
descriptive information for KGC task in an end-to-end training manner. And
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we are the first work proposing a novel two-stage information adaptation and
refinement training paradigm to simultaneously resolve all three issues.

– We systematically study the novel two-stage training paradigm, which
includes information adaptation and knowledge refinement. We propose two
novel objectives for the first adaptation stage, which are the self-supervised
adaptation loss and structure-aware contrastive adaptation loss.

– We conduct extensive experiments on KGC task, including different variants
of the proposed two-stage KGCIAR. The results demonstrate the effectiveness
of the two-stage training paradigm for KGC.

2 Related Work

2.1 Pre-trained Language Foundation Models

Most recently, pre-trained foundation models [2,8,13,25] attract widespread
attention due to its efficacy in resolving various tasks. Foundation models are
widely used in various fields. For example, in the medical field, foundation mod-
els based on multimodal data in the healthcare ecosystem can effectively diag-
nose diseases [6]. In the field of vision, multi-modal foundation models such as
Flamingo [2] can generate realistic images and videos, which promote the devel-
opment of computer vision technology. Those large pre-trained language mod-
els (PLMs) such as BERT [13], T5 [25], GPT-3 [8] exhibit tramandous ability in
solving languge tasks. BERT [13] is pre-trained in an unsupervised manner and
then fine-tuned on specific tasks for optimal performance. T5 [25] firstly investi-
gates the unifying format of language input to solve arbitrary tasks. GPT-3 [8]
devises a much larger model size and uses more training data to autoregressive
generate text. Most recently, ChatGPT is released, which is developed based on
the GPT-3 [8]/GPT-3.5/GPT-4 architecture, demonstrating amazing ability in
interacting with humans, This paper investigates how to effectively adapting the
knowledge of PLM to KG and harness those knowledge for KG completion task.

2.2 Knowledge Graph Completion

Knowledge graph completion (KGC) refers to filling in missing information by
predicting the relation between entities or related entities given another entity
and the relation in an existing knowledge graph [7,12,33,44]. We can obtain
the embedding vector representation of entities and relations by optimizing with
the KG structures. For example, translation-based KGC models [7,17,39] learn
entity and relation embeddings via minimizing the distance between the relation-
wise head entity embedding and tail entity embedding. RotatE [29] maps entity
and relation vectors to a complex space, defining the relation as the rotation from
the head entity to the tail entity. DistMult [42] is a tensor decomposition-based
model that represents each relation using a diagonal matrix, and calculates the
similarity between entity pairs using dot products. ConvE [12] uses convolutional
and pooling layers to calculate scores between entity pairs. Recent research lever-
age both structural and descriptive information of entities and relations in KG
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to perform KGC. DKRL [41] takes advantage of the entity description infor-
mation by encoding the description information into the entity representation
using two encoders, namely, Continuous Bag-of-Words model (CBOW) and Con-
volutional Neural Network (CNN), to encode the textual information of entity
descriptions. Then, DKRL [41] jointly learns the knowledge representation using
both triples and description information. KG-BERT [44] uses the pre-trained
BERT model for KGC, representing entities and relations as their names or
descriptions. Triples are packed as a name/description sequence and fine-tuned
as the input sentence for the BERT model. StAR [32] splits the triples into
two groups, with the head entity and relation in one group and the tail entity
in another group. It uses a twin model to asymmetrically encode text in two
groups and combines loss functions from both representation learning and spa-
tial structure. BLP [11] and KEPLER [37] convert entity semantic information
into entity embedding vectors through pre-trained foundation models, and train
entity embedding vectors and relational embedding vectors through knowledge
graph embedding models. In this way, the structural information of knowledge
graphs is fused. KEPLER-Rel [37] is a sub-model of KEPLER [37], which also
converts the semantic information of relations into relation embedding vectors.
SimKGC [33] proposes a new contrastive learning method based on the twin
model, which can use more negative samples and improves the loss function
using InfoNCE as the loss function. At present, the text-based KGC method
has become the mainstream method for KGC research because of its more infor-
mation input and full utilization of the semantic information of the knowledge
graph. How to better combine it with knowledge graph embedding to make full
use of the advantages of both, we think it is one of the most urgent problems to
be solved in current research.

3 Preliminary

A knowledge graph G is a directed graph, in which the set of all nodes is the
entity set E , and the set of all edges is the relation set R. The sets of entities E
and relations R are usually of various types, such as people, locations, events,
and etc. We denote G = {(h, r, t)}, because the knowledge graph is constructed
from triples. In the data structure, each triple represents that there is a relation-
ship edge r between the entity node h and the entity node t in the knowledge
graph. Triples (h, r, t) capture the relationships between entities in the graph.
For instance, a triple (Barack Obama, born in,Hawaii) represents the fact that
Barack Obama was born in Hawaii.

In this paper, we use bold text h, r, and t represent the embedding for the
h, r, and t, respectively. To train the model to distinguish between true and
false triples, negative triples are generated by randomly replacing either the
head or tail entity of a true triple with a different entity from E , or by replacing
the relation with a different relation from R. These negative triples represent
false statements and are used as negative examples during training. The set of
negative triples is denoted as N , and the model is optimized to maximize the
scores of true triples while minimizing the scores of negative ones.
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KGC task is formulated as two types of prediction task, i.e., head entity
prediction and tail entity prediction, denoted as (h, r, ?) and (?, r, t), respectively.
We predict ? by ranking all entities in the KG. In addition, r−1 represents
the inverse relationship of the relation r. If there is a triplet (h, r, t), then the
triplet

(
t, r−1, h

)
must also exist. Therefore, we added an inverse relation during

training, and trained the inverse triplet corresponding to each triplet.

4 Proposed Framework

4.1 Overall Framework of KGCIAR

Hereafter, we introduce the KGCIAR (KG completion via Information Adapta-
tion and Refinement) framework, which is a novel two-stage training paradigm
for KG completion task. The overall framework of KGCIAR is shown in Fig. 1,
which contains adaptation stage and refinement stages. In the adaptation stage,
we first input the entity description and relation description into a PLM model,
such as BERT [13] and S-BERT [27], and generate the embedding for entities
and relations. Then, we use the KG structure information to calculate the train-
ing loss. After adaptation training stage, we have a KG adapted language model
(KGA-LM), which has the ability to infer embeddings of entities and relations.
During the second refinement stage, we freeze the parameter of this KGA-LM
such that it only has the inference ability. Then, we use this KGA-LM to to
infer the embedding of entity and relations, and send those embeddings to a
lightweight KGC model. During refinement stage, we train a KGC model with
the initial embedding from KGA-LM model and supervised by the KGC targets,
i.e. predict head or tail entities given an entity and a relation. After refinement
stage, we can directly use the lightweight KGC model to complete the KGC
task. Next, we introduce these two stages in details.

4.2 Knowledge Adaptation for PLM

As aforementioned, directly inferring the embedding of descriptive information
from PLM is unable to align their semantics information with the KG struc-
tural information. Therefore, we propose to conduct knowledge adaptation of
the PLM. However, it is challenging tasks due to the following reasons: Firstly,
PLMs are generally trained from a large corpus, which has rather different knowl-
edge distribution from the KG. If enforcing the PLM to optimize over the KG
structure, there is a knowledge collapse problem [19]. Secondly, KG structure is
usually of critical sparsity issue, which leads to lack of adaptation supervision
signals. To tackle both challenges, we propose two objectives for adaptation,
which are self-supervised adaptation (SSA) loss and structure-aware contrastive
adaptation (SCA) loss.
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Self-supervised Adaptation. By employing this SSA loss, we adapt the PLM
towards the distribution of descriptive information in the KG. Specifically, we
adopt the similar idea in [14,33] by passing the embedding from PLM model to
the dropout layers twice. There are many dropout layers in the internal structure
of the pre-trained foundation model BERT. The dropout layer randomly masks
the embedding in one forward pass. Hence, for the same input, we have two
embeddings. For example, given a tail entity descriptive information as denoted
as Dt and PLM generate its embedding two times as t and t+. The LSSA loss is
formulated as follows:

LSSA = − log
e(φ(t,t

+)−γ)/τ

e(φ(t,t+)−γ)/τ +
∑|N |

i=1 eφ(t,t−i )/τ
, (1)

where φ(·, ·) is used to calculate the similarity between two vectors. N denotes
the number of negative entities in the batch, where t−

i represents their embed-
dings. In this paper, we adopt the cosine similarity as a score between the two
vectors. The reason is that in the knowledge prediction period, we also use the
cosine similarity as the metric space for ranking entities. γ is the additive mar-
gin, which improves the separation between positive samples and nearby negative
samples by introducing a margin around the positive samples, resulting in higher
scores for positive samples. τ is the temperature hyper-parameter for contrastive
learning.

Structure-aware Contrastive Adaptation. With SSA, the PLM is adapted
to the distribution of entity and relation descriptive information in KG. However,
those embeddings are not aligned with the structure information. Therefore, we
propose another structure-aware contrastive learning (SCA) loss. To be specific,
given input text description (Dh,Dr,Dt) for head entity, relation and tail entity,
PLM generates their embeddings as h, r and t, respectively. In order to incor-
porate the structural information of knowledge graphs into training, we combine
h and r using common embedding models and normalize the combined vector
using L2 normalization to obtain the embedding vector ehr, which can repre-
sent the combined semantic information of the head entity and the relation. We
study three combination methods to obtain the embedding vector ehr: addition,
element-wise product, and convolution.

ehr =

⎧
⎪⎨

⎪⎩

h + r if using addition
h ◦ r if using element-wise product
h ∗ r if using convolution,

(2)

where ∗ denotes the convolution operation of embeddings as in ConvE [12]. In
the experiment, we will discuss how the combination method is selected.

Hereafter, we adopt a contrastive learning for optimization. Specifically, in
the same batch, we pull the combined head relation embedding ehr closer to
the embedding vectors of tail entities in KG, i.e. the positive samples, and push
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away from those entities in the same batch but not existing in the knowledge
graph as the tail entities, i.e. the negative samples. The SCA function is

LSCA = − log
eφ(ehr,t)/τ

eφ(ehr,t)/τ +
∑|N |

i=1 eφ(ehr,t−)/τ
. (3)

This SCA loss optimizes the embeddings by connecting the head and tail enti-
ties via relations, which reveals the structural information in KG. The idea of
contrastive learning is to bring similar samples closer and push away dissimilar
samples, and the goal is to learn a good semantic representation space from
samples. Therefore, the PLM is adapted to the structural information.

Final Adaptation Loss. Finally, we combine the SSA loss and SCA loss with
a balance weight α, where α ∈ [0, 1], to obtain the overall loss function of the
adaptation stage.

L = αLSSA + (1 − α)LSCA. (4)

Next, we introduce the second knowledge refinement stage.

4.3 Knowledge Refinement

Though in the adaptation stage, the KGA-LM is able to generate entity and rela-
tion embeddings and those embeddings preserve both the descriptive and struc-
tural information, it is still sub-optimal due to the incompatibility issue. There-
fore, in this section, we introduce how to refine the embedding from adapted
PLM for entities and relations. During this stage, we freeze the KGA-LM and
inferring the embedding of entities and relations by using the descriptive infor-
mation as the initial embeddings. Then, we pass the initial embeddings to a
lightweight KGC model and train this model with objective.

The KGCIAR paradigm has no constraints for the KGC model in the refine-
ment stage. For example, we can use translation-based models, convolution-
based model, encoder-based model, and etc. In this paper, we observe that those
embedding-based KGC model, such as TransE [7] performs better than other
KGC model. As such, we use the embedding from adapted PLM as the ini-
tialization of the entity and relation emebedding, and fine-tuning those with a
distance measurement loss. Speficially, if setting the KGC model to be TransE,
the optimization loss is formulated as follows:

LKGC =
1
N

N∑

i=1

max
(
0, λ + ψ(h, r, t) − ψ

(
h, r, t−

i

))
, (5)

where N denotes the total number of negative samples for training. λ represents
the margin value which controls the degree of separation between positive and
negative samples. t−

i is the negative tail entity embeddings. The scoring function
ψ for the triplet is defined as the L1 distance between the h+r embedding vector
and the t embedding vector as

ψ(h, r, t) = ‖h + r − t‖1. (6)
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Note that the embeddings of entity and relation are initialized from adapted
PLM and are optimized with the KGC loss LKGC.

4.4 Discussion of KGCIAR

In this section, we discuss different variants of KGCIAR. In the adaptation stage,
we can choose different PLMs, we propose three combination methods of head
and relation embedding vectors. We put those different combination methods
as the superscript. For example, if using addition combination, we denote it as
KGCIARadd. As such, we also have KGCIARmult, and KGCIARconv. According
to experimental results, we observe that addition combination generally performs
better. Therefore, KGCIAR is the KGCIARadd model unless otherwise specified.

During the refinement stage, in addition to using the basic embedding model
TransE [7], we can also use other KGC models to fine-tune entity and relation
embeddings. In this paper, we study several KGC models such as TransH [39],
TransD [17], ConvE [12], and DistMult [42]. We denote KGC model in the sub-
script. For example, KGCIARtranse adopts the KGC model to be transE. As such,
we also have KGCIARtransh, KGCIARtransd, KGCIARconve and KGCIARmult

variants, respectively. Since we observe better performance of using TransE, by
default we use the TransE model as the lightweight KGC model for the KGCIAR
framework.

Furthermore, we design another type of KGC model that only has fully-
connected mapping layers as KGC model. It is designed to compare with those
embedding-based models. We name this paradigm as KGCIAR-MLP model.
By comparing KGCIAR-MLP model, we should clearly verify the better per-
formance of embedding-based models. Specifically, we modified the triple score
function of the embedding model by adding an MLP layer to it. By training the
parameters of the MLP layer, we transform the embeddings from KGA-LM to
be refined in KGC task. In the KGCIAR-MLP model, the trainable parameters
in the second stage are those MLP layers. And we treat the embedding from
KGA-LM as the input feature.

5 Experiments

5.1 Setups

Datasets. We conduct the experiments on two datasets, FB15k-237 [5] and
Wikidata5M [31]. FB15k-237 is a subset of Freebase that contains 14,541 entities
and 237 relations. Wikidata5M, is a subset of Wikidata that contains about
5 million entities and 822 relations. The scale of the dataset is much larger
than that of FB15k-237, and the number of training sets is about 20 times that
of FB15k-237. We believe that on a large-scale dataset, it is more challenging
and can better demonstrate the performance of the model. Both datasets have
description information for entities. We follow previous work [33] to preprocess
the datasets for training, validation and test.
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Evaluation Metrics. The evaluation metrics for KGC are adopted in com-
monly used metrics, i.e. the Mean Reciprocal Rank (MRR) and the Hit Rate
(H@k). For the KGC task, we calculate the prediction metrics of the head entity
and the prediction metrics of the tail entity. For the final metrics, we use the
average of the prediction metrics with respective to all triplets.

5.2 Baselines and Hyper-parameters

In terms of baseline selection, we compared with both structure-based models
and language-based models. For the structure-based models, due to the lim-
ited benchmarks on the large dataset Wikidata5M, we selected three represen-
tative models, TransE [7], DistMult [42], and RotatE [29]. For the text-based
models, we chose DKRL [41], KG-BERT [44], StAR [32], KEPLER [37], and
SimKGC [33]. Among them, DKRL [41], KG-BERT [44], and SimKGC [33] only
use pre-trained foundation models to train semantic information. StAR [32] and
KEPLER [37] combine with embedding-based models and also learn the struc-
tural information of the knowledge graph during the training process.

Regarding the hyper-parameter, in the first step of the experiment, we set the
initial temperature τ to 0.05, the additive margin γ to 0.02 and the batch size
to 1024. In the second step, we set the number of negative samples N to 25 for
each positive sample, set the margin λ to 4.0 for the dataset FB15k-237, and set
the margin λ to 12.0 for the dataset Wikidata5M. For the selection of negative
samples N and the weight α of two losses, we experiment and select the optimal
values for each dataset. In this paper, we investigated different PLMs, including
bert-base-uncased, roberta-base, sentence-transformers/all-MiniLM-L6-v2 in the
model zoo on Huggingface1. We found that bert-base-uncased is generally the
best one for KGCIAR. Therefore, all experiments are conducted based on it.

5.3 Overall Knowledge Completion Performance

For the KGCIAR model, we choose the combination method of addition in the
first step, and use TransE [7] as the KGC in the second step to conduct exper-
iments. We compare the results of the experiment with the baseline models,
which are shown in Table 1. The reported values of those baseline model follow
SimKGC [33] and BLP [11].

According to the experimental results, compared with the language-based
model, our proposed model KGCIAR has achieved better performance on both
datasets, both exceeding the best baseline SimKGC [33]. And compared with
structure-based models, our proposed model surpasses the embedding model
RotatE [29], which suggests that our KGCIAR method is effective in harnessing
the structural information. Overall, we should observe that RotatE is the best
baseline in FB15k-237 while SimKGC is the best baseline in Wikidata. This
indicates that existing work has the limitation in combining both structural
information and descriptive information, due to our aforementioned three issues.

1 https://huggingface.co/models.

https://huggingface.co/models
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Table 1. Main results for FB15k-237 and Wikidata5M datasets.

Method FB15k-237 Wikidata5M

MRR H@1 H@3 H@10 MRR H@1 H@3 H@10

structure-based methods

TransE [7] 27.9 19.8 37.6 44.1 25.3 17.0 31.1 39.2

DistMult [42] 28.1 19.9 30.1 44.6 25.3 20.8 27.8 33.4

RotatE [29] 33.8 24.1 37.5 53.3 29.0 23.4 32.2 39.0

language-based methods

DKRL [41] 21.5 13.5 23.1 37.9 16.0 12.0 18.1 22.9

KG-BERT [44] 23.6 14.5 25.8 42.0 – – – –

StAR [32] 29.6 20.5 32.2 48.2 – – – –

KEPLER [37] – – – – 21.0 17.3 22.4 27.7

SimKGC [33] 33.6 24.9 36.2 51.1 35.8 31.3 37.6 44.1

KGCIAR 34.834.834.8 25.325.325.3 38.438.438.4 53.753.753.7 37.037.037.0 31.831.831.8 39.539.539.5 46.146.146.1

5.4 Variant Analysis

As we discussed in Sect. 4.4, there are a series of different variants of KGCIAR.
Therefore, in this section, we conduct systematic experiments on the FB15k-
237 dataset for those variant models. We first study the relationship between
the combination methods of head entity h and relation r in the adaptation stage
and KGC models in the refinement stage. Due to space limitation, we only report
the results of KGCIARadd

mult, KGCIARmult
mult, KGCIARadd

conve and KGCIARconv
conve in

Table 2. We also add the results of DistMult [42] and ConvE [12] for comparison.

Table 2. Adaptation combination methods comparison on FB15k-237 dataset.

DistMult KGCIARadd
mult KGCIARmult

mult ConvE KGCIARadd
conve KGCIARconv

conve

MRR 28.1 31.0 32.032.032.0 31.7 32.9 33.133.133.1

H@1 19.9 22.7 23.323.323.3 23.2 24.1 24.224.224.2

H@3 30.1 34.1 35.135.135.1 34.7 36.0 36.436.436.4

H@10 44.6 47.4 49.849.849.8 49.2 50.8 51.351.351.3

The experimental results are twofold. Firstly, we observe that our variants
model perform better than those KGC model, which demonstrate the effective-
ness of our proposed KGCIAR framework. The adaptation stage is effectively
adapt the language knowledge into the KGC model to improve the performance.
Secondly, the choice of combination method in the first stage should be align
with the KGC model in the second stage. For example, if we use the DistMult as
the base KGC model in the second stage, then the element-wise product should
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be employed in the adaptation stage, i.e. the KGCIARmult
mult. In this we, we can

ensure that the PLM is aware of the KG-based information in the first stage and
fuses the descriptive and structural information well. Next, We fix the combina-
tion of h and r in the first stage to be addition and compare the performance
among different KGC models in the refinement stage. We adopt KGCIARadd

transe,
KGCIARadd

transh, KGCIARadd
transd and KGCIAR-MLP to conduct experiments. The

experimental results are shown in Table 3.

Table 3. Variant results using different KGC models on FB15k-237 dataset.

KGCIAR-MLP KGCIARadd
transe KGCIARadd

transh KGCIARadd
transd

MRR 31.9 34.8 35.035.035.0 35.035.035.0

H@1 22.4 25.3 25.525.525.5 25.4

H@3 35.4 38.4 38.538.538.5 38.538.538.5

H@10 50.6 53.7 54.0 54.154.154.1

According to Table 3, we have the following observations. Firstly, KGC
IARadd

transh, KGCIARadd
transd and KGCIARadd

transe are generally comparable. In their
original papers, TransH and TransD are more complex than TranE, and they usu-
ally performs better. However, since our KGCIAR framework already adapt the
language knowledge into the KGC model and refine the entity/relation embed-
dings, a simple TransE model achieves the comparable performance. This indi-
cates the effectiveness of our KGCIAR framework in improving the performance
with a lightweight KGC model. In addition, we also find that the performance of
KGCIAR-MLP is worse than other variants. KGCIAR-MLP differs from other
variant in its refinement stage. It directly use the embedding from KGA-LM
as the input for MLP, without updating the entity/relation embeddings. This
demontrastes that refining of entity and relation embeddings as the KGC model
is necessary to achieve the optimal performance. We hypothesis that an MLP
layer is not sufficient for maintain the structure information for KG. By analyzing
the experimental results of the above variant models, we believe that selecting
a lightweight KGC model and matching it with a optimal combination method
can retain the superiorty of KGCIAR framework.

5.5 Optimization Analysis

In this section, we investigate the training process of the KGCIAR framework.
We adopt the H@10 and loss with respect to the epochs in the refinement stage
as evaluation metrics. We conduct the experiments on the dataset FB15k-237,
we select KGCIARmult

mult and KGCIARadd
transe to compare with their corresponding

KGC models i.e. DistMult and TransE the experimental results are shown in
Fig. 2a. Firstly, according to the loss trends, we find that both KGCIAR vari-
ant converge much faster than the original KGC model. It suggests that after
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adaptation, the language knowledge are well adapted to the KG structure infor-
mation. Therefore, refinement of KGC model converges faster than directly train
a KGC model. Secondly, both KGCIAR variants performs better than the KGC
model, which indicates the superiority of the KGCIAR framework in integrating
both the language knowledge and structural knowledge. Thirdly, KGCIARadd

transe

performs better than all other, which justify the efficacy of a lightweight KGC
model in the refinement stage.

Fig. 2. Comparison for H@10 and Loss w.r.t. Epochs.

5.6 Ablation Study

To validate the necessity of our two-stage model KGCIAR, we demonstrate
the effectiveness of the first adaptation stage and the second refinement stage
in improving model performance through ablation experiments. We conduct
experiments on the FB15k-237 and Wikidata5M datasets. The performance of
KGCIAR, the model with only the adaptation stage, and the model with only
the refinement stage on each dataset are shown in Table 4.

Table 4. Ablation study on FB15k-237 and Wikidata5M datasets with KGCIAR.

FB15k-237 Wikidata5M

MRR H@1 H@3 H@10 MRR H@1 H@3 H@10

KGCIAR 34.834.834.8 25.325.325.3 38.438.438.4 53.753.753.7 37.037.037.0 31.831.831.8 39.539.539.5 46.146.146.1

w/o adaptation 27.9 19.8 37.6 44.1 25.3 17.0 31.1 39.2

w/o refinement 31.2 22.3 34.0 49.2 28.5 21.6 32.2 39.8

It can be seen from Table 4 that when the first adaptation stage or the second
refinement stage is used alone on the FB15k-237 dataset and the Wikidata5M
dataset, the results obtained by the KGCIAR model training are far lower than
the model effect when the two stages are combined. This shows that after the
structural and descriptive information in KG are fused through the adaptation
stage, further refinement is required to fully learn the structural and descriptive
information in KG. And the performance of the model drops off even more
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when only the refinement stage is used. This shows that without knowledge
adaptation, the model lacks the learning of the descriptive information of entities
and relations, which leads to a significant decline in model performance.

6 Conclusion

This paper discuss three critical issues in exiting end-to-end training paradigm
for integrating both structural knowledge and language knowledge to tackle
knowledge graph completion task, i.e. discrepancy, compatibility and resources-
redundancy. We propose a novel two-stage training framework KGCIAR, which
includes the adaptation stage and the refinement stages. It trains a KGA-LM for
adapting the language knowledge to KG structure. To overcome the optimization
problems, we devise a self-supervised adaptation loss and a structure-aware con-
trastive adaptation loss. During the refinement stage, we systematically inves-
tigates the relationship between the adaptation methods and the selection of
lightweight KGC models. By conducting experiments, we observe that the com-
bination methods in adapation stage should match the choice of KGC model.
Overall, the proposed framework has achieved the best performance on both
FB15k-237 and Wikidata5M datasets.
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Abstract. Representation Learning (RL) of knowledge graphs aims to project
both entities and relations into a continuous low-dimension space. Most methods
concentrate on learning entities’ representations with structure information indi-
cating the relations between entities (Trans- methods), while the utilization of
entity multi-attribute information is insufficient for some scenarios, such as cold
start issues or zero-shot problems. How to utilize the complex and diverse multi-
attribute information for RL is still a challenging problem for enhancing knowl-
edge graph embedding research. In this paper, we propose a novel RL model
Duet Entity Representation Learning (DERL) for knowledge graphs, which takes
advantage of entity multi-attribute information. Specifically, we devise a novel
encoder Entity Attribute Encoder (EAE), which encodes both entity attribute
types and values to generate the entities’ attribute-based representations. We
further learn the entities’ representations with both structure information and
multi-attribute information in DERL. We evaluate our method on two tasks: the
knowledge graph completion task and the zero-shot task. Experimental results on
real-world datasets show that our method outperforms other baselines on two
downstream tasks by building effective representations for entities from their
multi-attribute information. The source code of this paper can be obtained from
https://anonymous.4open.science/r/DUET-adma2023/.

Keywords: Multi-attribute · Representation Learning · Knowledge graphs

1 Introduction

Knowledge graphs (KGs) provide a massive amount of structure information for entities
and relations, which have been successfully utilized in various fields such as knowledge
inference [21] and question answering [23]. Typical KGs like Freebase [1], or YAGO3
[8] usually model the multi-relational information with many structure triples repre-
sented as (head entity, relation, tail entity), which is also abridged as (h, r, t).

Currently, most RL methods focus on structure information but ignore attribute
information in KGs. For example, in Fig. 1, we show two entity multi-attribute informa-
tion in a structure triple sampled fromDWY100K [13]. Although some works have real-
ized the importance of multi-attribute information such as DT-GCN [11], they haven’t
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
X. Yang et al. (Eds.): ADMA 2023, LNAI 14177, pp. 32–45, 2023.
https://doi.org/10.1007/978-3-031-46664-9_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-46664-9_3&domain=pdf
https://anonymous.4open.science/r/DUET-adma2023/
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Fig. 1. Example of entity multi-attribute information in DWY100K.

fully used the rich semantic information. First, they didn’t embed the attribute types and
attribute values jointly and applied them to improve the entity representation semantic
accuracy directly. Second, they didn’t consider using both structure information and
multi-attribute information to improve the overall RL effect. In addition, entity multi-
attribute information is generally stored in KGs in the form of triples and the attribute
triples can not tackle successive attribute values and might suffer from issues like one-
to-multi or multi-to-one relations in KGs. Furthermore, entity multi-attribute informa-
tion is usually diverse and complex: different entities may have multiple attribute types
in KGs, and even different attribute values may have various data structures and value
granularities. For example, in Fig. 1, Babyfather (song) and Sade (singer) have
different attribute types; the three attribute types of Sade (singer) that correspond to
attribute values have different forms and structures. Entity multi-attribute information
is too complex to use for learning embeddings directly. In the meanwhile, intuitively,
different attribute types and values play different degrees of importance in the enti-
ties’ representations. If entity multi-attribute information cannot be used reasonably,
the entities’ representations will lose a large amount of accurate semantic information
thus reducing their semantic accuracy.

To address those problems, we first design a novel encoder EAE, which can encode
the complex and diverse entity multi-attribute information to generate the entities’
attribute-based representations. Moreover, we propose a novel RL model DERL for
KGs, combining structure and multi-attribute information to improve KG embedding.
In the DERL model, an entity’s representation is responsible for jointly modeling the
corresponding structure information and multi-attribute information.

For learning structure information, we follow a typical RL method TransE [2] and
regard the relation in each structure triple as a translation from the head entity to the tail
entity. For learning multi-attribute information, we use the EAE to learn the entities’
attribute-based representations. In our EAE, we set up a training model that contains
two embedding components. One component embeds the entity’s different attribute



34 Y. Xu et al.

types, and the other component uses the bi-directional Long Short-Term Memory (Bi-
LSTM) to characterize the attribute values. Attribute types and values apply an attention
mechanism to learn their different importance for entities’ representations individually.
Finally, we use the embeddings of these two parts to generate the entities’ attribute-
based representations.

We evaluate our model on the knowledge graph completion task and the zero-shot
task. Experimental results demonstrate that our model achieves state-of-the-art perfor-
mances on both tasks. Our experimental results indicate that our model can use entity
multi-attribute information to improve the overall KG embedding effect and verify the
importance and necessity of attribute information for entity representation. We demon-
strate the main contributions of this work as follows:

– We design a novel encoder Entity Attribute Encoder (EAE), which uses both the
entity’s attribute types and values to generate the entity’s attribute-based representa-
tion. We adopt the attention mechanism for attribute types and values to distinguish
the importance of different attribute information to the entity’s representation.

– We propose a novel RL model Duet Entity Representation Learning (DERL), which
utilizes both entity structure information and multi-attribute information for enhanc-
ing RL’s effect.

– We evaluate the DERL model’s effectiveness on the knowledge graph completion
and zero-shot tasks. Experimental results on real-world datasets illustrate that the
DERL model consistently outperforms other baselines on these two tasks. To the
best of our knowledge, this is the first work attempt to use entity multi-attribute
information to solve the zero-shot problem.

2 Problem Formulation

We first introduce the symbols used in this paper. Given a structural triple (h, r, t) ∈ T ,
while h, t ∈ E stand for entities, r ∈ R stands for the relation. Respectively, h and t are
the head entity and the tail entity. a ∈ A stands for the attribute type and v ∈ V stands
for the attribute value. c ∈ v stands for the attribute value character. T stands for the
whole training set of structural triples. E is the set of entities, R is the set of relations,
A is the set of attribute types, and V is the set of attribute values. We propose two kinds
of representations for each entity to utilize structure information and multi-attribute
information in DERL.

Definition 1. Structure-Based Representations: es represents the entity’s structure-
based representation. esh and est are the structure-based representations based on the
head entity and the tail entity. r represents the relation’s representation. These represen-
tations could be learned through existing translation-based models.

Definition 2. Attribute-Based Representations: ea represents the entity’s attribute-
based representation. eah and eat are the attribute-based representations based on the
head entity and the tail entity. We will propose an encoder to construct this kind of
representation in the following section.
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Fig. 2. The Overall Architecture of DERL Model

3 Methodology

3.1 Overall Architecture

We attempt to utilize entity structure information as well as multi-attribute information
in the DERL model. Following the framework of translation-based methods, we define
the overall energy function as follows:

S(h, r, t) = Ss + Sa, (1)

where Ss = ||esh+r−est||. Ss is an energy function based on structure-based represen-
tations, which is the same as the translation-based methods. Sa is an energy function
based on attribute-based representations and structure-based representations. To make
the learning process of Sa compatible with Ss. We define Sa as:

Sa = Sas + Ssa + Saa, (2)

where Sas = ||eah+ r− est|| and Ssa = ||esh+ r− eat||, in which one of the head entity
or the tail entity is the structure-based representation, and the other is the attribute-
based representation. Saa = ||eah + r− eat||, the head entity and the tail entity are both
attribute-based representations. According to the overall energy function, the overall
architecture of the DERL is demonstrated in Fig. 2. We learn the entities’ structure-
based representations and relations’ representations from TransE. And we learn the
entities’ attribute-based representations from EAE. Under the overall energy function,
we can get the attribute-based representations and the structure-based representations
simultaneously. The overall energy function will project these two types of entities’
representations into the same vector space with relation representations shared by all
four energy functions, which will be promoted between two types of representations.

3.2 Entity Attribute Encoder

Entity multi-attribute information is difficult to use due to its complexity, heterogene-
ity, and different levels of importance. These problems directly lead to the difficulty
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of learning multi-attribute information into entities’ representations. Therefore in our
EAE, we consider the encoding of attribute types and attribute values respectively. The
framework of the EAE is demonstrated in Fig. 3. The Attribute Type Embedding (ATE)
learns the entity attribute type embeddings, and the Attribute Value Character Embed-
ding (AVCE) learns the entity attribute value character embeddings. In the Attribute
Value Embedding (AVE), we use the Bi-LSTM to capture the attribute value charac-
ters’ information and generate the attribute value embeddings. We apply the attention
mechanism to combine the attribute types and values for enhancing KG embedding.
Finally, we combine the attribute type embeddings and the attribute value embeddings
to generate the entities’ attribute-based representations.

Attribute Type Embedding (ATE). We first count the attribute types and randomly
generate an embedding for each attribute type. Because each entity has a different num-
ber of attribute types and values, we adopt the zero-filling strategy to unify the numbers.
To prevent the zero-filling strategy from affecting the model’s training, we separately
generate the same embedding for all zeros to prevent problems such as vanishing gradi-
ents. Given the entity’s M attribute types: A = (a0, a1, ..., aM ), we obtain the following
embeddings of the entity’s M attribute types:

A = (a0,a1, ...,aM ). (3)

Attribute Value Character Embedding (AVCE). We first count the characters that
appear in the attribute values. Then we randomly generate an embedding for each
attribute value character. Because the numbers of characters in each attribute value are
different, we also utilize the zero-filling strategy and generate the same embedding for
all zeros. Given the attribute value N characters: vi = (c0, c1, ..., cN ), we get the fol-
lowing attribute value character embeddings:

vi = (c0, c1, ..., cN ). (4)

Attribute Value Embedding (AVE). We observe that the different attribute values
might appear differently in KGs. For example: “2012-12-12” and “180 cm” represent a
person’s birthday and height respectively. In mono-lingual KGs, the attribute value can
be considered as a sequence of characters with the same vocabulary. [15] proves that the
LSTM can effectively capture the sequence information between characters. Therefore
we choose the Bi-LSTM to learn the sequence information between characters from
beginning to end. The following equations define the Bi-LSTM cell:

ft = σ(Wf [ht−1, ct] + bf ), (5)

it = σ(Wi[ht−1, ct] + bi), (6)

H̃t = tanh(WH [ht−1, ct] + bH), (7)

Ht = ft � Ht−1 + it � H̃t, (8)
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Fig. 3. The Framework of Entity Attribute Encoder

ot = σ(Wo[ht−1, ct] + bo), (9)

ht = ot � tanh(Ht), (10)

where � denotes a vector multiplication, ft, it, ot are the forget gate, input gate, and
out gate of the Bi-LSTM cells.Wf ,Wi,WH ,Wo are weight matrices. σ is the sigmoid
function. bf , bi, bH , bo are biases. Bi-LSTM is divided into the forward LSTM (F-
LSTM) and the backward LSTM (B-LSTM). The F-LSTM reads the input character
embeddings. For example, the F-LSTM reads the attribute value character embeddings
vi = (c0, c1, ..., cN ) from left to right. The B-LSTM reads the attribute value character
embeddings reversely. The outputs of the F-LSTM and B-LSTM are:

hf = F-LSTM(cN ,hf−1), (11)

hb = B-LSTM(c0,hb+1). (12)

The initial states of the Bi-LSTM are set to zero vectors. After reading the embed-
ding of all characters contained in an attribute value, we concatenate the final hidden
states of the two-direction LSTM outputs to generate the attribute value embedding:

vi = [hf ;hb]. (13)

Given the entity’s M attribute values: V = (v0, v1, ..., vM ), we get the following the
attribute value embeddings:

V = (v0,v1, ...,vM ). (14)

Attention for Attribute Types and Attribute Values. An entity’s attribute-based rep-
resentation assembles all the entity attribute information, but not all attribute infor-
mation is equally important to an entity’s representation. To learn the importance of
different attribute types and attribute values for an entity’s representation, we adopt the
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attention mechanism to solve this problem [22]. Given the entity attribute type embed-
dings: A = (a0,a1, ...,aM ), we calculate their attention weights:

βi = softmax(ATWtai), (15)

where Wt is the weight matrix of ai. Here we utilize the attribute type embeddings to
get the attention weights. The attention weights of attribute value should be consistent
with that of its attribute type:

etype =
M∑

i=0

βiai, (16)

evalue =
M∑

i=0

βivi, (17)

we concatenate etype and evalue to get the entity’s attribute-based representation:

ea = [etype;evalue]. (18)

3.3 Objective Formalization

We utilize a margin-based score function as our training objective, which is defined as
follows:

L =
∑

(h,r,t)∈T

∑

(h′ ,r′ ,t′ )∈T ′
max(γ + S(h, r, t) − S(h

′
, r

′
, t

′
), 0), (19)

where margin γ means the artificially defined minimum distance between positive and
negative examples. S(h, r, t) is the overall energy function, in which both head and tail
entities have two kinds of representations: structure-based representations and attribute-
based representations. The above energy functions are defined as the L1-norm. It is
verified by experiments that the DERL’s effects based on L1-norm are better than the
DERL’s effects based on L2-norm. T

′
is the negative sample set of T , which we define

as follows:

T
′
= (h

′
, r, t)|h′ ∈ E ∪ (h, r

′
, t)|r′ ∈ R ∪ (h, r, t

′
)|t′ ∈ E, (20)

which means one of the entities or relations in a triple can be randomly replaced by
another one. Since we have two entities’ representations, if a triple already exists T , it
will not treat it as a negative sample because the entity can be either a structure-based
representation or an attribute-based representation.

3.4 Optimization and Implementation Details

DERL model can be defined as a parameter set θ = (E, R, A, C,W, B). E stands for the
embedding set of entities and R stands for the embedding set of relations. They can be
randomly initialized or trained by previous translation-based methods such as TransH
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[18] and TransR [7]. A stands for the embedding set of attribute types and C stands for
the embedding set of attribute value characters and they are initialized randomly.W and
B represent the weight set and bias set of Bi-LSTM and attention mechanism in EAE,
which can be initialized randomly. We utilize the mini-batch stochastic gradient descent
(SGD) to optimize our model, where chain rules are applied to update the variables and
parameters. We use GPU to accelerate training.

4 Experiments

4.1 Datasets and Experiment Settings

Datasets. In our experiments, we use the DWY100K [13] to evaluate our models’
knowledge graph completion effect. For the zero-shot task, we build a new dataset
FB24K-New based on FB24K [6] to simulate a zero-shot scenario. We select 12,789
entities as In-KG entities in FB24K and select 5,179 entities in FB24K that are related
to In-KG entities as Out-of-KG entities. We extract the structure triples which contain
In-KG entities and Out-of-KG entities and add them to the test set. Our test set is split
into 4 types: ( I - I ), ( O - I ), ( I - O ), and ( O - O ). I represent an In-KG entity, and O
represents an Out-of-KG entity. The DWY100K, FB24K, and FB24K-New details are
listed in Table 1 and Table 2.

Table 1. Statistics of DWY100K

Datasets #Ent #Rel #Attr #Attr tr #Rel tr

DBP-WD-Dbpedia 100,000 330 351 381,166 463,294

DBP-WD-Wikidata 100,000 220 729 789,815 448,774

DBP-YG-Dbpedia 100,000 302 334 451,646 428,952

DBP-YG-Wikidata 100,000 31 23 118,373 502,563

Experiment Settings. In the DERLmodel, the margin γ set among {1.0, 2.0, 3.0}. The
learning rate λ set among {0.0005, 0.0003, 0.001}. We set different learning rates for
different representation type combinations. The optimal configurations of the DERL
are: λ = 0.001, γ = 1.0. We set the size of character embedding and attribute type
embedding to 32. We set the attention weight size to 64 and the size of the hidden layer
of Bi-LSTMs to 16. The dimensions of the attribute-based representation and structure-
based representation are set to 64. The dimension of the relation’s representation is
set to 64. We set two evaluation settings named “Raw” and “Filter”: “Filter’ drops the
repeated triples in the training stage (when we alternate the entities and relations, the
reconstructed triple has a chance to be an existing triple), while “Raw” does not.
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Table 2. Statistics of FB24K and FB24K-New

Dataset #Ent #Rel #Attr #Attr tr #Rel tr

FB24K 23,634 673 314 207,610 216,409

Dataset #Ent #I - I #O - I #I - O #O - O

FB24K-New 17,968 100,249 12,699 400 135

4.2 Knowledge Graph Completion Task

Due to the incompleteness and complexity of KGs, many KGs are missing triples, and
a large number of potential relations between entities in the KGs are not discovered.
Knowledge graph completion aims to learn appropriate entities’ and relations’ repre-
sentations to discover the latent, correct triples. In addition, the knowledge graph com-
pletion task has been widely used to evaluate the quality of knowledge representations
[24].

Evaluation Protocol. We will report four prediction results based on our models. The
DERL(Structure) only utilizes structure-based representations for all entities when pre-
dicting the missing ones. While DERL(Attribute) only utilizes attribute-based represen-
tations. The DERL(Union) is a simple joint method considering the weighted concate-
nation of both entities’ representations. The DERL(Ablation) only uses attribute infor-
mation for training. We use three measures as our evaluation indicators: Mean Rank,
Hits@10 and Hits@1 [19,20]. In our experiment, we select TransE [2], ComplEx [16],
SimplE [5], RotatE [14], QuatRE [9], ParamE [3], TransRHS [24], DT-GCN [11], and
HittER [4] as baselines, which will be discussed in the Related Work.

Experimental Results. Table 3 and Table 4 present the entity and relation prediction
results respectively. Our analysis draws the following conclusions: (1) most DERL
models outperform all baselines on both Mean Rank, Hits@10, and Hit@1. It indi-
cates that the entities’ representations with multi-attribute information perform better in
knowledge graph completion, which not only proves that EAE can effectively encode
attribute information but also shows that DERL model can learn an accurate entity’s
representation. (2) DERL(Structure) shows good performance, although it is inferior
to some experimental results. After the mutual promotion of two kinds of information,
compared with some models (such as TransE, ComplEx, DT-GCN) performance effects
have been improved. The results indicate that two entities’ representations can learn and
share the same vector space. This proves that two kinds of information can be jointly
trained to improve the RL’s overall effect. (3) The DERL models’ results outperform
baselines on Mean Rank. The Mean Rank can well reflect the overall quality of knowl-
edge representation and determine the prediction results. In this paper, we use entity
multi-attribute information as semantics information to improve the entity representa-
tion semantic precision. Therefore, the DERL models’ results are much better than the
baselines’ results on Mean Rank. The case studies indicate that we may not know the
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Table 3. Entity Prediction Results in Knowledge Graph Completion Task

Model DBP-WD-Dbpedia DBP-WD-Wikidata DBP-YG-Dbpedia DBP-YG-Wikidata

Mean Rank Hits@10(%) Mean Rank Hits@10(%) Mean Rank Hits@10(%) Mean Rank Hits@10(%)

Raw Filter Raw Filter Raw Filter Raw Filter Raw Filter Raw Filter Raw Filter Raw Filter

TransE 343 242 30.1 41.9 341 254 30.1 41.4 354 258 28.9 40.3 445 379 14.4 27.8

ComplEx 341 240 30.3 41.7 338 259 30.3 42.3 349 261 29.3 39.6 443 381 13.9 27.6

SimplE 332 251 29.8 40.5 356 287 28.4 40.3 402 301 26.4 39.1 487 392 11.9 25.6

RotatE 314 229 33.4 45.2 322 244 31.8 46.9 341 249 30.9 45.2 432 377 14.6 30.1

QuatRE 322 261 27.3 38.1 354 287 26.7 38.5 371 270 24.3 36.5 447 379 14.8 30.2

ParamE 437 311 22.3 31.1 367 298 22.7 32.4 381 331 20.3 30.5 533 401 10.7 21.2

TransRHS 310 237 33.5 45.9 327 245 31.2 47.2 345 251 29.9 44.2 431 379 14.1 29.7

DT-GCN 351 245 32.1 33.2 519 388 31.7 33.3 354 287 30.3 45.3 455 367 14.0 22.6

HittER 401 302 27.8 44.7 444 363 30.7 45.1 368 311 26.4 46.9 384 357 13.8 28.6

DERL(Ablation) 310 241 33.9 49.8 320 251 33.2 44.1 345 251 29.9 44.2 422 370 14.5 29.5

DERL (Structure) 330 245 31.9 41.4 341 251 30.5 43.1 342 249 29.5 43.7 443 382 14.3 27.1

DERL (Attribute) 311 236 34.9 50.8 317 239 34.3 47.6 321 247 34.1 46.8 429 371 14.9 30.5

DERL (Union) 307 221 35.1 51.7 318 245 34.1 50.5 312 240 34.4 47.1 381 352 14.8 30.1

Improv. 1.0% 3.5% 4.8% 12.6% 1.6% 2.1% 7.0% 7.8% 8.5% 3.6% 8.5% 0.4% 0.8% 1.4% 0.7% 1.0%

entities’ details only by using the structure information, but we may know the entity
better by learning rich potential information from entity multi-attribute information.

Table 4. Relation Prediction Results in Knowledge Graph Completion Task

Model DBP-WD-Dbpedia DBP-WD-Wikidata DBP-YG-Dbpedia DBP-YG-Wikidata

Mean Rank Hits@1(%) Mean Rank Hits@1(%) Mean Rank Hits@1(%) Mean Rank Hits@1(%)

Raw Filter Raw Filter Raw Filter Raw Filter Raw Filter Raw Filter Raw Filter Raw Filter

TransE 4.01 3.53 37.3 41.1 3.97 3.58 32.2 43.5 4.22 3.52 30.4 41.7 6.13 5.51 18.8 29.2

ComplEx 3.98 3.55 36.8 46.8 3.92 3.54 36.4 45.8 3.91 3.56 35.6 42.7 6.19 5.42 18.4 26.4

SimplE 4.45 3.98 31.8 35.8 4.91 4.53 33.4 34.6 4.78 4.56 32.3 43.6 7.19 6.58 10.4 23.1

RotatE 3.54 3.21 41.4 50.8 3.51 3.09 44.9 54.1 3.76 3.32 43.9 50.1 6.02 5.52 18.6 33.4

QuatRE 4.21 3.93 38.6 47.2 3.87 3.51 41.4 50.5 4.02 3.88 36.6 44.3 7.14 6.11 16.9 30.9

ParamE 4.54 3.99 36.4 43.2 3.57 3.14 44.1 54.8 4.54 3.91 34.3 41.2 8.24 6.31 13.9 25.9

TransRHS 3.72 3.51 42.8 51.4 4.55 4.05 35.1 46.7 3.79 3.36 39.2 51.3 6.17 5.55 16.7 31.6

DT-GCN 5.28 5.05 21.3 29.4 6.91 5.53 23.4 34.1 6.98 6.56 20.1 23.4 7.48 6.52 11.7 17.8

HittER 4.07 3.43 43.5 50.3 5.48 4.56 39.6 54.9 5.48 5.01 37.7 49.8 5.58 5.33 14.5 33.6

DERL(Ablation) 3.54 3.31 41.8 50.4 3.61 3.19 44.1 50.7 3.51 2.99 47.2 54.6 5.82 5.46 18.2 30.9

DERL (Structure) 3.91 3.55 37.4 48.2 3.96 3.51 40.5 45.4 3.97 3.64 38.1 44.1 6.21 5.57 17.8 25.5

DERL (Attribute) 3.61 3.22 46.5 53.3 3.41 3.02 46.1 56.6 3.51 3.07 44.1 54.8 5.94 5.69 18.8 32.9

DERL (Union) 3.53 3.09 47.7 51.9 3.57 2.98 45.7 55.3 3.34 2.89 47.8 56.1 5.51 5.17 18.9 34.3

Improv. 0.3% 3.7% 9.7% 4.0% 2.8% 3.6% 2.7% 3.1% 11.2% 13.0% 8.9% 9.4% 1.3% 3.0% 0.5% 2.9%

4.3 Knowledge Graph Completion in Zero-Shot Task

How to embed the new entities in the KGs and apply them is the main purpose of the
zero-shot task. However, it is difficult to embed the Out-of-KG entities directly, and effi-
ciently finding the latent relations between Out-of-KG and In-KG entities is difficult.
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In this paper, we use multi-attribute information to learn the Out-of-KG entities’ repre-
sentations, which solves the problems that the Out-of-KG entities can’t embed directly
and the knowledge graph completion in zero-shot tasks.

Evaluation Protocol. We select DKRL [19], ConMask [12], and OWE [10] as our
baselines which will be discussed in the RelatedWork. We utilize Hits@10, and Hits@1
[19] for entity and relation prediction. We only present the results on the “Filter” setting.
We present four results in the experiment, and the (O - I), (I - O), and (O - O) have been
explained above; the Total is the combined result of these three test sets.

Experimental Results. Fig. 4 shows the experimental results of (O - I), (I - O), (O - O),
and Total. We can observe that: (1) In most cases, DERL significantly outperforms other
models on all four types of test sets. DERL achieves about 16.2% improvement in entity
prediction and 5.7% improvement in relation prediction. It demonstrates that DERL can
effectively utilize the Out-of-KG entity multi-attribute information into the entity’s rep-
resentation to handle the zero-shot problem. (2) The entity description information and
multi-attribute information belong to the text information of the entity, but the DERL
model performs better in entity prediction, relation prediction, and Mean Rank. It not
only shows the effectiveness of the DERL model in embedding text information and
capturing entity semantic information but also explains the advantages of using entity
attribute information to solve the zero-shot problem. (3) From Fig. 4, we can see that
some DERL’s results are not ideal, which may be because two entities belong to two
entity spaces. Therefore, the connections between In-KG and Out-of-KG entities are
still in need of enhancement.

5 Related Work

5.1 Knowledge Graph Embedding

In recent years, knowledge graph embedding methods have achieved great success and
promotion. TransE [2] follows the rule (h + r ≈ t) to embed the entities and relations.
SimplE [5] not only uses the Polyadia-Score but also utilizes the inverse of the relation.
ParamE [3] extends current embedding methods by combining the nonlinear-fitting
ability of neural networks and translational properties. ComplEx [16] first introduces
the Complex-Spaces to capture symmetric and antisymmetric relations. RotatE [14]
treats the relation as a rotation from the head entity to the tail entity. QuatRE [9] defines
the Quaternion-Space with Hamilton-Product to enhance correlations between head and
tail entities. TransRHS [24] utilizes the relative positions between vectors and spheres to
enhance the generalization between relations. HittER [4] proposes a Transformer-based
RL model to enhance the effects of entities and relations. DT-GCN [11] makes full use
of the advantages of multiple-types entity’s attribute values to explore the expressive-
ness of the entity’s representation.
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Fig. 4. Entity and Relation Prediction Results in Zero-Shot Task

5.2 Zero-Shot Problem

Zero-shot problem is a key issue in Knowledge Graph Completion because of the data
sparsity (including entity and relations). Currently, few models are in a position to solve
the zero-shot problem by using ancillary information. DKRL [19] proposes to use entity
description information to generate entities’ representations to solve the zero-shot prob-
lem. ConMask [12] comprehensively utilizes entities’ names and textual information to
deal with zero-shot situations. OWE [10] combines the entities’ names and description
information in the Transformation Space to improve open-world link prediction. To
benefit the zero-shot problem in KGs, we utilize ancillary information directly to learn
attribute-based representation and structure-based representation jointly, thus enriching
the sparse information hidden in knowledge graphs.

6 Conclusion

In this paper, we propose a novel RL model (DERL) that utilizes both structure and
multi-attribute information to improve the RL’s effect in KGs. To effectively encode
entity multi-attribute information, we also design an attribute information encoder EAE.
Experimental results on real-world datasets demonstrate that the DERL model consis-
tently outperforms other baselines on the knowledge graph completion task and zero-
shot task. [17]
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Abstract. Temporal knowledge graph representation learning mod-
els can capture more comprehensive semantic information, which has
higher practical application value and gradually attracts wide attention.
However, the existing temporal knowledge graph representation learn-
ing models usually have challenges in encoding temporal information
and capturing rich structural information. In this paper, we propose a
novel temporal knowledge graph representation learning model, named
TKGAT, which is based on graph neural networks using Bochner’s the-
orem to design time encoding function that can flexibly learn relative
time information. Furthermore, attention network is adopted to model
different relations features and the self-attention mechanism is optimized
by the decoupled attention method, so that the attention weight matrix
incorporates more extensive temporal and structural information and
learns the correlations between entity and temporal features. The exten-
sive experiments have shown that the proposed model can consistently
outperform state-of-the-art models over all benchmark datasets.

Keywords: temporal knowledge graph · representation learning ·
decoupled attention

1 Introduction

A great amount of data generated in daily life often takes the form of graph
structure, such as social networks, financial transactions and literature cita-
tions. Researchers have adopted the form of triple (subject, relation, object)
to represent semantic information in data, and construct large-scale knowl-
edge graphs (KG) such as DBpedia, FreeBase, and WordNet [25]. However,
the KGs are usually incomplete due to data sparsity, which makes knowledge
graph completion (KGC) a priority task. Knowledge graph representation learn-
ing expresses underlying semantic information by mapping the triples into con-
tinuous low-dimensional vector spaces, which is proved to be an efficient method
for KGC [11].
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Static KG representation learning models that ignore the temporal informa-
tion, which can lead to an inaccurate semantic representation. As depicted in
Fig. 1 (a), there are three relations Praise or endorse, Make optimistic comment
and Criticize or denounce between Barack Obama and Iran, such knowledge

Fig. 1. Example of the temporal knowledge graph

can cause confusion when temporal information is neglected since these three
relations are in conflict. Figure 1 (b) depicts a sample of the temporal knowledge
graph (TKG), the relations between Barack Obama and Iran made clarity as
the temporal information has been added. We can also observe that Iran has an
Express intent to cooperate with China, Consult with Afghanistan and Host a
visit with Syria, these three relation types will have various impacts on Iran, and
the topology of countries and relations around Iran also determines the character
of Iran. Therefore, effectively modeling the topological features of KG is essential
for KG representation learning. Besides, capturing temporal features in TKG is
also crucial. As shown in Fig. 1 (b), the relation Make a visit between Barack
Obama and South Korea occurred at time 2014-08-16, however, Barack Obama
has an relation Make optimistic comment with Iran at time 2014-12-29, since
the long time interval between the two events, the former will have less influence
on the latter as time passes, which also reveals that more significant temporal
characteristics are typically provided by the relative time. Our model aims to
well capture the topological and temporal features in TKG, in contrast to the
static KG representation learning models, which ignore temporal information
and process the TKG directly in a static manner, resulting in incomplete and
inaccurate expression of semantic information.

In recent years, TKG representation learning has received extensive atten-
tion from both academia and industry [7], which incorporates the corresponding
temporal features when expressing the semantic information in data. However,
most of the current TKG representation learning models usually face many chal-
lenges. (1) The sensible time encoding, since the TKG topology is dynamic,
entities should have various features at different times. Besides, time encoding
should satisfy the inherent properties of time, such as the relative time can usu-
ally carry more meaningful information than absolute time, for example, when a
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user buys a product on the internet, the temporal information of browsing and
staying on a certain product is more important than the order of browsing the
products. However, the previous models mostly used simple feed-forward neu-
ral networks or recurrent neural networks to capture temporal features, which
lack of in-depth theory; (2) Modeling relations appropriately, distinct relations
around an entity should have different influences on current one, most of exist-
ing models fail to take into account relation attention. Topological information
incomplete when various relations are addressed with the same attention weights;
(3) Effectively modeling structure, the most TKG representation learning mod-
els extend on those in static KG, which focus more attention on quadruples
inherent characteristics and treat the quadruples independently while ignoring
structural information, and the model should also capture correlations between
entity intrinsic features and temporal features when modeling structure, which
is still challenging.

A TKG attention networks, named TKGAT, is proposed to solve the common
problems in existing TKG representation learning models. The time encoding
function based on the Bochner’s theorem [23] has been adopted to capture
temporal features, which is well suited to model the properties of relative time
and has a deep theoretical foundation. The weights of the different relation types
are constructed by the attention network to reflect the relevant to central entity.
The self-attention mechanism [19] has proved its powerful ability in various tasks,
the position encoding is replaced by time encoding and decoupled attention
[6] is applied to optimize self-attention, which can incorporate more extensive
knowledge graph features and effectively capture the correlations between entity
and time. Our contributions in this paper can be summarized as follows.

(1) We propose a novel temporal knowledge graph representation learning model,
TKGAT, which encodes temporal information based on Bochner’s theorem
and uses attention networks to capture different relations weight in order to
efficiently model relational information and improve model performance.

(2) By separating structure and time encoding to optimize the traditional self-
attention mechanism, a decoupled attention approach is designed, which com-
bines graph neural networks to efficiently capture correlations between entity
and temporal features.

(3) The model proposed in this paper achieves the best experimental results on
three public datasets, further demonstrating the effectiveness of the model
and outperforming baseline methods.

The rest of this paper is organized as follows. Section 2 presents related works.
We introduce preliminaries in Sect. 3. We describe the proposed model in detail
in Sect. 4. Section 5 reports the experimental results, and we conclude in Sect. 6.

2 Related Work

In this section, the traditional static KG representation learning models and the
TKG representation learning models are introduced.
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2.1 Static Knowledge Graph Representation Learning

At present, most of the existing knowledge graph representation learning models
are suitable for static KG, which can be classified into three categories. The first
category is the translation-based model, which makes the head and tail entities
satisfy the translation constraints of the relation, and measure the truth of the
triples by calculating the Euclidean distance between the head and tail entity
vectors after the translation. TransE [1], TransH [20], and TransR [13] are the
most representative models, since the simple and efficient nature of TransE, there
are a series of subsequent works that extended on TransE. The second category
is the semantic matching based model, which evaluates the plausibility of a fact
by matching the underlying semantic information of entities and relations in the
vector space. RESCAL [15], DistMult [24], ComplEx [18], and SimplE [9] are the
simplest and most widely used models. The third category is neural network-
based model, which mainly takes advantage of the excellence of neural networks
in feature extraction and non-linear fitting to model KG features, representative
models include ConvE [3], ConvKB [14], and RGCN [16]. However, all these
models ignore the temporal information and fail to reflect the real-world change
properties, resulting in lower accuracy in TKG.

2.2 Temporal Knowledge Graph Representation Learning

In recent years, temporal knowledge graph representation learning has gradually
become a hot research topic. Most existing models primarily focus on extending
static KG representation learning to TKG. TTransE [7] adds temporal informa-
tion to the score function of the TransE and makes it satisfy the temporal infor-
mation based translation constraint. HyTE [2] extends the TransH model, which
projects entities and relations to a time-specific hyperplane to realize the embed-
ding of temporal information. TA-TransE [4] represents the relation type and
temporal information as a sequence of characters, then uses the LSTM to learn
the time-aware representation of relation types. TComplEx [10] extends Com-
plEx and considers the score of each quadruple as fourth-order tensor decom-
position. TeRo [21] borrows ideas from TransE and RotatE [17], which defines
the temporal evolution of entity embedding as a rotation and regards relation
as translation. ATiSE [22] incorporates temporal information into entity and
relation representations by using additive time series decomposition and uses
a multi-dimensional Gaussian distribution to represent temporal uncertainty.
Inspired by diachronic word embedding, DE-SimplE [5] incorporates temporal
information into diachronic entity embedding and has the capability of modeling
various relation patterns. Compared to our model, these models fail to capture
the rich structural information and the correlations between entity and temporal
features. Another line of work on TKG representation learning employs neural
networks, RE-NET [8] adopts a R-GCN based aggregator and recurrent event
encoder to model the historical information. RE-GCN [12] learns the evolutional
representations of entities and relations by capturing the structural dependencies
and sequential patterns. However, those models focus on TKGC extrapolation
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task, i.e., inferring the feature facts in a sequence, which are fundamentally dif-
ferent from our work.

3 Preliminaries

In this section, we present the preliminaries of our work, including the definition
of temporal knowledge graph and graph neural network.

3.1 Temporal Knowledge Graph

In this paper, we represent a temporal knowledge graph as G = {(s, r , o, t)} ⊆
V × R × V × T , where V, R and T indicate the sets of nodes, edges, and times-
tamps, respectively. Temporal knowledge graph completion (TKGC) is to solve
the problem of incompleteness in TKG. Assume that the whole true facts set
is F ⊆ V × R × V × T , TKG should be a subset of the whole true facts set
since the incompleteness of TKG, i.e., G ⊆ F . TKGC is the reasoning from G
to F . According to the time range, TKGC has two settings, interpolation and
extrapolation. Given a temporal knowledge graph G with timestamps t range
from t1 to tT , for the interpolation setting, TKGC predicts missing fatcs with
t1<t<tT ; In contrast, for the extrapolation setting, TKGC predicts missing fatcs
with t>tT , i.e., predicting future facts based on past ones. More formally, the
purpose of TKGC is to predict either the subject in a given query (?, r, o, t) or
the object in a given query (s, r, ?, t). Our work is focus on the TKGC for the
interpolation settings.

3.2 Graph Neural Network

Graph neural network (GNN) enjoys several advantages such as the ability to
effectively handle non-Euclidean data, which makes it a great success in process-
ing graph data. The core idea of GNN is the message propagation mechanism,
i.e., the central node features are constructed by aggregating information from
neighbors. In order to obtain the features of the central node i through multi-
ple layers of GNN, each GNN layer will implement the following two steps: (1)
Message Propagation, get messages from all neighbors of node i; (2) Message
Aggregation, aggregate messages from all neighbor nodes then combines with
the features of node i in the previous layer to obtain the features in the current
layer. The above processes are defined as follows:

hl
N k

i
← AGG

({
hl−1

j ,∀j ∈ N k
i

})
(1)

hl
i ← σWl

(
hl−1

i ||hl
N k

i

)
(2)

Steps (1) and (2) correspond to the Eqs. 1 and 2, respectively. Where N k
i denotes

the k neighbors of node i, hl
i denotes the hidden layer state of node i at l-th layer,

and AGG is a specific function for aggregating the features of neighbors, which
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can be implemented using long short term memory (LSTM), self-attention mech-
anisms, etc. In this paper, we use a decoupled attention approach to implement
AGG, which is able to capture more extensive features. The representative GNN
models include graph convolutional networks (GCN) and graph attention net-
works (GAT), both of which assign weights to neighbors explicitly or implicitly
during the aggregating features.

4 Our Approach

The Fig. 2 depicts the architecture of our model. Overall, the model is based on
the encoder-decoder architecture. The encoder module maps entities into a con-
tinuous low-dimensional vector space and incorporates structural and temporal
features simultaneously. In view of the fact that the relations are usually irrele-
vant to the temporal information, the temporal features are integrated into the
vector of the entity in our model. Since the different relation types have different
impacts on subject, the encoder module first integrates the relation features into
the objects according to the type attention weights, then employs a decoupled
attention method to learn the interactions between the subjects and objects in
terms of structure and time. Finally, the quadruple based (s, r , o, t) is converted
into the triple (st , r , ot ), decoder module can directly evaluate triples using the
static KG embedding methods.

Fig. 2. The architecture of the TKGAT model. In this figure, in order to evaluate the
truth of the quadruple (Barack Obama, Make optimistic comment, Iran, 2014-12-29 ).
Firstly, we find the temporal neighbors where the interaction time with Barack Obama
before 2014-12-29, encoded relation module combines the vectors of the subject Barack
Obama, relations and temporal neighbors together to calculate attention weights and
integrates the relation features into the temporal neighbors. Secondly, time encoding
function based on Bochner’s Theorem is applied to capture relative time features.
Thirdly, decoupled attention module learns vector of Barack Obama by capturing the
structural and temporal feature, an analogous approach is used for Iran. Finally, static
KGs embedding model ConvKB is adopted to evaluate score of triple that integrated
temporal features.
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4.1 Encoded Relation Information

Assume that there are |R| relation types and |V| entities in the temporal knowl-
edge graph G, the initial vectors of all entities and relations are represented as
sets E = {ei}|V|

i=1 and R = {ri}|R|
i=1 respectively, where ei ∈ R

de represents the
initial vector of i-th entity and ri ∈ R

dr represents the initial vector of i-th
relation, de and de represent the initial vectors dimension of entity and relation
respectively. Given a quadruple (s, r , o, t), according to the inherent character-
istics of time, i.e., information about future events cannot influence the ones
of the present moment, the temporal neighbors of subject s are denoted as
N tk<t

s = {(ri, oj , tk)| (s, ri, oj , tk) ∈ G, tk < t}. Since various relation types have
different effects on the subject, we combine the subject vector es, relation vec-
tor ri, and the object vector ej together and calculate the attention weights by
the sofmax function. Finally, the relation feature is incorporated into the corre-
sponding object vector, where the attention weights are calculated as follows.

uri,oj
= W1 (es || ri || ej) (3)

αi,j = softmax
(
uri,oj

)
=

exp
(
σ

(
p · uri,oj

))
∑

(rm,on,ti)∈N ti<t
s

exp (σ (p · urm,on
))

(4)

where W1 ∈ R
de×(2de+dr), p ∈ R

de are parameters learned during the model
training, σ employs the LeakyReLU activation function. After obtaining the
attention weights αi,j of the relation type, the temporal neighbors vectors that
incorporated relation types features are calculated as follows:

xi,j = αi,jW2 (ri || ej) (5)

where W2 ∈ R
de×(de+dr) is model parameter matrix.

4.2 Encoded Temporal Information

Having obtained the vectors of entitits that incorporated the relations informa-
tion, our aim is to further integrate the temporal information. Since the TKG’s
structure are no longer static and the entity features may change, the time
encoding should be able to show temporal characteristics, e.g. the events that
happened a long time ago have less impact on the current events. We employ
the time encoding function mapping from the time domain to the continuous
differentiable functional domain proposed by literature [23], which is based on
Bochner’s Theorem and can be compatible with gradient descent in model train-
ing, we denoted it as Φ(t) and the definition as follows:

t → Φ(t) :=
√

1
dt

[cos(ω1t), sin(ω1t), ..., cos(ωnt), sin(ωnt)] (6)

where ω = [ω1, ..., ωdt
]T are learnable parameters.
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4.3 Encoded Structural Information

Since the topology of the TKG contains important information, we borrow the
core idea of GNN, i.e., using message propagation mechanism to capture the
structural information. In order to aggregate the messages from neighbors cou-
pled with attention weights, we adopt the decoupled attention method based on
self-attention mechanism.

Given a quadruple (s, r , o, t), the temporal neighbors of subject s are N tk<t
s .

At time t, the vector of the subject s at layer l-th is represented as hl, when
l = 1, hl = es, i.e., the initial vector of s. The subject s corresponding object
under relation rj is oi, and its vector at lth layer is represented as hl

i, when
l = 1, hl

i = xi,j , which is obtained by the encoded relation module. Since
the relative time, rather than absolute time, usually reveals critical temporal
information, we directly encode the relative time {t − t1, t − t2, .., t − tk} using
the time encoding function, then we obtain the temporal encoding of neighbors
{Φ(t − t1), Φ(t − t2), ..., Φ(t − tk)}, where k denotes the number of neighbors of
s at time t.

The traditional self-attention mechanism are used to process sequence struc-
ture, which add or combine the two vectors that are used to represent the con-
tent and position information of the token to construct its feature. However, this
approach can’t effectively capture the correlation between content and position
features. Inspired by DeBERTa [6], we apply time encoding to replace position
encoding and calculate the weights by decoupled attention method.

The query vector at layer l is q = Wqhl−1,Wq ∈ R
dh×de is the model

parameter matrix, the vector of temporal neighbours and temporal encoding are
constructed as matrices ZE and ZT respectively, which are represented at the
l − 1 layer as:

ZE =
[
h(l−1)
1 ,h(l−1)

2 , ...,h(l−1)
k

]
∈ R

de×k (7)

ZT = [Φ(t − t1), Φ(t − t2), ..., Φ(t − tk)] ∈ R
dt×k (8)

Applying linear transformation on matrices ZE and ZT :

K = WKZE ,P = WTZT ,V = WV ZE (9)

where WK ,WV ∈ R
dh×de , WT ∈ R

dh×dt are model parameters, the attention
matrix obtained by the decoupled attention approach as following:

Ã0,j = [q]T Kj + [q]T Pj (10)

the attention matrix Ã ∈ R
1×k, where Kj and Pj denote the j-th column

of the matrix K and P respectively. In the process of calculating attention,
[q]T Kj is used to capture the correlation between the subject s and the j-
th neighbour object in terms of structure, and [q]T Pj is used to capture the
correlation between the subject s and the j-th neighbour object in terms of
time, the final attention matrix is obtained by adding the two above. We apply
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the softmax function to get the weights, then the final feature vector of temporal
neighbors is obtained by weighted sum.

hl
N <t

s
= softmax

(
Ã0,j√
2dh

)

V (11)

In order to maintain the original features of the subject s, we concatenate the
final feature vector of temporal neighbors with the s hidden vector at (l − 1)-th
layer, then pass it to a multilayer perceptron to capture non-linear interactions.

hl = MPL
(
hl

N τk<τ
s

||hl−1
)

= ReLU
([

hl

N τk<τ
s

||hl−1
]
Wl

0 + bl
0

)
Wl

1 + bl
1

(12)
Wl

0 ∈ R
2dh×dh ,bl

0 ∈ R
dh ,Wl

1 ∈ R
dh×do ,bl

1 ∈ R
do

where Wl
0, bl

0, Wl
1 and bl

1 are model parameters, do denotes the dimension
of the final output vector. We also show that the proposed model can be easily
extended to the multi-head setting which can improve performance and stability.
Suppose there are m different head, and head(i) = hl(i)

N tk<t
s

, we concatenate the
m head outputs with s and then carry out the same procedure as Eq. 12.

h̃l = MPL
(
head(1) || , ..., ||head(m) ||hl−1

)
(13)

4.4 Decoder and Training

Given a quadruple η = (s, r , o, t), the encoder module of the TKGAT provides
vectors with temporal information (s̃t, r, õt). Since the temporal information has
been incorporated into the entity vector, the static KG model score function can
be used to evaluate the triples. Among the currently existing methods, TKGAT
adopts ConvKB as the decoder, the score function defined as following:

f (η) =

(
|Ω|
||

n=1
g ([st, r,ot] ∗ ωn)

)

W (14)

where Ω denotes the set of convolution kernels, ωn denotes the n-th convolution
kernel, and ω ∈ Ω. Wc denotes the parameters matrix of the linear transfor-
mation, Ω and Wc share parameters during the model training, the activation
function g(·) employs ReLU, ∗ denotes the convolution operation. The output
vectors of the |Ω| convolution operations are concatenated into a single vector,
then linear transformation is applied to obtain the final score.

During the model training, the parameters of are learned using gradient-
based optimization in mini-batches. For each quadruple η = (s, r, o, t) ∈ G, we
sample a negative set of entities S = {o′|(s, r, o′, t) 	∈ G}, then the cross-entropy
loss function is used to train the model, which defined as follows:

L = −
∑

η∈G

exp (f (s, r, o, t))

exp
(∑

o′ �∈Gf (s, r, o′, t)
) (15)

Note that, without losing generality, we used the above loss and negative samples
for subject queries. The algorithm 1 shows the training process in detail.
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Algorithm 1: TKGAT training algorithm
Input: Temporal knowledge graph G, initialization vector dimension for entity,

relation, and timestamp de, dr, and dt, number of negative samples n,
number of iterative rounds niter, number of batches nb, batch size mb

Output: Vector representation of entities, vector representation of relations

Initialize the vector of entity ei with N
(
0, 1

de

)
;

Initialize the vector of relation ri with N
(
0, 1

dr

)
;

for n = 1, ..., niter do
for i = 1, ..., nb do

Dbatch ← Sample(Dtrain, mb) ;
// Sample mb instances from training set

for (s, r, o, t) ∈ Dbatch do
Dbatch ← D′

train ∪ {s′, r, o′, t} ;
// Negative samples by replacing the subject and object

xi,j ← αi,jW2 (ri || ej) ;
// Encoded relation information according to Equation 5

Φ(t − ti) ← relative time encoding according to Equation 6;

h̃ ← vector of entity according to Equation 10, 11, 13 ;

end
Training the model according to the Equation 14, 15 ;

end

end

5 Experiments

In this section, to verify the effectiveness of the proposed model, we conduct
experiments on link prediction tasks on three public datasets. We first introduce
the experimental setup, including datasets, evaluation metrics, baselines, and
implementation, and then analyze the experimental results. Furthermore, we
perform several ablation studies to demonstrate the effectiveness of each main
component of the proposed model.

5.1 Experimental Setup

Datasets. We evaluate our proposed models on the link prediction tasks, and
three public TKGs datasets are used in our experiments. The statistics of the
datasets are summarised in Table 1. For the Integrated Crisis Early Warning
System (ICEWS) dataset, we use two subsets provided by [4]: ICEWS14, corre-
sponding to facts in 2014, and ICEWS05-15, corresponding to facts between 2005
and 2015. For the Global Database of Events, Language, and Tone (GDELT)
dataset, we use subsets which corresponding to facts from 1 April 2015 to 31
March 2016, each piece of data has a corresponding timestamp. We use the same
splits of training, validation, and testing sets as provided by [5].
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Evaluation Metrics. For each quadruple (s, r, o, t) ∈ Dtest, where Dtest rep-
resents the test dataset, we generate two queries: (s, r, ?, t) and (?, r, o, t). For
the first query, the model evaluates all entities and obtains scores f (s, r, o′, t),
∀o′ ∈ E , with an analogous approach used for the second query. According to
the final scores, the rank of the given quadruple is obtained, and we report mean
reciprocal rank (MRR) which is defined as:

MRR =
1

2 |Dtest|
∑

η∈Dtest

(
1

rank (o|s, r, t) +
1

rank (s|r, o, t)

)
(16)

where η = (s, r, o, t), |Dtest| denotes the size of the test dataset. We also report
Hits@1, Hits@3, and Hits@10 measures where Hits@k represents the percent-
age of correct quadruple in the k highest ranked predictions, Hits@k defined
as:

Hit@k =
1

2 |Dtest|
∑

η∈Dtest

I(rank(o|s,r,t)≤k) + I(rank(s|r,o,t)≤k) (17)

where I(·) is an indicator function, I(cond) is 1 if cond holds and 0 otherwise.

Table 1. Statistics of datasets.

Dataset Entities Relations Training Validation Test

ICEWS14 6,869 230 72,826 8,941 8,963

ICEWS05-15 10,094 251 368,962 46,275 46,092

GDELT 500 20 2,735,685 341,961 341,961

Baselines. We test the performance of the proposed model against a variety of
strong baselines, including static KG representation learning models and TKG
representation learning models. Note that all these static models are applied
without considering the time information in the input, including: TransE [1],
DistMult [24], ComplEx [18], and SimplE [9]. The other TKG representation
learning baselines models include: TTransE [7], HyTE [2], TA-TransE [4], DE-
SimplE [5], ATiSE [22], and TeRo [21]. As TGAT [23] is specifically designed to
handle dynamic network graphs not TKG, we have not compared with it.

Implementation. We implemented our model and the baselines in PyTorch
and conducted the experiments on an NVIDIA Tesla V100 GPU. The vectors
dimension of the entity, relation, and time are fixed to 128. We also tried to
use different score functions to train the model, finally, we chose the ConvKB
model as our decoder. The number of temporal neighbors samples is set to 20 for
ICEWS14 and ICEWS05-15 datasets, 50 for the GDELT dataset. Theoretically,
the information from multi-hop neighbors can be aggregated in our model, to
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Table 2. Evaluation results on link prediction. The best results are in bold and the
second-best results are underlined.

Dataset ICEWS14 ICEWS05-15 GDELT

Metrics MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10

TransE 0.280 0.094 - 0.637 0.294 0.090 - 0.663 0.155 0.060 0.178 0.335

DistMult 0.439 0.323 - 0.672 0.456 0.337 - 0.691 0.210 0.133 0.224 0.365

ComplEx 0.474 0.370 0.523 0.689 0.485 0.377 0.531 0.702 0.213 0.132 0.234 0.374

Simple 0.478 0.373 0.530 0.689 0.486 0.376 0.535 0.705 0.211 0.128 0.231 0.382

TTransE 0.255 0.074 - 0.601 0.271 0.084 - 0.616 0.115 0.0 0.160 0.318

HyTE 0.297 0.108 0.416 0.655 0.316 0.116 0.445 0.681 0.188 0.0 0.165 0.326

TA-TransE 0.275 0.095 - 0.625 0.299 0.096 - 0.668 - - - -

TA-DistMult 0.477 0.363 - 0.686 0.474 0.346 - 0.728 0.206 0.124 0.219 0.365

DE-TransE 0.326 0.124 0.467 0.686 0.314 0.108 0.453 0.685 0.126 0.0 0.181 0.350

DE-DisMult 0.501 0.392 0.569 0.708 0.484 0.366 0.546 0.718 0.213 0.130 0.228 0.376

DE-SimplE 0.526 0.418 0.592 0.725 0.513 0.392 0.578 0.748 0.230 0.141 0.248 0.403

ATiSE 0.550 0.436 0.629 0.750 0.519 0.378 0.606 0.794 - - - -

TeRo 0.562 0.468 0.621 0.732 0.586 0.469 0.668 0.795 - - - -

TKGAT (ours) 0.574 0.502 0.655 0.752 0.607 0.504 0.676 0.813 0.256 0.154 0.290 0.441

speed up training, only the information about the 2-hop neighbors is aggregated.
The number of attention heads and negative samples is set to 4 and 200 respec-
tively, and the Adam SGD optimizer is applied to train model, we set 0.001 as
the learning rate for all datasets.

5.2 Results and Analysis

Table 2 shows the experimental results of link prediction on ICEWS14,
ICEWS05-15, and GDELT datasets. From the result, we can observe that the
static KG representation learning models fell behind TKG models in most cases.
The primary reason is static KG models only learned one representation for each
entity or relation, without taking into account the temporal information.

The results also demonstrate the state-of-the-art performance of our app-
roach for link prediction tasks. As we can see, the TKGAT model significantly
improves on the suboptimal TeRo model for most metrics. The typical TKG
representation learning models DE-SimplE, ATiSE, and TeRo, which pay more
attention to model temporal information while ignoring to capture of the TKG
topology structural information. In contrast, our model is based on the GNN
framework, which has the advantage of building structural features. Besides,
our model adopted attention networks to model relation weights and decou-
pled attention is applied to incorporate more extensive TKG structural features,
which allowed our model accurately to describe entities and relations character-
istics. TKGAT obtained central entity features by aggregating temporal neigh-
bours, a large number of network parameters were used to learn the features,
which increased a little model complexity but improved the accuracy. Mean-
while, time encoding function based on Bochner’s theorem was employed to
model relative time features, which further improved the model performance.

The experimental results also exhibt that the improvement in ICEWS05-15
and GDELT is greater than ICEWS14 dataset. the main reason is the compara-
tively small scale of the ICEWS14 dataset, in order to achieve the best prediction
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results, a large amount of training data is required. In addition, the results show
that the model performance on the ICEWS14 and ICEWS05-15 datasets are
better than those on the GDELT datasets, the major reason is the quite small
scale of the entities and relation types in the GDELT dataset, however, the
interactions between entities are extremely complex, which makes challenging to
extract effective information from the extremely complex interactions. Further-
more, the quality of the GDELT dataset is slightly lower, resulting in a relatively
lower accuracy.

Fig. 3. Ablation study on three datasets

5.3 Ablation Study

To verify the effectiveness of each component in TKGAT, firstly, we implemented
a version of TKGAT with all temporal attention weights set to the same value (-
Time) to prove the validity of the time encoding function based on Bochner’s the-
orem. Secondly, we removed the decoupled attention module (-Decoupled) and
adopted the traditional self-attention mechanism directly to calculate attention
scores between different entities. Finally, we incorporated relations information
directly into the object using a linear transformation (-Linear) to verify the
effectiveness of modeling relation weights.

As shown in Fig. 3, the TKGAT-Time model significantly reduced on MRR
metric in all datasets, which proved the effectiveness of the time encoding func-
tion, and we can also notice that building temporal features in TKG is essential.
In addition, the results show that the TKGAT-Decoupled model performed worse
than the TKGAT model, which proved that the decoupled attention method is
beneficial for improving the performance of the attention mechanism, and the
correlations between entity and temporal features captured by decoupled atten-
tion are effective for TKG representation learning. We can also observe that the
TKGAT-Linear model worked slightly worse than the TKGAT model, which
indicates the effectiveness of capturing relations weights.
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6 Conclusion

In this paper, we present a novel model, called TKGAT, for temporal knowl-
edge graph representation learning. Specifically, time encoding function based
on Bochner’s theorem was applied to efficiently model relative time information,
decoupled attention was adopted to capture the correlations between entity and
temporal features, and the different relations influences were learned by atten-
tion network. Experimental results show that the TKGAT can effectively model
temporal knowledge graph features. The ablation study also demonstrates the
effectiveness of each component of TKGAT. For future work, the generation of
time-aware discriminative negative samples is worth exploring.
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Abstract. Knowledge graph completion (KGC) is the task of inferencing miss-
ing facts from any given knowledge graphs (KG). Previous KGC methods typ-
ically represent knowledge graph entities and relations as trainable continuous
embeddings and fuse the embeddings of the entity h (or t) and relation r into
hidden representations of query (h, r, ?) (or (?, r, t)) to approximate the miss-
ing entities. To achieve this, they either use shallow linear transformations or
deep convolutional modules. However, the linear transformations suffer from the
expressiveness issue while the deep convolutional modules introduce unnecessary
inductive bias, which could potentially degrade the model performance. Thus, we
propose a novel Transformer-based Patch Refinement Model (PatReFormer)
for KGC. PatReFormer first segments the embedding into a sequence of
patches and then employs cross-attention modules to allow bi-directional embed-
ding feature interaction between the entities and relations, leading to a better
understanding of the underlying KG. We conduct experiments on four popular
KGC benchmarks, WN18RR, FB15k-237, YAGO37 and DB100K. The exper-
imental results show significant performance improvement from existing KGC
methods on standard KGC evaluation metrics, e.g., MRR and H@n. Our analysis
first verifies the effectiveness of our model design choices in PatReFormer.
We then find that PatReFormer can better capture KG information from a
large relation embedding dimension. Finally, we demonstrate that the strength of
PatReFormer is at complex relation types, compared to other KGC models.

Keywords: Knowledge Graph Completion · Transformer · Cross-Attention

1 Introduction

Knowledge graphs (KGs) have emerged as a powerful tool for representing structured
knowledge in a wide range of applications, including information retrieval, question
answering and recommendation systems. A typical KG is represented as a large collec-
tion of triples (head entity, relation, tail entity), denoted as (h, r, t). Despite having
large amount of KG triples, many real-world KGs still suffer from incompleteness, e.g.,
massive valid triples are missing. To alleviate this issue, the task of knowledge graph
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completion (KGC) is proposed [1,7,8,13], which is to predict the missing entity given
the query (h, r, ?) or (?, r, t).

Existing methods for KGC generally learn continuous embeddings for entities and
relations, with the goal of capturing the inherent structure and semantics of the knowl-
edge graph. They define various scoring functions to aggregate the embeddings of
the entity and relation, forming a hidden representation of query (h, r, ?) (or (?, r, t))
and determine the plausibility between the query representation and missing entity
embedding. Essentially, these scoring functions are a set of computation operations on
interactive features of the head entity, relation and tail entity. Early KGC models like
TransE [1], DistMult [2] and ComplEx [3] use simple linear operations, such as addi-
tion, subtraction and multiplication. Despite the computational efficiency, these simple
and shallow architectures are incapable of capturing complicated features, e.g., poor
expressiveness. To improve the model expressiveness, some recent KGC models inte-
grate the deep neural operations into the scoring function. ConvE [8], as the start of this
trend, applies standard convolutional filters over reshaped embeddings of input enti-
ties and relations, and subsequent models [6,9] follow this trend to further improve
the expressiveness of the feature interaction between entities and relations. Although
these convolution-based KGC models have achieved significant empirical success, they
impose unnecessary image-specific inductive bias (i.e., locality and translation equiv-
ariance) to the KGC embedding models, potentially degrading the model performance.

To combat these limitations, in this paper, we propose a novel Transformer-based
Patch Refinement Model (PatReFormer) for the KGC task. The Transformer model
is first proposed to handle Natural Language Processing (NLP) tasks [24] and demon-
strates superior capability in other visual tasks [37]. More recently, with the recent
progress of Vision Transformer (ViT) [28], attention-based modules achieve compa-
rable or even better performances than their CNN counterparts on many vision tasks.
Through attention mechanism, ViT-based models could dynamically focus on different
embedding regions to obtain high-level informative features. What is more, ViT-based
models do not impose any image-specific inductive bias, allowing them to handle a
wider range of input data. Motivated by this, PatReFormer follows a “Separate-and-
Aggregate” framework. In the separation stage, PatReFormer segments the input
entity and relation embeddings into several patches. We explore three different separa-
tion schemes: 1) directly folding the embedding vector into several small patches; 2)
employing several trainable mapping matrices to obtain patches; and 3) using randomly
initialized, but orthogonal mapping matrix to obtain patches. In the aggregation stage,
unlike [28,32] which use standard Transformer architecture, PatReFormer uses a
cross-attentive architecture that deploys two separate attention modules to model the
bi-directional interaction between the head entities and relations.

To evaluate our proposed approach, we conduct experiments on several bench-
mark datasets, including WN18RR, FB15k-237, YAGO37, and DB100K, for the KGC
tasks. Our experiments show that PatReFormer successfully outperforms both non-
Transformer-based and Transformer-based KGC methods, demonstrating the effective-
ness of our approach. Our analysis shows the effectiveness of our cross-attention mod-
ule design, patch-based position design, and embedding segmentation design. We find
that PatReFormer is capable to learn useful KG knowledge using a large embedding
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dimension, while previous KGCmodels cannot. Finally, we demonstrate the advantages
of PatReFormer in complex relation types, compared to previous KGC methods.

2 Related Work

Non-Neural-Based Methods. A variety of non-neural based models are proposed
for KGC leveraging simple vector space operations, such as dot product and matrix
multiplication, to compute scoring function. TransE [1] and its subsequent exten-
sions [33,34] learn embeddings by representing relations as additive translations from
head to tail entities. DistMult [2] uses multi-linear dot product to characterize three-
way interactions among entities and relations. ComplEx [3] represents entities and
relations as complex-valued vectors, achieving an optimal balance between accuracy
and efficiency. HolE [15] utilizes cross-correlation, the inverse of circular convolution,
for matching entity embeddings. More recently, SEEK [17] proposes a framework for
modeling segmented knowledge graph embeddings and demonstrates that several exist-
ing models, including DistMult, ComplEx, and HolE, can be considered special cases
within this framework.

Neural-Based Methods. Neural network (NN) based methods have also been explored.
Approaches such as [35,36] employ a Multi-Layer Perceptron (MLP) to model the
scoring function. Moreover, Convolutional Neural Networks (CNN) have been utilized
for KGC tasks. ConvE [8] aplies convolutional filters over reshaped head and relation
embeddings to compute an output vector, which is then compared with all other enti-
ties in the knowledge graph. Subsequent works, including ConvR [6] and InteractE [9]
enhance ConvE by fostering interactions between head and relation embeddings.

Transformer-Based Methods. The Transformer model known for employing self-
attention to process token sequences has achieved remarkable success in NLP tasks.
This success is attributed not only to its capacity for handling long-range dependencies
but also to its tokenization concept. Recently, this concept has been extended to other
domains, such as computer vision through Vision Transformers [28] and multi-modality
with Two-stream Transformers [31]. These approaches have a common thread: they
decompose the data (text or images) into smaller patches and process them using atten-
tion mechanisms. In the field of KGC, recent works have incorporated textual informa-
tion and viewed entity and relation as the corresponding discrete descriptions. These
methods often utilize pre-trained Transformers for encoding. However, high-quality
textual KG data is not always accessible. As a result, our proposed method eschews
additional textual information, instead integrating the tokenization concept into KGC
to enhance performance.

3 Method

3.1 Knowledge Graph Completion

A Knowledge Graph can be represented as (E , R, T ) where E and R denote the sets
of entities and relations respectively. T is a collection of tuples [(h, r, t)i] where head
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Fig. 1. An overview of PatReFormer

and tail entity h, t ∈ E and relation r ∈ R. The task of Knowledge Graph Comple-
tion includes the head-to-tail prediction (e.g., predicting the head entity h in the query
(?, r, t)) and the tail-to-head prediction (e.g., predicting the tail entity t in the query
(h, r, ?)).

In this paper, following previous works [1,6,8], we represent head and tail entities h
and t as eh and et ∈ R

de and relation r as er ∈ R
dr . Our objective is to learn a function

F : Rde × R
dr → R

de such that given tuple (h, r, t), the output of F(eh,er) closely
approximates et. For tail-to-head prediction, we additionally generate the reversed tuple
(t, r−1, h) and train the output of F(et,er−1) to be closed to eh.

3.2 PatReFormer

In this section, we will introduce the details of PatReFormer. Figure 1 shows the
overview of our PatReFormer model, which comprises three components: Embed-
ding Segmentation, Cross-Attention Encoder, and Similarity Scorer.

Embedding Segmentation. At this stage, PatReFormer converts entity and rela-
tion embeddings into sequences of patches. Formally, a segmentation function pat(·) is
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Fig. 2. Variants for Embedding Segmentation. � denotes dot product operation. The mapping
vectors with similar color (blue, yellow, grey) of frozen segmentation are mutually orthogonal.
(Color figure online)

defined as follows:

p0,p1, · · · ,pk = pat(e) (1)

where e ∈ R
k·d is the input entity or relation embeddings. pi ∈ R

d are segmented
patches. k is the sequence length of the generated patches and d is the dimension of
each patch. Our method considers three segmentation variants, as shown in Fig. 2:

Folding involves reshaping the original embeddings e into a sequence of equally-sized,
smaller patches. Formally,

pat(·) : pi,j = ei∗d+j (2)

Trainable Segmentation employs a set of mapping vectors v with adaptable parameters,
enabling the model to learn and optimize the mapping function during training. This
function can be written as:

pat(·) : pi,j = ui,j � e (3)

where ui,j are trainable vectors.

Frozen Segmentation utilizes the function with fixed parameters, precluding updates
during the training process. Notably, the frozen Segmentation function comprises a set
of matrices populated with mutually orthogonal vectors. This design choice aims to
facilitate the generation of embedding patches that capture distinct aspects of an entity
or relation, thereby enhancing the model’s ability to represent diverse features. The
patches are generated by:

pat(·) : pi,j = ui,j � e ,where ui,j � ui,k = 0 for all j, k (4)

The value of ui,j is obtained from the orthogonal matrix Ui, which is generated through
singular value decomposition (SVD) of a randomly initialized matrix Mi. i.e.,

Mi = UiΣV �
i (5)
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Cross-Attention Patch Encoder. After segmenting entity and relation embedding into
patches, we then aggregate these patches together via Cross-Attention Patch Encoder
which is based on a Siamese-Transformer architecture. We will discuss its details below.

Positional Embedding. The original Transformer model encodes them with either fixed
or trainable positional encoding to preserve ordering information. However, unlike
visual patches from images or words from the text, in the PatReFormer model, the
patches from embeddings do not hold any much spatial information (i.e., the values in
the first and last dimension alone do not carry particular semantic meaning). We thus
remove the positional embedding in PatReFormer. We verify the effectiveness of
this design in Sect. 5.

Cross-Attention Layer. Our proposed cross-attention layer process the entity and rela-
tion patches interactively with two separated attention modules:

hi
h =

{
MHAi

ER(h
i−1
h ,hi−1

r ,hi−1
r ) i > 0

pat(eh) i = 0
(6)

hi
r =

{
MHAi

RE(h
i−1
r ,hi−1

h ,hi−1
h ) i > 0

pat(er) i = 0
(7)

where hi
h,hi

r denote hidden representation of the i-th layer for head entity and rela-
tion respectively. MHAER and MHARE denotes Entity-to-Relation and Relation-to-
Entity Attention module respectively. Both modules are based on the multi-head atten-
tion (MHA) mechanism, though they have different sets of parameters and inputs. The
MHA module operates as follows:

MHA(Q,K, V ) = Concat(head1,head2, · · · ,headH)W o, (8)

where headi = Attention(QWQ
i ,KWK

i , V WV
i ) (9)

WQ
i ∈ Rd×ds , WK

i ∈ Rd×ds , WV
i ∈ Rd×ds are projection matrix. ds = d/H where

H is the predefined number of attention heads. Attention(·) is the scaled dot-product
attention module:

Attention(Q,K, V ) = softmax(
QKᵀ
√

d
)V (10)

where Q ∈ RN×d, K ∈ RM×d, V ∈ RM×d, and N and M denote the lengths of
queries and keys (or values).

Position-wise Feed-Forward Network Layer. The position-wise feed-forward network
(FFN) refers to fully connected layers, which perform the same operation on each posi-
tion of the input independently.

FFN(X) = ReLU(XW1 + b1)W2 + b2 (11)

where X is the output of the Cross-Attention Layer i.e., hi
h or hi

r. W1 ∈ Rd×df ,
b1 ∈ Rdf , W2 ∈ Rdf×d, b2 ∈ Rd are trainable weights and bias. To facilitate the
optimization on deep networks, PatReFormer employs a residual connection [29]
and Layer Normalization [30] on Corss-Attention Layer and FFN.
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Similarity Scorer. We employ a scoring function to evaluate the relevance between the
output from the Cross-Attention Encoder and the target entity embedding. Specifically,
we concatenate the hidden representations obtained from the two Transformers sub-
modules and project them back to the entity dimension using a linear layer.

e′ = Concat(Xe,Xr)Wo + bo (12)

In this context, Wo ∈ R(de+dr)×de , bo ∈ Rde are weights and bias of the linear layer,
respectively. · is the operation to reshape Transformer output into a vector. Subse-
quently, we compute the dot product of the projected vector e′ and the target entity
embedding et. A sigmoid function is then applied to the result to ensure the final output
falls within the [0, 1] range.This scorer can be expressed as:

s = Sigmoid(e′ � et) (13)

Algorithm 1 provides a full procedure of our proposed PatReFormer method.

Algorithm 1 PatReFormer for Computing the Score of a Triple in a KG
Input: Embedding for entities and relations, E and R; head entity h, relation r and tail entity t; tokenization function

tok(·)
Output: the score of triple (h, r, t)
1: eh, er, et ← E.get(h), R.get(r), E.get(t) # get embeddings for h, r and t
2: eh ← tok(eh)
3: er ← tok(er)
4: for i = 1 to L do
5: eh ← LayerNorm(MHA(eh, er, er) + eh)
6: eh = LayerNorm(FFN(eh) + eh)
7: er ← LayerNorm(MHA(er, eh, eh) + er)
8: er = LayerNorm(FFN(er) + er)
9: end for
10: e′ ← Concat(eh, er)Wo + bo
11: s ← Sigmoid(e′ � et)
12: return s

3.3 Training and Inference

For training, we leverage the standard binary cross entropy loss with label smoothing:

LBCE = − 1
N

N∑
i=1

[yi log(si) + (1 − yi) log(1 − si)] (14)

where pi and yi are the score and label of the i-th training instance respectively. yi ∈
[ε, 1−ε], where ε is the label smoothing value. For inference, PatReFormer computes
the scores of the query (h, r, ?) for every possible entities and rank them based on the
corresponding scores. More details are presented in Sect. 4.1.

4 Experimental Results

In this section, we evaluate PatReFormer against various baselines in the KGC task
on multiple benchmark KGs.
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4.1 Experimental Setup

Dataset. Our proposed method is evaluated on four publicly available benchmark
datasets: FB15K-237 [19], WN18RR [8], YAGO37 [20] and DB100K [21]. A sum-
mary of these datasets is provided in Table 1. FB15K-237 and WN18RR are widely-
used benchmarks derived from FB15K and WN18 [1], respectively. They are free from
the inverting triples issue. FB15K-237 and WN18RR were created by removing the
inverse relations from FB15K and WN18 to address this issue. DB100K and YAGO37
are two large-scale datasets. DB100K was generated from the mapping-based objects of
core DBpedia [22], while YAGO37 was extracted from the core facts of YAGO3 [23].

Table 1. Statistics of datasets.

Dataset #Ent #Rel #Train #Valid #Test

WN18RR 40, 943 11 86, 835 3, 034 3, 134

FB15K-237 14, 541 237 272, 115 17, 535 20, 466

DB100K 99, 604 470 597, 572 50, 000 50, 000

YAGO37 123, 189 37 989, 132 50, 000 50, 000

Evaluation Protocol. Our experiment follows the filtered setting proposed in [1].
Specifically, for each test triple (h, r, t), two types of triple corruption are considered,
i.e., tail corruption (h, r, ?) and (t, r−1, ?). Every possible candidate in the knowledge
graph is used to replace the entity, forming a set of valid and invalid triples. The goal
is to rank the test triple among all the corrupted triples. In the filtered setting, any true
triples observed in the train/validation/test set except the test triple (h, r, t) are excluded
during evaluation. The evaluation metrics include the mean reciprocal rank (MRR) and
the proportion of correct entities ranked in the top n (H@n) for n = 1, 3, 10. The eval-
uation is performed over all test triples on both types of triple corruption.

Table 2. Optimal hyperparameters for various KGC benckmarks

η L de dr p1 p2 p3

WN18RR 1e-3 2 100 5000 0.1 0.1 0.4

FB15K-237 1e-3 12 100 3000 0.3 0.1 0.4

DB100K 5e-4 4 200 5000 0.1 0.1 0.4

YAGO37 1e-4 4 200 1000 0.1 0.1 0.1
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Table 3. Experimental results of baseline models on FB15K-237, WN18RR.

FB15K-237 WN18RR

MRR H@1 H@3 H@10 MRR H@1 H@3 H@10

Non-Transformer-Based Methods

TransE [1] .279 .198 .376 .441 .243 .043 .441 .532

DistMult [2] .241 .155 .263 .419 .430 .390 .440 .490

ComplEx [3] .247 .158 .275 .428 .440 .410 .460 .510

R-GCN [4] .249 .151 .264 .417 - - - -

SACN [5] .350 .260 .390 .540 .470 .430 .480 .540

ConvR [6] .350 .261 .385 .528 .475 .443 .489 .537

RotatE [7] .338 .241 .375 .533 .476 .428 .492 .571

ConvE [8] .325 .237 .356 .501 .430 .400 .440 .520

InteractE [9] .354 .263 - .535 .463 .430 - .528

AcrE [10] .358 .266 .393 .545 .459 .422 .473 .532

Transformer-based methods

KG-BERT [11] - - - .420 .216 .041 .302 .524

MTL-KGC [12] .267 .172 .298 .458 .331 .203 .383 .597

StAR [13] .296 .205 .322 .482 .401 .243 .491 .709

GenKGC [14] - .192 .355 .439 - .287 .403 .535

PatReFormer (ours) .364 .271 .400 .551 .480 .439 .499 .558

Implementation Details. We implement PatReFormer in PyTorch1. In this exper-
iment, we fix mini-batch size B to 256, Transformer dimensions d to 50, and label
smoothing value ε to 0.1. The other hyper-parameters are tuned via grid search.
Specifically, we select learning rate η from {1e-4, 5e-4, 1e-3}, number of layers L
from {2, 4, 12}, entity embedding size de {100, 200}, relation embedding size dr
{1000, 3000, 5000}. All dropout ratios, i.e., p1 on embedding patches, p2 on Cross-
Attention Encoder and p3 on the linear layer in Similarity Scorer, are tuned in
{0.1, 0.2, 0.3, 0.4}. We use Adam [18] to optimize our model. On each dataset, we
select the optimal configuration according to the best MRR on the validation set within
2500 epochs. The optimal configurations of PatReFormer on the four datasets are
listed in Table 2.

4.2 Experimental Results

Table 3 presents a comprehensive comparison of our proposed PatReFormer
model, against the baseline models on two popular FB15K-237 and WN18RR bench-
marks. Our experimental results indicate that PatReFormer is highly competitive
against the state-of-the-art models. Specifically, PatReFormer achieves improve-
ments of 0.009 in MRR and 0.6% in H@10 compared to the previous models used

1 https://pytorch.org/.

https://pytorch.org/
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Table 4. Experimental results of several models evaluated on DB100K, YAGO37.

DB100K YAGO37

MRR H@1 H@3 H@10 MRR H@1 H@3 H@10

TransE [1] .111 .016 .164 .270 .303 .218 .336 .475

DistMult [2] .233 .115 .301 .448 .365 .262 .411 .575

HolE [15] .260 .182 .309 .411 .380 .288 .420 .551

ComplEx [3] .242 .126 .312 .440 .417 .320 .471 .603

Analogy [16] .252 .142 .323 .427 .387 .302 .426 .556

SEEK [17] .338 .268 .370 .467 .454 .370 .498 .622

AcrE [10] .413 .314 .472 .588 - - - -

PatReFormer (ours) .436 .353 .479 .589 .523 .449 .567 .656

on WN18RR. On WN18RR, PatReFormer obtains better results in terms of MRR
(0.480 vs. 0.476) and H@3 (0.499 vs. 0.492) and is competitive in the H@10 and H@1
metrics. We attribute this discrepancy to the fact that the WN18RR dataset is a lexicon
knowledge graph that relies heavily on textual information. As a result, the KGC mod-
els that incorporate pre-trained language models, such as StAR andMTL-KGC, achieve
better performance than PatReFormer in those metrics.

To further verify the effectiveness of PatReFormer on larger KG, we evalu-
ate our method on DB100K and YAGO37. Table 4 presents the performance com-
parison of PatReFormer with other baseline KGC models. On both benchmarks,
PatReFormer outperforms existing methods on all evaluation criteria. In particu-
lar, PatReFormer demonstrates superiority on YAGO37 with a significant relative
improvement of 15.2% (0.523 vs 0.454) and 5.5% (0.656 vs 0.622) in MRR and H@10
respectively. These findings indicate the feasibility and applicability of PatReFormer
on real-world large-scale knowledge graphs.

5 Analysis

In this section, we investigate PatReFormer from various perspectives. In the first
place, we show the effectiveness of the design choices in PatReFormer. We then
show that PatReFormer is capable of capturing more knowledge via a large embed-
ding dimension. Finally, we demonstrate the advantages of PatReFormer in complex
knowledge relations. All experiments are conducted on FB15K-237.

5.1 Impact of Cross Attention

In this section, we aim to examine the effectiveness of cross-attention in our proposed
model by comparing it with two variants: 1) full self-attention, in which entity and
relation patches are combined together before being fed into the model, and full self-
attention is applied on the combined input; and 2) separate self-attention, in which
each Transformer conducts self-attention on entity and relation patches independently
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before concatenating their results in the Similarity Scorer. The experimental results
demonstrate that our proposed cross-attention method outperforms both the full self-
attention and separate self-attention variants. We hypothesize that the cross-attention
mechanism only learns to connect patches from different embeddings (i.e., patches from
the same embedding never interact with each other), avoiding unnecessary interference
from a single embedding. This could be the primary reason why cross-attention out-
performs the full self-attention variant. Furthermore, the separate self-attention variant
lacks interaction between entities and relations, which could explain the significant per-
formance drop (Tables 5 and 6).

Table 5. Analysis for model structure on FB15K-237. Att. denotes attention.

MRR H@1 H@3 H@10

PatReFormer .3640 .2708 .3997 .5506

Full Self-Att .3599↓.0041 .2656↓.0052 .3966↓.0031 .5476↓.0030
Sep. Self-Att .3387↓.0253 .2503↓.0205 .3698↓.0299 .5161↓.0345

5.2 Impact of Positional Encoding

The original Transformer model [24] involves positional encoding to convey posi-
tional information of sequential tokens. To examine the impact of positional encoding
on PatReFormer, we conduct an experiment with two variants: 1) trainable posi-
tional encoding (TPE) and 2) fixed positional encoding (FPE). Our experimental results
demonstrate that the model without positional encoding (PatReFormer) outperforms
the other two variants. We believe that this is due to the nature of embeddings patches,
which inherently capture the features of entities or relations in a non-sequential man-
ner. As a result, integrating positional encoding into the model introduces extraneous
positional information, causing a decline in performance.

Table 6. Analysis for positional encoding (PE) on FB15K-237. Our proposed PatReFormer
does not apply PE.

Models MRR H@1 H@3 H@10

PatReFormer .3640 .2708 .3997 .5506

w/ TPE .3354↓.0286 .2474↓.0234 .3660↓.0337 .5107↓.0399
w/ FPE .2580↓.1060 .1897↓.0811 .2789↓.1208 .3907↓.1599
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5.3 Impact of Segmentation

In this section, we explore the impact of segmentation on our proposed model, specif-
ically examining the performance without using segmentation, and employing folding,
trainable, and frozen segmentation. Our experimental results in Table 7 present that the
utilization of segmentation yields a substantial performance improvement. With respect
to the segmentation methods, frozen segmentation outperforms the other two variants.
We believe this is due to the orthogonal vectors employed in frozen segmentation, which
enhance the model’s capacity to discern features of embeddings from distinct perspec-
tives. Conversely, trainable segmentation, which allows parameters freely update during
training, may face difficulties in achieving this. These findings emphasize the impor-
tance of selecting segmentation variants in the context of knowledge graph completion
tasks. The superior performance of frozen segmentation suggests that these orthogo-
nal vectors can be advantageous in extracting diverse features from entity and relation
embeddings.

Table 7. Analysis for tokenization variants on FB15K-237.

MRR H@1 H@3 H@10

PatReFormer .3640 .2708 .3997 .5506

w/o Seg .3501↓.0139 .2592↓.0116 .3850↓.0147 .5316↓.0190
Folding Seg .3623↓.0017 .2695↓.0013 .3979↓.0018 .5488↓.0018
Trainable Seg .3572↓.0068 .2642↓.0066 .3936↓.0061 .5433↓.0073

5.4 Effectiveness of PatReFormer via a Large Relation Embedding Dimension

In a typical KG, the number of relations is much less than the number of entities. Thus,
we hypothesize that the KGC models that can effectively handle a large relation embed-
ding dimension should achieve superior KGC performance. We verify this hypothesis
in this section. Figure 3 shows a clear performance increasing trend for PatReFormer
as the length of relation embeddings increases. However, the other baseline KGC mod-
els, such as TransE, ConvE, and RotatE, do not deliver similar improvement; RotatE
even suffers from performance delegations after the embedding dimension increases.
This result shows that PatReFormer could capture more knowledge by using a large
embedding dimension, while other methods cannot due to their insufficient modeling
expressiveness. Such ability allows PatReFormer to capture more knowledge for
relation embeddings and achieve better performance.

5.5 Analysis on Different Types of Relations

In this section, we analyze the performance of different types of relations for various
models: TransE, ConvE, RotatE and PatReFormer. To categorize the relations, we
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Fig. 3. Analysis of relation embedding size on FB15K-237

considered the average number of tails per head and heads per tail, grouping them into
four distinct types: 1-1 (one-to-one), 1-N (one-to-many), N-1 (many-to-one), and N-N
(many-to-many). The results presented in Table 8 demonstrate that our PatReFormer
model outperforms the other models in handling more complex relation types, such as
1-N, N-1, and N-N. This indicates that the increased interaction in our model allows
it to capture intricate relationships more effectively. We note that TransE and ConvE
perform better for simpler one-to-one relations. We believe there could be two reasons
behind this phenomenon: 1) TransE and ConvE are intrinsically adept at representing
simple relations (i.e., one-to-one), and 2) the limited number of evaluation instances
for this category might result in biased results. Despite this, this experiment verifies the
strength of our proposed PatReFormer model in modeling complex relation types
and highlights its potential applicability to a wide range of more complicated KGC
tasks.

Table 8. Experimental results by relation categories for KGC methods on FB15K-237.

TransE ConvE RotatE PatReFormer

#triples MRR H@10 MRR H@10 MRR H@10 MRR H@10

1-1 192 .4708 .5520 .4384 .5546 .3315 .5078 .3339 .5625

1-N 1,293 .2388 .3650 .2532 .3789 .2719 .4017 .2828 .4203

N-1 4,185 .3975 .4972 .4151 .5187 .4207 .5168 .4647 .5698

N-N 14,796 .2877 .5063 .3133 .5315 .3167 .5337 .3432 .5564

6 Conclusion

In this paper, motivated by the recent advances in Transformers, we propose a novel
Transformer-based Patch Refinement model PatReFormer for knowledge graph
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completion. PatReFormer includes three main components: Embedding Segmenta-
tion, Cross-Attention Encoder, and Similarity Scorer. We first segment the knowledge
graph embeddings into patches and then apply a Transformer-based cross-attention
encoder to model interaction between entities and relations. Finally, the Similarity
Scorer combines the encoded representations to compute the similarity between inputs
and target entities. The experiments on four benchmark datasets (WN18RR, FB15k-
237, DB100K and YAGO37) show that our proposed PatReFormer outperforms
existing state-of-the-art knowledge graph completion (KGC) approaches. These results
validate the effectiveness of our approach and highlight the potential advantages of
incorporating patch-based embeddings and cross-attention mechanisms in such tasks.
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Abstract. Knowledge hypergraph link prediction aims to predict miss-
ing relationships in knowledge hypergraphs and is one of the effective
methods for graph completion. The existing optimal knowledge hyper-
graph link method based on tensor decomposition, i.e., GETD (General-
ized Model based on Tucker Decomposition and Tensor Ring Decompo-
sition), has achieved good performance by extending Tucker decomposi-
tion, but there are still two main problems: (1)GETD does not establish
operations or connections between any two tensor factors, resulting in
limited representation of tensor correlation (referred to as finiteness);
(2)The tensor decomposed by GETD is highly sensitive to the arrange-
ment of tensor patterns (referred to as sensitivity). In response to the
above issues, we propose a knowledge hypergraph link prediction model,
called GETD+, based on fully-connected tensor decomposition(FCTN).
By combining Tucker decomposition and FCTN, a multi-linear opera-
tion/connection is established for any two factor tensors obtained from
tensor decomposition. This not only enhances the representation ability
of tensors, but also eliminates sensitivity to tensor pattern arrangement.
Finally, the superiority of the GETD+ model was verified through a
large number of experiments on real knowledge hypergraph datasets and
knowledge graph datasets.

Keywords: Knowledge hypergraph · Link prediction · Tensor
Decomposition

1 Introduction

Knowledge hypergraph is a Semantic Web [1] that uses hyperedges to describe
multiple relationships. It has a wide range of applications, including seman-
tic search [2,3], knowledge question and answer [4], recommendation and deci-
sion [5,6], etc. Due to incomplete knowledge acquisition and other reasons, the
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construction of knowledge hypergraphs in real life is incomplete, which affects
the use of knowledge hypergraphs. As one of the effective methods for supple-
menting the knowledge hypergraph, knowledge hypergraph linkage prediction
aims to predict missing relationships, especially hyper relationships, based on
known entities and relationships in the knowledge hypergraph.

At present, knowledge hypergraph link prediction methods can be mainly
divided into three categories based on technical differences: methods based on
distance models, methods based on tensor decomposition, and methods based
on neural networks. Most methods based on distance models are relatively sim-
ple, but they do not have complete expressiveness; The methods based on ten-
sor decomposition generally have complete expressiveness, but their computa-
tional complexity is relatively large; The methods based on neural networks have
achieved good experimental results by utilizing the modeling ability of neural
networks for nonlinear complex relationships, but this type of method is a dif-
ficult to understand black box form. Due to the complete expressiveness and
strong explanatory power of the methods based on tensor decomposition, we
study this type of methods.

To the best of our knowledge, the existing optimal method for the second
type is GETD [7]. It is the first to apply tensor decomposition method to knowl-
edge hypergraph link prediction, by extending Tucker decomposition [8] and
combining Tucker decomposition with Tensor Ring decomposition [9]. The abil-
ity to decompose higher-order tensors into multiple third-order tensors not only
fully expresses all relationship types, but also reduces the complexity of the
model. However, the GETD model has two shortcomings: (1) Firstly, the GETD
model only establishes operations or connections between adjacent factor tensors,
rather than any two factor tensors, which leads to a finite representation of ten-
sor correlation (i.e., finiteness). (2) Secondly, the tensor decomposed by GETD
remains invariant only when the target tensor’s pattern undergoes cyclic shift
or reverse permutation. This means that this decomposition is highly sensitive
(i.e., sensitive) to the arrangement of tensor patterns, resulting in inflexibility in
decomposition and application.

To address the above issues, we introduce a fully connected tensor network
FCTN decomposition [10], which decomposes an n-order tensor into a set of n-
order factors and establishes multilinear operations or connections between any
two factors. FCTN decomposition has the superior ability to directly characterize
the intrinsic correlation between any two tensor modules, and is invariant to any
arrangement of tensor modules. Therefore, we propose a knowledge hypergraph
link prediction method based on fully connected tensor decomposition. By com-
bining Tucker decomposition and FCTN decomposition, it improves the finite
representation of tensor correlation and the high sensitivity to tensor pattern
arrangement in the GETD model.

The main contributions of this paper are summarized below.
(1) To solve the finite problem of the GETD model, we introduce fully-

connected tensor network decomposition and establish a connection between
any two factors.
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(2) To address the sensitivity issue of the GETD model, we propose an
improved method based on the GETD model, i.e., GETD+, which combines
Tucker decomposition and FCTN decomposition to make the decomposition
more flexible.

(3) We conduct extensive experiments on binary knowledge graph datasets
and knowledge hypergraph datasets and the results validate the effectiveness
and superiority of the proposed method.

The rest of this paper is organized as follows: Sect. 2 reviews related works,
Sect. 3 overviews and discusses the proposed method, Sect. 4 conducts experi-
ments and analysis, and Sect. 5 concludes the paper.

2 Related Works

The research works on knowledge hypergraph link prediction based on represen-
tation learning can be divided into three categories according to the different
technologies used: methods based on distance models, methods based on tensor
decomposition, methods based on neural networks.

Methods Based on Distance Models. The most typical method of using dis-
tance model to predict links in the knowledge graph is TransE [1], which embeds
entities and binary relation in the knowledge graph into low-dimensional vec-
tors. It believes that each relationship r in the knowledge graph is a translation
transformation from entity h to tail entity t, that is, meeting the requirements
of h + r ≈ t. Later, many variants based on distance model are proposed, but
most of them can only deal with binary relation. The idea of using distance
model to predict hypergraph links is to first model the relationship as a certain
transformation operation between entities in a multivariate relationship, then
learn the embedded representation according to the relationship between enti-
ties and relationships, and then apply it to link prediction tasks. m-TransH [11]
method maps entities to the knowledge hypergraph multivariate relationship
hyperplane, and defines scoring functions with the weight of mapping results.
M-TransH first used the distance model-based method to solve the problem of
knowledge hypergraph link prediction, but there is a problem that does not have
full expressiveness. RAE [12] further improved the relevance hypothesis on the
basis of m-TransH. Considering the probability of two entities appearing in a
multivariate relationship at the same time, this probability was introduced into
the loss function and the full connected neural network was used to train the
model. However, RAE involved star to cluster conversion in modeling, can cause
permanent loss of certain attribute features. A common drawback of distance
models is that most translational distance models do not have complete expres-
siveness [13], thus they have certain limitations in relationship modeling.

Methods Based on Tensor Decomposition. This type of methods repre-
sents relationships as high-order tensors, and then decomposes the high-order
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tensors into multiple low-order tensors to learn embedding representations.
Due to the good performance of such methods in binary knowledge graphs,
researchers have extended the tensor-decomposition based knowledge graph
linkage prediction methods to knowledge hypergraphs. SimplE [14] and Com-
plEx [15] both use the constraints of binary relation for operations, which is
difficult to extend to hyper relational data in an equivalent operation mode. The
recently proposed GETD [7] model is an extension of the Tucker ER [8] model in
dealing with knowledge hypergraph link prediction problems, combining Tucker
decomposition [8] and Tensor Ring decomposition [9]. GETD first decomposes
the higher-order tensor representation of multivariate relationships into a kernel
tensor and several factor tensors. To solve the problem of having too many ker-
nel tensor parameters, it continues to decompose the kernel tensor into multiple
third-order tensors to reduce model complexity Although the GETD model can
fully express all relationship types, it has two issues: finiteness and sensitivity.
As mentioned above, tensor decomposition methods typically decompose high-
order tensors into multiple low-order tensors and have a strong mathematical
theoretical foundation.

Methods Based on Neural Networks. The models based on neural networks
can learn the interactive information between entities, the structural informa-
tion of knowledge graphs, etc., and improve the performance of representation
learning in relation modeling, structural modeling, etc. Therefore, a large num-
ber of existing neural network methods have been used in knowledge hyper-
graph link prediction tasks. The model based on the traditional neural network
learns the interactive information within the multiple relationships. For exam-
ple, NaLP [13] and tNaLP+ [16] represent each multivariate relationship as a
set of key value pairs (where keys are relationships and values are entities),
and then use convolutional and fully connected neural networks to learn the
multivariate relationship HINGE [17] and NeuInfer [18] consider the primacy
and inferiority of structural information, and believe that using only key value
pairs to represent multivariate relationships will result in suboptimal models.
Therefore, multivariate relationships are represented as primary triples and a
set of auxiliary key value pairs. The model based on graph neural networks
combines graph structure information to complete the modeling of knowledge
hypergraphs. HyperMLN [19] combines the knowledge hypergraph embedding
model and Markov logic network to complete link prediction. The final predic-
tion results can be explained by logical rules and weight values to explain the
reasoning path of multiple relationships, achieving link prediction with inter-
pretability of knowledge hypergraphs. StarE [12] is the first and currently the
best method to use graph neural networks for knowledge hypergraph link pre-
diction. Using graph convolutional neural networks to learn multi hop domain
information of target entities can effectively learn graph structure information.
QCKGE [20] is proposed to implement knowledge graph embedding based on
quaternion transformation and convolutional neural network. GRA-GAT [21]
propose a global relationship assisted graph attention network based on graph
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convolutional neural networks. But QCKGE and GRA-GAT mainly focus on
link prediction of binary knowledge graphs, and there is currently no promotion
of knowledge hypergraphs. H-AKRL [22] proposed a knowledge representation
learning model based on hypergraph neural networks, which models the correla-
tion between entities and attributes at a higher level. Although both H-AKRL
and our method can complete embedding learning tasks, the research object of
this paper is knowledge hypergraphs rather than knowledge graphs. The neural
network method fully utilizes the modeling ability of neural networks for nonlin-
ear complex relationships, and achieves effective prediction of missing elements
by learning the structural and semantic features of the graph. However, it does
not have interpretability and belongs to a black box model.

3 GETD+ Model

In this section, we provide a detailed introduction to our knowledge hypergraph
link prediction method, i.e., GETD+, based on fully connected tensor network
decomposition. Firstly, the design of the GETD+ model is presented, and then
the scoring function and training process of the GETD+ model are described in
detail.

3.1 GETD+ Model Design

From the perspective of tensor completion, GETD+ represents an n-ary knowl-
edge hypergraph as a binary valued (n+1) order tensor χ ∈ {0, 1}nr×ne×ne×...×ne

(nr = |R|, ne = |E|), where the first order represents a relationship and the other
orders represent entities. χi1i2...in = 1 indicates that the corresponding multi-
variate relationship fact is true, and χi1i2...in = 0 indicates that the correspond-
ing multivariate relationship is false or does not exist. Correspondingly, given
the relationships and any n-1 entities in n-ary relationships, the link prediction
problem is simplified to predicting missing entities in multivariate relationships.
For example, given (ir, ?, i2, i3, ..., in), predicting the first entity can be deter-
mined by the maximum score of the corresponding pattern vector for each entity.
However, directly using high-order tensors to represent knowledge hypergraphs
can lead to high complexity in subsequent training models, requiring the use of
corresponding tensor decomposition methods to reduce the order of tensors. The
key issue is to preserve useful information in higher-order tensors while reducing
the order of the tensor. Our GETD+ first uses Tucker decomposition to decom-
pose the higher-order tensor representing the knowledge hypergraph into a set
of factor matrices and a relatively small core tensor, as shown in Eq. 1. Due to
the complete expressiveness of Tucker decomposition, it completely encodes the
similarity between entities and relationships in the elements of the core tensor.

φ(ir, i1, i2, ..., in) = WX1rirX2ei1X3ei2X4...Xn+1ein , (1)

where W ∈ R
dr×de×de×...×de is tensor of order n + 1, rir and rows of R and

E, representing the embedding vectors of relationships and entities. But as the
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order of higher-order tensors increases, the order of this core tensor will also
increase accordingly. Therefore, GETD+ also introduces the FCTN decomposi-
tion method to decompose the reshaped core tensor into n + 1 factor tensors,
as shown in Eq. 2, further reducing the number of parameters. Any two FCTN
factor tensors Gk1 and Gk2 have equally sized patterns for tensor contraction
operations, which enables FCTN decomposition to fully characterize the intrin-
sic correlation between any two patterns of the target tensor.

̂Wj1j2...jn+1 = ΣR1,2
r1,2=1Σ

R1,3
r1,3=1...Σ

R1,n+1
r1,n+1=1Σ

R2,3
r2,3=1Σ

R2,n+1
r2,n+1=1...Σ

Rn,n+1
rn,n+1=1

{G1(j1, r1,2, r1,3, ..., r1,n+1)
G2(r1,2, j2, r2,3, ..., r2,n+1)
...

Gn+1(r1,n+1, r2,n+1, ..., rn−1,n+1, rn,n+1, jn+1)}

(2)

Therefore, FCTN decomposition can be expressed as ̂W = FCTN(Gk
n+1
k=1) =

FCTN(G1, G2, ..., Gn+1). The main framework of GETD+ is shown in Fig. 1
(n = 2). Specifically, on the left side of the Fig. 1 is the outer structure of Tucker
decomposition, and on the right side is the FCTN decomposition of the core
tensor.

Fig. 1. Illustration diagram of the main framework for the GETD+ method.

3.2 Scoring Function and Loss Function

According to Tucker decomposition and FCTN decomposition, the scoring func-
tion of GETD+ is defined as Eq. 3.

Score = φ(ir, i1, i2, ..., in)
= FCTN(G1, G2, ..., Gn+1)X1rirX2ei2X3...Xn+1ein

(3)

Use the negative sampling technique in paper [7] to obtain negative samples .
The loss function adopts the commonly used logarithmic loss function, and the
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loss function of GETD+ can be defined as Eq. 4.

Lir,i1,i2,...,in = Σn
j=1L

(j)
(ir,i1,i2,...,in)

= Σn
j=1 − Φ(ir, i1, i2, ..., in) + log(eΦ(ir,i1,...,in) + Σ

x∈N
(j)
(ir,i1,...,in)

)

(4)

3.3 Model Training

GETD+ is trained in small batches. All the multivariate relationships and each
entity field in them are considered for training. Algorithm 1 gives the pseudocode
of the training algorithm, with training set S, number of training rounds and
entities, relationship embedding dimensions, etc. as inputs. The embedding of
entities and relationships is randomly initialized in the first row of the algorithm.
During the training process, the third row of the algorithm samples a small
batch of size, where each observation value is considered for training in lines 4–
11. Specifically, for each multivariate relationship in, the algorithm constructs a
negative sample set in line 6. Then use Eq. 3 in line 7 to calculate the score, and
further use Eq. 4 in line 8 to calculate the multi-class logarithmic loss. Finally, the
algorithm updates the model parameters based on the loss gradient. The model
complexity of GETD+ is O(nede + nrdr), where ne and nr are the number of
entities and relationships.

4 Performance Evaluation

In this section, we verify the link prediction ability of our GETD+ method on
real datasets. Firstly, the dataset and baseline models used in the experiment are
introduced. Then, the proposed model is compared with the baseline models, and
the experimental results are analyzed to verify the effectiveness of the proposed
method in this paper.

4.1 Experimental Setup

The experimental datasets, baseline models, and experimental parameter set-
tings are introduced. We use two public real data sets of 3-ary and 4-ary and
two common public data sets of binary relation to evaluate the proposed model,
as follows.

(1) WikiPeople [13]: This is a public relations dataset extracted from Wiki-
data about human entities. Due to the significant sparsity of multivariate rela-
tionships after the number of elements exceeds 5, we only extract ternary
and quaternary relationships, which are called WikiPeople-3 and WikiPeople-
4, respectively.

(2) JF17K [12]: This is a public relations dataset developed based on Free-
base. Similar to WikiPeople, the high element relationship data in JF17K is also
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sparse, so we extract ternary and quaternary relationships called JF17K-3 and
JF17K-4, respectively.

(3) WN18 [23]: This is a subset database based on the binary relation data
set WordNet. It is a database about lexical relationships between words.

(4) FB15k [24]: This is a subset database based on the binary relation data
set Freebase. It is a data stream about facts in the real world, including movies,
sports, etc.

Table 1. Statistical information of the datasets.

Dataset |E| |R| Train V alid Test

WikiPeople-3 12270 66 20656 2582 2582

WikiPeople-4 9528 50 12150 1519 1519

JF17K-3 11541 104 27635 3454 3455

JF17K-4 6536 23 7607 951 951

WN18 40943 18 141442 5000 5000

FB15k 14951 1345 483142 50000 59071

The above WikiPeople and JF17K datasets are randomly divided into a train-
ing set, a validation set, and a test set in an 8:1:1 ratio. WN18 and FB15k are
tested based on the data provided in reference [22]. The specific statistical infor-
mation is shown in Table 1, where |E| and |R| represent the number of entities
and relationships, respectively, and Train, V alid, and Test represent the number
of facts in the training set, validation set, and test set, respectively. The pro-
posed GETD+ model mainly focuses on using tensor decomposition methods to
solve the problem of knowledge hypergraph link prediction. Therefore, GETD+

is only compared with the current optimal tensor decomposition class methods,
such as n-CP, n-TuckER, and GETD. At the same time, to verify the link pre-
diction effect of the GETD+ model on binary knowledge graphs, the baseline
models also includes link prediction methods for binary knowledge graphs, such
as TransE, DistMult, ComplEx, and TuckER.

(1) N-CP [7] is an extended method of CP decomposition, which represents
the same entity as different embedding vectors by modeling the role information
of the entity at different positions.

(2) N-TuckER [7] is an extended method of TuckER decomposition, used in
multivariate relational link prediction tasks.

(3) GETD [7] decomposes the core tensor into multiple third-order tensors
by combining Tucker decomposition and Tensor Ring decomposition to achieve
link prediction of knowledge hypergraphs.

(4) TransE [11] is the most primitive binary knowledge graph linking predic-
tion method, treating each relationship in the knowledge graph as a translation
transformation from the starting entity vector to the ending entity vector.

(5) DistMult [25] considers the spatial mapping matrix in the model as a
diagonal matrix by introducing the modeling of relationship vectors.
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(6) ComplEx [15] maps entity and relationship types to low-dimensional com-
plex spaces and proposes a matrix decomposition method based on complex
numerical vectors.

(7) TuckER [8] decomposes a large tensor into a relatively small tensor and
multiplies three factor matrices, greatly reducing the complexity of the model.

We adopt the popular average reciprocal ranking MRR and hit rate Hits@k
evaluate the performance of the hyperedge link prediction model for knowledge
hypergraph. These two evaluation indicators are related to the ranking of positive
cases in the test set among all negative cases. The ranking calculation method
is as follows: given a set of multivariate relationships F, let f be any positive
example in the test set. For an entity at any position in f, replace it with all
other entities that are not this element to obtain a set of negative examples
of the relationship. Then, remove the positive examples already included by F
from these negative examples and obtain candidate samples. Next, input the
candidate samples obtained in the previous step and the original positive case
f into the prediction model to obtain a score, and rank based on the score to
obtain the ranking of positive case f. Hits@k Represents the ratio of all positive
samples in the top k of the test set, which is the number of positive relationships
in the top k of the test set divided by the number of all relationships in the test
set. The calculation formula is shown in the Eq. 5. The value range of Hits@k is
[0, 1], and a larger value indicates that the inference algorithm performs better.

Hit@k =
Σf∈Ftest

rank(f) ≤ n?1 : 0
count(Ftest)

, (5)

where randk(f) ≤ n?1 : 0 is the conditional expression that determines whether
the ranking enters the top n. If true, the result is 1, otherwise it is 0. count(Ftest)
represents the total number of relationships included in the test set. Average
reciprocal ranking (MRR) calculates the average value of the reciprocal of each
positive example rank. The calculation formula is shown in the Eq. 6. The range
of MRR values is [0, 1], and the larger the value, the better the effect.

MRR =
Σf∈Ftest

1
rank(f)

count(Ftest)
(6)

We take Hits@1, Hits@10, and MRR to evaluate the effectiveness of the proposed
model as performance evaluation indicators. The experimental environment is
Ubuntu 18.04, RTX3090, Anaconda, Python 3.6, CUDA11.0, and Python 1.7.1.
For the fairness of the experiment, the baseline models all use the optimal exper-
imental results. For datasets WikiPeople-3 and JF17K-3, set the entity and rela-
tionship embedding size to de = dr = 50. For datasets WikiPeople-4 and JF17K-
4, set the entity and relationship embedding size to de = dr = 25. The learning
rate is set to 0.0001. In addition, the model also uses batch standardization and
dropout functions to prevent overfitting of model training.
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4.2 Experimental Results and Analysis

In this section, we compare and analyze the performance of the proposed GETD+

method with the baseline methods, and investigate the predictive performance
of the binary knowledge graph linkage of GETD+.

Table 2. Links prediction results on WikiPeople data set.

Method WikiPeople-3 WikiPeople-4

MRR Hits@10 Hits@3 Hit@1 MRR Hits@10 Hits@3 Hits@1

n-CP 0.330 0.496 0.356 0.250 0.265 0.445 0.315 0.169

n-TuckER 0.365 0.548 0.400 0.274 0.362 0.570 0.432 0.246

GETD 0.373 0.558 0.401 0.284 0.386 0.596 0.462 0.265

GETD+ 0.402 0.587 0.437 0.301 0.415 0.618 0.498 0.286

Multivariate Relationship Link Prediction. We compare Hits@1, Hits@3,
Hits@10 and MRR of the proposed GETD+ model and baseline models respec-
tively on WikiPeople-3, WikiPeople-4, JF17K-3 and JF17K-4 data sets. The
experimental results are shown in Table 2 and Table 3, where the bolded data
is the optimal result of each evaluation index. Table 2 and Table 3 show that
the GETD+ model proposed in this paper achieves the best performance on
all performance evaluations of all data sets. For WikiPeople-3 data set, Hits@1,
Hits@3, Hits@10 and MRR have increased by 1.7–5.1%, 3.6–8.1%, 2.9–9.1%
and 2.9–7.2%, respectively. For WikiPeople-4 dataset, Hits@1, Hits@3, Hits@10
and MRR increase by 2.1–11.7%, 3.6–18.3%, 2.2–17.3% and 2.9–15%, respec-
tively. For JF17K-3 data set, Hits@1, Hits@3, Hits@10 and MRR are increased
by 1.9–5.3%, 2.6–5.4%, 3.8–6.7% and 5.3–8.5%, respectively. For JF17K-4 data
set, Hits@1, Hits@3, Hits@10, and MRR increased by 0.4–2.6%, 1.3–3.6%, 0.8–
3.1%, and 2.6–4.9%, respectively. From the above experimental results, it can
be seen that due to the different embeddings of different entity domains, n-CP
is relatively weak, while GETD and n-Tucker capture the interaction between
entities and the relationships with potential tensors/core tensors, with good
performance. Moreover, GETD has solved the problem of excessive core tensor
parameters in the n-TuckER model, and the experimental performance is supe-
rior to n-TuckER. The GETD+ model solves the randomness problem of tensor
factor arrangement and the finite representation problem of tensor correlation
on the basis of GETD, and achieves optimal performance in experiments.

Binary Relation Link Prediction To investigate the applicability of GETD+

in the link prediction of binary knowledge graph, we compare the Hits@1,
Hits@3, Hits@10 and MRR of the proposed GETD+ model and baseline mod-
els on the WN18 and FB15K datasets, respectively. The embedding size in the
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Table 3. Links prediction results on JF17K data set.

Method JF17K-3 JF17K-4

MRR Hits@10 Hits@3 Hit@1 MRR Hits@10 Hits@3 Hits@1

n-CP 0.700 0.827 0.736 0.635 0.787 0.890 0.821 0.733

n-TuckER 0.727 0.852 0.761 0.664 0.804 0.902 0.841 0.748

GETD 0.732 0.856 0.764 0.669 0.810 0.913 0.844 0.755

GETD+ 0.785 0.894 0.790 0.688 0.836 0.921 0.857 0.759

experimental setup is set to = 200, and the other settings are the same as the
prediction of multiple relationship links. The experimental results are shown in
Table 4, where the bold data represent the optimal result for each evaluation
indicator.

Table 4. Links prediction results on WN18 or FB15k data set.

Method WN18 FB15k

MRR Hits@10 Hits@3 Hit@1 MRR Hits@10 Hits@3 Hits@1

TransE 0.454 0.934 0.823 0.089 0.380 0.641 0.472 0.231

DistMult 0.822 0.936 0.914 0.728 0.654 0.824 0.733 0.546

ComplEx 0.941 0.947 0.945 0.936 0.692 0.840 0.759 0.599

TuckER 0.953 0.958 0.955 0.949 0.795 0.892 0.833 0.741

GETD 0.948 0.954 0.950 0.944 0.824 0.888 0.847 0.787

GETD+ 0.956 0.970 0.956 0.946 0.837 0.890 0.854 0.795

5 Conclusion

In this paper, we propose a GETD+ model to address the two shortcomings
of the existing knowledge hypergraph link prediction model GETD, namely the
limitation and sensitivity issues. By introducing fully-connected tensor network
(FCTN) decomposition and combining Tucker decomposition and FCTN decom-
position, the GETD+ model has the superior ability to directly characterize the
internal correlation between any two tensor modules, and is invariant to any
arrangement of tensor modules, thus solving the finite and sensitivity problems
of the GETD model. The superiority of the GETD+ model is verified on four
real knowledge hypergraph datasets. To verify the applicability of the model
on binary knowledge graphs, experiments were conducted on two commonly
used binary knowledge graph datasets, and the experimental results show that
GETD+ also has superiority in the link prediction of binary knowledge graph.
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Abstract. Link prediction plays an important role in the research of
complex networks. Its task is to predict missing links or possible new
links in the future via existing information in the network. In recent years,
many powerful link prediction algorithms have emerged, which have good
results in prediction accuracy and interpretability. However, the existing
research still cannot clearly point out the relationship between the char-
acteristics of the network and the mechanism of link generation, and the
predictability of complex networks with different features remains to be
further analyzed. In view of this, this article proposes the corresponding
link prediction indices Reg, DFPA and LW on regular network, scale-free
network and small-world network respectively, and studies their predic-
tion properties on these three network models. At the same time, we
propose a parametric hybrid index HEM and compare the prediction
accuracy of HEM and many similarity-based indices on real-world net-
works. The experimental results show that HEM performs better than
other indices. In addition, we study the factors that play a major role
in the prediction of HEM and analyze their relationship with the char-
acteristics of real-world networks. The results show that the predictive
properties of factors are closely related to the features of networks.

Keywords: Link Prediction · Complex Networks · Network
Evolution · Data Mining

1 Introduction

The network represents the relationship between entities in the form of connec-
tions, which is an effective and popular abstraction of the complex real world.
Network science has been involved in biological, social, communication and eco-
nomic fields and achieved fruitful achievement [1,2]. In network science, network
evolution and link prediction are two most challenging and attractive directions.

Network evolution mechanism is one of the most important aspect of the
research of complex networks. It aims to understand the root causes of changes
in network structure and function. Currently there have been a lot of models to
study network evolution mechanism. Such as ER, WS, BA and so on [3–6]. And
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X. Yang et al. (Eds.): ADMA 2023, LNAI 14177, pp. 91–106, 2023.
https://doi.org/10.1007/978-3-031-46664-9_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-46664-9_7&domain=pdf
https://doi.org/10.1007/978-3-031-46664-9_7


92 D. Ke and J. Pu

link prediction is an attracted and challenge task in complex network. Link predic-
tion aims to predict missing links and new links in the network through existing
structural information in the network. Link prediction can helps us to understand
and infer the connection mechanism of complex networks. And Link prediction has
been applied into all kinds of fields.There are a lot of efficient research of linkpredic-
tion algorithms at present. No matter how a link prediction algorithm is expressed,
it is essentially a guess of network evolution mechanism. A good link prediction
algorithm can more accurately reveal the evolution behavior of a network [7].

The research of link prediction and complex networks is developing rapidly,
but it also faces many challenges. Firstly, the existing similarity algorithms often
perform well in the face of a few networks, but they are no longer effective when
dealing with a wider range of real-world networks, including directed networks,
weighted networks, heterogeneous edge networks and other complex situations
[8–10]. Secondly, there is a strong correlation between the link prediction algo-
rithm and the network structure characteristics and the link predictability of the
network in theory [11,12]. However, how to describe and express the relationship
between them is a challenging task. In addition, through link prediction, the evo-
lution characteristics of the network can be reproduced to a certain extent, and
the research on the evolution behavior of complex networks can be promoted,
but the research on this aspect is still relatively lacking; on the other hand, link
prediction needs to face large-scale real data at the application level, and our
algorithm needs stronger adaptability and more efficient calculation [13].

Therefore, starting from these challenges, this paper attempts to study
through the following aspects. Firstly, this paper studies the characteristics of
regular networks, scale-free networks and small-world networks. According to
these characteristics, we propose the corresponding link prediction indices Reg,
DFPA and LW. Through these indices, we aim to verify: link prediction indices
are often related to the characteristics of the network when predicting; a single
index often cannot cope with many networks, and indices that fit a certain net-
work characteristics will always be better for the network. After that, we propose
a parametric hybrid index HEM. We hope that through this hybrid index, we
can get a better generalization performance index that integrates the character-
istics of different networks. This index has better adaptability and more accurate
prediction effect on complex real-world networks.

In this article we first introduce some basic network evolution models, then
introduce the evaluation metrics of link prediction and some representative
similarity-based algorithms. Finally we introduce our proposed indices based
on network evolution mechanism.

2 Related Work

At present, link prediction has been applied widely in recommendation systems
[14,15], mining biological information [16,17], reconstructing network informa-
tion [18,19], and evaluating network evolution models [20,21]. Current link pre-
diction methods mainly include methods based on structural similarity, network
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embedding, matrix completion, ensemble learning and neural network methods,
etc. [22–24].

Among all the link prediction algorithms, the similarity-based algorithms are
favored in many fields because of its simplicity and good interpretability. The
similarity-based algorithms compute the similarity of each pair of nodes. Then
similarity is used for prediction. The similarity-based algorithms include local
similarity-based and global similarity-based indices. The local ones often take
“common neighbor” into mainly account, such as CN, Satlon, Jaccard, Sorensen,
HPI, HDI, LHN1, etc. [25]. The global ones always take higher-order paths into
consideration, like LP, Katz and LHN2 and LO [26–28]. And some indices predict
links by randomly walking, like LRW and SRW [23,29]. And Some takes other
global information [25]. The more information is considered, a better the perfor-
mance there will be, but it also brings higher computational cost.

All the link prediction algorithms calculate the connection probability
between nodes in the network and express the network connection mechanism
to some extent. Through the study of network evolution mechanism, if we can
deeply grasp the relationship between nodes in network evolution and deeply
understand the basis of connections in the network, we are more likely to pro-
pose an excellent link prediction algorithm. Based on this idea, we proposes the
link prediction algorithm via the evolution characteristics of the network.

So we firstly construct regular networks, scale-free networks and small-world
networks and proposes our algorithms accordingly. We then perform link pre-
diction on these networks to analyze the feature of indices.

Secondly, we propose an combined algorithm. The index sets two parameters
for the prediction factors. We sample the parameters and perform predictions on
some real-world networks. The results show that our index performs better than
many classical similarity-based indices. We hope that through the combination
of simple characteristic indices, we can conduct a more efficient and interpretable
index.

Finally, we analyze the dominant factors of the hybrid index. Experiments show
that the accuracy and the upper limit are determined by the main factors. In addi-
tion, we find that the main factors are always related to the characteristics of the
network, which coincides with the prediction properties of individual index.

When performing predictions, we often pay attention to the best results, and
parameter sampling should also be oriented to the upper limit of the index.
Finding the main factor can help to optimize the sampling problem.

3 Network Model and Link Prediction

In this section, we will briefly introduce some network evolution models, link
prediction evaluation metrics and similarity-based indices.

3.1 Network Evolution Model

The study of complex networks plays an increasingly important role in math-
ematics, statistical physics, computer science and other fields [30]. In order to
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study specific feature of networks, this article will focus on regular network,
small world network and scale-free network. We choose them because they have
the most common and basic characteristics of complex networks. And we hope
to simulate the feature of complex network by their simple features.

(1) Regular Network. In the regular network each node has the same num-
ber of neighbors. Many crystal networks or protein networks in the field of
chemistry can be regarded as regular networks.

(2) Scale-Free Network. Networks with power-law degree distribution are
called scale-free networks [31]. The scale-free network always can be generate
by preferential attachment, that is, new nodes tend to be connected to nodes
with high degree.

(3) Small-World Network. The small-world network depicts the phenomenon
of large clustering coefficient and small average short path length in the
real world network. Social networks, protein networks, food chain networks,
cultural networks and so on have been proved to have the characteristics
of small-world networks. In small-world network the nodes tend to connect
with their close neighbors.

3.2 Link Prediction Evaluation Metrics

Reference [23] proposed two methods to evaluate the accuracy of link prediction
algorithms, namely AUC (area under the receiver operating characteristic curve)
and Precision. The briefly review of them are below.

AUC. The AUC metric evaluates the accuracy of the algorithms by comparing
the score of missing links and the nonexistent links. Suppose there are n inde-
pendent comparisons in total. Among these comparisons, there are n1 times the
missing link having a greater score and n2 times missing link and nonexistent
link have the same score. Then the AUC value can be calculated as:

AUC =
n1 + 0.5n2

n
(1)

When AUC is equal to 0.5, the prediction accuracy of the algorithm is equiv-
alent to random prediction. The closer the AUC value is to 1, the better the
prediction accuracy of the algorithm is.

Precision. The Precision metric sorts the scores of missing links and nonexistent
links in descending order. We take the sorted top-L links as the predicted ones.
Among these L links, N links belong to the test set. Then the Precision can be
calculated as:

Precision =
N

L
(2)

Compared with AUC, the Precision only focuses on whether the top L links
are predicted accurately.
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3.3 Link Prediction Similarity-Based Algorithms

The similarity-based algorithms for link prediction compute a similarity score
Sxy for each pair of nodes x and y, which directly represent the link possibility
between x and y. The algorithms can be classified into two categories: local sim-
ilarity indices and global similarity indices. Here we choose some representative
indices to introduce (These indices are similar to the indices proposed in this
paper in terms of expression. So they are chosen to better analyze and explain
the differences. We ignore some indices that are not comparable). The details
are as follows.

3.4 Local Similarity Indices

(1) Common Neighbor (CN) [25]

SCN
xy = |Γ (x) ∩ Γ (y)| (3)

Γ (x) denotes the set of neighbors of the node x. In the CN index, the more
common neighbors two nodes have, the more likely they are to connect.

(2) Salton Index [25]

SSalton
xy =

|Γ (x) ∩ Γ (y)|
√

kx × ky

(4)

kx and ky denote the degree of nodes x and y, respectively.

(3) Resource Allocation Index (RA) [25]

SRA
xy =

∑

z∈Γ (x)∩Γ (y)

1
kz

(5)

The RA index defines the amount of resources x allocates to y.

(4) Cannistraci-Hebb index (CH) [32]

SCH
xy =

∑

z∈Γ (x)∩Γ (y)

1 + ki
z

1 + ke
z

(6)

where ki
z denotes the number of links of z with other common neighbors of x

and y, and ke
z denotes the number of links between z and nodes other than x

and y or their common neighbors.

(5) Local Path Index (LP) [25]

SLP (n) = A2 + εA3 + ε2 A4 + · · · + εn−2An (7)

where ε is a free parameter and n is the maximum order.
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3.5 Global Similarity Indices

(1) Katz Index [26]

SKatz
xy = (I − βA)−1 − I = βAxy + β2A2

xy + β3A3
xy + · · · (8)

β is the free parameter. I is the identity matrix. The contribution of higher
order path can be controlled by adjusting β. This index considers all path sets.
It calculates all the paths and assigns less weight to long paths in an exponential
decay.

(2) Linear Optimization index (LO) [28]

SLO = αA(αAT A + I)−1AT A = αA3 − α2 A5 + α3 A7 − α4 A9 + · · · (9)

α is a free parameter. I is identity matrix and A is adjacency matrix. When
α is small enough, LO degenerates to the index that calculates only the 3-hop
paths A3.

4 Link Prediction Based on Network Evolution
Mechanism

According to the characteristics of regular networks, scale-free networks and
small-world networks, this article proposes link prediction indices for these three
networks, and proposes a hybrid indices for complex networks based on the three
indices. Note that all the link prediction results in this article are obtained by
using the 10-fold cross-validation method on test networks.

4.1 Index Based on Regular Networks

According to the characteristics of regular networks, this article proposes a link
prediction index called Reg. Reg is expressed as follows:

SReg
xy =

1
√

kx × ky

(10)

kx and ky represent the degree of nodes x and y, respectively. In the formula,
the nodes with larger degree are less likely to be connected. Small nodes are
more likely to generate connections. By suppressing the connection probability
of large degree nodes and promoting the connection probability of small degree
nodes, the degree balance is achieved to a certain extent.

In order to study the performance of Reg index, we compared the link pre-
diction accuracies of Reg index, CN index and Salton index on random regular
network (see results in Table 1).

We can see that the Reg index is significantly better than other indices. Due
to the randomness of the regular network, the CN index has an AUC value
of only 0.5, while the Satlon index shows random results even with the same
computational factor (i.e., 1√

kx×ky

) as Reg index. As the degree of each node

increases, the prediction performance of Reg index will gradually decrease.
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Table 1. Accuracies on regular networks

Network Reg 3 Reg 8 Reg 13 Reg 18 Reg 23 Reg 28 Reg 33

Cn 0.500 0.497 0.493 0.493 0.494 0.492 0.489

Salton 0.500 0.498 0.493 0.496 0.500 0.503 0.506

Reg 0.942 0.839 0.784 0.752 0.729 0.712 0.698

Accuracies are measured by the AUC value. The number of nodes of the
network are all 2000. The results are calculated on random regular network
whose each node has 3, 8, 13, 18, 23, 28 and 33 neighbors, respectively.
And these 7 regular networks are denoted as Reg 3, Reg 8, Reg 13, Reg 18,
Reg 23, Reg 28 and Reg 33, respectively.

4.2 Index Based on Scale-Free Networks

In reference to the article [25], a link prediction index PA corresponding to the
preferential attachment principle is proposed. The expression of PA is as follows.

SPA
xy = kx × ky (11)

This article also proposes a link prediction algorithm called DFPA (Difference
Preferential Attachment) for scale-free networks. The expression is as follows.

SDFPA
xy =

max(kx, ky)
min(kx, ky)

(12)

Compared with PA index, DFPA index pays more attention to the connection
between nodes with large degree and nodes with small degree. Nodes with similar
degree are more stable and less likely to connect with each other. Therefore, small
degree nodes and large degree nodes develop faster according to DFPA index.
Besides, the connection probability between nodes with large degree is smaller
than PA.

We compare the link prediction accuracies of PA and DFPA on scale-free
networks constructed by BA model. The results are shown in Fig. 1. Note that
accuracies are measured by the AUC value. The number of nodes of the networks
are all 2000. Based on the BA model, each time the new nodes generate 1, 2, 4,
8, 16, 32 and 64 links, respectively. Thus there are 7 kinds of scale-free networks.

According to the prediction results of PA and DFPA in these scale-free net-
works, DFPA performs better when the network is sparse. As the degree of each
node increase, the performance of PA gradually becomes better, while that of
DFPA shows a downward trend. However, DFPA has a higher upper limit than
PA in prediction.

There is a definition of degree assortativity in article [33], when it is greater
than 0, nodes with similar degrees tend to connect with each other. When it is
less than 0, nodes with different degrees are more likely to connect with each
other. DFPA considers the latter case. In theory, the DFPA index also predicts
accurately on disassortative networks.
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Fig. 1. Accuracies of PA and DFPA on scale-free networks

4.3 Index Based on Small-World Networks

In small-world network, each node is connected to the nearest k nodes. Based on
that, this article proposes the LW (local world) index. The LW index considers
that when two nodes have paths of length less than k or k + 1, the two nodes
are possible to have connection. The expression of LW index is as follows.

SLW = Ak + Ak+1 (13)

k is the free parameter. A is the adjacency matrix of the network. Ak calcu-
lates the number of paths with length k between each pair of nodes. The paths
calculated by Ak may go back and forth on some edges. So in order to consider
both odd-order paths and even-order paths, LW calculates the sum of Ak and
Ak+1.

k in LW represents the breadth and scope of information, which is similar to
n in LP index. Compared with LP and Katz index, LW index does not consider
that the lower order path has a higher weight. The weight of the path is related to
the size of k and network structure. And the LW index has a small computational
complexity.

To facilitate the comparison of LP and LW indices, we define the LPK index
as:

SLPK = A2 + A3 + · · · + Ak + Ak+1 (14)

LPK is the case where the ε parameter of LP is set to 1 and the order n of
LP is set to k + 1.

For instance, we define LP2, LP4 and LP8 as the cases where the k value of
LPK takes 2, 4 and 8 respectively. Similarly, define LW2, LW4, and LW8 as the
cases where the k value of the LW index takes 2, 4 and 8, respectively.

We see that LPK and LW are basically equal. It is because Ak + Ak+1 are
almost cover the information of Ai when i less than k.

4.4 Hybrid Index Based on Complex Network

Among the above three indices, Reg and DFPA are indices based on degree
distribution, and LW is the index based on network topology. According to the



HEM: An Improved Parametric Link Prediction Algorithm 99

three link prediction indices proposed by different network models, this arti-
cle proposes a hybrid index called HEM (Hybrid Evolution Mechanism). The
expression of HEM is as follows.

SHEM
xy = SReg

xy

α × SDFPA
xy

1−α × SLW
xy (15)

According to equation (10), (12) and (13), the above formula can be expanded
as:

SHEM
xy =

1
√

kx × ky

α

× max(kx, ky)
min(kx, ky)

1−α

× (Ak + Ak+1)xy (16)

There are two free parameters α and k in the HEM index. The α parameter
is used to balance the degree distribution. The role of the k parameter is the
same as in LW, representing the range of paths included.

By adjusting the α parameter, we can achieve the optimal balance of the
HEM index in the link prediction on the mixed networks of regular networks
and disassortative networks. When α is close to 1, the HEM index tends to
predict on regular networks; when α is close to 0, the HEM index tends to
predict on disassortative networks. The k parameter represents the path range
considered in the prediction of LW index. If the k value is set too small, some
high-order paths may not be taken into account for prediction. If it is too large,
the paths that should not be considered will be involved. Therefore, the α and
k parameters need to be adjusted simultaneously during the experiment.

In order to test the link prediction accuracy of the HEM index, this arti-
cle selects the following network data sets (see in Table 2). The multiple edges
are regarded as one single edge, and the directed edge is regarded as an undi-
rected edge. The self-connections are not taken into account. In addition, we
only consider the giant component when one network is not well connected.

Table 2. The features of 11 real-world networks

Network N M K Δ D C ρ

PPI 2375 11693 9.85 118 15 0.306 0.454

NS 1461 2742 3.75 34 17 0.694 0.462

Grid 4941 6594 2.67 19 46 0.08 0.003

INT 5022 6258 2.49 106 15 0.012 −0.138

PB 1222 16714 27.36 351 8 0.32 −0.221

Yeast 2361 6646 5.63 64 11 0.13 −0.099

FBC 4039 88234 43.69 1045 8 0.606 0.064

HSS 1858 12534 13.49 272 14 0.141 −0.085

GrQc 5242 14484 5.53 81 17 0.53 0.659

AS 6474 12572 3.88 1458 9 0.252 −0.182

ER 1174 1417 2.41 10 62 0.017 0.127
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Where N and M denote the number of nodes and edges of the network,
respectively; K denotes the average degree; Δ denotes the maximum degree; D
denotes the network diameter; C denotes the clustering coefficient; ρ denotes
the degree assortativity. PPI is a protein-protein interaction network [34]. NS is
a network of co-authorships in the area of network science [35]. Grid contains
information about the power grid of the Western States of the United States of
America [4]. INT represents the router-level topology of the Internet [36]. PB
is a network of hyperlinks between political blogs about politics in the United
States of America [37]. Yeast is a protein-protein interaction network in budding
yeast [38]. FB consists of “friends lists” from Facebook, whose data was collected
from survey participants using this Facebook app [39]. HSS represents the net-
work of friendships between users of the website hamsterster.com [40]. GrQc is
the collaboration network from the e-print arXiv and covers scientific collabo-
rations between authors papers submitted to General Relativity and Quantum
Cosmology category [40]. AS is the network of autonomous systems of the Inter-
net connected with each other [40]. ER is the international E-road network, a
road network located mostly in Europe [40].

There are many similarity indices in link prediction. This paper only selects
some indexes that are similar to the indexes proposed in this paper in terms of
expression. On the one hand, it is better to control variables and understand
the factors that cause the difference in accuracy between indexes. On the other
hand, some indices are quite different from the indicators in this paper in terms
of predictive properties and computational performance, so that the predictive
differences of the indicators cannot be accurately grasped, and the interpretabil-
ity is also poor.

So this article compares the prediction accuracies of the HEM index and other
similarity-based indices like CN, Salton, PA, RA, CH, LPK, Katz and LO on
these networks. In these 11 networks, we calculate the AUC value and Precision
value of these link prediction algorithms (see results in Table 3 and Table 4).
Where The L value of Precision is 100. The parameter values in both Katz
and LO indices are set to 0.01. The values of k parameter in LPK are selected
as 2, 4 and 8, respectively. In the HEM index, we simultaneously sampled the
α parameter and the k parameter. The values of α are selected as 0.0, 0, 25,
0.5, 0.75 and 1.0, respectively; and the values of k are selected as 2, 4 and 8,
respectively. Among the 15 results obtained by combining the two parameters,
we take the best result of the HEM index and record the α and k parameters
when the AUC value is maximized.
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Table 3. Algorithms’ accuracy quantified by AUC

Network PPI Grid INT PB Yeast FB HSS GrQc AS NS ER

Cn 0.893 0.589 0.559 0.919 0.706 0.992 0.805 0.922 0.696 0.943 0.526

Salton 0.892 0.588 0.559 0.875 0.705 0.992 0.789 0.922 0.676 0.944 0.526

PA 0.823 0.442 0.472 0.902 0.788 0.831 0.866 0.740 0.738 0.631 0.338

RA 0.894 0.589 0.559 0.923 0.706 0.995 0.809 0.923 0.700 0.944 0.526

CH 0.866 0.698 0.569 0.856 0.522 0.992 0.589 0.938 0.606 0.988 0.713

LP2 0.939 0.638 0.633 0.932 0.839 0.984 0.936 0.930 0.762 0.946 0.555

LP4 0.906 0.708 0.572 0.915 0.818 0.962 0.878 0.921 0.660 0.943 0.627

LP8 0.825 0.772 0.378 0.897 0.770 0.911 0.830 0.846 0.623 0.934 0.692

Katz 0.920 0.660 0.378 0.925 0.821 0.611 0.915 0.914 0.690 0.945 0.629

LO 0.935 0.560 0.623 0.929 0.813 0.986 0.952 0.846 0.787 0.852 0.486

α 0.50 0.75 0.50 0.75 0.00 1.00 0.75 1.00 0.00 1.00 1.00

k 2 8 2 2 2 2 2 4 2 4 8

HEM 0.958 0.902 0.922 0.936 0.869 0.989 0.953 0.961 0.944 0.987 0.858

Table 4. Algorithms’ accuracy quantified by Precision

Network PPI Grid INT PB Yeast FB HSS GrQc AS NS ER

Cn 0.474 0.000 0.008 0.078 0.003 0.040 0.003 0.354 0.059 0.200 0.000

Salton 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.011 0.000 0.046 0.000

PA 0.409 0.000 0.014 0.082 0.009 0.033 0.089 0.222 0.131 0.005 0.000

RA 0.002 0.000 0.000 0.028 0.001 0.041 0.000 0.000 0.016 0.004 0.000

CH 0.267 0.005 0.000 0.010 0.008 0.006 0.000 0.140 0.026 0.229 0.000

LP2 0.548 0.037 0.280 0.412 0.144 0.661 0.297 0.629 0.253 0.252 0.000

LP4 0.531 0.046 0.243 0.391 0.117 0.689 0.186 0.641 0.227 0.253 0.000

LP8 0.523 0.035 0.218 0.349 0.099 0.694 0.161 0.644 0.213 0.251 0.001

Katz 0.533 0.001 0.009 0.261 0.003 0.612 0.015 0.522 0.099 0.201 0.000

LO 0.603 0.046 0.379 0.414 0.198 0.037 0.964 0.301 0.185 0.230 0.001

α 0.50 1.00 1.00 0.75 0.75 0.00 1.00 0.50 0.00 0.75 0.00

k 2 4 2 2 2 2 2 8 4 4 4

HEM 0.978 0.051 0.159 0.524 0.178 0.993 0.731 0.759 0.081 0.273 0.002

According to the results of AUC, HEM performs much better than other
indices in Grid, INT, AS and ER networks. In PPI, PB, Yeast, HSS, GrQc and
NS networks, the prediction accuracies of HEM is also higher than other indices.
For FB network, HEM and many other indices perform very well, the prediction
accuracies are basically reaching 100%.

According to the results of Precision, the performance of HEM index on PPI,
FB, HSS networks is much better than other indices, especially on PPI and FB
networks, the Precision values of the HEM index are almost 1. HEM also has a
better improvement on PB and GrQC networks compared to the classic indices.
In contrast, in the AUC results, the HEM index outperforms in Grid, INT, and
AS networks, but underperform in Precision compared to other indices, which
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indicates that most of correct predictions from the HEM index for these networks
come from the second half of the lists of links.

Also in the tables we see that the parameters of HEM index differ when
taking the maximum AUC and Precision values. Therefore, we need to study
the role of parameters in the HEM index and their relationship with network
characteristics.

5 Analysis of HEM Index

In order to understand the influence of different parameters, study which factor,
including Reg, DFPA and LW, plays a major role in the prediction. Here we
propose two methods.

(1) Calculate the prediction accuracies of different factors separately, and choose
two factors with the highest accuracy.

(2) Sample α and k, then choose the top 5 combinations of α and k parameters
from where the HEM index has the highest prediction accuracy. Where α
takes the average value, and k takes the mode. If α is equal to 0.5, we only
consider the k. Or when α is close to 0, take the factor DFPA; when it close
to 1, take Reg.

The first method discusses the performance of individual factors, and the
second method calculates the parameters that have a greater impact on the
prediction. In practical considerations, The second method is used as the main
reference, and the results obtained by the first method can make us have a better
understanding of the characteristics of the network.

Here we discuss the situation when the prediction accuracy measured by the
AUC value. The results of two methods may be different when it measured by
the Precision value, but it has the same way. In this article we consider 5 factors,
they are Reg, DFBA, LW2, LW4 and LW8.

We compare the main factors of the 11 networks obtained by the two meth-
ods, results are shown in Table 5.

Table 5. The main factors of 11 networks obtained by the method 1 and method 2

Method PPI Grid INT PB Yeast FB HSS GrQc AS NS ER

1 LW2 LW8 DFPA, LW2 LW2 LW2 LW2 LW2 LW2 DFPA, LW2 LW2 REG, LW8

2 LW2 LW8 DFPA, LW2 LW2 DFPA, NW2 LW2 LW2 REG, LW4 DFPA, LW2 REG, LW4 REG, LW8

It can be seen that the results obtained by the two methods are basically
the same except for the three networks of Yeast, GrQc and NS. In Yeast, the
main factors calculated by method 2 has DFPA. While in method 1, DFPA
in yeast performs better than Reg. In GrQc and NS networks, the main factors
obtained by method 2 has Reg, while according to method 1, Reg factor performs
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worse than DFPA factor. Therefore, the influencing factors cannot be simply
determined by the individual prediction accuracy.

Observe the several networks with high clustering coefficient: NS, FB, PB
and GrQc, they have LW2 as their main factors based on the first method. LW2
performs very well on these networks, especially on FB. The FB network is the
dense network with high clustering coefficient, and the prediction accuracies of
LW indices basically reaches 1. So we guess that the LW index may be related
to the clustering coefficient of the network. Besides, we can also observe that
the density of the network also has a certain influence on the prediction of LW.
For example, although the NS network has the highest clustering coefficient, the
average degree of the network is only 3.75, far sparser than the FB network, and
the LW2 and LW4 indices perform less well than on the FB network. Moreover,
the main factors in the NS network obtained by the second method are Reg
and LW4, indicating that due to the sparsity, a wider k in LW and additional
consideration of regularity are needed to have a better prediction performance on
the NS network. In addition, although the clustering coefficient of HSS network is
low, the network is denser, then the performance of the LW index on the network
is as good as that on the PPI and PB networks, whose clustering coefficient are
much larger.

Both Grid and ER networks are sparse, and the diameter of the two networks
is very large compared to other networks. Therefore, LW index needs to consider
wider paths to predict the links. The main factors obtained in method 1 and
method 2 are both LW8. The degree assortativity of the INT and AS networks
is observed to be negative, indicating that the networks have the tendency of
differential connection. Thus in these two networks, DFPA as their main factor
performs the best among all the factors.

Moreover, the maximum degree of network AS is 1485, indicating that the
degree distribution is very unbalanced, and the preferential attachment is more
obvious. So the prediction performance of DFPA factor alone on AS network
is also better. The maximum degree of GrQc, ER and NS networks is rela-
tively small, indicating that the degree distribution of the network is relatively
balanced. So on these 3 networks, the corresponding results obtained in the sec-
ond method, Reg are their main factors. Though the Yeast network also has
a small maximum degree, the degree assortativity is negative, indicating that
connections on the network are still difference preferential. Correspondingly in
the second method, DFPA is the main factor on Yeast network.

In summary, the Reg factor often acts on networks with relatively
balanced degree distribution, that is, when the maximum degree is
relatively small, we can take the Reg index into account to predict
links. The DFPA index is usually more effective on networks with
negative degree assortativity. The prediction performance of LW index
is determined by clustering coefficient, average degree and network
diameter. When clustering coefficient is higher and the network is
denser, the link prediction of LW index is always more accurate. The
size of the k of LW index depends largely on the diameter and average
distance of the network.
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By arranging the above results, we compare the prediction results(measured
by the AUC value) of individual factors and hybrid index by tabular statistic
(see in Table 6).

Table 6. Results of individual factors and hybrid index

PPI Grid INT PB Yeast FB HSS GrQc AS NS ER

best of Factors 0.939 0.772 0.849 0.932 0.839 0.984 0.936 0.930 0.929 0.946 0.693

best of HEM 0.958 0.902 0.922 0.936 0.869 0.989 0.953 0.961 0.944 0.987 0.858

So we can see that the main factor largely determines the upper limit of the
prediction accuracy of the hybrid index.

In general, the hybrid index always has a better prediction perfor-
mance than the single index. The prediction performance is mainly
determined by the main factor, and other factors may have some influ-
ence to the prediction, which will help to improve the overall result.

If we can determine the factors that have a greater impact in the link predic-
tion of different networks, then we can save the sampling on the parameters of
the HEM index that have little impact and reduce the computational complex-
ity. Depending on the upper limit of the main factors, we can also have some
idea of the upper limit of the HEM index. Determining the main factors can also
give us some insight into the characteristics of the network.

6 Conclusion and Future Work

The link prediction indices proposed in this article, are based on the idea of
simulating evolution mechanism through simple rules.

Thus, we firstly proposes corresponding link prediction algorithms on regular
networks, scale-free networks and small-world networks respectively and stud-
ies their prediction properties on these three network models. Then we propose
a parametric hybrid index, which has higher prediction accuracy than many
similarity-based indices on real-world complex networks. Finally we studies the
main predictors in the hybrid index, and analyzes and summarizes their rela-
tionship with network features.

In the future work, we will further refine the link prediction algorithms
according to the network evolution mechanism. Firstly, we need to consider more
details of topology structure. After all, path information is not sufficient to define
the existence of links. Secondly, we only considers the mixed degree distribution
of the regular network and the disassortativitive network. Therefore, it is neces-
sary to consider the degree distribution more exactly in future research.
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11. Lü, L., et al.: Toward link predictability of complex networks. Proc. Natl. Acad.
Sci. 112(8), 2325–2330 (2015)

12. Tan, S.Y., et al.: Link predictability of complex network from spectrum perspective.
Acta Physica Sinica Chinese Edition 69(8), 088901 (2020)

13. Lin-Yuan, L.: Link prediction on complex networks. J. Univ. Electron. Sci. Technol.
China (2010)
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Abstract. Link prediction tackles the prediction of missing facts in an
incomplete knowledge graph (KG) and has been widely explored in rea-
soning and information retrieval. The vast majority of existing meth-
ods perform link prediction on static KGs, with the assumption that
the relational facts are generally correct. However, some facts may not
be universally valid, as they tend to evolve. Despite the prevalence of
temporal knowledge graphs (TKGs) with evolving facts, the studies on
such data for temporal link prediction are still far from resolved. In this
paper, we propose SiepNet, a novel graph neural network for temporal
link prediction, driven by local Structural Information and Evolutionary
Patterns. Specifically, SiepNet captures the local structural information
based on a relation-aware GNN architecture, and incorporates temporal
attention to model long- and short-range historical dependencies hidden
in TKGs. Moreover, SiepNet integrates local structures and evolution-
ary patterns to enhance the semantic representation of evolving facts
in TKGs. The extensive experiments on five real-world TKG datasets
demonstrate the effectiveness of our approach SiepNet in temporal link
prediction, compared with the state-of-the-art methods.

Keywords: Temporal knowledge graph · Graph embedding ·
Temporal link prediction · Representation learn · Evolutionary patterns

1 Introduction

Knowledge graphs (KGs) organize and store real-world facts, enabling multifar-
ious downstream applications, such as knowledge retrieval, question answering,
and recommender systems [12]. KGs encode factual knowledge in the form of
triple (s, r, o) as directed graphs, where nodes correspond to the subject entity s
or object entity o, and edges represent the relation r among them. Owing to the
high cost of knowledge fusion and dynamics of facts, most KGs often suffer from
incompleteness [31]. Thus, link prediction becomes a crucial task, which intends
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
X. Yang et al. (Eds.): ADMA 2023, LNAI 14177, pp. 107–121, 2023.
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to recover the most probable missing facts. Since real-world KGs contain mil-
lions of multi-relational facts, traditional symbolic and logic-based approaches
cannot be extended to large-scale KGs for link prediction.

Recently, KG embedding has emerged as a promising method for link predic-
tion. It attempts to learn multi-dimensional vectorial representations of entities
and relations in KGs, while using a scoring function to evaluate the plausibility of
a triplet. Represented by TransE [1], these translation-based approaches achieve
a good trade-off between model complexity and link prediction performance by
modelling relations as translation operations on entity embeddings. However, the
vast majority of existing embedding methods perform link prediction on static
KGs, with the assumption that the relational facts in KGs are generally correct.

Actually, facts always evolve over a specific period of time [3]. Therefore,
researchers construct temporal knowledge graphs (TKGs) to store ever-growing
temporal information either explicitly or implicitly, such as YAGO [24] and
ICEWS [16]. Figure 1 shows an example of a temporal knowledge graph (TKG),
where the fact (Donald Trump, president of, USA) was accurate only from 2017
to 2020. However, traditional KG embedding methods cannot address the issue
of TKGs, where facts often show temporal dynamics. For example, they often
confuse entities such as Trump and Biden when predicting (?, president of, USA,
2021). Additionally, TKG embeddings carrying temporal information are chal-
lenging due to the sparsity and irregularities of temporal expressions [5].
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Fig. 1. Example of temporal knowledge subgraphs.

To solve the challenges, Know-Evolve [27] and its extension DyRep [28] pre-
dict future events based on ground truths of preceding events at inference time.
As a result, these methods cannot predict missing events in future time-stamps
without ground truths. To capture more information based on past facts, Jin pro-
posed a novel autoregressive architecture RE-NET [14], which models facts as
probability distributions over TKGs. However, RE-NET learns representations
of entities and relations by implicitly exploiting temporal information without
distinguishing dynamic dependencies across facts.

In this work, we observe that TKGs are dynamically heterogeneous graphs
with multiple relationships, i.e., the local structures of graphs are always diverse
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under different time windows, and the facts evolve across time windows. As an
example in Fig. 1, the local structure information of the entity America comes
from 4 entities and 2 relations at t1. While at t2, the local structure of the entity
America changes significantly, resulting in not only the emergence of new entities
and relations but also the absence of some entities and relations at t1. Moreover,
the fact (Donald Trump, president of, America) at t1 evolves into (Joe Biden,
president of, America) at t2.

To this end, we propose SiepNet, a novel graph neural network for tempo-
ral link prediction, driven by local Structural Information and Evolutionary
Patterns. The main ideas of SiepNet are (1) capturing graph structure depen-
dencies based on a relation-aware GNN architecture, (2) learning long-range
and short-range evolutionary patterns of TKGs using an attention-based recur-
rent network, and (3) integrating local structures and evolutionary patterns to
strengthen the representation learning of facts, which improves the performance
of temporal link prediction. We summarize our main contributions as follows:

– We propose a representation learning model SiepNet for temporal link predic-
tion, which simultaneously considers local structures and evolutionary pat-
terns hidden in TKGs.

– We design an attention-based recurrent network to tackle dynamic depen-
dencies across entities over time, which helps to distinguish the impact of
different historical facts on future facts inference.

– To validate the effectiveness of our model, we conduct extensive experiments
on five real-world TKGs containing millions of multi-relational facts with dif-
ferent time intervals, where our model consistently outperforms other base-
lines in terms of temporal link prediction.

2 Related Work

Towards temporal link prediction, we restrict our focus to recent works on TKG
embedding methods, including geometric models and neural network models.

Geometric Models. These models attempt to minimize the distance between
two entity vectors translated by geometric transformations of relations. TTransE
[17] extends TransE [1] for static KGs to TKGs by adding temporal constraints.
TA-TransE [5] embeds temporal information into relation types, which can be
used with existing scoring functions for temporal link prediction in TKGs. HyTE
[3] utilizes time-specific normal vectors directly to generate representations of
entities and relations over different time-stamps. Nevertheless, these geometric
models cannot infer future facts according to past facts and cannot be further
extended to extrapolate settings.

Neural Network Models. These models use deep neural networks to learn
underlying features of time-stamps for link prediction. RE-NET [14] combines
a recurrent neural network and a neighborhood aggregator to model event
sequences. CyGNet [34] predicts future facts by modelling observed facts with a
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copy-generation network. TITer [25] continuously transfers query nodes to new
nodes through relevant temporal facts based on time-aware reinforcement learn-
ing strategies, and generates representation vectors of unseen entities using an
IM module. CluSTeR [19] performs temporal reasoning on TKGs by joint rein-
forcement learning and a graph convolution network. RE-GCN [20] learns evolu-
tionary representations of facts at each timestamp, by modelling KG sequences
recurrently using a recurrent evolutionary network. However, the performance
of these neural network models is limited by repetitive patterns.

3 Problem Definition

We consider a temporal knowledge graph as a sequence of graph snapshots,
ordered ascending based on time-stamps, namely G = {G1, G2, · · · , Gτ}, where
Gt = (Vt, Et) represents the snapshot at a particular time slice t (t ∈ 1, 2, · · · , τ)
with an entity set Vt and a relation set Et. Vt corresponds to the subject entity
s or object entity o at a time slice t, and Et represents the relation r between
them. Thus, a fact in Gt is denoted by a quadruple (s, r, o, t) with a time slice
t, in which s ∈ Vt, o ∈ Vt and r ∈ Et.

Given the preceding observed facts in G, the temporal link prediction aims
to predict the missing facts of the current time slice t, i.e., to predict the unseen
subject entity s given (?, r, o, t) (object entity o given (s, r, ?, t), and relation r
given (s, ?, o, t)) at a particular time slice t.

4 Methodology

4.1 The Model Architecture

The proposed model SiepNet depicted in Fig. 2 consists of two main components:
(1) Local Structural Information Aggregation, and (2) Evolutionary Patterns
Aggregation. First of all, we design a relation-aware GNN to capture the local
structural information from multi-relational and multi-hop neighbors of each sin-
gle graph snapshot. Then, we explore long-range and short-range evolutionary
patterns of TKGs using an attention-based recurrent network. In addition, we
integrate local structures and evolutionary patterns to strengthen the represen-
tation learning of facts, which in turn improves the performance of temporal link
prediction.
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Fig. 2. The architecture of the SiepNet temporal link prediction model.

4.2 Local Structural Information

To aggregate local structural information from multi-relational and multi-hop
neighbors in each graph snapshot Gt, SiepNet seeks to make two linked nodes
share similar representations. To achieve this, we let each node representation
h
(t)
o in Gt aggregates neighbors and past messages, and then calculate its new

representation. Initially, h
(0)
o is set to trainable embedding vector for each node.

SiepNet calculates the forward-pass update of an entity denoted by vo in a multi-
relational graph, based on the following message-passing neural network:

h(t)
o = σ(

∑

s∈Nt
o,r

Fstr(h(t−1)
s , r(t−1)) + W (t−1)

o h(t−1)
o ) (1)

where h
(t)
o is the intermediate representation of node vo at time slice t, combining

local structural messages h
(t−1)
s from all neighbors N t

o,r under relation r ∈ Et

and its past messages h
(t−1)
o . W

(t−1)
o is a learnable parameter, indicating the

past weight. To comprehensively aggregate the local structural messages of node
vo, we implement the message function Fstr(., .) by

Fstr(h(t−1)
s , r(t−1)) =

1
ct
o,r

W (t−1)
r [h(t−1)

s × r(t−1)] + bstr (2)

where h
(t−1)
s × r(t−1) is the local structural messages, while W

(t−1)
r and bstr are

the learnable parameters, indicating the local weight and bias. cs,r is a normal-
izing factor that can either be learned or chosen in advance (e.g., ct

o,r = |N t
o,r|).
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Unlike traditional GCNs, SiepNet accumulates and encodes features of
entities from local structural neighborhoods, i.e., 1

cs,r
W

(t−1)
r [h(t−1)

s × r(t−1)].
Intuitively, relations with different types and directions can derive vari-
ous local graph structures between entities. Therefore, SiepNet accumulates
the overall features of each entity by relation-specific transformations, i.e.,∑

s∈Nt
o,r

Fstr(h
(t−1)
s , r(t−1)). To calculate the past messages of an entity, Siep-

Net introduces a single self-connection to each node, i.e., W
(t−1)
o h

(t−1)
o . Finally,

SiepNet combines both the overall features and information from past steps,
and outputs a sequence of representations notated as

{
H(1), · · · ,H(t)

}
, where

H(t) =
{

h
(t)
1 , · · · , h

(t)
n

}
denotes the representations of entities in each single

graph snapshot Gt.

4.3 Evolutionary Patterns

Besides aggregating local structural information, previous facts also influence
current representations. Moreover, facts are always evolving over adjacent time
windows, further changing the local structural information of the current graph
snapshot. Intuitively, we should capture these two evolutionary patterns, i.e.,
long-range historical dependence and short-range structural dependence. To
achieve this, we design an attention-based recurrent block in SiepNet to capture
evolutionary patterns in TKGs. Formally, SiepNet combines the local structural
representation h

(t)
o and the historical representation (h(t−1)

o , Z(t−1)):

h(t)
o , Z(t) := Fevo(h(t)

o ,h(t−1)
o , Z(t−1)) (3)

where Fevo is a recurrent operator, which allows SiepNet to learn long-range
dependencies of sequence data and explore the evolving patterns of temporal
knowledge graphs to update current representations. When there are few struc-
tural dependencies from neighbor nodes (i.e., h

(t)
o −→ 0), current representations

(Z(t),h(t)
o ) will be greatly influenced by long- and short-range historical depen-

dencies (Z(t−1),h(t)
o ). Otherwise, local structural dependences h

(t)
o will have a

greater impact on current representations.
Most existing works use simple recurrent neural networks to implement Fevo

in message propagation, e.g., RE-NET [14] uses GRU [2], EvoNet [11] uses
LSTM [10], etc. For historical snapshot propagation, these methods only sum-
marize the current representations of nodes, i.e., Z(t) =

∑
o∈Vt

h(t)
o , ignoring

dynamic interactions of nodes across time windows. However, both long-range
historical dependence and short-range dynamic dependence present different
temporal information, influencing the evolution of facts. To improve the ability of
temporal link prediction, Fevo should consider historically long-range and short-
range dependence of previous facts G1:t when modelling snapshot propagation,
and thus influence current representations through local dynamic dependence of
node interactions. Specifically, Fevo can be implemented by
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Fevo(h(t)
o ,h(t−1)

o , Z(t−1)) =

⎧
⎪⎪⎨

⎪⎪⎩

Z(t) = RNN
(
Z(t−1), Gt ⊕ g(αt

∑
o∈Vt

h(t)
o )

)

h(t)
o = RNN

(
(1 − αt)h

(t−1)
o , h

(t)
o ⊕ g(αtZ

(t−1))
)

(4)
where ⊕ denotes the concatenation operator and g(∗) is an element-wise max-
pooling operator. We use a recurrent model RNN to update current represen-
tations h(t)

o based on historical representation (h(t−1)
o , Z(t−1)) and current local

structural representation h
(t)
o , and capture evolutionary patterns Z(t) based on

long-range and short-range dependencies (Z(t−1),h(t)
o ) as well as current facts

Gt.
Typically, the impact of long-range historical dependence and short-range

structural dependence on current representations varies over time. Accordingly,
we design the following temporal attention mechanism as follows to capture
temporal information in node interactions, which in turn helps to model the
long-range and short-range evolutionary patterns of facts.

αt = softmax(Wα(Z(t−1) ⊕
∑

s∈Nt
o,r

h(t)
s )) (5)

where Wα is a independent parameter matrix, updated automatically by back-
propagation. The attention score αt re-weights the two evolutionary patterns,
which is calculated based on long-range evolutionary dependencies and short-
range structural dependencies.

The recurrent model RNN aims at smoothing two input vectors at each time
step, which can be implemented using many existing methods. Here, we utilize
GRU to update h(t)

o as an example.

h(t)
o :

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

a(t) = h
(t)
o ⊕ g(αtZ

(t−1))
i(t) = σ(Wia

(t) + Uz(1 − αt)h
(t−1)
o )

r(t) = σ(Wra
(t) + Ur(1 − αt)h

(t−1)
o )

h(t)
o = (1 − i(t)) ◦ (1 − αt)h

(t−1)
o + i(t) ◦ tanh(Wha(t) + Uh(r(t) ◦ h(t−1)

o ))
(6)

where i(t) and r(t) are update gate and reset gate respectively, while ◦ is a
Hadamard operator. The current node representations are updated by receiving
their currently local structure dependencies and historical evolution dependen-
cies, with a temporal attention score regulating the weight of long-range and
short-range dependencies.

Consequently, both the representations h(t)
o and Z(t) capture the evolutionary

patterns and local structural dependencies up to the t-th time step, which in turn
can be used to predict the facts Gt+1 at the next time step. Then, we encode the
current graph snapshot Gt as representation H(t)

G with a fully connected layer,
which can be formulated as

H(t)
G = FCLn(Z(t) ⊕

∑

o∈Vt

h(t)
o ; θn) (7)



114 T. Chen et al.

where the input are the concatenated features of all h(t)
o and Z(t), while θn

denotes the parameters of FCLn. Then we use a classifier to estimate the prob-
ability of the next graph snapshot P(Gt+1 | H(t)

G ).

4.4 Model Optimization

As the topology of TKGs changes over time, SiepNet model should continuously
update its parameters to accommodate the evolutionary patterns of TKGs. Fur-
thermore, note that the snapshots closer to the next time slice (t + 1) have
more similar characteristics than those farther from the ground truth. Hence,
we introduce the first l graph snapshots Gt+1

t−l+1 = {Gt−l+1, Gt−l+2, · · · , Gt+1}
as the input, which is close to the next time slice (t + 1), based on minimizing
the cross-entropy loss L for training.

L = −
t∑

τ=(t−l)

Ĝτ+1logP(Gτ+1 | H(τ)
G )+ (1− Ĝτ+1)log(1−P(Gτ+1 | H(τ)

G )) (8)

where Ĝτ+1 ∈ R
|Gτ+1| is the label set of ground truths with elements of 1 if

the fact occurs and 0 otherwise. SiepNet can fully aggregate the latest tempo-
ral information of the dynamic network, according to the sequence of previous
snapshots Gt+1

t−l+1, which is considered as the most similar characteristics to the
actual snapshots of Gt+1.

As in previous work on regularization, we employ dropout [9] to alleviate
overfitting while capturing local structural information and evolutionary pat-
terns.

5 Experiments

5.1 Experimental Setup

Datasets. In our experiments, we used five widely use TKG datasets, including
three event-based TKGs (i.e., GDELT [18], ICEWS14 [27], and ICEWS18 [29])
and two public TKGs (i.e., WIKI [17] and YAGO [24]) specifically.

Evaluation Setting and Metrics. Following the prior work [34], we split each
dataset except ICEWS14 into a training set, a validation set, and a test set at a
ratio of 80%/10%/10%, respectively. For dataset ICEWS14, we directly utilize
the splitting provided in [27]. We report a widely used filtered settings [8,14,34]
of Mean Reciprocal Rank (MRR) and Hits at K (Hits@K), which are standard
evaluation metrics for link prediction.

Baselines. We compare our proposed model SiepNet with a variety of static KG
models and TKG models. Static KG models include DistMult [32], R-GCN [23],
ConvE [4] and RotatE [26]. TKG models include TTransE [13], TA-DistMult
[5], TA-TransE [5], HyTE [3], RE-NET [14], TeMP [30], RE-GCN [20], xERTE
[6], TANGO-TuckER [7], TANGO-Distmult [7], CyGNet [34], EvoKG [22] and
TLogic [21].
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Model Configurations. Initially, we set the length of the history l to 10,
which means that SiepNet saves the sequence of 10 previous snapshots. The
dropout rate is set to 0.5, and the embedding size is set to 200 to match the
baseline methods set in [34]. The model parameters are optimized using Adam
optimizer [15] with a learning rate of 0.001. The training epoch is set to 20,
which is sufficient for convergence in most cases. All experiments are conducted
on GeForce GTX 3080 Ti. The baseline results are also adopted from [33].

5.2 Performance Evaluation

Overall Performance. Table 1 and Table 2 show the temporal link prediction
performance of SiepNet and baselines on five real-world TKGs, where the best
results are shown in bold. We use “–” instead of experimental results that are
not run out within a day. Remarkably, SiepNet consistently outperforms the
baselines in most cases, which convincingly validates its effectiveness.

Table 1. Performance (in percentage) for temporal link prediction on YAGO and
WIKI datasets under the filtered settings

Method YAGO WIKI

MRR Hits@1 Hits@3 MRR Hits@1 Hits@3

DisMult [2015] 59.47 52.97 60.91 46.12 37.24 49.81

R-GCN [2018] 41.30 32.56 44.44 37.57 28.15 39.66

ConvE [2018] 62.32 56.19 63.97 47.57 38.76 50.10

RotatE [2018] 65.09 62.21 65.67 50.67 48.17 50.71

TTransE [2016] 32.57 27.94 43.39 31.74 22.57 36.25

TA-DisMult [2018] 61.72 50.57 65.32 48.09 45.97 49.51

TA-TransE [2018] 56.61 46.76 65.95 24.24 1.74 47.18

HyTE [2018] 23.16 10.78 45.74 43.02 28.81 45.74

RE-NET [2020] 65.16 63.29 65.63 51.97 48.01 52.07

TeMP [2020] 62.25 55.39 64.63 49.61 46.96 50.24

RE-GCN [2021] 65.29 59.98 68.70 44.86 39.82 46.75

xERTE [2021] 58.75 58.46 58.85 – – –

TANGO-TuckER [2021] 67.21 65.56 67.59 53.28 52.21 53.61

TANGO-Distmult [2021] 68.34 67.05 68.39 54.05 51.52 53.84

CyGNet [2021] 63.47 64.26 65.71 45.50 50.48 50.79

EvoKG [2022] 55.11 54.37 81.38 50.66 12.21 63.84

TLogic [2022] 1.29 0.49 0.85 51.07 50.13 51.18

SiepNet (ours) 73.7773.7773.77 71.6571.6571.65 74.65 54.4654.4654.46 52.3552.3552.35 62.73

Specifically, static KG methods usually show promising results, but lag
behind the best-performing TKG method SiepNet to a large extent, as they



116 T. Chen et al.

Table 2. Performance (in percentage) for temporal link prediction on ICEWS14,
ICEWS18 and GDELT datasets under the filtered settings

Method ICEWS14 ICEWS18 GDELT

MRR Hits@1 Hits@3 MRR Hits@1 Hits@3 MRR Hits@1 Hits@3

DisMult 19.06 10.09 22.00 22.16 12.13 26.00 18.71 11.59 20.05

R-GCN 26.31 18.23 30.43 23.19 16.36 25.34 23.31 17.24 24.96

ConvE 40.73 33.20 43.92 36.67 28.51 39.80 35.99 27.05 39.32

RotatE 29.56 22.14 32.92 23.10 14.33 27.61 22.33 16.68 23.89

TTransE 6.35 1.23 5.80 8.36 1.94 8.71 5.52 0.47 5.01

TA-DistMult 20.78 13.43 22.80 28.53 20.30 34.57 29.35 22.11 34.56

TA-TransE 15.99 0.00 26.39 17.69 0.01 30.14 19.18 0.00 33.20

HyTE 11.48 5.64 13.04 7.31 3.10 7.50 6.37 0.00 6.72

RE-NET 45.71 38.42 49.06 42.93 36.19 45.47 40.12 32.43 43.40

TeMP 43.13 35.67 45.79 40.48 33.97 42.63 37.56 29.82 40.15

RE-GCN 32.37 24.43 35.05 32.78 24.99 35.54 29.46 21.74 32.01

xERTE 32.92 26.44 36.58 36.95 30.71 40.38 – – –

TANGO-TuckER 46.42 38.94 50.25 44.56 37.87 47.46 38.00 28.02 43.91

TANGO-Distmult 46.68 41.20 48.64 44.00 38.64 45.78 41.16 35.11 43.02

CyGNet 48.63 41.77 52.50 46.69 40.58 49.82 50.29 44.53 54.69

EvoKG 18.30 6.30 19.43 29.67 12.92 33.08 11.29 2.93 10.84

TLogic 38.19 32.23 41.05 37.52 30.09 40.87 22.73 17.65 24.66

SiepNet 49.97 42.65 53.28 47.93 43.41 52.36 50.79 45.10 53.11

cannot capture the sequential patterns across time-stamps. Surprisingly, almost
static KG methods normally perform better than two TKG methods (i.e.,
TTransE and HyTE) on five TKG datasets. It owes to the fact that TTransE
and HyTE learn representations for each snapshot independently, instead of cap-
turing long-range historical dependencies. Besides, the experimental results of
TA-DistMult and DistMult validate the effectiveness of incorporating temporal
information for temporal link prediction, where TA-DistMult is a temporal-aware
version of static KG method DistMult.

In addition, SiepNet drastically outperforms other TKG methods, although
they all consider dynamic features of facts. Especially on YAGO dataset with the
most facts, SiepNet leads to improvements of 2.70% in MRR, 6.97% in Hits@1,
and 5.10% in Hits@3 compared with the best baseline. We believe this is due to
that SiepNet considers dynamic long-range and short-range historical dependen-
cies using temporal attention, while other TKG models ignore the evolutionary
patterns. The excellent performance of SiepNet and RE-NET validate the impor-
tance of long-range dependencies for link prediction. Although our performance
in Hits@3 of YAGO, WIKI, and GDELT dataset are not the best, the remark-
able performances in Hits@1 and MRR prove that our algorithm SiepNet is able
to predict future facts more accurately. The main reason is that there is a large
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number of repetitive facts in these datasets. Thus, CyGNet and EvoKG perform
well on Hits@3, but they cannot predict more accurate facts, resulting in Hits@1
much lower than ours. TeMP is designed to handle knowledge graph complemen-
tation tasks (graph interpolation) rather than predicting future events, so it does
not perform as well as extrapolation models. Although xERTE supports a cer-
tain degree of predictive interpretation capability, it cannot efficiently handle
large-scale datasets, such as GDELT and WIKI.

Note that static KG model and TKG model perform similarly well on
YAGO and WIKI, but poorly on ICEWS14, ICEWS18 and GDELT. As dis-
cussed in [22], the time intervals of YAGO and WIKI datasets are much larger
than other datasets. Therefore, each time-stamp in YAGO and WIKI has more
local structural information than the other three datasets. Besides, ICEWS14
and ICEWS18 are extracted from the Integrated Crisis Early Warning Sys-
tem (ICEWS), which records many recurring political events with time stamps.
Accordingly, only modelling repetitive patterns or 1-hop neighbors will lose a sig-
nificant amount of evolutionary patterns and structural information. The exper-
imental results show that SiepNet is able to better model these datasets, which
contain complex dynamic dependencies over concurrent facts.

Performance over Time. To further evaluate the performance of SiepNet over
time, we compared the performance in percentage of different timestamps, using
filtered Hits@3 on YAGO, WIKI, and ICEWS18. As shown in Fig. 3, SiepNet
consistently outperforms baselines over different timestamps. The performance
of each method varies with the entities in the test set at each timestamp. In
addition, the difference between our TKG model SiepNet and static KG model
ConvE evolves slowly as time goes by, as shown in Fig. 3. We believe that further
facts in the future are even harder to predict.
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Fig. 3. Performance over specific timestamps with filtered Hits@3.

Specifically, each method shows a significant performance improvement at a
particular timestamp in the future. We believe this is because facts from the past
tend to reappear at the future timestamps. As shown in Fig. 3(a), all methods
perform poorly in 2016, but in 2017 surpass their performance in 2013.
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5.3 Ablation Study

To eliminate the effect of different model components of SiepNet, we create
variants of SiepNet by adapting the use of model components and report the
performances (in percentage) on YAGO dataset.

Table 3. Ablation study for temporal link prediction

Method YAGO

MRR Hits@1 Hits@3 Hits@10

SiepNet w. R 66.25 64.92 66.53 68.54

SiepNet w. B 73.53 71.66 74.66 76.92

SiepNet w/o TA 64.30 62.41 64.86 67.52

SiepNet 73.77 71.65 74.65 77.24

Evolutionary Patterns. To demonstrate how evolutionary patterns affect the
final results of SiepNet, we conduct experiments using l random past graph
snapshots rather than l snapshots closest to the current graph snapshot. The
results denoted as SiepNet w. R are presented in Table 3. Obviously, SiepNet
w. R hurts model quality, suggesting that modelling the snapshots closer to the
current time slice can improve performance.
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Fig. 4. Performance over different lengths of time slice with filtered MRR.

As described in Sect. 4.5, graph snapshots of adjacent time slices tend to have
more similar characteristics. Thus, the length of previous time slice l affects the
performance of our proposed model SiepNet. Figure 4 shows the performance
of SiepNet on YAGO, WIKI and ICEWS18 datasets, with different lengths of
time slices l for temporal link prediction. As the length of time slices increases,
SiepNet performs better on MRR. Nevertheless, MRR tends to be stable when
the length of time slices is over 6. As a result, longer time slices introduce more
noise and lead to performance fluctuations of SiepNet.

Evolutionary Directions. SiepNet w. B in Table 3 indicates the variant of
SiepNet using Bi-GRU instead of GRU to explore evolving patterns of TKGs.
The experimental results of SiepNet w. B and SiepNet are similarly well on
YAGO, as compared with other variants of SiepNet. Therefore, combining for-
ward and backward snapshot information has less significant impacts on the
performance of SiepNet and more computational overhead.
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Temporal Attention. The results denoted as SiepNet w/o TA in Table 3
demonstrate the performance of SiepNet without temporal attention component.
It can be seen that SiepNet w/o TA performs noticeably worse than SiepNet on
YAGO datasets, which justifies the necessity of temporal attention component
to model long-range and short-range dependencies.

6 Conclusion

In this paper, we propose a novel temporal link prediction model SiepNet, which
adapts to the evolutionary process of dynamic facts by modelling temporal
adjacency facts with associated semantic and informational patterns. Specif-
ically, SiepNet explores the local structural information based on a relation-
aware GNN architecture. In addition, SiepNet incorporates temporal attention
to help with modelling long-range and short-range historical dependencies hid-
den in TKGs. The experimental results on seventeen baselines demonstrate the
significant advantages and promising performance of SiepNet in temporal link
prediction. In future work, we will explore the persistence modelling of facts,
rather than just predicting missing facts at a certain time slice t.
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Abstract. Based onGlobal PositioningSystem (GPS), InertialMeasurementUnit
(IMU) and altitude calculation to obtain the attitude and position information of
Unmanned Aerial Vehicle (UAV) for image alignment, this method significantly
improves the stitching speed and stitching quality compared with the traditional
image matching. However, as UAVs can take thousands of images, the images can
be blurred and distorted, making manual screening time consuming and difficult
to ensure that the right reference image is selected. In order to be able to select
the right reference image for the final stitching quality. This paper proposed a
Deep Q-Network (DQN)-based image stitching algorithm for UAVs (IMDQN).
The UAV captured images were preprocessed and fed into DQN, and the glob-
ally optimal reference image was decided by the action selection model, Root
Mean Square Error (RMSE) metrics were also used as an incentive mechanism.
The action selection model was used to select the optimal reference image to
integrate the input to Position and Orientation System (POS) data for image align-
ment operation, while the final stitching was accomplished using the weighted
average fusion algorithm for picture fusion. The study’s findings demonstrate the
algorithm’s clear autonomy and usefulness above the conventional approach, par-
ticularly given the enhanced image stitching quality. The study’s findings aid in
the creation of later picture stitching methods.

Keywords: UAV · Image stitching · DQN · POS data

1 Introduction

Unmanned aerial vehicles (UAVs) have seen increased application recently across many
industries. Its flexible takeoff and landing, low operating costs, and convenient opera-
tion have made it highly popular. By carrying high-definition cameras to observe the
low-altitude ground, UAVs can obtain a large amount of observation data and achieve
functions that ordinary cameras cannot achieve [1]. However, the coverage of a single
image was constrained by the camera’s focal length restrictions, high resolution, and
flight height. A wide-field scene image must be created by stitching together several
photos with overlapping ranges in order to monitor broad target regions and obtain
a thorough picture of the overall situation. Therefore, image stitching techniques are
critical, but those currently available are still challenging.
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Traditional image stitching focusedon the extractionof feature points, the correctness
of matching pairs, and the alignment of images [2–5]. As an example, Lan [6] proposed
a Grid-based Motion Statistics (GMS)-Random Sample Consensus (RANSAC) based
aerial image mosaic algorithm for UAVs, which improved the accuracy of image align-
ment by obtaining a high-quality set of correct interior points. To improve the SIFT
algorithm, they used a down-sampling method and gradient normalization-based fea-
ture descriptors to achieve feature point matching, thereby reducing computational effort
and improving matching accuracy [7]. The improved Shape-Preserving Half-Projective
(SPHP) algorithm can reduce ghosting in the overlapping areas of the image, making the
stitched image more natural [8]. When faced with narrow image overlap, severe image
shadow or containing large areas with texture defects such as water, forest, desert, etc.,
failure to extract a large number of feature points would result in time-consuming and
prone to matching errors or even inability to perform image stitching. Therefore, these
methods used local affine distortion techniques and smooth transformation of overlap-
ping regions to mitigate blurring artifact effects and optimize the transformation matrix
to achieve large scale image stitching [9].

With respect to the above mentioned, Kim et al. [10] proposed an image Mosaic
method using resampling grids to solve the Mosaic problem of narrow overlapping
UAV images. Wu et al. [11] proposed texture adaptive extraction method successfully
overcame the issue of scarce feature points and challenging matching. The approach
could not only extract more feature points but also guarantee their uniform distribution.

Even though the aforementioned study findings have made some instances of image
stitching easier, they were unable to resolve the challenging issue of feature point extrac-
tion and matching. In order to incorporate graph theory and Position and Orientation
System (POS) data into the image stitching process, Yu et al. [12] proposed the idea.
The experimental findings demonstrated the method’s superiority in lowering projection
distortion and cutting alignment time, as well as its ability to tackle the mosaic prob-
lem of small area overlap and texture defect images. When compared, Ren et al. [13]
described a novel offline calibration method that quickly calibrates a system by regress-
ing the global transformation matrix to the optimal transformation matrix calculated by
a feature-based technique employing a Multilayer Perceptron (MLP) neural network.
However, because the method did not take into account the reference image selection
principle, the error accumulation phenomena was not effectively eliminated.

All of the above problemswere not well eliminated by the accumulation of errors that
led to missing scenes, distortions, artifacts and other problems in the image. So, to better
solve these problems. This paper proposed a Deep Q-Network based stitching algorithm
for UAV images (IMDQN). The globally optimal reference picture was located using the
IMDQN technique, and the well-aligned image was found using POS data. Which well
be stitched into a complete panoramic image by a weighted average fusion algorithm.
The IMDQN algorithm effectively solves the problems of image stitching distortion
caused by the error of reference image selection.

To sum up, the contributions of this work are as follows:

• Reference image selection. The images captured by the UAV are pre-processed and
input to DQN, and the global optimal reference image is determined by the action
selection model.
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• Incentive mechanism. The root mean square error (RMSE) metric is used as an
incentive mechanism, and the smaller the RMSE value, the larger the reward value.

• Global alignment method of images. The imaging model is recovered using high-
precision POS data, and the homology matrix between adjacent images is derived to
perform alignment of multiple images.

The remainder of this essay is structured as follows. In Sect. 2 of this essay, some
work is presented that is closely related to this topic. The overall architecture of picture
stitching, the alignment procedure based on POS data, and the IMDQN training proce-
dure are all described in Sect. 3. Discussion of the experimental findings can be found
in Sect. 4. In Sect. 5 described conclusion.

2 Related Work

2.1 DQN

DQN is Deep Q Network, and DON is a kind of deep reinforcement learning [14–16].
It combines Q-learning and deep learning [17]. The high-dimensional input data is used
as the state in reinforcement learning, as the input of the neural network (Agent), and
then the neural network model outputs the value (Q value) corresponding to each action
to cause the action to be performed. This is done by utilizing the robust characterization
capabilities of neural networks. The goal of intensive learning is to get the most out of
learning [18]. The core of its algorithm is:

• Objective function: Construction of deep learning learnable functions based on Q-
learning algorithms;

• Target network: Creating a target Q value using a convolutional neural network and
comparing it to the Q value of the subsequent state;

• Experience return mechanism: handles the non-stationary data distribution and
correlation issues.

In fact, the primary challenge with DQN is how to update the weight parameters
in the value network. DQN is still essentially an extension of the Q-learning concept.
According to the Bellman equation, the state information and reward information R into
the value network and output Q value to obtain the loss function L(θ) are needed to solve
this problem.

L(θ) = E[(T arg etQ − Q(s, a, θ))2] (1)

where the target Q is: R(s, a) + σ max(s−, a−, θ−). θ and θ− denote the weights of the
evaluated network and the target network, respectively. The gradient descent approach
can be used to directly solve the weight parameters of the convolutional neural network
once the loss function has been determined.

2.2 POS Data

POS data is a positioning and fixing system, which is a high-precision position and atti-
tudemeasurement system of InertialMeasurement Unit (IMU)/Differential Global Posi-
tioning System (DGPS) combination. Global Positioning System (GPS) satellite signals
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are observed continuously using GPS receivers mounted on the aircraft and synchro-
nized with GPS receivers located on one or more base stations on the ground. Precision
positioning mainly uses differential GPS positioning (DGPS) technology, while attitude
measurement mainly uses inertial measurement units (IMUs) to sense the acceleration of
aircraft or other carriers, and obtain information such as the carrier’s speed and attitude
after integration operations. Processing of UAV images is impacted by the precision of
POS data. While differential UAVs are capable of obtaining precise station coordinates,
pose acquisition is not as efficient. In some places, we can employ POS to resolve the
image mosaic problem when the image feature points cannot be retrieved and utilized.

3 Image Stitching Framework

Because of its small weight, the UAV is more likely to experience unstable flight con-
ditions. Large tilt angles can cause faults in the image that cannot be corrected by
perspective transformation and may even cause perspective distortion over a significant
portion of the image. The reference image that is used will have a direct impact on the
stitching’s aesthetic effect, particularly for low altitude flights. Therefore, it is essential
to choose a good reference image for stitching throughout the image stitching procedure.
The following Fig. 1 is the general framework diagram of image stitching in this paper.

Fig. 1. Image stitching general framework diagram

For a given set of images, a randomly selected image is preprocessed and initialized
to input into the DQN, and the action model will decide on the next reference image.
The image alignment and fusion model is used to output the stitched image; a reward
value is also generated. Then the action model selects another image to generate a new
stitched image and repeats the process several times to be able to find all the reference
images that are good for stitching [19]. Integrating all the reference images to make the
best stitching effect. The framework of this paper consists of the following four sections:

• Preprocessing. Each RGB image is converted to grayscale and reduced to a size that
reduces the computation and improves the performance of the model.

• Action selection. The action selection model uses the overlap pattern to predict the
stitching results of different actions and decides the reference image based on the
optimal prediction.
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• Image alignment and fusion. POS data alignment technology can be used to locate
and correct these image data, thus improving the stitching accuracy of the images.
The original image’s texture features and detail information can both be preserved
using the weighted average fusion process, resulting in a fused image that as closely
as possible replicates the original image’s information.

• Rewardmechanism. Action selection ismodeled as a sequential decision process, and
action selection is modeled as the selection of new reference images by the rewards
of existing images.

3.1 Action Selection and Reward Mechanism

Action Selection
In this paper, we propose the IMDQN model, in which the action selection model

uses a deep reinforcement learning method for finding reference images that help image
stitching. The learning process is similar to that of Q-learning. For the input image, the
agent observes the environment and selects an action from the action space and obtains
a reward for that action. The agent’s objective is to maximize the reward by selecting
the most effective method for discovering the following helpful reference image. The
action selection model is trained using overlapping patterns to find the best strategy. The
overlap pattern includes four factors that determine whether the position of the image
to be stitched is top or bottom, the overlap region, as well as the image’s rotation angle.
The overlap functions are as follows:

C = w1Ps + w2Px + w3A + w4I (2)

where C represents the degree of overlap, Ps indicates the top side of the image, and Px

indicates a downward image bias. Location information can be obtained based on the
GPS that comes with the UAV. A is the area size of the image overlap, and I indicate the
rotation angle of the image; this parameter can be obtained according to IMU. w1, w2,
w3, w4 denotes the weight of each of the four parameters and w1 +w2 +w3 +w4 = 1。

The prerequisite for extracting the amount of image overlap of aerial UAV images
is to know the UAV’s separation from the ground. Therefore, we first calculate the UAV
flight altitude, which is calculated as follows:

a = GSD ∗ f

c
(3)

whereGSD is the ground resolution, which refers to the minimum distance between two
targets on the captured image. f is the camera’s focal length, and c is the pixel size of
the camera. When the camera and its pixels are determined on board the UAV, f and c
are also determined. From the above formula, it can be seen that the higher the altitude
of the UAV, the lower the ground resolution, i.e., the lower the clarity and accuracy of
the image. When the UAV flies at a low altitude, let the height and width of the image
ground coverage area H and W , the camera angle of view β; from the above formula,
we can know the flight altitude of the UAV a; then, the image resolution, where h and w
are expressed as the vertical and horizontal pixel values of the image, respectively, can
be derived according to the trigonometric function.

W = 2a tan(β/2)

h2 + w2 (4)
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H = Wh

w
(5)

According to (4) (5), we can know what is the overlapping area A of the image.

A = 2aWh tan(β/2)

(h2 + w2)w
(6)

Figure 2 shows the three overlapping cases of common aerial UAV areas. We can
locate the position of the UAV by GPS coordinates and calculate the size of the image’s
overlapping area appropriately, which may be done by applying the formula above.

Fig. 2. Overlapping areas of different locations of the UAVs

By adjusting the weights each time, the IMDQN algorithm can find an optimal
decision strategy according to the size of the reward value. The final weight adjustments
after several training sessions are 0.2, 0.2, 0.4, and 04, and its splicing is the best.

Reward Mechanism
Each action space is accompanied by a reward value, where the reward function in

this paper sets the Root Mean Square Error (RMSE). The award value increases as the
RMSE value decreases. The formula for RMSE is as follows.

RMSE =
√
√
√
√

1

MN

MN
∑

i=1

[f (i, j) − f ′(i, j)]2 (7)

where M and N provide the image’s height and width., respectively. f ′(i, j) and f (i, j)
denote the coordinates of the image to be evaluated and the coordinates of the original
image, respectively.

The next state reward value of s− is less than the reward value of state s. Stating that
the newly selected reference image is valid for the task, the agent receives a positive
reward and the newly selected reference image is accepted, expressed as:

r(s, s−) =
{

0 r(s) ≤ r(s−)

1r(s) > r(s−)
(8)

where r(s) is the reward’s value at the s state, and r(s−) is the reward’s worth at the
s− state. The reward is 1 when the transfer of states yields correct output results and
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higher stitching quality (RMSE reduction). Otherwise, when the stitching quality is not
improved, the reward is 0. For positive reward, the currently selected image is stored
and the reference image collection is updated.

After each training, since an image is selected for the first training, the second training
should avoid repeated selection to avoid wasting time. The IMDQN algorithm in this
paper sets up a set G specifically for placing the selected images, and each selected
image is compared with this set G. If there is a duplicate image, it is skipped. Otherwise,
it is continued.

3.2 Image Alignment

For image alignment methods performed by feature matching, prior to stitching, tuning
optimization canbeused to uniformlymodify the transformationmatrix.UsingPOSdata,
image stitching is implemented in this paper [20]. We made an effort to cut down on the
number of photos used in the stitching due to the high degree of image overlap, which cut
down on alignment time and helped us advance our goal of lowering error accumulation.
Basedon the IMUandGPS,we canderive theflight attitude andgeographical coordinates
of the UAV, from which the homology matrix between images can be calculated. Two
images I1 and I2 are taken by the UAV at L1 and L2 positions, for a locationP(xw, yw, zw)

on the ground in the world coordinate system. The coordinates on I1 and I2 are denoted
as l1(u1, v1, 1) and l2(u2, v2, 1). The homology matrix H from I1 to I2 can be expressed
as:

⎡

⎢
⎣

u1
v1
1

⎤

⎥
⎦ = λH

⎡

⎢
⎣

u2
v2
1

⎤

⎥
⎦ (9)

where λ is an unreliable constant. We set I1 to the metric system of the earth. The
following is discovered when the world coordinate system is converted into the pixel
coordinate system:

Zc1

⎡

⎢
⎣

u1
v1
1

⎤

⎥
⎦ = M

⎡

⎢
⎣

xw
yw
1

⎤

⎥
⎦ (10)

The camera’s internal parameter matrix, M, is broken down into the internal and
external parameter matrices. The internal parameter matrix is shown in the following
equation:

M = NW =
⎡

⎣

fx 0 cx 0
0 fy cy 0
0 0 1 0

⎤

⎦

[

R T
0 1

]

(11)

N is the internal reference matrix for the camera, and W is the exterior reference
matrix. The flight attitude and geographical coordinates of the UAV are known from
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IMU and GPS. From this, we get the position change s of l1 moved to l2, where the
flight angle of the UAV also changes, taking into account that the rotation matrix R with
respect to the x, y and z axes of the world coordinates, which is a 3 × 3 matrix with 3
degrees of freedom.

R = RXRYRZ =
⎡

⎣

1 0 0
0 cos θx − sin θx

0 sin θx cos θx

⎤

⎦

⎡

⎣

cos θy 0 sin θy

0 1 0
− sin θy 0 cos θy

⎤

⎦

⎡

⎣

cos θz − sin θz 0
sin θz cos θz 0
0 0 1

⎤

⎦ (12)

From the above equation, the photographic equation at l2.

Zc2

⎡

⎢
⎣

u2
v2
1

⎤

⎥
⎦ = MR

⎡

⎢
⎣

xw
yw
1

⎤

⎥
⎦ − KRs (13)

And the photographic ground at this point is represented as:

nT

d

⎡

⎢
⎣

xw
yw
zw

⎤

⎥
⎦ = −1 (14)

where n is the ground’s normal vector,

⎡

⎢
⎣

xw
yw
zw

⎤

⎥
⎦ is the target point’s world coordinate

system, and d represents the distance from the world coordinate system’s origin to the
surface. Integrating the above equations yields the complete equation at l2.

Zc2

⎡

⎢
⎣

u2
v2
1

⎤

⎥
⎦ = KR

⎡

⎢
⎣

xw
yw
zw

⎤

⎥
⎦ + KRSnT

d

⎡

⎢
⎣

xw
yw
zw

⎤

⎥
⎦ (15)

The relationship between l1 and l2 can be deduced from the above equation.

⎡

⎣

u2
v2
1

⎤

⎦ = Zc1
Zc2

KR(1 + s

d
nT )K−1

⎡

⎣

u1
v1
1

⎤

⎦ (16)

Zc1
Zc2

is a number that is not zero, so the homology matrix yields.

H =
Zc1
Zc2

KR(1 + s
d n

T )K−1

λ
(17)

The resulting homology matrix between the two images is obtained, and the images
are thus aligned.
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3.3 IMDQN Training Process

The purpose of training the IMDQN is to allow the intelligence to learn from experience
so that it can automatically find valuable reference images based on the state. In this
algorithm, images are first selected randomly from the training sample for image ini-
tialization, forming the initialized image as the initial state s, which is then fed into the
IMDQN initializes the parameter output action Ai,selects the image to generate the next
state s_,and obtains the reward R by image alignment and fusion and reward function.
s_ and R are again used as input update parameters for IMDQN, which is trained itera-
tively. In this algorithm, the intelligence acquires rewards by exploring the environment
(state spaces) until it arrives at a correct prediction with high confidence. In each round
of iteration, each image in the image set is trained once with the aim of improving the
intelligence level of the intelligence being expressed as a state action value function Q.
Figure 3 is a diagram of the training process.

Fig. 3. IMDQN training process diagram

4 Experiment

On a computer runningWindows 10 with an Intel Core i5 processor clocked at 3.6 GHz,
64-bit, 8 GB of RAM, all experiments were carried out. The programming language
used in this research is Python 3.6, while PyCharm 2020 serves as the development
environment. All of the methods are based on OpenCV 3.4.2. This paper will compare
2 aspects:

• The results of the IMDQN comparing the algorithm used in this study to the final
stitched images of the Minimum Spanning Tree (MST) algorithm and the Multilayer
Perceptron (MLP) algorithm;

• RASE andMean Absolute Error (MAE) are used as the evaluation metric for splicing
accuracy. The approach performs better the lower the RASE and MAE values are.
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4.1 Reference Image Alignment

In this paper, the processing steps for image alignment using reference images of good
quality selected by IMDQN are as follows:

• The set of image relations was constructed using POS data with reference to the
selection of images and the determination of data.

• Image alignment. We can determine the homologous transformation matrix between
nearby images using Eq. (14), andwe can further realize the projection transformation
from each image to the data using Eq. (15). Table 2 displays the global alignment
outcomes from the aforementioned data.

• Fusion of images. We apply the fusion approach to achieve a seamless transition
between images after projecting all of the images to remove artifacts and blurring in
the overlapped regions and create a pleasing visual impact. To do this, this research
specifically uses the weighted average fusion method [21] (Table 1).

Table 1. POS data of images

Images Location(m) Gesture (°)

X Y Z α β θ

1.jpg 432,704.27 4,013,502.33 887.56 345.1426 3.6458 0.1256

2.jpg 432,702.21 4,013,348.43 886.32 347.2589 − 1.1354 − 2.1429

3.jpg 432,703.47 4,013,445.21 885.31 343.6526 1.4589 1.3579

4.jpg 432,709.35 4,013,456.78 888.45 341.0456 2.3478 2.6584

5.jpg 432,710.25 4,013,478.26 887.89 343.9421 5.2264 0.3214

6.jpg 432,712.05 4,013,504.22 886.96 345.8739 − 0.2654 − 2.6598

7.jpg 432,708.46 4,013,389.45 887.38 349.4287 − 1.9546 0.5266

8.jpg 432,709.41 4,013,421.76 886.97 344.7749 2.3588 1.9945

After the above steps, we finished the stitching of the reference image based on POS
and got the global stitching image, as shown in Figs. 4, 5 and 6 below for the three images.
Figure 3 shows that the algorithm of this paper makes the stitching effect smooth, with
no ghosting, no distortion, and excellent stitching quality, while Fig. 4, as framed in red,
has obvious stitching traces and serious distortion. Figure 5 has blurred edges, serious
distortion, and serious error accumulation. Compared with the final results achieved by
the other two algorithms. It is obvious that the algorithm in this work is superior.

The above stitched together three groups of images are stitched together based on the
three groups of images selected below. From Figs. 7, 8 and 9, we can see that different
algorithms select different reference images, so the stitched effect image is also different.

4.2 Evaluation Indicators

The algorithm evaluation metrics in this paper include two aspects: RMSE and MAE.
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Table 2. Global alignment of images

Global
Matrix

Results Global
Matrix

Results

H1 0.9546 − 0.0788 − 7.8841 H3 1.0542 − 0.0215 − 17.8936

0.0421 0.9415 750.2554 0.0702 1.0921 88.1245

0.0000 − 0.0002 0.8945 0.0000 0.0001 1.0212

H2 0.9512 − 0.1533 54.4482 H4 0.0000 0.0000 1.0000

0.0842 0.8422 390.2215 0.0000 1.0000 0.0000

0.0000 − 0.0001 0.8654 1.0000 0.0000 0.0000

Fig. 4. IMDQN algorithm

Fig. 5. MST algorithm

• MAE: The absolute errors between the predicted and observed values are averaged
out to form the MAE, or mean absolute error.

MAE = 1

N

N
∑

i=1

|f (i, j) − f ′(i, j)| (18)
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Fig. 6. MLP algorithm

Fig. 7. Reference image selected by IMDQN

Fig. 8. Reference image selected by MST

Fig. 9. Reference image selected by MLP

From Table 3, we can see that the error values of the bolded RSME and MAE are
small compared with those of the other two algorithms, which means that the IMDQN
algorithm in this paper has small error and high splicing quality.

Table 3. Comparison of evaluation indicators0

method RMSE MAE

IMDQN 0.3988 0.3244

MST 0.4033 0.4279

MLP 0.6254 0.5239

5 Conclusion

In order to fix the issue of blurred and distorted images of aerial photography,which leads
to poor stitching effect. In this paper, we proposed IMDQNalgorithm. Firstly, the images
were pre-processed and inputted to DQN for training. The action selection model was
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to select new reference images by the reward of existing images, and finally, the global
best reference image was decided. Next, the POS data was used to align the reference
images to be stitched together, and because POS data is accurate, a relatively accurate
homologous transformation matrix between neighbouring images was obtained, and
further calculations were made to determine the projection transformation relationship
between the global image and the reference. Finally, a scene with a larger field of view
was obtained by image fusion. This study combines experiment and theory, and finally,
it not only improves the quality of image stitching, but also the algorithm has obvious
autonomy and adaptability. It provides some references for the subsequent research of
image stitching.
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Abstract. Quantum machine learning has been developing in recent years,
demonstrating great potential in various research domains and promising applica-
tions for pattern recognition.However, due to the constraints of quantumhardware,
the input qubits are restricted caused by small circuit size, and the fuzziness in
all dimensions caused by the features that are difficult to be effectively mined.
Besides, previous studies focus on binary classification, but multi-classification
received little attention. To address the difficulty in multi-classification, this paper
proposed a hybridmulti-branches quantum-classical neural network (HM-QCNN)
that utilizes a multi-branch strategy to construct the convolutional part. The part
consists of three branches to extract the features of different scales and morpholo-
gies. Two quantum convolutional layers apply quantum CRZ gates and rotational
gates to design a random quantum circuit (RQC)with 4 qubits and full qubits mea-
surements. The experiments on three public datasets (MNIST, Fashion MNIST,
andMedMNIST) demonstrate that HM-QCNNoutperforms other prevalent meth-
ods with accuracy, precision, and convergence speed. Compared with the classical
CNN and the hybrid neural network without multi-branches, HM-QCNN reached
97.40% and improved the accuracy of classification by 6.45% and 1.36% on the
MNIST dataset, respectively.

Keywords: Quantum machine learning · Multi-classification · Hybrid quantum
neural network · Medical images

1 Introduction

As quantum computing improves by leaps and bounds, the development of quantum
algorithms that uses noisy intermediate-scale quantum (NISQ) to perform useful com-
putational tasks is entering a boom period [1]. In this stage, quantum machine learning
(QML) is a promising applications of quantum computing in the era of NISQ, which
attempts to use quantum hardware to achieve computational acceleration or better per-
formance for tasks in machine learning, while random quantum circuits (RQC) provide
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a prospective path [2–4]. Compared with classical machine learning, QML algorithms
based on RQC have two potential advantages, i.e., greater expressiveness [5] and more
computational power [6, 7], which originate from the superposition principle of quantum
mechanics.

Recently, inspired by CNNs, quantum convolutional neural networks (QCNNs) have
been proposed. These networks employed both classical and quantum hardware, and
encapsulated parts of complex neural networks in quantum devices to exploit the super-
position and entanglement of quantum systems, thus speeding up computation [8]. The
central idea is to implement a quantum convolutional layer by applying shallow RQC,
and the corresponding feature mapping is implemented by measuring the output quan-
tum state of the RQC. The output of the quantum convolutional layer is classical data
and thus can be directly adapted to the structure in CNNs, while also exploiting the
capabilities of hardware of the current NISQ.

A proliferation of studies using QCNNs for binary classification, and an increasing
number of research scholars devote themselves to studying the task of pattern recognition
on images. The research onmulti-classification is further complex because the distinction
between multiple categories needs to be considered, and the classifier needs to make
additional decisions. Therefore, for themulti-classification task, a framework combining
classical computer and quantum hardware is introduced, which has been widely used
in recent QML studies [9, 10], and the classifier needs to make more decisions, studies
on multi-classification are more complex and fewer than binary classification. For the
multi-classification task, a framework combined with classical computers and quantum
hardware is introduced, which has been widely used in recent QML studies, and helps
to explore the potential computational power of the NISQ computer. As shown in Fig. 1,
it can be divided into two parts: the encoding model and the HNN model. The former is
responsible for processing the input data, and the latter is the module for training.

Fig. 1. Framework of the quantum convolutional neural network

The contributions of the current study are summarized in the following four folds:

1. The proposed HM-QCNN introduces multiple branches to construct networks, which
implemented by RQCs, and two different scales of convolution kernels, in order to
learn the syncretic features.

2. To verify the applicability of the model to the multi-classification, the experiments
are conducted both on natural image datasets (MNIST, FashionMNIST) and medical
image dataset (MedMNIST).
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3. Compared with previous approaches, HM-QCNN achieves better performance of
accuracy, precision, and convergence speed.

4. To the best of our knowledge, this study is the first to explore the effectiveness of
QNNs on medical images.

The remainder of the paper is organized as follows. Recent works related to QML
andQCNNs are reviewed and summarized in Sect. 2. And Sect. 3 describes the encoding
model and proposed HM-QCNN architecture in detail. The experiments of this work are
presented in Sect. 4, comparing and demonstrating the various performances of HNN
for image classification, and discussing the results. In Sect. 5 conclusions are drawn and
directions for future work are suggested.

2 Related Work

The current volume of data is growing at an overwhelming rate, and the computational
power required by machine learning algorithms increases with the data, which is grad-
ually becoming limited for classical machine learning. And with the computational
potential of quantum computers exceeding that of any classical computer, QML as a
research frontier in AI has emerged as a prospective solution to the challenge of increas-
ing data volumes [11]. QML has received a lot of attention in recent years, including
quantum autoencoders [12, 13], quantumBoltzmannmachines [14], quantum generative
adversarial learning [7, 15, 16], and quantum kernel methods [17, 18].

Among them, lots of studies focused on the applications of QML in classification
tasks, such as Edward Grant et al. [19] concluded that more expressive circuits have
better accuracy and established hierarchical quantum circuits for binary classification of
classical datasets IRIS and MNIST. Moreover, Yang et al. [20] organized SRA images
into a data tensor andproposed adeep sparse tensorfilter network for image classification.

In addition, motivated by the learning capability of CNNs and the potential power of
QML, the hybrid quantum-classical neural network framework has emerged as a promis-
ing approach for classification tasks. Liu et al. [21] designed a hybrid quantum-classical
convolutional neural network (QCCNN) that is friendly to current NISQ computers in
terms of quantum bits and circuit depth, adapting to quantum computing to enhance the
process of feature mapping while retaining the nonlinearity and scalability of classical
CNN.Wei et al. [22] presented a quantum convolutional neural network (QCNN), which
greatly reduces the computational complexity compared to classical. And applied it for
image processing with numerical simulations for spatial filtering and edge detection.
Finally, the model was verified on MNIST to have some robustness in image recogni-
tion. Cong et al. [23] analyzed the performance of the QCNN beyond existing methods
and demonstrated that it could accurately identify quantum states associated with a one-
dimensional topological phases. Francesco et al. [24] proposed a network model based
on a variational circuit that reduces the circuit depth required for data encoding, using
quantum neural networks for classification methods on recent quantum hardware. Mac-
Cormack et al. [9] offered the branching quantum convolutional neural network bQCNN
inspired by QCNN with higher expressiveness.
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Most of the existing studies are focused on the tasks of pattern recognition and image
binary classification, the solution to multi-classification problems through quantum neu-
ral networks is still being explored, and the research on the recognition and classification
of traditional natural images is also deficient. This work explored and designed a network
model based on a quantum convolution filter fabricated by RQC combining a quantum
convolution layer with a traditional network model structure for the multi-classification
problems of handwritten digits and some natural images.

3 Method

3.1 Encoding Model

Quantum encoding is a process of converting classical information into quantum states,
which is a very important step in the process of solving classical problems using quantum
algorithms.Most encodingmethods could be seen as parameterized circuits acting on and
the parameters are determined by the classical information. The task of the encoding
model in the framework is to map classical morphological data to quantum states in
Hilbert space, and here three different encoding methods will be presented to achieve
this transformation.

The first and most efficient in spatial terms method is to encode classical data in
superimposed amplitudes by associating the normalized input data with the probability
amplitudes of the quantum states, called the amplitude encoding method (AE) [25].
This approach encodes an N-dimensional classical vector x to a quantum state with n
quantum bits, where n = log2(N ) and |x = ∑N

i xi|i . Here |i is a set of computational
bases in Hilbert space and needs to satisfy |x|2 = 1. However, depending on the quantum
classifier used, the computational cost of preparing the data to quantum form will offset
the speedup obtained in the classification process in general.

Another simpler approach is basic encoding, where the data is encoded onto the
substrate of a quantum state. Each classical data vector will be encoded in each quantum
bit, with the two fundamental states 0 and 1 will be considered as |0 〉 and |1 〉 of the
quantum bit. This type of encoding method transforms a binary string of length n into
a quantum state |x 〉 = |ix 〉 with n quantum bits, and is therefore inefficient in terms of
space, yet efficient in terms of time [25].

The third encodingmethod is angle encoding, which employs quantum rotation gates
to encode classical information x. The angle of these quantum gates is determined by the

classical information. |x 〉 = n⊗ R(xi)|0n 〉, here any one of Rx, Ry, and Rz can be used as
R. Usually the number of quantum bits is equal to the classical information dimension.

As the experimental framework shown in Fig. 1, this paper tried each of the above
three methods in the encoding module to compare and analyze their performance in
the multi-classification task. Among them, the basic encoding applied X gate and angle
encoding used Ry gate rotating around the y-axis. All of them are constructed by RQC,
whose circuits are shown in the Fig. 2.
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Fig. 2. Different encoding circuits

3.2 Hm-Qcnn

After encoding the classical data into quantum states, different gate operations are
employed to each qubit corresponding to these data to form a quantum convolutional
layer. In most previous works, the network is a quantum convolutional replacement of
one traditional convolutional layer in the traditional network structure so that the whole
structure contains at least onequantumconvolution.Thehybrid network structure applied
in this work is based on hybrid computation, which consists of two parts, quantum and
classical networks. The quantum part is responsible for the quantum convolution and
the classical network part uses the convolutional and fully connected layers with the
classical CNN structure. Here, unlike previous works, three branches are constructed
in the HM-QCNN model, as shown in Fig. 3, two of which are quantum convolutional
layers composed of quantum circuit and the other is a conventional convolutional layer.

Fig. 3. HM-QCNN architecture
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Themain point of convolution layers is utilized filter to analyze all patches of images.
This concept has been further developed in the background of quantum computing. The
difference between classical and quantum convolution is that quantum circuits can pro-
duce complex kernels to extract meaningful features, which are difficult to handle by
classical convolution. Quantum convolution is used as small RQCs to compute convolu-
tion operations, andmatch noisymesoscale quantum hardware, with the advantage that it
can work with a shallow depth quantum circuit and few quantum bits. The two quantum
convolution layers in HM-QCNN are computed by applying RQC to respectively build
kernel_size of 4with stride 2 and kernel_size of 2with stride 2 as themain part for convo-
lutional filters, which employs a series of unitary transform andmeasurements connected
by wires (qubits). The present model adopts pennyLane to initialize and simulate four
qubits, i.e., the constructed RQC consists of four qubits. As depicted in Fig. 3, in the
quantum convolutional filter, first a two-qubit CRZ quantum gate operation is employed,
in other words, CRZ quantum gates are operated on each pair of adjacent qubits, which
enables to capture of the relevant information on the same layer of the network. Then
the RX quantum rotational gates are applied to operate on each qubit, embedding valid
information into the quantum system. The final measurement phase, also known as the
decoding phase, refers to the conversion of the quantum data into classical form [26].
Pauli matrix can be used as a measurement method, unlike other works with single qubit
measurements, all-qubit are measured in this work, taking expectations by using Pauli-Z
measurements for each qubit to obtain enough hidden information from the quantum
system. The results of measurement are not yet direct representations of the predicted
labels and therefore need to be further input to the classical network for processing.

The classical convolution layer is the key and important layer to extract features
in the part of CNNs, which performs the convolution operation on the input features
with kernels. Features are extracted from the images and map them to the next layer as
complex features. The traditional convolutional layer branches in this model consist of
two convolutional kernels of sizes 1 and 4 with strides 1 and 2, respectively. After these
operations, the outputs of these three branches are concatenated and input to two fully-
connected layers for classifying, and leakyReLU are utilized as the activation function to
finally obtain the predicted results for the input images. The fully-connected layer is the
second part of the CNN structure, that performs the classification process by applying
weights to predict the classes. Classical CNN network with the equivalent structure and
hybrid quantum neural network (QUANV1 – CONV1 – FC1 – FC2) are compared in
this experiment.

In the learning phase, the cross-entropy loss is utilized as the loss function, andAdam
is adopted as the optimizer for parameter optimization. During training, the network
model is updated with parameters by backpropagation to minimize the error between
the output results and the real results.
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4 Experiments

4.1 Experiments Setting

Three independent models are compared in this paper, the proposed HM-QCNN, clas-
sical CNN with the equivalent structure, and HNN without multiple branches, i.e. HNN
(w/o multi). Accuracy, precision, recall, and F1 score are used as evaluation metrics to
assess classification performance of the model.

Setup. The experimental environment used in this work is Python 3.8, PyTorch 1.12.0,
CUDA 11.6, batch size set to 32, the learning rate of 0.5, with a total of 50 epochs
trained. Numerical simulations of the experiments are performed with PennyLane [27].

Datasets. Experiments are conducted on three public datasets MNIST, Fashion MNIST
andMedMNIST. Different triple-classification tasks are performed on different datasets
in this work. For example, the MNIST dataset is randomly generated in three exper-
iments, the first experiment contains numbers {1,7,9}, the second task kept numbers
{3,5,8}, and the third performed classification experiments on numbers {2,4,6}, which
are described as E1, E2, and E3, respectively. Similarly, three taskswere generated on the
Fashion MNIST dataset: the first task retained "T-shirt/top" "Trouser" and "Pullover";
the second task classified "Dress" "Coat" and "Sandal"; the third task kept the data of
"Shirt", "Sneaker" and "Bag", which are denoted as E4, E5, and E6, accordingly.

4.2 Results and Discussion

This section discusses the performance of HM-QCNN on image multi-classification
tasks. The experimental results demonstrate that the proposed model can be used to
solve many types of image classification problems, and good results can be obtained not
only on handwritten digital images, but also on natural images.

Three independent models are tested in the experiment with accuracy, precision,
recall and F1-score as evaluation indicators shown in Table 1. The number of optimal
performances is bolded. On MNIST dataset, HM-QCNN achieves 95.73%, 93.75%,
97.40% accuracy, which are 2.08%, 9.27% and 6.45% higher than the classical CNN
model, and better than the HNN (w/o multi) model by 2.6%, 2.6%, and 1.36%, respec-
tively. The optimal result is presented in E3 with accuracy, precision, recall and f1 scores
of 97.40%, 97.40%, 97.39% and 97.40%. Moreover, on Fashion MNIST dataset, HM-
QCNN performs slightly poor than HNN (w/omulti) in E4 and E5, but achieves 98.44%,
98.47%, 98.46% and 98.46% for accuracy, precision, recall and f1-score in E6, which
is the best result among these methods.
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Similarly, as shown inFig. 4, the experimental data aftermodel training are visualized
with the t-SNE technique. Combined with the results in Table 1 to analyze, the data of
E2 is not aggregated and also corresponds to the lower accuracy in the table. Compared
with other groups of experiments, considering the reason of which, the original data of
E2 is more disorganized, the results after classification are relatively poor.

Fig. 4. Visualization with t-SNE of experimental datasets after training

Meanwhile, as shown in Fig. 5, it can be clearly seen that the performance of HM-
QCNN is superior to classical CNN and the HNN without multiple branches, and all
the classification accuracy can reach more than 93%. It indicates that the proposed HM-
QCNN can effectively improve network performance and better solve classification
problems in images. In addition, from the comparison of running time in the Fig. 6, it
can be seen that the proposed model can significantly reduce training time and speed up
convergence, whichwill help to classify images faster in practical applications. However,
the gap between the execution time of HNN and the classical CNN is large, and the
reason for this is the experiments are conducted with quantum numerical simulation,
which speed cannot reach the real quantum computing hardware. Moreover, the speed
is also affected by the limitation on the input qubits. However, in the future, with the
development of quantum hardware, more qubits can be used to process images, thus
improving the performance of the HNN.



HM-QCNN: Hybrid Multi-branches Quantum-Classical Neural Network 147

Table 1. Performance evaluation of experiments

Experiment Model Acc. (%) Pre. (%) Re. (%) F1-score (%)

MNIST CNN 93.65 93.66 93.48 93.55

E1 HNN (w/o multi) 93.13 92.95 92.03 92.97

HM-QCNN 95.73 95.66 95.64 95.65

CNN 84.48 84.54 84.51 84.52

E2 HNN (w/o multi) 91.15 91.13 91.24 91.26

HM-QCNN 93.75 93.75 93.73 93.74

CNN 90.94 90.95 90.96 90.94

E3 HNN (w/o multi) 96.04 96.10 96.03 96.05

HM-QCNN 97.40 97.40 97.39 97.40

Fashion
MNIST

CNN 94.06 94.08 94.01 94.02

E4 HNN (w/o multi) 94.17 94.30 94.19 94.24

HM-QCNN 93.95 93.65 93.65 93.65

CNN 94.48 94.48 94.47 94.47

E5 HNN (w/o multi) 96.98 96.99 96.97 96.97

HM-QCNN 95.83 95.84 95.83 95.83

CNN 97.40 97.43 97.50 97.46

E6 HNN (w/o multi) 96.25 96.35 96.39 96.36

HM-QCNN 98.44 98.47 98.46 98.46

Fig. 5. Classification accuracy of different experiments
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Fig. 6. Comparison of the execution time

In addition, experiments were also conducted on different encoding methods for
triple-classification on MNIST and visualized the training results on the {1,7,9} sub-
dataset. The training accuracy of the three different encoding methods is depicted in
Fig. 7(a), and the training loss curves of the three different encoding methods with
continuous reduction are shown in Fig. 7(b). The figure demonstrates that the angle
encoding converges faster and achieves higher accuracy with smaller loss values. While
amplitude encoding converges slower, but the training accuracy exceeds basic encoding
to reach 99.98% at 25 epochs. Therefore, in this experiment, the angle encoding method
works better.

The HM-QCNNmodel is also tested on theMedMNIST- breastMNIST dataset, with
an accuracy of 73.08% on both the training set and testing set. Although the accuracy is
not as good as on the other two datasets, this is because biomedical images have more
special characteristics compared with other natural images. On the one hand, medical
images have higher noise and lower contrast, which may affect the performance of the
model. On the other hand, medical images represent structures inside the human body,
and the morphology and other features of these structures vary greatly from case to case,
which requires higher generalizability of the model. However, the HM-QCNN model
still offers the prospect of application for tasks such as classification and diagnosis in
medical images. The model can be improved in the future to enhance the generalization
performance and improve the analysis of medical images.



HM-QCNN: Hybrid Multi-branches Quantum-Classical Neural Network 149

Fig. 7. Visualization of the learning curve for different encodings

5 Conclusion

To effectively improve the efficiency of classical CNNswhile ensuring accuracy and pre-
cision, this paper develops the structure of hybrid quantum neural networks with multi-
branch by constructing parameterized quantum circuits. And conducts some experiments
for multi-classification tasks. The results indicate that the HM-QCNN model achieves
better accuracy in both MNIST and Fashion MNIST and outperforms the HNN without
branches in terms of execution time.

In the NISQ era, due to the limitations of the quantum hardware for the input
qubits, the size of natural images is too large for existing devices, so relevant opera-
tions like dimensionality reduction are required before inputting to the model, which
may adversely affect the model performance. However, in the near future, as the algo-
rithms continue to be explored, lower qubit algorithms suitable for quantum hardware
will be studied and designed.
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Furthermore, future work will aim to expand the diagnostic classification research
to more complex medical images. The potential of hybrid quantum neural networks for
various tasks in medical imaging will also be explored, including disease diagnosis,
lesion region localization, and tumor segmentation.
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Abstract. In object detection, the anchor-based method relies on too much man-
ual design, and the training and prediction process is too inefficient. In recent years,
one-stage anchor-free methods such as Fully Convolutional One-stage Object
Detector (FCOS) and CenterNet have made a splash in object detection. They
not only have a simple structural design, but also demonstrate competitive perfor-
mance. They have exceeded many two-stage or anchor-based approaches. How-
ever, in industrial applications, the design of its multiple output heads hinders the
installation of the model. At the same time, different output heads mean a com-
bination of multiple loss functions. This introduces problems in training. Here,
we propose an anchor-free object Detector with Only Heatmaps (DetOH) to solve
object detection. Bounding box parameters are calculated by post-processing. The
design of the single output head allows object detection to use a semantic seg-
mentation network, realizing the unification of the two frameworks. In addition,
compared with CenterNet, we have greatly improved the speed of object detection
(6 vs. 32 Frames Per Second) with 3.2% Average Precision boost. The proposed
DetOH framework can be applied to multi-target tracking, key point detection and
other tasks.

Keywords: Heatmaps · Anchor-free · Object Detector

1 Introduction

Object detection is an algorithm that predicts the bounding box position and category
label for each instance of interest in an image. The classical algorithms mainly rely on
sliding windows [1, 2], which classify every possible position and therefore require high
speed. This also established the position of the anchor in object detection. After the
advent of deep learning, detection has shifted to the use of FCN (Fully Convolutional
Networks) since Faster R-CNN [3]. Many current anchor-based detectors such as Faster
R-CNN, SSD [4], YOLOv2 [5], and v3 [6] rely on a predefined set of anchor boxes.

Many anchor-free detectors have also appeared in recent years, and their performance
has gradually surpassed that of anchor-based detectors. For example, CenterNet [7, 8]
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predicts promising performance with hourglass for predicting center, offsets, and object
size. Fully Convolutional One-stage Object Detector (FCOS) [9, 10] uses a FCN to
demonstrate the commonality between semantic segmentation tasks and object detection
tasks. However, compared with the simple output head and loss function of semantic
segmentation, an anchor-free detector requires multiple loss function combinations to
assist training due to its multiple outputs. It is natural to ask the question: can we really
do object detection like semantic segmentation? The answer is yes.

We found that the reason for the multiple outputs of the anchor-free detector is the
deviation of the center positioning and the parameters of the object box. The former is
caused by the output featuremap being smaller than the input. The latter can be solved by
mining information in classification heatmaps. Therefore, we designed the polynomial
heatmaps so that the boundary of the object box can be obtained by post-processing.
At the same time, their size is equal to the input, thus avoiding the offset of the center
positioning. To highlight the portability and speed/precision balance of our model, we
applied it to a smart security system. The detailed contributions are as follows.

1) We proposed an anchor-free object detector with only heatmaps. This not only sim-
plifies the process of object detection but also allows for greater flexibility in detecting
objects of varying sizes and shapes. We also introduced the concept of polynomial
heatmaps for object detection which helps in post-processing and precise predictions of
object boundaries.
2) We designed the Center Point (CP) loss function to effectively improve the detector
performance. It draws on the positioning of theCP in the inference process and effectively
alleviates the problem of CP offset. This greatly improves model accuracy.
3) We conducted experiments on the Microsoft COCO (Common Objects in COntext)
dataset and applied the model to embedded devices to demonstrate the effectiveness of
our work. Compared to CenterNet that use the same backbone network, we improved
model performance by 3.2% Average Presicion (AP), increasing speeds from 6 to 32
FPS (Frames Per Second).

This paper is organized as follows. Relatedwork andmethods are analyzed in Sect. 2.
In Sect. 3, the specific methods and core innovations are introduced. The experiments
are shown in Sect. 4 followed by the ablation study in Sect. 5.

2 Related Work

In this section, we introduce some work related to our method. They are mainly divided
into two parts: anchor-based detectors and anchor-free detectors.

2.1 Anchor-Based Detectors

Many anchor-based detectors achieve a good balance of speed and accuracy, such as Fast
Region-based Convolutional Network (R-CNN) [13] and Deconvolutional Single Shot
Detector (DSSD) [15]. Anchor boxes can be considered suggested regions, and they
are classified as correct or negative patches. The anchor utilizes and avoids duplicate
feature calculations, greatly speeding up the detection process. But it is worth noting
that anchor-based detectors have some drawbacks:
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As shown by Faster R-CNN [3] and RetinaNet [11], the performance of the detection
is sensitive to the size, proportion, and number of anchor boxes. These hyperparameters
can greatly affect the AP performance on the COCO dataset [12]. Therefore, these
hyperparameters need to be fine-tuned in anchor-based detectors.

Detectors difficulty handling object candidateswith large shape variations, especially
small objects. Therefore, they need to set different sizes or aspect ratios for the same
kind of object. To achieve high accuracy, anchor boxes need to be densely placed on
the input image. Meanwhile, a lot of negative samples are generated, which brings
imbalance problems to training. Anchor boxes also introduce complex computations
into the training process and loss functions, such as calculating IoU (Intersection over
Union).

2.2 Anchor-Free Detectors

The earliest anchor-free detector was probably YOLOv1 [6], which predicts points near
the center of the object’s bounding box because they are believed to be able to produce
higher quality detections. But using only points close to the center resulted in low
recall. CornerNet [16] uses a pair of corner points to detect boundaries and groups
them to form the final detected box. CornerNet learns an additional distance metric, the
purpose of which is to find pairs of corner points belonging to the same instance. This
requires more complex post-processing. Another detector, Unitbox [17], is based on
DenseBox [18]. Unitbox is considered unsuitable for general object detection because
of the difficulty of handling overlapping bounding boxes and the relatively low recall.
Feature Selective Anchor-Free (FSAF) [19] proposes to add an anchor-based detection
branch to anchor-free detectors. As they consider that completely anchor-free detectors
do not achieve good performance, they also utilize feature selection modules to improve
the performance of anchor-free branching. So anchor-free detectors have comparable
performance to anchor-based detectors. RepPoints [20] indicates that the box consists of
a set of points and uses a conversion function to obtain the object box. Corner Proposal
Network (CPN) [21] and HoughNet [22] require grouping or post-voting processing, so
they are quite complex and slow. CenterNet [7] is a concurrent anchor-free detector. It
uses a clean network structure to demonstrate the performance to be expected. A similar
model, FCOS [9] adds center-ness branching, enabling a better accuracy/speed trade-off.
There are many subsequent work based on FCOS [25, 26]. These models enhance the
detection characteristics, loss function or allocation strategy of FCOS to further improve
the performance of anchor-free detectors.

However, these detectors often have complex output heads which bring trouble to
model training and loss function design. Besides, its multiple output heads are usually
not supported by embedded chips, making it difficult for industrial applications.

3 Our Approach

In this section, our approach is divided into four parts. The model overview is first
introduced, followed by our heatmaps and the calculation of the object size, and finally
the loss function in our work.
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3.1 Model Overview

In this paper, we propose an anchor-free object detection method with only heatmaps.
Similar to other object detectors that use heatmaps, our model is divided into two parts,
the feature extraction backbone network and the output head. The backbone network
is mainly used to extract the image features of various scales, mostly using mature
convolutional networks, such as ResNet [28], Deep Layer Aggregation (DLA) [29]
and Hourglass [30]. FPN (Feature Pyramid Network) [23] or BiFPN [24] are sometimes
added. The output head converts the feature map extracted by the backbone into a feature
map that can obtain object box information. This is the main difference between these
detectors. CenterNet and FCOS are the most representative models that use heatmaps
for object detection.

128 128

128 128 2

128 128 2

h w

h w 1

h w 4

H

Fig. 1. Output head structure in different models. (a) shows CenterNet’s output head, the
prediction module that contains Heatmaps, Object size, and Offsets. (b) shows the output head of
FCOS that contains Classification, Center-ness and Regression at different scales. (c) shows the
output head of our method, the prediction module only contains Classification Heatmaps.

As shown in the Fig. 1, CenterNet’s output head, i.e., the predictionmodule, contains
three branches: Heatmaps, Object size, and Offsets. The center of the object is obtained
through the heatmaps, and then the offset is corrected moderately. Finally, the size of
the object is added to get a complete object box. For an input image of 512 × 512 ×
3 pixels, the output heatmaps size is 128 × 128 × C pixels, where C is the number of
categories.

The output head of FCOS also contains three parts, i.e., Classification, Center-ness
and Regression. The center of the object is obtained through the product feature maps
of classification and center-ness, and then the offset and size information are obtained
by regression. Then a complete object box is obtained, which utilizes a feature pyramid
structure and thus contains several output heads ofmultiple scales. The size of the feature
map varies from 1/8 to 1/128 of the input image.

However, the output head of our model only contains Classification Heatmaps, from
which the object size can be calculated by post-processing. It is worth noting that the
classification heatmaps and input images are of equal size.

We design the heatmaps to be as large as the input image, so that we can directly
get to the object CP without offsets according to the heatmaps. Meanwhile, unlike the
Gaussian circles generated byCenterNet, we plan to generate polynomial heatmaps. This
means that a heat spot representing an object is no longer isotropic. The rate at which it
decays in different directions is related to its dimensions in the corresponding direction,
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so that the width and height can be calculated from the parameters of the polynomial.
Thus, the output of object size feature map is not required. After removing the object
size feature map and the offset feature map, the model only needs one branch, i.e., the
classification heatmaps. This greatly simplifies the model.

This simplification is meaningful in many aspects. First, it can support more embed-
ded devices. Some embedded chips do not support models with multiple output heads,
which causes them to encounter some obstacles in industrial applications. Secondly, its
training mode is end-to-end, which can directly calculate the loss function between the
output value and the predicted value. Many models design different loss functions for
different output heads. And different positive and negative samples need to be generated
to meet their training requirements. This brings a lot of inconvenience to fine tuning in
industrial applications. Finally, since the input and output are equally large, the model
can be realized by using the FCN. There is little need to limit the size of the input image,
which does not need to be square. Moreover, the design of FCN enables the model to
use different sizes of pictures in training and testing. This enables high resolution image
applications.

3.2 Heatmaps

Before introducing our heatmaps, we can review how CenterNet generates heatmaps.
As CenterNet first filled the input image into a square and resize it to 512 × 512.

Its output heatmaps was 1/4 the size of the input after downsampling. Therefore, there
was a certain offset error between the position of the center from the heatmaps and the
real object center. The offset feature map was set to compensate for the offset error. At
the same time, the radius of the Gaussian heat circle was determined by the height and
width of the object. Thus, the object size feature map was needed to generate the height
and width (Fig. 2).

Fig. 2. Heatmap between CenterNet and our method. CenterNet limited the size of the input
image to 512 × 512 by padding and resizing. The heatmap size was 128 × 128, and the heat
spots of the two objects were circular. Our method does not need to limit the input image size,
and the heat map is of the same size. The heat spot shape of an object is related to its horizontal
and vertical sizes.

In our method, there is no need to fill the input image into a square. The size of
classification heatmaps is set to be equal to the input image, and the position of the
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center obtained from the heatmaps is the real object center without offset error. So
there is no need to output the offset feature map. Meanwhile, the way we generate the
heatmaps is different from CenterNet. It used Gaussian distributions in heatmaps, but
we use polynomial heatmaps. The radius of the Gaussian circle is jointly determined
by the height and width of the object. The polynomial heatmaps in our method can be
correlated with the length and width in the corresponding direction. Then the object size
feature map is not needed, because the length and width of the object can be calculated
according to the polynomial heatmaps.

To calculate the size parameters in both horizontal and vertical directions from the
heatmaps, we define a simple polynomial which is related to the width and height of
the object. For the object box whose CP is located at (xc, yc) and whose width is w and
height is h, we define the probability heat value generation mode as polynomial. It can
be expressed as,

v = 1 − α(
|x − xc|

w
)r − α(

|y − yc|
h

)r (1)

where v represents the probability heat value at the position (x, y), r represents the degree
of the polynomial, α represents the size attenuation coefficient, and its value should be
greater than 0.5. When its value is 0.5, the probability heat value attenuates to 0 at the
midpoint of the edge of the object box. All values greater than 0 form an inscribed graph
of the object box. To avoid having a heat value less than zero, we set the value less than
0 to 0, to keep the probability between 0 and 1.

By adjusting r (the degree of the polynomial) and α (the attenuation coefficient) in
Eq. (1), we can get different types of heat spots. A few examples of the heatmaps that
can be generated with different hyperparameters are shown in Fig. 3.

Fig. 3. Examples of the heatmap with different r and α. The luminance in the figure reflects
the magnitude of the probability heat value. (a) is the image slice of an object box; (b) and (c) are
the heatmaps when r is 1, but their α are different with values of 0.5 and 1, respectively; (d) is
the heatmap when r is 0.5; (e) and (f) are the heatmaps when r is 2, but their α are different with
values of 0.5 and 1, respectively.

When two objects are too close, the problem of overlapping heat regions occurs. Our
approach is to take the larger value at the overlapping position. This tries to avoid the
influence of one on the other. As long as the centers do not coincide exactly, we can
locate the centers of both. But when it comes to calculating the size of an object, it might
oversize.
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3.3 Object Size

The whole process is divided into three parts: Locating the CP of the object; Calculating
its width and height according to the heatmaps; Finally, fine-tuning the boundaries of
the object.

CP Position. The process for locating the CP of an object is slightly different from
CenterNet. Before the maxpooling step, we first perform a large kernel mean filtering
on the heatmaps. This is because there are multiple identical maximum values near the
CP of the large object, causing duplicate object boxes. After that, it is maxpooled. By
comparing the maxpooling result with the mean filtering result, the position with the
same value is the local maximum point, which is the center of the object.

Size Parameters. After locating the center of the object box, we need to get the width
and height of the object. On the heatmaps, the probability heat value decreases in the
corresponding direction from the center of the object. When traversing from the center
of the object along the horizontal or vertical direction, the probability heat value change
at this time is independent of the coordinates in the other direction. This is easy to get
from Eq. (1). According to the mapping relationship between the value and the distance
from the CP, the corresponding direction size parameter is determined. The width can
be calculated by the following formula:

w =
r
√

α

2

(
(xc − xl)
r
√
1 − vl

+ (xr − xc)
r
√
1 − vr

)
(2)

where vl represents the probability heat value at the position (xl, yc) on the left of the
center, vr represents the probability heat value at the position (xr , yc) on the right of
the center, and α is the attenuation coefficient. When the probability heat value decays
to a more reliable value, i.e., the probability threshold such as 0.5, the width of the
object frame can be calculated by Eq. (2). Similarly, the height can be calculated by the
following formula:

h =
r
√

α

2

(
(yc − yt)
r
√
1 − vt

+ (yb − yc)
r
√
1 − vb

)
(3)

where vt represents the probability heat value at the position (xc, yt) on the top of the
center, vb represents the probability heat value at the position (xc, yb) below the center,
and α is the attenuation coefficient.

Bounding Box. With the CP position and width and height, it is easy to calculate the
position of the object’s bounding box. However, in the experiment, we found that fine-
tuning the bounding box can alleviate the problem of CP positioning bias. For example,
when the CP is unbiased, the values of the two terms in parentheses in Eq. (2) should
be equal. But when offset, the two are unequal. Taking the left border as an example, its
value is considered to be related to the width calculated by the left position (xl, yc). The
formula is expressed as:

bl = xc −
r
√

α

2

(xc − xl)
r
√
1 − vl

(4)

where bl represents the left boundary of the object.
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This way, when the CP is left off, the left border is skewed to the right accordingly,
and vice visa. The other three boundaries can be calculated in a similar way. With all
the boundary parameters, we get a complete object box.

3.4 Loss Function

The loss function adopted in this paper is a combination of two loss functions. One is the
MSE (Mean Squared Error) loss, and the other is the CP Loss designed for the model
proposed in this paper. The linear combination of the two functions is the loss function
adopted in the training of our model, which can be expressed by the formula:

L(y, p) = a · LMSE(y, p) + LCP(y, p) (5)

where y is the ground truth, p is the predicted value, and a is a hyperparameter used to
coordinate the difference of orders of magnitude between the two loss functions. In this
paper, the value is set to 100.

The reason why the MSE loss is selected is that the probability heat value is continu-
ous. While the classical CE (Cross Entropy) loss function is suitable for the calculation
of discrete variables, i.e., the case of only 0 or 1. Similarly, the Dice loss [31] widely
used in image segmentation is less applicable to continuous variables. To confirm this,
we conducted ablation experiments on the loss function to prove its effectiveness, as
detailed in Subsect. 5.2.

During the experiment, we found that if the CP position of a object deviated, it would
lead to problems in the calculation of width and height, and thus greatly reducing the
accuracy. To alleviate this problem, we propose a CP loss function, which draws on the
center position in model inference and the Dice loss design.

The specific method is as follows: Firstly, the maxpooling layer with step size of
one is used to process the maximum value of the neighborhood of the output heatmaps.
Secondly, the mask matrix is defined as the position of the maximum point. In other
words, the position of the pooled heatmaps that is equal to the original heatmaps is
assigned the value of 1, and the rest is 0. It can be expressed by the following formula:

mask(x, y) =
{
0, mp(hm(x, y)) �= hm(x, y)
1, mp(hm(x, y)) = hm(x, y)

(6)

where, mask(x, y) represents the mask matrix value at the position (x, y), hm(x, y)
represents the output heatmaps value at the position (x, y), and mp() represents the
maxpooling operation, whose kernel size is set to the same as in the locating CP.

After obtaining the mask matrix, we can calculate the cross entropy of the predicted
value and the true value after the mask. Specifically, multiplying the predicted value and
the true value by the mask matrix and dividing the calculation result of the cross-entropy
loss function by the modulus of the mask matrix, we can get the CP loss function in
Eq. (7).

LCP(y, p) = LCE(y · mask, p · mask)
mask

(7)
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In other words, the CP loss function only considers the error at the maximum point
of the classification heatmaps. When the maximum point is closer to the object center,
the loss function value is smaller, and vice versa. Meanwhile, it also limits the number of
maximum points. Too many maximum values will lead to the increase of 1s of the mask
matrix, thus increasing the value of the loss function. The loss function of CP greatly
improves the CP positioning, which is also confirmed by the ablation experiments.

4 Evaluation

This section shows the experimental result: firstly, data and experimental environment
we adopt and its settings, and then the accuracy and speed of each model.

4.1 Data and Settings

The experimental data set uses the COCO dataset [12]. We use the COCO train2017
split for training and val2017 split as validation for our evaluation study. We report our
main results on the test-dev split by uploading our detection results to the evaluation
server. All models are trained on the PyTorch 1.9.1 framework and an NVIDIA 2080Ti
GPU with 11 GB memory.

4.2 Accuracy and Speed

The accuracy index we use is mAP (mean Average Precision). The speed uses the
common metric FPS. AP50 refers to the AP when the value of the IoU is 50%, and the
same is true for AP75. APS, APM and APL are the AP values of three different scale
objects of small, medium and large. The speed/accuracy comparison shows between
DetOH and some of the most recent detection methods in Fig. 4.

Using the backbone DLA-34 [29], DetOH can achieve 40.3% of AP at 68 FPS on a
single 2080Ti GPU graphics card. We further replaced DLA-34 with a deeper network
DLA-60, resulting in a better speed/accuracy trade-off (43.3%AP at 32 FPS). Compared
to CenterNet [32], we improved network performance by 3.2% AP, increasing speeds
from 6 to 32 FPS. This means that with improved accuracy, DetOH is 433% faster
than CenterNet when using the same backbone network. DetOH also outperforms other
methods in terms of speed and accuracy, including anchor-based methods.

To achieve higher accuracy, we use deeper backbone networks and a more efficient
feature extraction structure. The specific results are shown in Table 1. As it can be
seen„ our model AP is higher than all classic models. Specifically, it is 1.2% AP higher
than CenterNet and 2.9% AP higher than FCOS. It is worth noting that our approach is
significantly ahead in the performance of small objects. This may be due to the beneficial
gain brought about by increasing the output resolution. Some of the latest methods [27]
with a particularly high AP use a lot of tricks, such as data augmentation during the
testing phase, increasing deformable convolution.
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Fig. 4. Speed/accuracy trade-off between DetOH and several recent methods: FCOS [9],
CenterNet [7], YOLOv3 [6] and RetinaNet [11]. Speed is measured on a NVIDIA 2080Ti GPU.
For fair comparison, we only measure the network latency for all detectors. DetOH achieves
competitive performance compared with recent methods including anchor-based ones.

Table 1. DetOHvs.Other State-of-the-art Two-stage orOne-stageDetectors.DetOHoutperforms
a few recent anchor-based and anchor-free detectors.

Method Backbone AP AP50 AP75 APS APM APL

Two-stage methods:

Faster
R-CNN by
G-RMI [33]

Inception-ResNet-v2 [28] 34.7 55.5 36.7 13.5 38.1 52.0

Faster
R-CNN + +
+ [28]

ResNet-101 34.9 55.7 37.4 15.6 38.7 50.9

Faster
R-CNN w/
FPN [23]

ResNet-101-FPN 36.2 59.1 39.0 18.2 39.0 48.2

Faster
R-CNN w/
TDM [14]

Inception-ResNet-v2-TDM 36.8 57.7 39.2 16.2 39.8 52.1

One-stage methods:

YOLOv2 [5] DarkNet-19 21.6 44.0 19.2 5.0 22.4 35.5

SSD [4] ResNet-101-SSD 31.2 50.4 33.3 10.2 34.5 49.8

YOLOv3 [6] Darknet-53 33.0 57.9 34.4 18.3 35.4 41.9

DSSD [15] ResNet-101-DSSD 33.2 53.3 35.2 13.0 35.4 51.1

(continued)
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Table 1. (continued)

Method Backbone AP AP50 AP75 APS APM APL

RetinaNet
[11]

ResNet-101-FPN 39.1 59.1 42.3 21.8 42.7 50.2

CornerNet
[16]

Hourglass-104 40.5 56.5 43.1 19.4 42.7 53.9

FSAF [19] ResNeXt-101-FPN 42.9 63.8 46.3 26.6 46.2 52.7

FCOS [9] ResNet-101-FPN 43.2 62.4 46.8 26.1 46.2 52.8

CenterNet [8] Hourglass-104 44.9 62.4 48.1 25.6 47.4 57.4

DetOH Hourglass-104 44.7 63.1 48.1 28.3 48.4 54.7

DetOH ResNet-101-BiFPN 46.1 65.3 49.8 29.2 49.6 56.5

4.3 Application

In the multi-source sensor intelligent security system, we apply the DetOH model to
detect objects in the image stream. We apply the trained model to the digital processing
chip Hi3519AV100 and successfully achieve object detection, proving a good balance of
speed and accuracy. Although Hi3519AV100 has 1.7 TOPS neural network compu-ting
performance, it supports the Caffe framework only and is based on Caffe-1.0. It does not
support the attention mechanism and channel shuffling, which makes most of the recent
mobile models difficult to apply. Considering the huge data processing tasks with only
1 GB memory, it is unfriendly to large models.

Our model runs on the chip’s AI-accelerated unit, while post-processing can run on
CPU. This is another advantage of DetOH, which can handle different detection pro-
cesses with different arithmetic units. We used pipeline acceleration for model inference
and post-processing. For a single frame size of 1920 × 1080 pixels, the processing time
can be reduced to 380 ms.

5 Ablation Study

In this section, we conduct an ablation study on the threemain ideas in this work. The first
is to compare different heatmaps. The effects of different loss functions on the results
are then compared. Finally, we look at the difference that boundary fine-tuning brings.

We adjusted the dataset for faster ablation studies. The COCO dataset was too large
and the training time was too long, so we replaced it with a small private dataset. The
training set of this dataset contains 3,518 images, and the test set contains 704 images,
all of which are of 640 × 360 pixels. And the data set covers only three categories:
person, vehicle, and aircraft. At the same time, we used a smaller backbone network,
MobileUnet [32]. It has fewer parameters and is easier to converge. This means that the
training time per ablation experiment can be reduced.
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5.1 Heatmaps

This section will introduce the influence of heatmap hyperparameters on the object
detection, i.e., the degree of polynomial and the attenuation coefficient in Eq. (1). To
see the change of its probability heat value more conveniently, the change curve of the
probability heat value with coordinates is plotted. Figure 5 shows the probability heat
value curves with different hyperparameters.

From the derivative at the CP, it is not derivable when the polynomial degree is 1 or
0.5, and its value is 0 when the polynomial degree is 2. Our experiments show that neural
networks fit a derivable function more easily. To evaluate the impact of heatmaps gener-
ated by different hyperparameter combinations on object detection accuracy, an ablation
study was conducted. The statistical results of the influence of different hyperparameter
combinations on accuracy are shown in Table 2.

From the degree of polynomials, the best performer is the quadratic elliptic heatmaps,
followed by the linear diamond heatmaps, and the worst is the square star heatmaps. It
can be seen that CNNs are better at fitting derivable convex function graphs. When the
probability heat value does not fall smoothly at the CP, it is difficult to simulate the effect
of this mutation.

From the attenuation coefficient, when it is large, the heat spot area will be more
concentrated near the center of the object, and the accuracy rate is higher. When it is
small, the heat spots are more dispersed and the accuracy rate decreases. This is because
there is overlap between multiple objects of the same kind. When the two object areas
partially overlap, the scattered hot spots will also be more likely to intersect. Although
the probability heat value of the intersection area to the maximum value can reduce
the influence of the CP position offset, it still brings trouble to the calculation of size
parameters. If the two targets are too close together, the size calculation will be on the
larger side.

Fig. 5. Curve of probability heat value as a function of abscissa. This is a target with a width
of 101 and the ordinate is on the central axis. (b) (c) (d) (e) (f) corresponds to that in Fig. 3,
respectively.
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Table 2. Quantitative results from Different Hyperparameter Combinations.

Degree of polynomial Attenuation coefficient AP AP50 AP75

(b) r = 1 α = 0.5 66.6 96.0 73.9

(c) r = 1 α = 1 72.5 98.3 84.3

(d) r = 0.5 α = 0.5 52.2 94.1 49.2

(e) r = 2 α = 0.5 72.3 93.7 86.8

(f) r = 2 α = 1 74.4 97.5 92.7

5.2 Loss Function

The loss function adopted in this work is a combined loss function, which is replaced
by a different loss function to study its effect on the result. The statistical results of the
influence of different loss functions on accuracy are shown in Table 3.

Table 3. Quantitative Results from Different Loss Functions.

Loss Function AP AP50 AP75

CE loss 28.0 71.1 22.3

Dice loss 0.483 2.45 0.121

Focal loss 23.7 61.5 24.4

MSE loss 56.0 94.7 45.0

Focal loss + CP loss 44.3 82.3 39.6

CE loss + CP loss 55.3 91.8 58.6

MSE loss + CP loss 66.6 96.0 73.9

By comparing the MSE loss + CP loss with the MSE loss alone, the improvement
of the CP loss function is huge. The AP as the main evaluation indicator is improved
by 18.9%. In AP75, it has been improved by as much as 64.2%. This shows a huge
improvement in size calculations by fine-tuning the position of the CP. But in AP50, it
brought only 1.4% improvement. This is because the AP with a large IoU threshold is
much more sensitive to the size accuracy than the AP with a small IoU threshold.

Comparing the CE loss + CP loss with the performance using the CE loss alone, it
can be found that this improvement is more pronounced. It improved by 97.5% in AP
and 162.8% in AP75. In AP50, the addition of the CP loss function brought a 29.1%
boost. This shows that the CP loss function can significantly improve the accuracy of
size calculation, making the prediction box closer to the bbox then improving the IoU.

5.3 Boundary Fine-Tune

To evaluate the impact of boundary fine-tuning on object detection accuracy, an ablation
study was conducted.
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Table 4. Quantitative Results from Boundary Fine-tuning.

Boundary Fine-tune AP AP50 AP75

74.4 97.5 92.7

✓ 76.5 97.6 94.5

As can be seen from Table 4, boundary fine-tuning brings improvement to AP at high
IoU threshold, which illustrates its effectiveness in bounding box fitting. These findings
suggest that boundary fine-tuning can play a critical role in improving the accuracy of
object detection algorithms.

6 Conclusion

In this work, we propose an anchor-free object detector with only heatmaps (DetOH).
Our experiments demonstrate that DetOH is superior to widely used anchor-free object
detectors, including CenterNet and FCOS, but with much less model complexity. The
single-head design makes it easier to be applied to embedded devices. Now it has been
applied to the field of security, making human life more secure. Its network architecture
is also suitable for other intensive prediction tasks, such as semantic segmentation. Given
its effectiveness and efficiency, we hope it soon be applied to high-level tasks such as
multi-object tracking, motion recognition, and behavior understanding.
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Abstract. This paper focuses on the task of automatic modulation
recognition. Existing studies have shown low recognition accuracy at
low signal-to-noise ratios, and models with a large number of param-
eters usually demand substantial computational resources, resulting in
slower reasoning processes. In this paper, we propose a novel architec-
ture for efficient recognition based on LSTM-Autoencoder and atten-
tion mechanism to address these challenges. Experimental results on
benchmark datasets show that the proposed method achieves an average
recognition accuracy of 62.43% and 64.49% on the RadioML2016.10a
and RadioML2016.10b datasets, respectively. On the RadioML2016.10a
dataset, the proposed model outperforms other SOTA models with a 2 ∼
6% points improvement in recognition accuracy. The model also demon-
strates superior recognition accuracy for both QAM64 and QAM16 mod-
ulation schemes and effectively increases average recognition accuracy by
1–2 percentage points in the -8dB to 2(±2) dB lower SNR range, indicat-
ing its noise robustness. On the RadioML2016.10b dataset, the proposed
method’s recognition accuracy is slightly higher than the SOTA model,
demonstrating good performance.

Keywords: Automatic modulation recognition · Autoencoder ·
Attention

1 Introduction

Automatic modulation recognition (AMR) is essential in wireless communica-
tion as it identifies the pattern and characteristics of received signals for more
efficient transmission and reception of messages. It can be generally grouped into
two categories: likelihood-based (LB) methods and feature-based (FB) methods.
LB methods [1–3] are optimal in the sense of Bayesian estimation but rely heav-
ily on prior knowledge and parameter estimation. In contrast, FB methods are
more computationally efficient and require less prior knowledge. FB methods
use feature extraction techniques such as principal component analysis (PCA),
recursive feature elimination, and wavelet decomposition [4] to identify the most
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significant features and then use classification algorithms, such as support vector
machines [5], neural networks and decision trees, to classify the data.

In the past few years, deep learning has been rapidly developed and widely
used in computer vision, natural language processing, speech processing, etc.,
researchers have also attempted to apply deep learning-based methods to AMR.
The relevant methods include CNN (convolutional neural network)-based [6,7],
RNN (recurrent neural network)-based [8], and hybrid frameworks [9]. The
research on modulation recognition based on deep learning was pioneered by the
O’Shea group. In 2016, they constructed a modulation signal recognition dataset,
RadioML2016.10a [10], using open-source software GNU-Radio and then utilized
a 2-layer CNN to perform end-to-end processing of the waveform of the modula-
tion signal, achieving good recognition results [6]. Next, a deep residual network
framework was proposed [11] with a significant improvement in recognition per-
formance over [6]. Generally, the CNN-based models directly take the original
I/Q (in-phase/quadrature symbols of the modulated signal [12]) data as input.
However, if the size of the convolution kernel can cover the two dimensions (I/Q)
of the input, the addition operation in the convolution process will weigh the
different dimensions of the feature but ignore the inherent characteristics of the
two different dimensions of the I/Q input. To address this problem, MCNet [13]
adopts 1D convolutional layers and 2D convolutional layers to extract features
from single and joint dimensions, respectively. In addition, recent studies have
carefully designed a series of CNN-based structures for modulation recognition
tasks [7,14,15]. While CNN-based models are capable of capturing spatial fea-
tures, they have been found to be inadequate at capturing temporal information.
RNNs, on the other hand, are capable of extracting temporal features of time
series data, particularly Long Short-Term Memory (LSTM) networks [16]. Paper
[17] utilizes a 2-layer LSTM on amplitude and phase data for modulation clas-
sification, outperforming the proposed model [18]. Furthermore, to exploit both
temporal and spatial features, CLDNN and CLDNN2 [15,18], which are combi-
nations of CNN, LSTM, and deep neural networks (DNN), have been proposed
as novel frameworks for modulation recognition. As the complexity of models
increases, the speed of training and inference decreases. Therefore, designing
lightweight and efficient recognition models has become a research focus. The
LSTMDAE [19] proposes a multi-task learning framework based on the LSTM
denoising autoencoder, which uses the features learned by the autoencoder for
modulation classification. Subsequently, in order to further enhance the perfor-
mance of AMR, ConvLSTMAE [20] proposed a parallel autoencoder architec-
ture that leverages the temporal and spatial features extracted from two different
encoders — an LSTM autoencoder and convolutional autoencoder. Despite these
efforts, the recognition accuracy remains low under the low signal-to-noise ratio
(SNR). Improving recognition accuracy under low SNR conditions remains a
pressing problem in AMR tasks. To solve the above two problems, this paper
presents a novel framework for effective modulation recognition that is based on
the combination of the autoencoder [21] and attention mechanism. The main
contributions of this research are as follows:
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(1) The design of a novel architecture that combines an autoencoder and
attention mechanism for automatic modulation recognition. Experiment results
demonstrate the proposed framework achieves better recognition performance
than SoTA frameworks.

(2) Investigation of the fine-tuning process for integrating the learned hid-
den features from the autoencoder with subsequent neural networks to improve
performance.

(3) Exploration of the potential for attention mechanisms to further enhance
the performance of automatic modulation recognition systems.

The remainder of the paper is organized as follows: in Sect. 2, we have a quick
review of signal theory and the definition of the modulation recognition task.
Section 3 presents our model LAANet in detail. In Sect. 4, we describe details
about the setup of the experimental evaluation and the experimental results.
Finally, the conclusion is given in Sect. 5.

2 Problem Definition

2.1 Definition of the AMR Problem

Automatic modulation recognition can be viewed as a multi-class classification
problem. The received signal can be represented as (1).

r(t) = s(t) + n(t), (1)

where s(t) is the noise-free complex base-band envelope of the received signal,
also known as the valid signal, and n(t) is the noise, including the receiver’s
internal noise and noise from the antenna and external environment. The goal of
modulation recognition is to determine which class among N the received signal
belongs to. It can be represented by calculating

P (y = Ck|r(t)), (2)

where Ck denotes the kth class and y is the true class of the signal.

3 Model

In this section, we explicate the architecture of the proposed model, LAANet,
in detail. As depicted in Fig. 1, LAANet is comprised of three primary com-
ponents: the LSTM autoencoder, the intermediate part, and the classifier. The
LSTM autoencoder is formed by the first two LSTM layers and a shared dense
layer, minimizing the error between the input and its reconstructed output to
learn a compact data representation. The intermediate part comprises a Gaus-
sian dropout layer, an Lstm layer, and an attention layer, performing model
regularization and fine-tuning the information learned by the autoencoder. The
attention layer then weighs the output of the last LSTM layer to obtain the final
features for classification. Finally, the classifier consists of two fully connected
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Fig. 1. An illustration of LAANet.

layers, followed by a softmax activation function to produce category proba-
bilities. The overarching framework is a multi-task framework comprising two
tasks: the task of reconstructing inputs in the LSTM autoencoder and the task
of modulation classification. The total loss is calculated as the weighted sum of
the classification loss and the reconstruction loss of the LSTM autoencoder.

3.1 An LSTM AutoEncoder-LSTMAE

The architecture of the autoencoder consists of three components: an encoder,
hidden features, and a decoder, as illustrated in Fig. 2. The encoder and decoder
are typically composed of stacked neural network layers, which can be selected
from a range of options, such as CNN, LSTM, and DNN, depending on the task.
The autoencoder can be easily trained using gradient back-propagation. During
the training process, the encoder converts input data into a compact hidden
representation, which the decoder then employs to reconstruct the original input
as accurately as possible. Generally, we can define the encoding and decoding
processes as (3) and (4).

hi = g(xi) (3)

x̂i = f(hi) = f(g(xi)) (4)

where xi denotes the input of the autoencoder. The encoder and decoder are
modeled as the functions g and f respectively. The output of the encoder, i.e.,
the hidden feature vector, is represented by hi. The output of the decoder is
represented by x̂i. The learning process of the autoencoder can be viewed as
finding two functions, g andf , that minimize the following objective function:
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Fig. 2. Architecture of the autoencoder.

argminΣΔ(xi, x̂i), (5)

where Δ is a metric used to calculate the difference between the input and
reconstructed output of the autoencoder, with mean squared error (MSE) being
a commonly used metric.

Based on the characteristics of the autoencoder and LSTM network, this
study designs an LSTM autoencoder to effectively capture the temporal depen-
dencies of wireless radio signals, which are considered time sequences. In LST-
MAE, the first two LSTM layers act as the encoder, while a shared dense layer
serves as the decoder. The encoder learns intrinsic features of inputs by attempt-
ing to reconstruct them as accurately as possible. This information is hugely
consequential in the final classification.

3.2 Attention

LSTM with attention is a powerful deep learning architecture used for various
natural language processing tasks. Traditionally, the output vector of the last
step of the LSTM layer is directly fed into a classifier for classification. In con-
trast, the attention module first calculates the weight for each time step and then
computes the weighted sum of vectors from all time steps to obtain the attention
vector, which is subsequently input to the classifier. The essence of the attention
mechanism lies in its ability to assign flexible weights to different portions of the
input sequence, thereby enabling the network to concentrate on the utmostly
relevant information to the current task. In our implementation, the attention
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layer is incorporated after the last LSTM layer. The structure of the attention
layer is depicted in Fig. 3 and the calculation process can be succinctly described
as follows: Let H be a matrix consisting of output vectors [h1, h2, h3, ..., ht] that
the LSTM layer produced, where t denotes the length of the input signal. The
attention vector r is formed by a weighted sum of these output vectors:

M = tanh(H) (6)

α = softmax(wTM) (7)

H ′ = Hα (8)

r = sum(H ′) (9)

Fig. 3. An illustration of the attention mechanism.

where H ∈ Rdw×t, dw is the dimension of the out vectors of the LSTM, w is
a trained parameter vector, and wT is a transpose. The dimension of w,α, r is
dw, t, dw separately.

3.3 Loss

As previously mentioned, the proposed model is in a multi-task framework that
includes signal modulation classification and input signal reconstruction in the
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LSTMAE. In this structure, the primary task is classification, while the LST-
MAE aims to learn the essential characteristics of the input signals throughout
the reconstruction process. The objective of LSTMAE is to minimize the error
between its input and output, with the reconstruction loss using mean squared
error. On the other hand, the classification task uses cross-entropy loss to gauge
the accuracy of identifying the modulation type of the input signal.

Overall, the total loss is the weighted sum of the reconstruction loss LAE and
the classification loss LCLS, represented as follows:

L = (1 − λ)LAE + λLCLS, (10)

where λ is a weighting factor that balances the relative importance of the recon-
struction and classification tasks. A small value of λ minimizes the influence of
the classification layers, while a large value of λ may result in distorted represen-
tations in LSTMAE. In this study, λ is set to 0.1 to extract valid representations
of the original signals and improve classification accuracy.

The reconstruction loss, LAE, is the mean-squared error (MSE) between the
input and reconstructed output. It can be represented as follows:

LAE =
1
n

n∑

i=1

(xi − x̂i)
2 (11)

The classification loss, LCLS, is measured using the categorical cross-entropy
loss. It is defined as:

LCLS = −
K∑

k=1

pk log p̂k, (12)

where pk =1 if the input signal x(t) belongs to the kth class and pk =0 otherwise.

4 Experiments

4.1 DataSet

In this study, two benchmark open-source datasets RadioML2016.10a and
RadioML2016.10b were utilized. Their specifications are outlined in Table.1.
The RadioML2016.10a dataset contains 220,000 modulation signals with SNRs
ranging from -20dB to 18dB, including 11 commonly used modulation types:
WBFM, AM-DSB, AM-SSB, BPSK, CPFSK, GFSK, 4-PAM, 16-QAM, 64-
QAM, QPSK, and 8PSK. The RadioML2016.10b dataset is an extension of the
RadioML2016.10a dataset, including 1.2 million signals and 10 modulation types,
excluding AM-SSB. Each signal in both datasets has 128 complex float time I/Q
samples and was generated under adverse simulated propagation environments,
affected by AWGN, multipath fading, sample rate offset, and center frequency
offset, similar to real-world scenarios. The datasets were split into a 6:2:2 ratio,
for training, validation, and testing purposes, respectively. Specifically, for each
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SNR and modulation type, 600 (3600) signals were randomly selected as training
data, 200 (1200) signals as validation data, and 200 (1200) signals as test data.

Table 1. Information of RadioML2016.10a and RadioML2016.10b.

dataset modulation sample size SNR(dB)

RadioML 2016.10a 11 classes (8PSK, BPSK, CPFSK,
GFSK, PAM4,
AM-DSB, AM-SSB, 16QAM,
64QAM, QPSK, WBFM)

2 × 128 220000 −20:2:18

RadioML 2016.10b 10 classes (8PSK, BPSK, CPFSK,
GFSK, PAM4,
AM-DSB, 16QAM, 64QAM,
QPSK, WBFM)

2 × 128 1200000 −20:2:18

4.2 Details

In the proposed model, the hidden dimensions of the three LSTM layers are set
to 64, 32, and 32 respectively. In addition, the number of nodes of the shared
dense layer used for the decoder layer is 2, while the number of nodes in the
shared dense layer after the Gaussian dropout layer is 64. The number of nodes
in the fully connected layers of the classifier is set to 32, 16, and K(number of
categories in the dataset), respectively.

The input data is in the form of normalized amplitude and phase features to
assist in learning time-dependent relationships [17], instead of using the original
I/Q components.

The optimization algorithm used in all experiments is the Adam optimizer.
The initial learning rate is set to 0.001, and a batch size of 400 is used throughout
the experiments. The rate of the Gaussian dropout is set to 0.2. In case the
validation loss does not decrease within 5 epochs, the learning rate is halved.
The training process is terminated if the validation loss remains stable for 50
epochs. The experiments were implemented using the Tesla P100 GPU and Keras
with Tensorflow as the backend.

4.3 Main Results and Discussion

We initially trained our model using the RadioML2016.10a dataset with the
SNRs ranging from -20dB to 18dB. To prove the effectiveness of the proposed
model, a series of experiments were conducted on the RadioML2016.10b dataset
with exactly the same experimental configuration.
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Table 2. Highest and Average accuracy comparison on the two datasets.

RadioML2016.10a RadioML2016.10b

Model Highest

accuracy

Average

accuracy

Highest

accuracy

Average

accuracy

CGDNet 84.05% 56.55% 89.64% 61.12%

PET-CGDNN 90.68% 60.22% 93.18% 63.84%

IC-AMCNET 84.55% 56.58% 92.83% 62.29%

MCLDNN 91.64% 60.87% 93.74% 64.61%

MCNET 83.27% 55.84% 88.89% 61.04%

LSTM 90.68% 60.30% 93.48% 64.30%

LSTMDAE 85.41% 57.10% 93.43% 64.11%

LAANet(Ours) 92.73% 62.43% 93.88% 64.69%

Table 3. TOP-1 CLASSIFICATION ACCURACY COMPARISON OF OUR PRO-
POSED MODEL (LAANet) VS.EXISTING MODELS ON RADIOML2016.10A
DATASET. THE HIGHEST AVERAGE TOP-1 CLASSIFICATION ACCURACY
FOR EACH SNR IS MARKED IN BOLD.

Model -20 -18 -16 -14 -12 -10 -8 -6 -4 -2

CGDNet 9.64 9.41 9.27 11.41 15.41 22.05 34.68 50.27 65.05 74.77

PET-CGDNN 9.36 9.23 8.95 11.00 14.18 23.91 36.32 52.55 65.68 77.05

IC-AMCNET 9.18 9.09 9.68 10.95 14.50 23.64 35.05 49.27 63.32 72.45

MCLDNN 9.45 9.32 8.82 10.45 13.95 23.55 37.55 53.82 66.59 81.14

MCNET 9.50 9.45 9.50 11.00 15.05 25.23 36.95 51.32 62.55 73.09

LSTM 9.05 9.82 10.41 12.41 16.14 24.36 35.05 51.36 63.55 78.05

LSTMDAE 9.86 9.45 9.68 11.73 16.00 24.73 36.27 51.45 61.18 73.82

LAANet(our model) 9.73 9.36 10.45 13.18 16.82 23.86 36.36 55.05 69.27 82.77

Model 0 2 4 6 8 10 12 14 16 18

CGDNet 79.95 82.18 83.00 83.09 82.73 83.77 83.55 83.32 83.36 84.05

PET-CGDNN 85.64 88.32 89.95 89.95 90.45 90.68 90.23 90.59 90.14 90.18

IC-AMCNET 80.77 82.45 83.00 83.73 83.86 84.05 84.55 84.27 83.68 84.09

MCLDNN 87.50 88.36 90.50 90.36 91.27 90.77 90.95 91.64 90.82 90.64

MCNET 77.14 80.27 81.64 80.95 82.68 83.27 82.68 82.68 82.09 81.82

LSTM 85.73 88.91 89.73 90.68 90.59 89.64 90.00 90.45 89.14 90.00

LSTMDAE 79.41 81.68 83.50 84.14 84.77 84.23 85.73 84.91 84.14 85.41

LAANet(our model) 89.82 91.23 92.73 92.59 92.36 92.64 93.14 92.55 92.32 92.55

Recognition Accuracy. The results of the proposed model were compared
with several state-of-the-art models, including CGDNet [22], PET-CGDNN [23],
IC-AMCNET [7], MCLDNN [9], MCNET [13], LSTM [17], LSTMDAE [19],
as summarized in Table.2. The best results for each metric on both datasets
are emphasized. The proposed model achieved the highest recognition perfor-
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mance on both datasets, with an average classification accuracy of 62.43% and
64.69%, respectively. It is worth noting that on the RadioML2016.10a dataset,
the proposed model achieved an average recognition accuracy that is 2–6 per-
centage points higher than other models. On the RadioML2016.10b dataset, the
proposed model performed comparably to MCLDNN, LSTM, and LSTMDAE,
which could be due to the larger data scale of the dataset allowing the model
to learn adequately. This insight also leads us to consider the importance of
data in deep learning: the larger and more comprehensive the dataset, the more
beneficial it is for the training and generalization performance of the model.
Figure 4 illustrates the model’s recognition performance on these two datasets,
consistent with Table 2. Table.3 presents a detailed report of the classification
performance of our proposed model at varying SNRs. The results indicate that
our model achieved an average accuracy rate of 92.19% within the SNR span
of 0dB to 18dB. Notably, the proposed model outperforms other models across
the range of -6dB to 18dB SNRs. However, it is important to recognize that
achieving higher accuracy rates in extremely low SNR environments (-20dB to
-10dB) poses a significant challenge. At present, the accuracy rate from -8dB to
2(±2)dB represents the main indicator of our model’s recognition performance
at low SNRs. It can be observed that our model effectively enhances the average
recognition accuracy rate by 1–2 percentage points from -8dB to 2(±2)dB SNRs,
demonstrating its robustness against noise.

Fig. 4. Recognition accuracy on both datasets(-20dB to 18dB) (a)RadioML2016.10a
(b)RadioML2016.10b.

Confusion Matrix. Figure 5 presents a group of confusion matrices on the
RadioML201610.10a and RadioML201610.10b datasets at -2dB and 18dB. For
each confusion matrix, each row represents the true modulation type, while each
column represents the predicted modulation type. This provides insight into the
classification performance of the proposed model for each modulation scheme.
For the SNR of 18dB, the majority of values are located along the diagonal
line in the confusion matrix, indicating that nearly all categories are accurately
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recognized. Despite this, some confusion in the recognition of WBFM signals
still exists, which is primarily attributed to the silent periods in the audio sig-
nal. Besides, there is some level of confusion between QAM16 and QAM64 since
QAM16 is a subset of QAM64. As indicated in Fig. 6, the proposed model demon-
strates improved performance in differentiating between these two signal types
from a general perspective.

Model Parameters and Complexity Analysis. Figure 7 presents a com-
parison of the number of learned parameters and training time among various
models. The proposed model requires more training time compared to existing
models, such as IC-AMCNET [7], MCNET [13], CGDNN [22], and PET-CGDNN
[23], which constitute convolutional neural networks with lower computational
complexity. Nevertheless, this increase in time cost is counterbalanced by the

Fig. 5. Confusion matrixes of the proposed model for different SNRs on dif-
ferent datasets (a) RadioML2016.10a & −2dB (b) RadioML2016.10a & 18dB
(c)RadioML2016.10b & −2dB (d)RadioML2016.10b & 18dB

Fig. 6. Confusion matrixes of different models for all SNRs on RadioML2016.10a
dataset (a) LAANet(Ours) (b) LSTM (c) LSTMDAE (d) MCLDNN (e) CGDNN (f)
PET-CGDNN (g)ICAMC (h)MCNET.
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observed higher recognition accuracy across all tested cases, coupled with the
virtue of a relatively small parameter scale.

4.4 Ablation Experiment

In terms of model design, this study employs various technical means, including
data preprocessing, autoencoders, regularization, and attention mechanisms. In
order to verify the effectiveness of these components, this section conducts abla-
tion experiments on different components in the model. Data preprocessing was
previously explained, where the normalization amplitude of the signal and phase
features were found to be more suitable for the LSTM structure to learn.

The proposed model in this paper is based on LSTMDAE [19]. Unlike the
original model, the number of units in the first two LSTM layers is set to 64
and 32, respectively. Furthermore, the input is not subjected to any added noise
preprocessing, serving as the baseline (Base). To enhance the performance of the
base structure, several functional components were incorporated into the model,
such as extra LSTM layers, attention mechanisms, and regularization layers. The
research process is described below:

Fig. 7. Complexity Comparison of different models

– Base+A: Based on the base structure, a shared dense layer and an LSTM
layer were added.

– Base+A+B: Gaussian dropout regularization layer was then added.
– Base+A+B+C (LAANet): The attention mechanism was introduced.

Figure 8 illustrates the performance comparison of models at different stages
throughout the research process. As shown in Fig. 8a, the recognition accuracy
gradually improves during the training process, and its performance is signifi-
cantly enhanced after incorporating the LSTM layer. This improvement can be
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attributed to the LSTM layer’s ability to refine the features that the autoen-
coder has learned through signal reconstruction tasks and extract additional
features. Moreover, the introduction of attention mechanisms is found to effec-
tively improve the model’s overall performance. Meanwhile, the incorporation of
regularization layers allows the model to learn meaningful features more rapidly
and accelerates the model’s convergence speed. Figure 8b presents the average
recognition accuracy at different SNRs, from which we can draw similar conclu-
sions to those drawn from Fig. 8a. Overall, the ablation experiments demonstrate
that the integration of LSTM layers, attention mechanisms, and regularization
can significantly improve recognition accuracy. The synergistic effects of these
techniques boost the model’s feature extraction and learning capabilities, leading
to better adaptation to signal recognition tasks.

Fig. 8. The results of ablation study (a) the change in recognition accuracy over time
during the training process. (b) The average recognition accuracy at different SNRs.

5 Conclusion

In this paper, we propose a novel automatic modulation recognition model
based on an LSTM autoencoder and attention mechanism. Experimental results
show improved recognition performance compared to existing approaches at rel-
atively few parameters. However, its computation and inference process is time-
consuming due to the LSTM-based framework. Future research can explore vari-
ous avenues to address the limitations and improve the performance of the AMR
task.
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Abstract. The phoneme-to-audio alignment task aims to align every
phoneme to a corresponding speech or singing audio segment. It has
many applications in the research and commercial field. Here we propose
an easy-to-train and compact phoneme-to-audio alignment model that
is especially effective for singing audio alignment tasks. Specifically, we
design a compact model with simple encoder-decoder architecture with-
out a popular but redundant attention component. The model can be well
trained in relatively few epochs for different datasets with a combination
of CTC loss and mel-spectrogram reconstruction loss. We apply a dedi-
cated dynamic programming algorithm to the output likelihood matrix
from the model to acquire alignment results. We conduct extensive exper-
iments to verify the effectiveness of our method. Experiments show that
our method outperforms the baseline models on different datasets. Our
codes are available on github.

Keywords: phoneme-to-audio · alignment · compact · dynamic
programming · singing · multi-scale information fusion

1 Introduction

Phoneme-to-audio alignment, also known as Phoneme Segmentation or Phoneme
Boundary Detection in some literature, is designed to learn a function that accu-
rately maps the phoneme sequence to the target audio segment boundaries. It
is an essential preliminary task for many applications, such as training singing
voice synthesis (SVS) models [14,20], subtitle calibration, and lyrics-singing syn-
chronization1.

Several tools exist for phoneme-level forced alignment [6,11,16,22]. Most of
them rely on Hidden Markov Models - Gaussian Mixture Model (HMM-GMM)
to infer hidden states from likelihood scores derived from features computed
on raw audio or spectral representations. However, we found that these tools
perform well in alignment tasks for speaking audio but degrade performance
when applied to singing audio. We argue that this is because of the inherent

1 https://github.com/zhengmidon/singaligner.
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acoustic characteristic discrepancy between the singing voice and the speaking
voice. Specifically, 1) pitch change in the singing audio of a phoneme is more
complicated than that in the speech audio of the same phoneme; 2) the pitch
range of singing voice is wider, i.e., the mel-spectrogram of singing voice has
relatively affluent information in the high-frequency region; 3) phonemes voiced
in singing audio have a longer duration on average. HMM-GMMs may not be
capable of handling these complex features.

Fig. 1. Attention matrix from our re-implementation of model in [26]. The model
learns clear alignment for speech data but fails to capture alignment for singing data.
(a) model trained on singing dataset Opencpop [28] for 10 epochs; (b) model trained
on speech dataset TIMIT [31] for 10 epochs.

Recent research has focused on neural aligners which employ neural net-
works(e.g., LSTM [9]) to handle acoustic features(e.g., mel-spectrograms) and
text information jointly to obtain alignment results [23,26,30]. Attention mech-
anisms are exploited in [23,26] to realize acoustic-textual interaction, which is
expected to get frame-wise and phoneme-wise alignment information. However,
when we reproduced the model in [26] and tested it with singing data and
speech data, we found that for speech phoneme-audio pairs, the attention matrix
emerges with a clear monotonic alignment trend after several epochs. But it fails
to acquire alignment when trained with singing data. Figure 1 illustrates the
details. We argue that it can be attributed to the intrinsic nature discrepancy
between singing and speech audios mentioned before.

To deal with this problem, in this work, we discard the attention mechanism
and the text encoder mentioned in the previous research and design an acoustic
encoder architecture with multi-scale information fusion to effectively cap-
ture the complicated acoustic features. As a result, we reduce the model size,
making it so compact that it has only 2.57m parameters (which is 37% less
than that model in [26] has) in our experiments and, therefore, easy to train.
Our model can be well-trained in dozens of epochs, while this number is several
hundred in previous work.

Inspired by [26], we employ the mel-spectrogram reconstruction loss to assist
CTC loss [7] for model training. Thanks to the compact structure of the model,
it takes less time to train it, which is relatively efficient. We exert a dynamic
programming algorithm directly(i.e., no need for additional processing) on the
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likelihood matrix, which is used to compute CTC loss to achieve phoneme-to-
audio alignment. Experiment results on different singing datasets in different
languages imply the effectiveness and generality of our method.

In summary, the contributions of this work are:

– a compact and general phoneme-to-audio aligner for the singing voice.
– an acoustic encoder with multi-scale information fusion which is effective

in processing singing voice features.
– a dynamic programming algorithm that directly utilizes the likelihood matrix

for alignment search.
– experiments on different datasets in different languages to validate the effec-

tiveness of our method.

The paper is structured as follows. In Sect. 2, we review several statistic and
neural phoneme-to-audio aligners; detailed model architecture and the alignment
algorithm are represented in Sect. 3; we conduct experiments to validate the
performance of our approach in Sect. 4; The work is concluded in Sect. 5

2 Related Works

2.1 Statistical Phoneme-to-audio Aligners

To the best of our knowledge, representative statistical phoneme-to-audio align-
ers are proposed in [6,11,16,22]. The majority of them follow an HMM-GMM
workflow. Take the Montreal Forced Aligner (MFA) [16] for example. A mono-
phonic GMM-HMM is first trained while iteratively re-estimating the alignment.
Then, provided by the alignment from the monophonic model, triphone mod-
els are trained iteratively. Speaker adaptation is performed as a last step if the
speaker identities are known. It is built upon Kaldi toolkit [19], which is efficient
and easy to use. We experimentally observe that this tool is highly effective in
phoneme-to-audio alignment for speech voice. But when we apply it to singing
data, its performance is unsatisfactory.

2.2 Neural Phoneme-to-audio Aligners

Neural phoneme-to-audio aligners can be divided into two categories, namely,
the phoneme-uninformed aligners and phoneme-informed aligners. Models of
the former type are designed to predict alignment results provided by only the
ground truth phoneme duration, but without the phonemes themselves, we refer
readers to [1,10,12,17]. While in the latter setup, models are fed with phoneme
duration information coupled with presumed phonemes [3,13,23,24,26,30]. This
work only discusses the latter category to which our model belongs.

[3] reduces the phoneme segmentation task to a binary classification at each
time step with the aid of deep bidirectional LSTM. [13] proposes an RNN-
based neural architecture coupled with a parameterized structured loss function
to learn segmental representations for phoneme boundary detection. Directed
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against the alignment of wild corrupted speech data, [23] proposes to perform
phoneme-informed speech-music separation and phoneme alignment jointly using
recurrent neural networks and the attention mechanism. These studies carefully
research alignment scenarios of speech data but have not conducted experiments
on singing audio. Like [23,24] unites phoneme level lyrics alignment with text-
informed singing voice separation with the help of a new DTW-attention mech-
anism. It performs well in singing voice alignment. In the same structure of
text-audio cross attention, [26] suggests adding a mel-spectrogram reconstruc-
tion loss to CTC loss to improve the alignment performance. It seems that the
attention mechanism is popular in the alignment model. But we find that it may
help few in the context of singing voice alignment, as illustrated in Fig. 1. So we
abandon this design and shift attention to the audio encoder structure layout
search.

3 Method

In this section, we first present the mathematical definition of the phoneme-to-
audio task. Then, we introduce our overall model structure as well as the audio
encoder. After that, loss functions are described, and a dynamic programming
algorithm is represented at the end.

3.1 Task Definition

Let M ∈ R
N×S be the mel-spectrogram where N is number of singing audio

frames and S represents number of mel bins. We rewrite it as vectors so that
M = {m0,m1,m2, . . . , mN−1}. Let Y = {y0, y1, y2, . . . , yT −1} be the transcrip-
tion phoneme sequence where T is the sequence length and yi ∈ A where A
is the phoneme alphabet. The phoneme-to-audio alignment task aims to learn
a function f so that f(mi) = ŷi, ŷi ∈ {0, 1, 2, . . . , T − 1}, ŷi � ŷi+1. Here we
constrain ŷi � ŷi+1 as the alignment is monotonic.

3.2 Overall Model

Figure 2 depicts the overall model structure. As explained in Sect. 1, we do not
adopt the popular attention mechanism mentioned in previous works in our
model design. Removing the text encoder and the attention component makes
our model more compact. There are three main modules in our model: 1) the
audio encoder which will be detailedly described in the following subsection; 2)
the CTC decoder that incorporates hidden states from the audio encoder and
outputs a log-likelihood matrix for CTC loss computation; 3) the mel decoder
which is expected to reconstruct the mel-spectrogram as precisely as possible.
The CTC decoder and the mel decoder are composed of a two-layer bidirectional
LSTM and a linear layer.
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Fig. 2. The overall model architecture. Concat means concatenate.

3.3 Audio Encoder

The acoustic features of the singing voice are more complex than those of the
speech voice. For example, a singing voice has a wider pitch range, more prosodic
change, and longer phoneme duration. So we argue that it is necessary to design
an encoder that can efficiently capture and encode acoustic information in mel-
spectrograms.

We design an audio encoder illustrated in Fig. 3. It mainly comprises con-
volution layers, max-pooling layers, and bidirectional LSTMs. The key idea of
the design is multi-scale information fusion. We arrange n groups of con-
volution layer and max pooling layer in parallel. Each of them is expected
to obtain acoustic features of a specific scale from the mel-spectrograms. We
unsqueeze the mel-spectrogram to extend an extra channel dimension. So the
parameter input channels of the convolution layer is set to 1. Different chan-
nels can acquire information from different modes on a specific scale. The kernel
of the 2d convolution layer is two-dimensional. One dimension convolves along
the time scale, capturing prosodic information, and another convolves along the
pitch scale, capturing information from different pitch regions.

We attach great importance to different settings of the kernel size ki
c in dif-

ferent groups. We split the mel-spectrogram into several pitch regions along the
pitch dimension. Convolution stride si is set to a large value in pitch dimension
so that the kernel can obtain acoustic features from a specific pitch region at
each stride. The following max-pooling layer is designed to reduce information
from all pitch regions. After max-pooling, information from all groups is added
up. The pitch dimension is reduced to 1 after convolving and pooling. So we
squeeze it to maintain the dimensions of the feature map. Following a non-linear
transformation, the feature map is fed to LSTM layers to fuse information along
the time scale.
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Fig. 3. The audio encoder structure. Operator unsqueeze extends a target extra dimen-
sion on the data; operator squeeze removes a target dimension from the data.

3.4 Loss Functions

The CTC loss [7] has been successfully employed in lyrics-to-audio alignment
tasks [25,27]. We continue to use this loss function in our model training because
of the similarity between lyrics-to-audio alignment and phoneme-to-audio align-
ment. Formally, when using CTC loss, the model is required to predict an extra
blank label ε, which is absent in the alphabet A. As a result, the predicted
sequence of model becomes Ȳ = {ȳ0, ȳ1, . . . , ȳT −1}, ȳi ∈ {ε}

⋃
A. For example,

it can be Ȳ = {ε, ε, a, a, a, ε, ε, b, b, ε, ε} that corresponds to the target sequence
Y = {a, b}. Define a reduce function R so that R(Ȳ ) = Y . Given M , the poste-
rior probability can be expressed as:

P(Y |M) =
∑

Ȳ ,R(Ȳ )=Y

T −1∏

i=0

P(ȳi|M) (1)

Then CTC loss is computed as:

LCTC = −logP(Y |M) (2)

CTC loss only ensures that the sequence decoded from probabilities Ȳ is close
to the correct one Y . As a result, the time locations in the phonetic posteriogram
do not contribute to the loss value. Whereas they directly have an impact on
the alignment quality [26]. It is important to incorporate this information into
loss functions. Inspired by [26], we also employ a mel-spectrogram reconstruction
loss to help the model predict phonemes at their accurate position. Let M̄ be
the mel-spectrogram predicted by the model, the reconstruction loss is a simple
L2 distance between M̄ and M :

LREC = ‖M̄ − M‖22 (3)

Eventually, the loss function for the model is written as:

L = LCTC + λ ∗ LREC (4)



A Compact Phoneme-To-Audio Aligner for Singing Voice 189

where parameter λ balances the effect of two losses.

Fig. 4. The likelihood matrix L and the score matrix C acquired by the alignment
algorithm. The bright yellow line in Figure (a) indicates the index of blank label.
Notice that Alphabet Index in figure (a) represents the index of the alphabet of the
model. We add blank and a few other symbols to the dataset alphabet to build the
alphabet of the model.

3.5 Alignment Algorithm

The model is trained with CTC loss which is usually employed in Automatic
Speech Recognition(ASR) tasks. There is a gap between this and phoneme-to-
audio alignment. [26] calculates a cost matrix from the likelihood matrix accord-
ing to the definition of CTC loss, then removes blank labels from the cost matrix.
Finally, beam search decoding [4] is employed to retrieve phoneme durations.

We observe that though CTC loss tends to guide the model to predict blank
label, the model will learn to assign a larger probability to the correct label for
every audio frame. Hence we propose a dynamic programming algorithm that
directly deals with the likelihood matrix. The algorithm is mainly motivated by
[21]. We add some matrix processing steps to the original algorithm and represent
it in Algorithm 1. It is written in PyTorch [18] style. The input likelihood matrix
L ∈ R

N×|A|, where |A| represents the size of phoneme alphabet, is the output of
CTC decoder. Input vector I is composed of indices of phonemes in the alphabet.
The key step of the algorithm is line 5 in Algorithm 1, which acquires a score
matrix C. Every entry of C records the score that every frame gains from every
phoneme. We visualize this transformation in Fig. 4. As the figure illustrates,
the score matrix is roughly monotonic hence suitable for dynamic programming.
The rest of the algorithm is dynamic programming. For better understanding,
we interpret the matrix symbols: R is a reward matrix that records the reward
of every path; the boundary matrix is marked as B, which keeps the optimal
path; P represents accumulative score matrix recording the accumulative sum
of entries in score matrix C.
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Algorithm 1 DP for Phoneme Duration Extraction
1: Input: Likelihood matrix L ∈ R

N×|A|, alphabet indices of phoneme sequence I ∈
R

T

2: Output: Phoneme duration D ∈ R
T

3: Initialize:
4: It = I.unsqueeze(0).repeat(A.size(0), 1)
5: C = A.gather(dim = 1, index = It)
6: R = torch.zeros like(C)
7: B = torch.zeros like(C)
8: P = torch.cumsum(C, dim=1)
9: R[0, :] = P[0, :]

10: for i in range(1, T ) do
11: for j in range(0, N ) do
12: for k in range(0, j + 1) do
13: r = R[i-1, k] + P[i, j] - P[i, k]
14: if r > R[i, j] then
15: R[i, j] = r
16: B[i, j] = k
17: end if
18: end for
19: end for
20: end for
21: P = N − 1
22: for i in range(T , 0, -1) do
23: D = P - B[i - 1, P ]
24: P = B[i - 1, P ]
25: end for
26: D.reverse()
27: return D

4 Experiments

4.1 Datasets

To verify the generality of our method, we select four singing alignment datasets
in Chinese, English, Hokkien, and Japanese, respectively.

Opencpop [28] is a singing corpus that consists of 100 popular Mandarin
songs performed by a female professional singer. Audio files are recorded with
studio quality at a sampling rate of 44,100 Hz. All singing recordings have been
cut into segments shorter than 15 s, and phonetically annotated with phoneme
and syllable (note) boundaries. It adopts the initials and finals in Chinese Pinyin
for phonetic annotation. The total duration of the recording is around 5.2 h, and
the number of segments is 3756.

The English singing dataset NUS48E [2] is a 169-minute collection of audio
recordings of the sung and spoken lyrics of 48 (20 unique) English songs
recorded at 44,100 Hz by 12 subjects and a complete set of transcriptions and
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Fig. 5. Segment duration distribution of the four datasets. Duration is expressed in
second(s).

duration annotations at the phone level for all recordings of sung lyrics, com-
prising 25,474 phoneme instances. It adopts the 39-phoneme set used by the
CMU Dictionary for phonetic annotation [29]. We use the singing part in our
experiments which consists of 115-minute audio. We split the songs into 1227
5 s-10 s fragments for training convenience.

We collect a dataset named GeZiXi which contains audio recordings of 4.54 h.
The audio content is the a cappella Gezi Opera, a traditional Chinese opera
performed in Hokkien. The 1938 audio segments are recorded at 44,100 Hz by
five subjects and aligned with text manually. Audio duration spans between 1 s
and 29 s.

NamineRitsu [32] is a Japanese singing dataset composed of 107 Japanese
songs. Recordings are performed by a single female singer without accompani-
ment, constituting a 4.29-hour dataset. The songs are recorded at 44,100 Hz. We
split the origin songs into 4571 segments longer than 1 s but shorter than 30 s
according to the silence parts.

The segment duration distribution of the four datasets is illustrated in Fig. 5.
The datasets have different duration distributions. Thus, they are qualified for
performance evaluation.

Fig. 6. Alignment result comparison between the ground truth and prediction from
our model on Opencpop data. (a) is the ground truth phoneme durations; (b) is the
predicted phoneme durations from our model.
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4.2 Experiment Setups

Model Architecture Setups. All Bi-LSTMs are designed with two layers
whose hidden sizes are 256. The number of groups in the audio encoder is set to 2,
and output channels o is set to 256. The network parameters of the audio encoder
are set as follows: k0

c = (20, 3), s0 = (10, 1), k0
m = (7, 3); k1

c = (60, 1), s1 =
(10, 1), k1

m = (3, 3).

Other Setups. Raw audios are converted into mel-spectrograms with Short
Term Fourier Transform (STFT). We re-sample the audio at a sampling rate
of 24k. We use Hanning window with size 512. FFT size is set to 512, and hop
length is set to 128. We adopt the PyTorch implementation of CTC loss in
our experiments and set the hyperparameter λ to 1. Training is done with the
AdamW [15] optimizer in initial learning rate 1e-3, which decays with an expo-
nential rate of 0.93. Training is done with the help of the early stopping strategy
according to alignment performance on the validation set. All experiments are
carried out with batch size 16 on a single GeForce RTX 2080 Ti GPU.

4.3 Results

Experiment results are shown in Table 1. The performances of the models are
evaluated with six main assessment metrics for the alignment task, namely, Mean
Average Error (MAE), which is the average time imprecision in predictions;
MEDian average error (MED), which is the median time imprecision in predic-
tions; Percentage of Correctly Aligned Segments (PCAS) [5], which measures
the percentage of overlap of ground truth and estimated segments. MAE and
MED are expressed in milliseconds (ms), and PCAS is a percentage indicator.
We compute the mean of the three metrics on the four datasets and put it in the
table. Notice that the results of Teytaut et al. [26] are from our re-implementation
model. We find that metrics on the GeZiXi dataset significantly differ from those
on other datasets. Because samples from the GeZiXi dataset have a longer dura-
tion(refer to Fig. 5), the phoneme intervals are further segmented into smaller
intervals according to their pitch changes, which increases the difficulty in bound-
ary prediction. Our model outperforms the baseline models by a large margin
on the four datasets in the metrics on average.

Notably, when we add the attention mechanism to our model, its performance
does not improve(see the bottom of the table). It indicates that the attention
mechanism can not provide additional helpful information but increase the model
size.

We visualize an example of the alignment result on Opencpop data in Fig. 6.
It can be found that our model tends to predict phoneme boundaries according
to spectral similarity, as illustrated in the last part of the figure.
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Table 1. Test results on the four datasets. MAE and MED are expressed in mil-
liseconds(ms), and PCAS is expressed in percentages(%). The Mean row records the
average values of the corresponding metrics on four datasets. w/ attn means with an
attention mechanism.

Method Dataset MAE↓ MED↓ PCAS↑
MFA Opencpop 84.5 40.4 74.3

GeZiXi 183.8 81.0 64.8

NUS48E 90.0 36.1 72.4

NamineRitsu 43.0 22.0 86.5

Mean 100.3 44.9 74.5

Teytaut et al. [26] Opencpop 154.1 71.9 47.7

GeZiXi 442.5 236.0 26.9

NUS48E 157.1 72.7 64.6

NamineRitsu 49.9 23.7 82.3

Mean 200.9 101.1 55.4

Ours Opencpop 56.1 36.2 79.4

GeZiXi 167.0 65.3 71.1

NUS48E 38.4 23.0 88.6

NamineRitsu 30.9 14.6 89.0

Mean 73.1 34.8 82.0

Ours-w/ attn Opencpop 60.5 34.4 77.7

GeZiXi 165.6 63.0 71.0

NUS48E 38.0 21.7 89.2

NamineRitsu 30.8 17.7 89.5

Mean 73.7 34.2 81.9

4.4 Ablation Studies

Effectiveness of the Proposed Audio Encoder. To evaluate how much
improvement the model gains from the proposed audio encoder, we simply
replace the audio encoder with other components such as Linear + LSTM and
Conformer [8]. We test model performance on the datasets introduced in Sub-
sect. 4.1. Experiment setups are the same as that in Subsect. 4.2. The number
of layers and hidden size are set to the same value. As shown in Table 2, our
proposed audio encoder outperforms other encoders on average thanks to the
well-designed convolution structure.

Effectiveness of the Alignment Algorithm. We apply our alignment algo-
rithm to the output of the model in [26] to validate the effectiveness of the
algorithm. We conduct the experiment on a speech dataset TIMIT [31], which
contains 5-hour multi-speaker speech audios and the corresponding phonetic
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Table 2. Effectiveness of different encoders on different datasets. MAE and MED are
expressed in milliseconds(ms), and PCAS is expressed in percentages(%). The Mean
row records the average values of the corresponding metrics on four datasets.

Encoder Dataset MAE↓ MED↓ PCAS↑
Linear+LSTM Opencpop 56.3 35.4 80.3

GeZiXi 174.6 76.0 69.1

NUS48E 42.4 25.1 88.2

NamineRitsu 32.7 15.7 89.4

Mean 76.5 38.1 81.7

Conv1d+LSTM Opencpop 62.5 33.5 78.7

GeZiXi 165.8 65.7 70.5

NUS48E 41.1 24.7 89.2

NamineRitsu 35.0 19.0 88.6

Mean 76.1 35.7 81.8

LSTM Opencpop 55.5 32.1 81.0

GeZiXi 174.0 89.0 68.6

NUS48E 39.2 21.1 87.1

NamineRitsu 34.0 18.0 89.2

Mean 75.7 40.1 81.5

Conformer [8] Opencpop 62.8 36.1 74.7

GeZiXi 184.1 78.7 67.8

NUS48E 47.9 21.5 87.3

NamineRitsu 28.6 13.0 89.9

Mean 80.9 37.3 80.6

Ours Opencpop 56.1 36.2 79.4

GeZiXi 167.0 65.3 71.1

NUS48E 38.4 23.0 88.6

NamineRitsu 30.9 14.6 89.0

Mean 73.1 34.8 82.0

Table 3. Effectiveness of the alignment algorithm on TIMIT dataset. The column
Training Time represents the training time consumption expressed in hours(h). The
units of MAE and MED are milliseconds(ms), and the unit of PCAS is percentages(%).

Method MAE↓ MED↓ PCAS↑ Training Time(h)

MFA 16.3 15.7 93.7 1.6

Teytaut et al. [26] 16.3 11.8 94.1 4

Ours 16.4 12.1 93.9 0.6
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transcriptions. Experiment setups are the same as in Subsect. 4.2 except that
the sampling rate is changed to 16k. Table 3 records the results. The alignment
algorithm of our method is competitive with that of the baseline method. And
the training time can be reduced a lot with our alignment algorithm using the
early stopping strategy.

Table 4. Performance of model trained on different sizes of dataset. The units of MAE
and MED are milliseconds(ms), and the unit of PCAS is percentages(%).

Dataset Size(h) MAE↓ MED↓ PCAS↑
NamineRitsu 4.29 30.9 14.6 89.0

NamineRitsu-M 2.16 35.7 19.3 87.6

NamineRitsu-S 1.14 39.0 19.7 87.0

The Impact of Dataset Size. We remove part of the data from the original
NamineRitsu dataset to build two smaller datasets, namely, NamineRitsu-M
and NamineRitsu-S, whose size is 2.16 h and 1.14 h, respectively. We conduct
experiments on them to research the impact of different dataset sizes on our
method. Experiment setups are the same as that in Subsect. 4.2. The results are
illustrated in Table 4. The model performance decreases as the dataset becomes
smaller. But our model still outperforms the baseline even if trained on a much
smaller dataset, which validates the robustness of our method to different data
sizes.

5 Conclusion

In this paper, we present an easy-to-train and compact model specially designed
for phoneme-to-audio alignment tasks for the singing voice. We analyze the
attention mechanism employed by previous works and find that it is not indis-
pensable for singing alignment as it is not able to learn valid alignment infor-
mation between phonemes and audio. We discard the attention components and
highlight on the design of an efficient audio encoder. We introduce an alignment
algorithm that takes the likelihood matrix as input and outputs the alignment
result. We test our method on datasets of different languages. Experiment results
indicate the effectiveness of our method.
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Abstract. Writing a video from text script (i.e., video editing) is an
important but challenging multimedia-related task. Although a number
of recent works have started to develop deep learning models for video
editing, they mainly focus on writing a video from generic text script,
not suitable for some specific domains (e.g., song lyrics). In this paper,
we thus introduce a novel video editing task called song-to-video trans-
lation (S2VT), which aims to write a video from song lyrics based on
multimodal pre-training. Similar to generic video editing, this S2VT task
also has three main steps: lyric-to-shot retrieval, shot selection, and shot
stitching. However, it has a large difference from generic video editing in
that: the song lyrics are often more abstract to understand than the com-
mon text script, and thus a large-scale multimodal pre-training model
is needed for lyric-to-shot retrieval. To facilitate the research on S2VT,
we construct a benchmark dataset with human annotations according to
three evaluation metrics (i.e., semantic-consistence, content-coherence,
and rhythm-matching). Further, a baseline method for S2VT is proposed
by training three classifiers (each for a metric) and developing a beam
shot-selection algorithm based on the trained classifiers. Extensive exper-
iments are conducted to show the effectiveness of the proposed baseline
method in the S2VT task.

Keywords: Video editing · Song-to-video translation · Multimodal
pre-training

1 Introduction

As a major communication medium, video has a wide range of applications in our
daily life. Particularly, short videos are getting more and more popular in social
media, which leads to a large demanding for efficient video editing. However,
generating a well-edited video often requires the user to have professional skills in
manual video shot selection/cutting and shot stitching, which are rather boring
and time-consuming. To meet the need of non-professional users and reduce the
boring editing time, we are in need of automatic/semi-automatic video editing
system. With such video editing system, users can select video shots w.r.t. the
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Fig. 1. The schematic illustration of our song-to-video translation (S2VT) framework.
It aims to write/generate a target video from a song and its paired lyrics.

text script, drag them into one existing template, and then synthesize a target
video with favorite background music selected.

Many video editing methods have been proposed to write videos from text
scripts [8,11,13,21,22]. From traditional machine learning methods to recent
deep learning ones, the workflow of video editing has been largely improved. For
example, earlier work [9] resorts to a semi-automatic method for home video
editing by analyzing a set of candidate videos and computing their ‘unsuit-
ability’ scores. With the development of deep learning, more advancing video
editing methods [3,8,11,21,22] have been devised for automatic video genera-
tion from text scripts (e.g., text instruction or single semantic label map). Note
that these cutting-edge works mainly focus on writing/generating a video from
generic text script, not suitable for some specific domains (e.g., song lyrics). In
this paper, we thus introduce a novel video editing task termed song-to-video
translation (S2VT), which aims to automatically generate a video from song
lyrics based on multimodal pre-training (e.g., WenLan [7] and CLIP [18]).

Similar to generic video editing, the S2VT task also has three main steps:
cross-modal shot retrieval (i.e., lyric-to-shot retrieval), shot selection, and shot
stitching, as shown in Fig. 1. Among them, cross-modal shot retrieval is a critical
step, which is very difficult even for experts. For each sentence of the text script,
the semantic meaning of the retrieved video shots should be consistent with that
of this sentence. To overcome the challenge in cross-modal shot retrieval, Write-
A-Video [21] resorts to a vision-semantic embedding approach (VSE++) [6]
and Transcript-to-Video [22] devises a vision-language embedding module for
generating videos from generic text scripts. However, compared to generic text
scripts, the song lyrics are often more abstract to understand, and thus lyric-to-
shot retrieval is still difficult for these vision-language embedding modules (with
small model parameters or training data) used in [21,22]. Therefore, in this work,
we choose to deploy a large-scale multimodal pre-training model WenLan [7] for
lyric-to-shot retrieval. With this very-large vision-language embedding model
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pre-trained over 650M image-text pairs, the generated video is expected to be
semantically consistent with the song lyrics.

In order to facilitate the research on the S2VT task, we construct a bench-
mark dataset with human annotations according to three evaluation metrics (i.e.,
semantic-consistence, content-coherence, and rhythm-matching). Note that these
metrics are exactly the requirements that a well-edited video needs to satisfy in
S2VT. Further, a baseline method for S2VT is proposed by training three clas-
sifiers (each for a metric) and developing a beam shot-selection algorithm based
on the trained classifiers. The core idea of this beam algorithm is that adding
a new shot to the current edited video (sentence by sentence in turn) is under
the joint guidance of semantic-consistence classifier, content-coherence classi-
fier, and rhythm-matching classifier. Overall, the whole generation process of
S2VT is illustrated in Fig. 1. Specifically, for each sentence of the song lyrics, we
retrieve the top-6 shots that are semantically consistent with this sentence from
the footage repository by deploying the multimodal pre-training model WenLan.
Further, from the retrieved top-6 shots, the most suitable shot is selected with
the beam shot-selection algorithm. Finally, all the selected shots are stitched
together to synthesize a complete and artistic video.

Our main contributions are three-fold: (1) We introduce a novel video editing
task called song-to-video translation (S2VT). For this challenging task, we pro-
pose a baseline method to automatically generate videos from song lyrics based
on multimodal pre-training, which is a good start of the study of S2VT. (2) We
construct a song-to-video benchmark dataset with human annotations accord-
ing to three evaluation metrics (i.e., semantic-consistence, content-coherence,
and rhythm-matching), which greatly facilitates the research on S2VT. (3) We
design an automatic evaluation system to evaluate the performance of S2VT.
It consists of three evaluation metrics including semantic-consistence, content-
coherence, and rhythm-matching. Extensive experiments are conducted to show
the effectiveness of the proposed baseline method.

2 Related Work

2.1 Music-to-Video Generation

Over the past few years, many studies have chosen to explore the association pat-
terns between audio data and video data to perform a variety of tasks [1,14,17].
Among them, music video generation [2,5,10,16] has been studied most exten-
sively. Specifically, [14] devises an automatic MTV (Music Television) generation
system by mining the association patterns between music and video clips in pro-
fessional MTV. [15] proposes a music-driven method to generate video montage.
That is, with a set of video clips and a background music as input, video montage
is synthesized by analyzing the music requirements and video content. It can be
seen that these generation methods mainly utilize the rhythm and melody fea-
tures of music to match the video content features (i.e., rhythm-matching). In
contrast, our current work focuses on song-to-video translation from song lyrics:
the generated video content is not only matched to the musical rhythm, but also
semantically consistent with the song lyrics (i.e., semantic-consistence).
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2.2 Music-Video Dataset

To facilitate the research on music retrieval and recommendation, Music-Video
Dataset (MVD) has been constructed in [19,20]. The music videos of MVD are
manually collected from the western music artists, which cover multiple lan-
guages (English, Thai, French, German, etc.), and the average duration of music
videos is 4 min. In this work, we construct a song-to-video dataset, which can
also be regarded as a music-video dataset. However, our dataset is quite different
from MVD in both collection and usage: it is automatically generated by our sys-
tem with Chinese lyrics as input, and is constructed to facilitate the development
of song-to-video translation. More importantly, the generated videos are anno-
tated according to three metrics (i.e., semantic-consistence, content-coherence,
and rhythm-matching). The high-quality videos in our dataset (with high scores
on three metrics) are thus very close to the human-level. With our proposed
dataset (the average duration of videos is 30 s), any model can be trained by
simply adopting videos with high scores as ground-truth. Therefore, our pro-
posed dataset is indeed realistic for future work on S2VT.

3 Song-to-Video Translation

Song-to-Video translation (i.e., S2VT) is a novel video editing task, which aims
to create an artistic video from song lyrics (Chinese song lyrics in this paper).
Due to abstract nature of song lyrics, a multimodal pre-trained model Wen-
Lan [7] is deployed to match lyrics with video shots. Note that WenLan is a
very-large Chinese multimodal (vision-language) embedding model pre-trained
over 650M image-text pairs collected, thus it has a good cross-modal semantic
understanding ability (more details can refer to [7]). The pipeline of our S2VT
framework is illustrated in Fig. 2, which consists of three main steps: lyric-to-shot
retrieval, shot selection, and shot stitching.

Lyric-to-Shot Retrieval. In the cross-modal retrieval phase, the large-scale
multimodal pre-trained model WenLan is utilized to ensure the semantic con-
sistency between video content and song lyrics: the image and text encoders of
WenLan are first used as feature extractors to extract lyric features and shot
features, respectively; the similarity scores between lyrics and shots are then
computed by the cosine distance; the top-6 shots are retrieved from the footage
repository for each sentence of the song lyrics. More specifically, for shot fea-
ture extraction, we divide each shot (in the footage repository) into 8 segments
equally, and extract the middle frame of each segment, resulting in 8 frames per
shot in total. We then feed them into the image encoder of WenLan to obtain
each frame feature, and take the average feature as the shot feature. Since the
footage repository is very large, we extract the shot features in advance and save
them as npy files, which is convenient for cross-modal retrieval. With WenLan,
we can retrieve the top-6 shots that most semantically match each sentence of
song lyrics from the footage repository (which will be introduced in Subsect. 4.1).
To avoid repeated retrieval for similar sentences in song lyrics, we have processed
the similar sentences. If the similarity of two adjacent sentences is greater than
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Fig. 2. Illustration of the pipeline of our song-to-video translation (S2VT) framework.
For each sentence of the song lyrics, the top-6 shots are retrieved through WenLan [7]
from the footage repository. Further, with certain shot selection strategy, 1–2 shots are
often selected from the top-6 shots for each sentence (with duration) of the song lyrics.
Finally, all selected shots are stitched together to composite a complete and artistic
video (with the corresponding song being fused).

certain threshold, they are spiced together (simultaneously feed them into Wen-
Lan to retrieve shots). Here, we also use the cosine distance to calculate the
similarity between sentences, and set the threshold to 0.85. Further, to avoid the
repeated use of some shots in an edited video during retrieval, we put the used
shots into a history list for record. If the current shot falls in the history list, we
then pass it and select the next best shot.

Shot Selection. In the shot selection phase, there are different selection
strategies for selecting shots from the retrieved top-6 shots per sentence (of the
song lyrics). Two simple strategies are Top-1 Selection and Random Selection.
Concretely, Top-1 Selection indicates that we always select the top-1 shot that
best matches the given sentence from the top-6 shots. Random Selection indi-
cates that we randomly select a shot for the given sentence from the top-6 shots.
In addition to these two simple selection strategies, we propose another more
sound selection strategy in Sect. 5, i.e., beam shot-selection under the joint guid-
ance of certain classifiers for improving the quality of generated videos.

Shot Stitching. In the shot stitching phase, the required shot frames are first
obtained according to the duration of each sentence of the song lyrics. Generally,
each sentence requires only one shot, but sometimes two shots are needed to
cover the duration of this sentence. Such two-shot-per-sentence stitching may
cause bad results (e.g., the second shot may pass by in a flash). To overcome
this drawback, we choose to keep a balance between the required frames of the
first shot and those of the second shot, and simply delete the redundant frames
from the two shots. Finally, we stitch all the obtained shot frames in turn, write
them to a video file, and add the corresponding song clip. In this way, a complete
and artistic video can be composited. Here, the video frame rate is set to 30 fps,
and the frame image size is resized to (1920, 1080).
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As we have mentioned, a well-edited video must meet three requirements: (a)
semantic-consistence – the video content is consistent with the semantics and
context of song lyrics; (b) content-coherence – the video content is coherent on
its own; (c) rhythm-matching – the video content matches the music rhythm.
However, the video generation methods developed based on Random Selection
and Top-1 Selection have distinct drawbacks, because WenLan [7] only pays
attention to requirement (a) (i.e., semantic-consistence) and ignores the other
two important requirements (b) and (c) (i.e., content-coherence and rhythm-
matching). Therefore, we choose to improve these methods and propose a beam
shot-selection algorithm for solving the S2VT task, so that all three requirements
are considered during video generation. By inputting song and paired lyrics, our
system can generate an composite and artistic video. In addition, we construct a
song-to-video benchmark dataset to facilitate the research on S2VT and design
an automatic evaluation system to evaluate the performance of S2VT task.

4 Song-to-Video Dataset

In this section, we construct a song-to-video benchmark dataset with human
annotations according to the three evaluation metrics. The whole dataset con-
struction is divided into three parts: song and footage collection, video genera-
tion, and video annotation. For video generation, we adopt Random Selection
for shot selection, and keep the other steps the same as Sect. 3. Below we only
describe the other two parts of dataset construction in detail.

4.1 Song and Footage Collection

Song Collection. The collection of song clips is very important for video
generation. A qualified song clip can make the composited video more attractive
to users. The collection of song clips is divided into two steps: the collection of
the entire song files and corresponding lyrics files, and the cutting of songs. We
mainly describe the second step – the cutting of songs. Concretely, we first cut
the entire lyric file into several parts (each part has several sentences), and then
calculate the duration of each lyric clip. If the duration of a lyric clip exceeds
40 s, we cut it again to ensure that the duration of final song clip is kept between
20 s and 40 s. For those clips shorter than 20 s, we directly discard them. After
this cutting step, a song (with its lyrics) is cut into several different song clips
(with their clip lyrics). Overall, we collect a total of about 400 Chinese songs.

Footage Collection. The collection of footage is also vital for video gener-
ation. Rich and diverse footage is beneficial to improving the quality of generated
videos, making them more attractive. We have crawled about 20,000 video shots
from several websites such as pexels.com. These shots contain rich contents, and
a set of keywords are used for shot crawling: nature, flower, drink, club, highway,
sunset, sing, climb, etc. Note that we pre-process all video shots before retrieval.
That is, we filter out some bad shots (e.g., pornography and violence) from the
huge footage repository. We present a number of shot examples in Fig. 3(a), and
also visualize the shot duration distribution of the entire footage repository in
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Fig. 3. (a) The shot examples from the footage repository. (b) The distribution of shot
duration for the footage repository.

Table 1. The statistics of positive and negative samples under each metric in the
training set and test set.

Metrics semantic-consistence content-coherence rhythm-matching

# Positive (Training) 1002 852 1278

# Negative (Training) 771 921 495

# Positive (Test) 124 95 156

# Negative (Test) 76 105 44

Fig. 3(b). From the shot duration distribution, we can see that the duration of
most video shots is between 8 s and 20 s.

4.2 Video Annotation

With our song and footage collection, we further generate about 2,000 videos
(each for a song clip). The song-to-video translation method (with Random
Selection) described in Sect. 3 is used for automatic video generation.

To evaluate the quality of generated videos and also obtain the training data
for subsequent classifier training, we manually annotate the generated videos
according to three evaluation metrics. Here, we use the three requirements
mentioned in Sect. 3 as the evaluation metrics of the video quality, including
semantic-consistence, content-coherence, and rhythm-matching. We score each
video according to these three metrics by three professional annotation persons
(with payment). These professional persons are independent of each other. The
video scoring process is as follows: if a metric out of the three ones is met, we
mark it as 1, otherwise mark it as −1. We count the total score of each video
under each metric. If the total score is less than 0, we annotate its label to 0 (neg-
ative sample), otherwise annotate its label to 1 (positive sample). Note that we
select those videos with more than 5 shots to better judge the content-coherence
metric. Further, we arrange 1,773 videos as the training set and 200 videos as
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Fig. 4. The schematic illustration of the three classifiers used for the beam algorithm.
The semantic-consistence classifier takes the lyric features and video sequence features
as input, the content-coherence classifier takes the video sequence features as input, and
the rhythm-matching classifier takes the video sequence features and musical rhythm
features as input.

the test set. To avoid the overfitting to the songs, all song clips from the same
song are forced to fall into either the training set or the test set. The statistics
of positive and negative samples under each metric are shown in Table 1. Our
constructed benchmark dataset is available at an anonymous GitHub link1.

5 Baseline Method

As we have mentioned in Sect. 3, we can propose a baseline method for song-
to-video translation by instantiating the shot selection strategy with a beam
shot-selection algorithm. This is now made possible by training three classifiers
according to the three metrics (i.e., semantic-consistence, content-coherence, and
rhythm-matching) over our constructed dataset. Note that the trained classifiers
can be used as the scoring functions of the beam algorithm for measuring the
quality of the (partial) generated videos. In the following, we give the details of
classifier training (see Fig. 4) and beam shot-selection algorithm.

5.1 Classifier Training

As illustrated in Fig. 4, we train three auxiliary classifiers over the annotated
video dataset according to the three metrics, which are called as semantic-
consistence classifier, content-coherence classifier, and rhythm-matching classi-
fier respectively. These classifiers are used as the scoring functions for selecting
shots in the beam algorithm to improve the quality of generated videos.

During training all three classifiers, video features are always needed. In this
regard, first of all, we describe the extraction of video features. Specifically, a
generated video usually contains a large number of frames from multiple shots,

1 https://github.com/S2VTouser/Video-Dataset.

https://github.com/S2VTouser/Video-Dataset
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and it is not practical to directly input all shot frame features into the classifiers
for training. However, to ensure that each shot can be exploited for classifier
training, we first extract 10 frames per shot, feed them into the image encoder
of WenLan [7] to obtain their frame features, and utilize their average feature
as the shot feature. It should be noted that, instead of continuous extraction,
we adopt equal-interval extraction for extracting 10 frames from each shot to
cover the entire shot, which is more representative. After all the shot features of
a generated video are obtained, we combine them into a feature sequence, which
can be seen as the video sequence features.

Fig. 5. The beam shot-selection algorithm used in the proposed baseline method for
song-to-video translation.

The composition of the three classifiers is similar. Due to the limited amount
of annotated data, the overall structure of each classifier is kept as simple as
possible to prevent over-fitting, which mainly includes a sequence encoder layer
for extracting sequence information and a fully connected layer with two outputs
(i.e., positive or negative) for classification of the input video. Here, the gated
recurrent unit (GRU) [4] module is used as the sequence encoder. As shown in
Fig. 4, when training the semantic-consistence classifier, we take the obtained
video shot sequence features and lyric features (extracted with the text encoder
of WenLan) as input. When training the content-coherence classifier, we only
take the obtained video sequence features as input. When training the rhythm-
matching classifier, we take the obtained video sequence features and musical
rhythm features (extracted with the pre-trained PANNs [12]) as input. Overall,
after a cross-entropy loss is defined over the output layer for each classifier, we
train it over the annotated video data (their performance is reported in Table 3).

5.2 Beam Shot-Selection Algorithm

The beam shot-selection algorithm is the core of our proposed baseline method
for song-to-video translation. By using the trained three classifiers as the scoring
functions, the beam shot-selection algorithm is able to select the ‘best’ shots
combinations for generating a video with better quality, as shown in Fig. 5. We
set the beam size to 2. Specifically, for each song clip, we retrieve the top-6 shots
with the first sentence of its song lyrics, feed them into a set of trained classifiers
to obtain their scores (averaged over the set of trained classifiers), and select the
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‘best’ Top-2 shots with the highest scores. For the retrieved top-6 shots with the
second sentence, we splice the selected shots of the first sentence respectively
with these 6 shots, feed them into the set of trained classifier, and select the
‘best’ Top-2 shot combination with the highest scores from 12 video clips. This
step can be repeated in turn. Finally, we obtain the ‘best’ spliced whole video.
Note that the set of trained classifiers used in the beam shot-selection algorithm
may include only one arbitrary classifier, two arbitrary classifiers, or even all
three classifiers. However, we find that the joint guidance of all three classifiers
leads to the best average performance of video generation (see Table 2).

Table 2. The ablation study results among Random Selection, Top-1 Selection, and
Beam Selection within the song-to-video translation (S2VT) framework.

Algorithm semantic-consistence content-coherence rhythm-matching average

Random Selection 0.6711 0.4607 0.7906 0.6408

Top-1 Selection 0.6090 0.5195 0.7852 0.6379

Beam-sem 0.9554 0.6086 0.8210 0.7950

Beam-coh 0.7046 0.9943 0.8358 0.8449

Beam-rhy 0.7282 0.5890 0.9979 0.7717

Beam-sem-coh 0.8850 0.9792 0.8370 0.9004

Beam-sem-rhy 0.9112 0.5993 0.9877 0.8327

Beam-coh-rhy 0.7199 0.9852 0.9733 0.8928

Beam-sem-coh-rhy 0.8888 0.9394 0.9742 0.9341

6 Experimental Results

We establish an evaluation system to measure the performance of video gener-
ation under the aforementioned three metrics. These evaluation metrics can be
defined with the trained semantic-consistence classifier, content-coherence clas-
sifier and rhythm-matching classifier (see Subsect. 5.1), respectively. Specifically,
the evaluation process is as follows: we feed each generated video with a song
lyrics (random select 80 different song files and corresponding lyrics files) into a
classifier (corresponding to a metric), obtain the outputted score that this video
belongs to the positive class, and use this score to evaluate the quality of the
generated video under the corresponding metric.

Ablation Study. We conduct ablation study to compare the quality of
generated videos by Random Selection, Top-1 Selection, and Beam Selection
within the same song-to-video translation framework (see Fig. 2). Among them,
Random Selection means that the ‘best’ shot is randomly selected from the
retrieved top-6 shots for each sentence of song lyrics. Top-1 Selection means
that the ‘best’ shot is set to top-1 shot from the retrieved top-6 shots for each
sentence of song lyrics. Beam Selection means that under the guidance of a set of
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Fig. 6. The scatter plots of different score distributions (of the generated videos with 80
lyrics files) according to the three evaluation metrics. (a), (b), (c), and (d) correspond to
Random Selection, Beam-coh, Beam-coh-rhy, and Beam-sem-coh-rhy (these notations
are exactly the same as Table 2), respectively. The three dimensions sem, coh and rhy
in each sub-graph denote the semantic-consistence, content-coherence, and rhythm-
matching metrics, respectively.

diverse classifiers, the ‘best’ shot with the highest average score is selected at each
beam step. The ablation study results are shown in Table 2. Firstly, Beam-sem
indicates the guidance of semantic-consistence classifier, Beam-coh indicates the
guidance of content-coherence classifier, and Beam-rhy indicates the guidance of
rhythm-matching classifier. Secondly, Beam-sem-coh indicates the guidance of
semantic-consistence classifier and content-coherence classifier, and Beam-sem-
rhy/Beam-coh-rhy is defined similarly. Finally, Beam-sem-coh-thy indicates the
joint guidance of semantic-consistence classifier, content-coherence classifier, and
rhythm-matching classifier.

From Table 2, we have the following observations: (1) The average scores
obtained by Random Selection and Top-1 Selection are very similar. Among
the three evaluation metrics, Random Selection outperforms Top-1 Selection in
terms of semantic-consistence and rhythm-matching. This means that Random
Selection achieves improvement on semantic-consistence and rhythm-matching,
but leads to degradation on content-coherence, as compared to Top-1 Selection.
(2) Under the guidance of a single classifier, Beam Selection yields significant
improvements over both Random Selection and Top-1 Selection. Particularly,
under the guidance of content-coherence classifier, the Beam-coh method even
doubles the score of Random Selection in terms of content-coherence, indicating
the strong coherence enhancement of video content generated with the Beam-
coh method. Moreover, under the guidance of semantic-consistence classifier,
the performance of the Beam-sem method is nearly twenty-eight percent higher
than that of Random Selection in terms of semantic-consistence, showing that
the video content generated by the Beam-sem algorithm is more consistent with
the song lyrics (and also its context). (3) Under the joint guidance of any two
classifiers, the Beam Selection method generally outperforms the method under a
single classifier in terms of the average performance, indicating the scalability of
Beam Selection for song-to-video translation (S2VT). This observation is further
verified by the superior overall performance of the Beam-sem-coh-rhy method
under the joint guidance of all three classifiers. In this paper, we thus take the
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S2VT method with Beam-sem-coh-rhy for shot selection as our baseline method.
Along with our constructed benchmark dataset, the proposed baseline method
is expected to facilitate the research on the S2VT task.

Statistic Analysis. From the compared methods in Table 2, we select sev-
eral representative ones for further statistical analysis of the videos generated by
each method. As shown in Fig. 6, we present the 3D scatter plots based on the
obtained score of each video under each metric. Figure 6(a) indicates that the
score distribution is relatively scattered for Random Selection. After using the
Beam-coh method, the 3D data points are concentrated at the higher part along
the coh axis, as illustrated in Fig. 6(b). After using the Beam-coh-rhy method,
the 3D data points are further clustered at the higher part along the rhy axis,
as illustrated in Fig. 6(c). Finally, on the basis of Fig. 6(c), Fig. 6(d) shows that
the 3D data points are further clustered to the higher part along the sem axis,
after using Beam-sem-coh-rhy. This directly demonstrates the effectiveness of our
Beam-sem-coh-rhy method. That is, our proposed method has a better overall
performance over all three metrics, as compared with Random Selection.

Fig. 7. The video content coherence comparison between Random Selection and the
Beam-coh method. We present an example of two videos generated with the same lyrics
in the first two rows (or in the last two rows).

Visualization Results. Through the ablation study, we can see that our
proposed method can achieve a large improvement on three metrics over Random
Selection (see Table 2). To compare Random and Beam methods more intuitively,
we present some examples on the content-coherence and semantic-consistence in
Fig. 7 and Fig. 8, respectively. Firstly, we can observe from Fig. 7 that the scene
change in the pictures are more natural, according to Beam-coh vs. Random
Selection. That is, the video content generated by the Beam-coh method has
better coherence than Random method. Secondly, we can observe from Fig. 8
that, compared with Random Selection, the Beam-sem method makes the video
content better match the semantics of the song lyrics. For example, in the first
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Fig. 8. The semantic consistency comparison between Random Selection and the
Beam-sem method. We present an example of two videos generated with the same
lyrics in the first two rows (or in the last two rows).

two rows, for the lyrics like ‘the rain turns the whole city upside down’, and
‘write down my grief’, the semantic expression of Beam-sem is more accurate
than Random Selection. In last two rows, for the lyrics like ‘look at the sea and
the sky’ and ‘I loosen the ropes of time’, the last row is clearly more contextually
appropriate. In addition, several example videos generated by our proposed base-
line method can be found at the anonymous GitHub link2. From these results,
we can intuitively see that WenLan has great ability of generalization to the Chi-
nese song lyrics. More importantly, tens of generated videos with our baseline
have 2M plays and 250K likes on TikTok, which demonstrates adopting WenLan
without fine-tuning is sufficient.

Table 3. The training and test accuracy of three classifiers.

Classifier semantic-consistence content-coherence rhythm-matching

Training accuracy 96.95 97.86 96.00

Test accuracy 80.50 82.00 83.00

Classification Accuracy Analysis. We separately train three classifiers
(i.e., semantic-consistence, content-coherence and rhythm-matching classifiers)
for the beam algorithm based on the human-labeled song-to-video dataset. As
shown in Table 1, the ratio of positive and negative examples for the training
2 https://github.com/S2VTouser/Video-Dataset.

https://github.com/S2VTouser/Video-Dataset
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set under each metric is almost the same as that for the test set. Moreover, as
shown in Fig. 4, each classifier only has two layers: one is the sequence encoder
layer for extracting sequence information, and the other is the fully connected
layer for classification. The input dimension of the classifier is 2,560, and the
output dimension is 2. The training and test accuracies of the three classifiers
are shown in Table 3. We can see that all three classifiers achieve a test accuracy
over 80%.

7 Conclusions

In this paper, we introduce a novel video editing task called song-to-video trans-
lation (S2VT), which aims to write a video from song lyrics based on multimodal
pre-training. To facilitate the research on S2VT, we construct a song-to-video
benchmark dataset with human annotations according to three evaluation met-
rics (i.e., semantic-consistence, content-coherence, and rhythm-matching). With
this dataset, we propose a baseline method to solve the S2VT task by training
three classifiers (each for a metric) and developing a beam shot-selection algo-
rithm based on the trained classifiers. We design an automatic evaluation system
to evaluate the performance of S2VT. Extensive experiments are conducted to
show the effectiveness of the proposed baseline method in the S2VT task.

8 Limitations

In this paper, we propose a novel video editing task called S2VT. Although
the proposed method achieve great results in the S2VT task, it still exists the
limitations. Concretely, the song lyrics we adopted in this paper is Chinese song
lyrics (lyrics themselves are often more abstract), which makes them difficult for
existing video editing methods using generic sentences as inputs to understand
and apply them in the S2VT task (i.e., they completely failed in the S2VT
task). Meanwhile, this is the reason why we do not compare with more video
editing methods in the baseline results. In future work, we will improve this
issue. For example, we could manually translate Chinese song lyrics to English
ones, and feed them into the other video editing methods for generation. Finally,
the quality of generated videos by the two ways (other video editing methods
and ours) will be compared based on the corresponding metrics.

Moreover, the evaluation metrics (i.e., semantic-consistence, content-
coherence, and rhythm-matching) are not comprehensive enough. In future work,
we will explore more metrics to evaluate the quality of generated videos more
comprehensively. On the other hand, we will continue to optimize the shot selec-
tion algorithm to make the generated videos better and more artistic.
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Abstract. The existing deep learning works mainly capture breast can-
cer histopathology image features in the spatial domain, and they rarely
consider the frequency domain feature representation of histopathology
images. According to the classical digital signal processing theory, fre-
quency domain features may outperform spatial domain features in ana-
lyzing texture images. Motivated by this, we attempt to mine frequency
domain features for the breast cancer histopathology image classifica-
tion application, and further propose a novel frequency-attention convo-
lutional network called SeFFT-Net by combining the Fourier transform
with the channel attention mechanism. The core of SeFFT-Net consists
of a newly constructed frequency-based squeeze and excitation (SeFFT)
module, which first performs Fourier transform with residual construc-
tion to capture deep features in the frequency domain of histopathol-
ogy images, followed by a squeeze-and-excitation attention operator to
further enhance important frequency features. We extensively evaluate
the proposed SeFFT-Net model on the public BreakHis breast can-
cer histopathology dataset, and it achieves the optimal image-level and
patient-level classification accuracy of 98.67% and 98.16%, respectively.
Meanwhile, ablation studies also well demonstrate the effectiveness of
introducing frequency transforms for this medical image application.

Keywords: Breast cancer · Histopathology image classification ·
Convolutional neural network · Frequency domain · Channel attention

1 Introduction

Globally, breast cancer is the most common malignancy in women and the cancer
with the highest mortality rate [1]. Early diagnosis and treatment of breast
cancer is essential in augmenting the survival rate of patients, while pathological
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diagnosis is still seen as the definitive method for breast cancer diagnosis [2].
Since the traditional pathological diagnosis mainly relies on the experience of
pathologists, which is time-consuming and laborious, with the rapid growth of
the demand for pathological diagnosis, computer-aided diagnosis of breast cancer
histopathology images is becoming more and more important.

Recently, breast cancer histopathology image classification methods related
to deep learning have achieved great success and gradually become the main-
stream. Among them, some works employ typical convolutional neural networks
(CNN), such as AlexNet, VGGNet, and ResNet, to pre-train on large-scale nat-
ural image datasets as feature extractors, and then use machine learning clas-
sifiers to distinguish the extracted deep feature image [3,8]. Deniz et al. uti-
lize pre-trained AlexNet and VGG16 models to capture deep features of breast
cancer histopathology images, and then employ support vector machine to dis-
tinguish the deep features [8]. As a counterpart, Gupta and Bhavsar employ
residuals and dense networks to capture deep features of histopathology images,
followed by XGBoost as a feature classifier, and they achieve the best patient-
level classification result of 96.76% [3]. In order to narrow the gap between the
extracted image features and the classifiers, researchers further leverage learnable
CNNs for breast cancer histopathology image classification. Considering that the
histopathological images used for model training are limited, transfer learning is
usually used to improve performance. For example, Shalu and Mehra explored
the effect of transfer learning on breast cancer histopathology images compared
with fully trained networks using VGG16, VGG19 and ResNet50 models [5].
Subsequently, Chukwu et al. utilize pre-trained DenseNet and transfer learn-
ing technology to obtain the best accuracy rate of 97.42% on the public breast
cancer histopathology image dataset [6]. Meanwhile, considering the character-
istics of breast cancer histopathology images, some works attempt to build novel
CNN models for this medical task. Spanhol et al. [7] construct a simple plain
CNN model with five trainable layers, and experimental results demonstrate
that it outperforms conventional methods. Likewise, Budak et al. [8] propose a
learnable model combining fully convolutional networks and bidirectional long-
short-term memory, and they achieve average results of 94.98% on the breast
cancer histopathology image database. Moreover, to focus on important discrim-
inative deep features, attention mechanisms are also widely introduced to classify
histopathology images with excellent performance [9]. In general, deep learning-
related models have recently greatly promoted the development of computer-
aided histopathology diagnosis of breast cancer, showing obvious advantages in
classification accuracy compared with traditional work [10–12].

However, current deep learning-related breast cancer histopathology image
classification methods are mainly implemented in spatial domain, while rarely
consider the frequency domain features of histopathological images. According
to the theory of digital signal processing, frequency domain is more suitable
for analyzing texture images than spatial domain. Actually, some researchers
have recently attempted to explore frequency-domain deep learning methods for
computer vision applications [13–15]. Gueguen et al. learn CNNs directly on the
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Fig. 1. Overall architecture of SeFFT-Net for breast cancer histopathology image clas-
sification. SeFFT-Net leverages ResNet18 as the backbone and embeds SeFFT modules
at multiple layers that integrate residual Fourier transform (ResFFT) with channel
attention to compute important frequency-domain features.

discrete cosine transform (DCT) of deep features for effective image classification
[13], while Ehrlich et al. [14] propose a new method using frequency-domain
compressed the image is used as input to the residual network. Additionally,
Zhong et al. [15] explore frequency domain features as additional cues to better
solve camouflaged object detection task.

Inspired by these works, we try to study breast cancer histopathology image
classification task by introducing frequency domain deep features. In this work,
we propose a novel frequency-domain attention convolutional network, namely
SeFFT-Net, which firstly utilizes Fourier transform to capture the frequency-
domain deep features of histopathology images, followed by an attention module
[16] is used to further enhance important frequency features. The overall archi-
tecture of the given SeFFT-Net model is shown in Fig. 1. The main contributions
of this paper can be encapsulated in three facets.

(1) This work attempts to explore frequency-domain deep features for breast
cancer histopathology image classification applications, and further utilizes
Fourier transform and channel attention mechanism to propose a novel
frequency-domain attention convolution network called SeFFT-Net.

(2) SeFFT-Net first performs a Fast Fourier transform operator combined with
residual construction (ResFFT) to compute deep features in the frequency
domain of histopathology images, and then further enhances high-valued
frequency feature impact with a squeeze and excite attention module to
obtain more promising classification results.

(3) We extensively evaluate SeFFT-Net on the public BreakHis dataset. Abla-
tion studies demonstrate the effectiveness of introducing frequency-domain
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features for the classification of breast cancer histopathology image. Fur-
thermore, comparing the experimental results with state-of-the-art spatial
domain models further demonstrates its competitive performance in this
task.

2 Method

In this section, we first introduce the overall structure of the proposed SeFFT-
Net for breast cancer histopathology image classification. Then, the Fourier
transform is briefly described, followed by the introduction of the frequency
residual module as well as frequency attention module.

2.1 Overall Structure

As shown in Fig. 1, SeFFT-Net is composed mainly of two components, i.e.,
a backbone model and a SeFFT module. ResNet18 [17] is used as the back-
bone model owing to its superiority in the breast cancer histopathology image
classification task. Actually, breast cancer pathological images have complex
frequency distributions, and the essential information of such images is mainly
concentrated in the low-frequency area. Therefore, capturing frequency domain
features becomes critical, how to interact with convolutional features should be
deeply considered.

We achieve that by proposed SeFFT module. We endeavor to replace the
residual module of the backbone model with the newly constructed SeFFT
module, which well integrates Fourier transform and channel attention mecha-
nism, thereby capturing the frequency domain depth features of histopathologi-
cal images and interacting with convolutional features. Specifically, the frequency
domain is applied by the ResFFT module in SeFFT module, which can simul-
taneously process the images in the space domain and the frequency domain.
Frequency domain features are captured by Fast Fourier Transform (FFT) and
Inverse Fast Fourier Transform (IFFT). Initial interaction Y between frequency
domain features and convolutional features is obtained here by element-wise
addition. In addition, in order to enhance high-value information consequences
and neglect low-value information consequences, we present a channel attention
module, i.e., Squeeze-and-Excitation module, on the result of the ResFFT mod-
ule. This will further interaction between the two types of features. It is note-
worthy that our SeFFT-Net network structure is very flexible and can insert
any convolutional neural networks applied to other medical image classification
tasks.

2.2 Fourier Transform

The Fourier transform is the most basic and widely used frequency transform
operator in image processing and analysis. During image processing and analysis,
the Fourier transform decomposes the image into sine component and cosine
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component. The frequency feature of the digital image after Fourier transform
is a complex numbers. The frequency domain network [13–15,18] can perform
various operations on real and imaginary images on the basis of the original
network architecture, such as complex number operations, so as to learn more
robust frequency domain features. In addition, we can transform the image from
the spatial domain to the frequency domain using the Fourier transform, and
processing the image in the frequency domain. Afterwards, the frequency domain
image is restored to the space domain image by inverse Fourier transform. Given
an input image patch m, of size M × N , denoted as fm(x, y), the following is
the calculation expression of the discrete Fourier transform [18]:

fm(u, v) =
M−1∑

x=0

N−1∑

y=0

fm(x, y)e−j2π(ux
M + vy

N ) (1)

The Fast Fourier Transform (FFT) is a fast algorithm for the discrete Fourier
transform. It is obtained by improving the original algorithm according to the
characteristics of discrete Fourier transform, which greatly reduces the calcula-
tion amount of the computer. Efficient fast Fourier transforms can model interac-
tions between spatial locations with log-linear complexity. By using Fast Fourier
Transform (FFT), the image is divided into real image and imaginary image, so
that a series of feature extraction operations such as convolution, batch normal-
ization, and activation can be performed on the image in the frequency domain.
This enables the network to extract richer frequency feature information. After-
wards, the real and imaginary images are mixed. Finally, the Inverse Fast Fourier
Transform (IFFT) can effectively aggregate local information and improve the
learning ability of non-local information.

2.3 SeFFT Module

In this section, we mainly present the specific structure of SeFFT module. The
SeFFT contains a ResFFT module and a channel attention module. The main
purpose of ResFFT module is to capture frequency domain features. In ResFFT
module, the Fourier transform is responsible for this purpose. The channel atten-
tion module aims to highlight important features from the ResFFT module or
submitting for a classifier.

In Fig. 1, the SeFFT module integrates Fast Fourier Transform with the chan-
nel attention mechanism, which outputs meaningful frequency domain informa-
tion by processing images in both spatial and frequency domains simultane-
ously. As shown in the blue box in the Fig. 1, to obtain more detailed frequency
domain features, we add the Fourier Transform operation to the residual block of
ResNet18 backbone [17], which can assist the network to concentrate on critical
local features and enhance recognition accuracy. We first give the formulation of
the classical residual block in the ResNet architecture. The conventional residual
block is expressed as:

Y = X + F (X). (2)
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Here, X ∈ RC×H×W and Y ∈ RC×H×W are input and output tensors, where
C, H, W are channel number, height and width, respectively. Besides, F is a
residual learning block. Then, ResFFT module improves the above residual block
by adding a frequency domain branch that captures representative frequency
domain features of breast cancer histopathological images. It is formulated as:

Y = X + F (X) + FDF (X) (3)

FDF (X) = IFFT (conv(FFT (X))) (4)

From above equation, ResFFT module fuses the input X, convolution learn-
ing block F and frequency domain features learning block FDF , also provid-
ing interaction between convolution features and frequency domain features.
For capturing frequency domain features, ResFFT module first performs fast
Fourier transform FFT to convert images from the space domain to the fre-
quency domain, then applies efficient 1 × 1 convolution (conv.) to compress the
number of channels and add network nonlinearity, and finally utilises inverse
fast Fourier transform IFFT to convert the information in frequency domain
to space domain. By doing so, the operation done in the frequency domain is
presented on the image after inverse fast Fourier transform.

Next, after the ResFFT module, we introduce a classic Squeeze-and-
Excitation module [16] to further enhance deep features. Specifically, the squeeze
operation compresses image features from outputs of the ResFFT module by
average pooling, followed by two FC layers and Relu layers for interaction
between channel responses and increasing nonlinearity respectively. The exci-
tation operation generates weights via sigmoid function for each feature chan-
nel, which fully captures the dependency between channels and outputs the same
number of weights as the input characteristics. Thus, it automatically obtains the
importance spatial and frequency information of each channel through learning,
and suppresses the characteristics that are useless for the current task according
to this. And then, in the weighting operation before output, we establish the
connection of input, ResFFT module and SeFFT module, which is helpful for
the reverse propagation of gradient in the training process and the realization
of feature reuse through the connection of features.

3 Experimental Results and Discussion

First, we describe the public breast cancer histopathology image dataset used
to evaluate the SeFFT-Net model. Then, the parameter settings and evaluation
metrics are briefly introduced. Finally, we report and analyze the experimen-
tal results in detail, including ablation experiment results, Comparison with
advanced spatial domain methods, as well as visualization results.
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Fig. 2. Typical breast cancer histopathology images at four magnification factors in
the BreakHis dataset.

3.1 Dataset

A commonly used breast cancer histopathological image dataset, namely
BreakHis, is adopted to evaluate SeFFT-Net in this work. The BreakKHis
dataset is a publicly available large-scale non-global breast cancer histopathology
image dataset (http://web.inf.ufpr.br/vri/databases/breast-cancer-histopatho
logical-database-breakhis), which provides a good benchmark for this medical
application. The BreakHis dataset contains 7909 histopathological images from
82 patients, each of which is labeled with benign tumors (fibroadenoma, ade-
noma, tubular adenoma and trichoma) or malignant tumors (lobular carcinoma,
ductal carcinoma, papillary carcinoma and mucinous carcinoma). In addition,
2480 samples belong to benign images, and the remaining 5429 samples are
malignant images. Each sample image has an RGB channel mode with the size
of 700× 460 pixels in size, and the color depth of each channel is 8 bits. Accord-
ing to the different magnification, the samples of each patient can be divided
into four groups of 40 times (40×), 100 times (100×), 200 times (200×) and 400
times (400×). Figure 2 shows some typical breast cancer histopathology images
at different magnification factors in the BreakHis dataset.

3.2 Experimental Settings

The original data set of BreakHis is randomly divided into a training set and a
test set at each magnification factor. The training set consists of 70% images,
and the rest 30% images constitute the test set. In addition, 25% of the train-
ing set images are retained for cross validation to select model parameters. All
experiments utilize the same training data set and test data set. In the image
preprocessing stage, to reduce the impact of possible over fitting problems, we
perform simple crop and flip operations to increase the sample size of the train-
ing set. For network training, the initial learning rate is set to LR = 0.001,
and the learning rate decays to half of the current learning rate after every five
iterations. The data set is randomly scrambled to avoid any negative impact on
learning by using orderly training data. Besides, the loss function is optimized

http://web.inf.ufpr.br/vri/databases/breast-cancer-histopathological-database-breakhis
http://web.inf.ufpr.br/vri/databases/breast-cancer-histopathological-database-breakhis
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using a stochastic gradient descent (SGD) algorithm with a batch size of 8. The
momentum factor is set to 0.9 to prevent the loss function from falling into a local
optimal solution, and control the loss function to reach the global minimum. All
models are trained for cosine annealing learning rate attenuation in 100 cycles.
All experiments are carried out on the server configured with NVIDIA GeForce
RTX 2080Ti using the Python deep learning framework. Additionally, we adopt
two commonly used classification accuracy indicators of image-level recognition
rate and patient-level recognition rate to evaluate the model performance.

Table 1. Ablation experiment results at image level.

Method 40× (%) 100× (%) 200× (%) 400× (%)

ResNet18 95.99 95.68 97.35 93.77

ResFFT-Net 96.49 96.80 98.01 94.87

SENet 96.49 96.96 98.01 94.87

SeFFT-Net 96.99 98.08 98.67 95.24

Table 2. Ablation experiment results at the patient level.

Method 40× (%) 100× (%) 200× (%) 400× (%)

ResNet18 95.62 96.06 97.57 94.52

ResFFT-Net 96.77 96.94 97.10 95.53

SENet 96.04 96.61 98.01 95.47

SeFFT-Net 96.44 98.16 98.14 95.57

3.3 Experimental Results

Ablation Experiment Results. To prove the effectiveness of SeFFT-Net as
well as the frequency domain features for this medical task, we first conduct
image-level and patient-level ablation experiments on the BreakHis dataset,
whose results are reported in Table 1 and Table 2, respectively. In the two tables,
we first employ the typical ResNet18 model as the baseline. Then, we embed the
Fourier transform module into the model to construct ResFFT-Net, and further
integrate the ResFFT module with squeeze-and-excitation channel attention to
construct SeFFT-Net. In addition, we also introduce SE-Net as a counterpart to
better show the effectiveness of frequency domain features.

As shown in Table 1, the baseline of ResNet18 achieves the image-level recog-
nition rates of 95.99%, 95.68%, 97.35% and 93.77% on 40X, 100X, 200X and
400X data sets, respectively. After introducing the frequency domain features,
the ResFFT model gains the corresponding accuracy results of 96.49%, 96.80%,
98.01% and 94.87%, which outperforms ResNet18 on the four data sets, thus
showing the effectiveness of introducing frequency domain features. By simulta-
neously integrating frequency transform and attention mechanism, SeFFT-Net
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Table 3. Comparisons with advanced spatial domain methods at both image-level and
patient-level.

Reference Year Image-Level (%) Patient-Level (%)

40× 100× 200× 400× 40× 100× 200× 400×
Spanhol et al. [7] 2017 84.60 84.80 84.20 81.60 84.00 83.90 86.30 82.10

Han et al. [23] 2017 95.80 96.90 96.70 94.90 97.10 95.70 96.50 95.70

Gupta et al. [3] 2018 – – – – 94.71 95.90 96.76 89.11

Lichtblau et al. [20] 2019 85.60 87.40 89.80 87.00 83.90 86.00 89.10 86.60

Alom et al. [24] 2019 97.95 97.57 97.32 97.36 97.60 97.65 97.56 97.62

Zhang et al. [19] 2020 95.03 90.41 88.48 85.00 95.50 91.57 89.20 89.20

Hou [21] 2020 90.89 90.99 91.00 90.97 91.00 91.00 91.00 91.00

Man et al. [28] 2020 99.13 96.39 86.38 85.20 96.32 95.89 86.91 85.16

Li et al. [27] 2021 87.85 86.68 87.75 85.30 87.93 87.41 88.76 85.55

Chukwu et al. [6] 2021 93.64 97.42 95.87 94.67 94.23 97.86 96.35 95.24

Sharma and Kumar [29] 2021 96.25 96.25 95.74 94.11 – – – –

Boumaraf et al. [26] 2021 98.13 97.39 96.63 94.05 – – – –

Saxena et al. [22] 2021 88.36 87.14 90.02 84.16 92.88 83.61 89.98 81.63

Xu et al. [30] 2022 94.94 94.18 95.38 92.64 – – – –

Hao et al. [25] 2022 96.75 95.21 96.57 93.15 96.33 95.26 96.09 92.99

Chhipa et al. [4] 2022 93.00 93.26 92.28 88.74 93.26 93.45 92.45 89.57

SeFFT-Net (Ours) – 96.99 98.08 98.67 95.24 96.44 98.16 98.14 95.57

further improves the classification performance to 96.99%, 98.08%, 98.67% and
95.24%, which is also better than the Squeeze-and-Excitation network (SENet)
[16]. Compared with the baseline, SeFFT-Net can gain classification accuracy
improvement of 1.00%, 2.40%, 1.32% and 1.47%, respectively. Thereby, the
image-level ablation experimental results well demonstrate the effects of the
frequency domain features as well as the proposed SeFFT-Net for breast cancer
histopathology image classification.

When it comes to the patient-level ablation results listed in Table 2, SeFFT-
Net respectively gains the accuracy values of 96.44%, 98.16%, 98.14% and 95.57%
on the 40X, 100X, 200X and 400X datasets, which also shows the best perfor-
mance among the four models. SeFFT-Net outperforms the baseline by 0.82%,
2.10%, 0.57% and 1.05% gains on the four data sets, respectively. Meanwhile,
it is superior to SENet with average accuracy improvement of 0.55%. Addition-
ally, ResFFT-Net averagely outperforms the baseline ResNet18 model by 0.64%
classification accuracy. The above results again well prove the effectiveness of
SeFFT-Net and the frequency domain features.

Comparison with Typical Spatial Domain Methods. To further show the
performance of SeFFT-Net on breast cancer pathological image classification
task, we compare it with a variety of advanced spatial domain methods proposed
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in recent years. The detailed results at both image-level and patient-level are
demonstrated in Table 3.

As shown in Table 3, SeFFT-Net has a notable competitive performance com-
pared to the previously representative spatial domain methods. Specifically, it is
worth noting that the given model achieves the image-level classification accu-
racy of 96.99%, 98.08%, 98.67% and 95.24% on 40×, 100×, 200× and 400×
data sets, which are significantly better than results in literature [7,8,19–22].
Besides, SeFFT-Net gains the best accuracy values on both 100× and 200×
data sets among all the works. Despite not achieving optimal results on the 40×
and 400× data bases, it ranks fourth and second on the two data sets at the
image level, respectively. Moreover, when it comes to the patient-level evalua-
tion results, SeFFT-Net achieves recognition rates of 96.44%, 98.16%, 98.14%
and 95.57% on four multiples, and it is also superior to other methods on 100×
and 200× data sets. Meanwhile, SeFFT-Net ranks the third place on both 40×
and 400× data bases. Among these spatial CNN-based methods, CSDCNN,
IRRCNN+Aug., VGG 19 and DenseNet in literature [6,23,24,26] obtain the
most promising results with the average recognition rate around 96%. However,
SeFFT-Net overall shows very competitive or better performance over the three
works. According to the above results, we can see that the SeFFT-Net model is
effective for breast cancer pathological image classification task, which can be
attributed to the frequency domain feature to some extent.

Fig. 3. Histopathological images that are incorrectly classified by ResNet18 but can
be correctly classified by SeFFT-Net.

Visualization Results. In this section, we manage these breast cancer pathol-
ogy tissue slices that are misclassified by the baseline but can be rightly distin-
guished by SeFFT-Net, and show eight typical images at four magnifications in
Fig. 3. In the figure, images in the first row are labeled as benign tumors, while
images in the second row belong to malignant tumors. Due to the complexity
and irregularity of breast cancer histopathology images, the baseline model can
not well distinguish some histopathology images, specially for those containing
blank areas. After introducing frequency transform and channel attention mod-
ules, the SeFFT-Net model can well classify these breast cancer pathology tissue
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Fig. 4. Visualized heatmap results of ResNet18 and SeFFT-Net deep feature activa-
tions at four magnifications.

slices, and the classification accuracy is significantly improved compared to the
baseline. Then, we also visualize heatmaps of deep features in Fig. 4, aiming to
further display the regions of interest of different networks and hope to provide
a valuable reference for classification results.

4 Conclusion

This paper attempts to explore the application of frequency domain related
deep learning methods in breast cancer histopathology image classification tasks,
and further propose a novel frequency attention network called SeFFT-Net by
combining the advantages of frequency transformation and channel attention
mechanism. SeFFT-Net adds Fourier transform on the spatial residual struc-
ture to extract the frequency-domain features of histopathology images, and
then enhances the feature representation with an attention operator to obtain
more promising classification performance. Experimental results on the public
dataset BreakHis demonstrate the effectiveness of SeFFT-Net in this medical
image application, while ablation studies on two landmark spatial counterparts
provide a good demonstration of the effect of introducing frequency-domain fea-
tures. In the future, we will attempt to capture more discriminant frequency
features for breast cancer histopathology image classification. Besides, it is also
interesting to explore the combination of frequency features with transformer
models.

Acknowledgements. This work was supported in part by the National Natural Sci-
ence Foundation of China under Grant 61972062, the Applied Basic Research Project
of Liaoning Province under Grant 2023JH2/101300191 and 2023JH2/101300193.



228 R. Lu et al.

References

1. Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R.L., Torre, L.A., Jemal, A.: Global
cancer statistics 2018: GLOBOCAN estimates of incidence and mortality world-
wide for 36 cancers in 185 countries. CA: Cancer J. Clin. 68(6), 394–424 (2018)

2. Joy, J.E., Penhoet, E.E., Petitti, D.B., Ebrary, I.: Saving women’s lives: strategies
for improving breast cancer detection and diagnosis. J. Laryngol. Otol. 86(2), 105–
19 (2005)

3. Gupta, V., Bhavsar, A.: Sequential modeling of deep features for breast cancer
histopathological image classification. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition Workshops(CVPRW), Salt Lake City,
UT, USA, pp. 2254–2261 (2018). https://doi.org/10.1109/CVPRW.2018.00302

4. Chhipa, P.C., Upadhyay, R., Pihlgren, G.G., Saini, R., Uchida, S., Liwicki, M.:
Magnification prior: a self-supervised method for learning representations on breast
cancer histopathological images. In Proceedings of the IEEE/CVF Winter Confer-
ence on Applications of Computer Vision, pp. 2717–2727 (2023). https://doi.org/
10.48550/arXiv.2203.07707

5. Shallu, M.R.: Breast cancer histology images classification: training from scratch
or transfer learning? ICT Exp. 4(4), 247–254 (2018)

6. Chukwu, J.K., Sani, F.B., Nuhu, A.S.: Breast cancer classification using deep con-
volutional neural networks. FUOYE J. Eng. Technol. 6(2), 35–38 (2021)

7. Spanhol, F.A., Oliveira, L.S., Cavalin, P.R., Petitjean, C., Heutte, L.: Deep features
for breast cancer histopathological image classification. In 2017 IEEE International
Conference on Systems, Man, and Cybernetics (SMC), Banff, AB, Canada, pp.
1868–1873 (2017). https://doi.org/10.1109/SMC.2017.8122889
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Abstract. Anomaly detection is a formidable challenge that entails
the formulation of a model capable of detecting anomalous patterns in
datasets, even when anomalous data points are absent. Traditional algo-
rithms focused on learning knowledge regarding the typical features that
arise in images, such as texture, shape, and color, to distinguish between
normal and anomalous examples. However, there is untapped potential
in frequency domain features for differentiating anomalous patterns, and
current methodologies have not exhaustively exploited this avenue. In
this work, we present an extension of the deep learning version of sup-
port vector data description (SVDD), a prevalent algorithm used for
anomaly detection, through the introduction of Wavelet transformation
and frequency domain attentions in the feature learning network. This
extension allows for the consideration of frequency domain patterns in
defect detection, and improves detection performance significantly. We
performed extensive experiments on the MVTecAD dataset, and the
results revealed that our approach attained advanced performance in
both anomaly detection and segmentation localization, thereby confirm-
ing the efficacy of our proposed innovative designs.

Keywords: Anomaly detection · Wavelet transformation · Frequency
domain attention

1 Introduction

Anomaly detection constitutes a pivotal binary classification issue that aims
to detect the abnormalities in the data. This challenge persists across various
industries such as finance, manufacturing, and video surveillance. Notably, a
significant number of abnormal instances are either unattainable or inadequate
for distribution modeling during training, anomaly detection is typically formu-
lated as a semi-supervised or one-class classification task [8]. The identification
of anomalies is particularly challenging in image data, as the difference between
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normal and anomalous patterns is often subtle, and defects can be nuanced, par-
ticularly in high-resolution images. Consequently, anomaly detection represents
a distinctive binary classification problem that requires careful consideration,
particularly in image data analysis.

Considering the diversity and scarcity of anomaly samples, a common strat-
egy in such cases is to model the distribution of normal data and detect anomalies
by identifying outliers. The pivotal aspect of this approach is to learn a concise
boundary for normal data. In this regard, the support vector data description
(SVDD) [12] and its extensions [10,15] have been employed as classical algo-
rithms for one-class classification. These methods construct a data-enclosing
hypersphere in the kernel space, enveloping most of the normal samples, for
the purpose of anomaly detection. Nonetheless, existing works primarily focus
on detecting semantic outliers, such as visual objects from distinct classes, in
object-centric natural images, with little regard for the finer details, such as
changes in texture, within an image. However, recent study [13] has illuminated
that the features which can afford insight into the rate of transitions between pix-
els in an image are also useful to distinguish the abnormality from normal data.
The potential for frequency domain features to effectively distinguish between
normal and abnormal images deserves consideration.

As shown in Fig. 1, the low-frequency portion of an image is the primary
source of semantic information perceived by the human visual system. This
implies that, in anomaly detection tasks, the low-frequency features of normal
images, which are consistent with the human visual system, share the same dis-
tribution, whereas its high-frequency features may not. However, tranditional
Convolutional Neural Networks (CNNs) are probably capable of learning fea-
tures that contain mixed high-frequency information [13], which may interfere
with the construction of distribution of normal samples with the ability to dis-
tinguish abnormal samples by the deep SVDD model. In this work, we aim to
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tackle the challenges related to the detection of image abnormalities and seg-
mentation by means of integrating frequency domain features into CNNs. We
present an innovative Wavelet attention that enables a more sophisticated dis-
tinction between normal and abnormal instances by incorporating frequency
domain features. In this regard, a Wavelet Transform based network is proposed
that extends the deep SVDD model to learn a precise boundary for normal data
by considering both visual objects and frequency domain features. In a nutshell,
our contributions in this work can be summarized as follows:

• We investigate the impact of frequency domain characteristics on the efficacy
of anomaly detection, and put forward a multi-stage wavelet network that
employs Wavelet attention to acquire knowledge pertaining to both the fre-
quency domain features and visual objects, with the goal of improving image
anomaly detection.

• We extend the classical method of Deep SVDD [10] for anomaly detection
to frequency domain learning, and propose our Wavelet SVDD, which makes
a good distinction between normal and anomalous in the feature space con-
taining frequency domain features.

• A series of experiments are conducted to validate the effectiveness of the
proposed method and the key designs, which demonstrate that our approach
attained advanced performance in both anomaly detection and segmentation
localization.

2 Related Works

This work aims to enhance the precision of anomaly detection through the incor-
poration of frequency domain feature learning into the framework of deep neural
network-based Support Vector Data Description (SVDD). Its related work can
be classified into three distinct categories: distance metric, frequency domain
analysis, and frequency domain learning methods.

2.1 Distance Metric Based Methods

Distance-based methods focus on the training of a feature extractor that learns
compact distribution of feature vectors derived from normal images by minimiz-
ing intra-class distances between samples. During the testing phase, the majority
of methods employ the distance between the features of the sample undergoing
evaluation and the normal features as a metric for detecting anomalies.

Deep support vector data description (Deep SVDD) [10] is a widely used
technique in this domain. The authors of this approach artificially assign a point
in the feature space as the feature center, and reduce the distance between the
normal sample features and the center by mapping them to the center. Jihun
et al. [15] expanded Deep SVDD to operate at the patch level by learning of
the relative position semantics of patches through a self-supervised approach,
thus avoiding the use of artificial centers by minimizing the distance between
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semantically similar patches. However, notwithstanding the efficacy of the fre-
quency domain feature analysis in detecting anomalies, existing distance-based
methodologies have demonstrated a proclivity towards neglecting this avenue.

2.2 Frequency Domain Analysis Based Methods

The focus of frequency domain analysis based methods is on identifying irreg-
ularities in areas with regular textures. Previous methods [6,14] primarily rely
on the manipulation of frequency spectrum information of the image, with the
aim of removing periodic background textures and enhancing the visibility of
anomalous regions. For example, Tianxiao et al. [14] involves the removal of fre-
quency spectrum information of the background to highlight abnormal regions,
while Chenlei et al. [6] employ only the phase spectrum to eliminate repetitive
backgrounds in the inverse Fourier transform. However, these techniques have
certain limitations in the case of image backgrounds and often require man-
ual intervention for constructing periodic images. In contrast, our method learn
the frequency domain features of the image, rather than relying solely on the
spectrogram of the image.

2.3 Frequency Domain Learning Based Methods

The discrete Wavelet transform (DWT) [1] and Fourier transform (FT) [11]
are widely employed image processing technique utilized for frequency domain
analysis, which can transform an image from spatial domain to the frequency
domain. Since the DWT can easily realize with the multi-level downsampling
style, which is harmonious with deep convolutional neural networks (CNNs), it
has been frequently combined with convolutional networks to deal with the tasks
of computing vision.

For example, in order to enhance performance in the tasks of texture classifi-
cation and image annotation, Shin et al. [5] proposed a wavelet-CNN architecture
which incorporates a multiscale wavelet transform applied to the input image.
This design has demonstrated superior performance compared to non-wavelet
CNNs in these areas. Li et al. [9] presented an innovative solution to counter-
act the problem of feature loss encountered in wavelet-CNN [5]. They proposed
to replace the downsampling features of CNNs with the low-frequency compo-
nent of the discrete wavelet transform (DWT) and combining it with regular
convolution, as opposed to spanwise convolution, resulting in improved feature
retention. For a better fusion of spatial features and frequency domain features of
the image, Zhao et al. [16] proposed an attention based network structure , i.e.,
Wavelet Attention (WA) block. The WA block first effectuates a decomposition
of the feature map into low and high-frequency components through DWT’s
down-sampling operation. Subsequently, the high-frequency details of the fea-
ture map in the high-frequency component are selectively captured, while the
essential information of the feature map residing in the low-frequency component
remains undisturbed.
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Previous research has demonstrated that high frequency information sig-
nificantly impacts image classification, whereas we proposed a Wavalet Atten-
tion based SVDD approach to utilize an attention mechanism on the frequency
domain to identify the relevant part of the high-frequency information for
anomaly detection.

3 Methodology

Problem Formulation. The task of detecting anomalies is akin to binary
classification in that it involves accurately distinguishing between normal and
anomalous data. In the case of image anomaly detection, images that exhibit
minor defects or those that fall outside the semantic distribution are typically
deemed anomalous. To this end, various techniques have been proposed to learn
a score function Aθ to assess the level of anomaly in an image. Specifically, a high
value of Aθ(x) indicates that the image is anomalous during testing. Presently,
the area under the receiver operating characteristic curve (AUROC) [3] is the
standard metric employed to evaluate the efficacy of the Aθ function in detecting
anomalies, which is defined as:

AUROC(Aθ) = P (Aθ(Xnormal) < Aθ(Xabnormal)) (1)

Ideally, an effective score function should be capable of assigning low and
high scores to normal and anomalous input images, respectively. Moreover, for
anomaly localization, the corresponding anomaly score is determined for each
pixel.

Model Overview. As shown in Fig. 2, the proposed Wavelet SVDD involves
two primary components: feature learning and anomaly calculation. Initially,
the model employs a novel wavelet attention network to learn the feature dis-
tribution of normal images from both frequency domain features and visual
objects. During the testing phase, we follow the pradigm of patch SVDD [15]
to divide trained images into several patches and acquire the feature vectors of
these patches by the Wavelet SVDD network, thereby enabling the separation
of normal images into distinct patch distributions. Next, we extract the features
of a testing image by the Wavelet SVDD network in manner of sliding windows.
Finally, the distance between these extracted features from the testing image and
the distribution of normal patches is treated as the abnormality score. The seg-
mentation of abnormal pixels and the abnormality score of the entire image can
be realized in manner of differentiation between testing image and the trained
normal images.

3.1 Wavelet Transformation Network

The previous work [13] has demonstrated that the low-frequency portion of an
image is the primary source of semantic information perceived by the human
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visual system, and highlighted that high-frequency features are not extraneous
noise; rather, a substantial number of them are correlated with the data distri-
bution. Thus, we aim to enhance discrimination between normal and abnormal
feature distributions by learning to filter out high-frequency information from
the features obtained by CNNs, and select the effective high-frequency informa-
tion from the filtered information.

The use of Discrete Wavelet Transform (DWT) in image processing has
proven to be effective in obtaining high-quality down-sampling information while
minimizing information loss in Convolutional Neural Networks (CNN). In this
study, we aim to integrate the Discrete Wavelet Transform (DWT) into con-
volutional neural network (CNN) for frequency domain learning to enable the
CNN to autonomously learn the components proficient in distinguishing anoma-
lies among the frequency features generated by DWT. Specifically, we propose
a Wavelet block which incorporates DWT operations into the feature extraction
layers of CNN to enhance its performance. As illustrated in Fig. 3, we applies
the DWT technique [1] with CNN to extract relevant features in the frequency
domain. The Wavelet block first decomposes feature maps of CNN into low-
frequency and high-frequency components by the DWT. The low-frequency com-
ponent (Xll) retains the primary information structure of feature maps, while
the high-frequency components (Xlh, Xhl, and Xhh) store detailed information
along with noise. Following the DWT, a 1 × 1 convolution layer and an Inverse
Wavelet Transform (IWT) operation are stacked to select frequency features and
convert them back into the spatial domain, respectively.

In line with previous work [9], the input of 2D-DWT X ∈ Rn×n can be
obtained as follows:

Xll = LXLT, Xlh = HXLT

Xhl = LXHT, Xhh = HXHT
(2)

As a result of the biorthogonal property inherent in the Discrete Wavelet Trans-
form (DWT), it is possible to reconstruct the original feature X with high accu-
racy and without any loss of information using the Inverse Wavelet Transform
(IWT). The 2D-IWT is applied in accordance with the following procedure:

X = LTXllL + HTXlhL + LTXhlH + HTXhhH (3)



236 L. Zhou et al.

where L and H are cyclic matrices composed of wavelet low-pass filter {lk}k∈Z

and high-pass filter {hk}k∈Z , respectively. Both these matrices have a size of
�N/2 � × N . L and H can be expanded as follows:

L =

⎛
⎜⎜⎝

· · · · · ·
· · · l0 l1 · · ·

· · · l0 l1 · · ·
· · · · · ·

⎞
⎟⎟⎠ , H =

⎛
⎜⎜⎝

· · · · · ·
· · · h0 h1 · · ·

· · · h0 h1 · · ·
· · · · · ·

⎞
⎟⎟⎠ (4)

The Discrete Wavelet Transform (DWT) and Inverse Wavelet Transform
(IWT) can be implemented as DWT and IWT layers in deep learning frame-
works such as PyTorch, respectively. These layers operate on multichannel data
on a per-channel basis. It should be noted that the wavelets chosen for use
must possess finite filters to ensure that the size of the generated matrices is
�N/2 � × N . An example of a simple wavelet family is the Haar wavelet, which
is characterized by a low-pass filter of {lk}k∈Z = {1/

√
2, 1/

√
2} and a high-pass

filter of {hk}k∈Z = {1/
√

2,−1/
√

2}.
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3.2 Wavelet Attention

In the presented network architecture, discerning and extracting valuable fea-
tures from the frequency domain that are pertinent to anomaly detection has
been successfully achieved. Nevertheless, Wang et al. [13] have observed that
convolutional neural networks (CNNs) tend to prioritize learning low-frequency
features in images. However, for anomaly detection, identifying high-frequency
features, such as minute defects, is crucial in discriminating between anomalous



Wavelet-SVDD 237

and normal instances. As a remedy, we further introduce an attention mecha-
nism into the proposed Wavelet block to enable its CNN to concentrate more
attention on the high-frequency elements.

Inspired by the Wavelet Attention mechanism proposed by Zhao et al. [16],
we propose an enhanced Wavelet block based Wavelet Attention, which captures
the detailed information of feature maps in the high-frequency component as
the attention information, and the main information of feature maps in the
low-frequency component Xll = {xll}Np

i=1, is not affected. As Fig. 4 shown, the
high-frequency components, i.e., Xlh = {xlh}Np

i=1, Xhl = {xhl}Np

i=1 and Xhh =
{xhh}Np

i=1, are selected and integrated into the low-frequency feature maps by an
attention structure, which can be defined as:

zi = xll
i +

exp(xhl
i + xlh

i + xhh
i )

ΣNp

m=1 exp(xhl
m + xlh

m + xhh
m )

xll
i (5)

where Np = H × W is the number of elements on frequency feature maps.

DWT

•

Softmax

X

Z

Fig. 4. Wavelet attention, ⊕ denotes broadcast element-wise addition, and � denotes
broadcast element-wise multiplication.

3.3 Wavelet SVDD

After analyzing the above information, we replaced the DWT decomposition
part of our wavelet network with our wavelet attention to form our basic wavelet
attention block. This basic wavelet attention block is then superimposed with
the above wavelet network block to form a deep wavelet attention network as
a feature learning network. We experimented with the depth and size of the
network, as well as the number of wavelet attention network additions. Ulti-
mately, we determined our feature learning network to be a network consisting
of 4 layers of wavelet attention blocks and 4 layers of wavelet network blocks.
Wavelet attention is placed in layers 2, 3, 6, and 7 after our experiments. The
final network structure is shown in Fig. 5.
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To enable our network to learn the distribution of normal images, we referred
to the training method of patch svdd [15] and trained our network to collect
semantically similar patches by itself. These semantically similar patches are
obtained by sampling spatially adjacent patches. The encoder is then trained to
minimize the distances between their features using the following loss function:

LSVDD =
∑
i,i′

‖fθ (pi) − fθ (pi′)‖2 (6)

where pi′ is a patch near p and fθ is the wavelet attention network. Further-
more, to enforce the representation to capture the semantics of the patch and
improve the structure of the anomalous and normal distributions, Wavelet SVDD
appends the following self-supervised learning.

We followed the practice in patch SVDD based on Doersch et al. [4] and
trained an encoder and classifier pair to predict the relative positions of two
patches. A well-performing encoder pair means that the trained encoder can
extract useful features for location prediction. For a randomly sampled patch
p1, Doersch et al. [4] drew another patch p2 from a 3 × 3 grid in one of its 8
neighborhoods. If we let the true relative position be y ∈ {0, ..., 7}, the classifier
Cφ is trained to correctly predict y = Cφ(fθ(p1), fθ(p2)). We added a self-
supervised learning signal by adding the following loss term:

LSSL = Cross-entropy (y, Cφ (fθ (p1) , fθ (p2))) (7)

As a result, the encoder is trained using a combination of two losses with the
scaling hyperparameter λ, as presented in Eq. 8. This optimization is performed
using stochastic gradient descent and the Adam optimizer [7].

LWavelet Psvdd = λLSVDD + LSSL (8)
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3.4 Calculate Anomaly Score

After training the feature learning network, the representations from the network
are used to detect anomalies. First, the representation of every normal train
patch [15], fθ(pnormal )|pnormal ), is calculated and stored. Given a query image
x, for every patch p with a stride s within x, the L2 distance to the nearest
normal patch in the feature space is defined as its anomaly score using Eq. 9.

Apatch
θ (p) .= min

pnormal
‖fθ(p) − fθ (pnormal )‖2 (9)

At the same time, to improve the stability of our method and avoid the
appearance of query patches being affected by noise in the normal distribution,
we also set another anomaly score calculation function A2patchθ . The difference
between this and the above anomaly score calculation function is that A2patchθ

considers the next closest patches in addition to the closest patches to the query
patches. This reduces the influence of noise in the training data to a certain
extent. Therefore, A2patchθ is defined as:

A2patchθ (p) .=
1
2

× min
pnormal1pnormal2

‖fθ(p) − fθ (pnormal1) − fθ (pnormal2)‖2 (10)

Patch-wise calculated anomaly scores are then distributed to the pixels. As
a result, pixels receive the average anomaly scores of every patch to which they
belong. We use M and M2, calculated from the two scoring methods A and A2,
respectively, to represent the resulting anomaly maps.

We divided the size of 32 and 64 patches input into the network, respectively,
to obtain different sizes of anomaly maps. We aggregate multiple maps using
element-wise multiplication. The resulting anomaly map, Mmulti, provides the
answer to the problem of anomaly segmentation:

M1multi
.= M1small � M1big

M2multi
.= M2small � M2big

Mblendmulti
.= M1multi � M2multi

(11)

where Msmall and Mbig are the generated anomaly maps with different scales of
patches, respectively. The pixels with high anomaly scores in the map Mmulti =
{M1multi ,M2multi ,Mblendmulti} are deemed to contain defects.

It is straightforward to address the problem of anomaly detection. The max-
imum anomaly score of the pixels in an image is its anomaly score, which can
be expressed as:

Aimage
θ (x) .= max

i,j
Mmulti (x)ij (12)

4 Experiments

We selected the MVTecAD dataset [2] to test the effect of our improvements.
This dataset consists of 15 classes of industrial images, each class categorized
as either an object or texture. Ten object classes contain regularly positioned
objects, while the texture classes contain repetitive patterns.
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Table 1. Detection and segmenta-
tion performance on MVTec AD

Classes Det. Seg.

bottle 0.996 0.987

cable 0.953 0.969

capsule 0.935 0.962

carpet 0.946 0.964

grid 0.949 0.965

hazelnut 0.964 0.978

leather 0.975 0.976

metal nut 0.963 0.986

pill 0.946 0.965

screw 0.934 0.959

tile 0.984 0.941

toothbrush 1.000 0.983

transistor 0.943 0.969

wood 0.974 0.962

zipper 0.983 0.958

Average 0.963 0.968

Table 2. Detection and segmen-
tation performance compared with
baselines

Method Det. Seg.

InTra 0.950 0.966

PyramFlow 0.960 0.945

RegAD 0.927 0.966

CutPaste 0.961 0.883

Patch SVDD 0.921 0.951

Wavelet SVDD (Ours) 0.963 0.968

4.1 Anomaly Detection and Segmentation Results

Table 1 shows the detection performance of our method in each type of
MVTecAD dataset in terms of AUROC. As shown in Fig. 6, the anomaly maps
generated using the proposed method indicate that defects are properly localized,
regardless of their size. Table 2 shows the detection and segmentation perfor-
mances for the MVTecAD dataset compared with baselines in terms of AUROC.
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4.2 Effect of Wavelet Attention

To explore the effect of our Wavelet attention block, we compared the perfor-
mance of the network without the Wavelet attention block to that of the network
with the Wavelet attention block added at different positions. Our network has
mainly 8 wavelet layers. We compared the network without the Wavelet atten-
tion block to the network with the Wavelet attention block in layers 2, 3, 6, and
7, as well as in layers 3 and 6, in layers 2 and 7, and in all layers, respectively.
The results on MVTec are shown in Fig. 7.
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Fig. 7. Effects of different attention layers

The experimental results show that the accuracy of anomaly detection and
segmentation can be improved by adding a Wavelet attention block in layers 2,
3, 6, and 7, respectively. The improvement of WA blocks in layers 2, 3, 6, and 7 is
better than that in layers 2 and 7. In contrast, adding Wavelet attention blocks
in all layers decreases accuracy. One possible explanation is that the influence of
multiple Wavelet attentions creates a shortcut path dependence, which weakens
the learning effect. Additionally, the frequency domain information in shallow
layers may not be as useful for distinguishing anomalies as in deep layers. In
conclusion, this experiment verifies the usability of Wavelet attention.

5 Conclusion

In this work, we present a novel technique for image anomaly detection and
segmentation called Wavalet Attention SVDD. Instead of only relying on the
conventional features extracted by convolutional network, we improve the patch
SVDD [15] by involving the frequency domain characteristics of images to dif-
ferentiate anomalies. We extensively evaluated our method on the MVTecAD
dataset and observed that our approach outperformed existing techniques in
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both anomaly detection and segmentation localization. These results validate the
effectiveness of our innovative designs. However, the present approach inherits
the inference architecture of patch SVDD, which necessitates anomaly detection
inference based on feature database retrieval, thus resulting in time consump-
tion. In future work, we plan to enhance detection inference by incorporating an
Auto-Encoder structure into our detection model and accomplishing end-to-end
learning and inference.
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Foundation of China(62106290) and Program for Innovation Research in Central Uni-
versity of Finance and Economics.

References

1. Antonini, M., Barlaud, M., Mathieu, P., Daubechies, I.: Image coding using wavelet
transform. IEEE Trans. Image Process. 1(2), 205–220 (1992)

2. Bergmann, P., Fauser, M., Sattlegger, D., Steger, C.: Mvtec ad-a comprehensive
real-world dataset for unsupervised anomaly detection. In: ICCV, pp. 9592–9600
(2019)

3. Calders, T., Jaroszewicz, S.: Efficient AUC optimization for classification. In: Kok,
J.N., Koronacki, J., Lopez de Mantaras, R., Matwin, S., Mladenič, D., Skowron,
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Abstract. Dual-view contrast-enhanced ultrasound (CEUS) has been
widely applied in lesion detection and characterization due to the pro-
vided anatomical and functional information of lesions. Accurate delin-
eation of lesion contour is important to assess lesion morphology and
perfusion dynamics. Although the last decade has witnessed the unprece-
dented progress of deep learning methods in 2D ultrasound imaging
segmentation, there are few attempts to discriminate tissue perfusion
discrepancy using dynamic CEUS imaging. Combined with the side-by-
side gray-scale US view, we propose a novel anatomical-functional fusion
network (AFF-Net) to fuse complementary imaging characteristics from
dual-view dynamic CEUS imaging. Towards a comprehensive character-
ization of lesions, our method mainly tackles with two challenges: 1)
how to effectively represent and aggregate enhancement features of the
dynamic CEUS view; 2) how to efficiently fuse them with the morphology
features of the US view. Correspondingly, we design the channel-wise per-
fusion (PE) gate and anatomical-functional fusion (AFF) module with
the goal to exploit dynamic blood flow characteristics and perform layer-
level fusion of the two modalities, respectively. The effectiveness of the
AFF-Net method on lesion segmentation is validated on our collected
thyroid nodule dataset with superior performance compared with exist-
ing methods.

Keywords: Multi-modality Fusion · Nodule Segmentation ·
Contrast-enhanced ultrasound · Co-attention

1 Introduction

Ultrasound (US), as the first-line diagnostic tool in early screening and diagnosis,
has become increasingly important in clinical assessment due to the advantages
of cost-effectiveness, portability, non-ionizing radiation, and real-time assess-
ment. Thyroid nodule are a common finding in the general population with a
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detection rate of 50% to 60% [1,2]. Ultrasonic features like nodule size, location,
shape regularity, margin smoothness, and extra-thyroidal extension are impor-
tant imaging findings for malignancy risk prediction [3], postoperative assess-
ment [5], and fine-needle aspiration biopsy planning [4]. Thus, accurate nodule
segmentation is an indispensable step in clinical practice. In addition to tradi-
tional anatomical imaging (B-mode ultrasound, BUS), the emerging functional
imaging (contrast-enhanced ultrasound, CEUS) allows for a real-time observa-
tion of microvascular perfusion within thyroid gland by enhancing blood flow
signals from small vessels [6,7]. Generally, radiologists perform a comprehen-
sive analysis of morphology features in gray-scale US and perfusion features in
contrast-enhanced US, but this step requires a high level of expertise and is
susceptible to subjective errors.

Although several machine learning or deep learning techniques have been
proposed for segmenting thyroid nodules using US imaging, including active
contours [10], fuzzy clustering [9], and fully convolution network [8,11–13] etc.,
segmentation performances of these methods are still limited. One major limi-
tation is that these methods have not fully exploited ultrasonic characteristics
complementarity in the segmentation task. Taking cystic nodules as example,
gray-scale US is more sensitive to internal hypoechoic regions. Nevertheless,
due to the infiltrative growth pattern, we might observe a vague or incomplete
boundary since marginal echoic intensity differences become much smaller. In
case of that, contrast-enhanced US could complement this by highlighting the
varying hemodynamic changes around marginal regions, assisting nodule local-
ization and boundary delineation. Another limitation is that existing CEUS
based segmentation methods depend on a preselected a reference frame with rel-
atively distinguished contours, ignoring dynamic blood perfusion information.
Actually, perfusion discrepancy might consists in initial enhancement, progres-
sion to ultimate wash out. Therefore, it is necessary to reason over the whole
perfusion process to sufficiently mine enhancement discrepancy between nodule
and thyroid gland.

From the perspective of multi-modality imaging segmentation, it is of great
importance to exploit the complementarity of different sort of imaging. Towards
this goal, Dolz et al. [39] extend the definition of dense connectivity to multi-
modal streams, such that dense connectivity within each stream and across dif-
ferent streams could enhances the modality information flow while facilitates the
network training. On the other hand, attention mechanism also arouse consid-
erable interest in exploiting inter-dependencies of different modalities, instead
of simple summation or concatenation operation. Chen et al. [40] proposes a
3D convolutional block to produce the spatial map highlighting relevant image
regions from multiple sources. According to imaging prior knowledge, one MR
modality is picked as the master modality and the other is treated as an assis-
tant modality. Information fusion is conducted by transferring the attention map
learned from the master stream (teacher network) to supervise the training of the
assistant stream (student network). Intuitive, sufficient inter-modality interac-
tion at different-level feature abstraction could ensure enough freedom to capture
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Fig. 1. Illustration of the proposed Anatomical-Functional Fusion Network (AFF-Net).

complex dependencies between modalities. Nonetheless, the optimal layer-level
fusion method would vary with specific modalities, leaving an open question for
our dual-view CEUS segmentation problem.

In this paper, we propose an anatomical-functional fusion network (AFF-Net)
for thyroid nodule segmentation using dual-screen CEUS imaging. For simplic-
ity, we term the morphological and echoic characteristics in gray-scale US view
as anatomical features, and dynamic enhancement patterns depicting the real-
time blood supply in contrast-enhanced US view as functional features. Figure 1
shows a schematic diagram of our AFF-Net model, which consists of modality-
specific encoders and reconstruction decoder, as well as the specifically designed
anatomical-functional fusion (AFF) module. By sequentially attending to feature
representations of dynamic enhancement patterns and static morphological fea-
tures, the introduced co-attention mechanism in AFF module integrates multiple
US modalities in a layer-level fusion manner. To fully exploit enhancement char-
acteristics, we also introduce a channel-wise enhancement (CE) gate to jointly
model enhancement appearances at single point and intensity variations among
adjacent frames. We validate the model performance on our collected dual-view
thyroid dataset.

2 Related Work

2.1 Medical Imaging Segmentation

For almost a decade, deep learning methods represented by fully convolutional
networks (FCN) have pushed medical imaging segmentation into a considerable
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maturity level both in accuracy and robustness [21,22]. Characterized by a U-
shape encoder-decoder architecture, FCN has becomes the basic architecture in
various medical segmentation tasks, including cardiac MRI [23], thyroid US [24]
and abdominal CT [25]. The former encoder is responsible for representation
learning by enhancing pixel-wise discrimination ability, while the latter decoder
is the founding part to fuse features from multiple encoding hierarchies. To be
aware of different-scale objects, a series of multi-scale representation learning
strategies have been proposed, including Gaussian (Laplacian) image pyramid
[26,27], atrous spatial pyramid pooling [28], dilated convolution [29], and pyrami-
dal convolution [30]. As for the global context modeling, global context network
(GCNet) combines a simplified self-attention mechanism and squeeze-excitation
mechanism. As for the basic convolution operation, SEgmentation TRansformer
(SETR) [32] replaces it with a pure transformer structure, which also achieves
competitive performance.

2.2 Multi-modality Imaging Segmentation

Multi-modal medical imaging (e.g., CT, PET, MRI and US, et al.) has achieved
extensive application in comprehensive characterization of morphological, patho-
physiological and molecular features of tumors. To exploit the complementarity
of different sort of imaging, an increasing number of deep multi-modal methods
have emerged recently [33–35]. As mentioned above, feature fusion can be real-
ized at three stages. Among which, early-fusion refers to stacking raw imaging or
low-level features channel-wisely by assuming a linear inter-modality relationship
[36]. Actually, imaging characteristics from distinct modalities are heterogeneous
more than complementary since the imaging acquisition processes differ greatly
from each other. To model inter-modality correlation in a higher level feature
space, the rest two fusion strategies adopt a multi-path network structure so
as to extract a hierarchical representation separately using the state-of-the-art
design of each modality. For late fusion, high-level feature maps from different
paths are fused only at the stage of model prediction. To facilitate knowledge
transfer among different streams (modalities), information fusion is performed
in a hierarchical way in the layer-level fusion. As suggested in studies [37] [38],
layer-level fusion has the potential to be the optimal fusion way.

3 Materials and Method

3.1 Dataset

In this study, we totally collected 114 dual-screen CEUS videos from patients
who attended xx Hospital for thyroid ultrasound examination. All examinations
were performed on a Philips iU22 scanner (Philips Medical Systems, Best, the
Netherlands) at a low mechanical index ≤ 0.12 using the second-generation con-
trast agents SonoVue (Bracco SpA, Milan, Italy). Dual-screen CEUS videos were
exported as AVI video files with the spatial resolution 600× 800. Each video has
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a duration at least 3 min with a framerate of 15 fps, recording the complete
thyroid perfusion process. Each examination was performed by an expert with
over 10-year clinical experience, and annotated by at least two senior radiol-
ogists to reduce inter-observer variabilities. Each radiologist first reviewed the
whole CEUS video, and then selected an optimal frame to contour the bound-
ary. Approval was obtained by the ethics review board of local hospital and the
informed consent was obtained from patients before this study.

3.2 Anatomical-Functional Fusion Network (AFF-Net)

Architecture. As illustrated in Fig. 1, we adopt a two-stream U-shape struc-
ture to construct our AFF-Net model. In the encoding phase, the backbone of
Anatomical Encoder consists of four residual blocks separated by 2 × 2 max-
pooling layer. Each block has two 3 × 3 Conv layers (all with unit stride and
zero-padding), followed by the batch normalization and ReLU activation. Each
layer is connected to the input of the previous layer. The number of chan-
nels is [16, 16; 32, 32; 64, 64; 64, 64]. As for Functional Encoder, we adopt three
stacked residual blocks with the channel number [16, 16; 32, 32; 64, 64]. Besides,
we introduce the channel-wise enhancement (CE) gate to explicitly represent
inter-frame intensity variations. In the decoding phase, anatomical-functional
fusion (AFF) module is used to fuse dual-modal feature maps from multiple
encoding scales. Along the up-sampling path, to-be-fused ultrasonic representa-
tions comprise three components, 1) up-sampled anatomical map generated by
the deconvolution layer; 2) high-resolution anatomical map passed by the skip
connection; and 3) down-scaled multi-modal map output by the AFF module.
The up-sampling path is composed of three sequential residual blocks (channels:
[64, 64, 32, 32, 16, 16]) separated by the deconvolution layer. Finally, pixel-wise
category map P is reconstructed on the fused multi-modal features using a 1-
channel 1 × 1 Conv layer, normalized by a sigmoid layer.

Channel-Wise Enhancement Gate. Given sequential enhancement appear-
ance feature maps M ∈ RT×C×H×W , where T,C,H,W denote the temporal,
channel and two spatial dimensions respectively, we first apply a 1×1 2D convo-
lution to reduce feature channels Mr(t) = Convr∗M(t), r is the reduction factor
set to 4. Based on that, feature-level enhancement dynamics E (t) is approxi-
mately represented as inter-frame feature difference between time step t and
t + 1,

E (t) = Convc ∗ Mr (t + 1) − Mr(t), t ∈ [1, T − 1] (1)

where E (t) ∈ RC/r×H×W is the enhancement map at time step t, Convc is a
3 × 3 channel-wise convolution. In this way, we could obtain T − 1 enhancement
variations representations. To keep temporal consistency, we append an all-zero
enhancement map E(T ) at time step T . Then, sequential variations represen-
tation maps are convolved by a 1 × 1 Conv layer to restore channel dimension
to C. Finally, we obtain the combined perfusion representation F = M + E via
an element-wise summation between the input enhancement appearance M and
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the sequential enhancement variation E = [E(1),E(2), . . .E(T )] ∈ RT×C×H×W.
The behind intuition is that significant intensity variations of contrast-enhanced
US view correlate with the real-time changes of spatial distribution of contrast
agents, which is expected to trace enhancement discrepancy between lesion and
normal tissues.

3.3 Anatomical-Functional Fusion Module

It is worth noting that conventional gray-scale US and contrast-enhanced US
actually reflect the thyroid nodule status by complementarily different views.
That is, morphological features in gray-scale US are intrinsically correlated with
blood flow features in contrast-enhanced US. Therefore, leveraging the semantic
consistency between modalities, alternating co-attention mechanism is adopted
in our anatomical-functional fusion (AFF) module, which co-attends to both
modalities sequentially to distinguish important components for nodule bound-
ary recognition.

Multi-scale Fusion and Grid Split. Given anatomical (functional) features
As (F s

t ) from different scales s, we rescale them into a common resolution (equal-
ing to the output of the first residual block) by bilinear interpolation, and merge
them along channels, Am = Convr

[
A1;A2;A3

]
(Fm,t = Convr

[
F 1
t ;F 2

t ;F 3
t

]
),

where r is channel reduction factor set to 16. Considering the spatial corre-
spondences, our AFF module restricts inter-modal interactions within the same
region, which is greatly different from co-attention mechanism in Visual Ques-
tion Answering [14,15,19,20] that builds associations between all pairs of image-
question locations. Thus, we split the multi-scale anatomical (functional) map
A(F) into N regular grids to co-attend both modalities.

Anatomical-Guided Temporal Attention. To evaluate which contrast
frames should be attended or overlooked, the first step is to generate temporal
attention under the anatomical guidance. For each i-th grid, we summarize the
anatomical-guide attention operation as F̂i = L

(
Fi, pi

)
, where i = {1, 2, . . . N},

Fi and pi denote the combined enhancement representation and anatomical fea-
ture, respectively. Specifically, global average pooling (GAP) is used to summa-
rize the spatial information of Ai, which is then transformed by a fully-connected
layer WA to generate the anatomical guidance pi,

pi = WA ∗ GAP
(
Ai

)
(2)

Based on that, temporal attention score s is calculated by the dot-product
between pi and the respective enhancement descriptor f i

t = GAP
(
Fi

)
, aiming at

highlighting temporal points with significant appearance or intensity variations.

st = σ
(〈

pi, f i
t

〉)
(3)

where σ (·) denotes the sigmoid function for normalization. And thus, atten-
tive enhancement representation F̂i is calculated by the weighted sum F̂i =∑T

t=1 st · Fi
t.
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Functional-Guided Channel Attention. Apart from identifying salient con-
trast frames to focus on, we also need to emphasize important channels of
gray-scale US map, which are closely associated with essential attributes, such
as some kind of edges, low echoes, and boundaries. Similar to [17], we pro-
pose the functional-guide channel attention operator in each grid, described as
Âi = G

(
Ai, qi

)
, where qi is the functional guidance from the global average

pooling of F̂i, Âi is the recalibrated anatomical map.
To generate recalibration signal, we first squeeze the spatial information of

Ai into the deep anatomical descriptors ai using GAP, and then predict a joint
representation based on anatomical descriptor ai and functional guidance qi as
follows,

K = WF

[
ai; qi

]
(4)

where K ∈ RCB

, WF ∈ RCB×CF+B

. Finally, K is normalized by sigmoid layer
to recalibrate the anatomical map, producing the recalibration representation
Âi = Ai � σ (K), where � denotes the channel-wise product operation.

As described above, the alternating anatomical-functional attention mech-
anism is independently performed in each spatial grouping. Finally, the AFF
module outputs the fused representation XAF by combining attended anatomical
and functional features Âi and F̂i via element-wise summation. In the decoding
stage, XAF is rescaled to the match the resolution before each residual block.

3.4 Implementation and Loss Function

The proposed AFF-Net was implemented using deep learning framework Pytorch
and run on a single GPU (NVIDIA TITAN RTX, 24 GB). Considering temporal
redundancy of raw CEUS videos, we adopted a temporal pruning strategy [18] to
screen out informative contrast subsequences with the length of T = 7. Accord-
ingly, one single gray-scale US image and the accompanying contrast-enhanced
US subsequence were fed as two modalities into our AFF-Net, as was common
in the baseline and competing methods. Model parameters are updated using
the Adam optimizer with the default parameters. The learning rate was initial-
ized to 0.001 and adjusted using cosine annealing schedule every 30 epochs. We
used a small batch size of 2 and terminated the learning process when validation
performance begins to convergence. Our AFF-Net was trained using the Dice
loss,

LDice = 1 − 2
∑N

i=1 piyi + ε
∑N

i=1 pi +
∑N

i=1 yi + ε
(5)

where N is the number of pixels in the image, pi ∈ [0, 1] is the predicted proba-
bility of ith pixel belonging to the lesion area, yi ∈ {0, 1}.

4 Experiments and Results

Experimental Setup. In our experiments, we adopted the standard setup of 5-
fold cross-validation for performance evaluation and comparison of our method
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Table 1. Comparison with State-of-the-art Methods and Baselines on the task of
thyroid nodule segmentation.

Methods Fusion Thyroid nodule

DSC(%) IoU(%) HD p ≤ 0.05

MC-CNN Conv0 75.36 ± 2.38 61.17 ± 3.10 9.39 ± 0.51 �

Conv1 76.38 ± 2.43 62.53 ± 3.13 8.95 ± 0.41 �

MB-CNN Average 76.99 ± 2.42 63.09 ± 3.09 8.75 ± 0.28 �

Majority 76.10 ± 2.08 61.84 ± 2.60 9.151 ± 0.45 �

HyperDenseNet – 79.76 ± 1.99 66.54 ± 2.55� 8.22 ± 0.37 –

Co-learning – 77.34 ± 2.19 63.76 ± 2.83 9.39 ± 0.47 �

MMTM – 78.04 ± 2.81 64.26 ± 3.61 9.33 ± 0.41 �

AFF-Net – 81.74± 1.73 69.40± 2.18 8.50± 0.36 –
� denotes a significant difference compared with our method, the last column
denotes significant comparisons for all three metrics.

and competing methods, as well as all baselines. In this paper, segmentation
performance was evaluated by three metrics, including Dice Similarity Coefficie
(DSC), Intersection over Union (IoU) and Hausdorff distance (HD) [16]. The
first three metrics measures the degree of overlap between segmentation result S
and ground truth Y , and HD measures boundary distances. For all experimental
comparisons, we computed the p-value with the two-sample t-test.

We first compared our AFF-Net method with several fusion baselines. 1)
Multi-channel (MC) CNN, implementing multi-modal US fusion via channel-
wise concatenation at the network input (Conv0) or after first convolution block
(Conv1); 2) Multi-channel (MB) CNN, implementing a late fusion of segmenta-
tion results by average or majority voting, where each modality was processed
separately. Then, we compare it with more complex layer-wise fusion structures,
including 1) HyperDenseNet that extends the dense connectivity to a multi-
branch structure; 2) Co-learning Network that derives a spatially varying fusion
map at each decoding scale; 3) Multimodal transfer module (MMTM) that recal-
ibrates multi-modal tensors along the channel dimension. In our implementation,
we replace the original 2D convolution with 3D ones, aiming at learn spatial-
temporal features from dynamic contrast-enhanced US view.

Baselines and Competing Methods: Quantitative segmentation results are
summarized in Table 1. We observe that the layer-level fusion of deep features
from different modalities achieves a superior performance over the manner of
early-level and late-level fusion. And our proposed AFF-Net achieves the largest
overall improvements, these improvements are statistically significant compared
to all baselines, verifying the effectiveness of cross-modality imaging fusion
and enhancement dynamics representation in the task of thyroid nodule seg-
mentation. By allowing dense connectivity between encoding streams, Hyper-
DenseNet achieves the smallest mean boundary distance of 8.22, and comparable
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Table 2. Comparative results of ablation analysis.

Methods Thyroid nodule

DSC(%) IoU(%) HD p ≤ 0.05

A-Net 74.22 ± 3.13 59.72 ± 4.03 9.65 ± 0.36 �

F-Net 73.88 ± 2.77 59.40 ± 3.54 9.43 ± 0.44 �

AFF-Net-C 79.08 ± 1.79 65.70 ± 2.26� 8.74 ± 0.42� –

AFF-Net 81.74± 1.73 69.40± 2.18 8.50± 0.36 –
∗ denotes a significant difference compared with our method, the
last column denotes significant comparisons for all three metrics.

Fig. 2. (a) Gray-scale US; (b–d) Dynamic contrast-enhanced US; (e) Ground-truth; (f)
Highlighted anatomical channel Ac; (g)Significant enhancement point Ft; (h) Attend
anatomical map Â; (k) Temporally aggregated functional map F̂; (L)Segmentation
result P. For illustration, we normalize the feature values into the range of [0 − 1].

performances in terms of mean DSC 79.76% vs. 81.74% and IoU 66.54% vs.
69.40%, respectively. Another interesting finding is that channel-wise attention
in MMTM outperforms spatial-channel-wise attention in Co-learning method. It
indicates that deriving a more complex weighting tensor might not be well suit-
able for feature fusion in the task of nodule segmentation using dual-screen CEUS
imaging. For an more intuitive understanding, we provide an visualization of our
model in Fig. 2, including the model prediction and the intermediate feature maps
generated by the AFF module.

Ablation Analysis: To evaluate the usefulness of multi-modal US fusion and
two major components of our method (i.e., CE gate and AFF module), we
compare AFF-Net with its three variants, i.e., 1) A-Net, which removes the
branch of enhancement features learning from contrast-enhanced US view; 2)
F-Net, which removes the branch of morphological features representation from
gray-scale US view; 3) AFF-Net-C, which removes CE gate for enhancement
variations modeling.
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From Table 2, we observe that fusing deeper-layer features of gray-scale US
and contrast-enhanced US provides a clear improvement over the single-path
version, with an increase on performance of nearly 7%. Even compared with
MC-CNN with early fusion in Table 1, depending on single US modality (A-
Net or F-Net) still show inferior performance, further validating the advantage
of fusion of morphological features and microvascular perfusion features in our
task of thyroid nodule segmentation. When adding channel-wise enhancement
gate for explicit perfusion differences representation learning, we could see a
significantly higher IoU score (p ¡ 0.05) 69.4% than that of the baseline AFF-
Net-C that removes CE gate directly, demonstrating its effectiveness to capture
enhancement discrepancy between thyroid nodules and normal gland.

5 Conclusion

In this paper, we have proposed an anatomical-functional fusion network to
automatically segment thyroid nodules using dual-screen contrast-enhanced US
imaging. Experimental results on our collected datasets have demonstrated the
effectiveness of our method in both dynamic enhancement modeling and com-
plementary feature fusion (morphology and perfusion). As the future work, we
will extend our current model to a multi-task architecture that jointly detects
lesion regions and predicts clinical status for thyroid nodule treatment.
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Abstract. Head and neck (HaN) cancers are often treated with radio-
therapy. Since radiation inevitably causes damage to human organs, it is
necessary to control the dose of radiation in different areas during radi-
ation therapy to protect organs at risk (OARs). To solve these incom-
patible problems, we proposed an end-to-end spatial multi-view network
for head and neck organs at risk segmentation, named SpMVNet, to
take advantage of both spatial continuous context and multi-view rel-
evance in whole volume CT images. The proposed method includes a
symmetric segmentation network (SymNet) and a continuous context
network (CCNet), making full use of organs’ structural symmetry in CT
slices and spatial contextual information of volume data. Our proposed
method is validated on the MICCAI 2015 Head and Neck Automatic
Segmentation Challenge datasets. Extensive experiments show that it
achieves lower error range for most organ segmentation with better eval-
uation metrics than state-of-the-art methods. This proposed method is
helpful to improve the precision of organ segmentation in radiotherapy.

Keywords: Automated segmentation · Organs at risk · Head and
neck CT images

1 Introduction

Cancer is a common disease in the world, with a high fatality rate threatening
human life and health. More than millions of people die of cancer every year,
among which head and neck (HaN) cancer is one of the most difficult cancers
to treat because of its complex anatomical structure [15]. And for clinical treat-
ment, the high precision radiotherapy is often the preferred treatment for head
and neck cancer, but it is necessary to limit the radiation dose to avoid damage
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
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to the organs at risk (OARs), as well as reduce sequelae and complications. It
can be seen that accurately delineating the areas of organs at risk is particularly
important for the design of radiotherapy schedules. Organs at risk are highly
sensitive to radiation, such as the optic nerve and optic chiasm, which cannot
tolerate excessive radiation. And the key step in radiation therapy planning is
the identification of the boundaries of high-risk organs. Therefore, the automatic
segmentation of high-risk organs helps reduce the workload of doctors in radi-
ation therapy planning, resulting in a reduction in the overall cost of radiation
therapy from both a time and economic perspective.

CT imaging overcomes the problem of human anatomical structure informa-
tion overlapping in X-ray imaging, and has the characteristics of high acqui-
sition speed, high spatial accuracy and resolution. Its three-dimensional (3D)
data can clearly display the spatial density and accurate position information of
human organs, and two-dimensional (2D) plain scans can be used to detect suspi-
cious lesions. Therefore, computed tomography (CT)-based treatment planning
remains to be the mainstream in current clinical treatment.

For the multi-target segmentation task in this paper, how to extract the
representation of human organs from CT images is a thought-provoking problem
due to the large sizes and shape differences of human organs and the complex
spatial structure positions. For 2D neural network, it processes slice images layer
by layer, which cannot learn the correlation between successive slices, resulting in
the loss of spatial information. However, for the 3D framework of voxel-by-voxel
image processing, patch training is usually used to counter the large increase
in parameters caused by the network, and the maximum receiving range of the
network will be limited by computing resources, thus it is easy to lose the global
information of large organs.

In actual clinical practice, radiologists usually manually segment the OARs
on the each layer of CT images, which is time-consuming and lies on rich experi-
ence. Even so, this process of segmentation could also lead to incorrect and mis-
diagnosis problems. Our proposed method can accurately delineate the organs
at risk for radiotherapy schedules according to the prior knowledge of doctors,
which can save time and labor cost while explaining the objectivity and inter-
pretability of the method. The research in this paper is based on a publicly
available dataset. The aim is to perform the aforementioned blade segmenta-
tion on head and neck computed tomography (CT) images. The example of CT
images and labels are shown in Fig. 1.

Deep learning methods represented by convolutional neural networks (CNN)
in recent years, have made great achievements in the field of medical segmen-
tation [1,9,13,14,22], and CNN has also been applied for OARs segmentation
in head and neck CT images [10,18,20,23]. At present, some researchers have
completed the related works on this task. The first [10] using deep learning
methods proposed a 2D CNN for OARs segmentation from HaN CT images,
but it only got a slight improvement in right submandibular gland and right
optic nerve, and the performance for the other OARs was similar to that of the
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Fig. 1. Segmentation labels of nine organs at risk in head and neck CT images. (a)–(d)
are axial, coronal and sagittal views as well as 3D masks, respectively. Different colors
on the right represent relevant organs at risk.

traditional methods. Zhu et at. [23] proposed the end-to-end method Anato-
myNet, a three dimensional squeeze-and-excitation U-Net (3D SE U-Net) based
on the SE attention mechanism, combining dice loss and focal loss as optimiza-
tion constraints. Tong et at. [20] designed a fully convolutional neural networks
framework with stacked auto-encoder as a shape latent representation model for
HaN radiotherapy. However, these existing deep learning-based methods usually
produce accurate segmentation maps for large organs and ignore the character-
istics of different views of CT data, which have influence on accuracy of small
organs and may not be helpful for segmentation of symmetrical OARs.

In this paper, we proposed an end-to-end spatial multi-view network for
OARs segmentation, named SpMVNet. The challenging head and neck organs
segmentation problem is divided into three views as branches of processing. We
first design a symmetric segmentation network (SymNet) to take advantage of
the symmetric anatomical structure features of the axial and coronal views, and
divide the input network into two parts to make it easier for the network to
learn similar features of the symmetric structure. We raise a continuous context
network (CCNet) to make full use of the spatially continuous structural informa-
tion of CT images to make the segmentation masks to be continuous. And the
proposed method shows great performance on MICCAI 2015 challenge datasets.

2 Method

In this section, we describe the method of OARs segmentation for head and neck
CT images. Our strategy is to simulate the way experienced doctors observe, that
is, to predict and locate OARs in different views of volume CT and then output
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Fig. 2. Overall framework of our SpMVNet. The origin volume is preprocessed by
cropping and resampling to obtain the input volume of the network. The data of
axial, coronal and sagittal views are input into SymNet and CCNet module, then
corresponding prediction masks are output. The masks of the three views are fused
and used as the final mask prediction results.

the most probable segmentation results by fusing the masks of three branches
at the same spatial position. The overall framework of the proposed SpMVNet
has two main components, symmetric segmentation network (SymNet) and con-
tinuous context segmentation network (CCNet).

2.1 SpMVNet

We propose a novel end-to-end spatial multi-view network (SpMVNet) for HaN
OARs segmentation and its structure is illustrated in Fig. 2. The input volumes
are obtained from the origin volumes through image preprocessing, preserving
the information of the key parts in HaN CT volumes. After our observation and
consultation with hospital experts, we explore the segmentation network using
the features of different views and divide the segmentation task into two main
sub-networks, namely symmetric segmentation network (SymNet) and continu-
ous context segmentation network (CCNet). We notice that OARs such as the
parotid, optic nerve and submandibular have left-right symmetrical physiolog-
ical structures, so that the CT volumes divided into left and right slices along
the midline of the brain for feature learning in axial and coronal views.

SpMVNet for segmentation of HaN OARs can be interpreted as a mathe-
matical theoretical model: a CT medical image I as input and a group of repre-
sentation constraints Ci (i = 1, 2, · · · ), and the segmentation of I is to acquire a
delineation of it, which can be expressed by the following Eq. 1:

N⋃

x=1

Rx = I, Rx

⋂
Ry = ∅,

∀x �= y, x, y ∈ [1, N ].

(1)
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Fig. 3. The structure of our SymNet. The input volume is split into left and right
sectors by the brain midline and fed into the siamese network to get the predicted
masks of the left and right partitions respectively, and finally merged into the labels.

Fig. 4. Illustration of the proposed CCNet. It is on the basis of the segmentation
network 3D U-Net with a context block and a continuous block. Input volumes are fed
into a feature encoder module, where the ResNet-34 block pretrained from ImageNet [5]
is used to replace the original U-Net encoder block.

Herein, Rx satisfies both sets of pixels of the HaN CT images I in the con-
straint Ci and so does Ry. There is no intersection between Rx and Ry. And
x, y are used to distinguish the different regions. N indicates the number of
classification including background and nine OARs.

2.2 SymNet

The head and neck CT images have structural symmetry in the axial and coronal
views, so the images can be segmented along the midline of brains to obtain the
left or right OARs structures, which inspires us to design a symmetrical network
for organ feature extraction.
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We first calculated the midlines of 2D slices from HaN CT volumes in axial
and coronal views. The slices Is are processed via automatic nonparametric and
unsupervised threshold selection segmentation algorithm OTSU [16] to obtain
regions of whole brain Mh. We then perform image inflation with a small kennel
on the results of the last step and calculate the maximum connected regions
Rc. The outer contour of regions C will be saved to the matrix mc and filled,
eliminating the holes inside. The end points Pup and Pdown are searched up and
down in the matrix mc along the midpoint of the segmentation results Mh, and
the boundary position is used as the search termination condition, so that the
midlines lm of the HaN slices can be obtained.

Our symmetric segmentation network (SymNet) is composed of the same
shared weighted convolutional kernel of encoder and decoder based on the
Siamese Network [12], with paired (I1, I2) as the network inputs, which is shown
in Fig. 3. Siamese network uses shared weight convolution computation and max-
imum pooling procedures to calculate the similarity between the high-level fea-
tures (F1, F2) of the input images.

We then divide the two-dimensional slices along the dissection line into left
and right partition as input and joint the two prediction masks in spatial posi-
tion, which significantly reduces the amount of network parameters compared
with other methods. The L1 distance is used to estimate the similarity of high
level features, followed by weight multiplication and sigmoid function to map
the value into [0, 1]. The similarity function is formulated as Eq. 2:

p = σ(W · |f1 − f2|), (2)

where σ is the sigmoid activation function, W is the weight parameters, is matrix
product of two matrices, and fi is the high level feature F .

The SymNet employs the U-Net [19] with long skip-connections as the base-
line network. U-net consists of downsampling and upsampling processes to obtain
the predicted segmentation masks. The skip-connection from the downsampling
part to the upsampling part has several advantages in fusing local and global
features for accurate segmentation with details and resolving the gradient van-
ishing problem in deep learning models. In our approach, In our approach, the
network learns the similar anatomical shape of the left and right portions of the
HaN organs, reducing the difference in segmentation results while transferring
the convolutional features of the downsampling to the upsampling phase.

2.3 CCNet

The proposed CCNet consists of three major parts: Downsampling module, con-
text block, continuous block and upsampling module. And its detailed illustra-
tion are shown in Fig. 4.

A challenge in OARs segmentation is the large variation of object sizes in HaN
CT image. For example, a tumor in middle or late stage can be much larger than
that in early stage. Motivated by the feature pyramids and multi-scale feature
concatenation, we propose novel context block to encode the high-level semantic
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feature maps. For segmentation task, the receptive field of the high-level network
is relatively large, and the semantic information representation ability is strong,
but the representation ability of geometric information is weak while low-level
network is relatively small, and the geometric detail information representation
ability is strong. In order to enable the network to fully learn features of different
scales and improve the effectiveness of the features, our method extracts the
feature maps output by stage3, and stage5 based on the Resnet network. For the
input of 512× 512 size, the output feature map size They are 64 × 64 × 512 and
16 × 16 × 2048, which correspond to the shallow texture features, intermediate
transition features and deep semantic features of the image, and are input to
the subsequent self-attention module for each layer features for further channel
filtering. By combining the convolution of different rates, the context block is
able to extract features for objects with various sizes.

Vanilla convolutions in a U-Net [19] have no significant effect for multi-organ
segmentation. The inputs of skip connections are almost zeros thus cannot prop-
agate detailed color or texture information to the decoder of that region. There-
fore, We customize a continuous block with gated convolution and dilated gated
convolution [21]. Gated convolution learns a dynamic feature selection mecha-
nism for each channel and each spatial location and the mask feature output
OM can be formulated as Eq. 3.

GatingM =
∑∑

Wg · VHaN ,

F eatureM =
∑∑

Wf · VHaN ,

OM = φ(FeatureM ) � σ(GatingM ),

(3)

where GatingM and FeatureM represent two type of features extracted from
corresponding convolution filter Wg and Wf for the same input volume VHaN .
Besides, φ and σ mean sigmoid function and activation function.

For delineation boundaries of HaN OARs, our encoder-decoder architecture
equipped with context block and continuous block is sufficient to obtain reason-
ably continuous segmentation results.

2.4 Loss Functions

As illustrated in Fig. 2, our approach needs to train the proposed network to
predict each pixel in the CT images to be background or nine OARs, which is a
pixel-wise classification problem. And a widely used loss function is cross entropy
loss. However, the objects in this task such as chiasm and optic nerve often take
up small regions in the CT images. In this paper, we use the dice coefficient
loss function [2,4] to optimize network parameters, which helps to constrain
the multi-organ masks from the ground truth. The comparison experiments and
discussions are also conducted in the following section. The dice coefficient is a
measure of overlap widely used to assess segmentation performance when ground
truth is available, as in Eq. 4:
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Ldice = 1 −
K∑

k

2ωk

∑N
i p(k, i)g(k, i)

∑N
i p2(k,i) +

∑
i Ng2(k,i)

, (4)

where N is the pixel number, p(k, i) ∈ [0, 1] and g(k, i) ∈ 0, 1 denote predicted
probability and ground truth label for class k, respectively. K is the class number,
and

∑
k ωk = 1are the class weights. In our paper, we set ωk = 1

K empirically.
We use shape-aware loss [7] to take shape of organs into account. In general,

all the loss function values are calculated from the pixels in the image, but shape-
aware loss calculates the average point to curve Euclidean distance D among
points around curve of predicted segmentation Ĉ to the ground truth CGT and
use it as coefficient to cross-entropy loss function. It is defined as follows:

Ei = D(Ĉ, CGT ),

Lshape = −
N∑

i

[CE(ŷ, y) − iEiCE(ŷ, y)].
(5)

Using Ei the network learns to produce a prediction masks similar to the
training shapes.

The final loss function is defined as:

Lloss = Ldice + Lshape + Lreg. (6)

Herein, Lreg represents the regularization loss (also called to weight decay) [8]
used to avoid overfitting.

3 Experiments

In this section, we conduct evaluation experiments to evaluate the performance
of the different methods on MICCAI 2015 Head and Neck Auto-Segmentation
Challenge dataset [17]. Nine anatomical segmentation structures in the dataset
are highly relevant OARs for radiation therapy treatment in the head and neck,
including brainstem, mandible, chiasm, left and right optic nerves, left and right
parotid glands, as well as left and right submandibular. And manual contouring
data used are segmented by three different medical imaging experts. For fair
comparison, all methods are trained and validated using the same data and con-
dition settings. The predicted segmentation results are quantitatively evaluated
by two widely used metrics. Furthermore, we demonstrates the outperformance
of our proposed approach through segmentation visualization and ablation study.

3.1 Dataset Preprocessing

The dataset consists of 48 CT scan sequences, of which 38 cases are used as
training set and 10 cases as testing set following [6]. In this work, nine anatom-
ical structures are considered as segmentation targets, including brainstem,
mandible, chiasm, bilateral optic nerves, bilateral parotid glands, and bilateral
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Table 1. Dice score coefficient (%) ↑ of results by different compared methods on
MICCAI 2015 dataset. The larger the value, the more accurate the segmentation.

Organ 3D U-Net AnatomyNet FocusNetv2 Ours

Brain Stem 0.814 0.863 0.879 0.895

chiasm 0.508 0.541 0.708 0.719

Mandible 0.801 0.921 0.940 0.952

Optic nerve left 0.613 0.721 0.788 0.793

Optic nerve right 0.608 0.691 0.809 0.805

Parotid glands left 0.836 0.878 0.887 0.895

Parotid glands right 0.802 0.872 0.892 0.908

Submandibular glands left 0.759 0.808 0.836 0.842

Submandibular glands right 0.771 0.807 0.829 0.833

Table 2. 95% HD score (mm) ↓ of results by different compared methods on MIC-
CAI’15 dataset. The smaller the value, the more accurate the segmentation.

Organ 3D U-Net AnatomyNet FocusNetv2 Ours

Brain Stem 11.122 8.396 1.839 0.574

chiasm 4.418 1.741 1.144 0.996

Optic nerve left 3.539 2.549 2.980 2.080

Optic nerve right 1.157 2.827 1.909 0.855

Mandible 1.074 0.578 0.511 0.531

Parotid glands left 4.716 6.447 4.106 3.715

Parotid glands right 8.045 4.177 5.732 4.108

Submandibular glands left 5.479 2.938 1.819 1.406

Submandibular glands right 3.322 1.534 1.321 0.908

submandibular glands. We first convert the original imaging data to NIfTI for-
mat, keeping the same size 512 × 512 pixels with 110 − 190 slices. And in-plane
pixel spacing varied between 0.76 × 0.76 mm and 1.27 × 1.27 mm. We then nor-
malized the data to satisfy a standard normal distribution with a mean of 0 and
variance of 1. In addition, we normalized the grayscale values of the images.

3.2 Implementation Details

We implemented our model with PyTorch framework. Batch size was set to
be 1 because of different sizes of whole-volume CT images. We first used SGD
optimizer with momentum 0.9, learning rate 0.001 and the number of epochs
being 50. Then, Adam optimizer [11] was used for training, with β1 = 0.5 and
β2 = 0.999, and the number of epochs 600. During training process, we apply the
following image augmentations to enhance the training set: random resize with
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Fig. 5. Comparison of different methods for visualization on miccai dataset. (a)–(e) are
the mask predicition of 3D U-Net, AnatomyNet, FocusNetv2, the proposed SpMVNet
and ground truth, respectively.

Table 3. Dice score coefficient (%) ↑ of results by baseline and improved methods on
MICCAI 2015 dataset. The larger the value, the more accurate the segmentation.

Organ baseline baseline w CCNet baseline w SymNet Ours

Brain Stem 0.751 0.830 0.864 0.895

chiasm 0.424 0.575 0.617 0.719

Mandible 0.742 0.847 0.881 0.952

Optic nerve left 0.569 0.694 0.769 0.793

Optic nerve right 0.608 0.627 0.696 0.805

Parotid glands left 0.771 0.776 0.842 0.895

Parotid glands right 0.726 0.799 0.852 0.908

Submandibular glands left 0.637 0.706 0.788 0.842

Submandibular glands right 0.688 0.690 0.775 0.833

scale range [0.5, 2.0], crop, and horizontal flipping with probability 0.5. The label
images should do the same transformation as CT images. All the experiments
were performed on a standard desktop with Ubuntu 16.04, using one NVIDIA
GeForce RTX 3090 GPU with 24 GB memory.
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Table 4. 95% HD score (mm) ↓ of results by baseline and improved methods on
MICCAI 2015 dataset. The smaller the value, the more accurate the segmentation.

Organ baseline baseline w SymNet baseline w CCNet Ours

Brain Stem 14.227 5.733 3.357 0.574

chiasm 1.349 1.239 1.048 0.996

Optic nerve left 3.386 3.539 2.973 2.080

Optic nerve right 1.225 0.886 0.891 0.855

Mandible 1.234 0.974 0.612 0.531

Parotid glands left 6.852 5.496 3.909 3.715

Parotid glands right 9.645 6.594 5.394 4.108

Submandibular glands left 8.190 7.218 3.521 1.406

Submandibular glands right 1.839 1.241 1.091 0.908

3.3 Evaluation Metrics

In order to accurately evaluate the segmentation results, this article uses two
evaluation indexes, Dice Similarity Coefficient and 95% Hausdorff Distance, to
evaluate the segmentation results. They are the most common used metrics
for evaluating 3D medical image segmentations and include volumeand overlap-
based metric types. Multiple metrics are used because different metrics reflect
different types of errors. For example, when segmentations are small, distance-
based metrics such as HD are recommended over overlap-based metrics such as
Dice coefficient. Overlap-based metrics are recommended if volume-based statis-
tics are important. In the following, the metrics used are described in more
detail:

The Dice coefficient measures the volumetric overlap between the automatic
and manual segmentation. It is defined as:

Dice =
2|A ∩ B|
|A| + |B| , (7)

where A and B are the labeled regions that are compared and |.| is the volume
of a region. The Dice coefficient can have values between 0 (no overlap) and 1
(complete overlap).

The maximum HD measures the maximum distance of a point in a set A to
the nearest point in a second set B. Commonly it is defined as:

H(A,B) = max(h(A,B), h(B,A)),
h(A,B) = max

a∈A
min
b∈B

‖ a − b ‖,
(8)

where ||.|| is the Euclidean distance, a and b are points on the boundary of A
and B, and h (A, B) is often called the directed HD. It should be mentioned that
maximum HD is sensitive to outliers but appropriate for nonsolid segmentations.



268 H. Liu et al.

Fig. 6. Results of ablation experiments of our method. From top to bottom are the
axial, coronal and sagittal views as well as 3D mask results. (a)–(e) are the mask predici-
tion of baseline, baseline with CCNet, baseline with SymNet, our proposed method and
ground truth, respectively.

The 95% HD is similar to maximum HD. However, in contrast to maximum
HD, 95% HD is based on the calculation of the 95th percentile of the distances
between boundary points in A and B. The purpose for using this metric is to
eliminate the impact of a very small subset of inaccurate segmentations on the
evaluation of the overall segmentation quality.

3.4 Quantitative Comparison

We compared our framework with three head and neck relevant segmentation
methods, including 3D U-Net [3], AnatomyNet [23] and FocusNetv2 [6]. Note
that we used the official code and results of 3D U-Net [3], AnatomyNet [23]
as well as FocusNetv2 [6]. Compared with current state-of-the-art methods, our
approach achieves effective improvements in the quantitative metrics of most
OARs.
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Table 1 and Table 2 shows the quantitative comparison of these methods.
Most of the compared algorithms achieved above 0.7 on the Dice score coefficient
of organs at risk except for chiasm. 3D U-Net [3] treats small and large organs
equally, which will affect the segmentation results on small objects, and even
organs with symmetrical structures are far inferior to other methods. Compared
with FocusNetv2 [6], our framework achieves better performance on most organs
at risk without using a complex multiple network architecture, corroborating
that our strategy has the full capability to draw out the rich information from
the CT data.

3.5 Qualitative Comparison

As shown in Fig. 5, our method shows the best visualized on parotid gland and
optic nerve. As can be seen from the axial views in the first two rows, 3D U-Net [3]
cannot identify this OARs, thus losing the information of OARs segmentation,
and the segmentation on the mandible is discontinuous, so the OARs cannot be
segmented completely. The problem of discontinuous segmentation also exists
in AnatomyNet [23] and FocusNetv2 [6], and the segmentation information is
incorrectly labeled at the position of the crania, which affects the segmentation
results. Compared other methods, our method exploits the feature information
of symmetrical OARs in the head and neck to help train network better to
approximate the reference labels on left and right parotid. Our method extracts
spatial context structure information and obtains convincing continuous OARs
segmentation masks, which can achieve better segmentation results. Therefore,
Our method is able to produce higher-quality OARs segmentation masks com-
pared with other methods.

3.6 Ablation Study

We design ablation experiments to verify the effectiveness of each part of the
proposed method, as shown in Fig. 6. Firstly, the baseline method is to replace
SymNet and CCNet with U-Net [19] and 3D U-Net [3] for segmentation of three
views. However, the visualization results show that the baseline network does
not have sufficient ability to recognize some obvious OARs structures leading to
poor segmentation results.

Then we add our proposed SymNet and CCNet to the baseline model to
analyze the continuity and symmetry of the segmentation results. Figure 6(b)
and (c) show that CCNet and SymNet can make up for the lack of spatial
context information and the inability to identify symmetric organs in the baseline
method. It can be seen from the Fig. 6(d) that our proposed method is closer to
the ground truth and the brainstem segmentation is more complete, but there
is still the problem that small OARs cannot be identified.

Similar to the comparison method, we also calculated dice score coefficient
and 95% HD scores in the ablation experiments, as shown in Table 3 and Table 4.
Our method can take advantage of SymNet and CCNet to achieve promising
results.
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4 Conclusion

In this paper, we propose an end-to-end spatial multi-view network segmentation
framework SpMVNet. Focusing on head and neck CT images, we explore a Sym-
Net to combine multi-view probabilistic symmetry maps for mask predicition of
specific organ volumes symmetrically distributed along the midline of the brain.
The method innovatively improves the siamese network for OARs segmentation
and takes the 2D slices on the left and right sides as input, and then synthe-
sizes the 3D segmentation prediction results. We also solve the problem of lack
of continuity in the segmentation of some OARs and achieve higher segmenta-
tion metrics through CCNet. We also reduce the segmentation errors of existing
methods for OARs, and achieve a certain improvement in the accuracy of sym-
metric OARs segmentation. The evaluation results demonstrate the effectiveness
of the proposed method in our paper. In this paper, an effective method is pro-
posed to solve the difficulties of organ endangerment in radiotherapy, which will
be helpful to the analysis and processing of biological information.
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Abstract. Clinical terminology standardization is important for effec-
tive integration and sharing of medical information. It aims to convert
clinical colloquial descriptions into standard clinical terminologies. How-
ever, the accuracy and efficiency of this task are challenged by the gap
between colloquial descriptions and standard terminologies, the slight
discrepancy across standard terminologies, and the low efficiency of
terminology retrieval. To address these challenges, we propose a novel
method called SNN-BS for standardizing clinical terminology based on
a Siamese network with a batch sampling strategy. SNN-BS enhances
its discrimination ability by sampling a set of terminologies to form a
retrieval set with the target terminology. By combing two kinds of simi-
larities, we amplify the differences in features between colloquial descrip-
tions and clinical terminologies while considering deeper semantic rela-
tionships. Moreover, we use the lighter Bert-tiny model to encode the ter-
minologies and improve the efficiency of terminology retrieval by reduc-
ing comparison numbers through regarding it as a question-and-answer
selection task. Finally, we conducted experiments on two datasets to
evaluate the performance of our model. The experimental results demon-
strate that our method achieves a high level of accuracy, reaching 91.30%
and 90.24%, respectively, which outperforms the baselines.

Keywords: Clinical terminology standardization · Siamese network ·
Batch sampling strategy

1 Introduction

Efficient processing of clinical medical texts using intelligent technologies has
become a hot topic in recent years, with standardization of clinical terminology
serving as its cornerstone. Its target is to transform the spoken description in
clinical medicine (i.e., the origin word) into a standardized description (i.e., the
target terminology) in the ICD (International Classification of Diseases) stan-
dard terminologies coding set. The standard terminology set classifies diseases
according to certain rules based on certain characteristics of clinical diseases
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
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and uses coding methods to represent them. It plays a key role in integrating,
exchanging, sharing, and statistics of medical information [14]. Table 1 lists sev-
eral examples of clinical terminology standardization tasks.

Table 1. Standardized examples of clinical terms

Origin word Target terminology

HIFU

(HIFU for primary liver cancer) (Ultrasonic scalpel therapy for liver damage)

(Left Ventricular Drainage) (Ventricular extracranial shunt)

DJ D-J

(Pull out DJ tube under cystoscope) (Cystoscopy D-J tube extraction)

Although clinical terminology standardization has achieved some progress in
recent years, existing methods still encounters some challenges, which signifi-
cantly limit the accuracy and efficiency of this task: 1) The oral expression of
the same target terminology is various, and some of them may vary significantly
in grammar. It is challenging to associate the origin word solely by analyzing
identical tokens without related clinical knowledge. 2) The standard terminolo-
gies within the same clinical category often appear very similar, resulting in
confusion and difficulty in distinguishing them accurately. The standard termi-
nologies in the same category are mistakenly linked to the same origin word if
the origin word is not clearly described. 3) The vast amount of terminologies
challenges the efficiency of terminologies standardization. When performing ter-
minology standardization tasks, matching and retrieving target terminologies
consume much time, making it challenging to meet the efficiency requirements
of clinical medicine.

Existing methods has mainly used the traditional text similarity or semantic
similarity evaluation to solve these problems recently [8,13]. However, the degree
of specialization in clinical medicine is high, and standard terminologies within
the same major category have close similarities. Thus, these methods cannot
distinguish similar standard terminologies. Moreover, these methods usually use
the form of “[CLS]o[SEP ]di[SEP ]” as a standard pair, where the standard
terminology di ∈ D. Once terminology task requires encoding and comparative
learning of |D| standard pairs. While taking the ICD-9 coding set as an example,
|D| ≈ 10000, such methods cannot meet the efficiency requirements of clinical
terminology standardization, much less the ICD standard terminology set is
constantly expanding.

Our research falls into the category of semantic similarity modeling. To
address the mentioned issues, we propose a method named SNN-BS for stan-
dardizing clinical terminology based on Siamese networks with batch sampling
strategy. The Siamese network has two Siamese subnets with the same structure
and shares parameters on the left and right. It inputs two pieces of similar text
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through the left and right sub-net, and maps them into a new space for feature
representation and comparison [7]. It has natural advantages for determining the
semantic similarity of the same type of text. However, the traditional Siamese
network’s approach to this task is not different from other semantic similarity
methods. Also, it lacks good recognition ability for relatively similar terminology
standard terminologies, which still cannot complete the challenges.

Therefore, SNN-BS includes three customized modules, i.e., Data sampling
unit, Bert encoder unit, and Simple feature fusion module. The Data sampling
unit is responsible for the sampling generation of the training set. It divides
the standard terminology set |D| into k candidate terminology sets Wi and
fuses the target terminology t into each Wi. This design reduces the number of
encoding and comparison learning from |D| times to k times (k � |D|). Also, the
ability of our model to identify similar standard terminologies can be enhanced.
The Bert encoder unit is responsible for tokenizing and encoding words and
terminologies. We choose Bert-tiny as the encoder. Its advantage is that the
smaller the parameter number of this model is, the faster the inference speed
will be. Compared with other methods, it can greatly optimize the efficiency
problem and minimize the loss of model accuracy due to its excellent migration
effect on the Bert model. The Similar feature fusion module is responsible for
calculating the similarity between the origin word o and Di by combing two
kinds of similarities. We use a two-layer similarity calculation method to describe
the similarity between clinical texts from different dimensions and through the
feed-forward neural network fusion. It can effectively alleviate the problem of
low accuracy caused by the large semantic difference between origin word and
target terminology. By integrating the three parts of the above design, we can
address the above-mentioned challenges and achieve a good balance between the
accuracy and efficiency of terminology standardization.

In this paper, our work makes the following contributions: 1) The design of
data sampling and Bert encoder unit in SNN-BS also care about the efficiency
issue when optimizing the accuracy of clinical terminology standardization. Our
method reduces the number of coding and comparison learning by batch sam-
pling the standard terminologies. We adopted a lighter Bert-tiny model with
better volume and transfer effect for encoding, which considers the accuracy
and efficiency of terminology standardization. 2) We propose a method of ran-
domly mixing the target terminology into each sampling candidate terminology
set to enhance the model’s ability to select answers for confusing standard ter-
minologies. Besides, we highlight the differences between the origin word and
target terminology through two-layer similarity fusion, which can alleviate the
problem of low accuracy caused by the highly specialized clinical terminology
standardization task and improve the ability to capture long-distance semantic
standard terminologies. 3) To better evaluate the method’s effect, we tested our
model on the Yidu-N7K and the self-built ICD9-INT dataset. The experimental
results show that the accuracy of our method in this paper has reached 91.30%
and 90.24%, both exceeding the SOTA model in accuracy rate.
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2 Related Work

Aiming at the standardization task of clinical terminology standardization,
academia mainly adopts two methods based on text similarity and semantic
similarity in many academic papers.

Yan et al. [11] introduced a deep generative model to generate the core seman-
tics of the description text and obtained a standard terminology candidate set,
and then used the BERT-based semantic similarity algorithm to reorder the can-
didate set to obtain the final standard terminology. Huang et al. [3] proposed
a method for standardizing origin words based on combined semantic similar-
ity technology. It is mainly based on domain knowledge base combined with
word segmentation, entity recognition and word vector representation technol-
ogy to calculate the similarity between origin word and standard terminology.
Devlin [1] proposed a pre-trained model BERT, which can predict the similarity
between sentence pairs through text classification. Sun et al. [8] proposed to
select candidate terminologies based on the Jaccard similarity algorithm, and
obtain standard terminology-matching results based on the Bert model. Liu et
al. [4] used the method of N-gram and Bert to optimize the solution of many-to-
many matching between origin words and target terminologies in ICD-9 encod-
ing.

According to the current results, searching for target terminology of clinical
terms by mining semantic information focuses on text structure, but there are
knowledge errors in the over-spoken description that are difficult to mine; The
similarity comparison method lacks support from clinical expertise, making it
challenging to distinguish between easily confused standard terminologies. It
can be seen that terminology standardization has been regarded as a natural
language processing task, but there is still much room for improvement in terms
of semantics or similarity calculation.

Therefore, we propose using the Siamese network that can take into account
both semantic information and distinguish the confusing words in the profes-
sional field. We will combine this with the Bert-tiny model to complete the
encoding of clinical terminology.

3 SNN-BS Method

Our SNN-BS method incorporates two sub-nets (i.e., left-subnet and right-
subnet) based on the paradigm of Siamese networks, in which some learnable
parameters are shared to encode origin words and standard terminology set,
respectively. It solves the problem by adopting a batch sampling strategy and
combining Euclidean similarity and dot product similarity to calculate the abso-
lute distance and relative distance between them, which alleviates the problem
of significant differences in origin word expression of the same target terminology
and high similarity of standard terminologies in the medical field. Besides, we use
the Binary Cross entropy loss function to abstract the semantic similarity prob-
lem of the clinic terminology standardization task into a question-and-answer
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selection, i.e., the origin word as a question, and each candidate terminology
set as an answer set. This approach allows the model to focus on the detailed
differences between each answer while making it easier for parallel operations to
improve recognition efficiency.

Fig. 1. Overall framework diagram of SNN-BS

Our model includes four parts shown in Fig. 1: the data sampling unit, the
Bert encoder unit (BEU), the similar feature fusion module, and the parameter
update unit.

3.1 Data Sampling Unit

The data diversity of the ICD standard terminology set is very limited [10].
Therefore, in the Data Sampling Unit, we sample the standard terminology set
D according to a specific size and randomly mix the target terminology into each
candidate terminology set Wi. This sampling strategy can enhance the training
data and meet the model’s generalization ability to the expansion requirements
of the future ICD standard terminology set and other similar tasks [12]. Figure 2
shows the strategy for data sampling.

We sample the ICD standard terminology set D according to the size of
batch (i.e., Sb, default is 512) parameter set in advance. After that, we divide
the standard terminology set into k blocks, where: k = �|D|/(Sb − 1)�.

After sampling, we insert the target terminology into each block. Then we
get k candidate terminology sets. After that, we generate the corresponding
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Fig. 2. Sampling strategy for training data: Divide the standard terminology set into
multiple candidate terminology set, and randomly insert the target terminology into
each set

indicator list as the calculation basis for the subsequent binary cross entropy
loss function, where:

Indicatori =
{

1 Candidatei = TargetTerminology
0 Candidatei �= TargetTerminology

(1)

We randomly shuffle all the words in each candidate terminology set to ensure
the position of the target terminology t in each candidate terminology set has a
certain degree of randomness and avoid wrong fitting of the model during loss
calculation. Finally we get k candidates word set Wi, where Wi = Di ∪ {t}. For
example, the origin word o input by the user, i.e., “”(“Left ulnar nerve decom-
pression”), we insert its corresponding target terminology t, i.e., “” (“Ulnar nerve
release”) at a random position in each candidate terminology set Wi. Then we
set the value of t in the corresponding position of the indicator list to 1 and
others to 0.

In Bert Encoder Unit (BEU), we tokenize and encode the origin word o and
k candidate terminology sets. For example, the origin word “” (“Ulnar nerve
release”) will be tokenized through the Bert-tiny model in the form of “[CLS]
[SEP ]”. After obtaining the id of each Chinese character, it is sent to the encod-
ing layer for vectorization processing and input into the Siamese network. During
the vectorization process, we set a maximum length limit of 40 characters, and
truncation processing will be performed on terminologies longer than the maxi-
mum limit.

In the later model training process, the model takes an origin word o and
a candidate terminology set Wi as input for a training session. This measure
aims to prevent excessive parameter amounts from preventing training when
the standard terminology set is too large. Also, it can increase the frequency of
occurrence and the comparison of the target terminology, which can effectively
strengthen the prediction effect of the model under the limited training set.
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3.2 Bert Encoder Unit

The traditional Siamese network structure uses an origin word and a standard
terminology as standard pairs for similarity comparison. The input layer’s left
sub-net and right sub-net are of the same type of text. However, due to the ICD
standard terminology set having numerous standard terminologies, using this
input structure will result in low recognition efficiency.

Therefore, we redesign the right sub-net input structure and Bert encoder
unit of the Siamese network. We take the candidate terminology set as a whole
input by the right sub-net and form a standard pair with the origin word o. We
use the smaller parameter quantities model “Bert-tiny” as the encoder, which
reduces the times of encoding and comparative learning times from the |D|
times required by the traditional Siamese network to k times (k � |D|). This
measure can significantly improve the model’s efficiency for this task without
losing accuracy.

As shown in Fig. 1, we input the origin word o that needs to be standardized
into the left sub-net and input the candidate terminology set Wi into the right
sub-net. Our method transforms the task of terminology standardization into a
question-and-answer selection task by embedding the target terminology t into
the input matrix. To encode the input words, we use the Bert-tiny model with a
smaller number of parameters to ensure the efficiency of standardization. After
encoding the origin word with the Bert Encoder Unit, we vectorize the candidate
terminology set Wi input by the right sub-net through the shared parameter
weight. In order to avoid the loss of relevance between text and text context,
our method adopts the method of Position Embedding to record the position of
key information and enhance the dependence between texts.

We use the same weight value and parameters for each set of origin word
o and candidate terminology set Wi to tokenize each word according to the
Bert-tiny vector representation specification. After this step, each origin word
and standard terminology is represented by a Sh-dimensional vector. Where
Sh represents the hidden layer size of the pre-training model. We make the
following definitions: x represents the vector representation of the origin word,
Yi represents the vector representation of the i-th candidate terminology set,
and yj represents the vector representation of the j-th candidate word in Wi, so
we get:Shape(x) = shape(yj) = [1, Sh], Shape(Y ) = [Sb, Sh]. For example, the
Bert-tiny model’s hidden size is 128 dimensions. Sb represents the size of each
candidate terminology set.

3.3 Similar Feature Fusion Module

We integrate Euclidean similarity and dot product similarity methods in the
Similar Feature Fusion module. When calculating similarity features for vector
representations of o and Wi, we also consider the absolute and relative dis-
tances between them to further determine the similarity coefficient of the target
terminology corresponding to the origin word. Then, we use a fully connected
layer to integrate the origin word and target terminology, which highlights the
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corresponding features between them and improves the capture ability of long-
distance semantic target terminologies. Finally, we complete the loss calculation
in the training phase.

As shown in Fig. 3, We calculate the absolute and relative distance features
between each standard pair. We extract the key information features of them
through the dot product similarity and Euclidean similarity so that the model
can focus on the key information in the description. Then we calculate the sim-
ilarity score after the fusion of the two through the fully connected layer.

Fig. 3. Feature fusion and loss calculation: The closer the Score value is to 1, the
closer the fusion feature of the standard terminology is to the fusion feature of the
origin word

Euclidean Distance The Euclidean similarity feature refers to the domain fea-
tures in clinical terminology descriptors, which can effectively reflect the absolute
difference in semantic features between o and each Wi to narrow the selection
range of standard terminologies. We calculate the Euclidean distance according
to the following formula:

ScoreED(x, yj) =

√√√√ n∑
j+1

(x − yj)2 (2)

After that, we get a vector of [1, Sb] dimension with Euclidean similarity feature,
where each column in the vector represents the Euclidean distance between the
origin word o and the Sb standard terminologies in Wi.

Dot Product The dot product similarity feature measures the individual dif-
ference between o and Wi. It can correct the prediction results, which has an
enormous description difference between o and Wi. We use its insensitive char-
acteristics to absolute values to filter out the standard terminologies with large
differences in distance features with origin word. Let Q = {x}, K = Yi =
{y1, y2, ..., y512}, then we get: Shape(Q) = [1, Sh], Shape(K) = [Sb, Sh]. We
calculate the dot product similarity score according to the following formula:
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ScoreDP (x, yi) = softmax(Q · KT ) (3)

Similarly, we also get a vector of [1, Sb] dimension with dot product similar
feature.

Feature Fusion. To better measure the similarity distance between origin word
o and Wi, we set up two layers of full connection layer, align the Euclidean
similarity score and the point-product similarity score calculated above, and get
the feature vector of [2, Sb] dimension. We use the two-layer feed-forward neural
network to map further, express the feature, and output it to the one-dimensional
sample space. Finally, we get the similarity score after the vector of origin word
x and vector of each candidate word yi are fused:

Matchingi = Contact(ScoreED(x, yi), ScoreDP (x, yi)) (4)

After obtaining the similar characteristics of the [1, Sb] dimension, we map
the matching score of each candidate word to the [0,1] interval through the
sigmoid function and record it as Indicatorj :

Indicatorj = Sigmoid(Matchingi) =
1

1 + e−Matchingj
(5)

For the score of Indicatorj , the closer it is to 1, the closer its corresponding
candidate word is to the origin word, and vice versa. In Fig. 3, the similar con-
fidence of origin word “” (“Pull out DJ tube under cystoscope”) and candidate
word “”(“Cystoscopy D-J tube extraction”) is the highest. Finally, we calculate
the loss function and update the weight of the indicator score and indicator
target, which is regarded as completing a round of loss calculation.

3.4 Parameter Update Unit

The Parameter update unit is responsible for calculating losses and updating
parameters. In the pre-processing stage, we obtain k candidate terminology sets
Wi. Each Wi contains target terminology and other interference standard ter-
minologies. Therefore, we need to calculate the indicator score value for each
Wi according to the steps in Sect. 3.2. After that, we calculate the loss with
the corresponding indicator target value to complete the update of the training
parameters.

When selecting a loss function, scholars often use Contrastive loss for loss
calculation in the Siamese network. However, in our method, we regard the
similarity comparison task as a multi-category task with more categories and
use Binary Cross Entropy Loss for optimization learning, which enhances the
ability to distinguish similar standard terminologies [6]:

BCELoss = −[y · logp(y) + (1 − y) · log(1 − p(y))] (6)
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where y is the ground truth value corresponding to the origin word, and p(y) is
the predicted value of the model output. When yi = 1, the word is the target ter-
minology corresponding to the origin word, then BCELoss = −logp(1). if p(yi)
approaching 1, then the value of BCELoss Approaching 0; if p(yi) approaching
0, the value of BCELoss Approaching 1, and vice versa. It can be seen that
compared with the contrastive loss function commonly used in a Siamese net-
work, binary cross entropy loss has the characteristic of approaching the real
label, which plays a key role in the prediction of standard terminologies.

By repeating the above process, one loss calculation for all candidate termi-
nology sets of a single origin word o is regarded as a training batch, and one loss
calculation for all origin words is regarded as an epoch.

3.5 Reasoning

The inference structure of our model is similar to the training structure. The
standard terminology set is divided into k candidate terminology set Wi. The
difference is that our method uses batch sampling and regression prediction to
enhance the ability to distinguish confusing words. We take the Top p standard
terminologies with the highest confidence for the prediction results of each can-
didate terminology set Wi to form a new candidate terminology set Wk+1, and
use it as the input for the next round. Which defines: p = �Sb/50�

For the k∗p candidate standard terminologies of k candidate terminology sets,
we input them again into the model structure for secondary reasoning to obtain
a new matching score. Then the model will output p standard terminologies with
the highest confidence. We merge these outputs according to the output number
requirements to form the final prediction result.

4 Experimental Results and Analysis

4.1 Dataset

Our test dataset consists of two parts: the YiduN7K dataset from CHIP2019
and the self-built dataset based on the ICD-9 international dictionary set, which
is named ICD9-INT.

YiduN7K Dataset. The YiduN7K dataset is one of the clinical medical infor-
mation processing evaluation tasks from CHIP2019 (China Conference on Health
Information Processing). The origin words are all from the real medical data of
Grade III A hospitals, including 4000 training word pairs, 1000 validation word
pairs, and 2000 testing word pairs. The data structure is also presented in the
form of <origin word, target terminology>.

Since there are many-to-many standard terminology prediction entries in the
CHIP2019 dataset, the accuracy rate is defined as the total number of origin
words to be predicted divided by the combination of origin words and target
terminologies:
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A =
1
N

N∑
i=1

|Pi ∩ Gi|
max(|Pi|, |Gi|) (7)

where Pi is the standard terminology set predicted by the origin word i, and Gi

is the real target terminology set of the origin word i.

ICD9-INT Dataset. ICD9-INT dataset is built according to the ICD-9-CM-3
international version coding standard [2]. The ICD-9-CM-3 international version
contains 4875 standard terminologies. For each origin word, we use the NLPCDA
data enhancement tool to generate two corresponding confusion words, build a
9,750-size dataset, and generate 7,800 training word pairs and 1950 testing word
pairs through random segmentation. The data structure is also presented in the
form of <origin word, target terminology> pair as shown in Table 1. We still use
the formula 7 to calculate the accuracy.

4.2 Main Result

We compare our model with the baseline model of existing methods for ICD
terminology standardization tasks:

HCAN [5] completes semantic matching between origin word and target ter-
minology through multi-granularity importance weight measurement and models
short text similarity to select target terminology. The ABTSBM model [4] utilizes
neural networks to train the original term combination splitting method based
on named entity recognition and part of speech tagging for the ICD dataset
of many-to-many. The Bert-target method [1] pre-trains bidirectional represen-
tations through left and right contexts and selects target terminology through
question answering and inference after fine-tuning. The Bert with Longest com-
mon sub-sequence method [11] analogizes the clinical terminology standardiza-
tion task to a translation task. It introduces a deep generative model to generate
the core semantics of the description text and reorder the candidate set by using
the Bert-based semantic similarity algorithm to obtain the final target termi-
nologies. The Bert with Jaccard algorithm method [8] calculates the Jaccard
similarity coefficient between the origin word and target terminology to be stan-
dardized. It generates a set of candidate standard terminologies, and uses the
Bert model for matching and classification.

To optimize the training process, we set the Sb to 512, the learning rate to
1e-5, and the epochs to 50. The model parameters are saved using the early
stop method. For other methods, all parameters are tuned to achieve their best
performance. Then, the comparison results are shown in Table 2.

We can have the following main observations:
First, our method outperforms all the compared methods on both datasets.

On CHIP2019, it achieves very high accuracy, i.e., 91.30%, which increases that of
HCAN by 17.8%. The reason behind this is that compared with simple semantic
modeling, using pretrained models can better explore the correlation between the
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Table 2. Encoding Efficiency Comparison of Different Pre-training Models

Paper Method AccY iduN7K AccICD9−INT

Rao et al., 2018 [9] HCAN 73.50% 74.51%

Devlin et al., 2018 [1] Bert-target 88.00% 86.10%

Yijia Liu, 2021 [4] ABTSBM 87.50% 86.61%

YAN Jinghui, 2021 [11] Longest common sub-sequence 89.00% 87.18%

SUN Yuejun, 2021 [8] Jaccard algorithm 90.04% 88.82%

Ours SNN-BS 91.30% 90.24%

origin word and the target terminology. Second, Devlin et al.’s Bert-target model
achieved good results at the time, i.e., 88.00%. It utilizes the Bert pre-training
model to transform terminology standardization tasks into text classification
tasks, and introduces the pre-training model into terminology annotation tasks.

Third, the Bert with Jaccard algorithm has also achieved good results, com-
bining Jaccard algorithm and Bert encoder, which can better utilize the good
feature extraction characteristics of Bert encoder in terminology standardization
tasks.

Although our model uses the Bert-Tiny model with fewer parameters and
lighter weight, it still has improved prediction accuracy compared with the SOTA
model. This is mainly due to our redesign of the Siamese network structure for
the clinical terminology standardization task, so that by generating multiple loss
calculations under the data sample unit, the model is able to fit better to the
data. After encoding the origin word and candidate terminology set, we fused
the absolute and relative distance features. It makes our model not only consider
the explicit similarity of the text, but also capture the deeper semantic features
in the clinical terminology vocabulary, which has better generalization ability
for the test samples with obvious features but difficult similarity matching.

4.3 Contrast and Ablation Experiment

In order to verify the reasoning ability of our model, we compared Bert-tiny with
the common Bert-base and Robert-small model reasoning speed under the same
framework. We simulated the efficiency of one-to-one similarity comparison in
the SOTA method. Table 3 shows the experimental results.

Table 3. Comparison of Encoding efficiency of different pre-training models

Model Sb Sizecode Time Cost

SNN-BS(+Bert-Tiny) 512 2000 144.42 s

SNN-BS(+Bert-Tiny) 1 2000 5324.52 s

SNN-BS(+Robert-Small) 512 2000 722.79 s

SNN-BS(+Bert-Base) 512 2000 1278.70 s
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According to the results in Table 3, it can be seen that using the Bert-tiny
model can significantly reduce the efficiency of model reasoning compared with
Robert-small and Bert-base. With the same Bert-tiny model, using candidate
terminology set as the right-subnet input (set the Sb to 512) has a significant
improvement in efficiency compared with using single standard terminology as
the right-subnet input (set the Sb to 1).

We conducted ablation experiments for the data sampling unit and similar
feature fusion module we adopted. Table 4 shows the experimental results.

Table 4. Comparison of Encoding efficiency of different pre-training models

Model AccY iduN7K AccICD9−INT

SNN-BS(+Dot Product) 84.55% 84.10%

SNN-BS(+Euclidean Distance) 86.25% 85.84%

SNN-BS(+Dot Product & Euclidean Distance) 89.50% 89.02%

SNN-BS(+Data Sampling & Dot Product) 86.65% 86.21%

SNN-BS(+Data Sampling & Euclidean Distance) 88.05% 87.48%

SNN-BS(+All) 91.30% 90.24%

According to the results in Table 4, it can be seen that the accuracy of the
method using the data sampling unit has increased by about 1.78% compared
with the method without this strategy; The accuracy rate of only considering
dot product similarity is about 3.11% higher than that of considering fusion sim-
ilarity; The accuracy rate of only considering the Euclidean distance similarity
is increased by about 4.64% compared with that of considering the fusion simi-
larity. Furthermore, the model’s prediction accuracy can reach the best effect of
91.30% when using the data sampling unit and similar feature fusion module.

4.4 Case Study

For the target terminology results predicted by our method, we selected some
origin word samples with the incorrect prediction of SOTA model. We compared
the prediction results of Bert-target [1] method, Siamese network without batch
sampling strategy, and Siamese network with batch sampling strategy. Table 5
shows the experimental result.

From the result, our method can effectively match those standard pairs with
similar meanings between origin words and target terminologies. After the data
sampling unit and similar feature fusion module, the ability to distinguish “all”
or “local” operations in target terminology can be effectively improved. For ori-
gin word with vague body parts, it can also match the corresponding target
terminology. For example, the word “”(“Right lower leg amputation”) should
focus on the characteristics of “”(“thigh”) rather than “”(“lower body”). How-
ever, in some cases where there are ambiguous and mixed descriptions in the
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Table 5. Sampling comparison of prediction results

Origin word/Target terminology Method Forecast Word Result

(O)1 Bert-target 7 False

(T)2 SNN-BS(initial) 2 True

SNN-BS(tuning) 2 True

(O)3 Bert-target 8 False

(T)4 SNN-BS(initial) 8 False

SNN-BS(tuning) 4 True

(O)5 Bert-target 9 False

(T)6 SNN-BS(initial) 9 False

SNN-BS(tuning) 9 False
1: Endoscopic Assisted Thyroglossal Duct Cyst Resection
2: Thyroglossal duct lesion resection
3: Right lower leg amputation
4: Thigh amputation
5: D-J tube implantation under cystoscope
6: Transurethral ureteral stenting
7: Thyroglossal duct resection
8: Lower extremity amputation
9: Cystoscopy D-J tube extraction

origin word, its terminology standardization ability still needs to be improved
due to lacking external domain knowledge. For example, the origin word, i.e.,
“(“D-J tube placement under cystoscopy”) is too concerned about the semantic
characteristics of “”(“D-J tube”), which leads to the neglect of global semantics
in the prediction process, resulting in the wrong result.

5 Conclusion

Aiming to address the accuracy and efficiency problems of clinical terminology
standardization task, we reduced the number of encoding and comparison learn-
ing by sampling the standard terminology set. We used the Bert-tiny model,
which is lighter and has a better migration effect for encoding. We randomly
mixed the target terminology into each sampling candidate terminology set to
strengthen the model’s ability to select answers for confusing standard termi-
nologies. Through two-level similarity fusion, it highlight the corresponding char-
acteristics between the origin word and the target terminology, alleviating the
low accuracy problem caused by the strong professionalism of clinical terminol-
ogy standardization tasks and improving the capture ability of remote semantic
standard terminologies.
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We take into account the accuracy and efficiency of terminology standard-
ization. The experimental results of this method on the Yidu-N7K dataset and
the ICD9-INT dataset show that our method is superior to the SOTA model
in accuracy. Also, it can effectively improve the standardization accuracy of the
origin word with unclear descriptions of surgical sites. However, the accuracy
needs to be improved for test cases with clinical abbreviations in the origin
word. In the next step. We can consider combining abbreviations in the clinical
medical field and external knowledge bases of abbreviations to further improve
the terminology standardization ability of the model.
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Technology Talents Sailing Program under Grant No. 22YF1413700.
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Abstract. Retrieval-augmented generative models have shown promis-
ing results in knowledge-grounding dialogue systems. However, identi-
fying and utilizing exact knowledge from multiple passages based on
dialogue context remains challenging due to the semantic dependency
of the dialogue context. Existing research has observed that increasing
the number of retrieved passages promotes the recall of relevant knowl-
edge, but the performance of response generation improvement becomes
marginal or even worse when the number reaches a certain threshold.
In this paper, we present a multi-grained knowledge grounding identi-
fication method, in which the coarse-grained selects the most relevant
knowledge from each retrieval passage separately, and the fine-grained
refines the coarse-grained and identifies final knowledge as grounding
in generation stage. To further guide the response generation with pre-
dicted grounding, we introduce a grounding-augmented copy mechanism
in the decoding stage of dialogue generation. Empirical results on Mul-
tiDoc2Dial and WoW benchmarks show that our method outperforms
state-of-the-art methods.

Keywords: Knowledge-grounded dialogue · Retrieval-augmented ·
Grounding prediction

1 Introduction

Dialogue generation task faces the problem of producing non-informative or hal-
lucinatory response [10,18]. Inspired by the retrieval-then-generation framework
in open-domain QA [11,15,28], recent efforts have been made to address these
concerns by knowledge-based dialogue generation. Those approaches typically
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involve knowledge searching, finding relevant knowledge according to the dia-
logue context, and producing final contextual responses [24,27].

Unexpectedly, as the number of retrieved documents increases, the perfor-
mance of existing models either saturates or even degrades. As reported in
[25,27], adding more knowledge documents to a vanilla response generation
model leads to a more severe problem of hallucinations, i.e. plausible statements
with factual errors. This might be because incorrectly retrieved passages with
high lexical overlap with the input dialogue context can mislead the response gen-
erator, rather than providing reasonable knowledge. So, how to identify relevant
knowledge from the numerous retrieved results to guide the response generation
becomes a critical problem.

To identify relevant knowledge and improve response performance,
paragraph-level methods are proposed to filter passages which contain knowl-
edge related to the dialogue. EviGui-G [2] exclude noisy documents from retrieval
results by predicting whether a retrieved document provides relevant evidence
to response as an auxiliary task. Re2G [9] purposes a retriever-ranker-generator
framework to filter the retrieved knowledge fed to the generator and applies
knowledge distillation to train the ranker and retriever jointly. DIALKI [29]
extracts knowledge by first selecting the most relevant passage to the dialogue
context and then selecting the final knowledge string within the selected passage
to guide response generation. By selecting a exclusive span from multiple pas-
sages as grounding, this token-level method further locks the scope of relevant
knowledge and achieves good results, especially in long documents. However, as
a result of this method of selecting only one grounding, there is the risk of error
propagation, which will contaminate the response once irrelevant knowledge is
chosen.

In this paper, we propose a novel Multi-granularity Grounding Guided
Generation (MG4) model which introduces two types of token-level knowledge,
namely coarse-grained and fine-grained groundings, and fuse them with weighted
attention to encourage the generator to consider the importance of knowledge
in different dialogue contexts. Our method has the ability to extract critical
grounding information from a vast array of knowledge documents in a coarse-to-
fine manner, thereby assisting in the generation of final responses. Furthermore,
our experiments have shown that the coarse-to-fine approach outperforms any of
its individual components. The framework imitates the process of human search
for answers using a browser. Initially, it reads each relevant document retrieved
and identifies the most relevant knowledge in each document as coarse-grained
groundings for the query. Next, it assesses the importance of each piece of knowl-
edge and combines the understanding from each document with a fine-grained
grounding to generate a response.

Concretely, we introduce two distinct granularities of grounding: coarse-
grained grounding and fine-grained grounding. The former aims to extract dif-
ferent spans of evidence from every retrieved passage through a question-and-
answer system. To further identify the most relevant evidence from retrieved pas-
sages, we introduce a fine-grained grounding predicting task during the encoding
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phase of generation, which can locate exclusive grounding as knowledge from all
retrieved passages. Additionally, to enhance the guidance of responses by ground-
ing, we devise a grounding-augmented copy mechanism during the decoding
phase of generation to encourage the generator to utilize the predicted ground-
ing when producing responses explicitly. Our experimental results demonstrate
that different granularities of grounding can effectively direct the generator to
improve response performance. Our best model achieves the state of the art on
both MultiDoc2Dial [8] and WoW [20] at the time of writing. Our contributions
are summed up as follows:

1. We propose a grounding-guided dialogue generation model based on two dif-
ferent granularities knowledge(coarse-grained and fine-grained).

2. We further incorporate grounding to guide generation by introducing a
grounding-augmented copy mechanism, which give additional attention to
two granularities grounding and the retrieved original paragraph text.

3. We achieve a new state-of-the-art on MultiDoc2Dial and WoW in automated
metrics. Our method generates more accurate dialogue responses and allevi-
ates hallucination problems in human evaluation and verification.

2 Related Work

Retrieval-augmented generation. The retrieval-augmented generator is a
two-stage pipeline framework: (i) first to retrieve relevant passages from the
knowledge source (the retriever) [3,12,13,26,30]; and (ii) second to generate
an answer based on retrieved passages with the original query (the generator)
[14,22]. RAG [15] retrieves relevant passages from external sources [13] and then
generate the final response in a sequence-to-sequence style with marginalizing
generation probabilities from different retrieved documents. FiD [11] retrieves
a larger number of passages, encodes them independently, and then fuses the
encoder results of multiple passages in the decoder phase. EMDR2 [28] purpose
an end-to-end training method and updates the retriever and reader param-
eters using an expectation-maximization algorithm. Recent work improves the
retrieval component [19] or introduces passage re-ranking modules [7] for further
improvements.

Knowledge-grounded Dialogues. Knowledge-grounded dialogue systems aim
to generate knowledgeable and engaging responses based on context, and exter-
nal knowledge [4,5,21,31–33]. EviGui-G [2] introduces a joint task whether a
candidate passage provides relevant evidence to enhance the ability to identify
gold passages. K2R [1] proposes a knowledge to response modular model to
generate a knowledge sequence, then attends to its own generated knowledge
sequence to produce a final response. To address knowledge identification in
conversational systems with long grounding documents, DIALKI [29] extends
multi-passage reader models in open question answering to obtain dense encod-
ings of different spans in multiple passages in the grounding document, and it
contextualizes them with the dialogue history. Re2G [9] introduces a reranking
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mechanism between the retriever and the reader, which permits merging retrieval
results from sources with incomparable scores (Fig. 1).

3 Method

3.1 Overview

Fig. 1. Overview architecture of MG4 framework

Problem Description. In knowledge-grounded response generation task, given
a set of knowledge documents D, dialogue context U consisting of dialogue his-
tory {u1, . . . , uT−1} and user’s utterance of current turn uT , the goal is to gen-
erate response uT+1. The probability of the generated responses can be written
as:

p(yt | P,U) =
n∏

t=1

p(yt | P,U, y1, . . . , yt−1) (1)

where yt is the t-th token in the agent response uT+1, P is the split results of
documents D. In order to distinguish the above D and P , we use ”document”
and ”passage” respectively to denote the text of before and after segmentation.
As the dialogue is knowledge-guided, the response is entailed by the grounding
evidence in gold document among the provided multiple documents. In the gold
passage related to the question, the grounding Gg is a span evidence to guide
response generation. In this paper, we predict and exploit the grounding evidence
in a multi-stage style to enhance the final response generation.

Method Overview. We propose a grounding-guided framework which extends
the retrieval-augmented generation paradigm by adding a reader module to
predict grounding - the token level evidence from retrieved passages to guide
response generation. Firstly, the retriever retrieves the top-K knowledge pas-
sages (segments of the document) related to the last turn utterance and the
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dialogue history. Secondly, the reader module (Sect. 3.2) is used to predict
coarse-grained grounding evidence from every retrieved passage independently.
It is worth noticing that coarse-grained grounding may be inaccurate consider-
ing that there is an error prediction of the reader, or the retrieved passage may
not include the grounding evidence. Thirdly, the response generator finds the
most relevant evidence from multiple retrieved passages. We propose using the
grounding-guided encoder (Sect. 3.3) and copy-augmented decoder (Sect. 3.4) in
the generator to produce the final response. The grounding-guided encoder uses
the encoder representation of the generator to predict fine-grained grounding,
and the copy-augmented decoder encourages the generator to borrow words from
the predicted grounding explicitly.

3.2 Coarse-Grained Grounding Prediction in Reader

Firstly, by taking current utterance uT with dialogue history {u1, . . . , uT−1} and
a retrieved passage pi as input, the grounding reader aims to infer important
grounding evidence span from each retrieved passage pi. We train our reader to
use all the three tuples of dialogue context, gold passage, and grounding evidence
span of gold passage in the training set. The grounding evidence span can be
obtained in most cases since the response is written by human based on its
provenance.

We use span-based reading comprehension model to predict coarse-grained
grounding. The start and end probability are calculated by a linear projection
from the last hidden states of reader’s encoder:

p̂ start = σ(ϕ(H)) p̂ end = σ(ϕ(H)) (2)

where p̂ start and p̂ end is start and end probability distribution, H is the repre-
sentation of reader’s encoder, σ is softmax function and ϕ(◦) is MLP. The cost
function is defined as :

J(θ) = − 1
T

T∑

t=1

log
(
p̂ start

ys
t

)
+ log

(
p̂ end

ye
t

)
(3)

where T is the number of training samples, ys
t and ye

t are the true start and end
position of the t-th sample.

Then we use the well-trained reader to infer grounding evidence G for every
retrieved passage in the training and evaluation set. The usage of coarse-grained
grounding evidence G will be introduced in Sect. 3.3.

3.3 Fine-Grained Grounding Prediction in Generator Encoder

The generator is an encoder-decoder structure where the encoder part encodes
every retrieved passage independently with the dialogue context and the coarse-
grained grounding predicted in Sect. 3.2. The representation of j-th passage
hj

enc ∈ Rd×lj can be calculated by encoder:

hj
enc = Encoder (C; pj ; gj) (4)
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where C is the dialogue context, pj is the j-th passage and gj is the predicted
coarse-grained grounding in j-th passage from reader. The input form of j-th
passage feed to the generator encoder can be described in detail as follows:

[S̄u, u1, ...uT ; S̄p, p
0
j , p

1
j , ...S̄g, g

s
j , ...g

e
j , Ēg, ...p

lj
j ] (5)

where uT is the dialogue utterance of T -th turn, pj = {p0j , . . . , p
lj
j } is the context

tokens of j-th retrieved passage with length lj . gj = {gs
j , . . . , g

e
j} is coarse-grained

grounding predicted by reader in the passage with the start and end position.
S̄u, S̄p, S̄g, Ēg are special tokens to indicate the start position of dialogue and
passage context, the start and end position of coarse-grained grounding.

Fine-Grained Grounding Prediction. The encoder part of the generator
incorporates fine-grained grounding prediction to identify the most relevant
grounding evidence from all the retrieved passages to generate a response.
Fine-grained grounding prediction can also fuse and denoise the coarse-grained
groundings as it can be jointly trained with the response generation part. The
error in coarse-grained groundings can arise from two sources: (1) errors in the
prediction from the reader module, and (2) the possibility that the retrieved
passage may not inherently contain any grounding evidence.

In the training phase, we consider that some retrieved passages may not
contain the exact gold grounding evidence but rather similar useful information.
Therefore, we use a token-level matching method to identify tokens present in the
gold grounding and use them as fine-grained grounding labels. In the validation
phase, the predicted grounding evidence is leveraged in the generator decoder
part described in Sect. 3.4. The fine-grained grounding prediction is composed
of a linear layer and a sigmoid function, which acts on the representation from
the generator encoder. Since tokens included in the gold grounding accounts for
a small proportion of the tokens in all retrieved passages, we sample negative
tokens and apply focal loss [17] to train the grounding evidence prediction. The
loss function can be defined as follows:

pg (i) = σ(Wghi + bg) (6)

J(θ) =
M∑

yi=1

α
(
1 − pg (i)

)γ log pg (i) +
N∑

yi=0

(1 − α) pg (i)γ log
(
1 − pg (i)

)
(7)

where hi is the i-th position’s representation from generator encoder, Wg and
bg are trainable parameters, σ is sigmoid function, J(θ) is the loss objective
contributed by M positive grounding tokens and N negative tokens. α and γ is
the hyperparameters in focal loss.

3.4 Copy Grounding Evidence in Generator Decoder

The decoder part of generator jointly decodes all encoded features of retrieved
knowledge to generate response. We fuse the encoder inputs in a Fusion-in-
Decoder style [11] to empower the decoder to attend all input passages and get
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cross-attention result within a linear time complexity. As described in Sect. 3.3,
the representation of j-th passage hj

enc ∈ Rd×lj can be calculated as follows :

hj
enc = Encoder (C; pj ; gj) (8)

Then concatenate the hj
enc to produce henc for decoder:

henc = h1
enc ◦ h2

enc ◦ h3
enc . . . hK

enc (9)

Our decoder is based on transformer style, so the cross-attention result can be
calculated in the transformer layer itself:

et,i =
(Wsst)

T
Whhi√

dk

(10)

αt,i = softmax (et,i) (11)

where the hi is the i-th position’s representation of henc, st is the t-th step
representation of hdec calculated by self-attention and layer-normalization. Ws

and Wh are learnable weights. dk is the hidden size of k-th head, where we take
out the last layer of transformer and the average of heads as the cross-attention
output including cross-attention weights et,i and cross-attention probs αt,i.

Grounding Augmented Copy Mechanism. We propose a grounding-
augmented copy mechanism to encourage generator to explicitly borrow words
from the predicted grounding. Let L =

∑k
i=0 li denote the total encoder length

after concatenation, g be the fine-grained grounding introduced by Sect. 3.3 to
identify whether a token is present in gold grounding. The attention score from
the response to predicted grounding can obtained by re-normalizing the cross
attention weights in grounding token positions.

mt,i =

{
1, g(i) = 1

−∞, g(i) = 0
(12)

nt,i =

{
1, g(i) = 0

−∞, g(i) = 1
(13)

βt,i = softmax (et,i · mt,i) (14)
γt,i = softmax (et,i · nt,i) (15)

The cross-attention probability from decoder time step t to token i in the fine-
grained grounding evidence is denoted as βt,i, while γt,i represents the same
probability for tokens in the other part of the passage except for the grounding
evidence. This cross-attention probability can be used as a copied probability to
contribute to the final probability distribution.

pgrounding(w) =
∑

i:xi=w

βt,i, ppassage(w) =
∑

i:xi=w

γt,i (16)
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where Pgrounding(w) is the vocabulary probability distribution by copying
grounding evidence and Ppassage(w) is the vocabulary probability distribution by
copying the other part of encoder input including passages and dialogue context.
We reserve the distribution from passages and dialogue context because not all
response words come from grounding and they may come from dialogue or other
parts in passages. Then we add the copy vocabulary probability distribution to
the generator vocabulary probability distribution with a learnable 3-way gate.

p1, p2, p3 = softmax
(
W 3

gate · hdec
t + b3gate

)
(17)

pgenerate(w) = lmhead

(
hdec

t

)
(18)

p(w) = p1 · pgenerate(w) + p2 · pgrounding(w) + p3 · ppassage(w) (19)

where W 3
gate ∈ R

d×3, b3gate ∈ R
d×3 are learnable parameters, lmhead is the out-

put layer in transformer to calculate target vocab distribution. p1, p2, p3 are
3-way gate probability. p(w) is the final target vocab distribution considering
the contribution of generation, the predicted grounding and retrieved passages.
According to p(w) to decode a word w step by step, the final response is gener-
ated.

4 Experiment

4.1 Datasets

MultiDoc2Dial. [8] is a new goal-oriented dialogue dataset based on multiple
documents, containing 29,748 queries in 4800 dialogues with an average of 14
turns based on 488 documents from different domains. Each dialogue turn anno-
tates the dialog data with the roles, dialogue behavior, human speech, and the
grounding span with document information.

WoW. [6] is a large conversational dataset based on knowledge retrieved from
Wikipedia. It covers a wide range of topics (a total of 1365), comprising 22311
dialogues and 201999 rounds. We verify the performance of our model on the
WoW KILT version [20]. The KILT version requires model to find and fuse knowl-
edge from all of Wikipedia pages rather than the provided knowledge candidates
for each turn in original dataset, which is more suitable for our setting.

4.2 Baselines

RAG. [15] retrieves relevant passages from external sources and then generate
the final response in a sequence-to-sequence style with marginalizing generation
probabilities from different retrieved documents. FiD [11] Fusion-in-Decoder
encodes all retrieved passages independently and then fuses the encoder result
of multiple passages in the decoder phase. EMDR2 [28] provides an end-to-end
approach to optimize retriever and generator parameters using model feedback
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itself as ”pseudo-labels” for latent variables. DIALKI [29] identifies the most
relevant passage and grounding span in the passage from multiple documents
and then only use the single passage and span to generate response. EviGui-G
[2] incorporate evidentiality of passages and introduces a leave-one-out method
to create pseudo evidentiality labels for model training.

Re2G. [9] applies a retriever-ranker-generator framework to filter the retrieved
knowledge fed to the generator and applies knowledge distillation to jointly train
the ranker and retriever.

Table 1. Main Results. Results of automatic metrics on test set of MultiDoc2Dial
and WoW. † denotes the model is based on T5-base while ‡ denotes T5-large and §

denotes BART-large;

MultiDoc2Dial WoW

F1 R-L F1 R-L

RAG § 34.25 31.85 13.11 11.57

FiD† 41.74 40.37 16.52 15.16

DIALKI § 38.95 37.64 17.04 15.65

EviGui-G† 43.14 41.33 17.30 15.93

EMDR2 ‡ 43.76 41.86 - -

Re2G § 44.26 42.40 18.90 16.76

MG4 base† 45.30 43.38 18.69 16.80

MG4 ‡ 45.72 43.94 19.28 17.26

4.3 Experiment Setting

For the evaluation of our knowledge-based dialogue system, we evaluate the gen-
erated responses against the reference responses with automatic metrics, includ-
ing token-level F1 score(F1) [23], Rouge-L(R-L) [16].

We report the results of RAG, FiD, and EviGui-G from [2], as well as Re2G
from [9]. We reproduced the evaluation results using the same hyper-parameters,
averaging over five runs with different seeds, and conducting a t-test with a p-
value less than 0.05. The result of our model on the WoW dataset is from the
KILT [20] version, which provides an online submission board1.

To train the MG4 model, we use the Adam optimizer with a learning rate
of 5e-5. The number of top-k passages is set to 50. The input length of dialogue
context and a single passage is set to 512, while the grounding span max length
is set to 128, and the maximum response length is set to 50. α and γ in focal
loss are set to 0.25 and 2.

1 https://eval.ai/web/challenges/challenge-page/689/leaderboard/1909.

https://eval.ai/web/challenges/challenge-page/689/leaderboard/1909
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4.4 Quantitative Results

According to the Table 1, The end-to-end EMDR2 model has a slight advantage
over FiD by 1.12 F1 and 1.19 Rouge-L in MultiDoc2Dial, indicating that the
end-to-end model may somewhat mitigate the problem of accumulating pipeline
framework errors. Our MG4 method outperforms nearly all benchmark results
on both MultiDoc2dial and WoW. MG4 outperforms DIALKI model on both
Multidoc2Dial and WoW, indicating that selecting only one grounding from the
most relevant passage has the risk of error propagation and multi-granularity
grounding with weighted attention grounding copy mechanism can effectively
identify multiple related information and improve the quality of generation. In
particular, MG4 outperforms the end-to-end model EMDR2 by 2.46 F1 and 2.08
Rouge-L on MultiDoc2Dial, illustrating that grounding knowledge in retrieved
passages can bring more performance gains than just training retriever and gen-
erator in an end-to-end way. Re2G gets good performance on both MultiDoc2Dial
and WoW by adding a reranker module to filter the retrieved knowledge, while
MG4 can also highlight some token-level evidence in retrieved knowledge and
outperform Re2G by 1.46 F1, 1.54 Rouge-L and 0.38 F1 and 0.50 Rouge-L.

Table 2. Ablation results. Gcoarse denotes introducing the coarse-grained to the gen-
erator predicted by reader; Copy denotes introducing copy mechanism in the generator
to copy words from fine-grained grounding. Gfine denotes fine-grained grounding pre-
diction. MG4-CG doesn’t remove any module but replaces copying mechanism from
fine-grained grounding with coarse-grained grounding.

MultiDoc2Dial WoW

F1 R-L F1 R-L

MG4 45.72 43.94 19.28 17.26

w/o Gcoarse 43.63 41.81 17.72 16.38

w/o Copy 45.27 43.51 18.74 17.19

w/o Gfine 44.22 42.28 18.02 16.65

MG4-CG 44.97 43.11 18.37 16.82

Table 2 presents the results of the ablation experiments. There is a clear
drop when removing coarse-grounding, i.e. w/o Gcoarse, illustrating the effec-
tiveness of reader module and the influence of reader to generator. Removing
grounding augmented copy mechanism, i.e. w/o Copy, drops the performance
on both datasets, proving that copy mechanism can enhance the guidance from
grounding to response generation. In w/o Copy setting, furtherly removing the
fine-grained grounding prediction task, w/o Gfine, will continue to bring per-
formance drop, indicating that training via joint tasks to predict evidentiality
labels can bring help to the generation task. Finally, we conduct experiments on
copying from coarse-grained grounding, i.e. MG4-CG. It’s performance is lower
than MG4, which can be understood as the superiority of fine-grained grounding
compared to coarse-grained grounding in guiding response generation.
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4.5 Human Evaluation

Human annotators are asked to evaluate our model by quantifying the three
aspects of generated responses, as described below: (i) Fluency, a measure of
whether the response is consistent and less repetitive. (ii) Relevance, which
measures the relevance of the response to the dialogue context. (iii) Factuality
measures the correctness and faithfulness of all facts involved in the generated
response.

Table 3. Absolute human valuation results for MG4 versus EMDR2 on MultiDoc2Dial.
The table presents each metric average value for all annotators and samples out of 3
points. The Fleiss’ kappa between annotators is 0.58.

Model Fluency Relevance Factuality

EMDR2 2.54 2.33 2.13

MG4 2.67 2.73 2.51

Table 4. Comparative evaluation results between MG4 and EMDR2, where the per-
centage indicates the proportion of preference by all evaluators.

Aspect Win Lose Tie

Fluency 32% 20% 48%

Relevance 57% 13% 30%

Factuality 62% 22% 16%

We choose EMDR2, which is the most important reference in terms of auto-
matic measurements, for comparative purposes. We sample the evaluation dia-
logue turns from the MultiDoc2Dial, which is factually supported by knowl-
edgeable customer service documents. Table 3 shows the absolute evaluation
results of human annotation. To reduce the evaluation inconsistency caused
by different evaluators, we also conduct a comparative evaluation with results
shown in Table 4. We found that MG4 outperformed EMDR2 in both evaluation
dimensions, indicating that MG4 can improve knowledge utilization through
our coarse-to-fine grounding prediction method and grounding-augmented copy
mechanism. It is noteworthy that our model has a significant improvement on
the factuality metric, demonstrating its ability to alleviate the dialogue halluci-
nation problem to some extent.
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5 Further Analysis

5.1 Can Grounding Guide the Response Generation?

Table 5. Oracle experiments to explore the upper bound impact of gold grounding on
MultiDoc2dial and WoW dev dataset.

Model Dataset F1 R-L

FiD MultiDoc 42.14 40.67

FiD with Gold-G MultiDoc 51.39 49.79

FiD WoW 16.15 15.86

FiD with Gold-G WoW 29.53 28.46

We conduct two experiments to illustrate the influence of grounding infor-
mation to final response generation.

Firstly, we introduce gold grounding to the generator in the way as Sect. 3.2
and conduct oracle experiments to explore the influence of grounding. As shown
in Table 5, the grounding-guided model significantly improved in performance
by 9.25 F1, 9.12 Rouge-L on MultiDoc2Dial and 13.38 F1, 12.6 Rouge-L on
WoW. According to the experimental results, the introduction of gold grounding
can significantly improve the generation performance in the knowledge-grounded
dialogue generation task.

Secondly, we leverage a span-based model called reader in Sect. 3.2 to pre-
dict grounding as a replacement of gold grounding. According to the ablation
experiment results in Table 2, we can find that the performance gain from the
reader module is most notable, proving that knowledge-grounded dialogue can
benefit from the coarse-grained grounding from the extractive reader module.

5.2 Why We Need a Multi-granularity Grounding Prediction?

In our paper, multi-granularity grounding includes coarse-grained and fine-
grained grounding. We add a fine-grained grounding prediction introduced in
Sect. 3.3 in the generator encoder to find most relevant evidence from all retrieved
passages. Figure 2 shows an actual case of the predicted coarse-grained grounding
and fine-grained grounding in WoW, and the bottom right shows their contri-
bution to the final response by taking out the cross-attention weight (average
in the output sequence dimension) in the generator. In Table 2, we compare the
performance between MG4-CG and MG4 in which MG4-CG means copying from
coarse-grained grounding and MG4 means copying from fine-grained grounding.
The introduction of fine-grained grounding can improve 0.75 F1 and 0.83 Rouge-
L in MultiDoc2dial as well as 0.91 F1 and 0.44 Rouge-L in WoW compared
to coarse-grained grounding which illustrates the validity of our coarse-to-fine
method to predict token level evidence from multiple retrieved passages.
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Fig. 2. Coarse-grained vs. Fine-grained. Retrieved passages are located on the left side.
The blue portion is the coarse-grained grounding predicted from multiple passages while
the light green portion is the fine-grained grounding predicted from grounding evidence
denoiser. (Color figure online)

5.3 MG4 Performs Better with More Passages

Figure 3 shows the Rouge-L score of our MG4 model and the FiD model in
different passage number settings. From the figure, we can see that the perfor-
mance gains influenced by retrieved passage numbers is marginal as the number
increases. It’s worth noticing that our MG4 model can get even higher improve-
ment compared to FiD with larger retrieved passage numbers. The improvement
is 1.92 Rouge-L in 10 passages setting and 3.27 Rouge-L in 50 passages setting.
It can be interpreted as that larger number of retrieved passages means larger
amount of relevant knowledge information as well as noise, which will bring more
burden to the generator module. While our MG4 can alleviate this problem by
providing token-level multi-granularity grounding from retrieved passages to the
generator.

Fig. 3. Impact of the input passage number to response performance on MultiDoc2Dial.



304 Y. Du et al.

6 Conclusion

In this work, our aim is to address the grounding identification issue in generat-
ing dialogues based on multiple documents. To achieve this goal, we propose a
multi-granularity grounding prediction method in conjunction with a grounding-
augmented copy mechanism that makes use of predicted key information from
multiple documents. Our experimental results demonstrate that grounding infor-
mation has a significant impact on guiding dialogue generation and that our pro-
posed architecture, MG4, can effectively utilize this information and mitigate the
issue of hallucination in knowledge-based dialogue.
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Abstract. With the progress of the times, the ever-advancing and
improving Internet technology and the ever-generating social media net-
work platforms have made the amount of information in the network
explode, which contains a massive scale of redundant content. Then how
to quickly extract the key information from the huge amount of data
becomes crucial. In this paper, we propose a novel enhanced hierarchi-
cal summarization model SUMOPE for long texts, which combines both
extractive and abstractive methods to deal with long texts. Our model
first uses an extractive method called SUMO to select key sentences
from the long text and form a bridging document. Then, our model uses
an abstractive method based on PEGASUS with a copy mechanism to
generate the final summary from the bridging document. Our model
can effectively capture the important information and relations in the
long text and produce coherent and concise summaries. We evaluate our
model on two datasets and show that it outperforms the state-of-the-art
methods in terms of ROUGE scores and human evaluation.

Keywords: Text summarization · Transformer · Natural language
processing

1 Introduction

Text summarization has been a well-established focus of research in the field
of natural language processing, involving the creation of concise and coherent
summaries for lengthy texts while preserving essential information. With the
growing volume of online information, there is an increasing demand for efficient
and accurate methods to summarize large amounts of textual data.

Currently, text summarization is approached through two primary method-
ologies: extractive and generative. Extractive summarization is based on statis-
tical methods. It involves calculating the relevance of each sentence in the text
based on certain extraction rules, such as keywords, position, and similarity to
the overall text. It also involves selecting the top-ranked sentences as a sum-
mary. This method is relatively simple and has strong interpretability since the
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extracted summary is faithful to the original text. However, extractive summa-
rization depends largely on the quality of the source text. It may suffer from
incoherent semantics and repetition in poorly structured text. Generative sum-
marization methods can overcome these issues by not simply using the words
and phrases from the source text to create the summary, but rather by extract-
ing the meaning from the text and generating the summary one word at a time.
Generative summarization is typically achieved through sequence-to-sequence
models, but it may encounter problems such as out-of-vocabulary (OOV) and
long-distance dependency issues. Furthermore, the encoding phase of summary
generation can lead to a notable information loss due to the challenge of long-
distance dependencies.

To address these challenges, we propose a enhanced hierarchical summariza-
tion model for long text, called SUMOPE. The first stage uses a hierarchical
encoder-decoder architecture to extract salient sentences from the input text,
and the second stage refines the selected sentences to produce a high-quality sum-
mary. Our model incorporates attention mechanisms and reinforcement learning
to improve sentence selection and refinement. We evaluate SUMOPE on bench-
mark datasets and compare it with state-of-the-art models. Our experiments
show that SUMOPE outperforms existing methods in automatic metrics and
human evaluations.

The contributions of this paper can be summarized as follows:

– The paper proposes a novel enhanced hierarchical summarization model
SUMOPE for long text, which addresses the challenge of generating high-
quality summaries for lengthy texts.

– The enhanced hierarchical summarization model integrates both extractive
and abstractive methods, leveraging the advantages of both to improve the
quality of the generated summaries.

– The proposed model achieves state-of-the-art performance on two datasets,
demonstrating its effectiveness and practicality for real-world applications.

2 Related Work

In the initial stages, extractive summarization methods were mostly unsuper-
vised and based on statistics. These methods mainly relied on calculating the
word frequency and the position of sentences to determine the score of each sen-
tence in the text. Subsequently, they amalgamated the sentences with the most
elevated scores to formulate a summary. Luhn, Jones et al. [1,2] completed the
task of text summarization by identifying keywords with significant information
content in the text.

As research in machine learning and deep learning advances, supervised
extractive summarization has become the mainstream research approach. In
2015, Can et al. [3] proposed a ranking framework for multi-document summa-
rization. It uses Recursive Neural Networks to perform hierarchical regression
and measure the salience of sentences and phrases in the parsing tree. The model
learns ranking features automatically and concatenates them with hand-crafted
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features of words to conduct hierarchical regressions. In 2017, Nallapati et al. [4]
proposed an extractive summarization model based on Recurrent Neural Net-
works, which enables visualization of its predictions based on abstract features
such as information content, salience, and novelty. Additionally, the model can
be trained abstractively using human-generated reference summaries, eliminat-
ing the need for sentence-level extractive labels. In 2019, Liu et al. [5] pre-
sented a comprehensive framework for applying BERT, a pre-trained language
model, to text summarization, covering both extractive and abstractive models.
A document-level encoder based on BERT is introduced to capture the seman-
tics of a document and obtain sentence embedding vector. For extractive sum-
marization, inter-sentence transformer layers are stacked on top of the encoder.
For abstractive summarization, a new fine-tuning schedule is proposed to han-
dle the mismatch between the pre-trained encoder and the decoder. In 2021,
Huang et al. [6] proposed an approach for extractive summarization that inte-
grates discourse and coreference relationships by modeling the relations between
text spans in a document using a heterogeneous graph. The graph contains three
types of nodes, each corresponding to text spans of different granularity.

With further research into extractive summarization, researchers have dis-
covered problems such as repetitive generation and lack of semantic coherence.
In contrast, abstractive summarization, which generates new words and expres-
sions based on the understanding of the text, is closer to human summarization
thinking and emphasizes consistency and coherence [7]. In 2019, Dong et al. [8]
proposed a comprehensive pre-trained language model capable of fine-tuned for
both natural language comprehension and generation tasks. It utilizes a shared
Transformer network along with specific self-attention masks to manage contex-
tual information. In 2020, Zhang et al. [9] proposed a large Transformer-based
encoder-decoder model that is pre-trained on massive text corpora with a new
self-supervised objective tailored for abstractive text summarization. It gener-
ates summaries by removing/masking important sentences from the input docu-
ment and generating them together as one output sequence from the remaining
sentences. In 2020, Liu et al. [10] proposed a training paradigm for abstractive
summarization models, which assumes a non-deterministic distribution to assign
probability mass to different candidate summaries based on their quality.

While generative summarization models are capable of generating more accu-
rate and readable summaries, they are limited by deep-learning techniques in
obtaining text representations for long documents. In 2018, chen et al. [11] pro-
posed a summarization model that follows a two-stage approach where salient
sentences are selected and then rephrased to generate a concise summary. A
sentence-level policy gradient method bridges the computation between the two
neural networks while maintaining fluency. In 2021, Li et al. [12] proposed an
extractive-abstractive approach to address the interpretability issue in abstrac-
tive summarization while avoiding the redundancy and lack of coherence in
extractive summarization. The framework uses the Information Bottleneck prin-
ciple to jointly train extraction and abstraction in an end-to-end fashion. It first
extracts a pre-defined amount of evidence spans and then generates a summary
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using only the evidence. In 2022, Xiong et al. [13] proposed a summarization
model that uses elementary discourse units (EDUs) as the textual unit of con-
tent selection to generate high-quality summaries. The model first uses an EDU
selector to choose salient content and then a generator model to rewrite the
selected EDUs into the final summary. The group tag embedding is applied to
determine the relevancy of each EDU in the entire document, allowing the gen-
erator to ingest the entire original document.

3 Proposed Technique

Inspired by SUMO [14] and PEGASUS [9], in this paper, we design a novel
framework named SUMOPE to implement long text summarization, depicted in
Fig. 1. Specifically, the extraction model based on SUMO extracts key sentences
from long texts. These extracted sentences are then used as inputs to the gener-
ation model to produce the final summary. The transition document represents
the set of extracted sentences from the extraction model. Its length falls between
that of the original text and the summary, encompassing a significant portion of
the crucial information found in the input document.

Fig. 1. The overview architecture of our proposed SUMOPE framework is with two
modules: extraction model based on SUMO and generative model based on PEGASUS.

3.1 Extraction Model Based on SUMO

The extraction model based on SUMO is an approach to single-document sum-
marization that uses tree induction to generate multi-root dependency trees that
capture the connections between summary sentences and related content. This
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technique hinges on the concept of framing extractive summarization as a tree
induction challenge, where each root node within the tree symbolizes a sum-
mary sentence and the attached subtrees to it represent sentences whose content
is related to and covered by the summary sentence.

The module comprises three main components: a sentence classifier, a tree
inducer, and a summary generator. The sentence classifier uses a Transformer
model with multi-head attention to classify each sentence in the input docu-
ment as summary-worthy or not. The tree inducer then induces a multi-root
dependency tree that captures the relationships between summary sentences
and related content through an iterative refinement process that builds latent
structures while using information learned in previous iterations. Finally, the
summary generator selects the highest-scoring summary-worthy sentences from
the induced tree and ensures that the selected sentences are coherent and cover
all relevant aspects of the input document.

The SUMO algorithm generates these subtrees through iterative refinement
and builds latent structures using information learned in previous iterations.

First, we decompose the input document D into individual sentences si. We
then compute a score s∗

i for each sentence si, which reflects its importance for
generating the summary. Precisely, we use the subsequent formula to calculate
the score:

s∗
i =

n∑

j=1

wjfj(si) (1)

where n is the number of features, wj is the weight of feature j, and fj(si)
is the value of feature j on sentence si.

Next, we select the highest-scoring sentence as a new root node and add all
sentences dependent on it to form a new subtree. We then remove all sentences
in this subtree from the document and add them to the summary set S. This
process is repeated until all documents have been processed and all relevant
subtrees have been added to S.

Finally, we use gradient descent to optimize feature weights and latent struc-
tures for generating more accurate, coherent, and diverse summaries. Specifically,
we use a loss function L that balances coherence and diversity across documents
and subtrees:

L =
m∑

i=1

αiLi + βLdiv (2)

where αi is the weight of document i, Li is its loss function, β is a balancing
factor, and Ldiv is the diversity loss function across all subtrees in S. We use the
following formula to calculate Ldiv:

Ldiv =
k∑

i=1

k∑

j=i+1

1
d(Ti, Tj)

(3)
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where k is the number of subtrees in S, Ti and Tj are the i-th and j-th
subtrees, and d(Ti, Tj) is the distance between them.

One of the key advantages of this module is its ability to capture complex
relationships between sentences in an input document. By inducing multi-root
dependency trees, this approach can identify not only which sentences are most
important for summarization but also how they relate to each other. This allows
for more informative summaries that capture all important aspects of an input
document while still being concise and easy to read.

3.2 Generative Model Based on PEGASUS

The generative model built upon the PEGASUS is a sequence-to-sequence
architecture with gap-sentences generation as a pre-training objective tailored
for abstractive text summarization. This technique involves the pre-training
of expansive Transformer-based encoder-decoder models using extensive text
datasets, all guided by a novel self-supervised objective.

The module architecture is based on a standard Transformer encoder-
decoder. The encoder processes the input text, producing a sequence of hid-
den states that the decoder subsequently utilizes to produce the summary. The
pre-training objective of PEGASUS involves generating gap-sentences, which
are sentences that have been removed from the original text and replaced with
special tokens. The module is trained to predict these gap-sentences given the
surrounding context.

Formally, let X = {x1, x2, ..., xn} be an input document consisting of n sen-
tences, and let Y = {y1, y2, ..., ym} be its corresponding summary consisting of
m sentences. The goal of the PEGASUS algorithm is to learn a conditional prob-
ability distribution p(Y |X) that generates a summary given an input document.
This distribution can be factorized as follows:

p(Y |X) =
m∏

i=1

p(yi|y<i,X) (4)

where y<i denotes the previously generated summary sentences.
To pre-train the model using gap-sentences generation, we first randomly

select some sentences from the input document and replace them with special
tokens. We then use this modified document as input and train the model to gen-
erate the missing sentences given the remaining context. The objective function
used for pre-training is the negative log-likelihood of the ground-truth missing
sentences:

Lpre = −
k∑

i=1

log p(y∗
i |y∗

<i,X) (5)

where y∗
i denotes the ground-truth missing sentence and k is the number of

missing sentences.
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After pre-training, the model is fine-tuned on a specific summarization task
using supervised learning. During fine-tuning, we use a similar objective function
as in pre-training, but with the ground-truth summary sentences as targets:

Lfine = −
m∑

i=1

log p(yi|y<i,X) (6)

where yi denotes the ground-truth summary sentence.
The copy mechanism allows for direct copying of certain segments from the

original text to the generated summary, thereby avoiding simple summarization.
By preserving more original text information and avoiding information loss, espe-
cially for rare or non-existent words, the use of copy mechanism enhances the
completeness and accuracy of the generated summary. In the decoder, a new
label distribution is added for each token, as shown below:

p (yt, zt | y�t, x) = p
(
yt | y〈t, x

) · p (
zt | y〈t, x

)
(7)

where B represents the token copied from the source text, I represents the token
copied from the source text and forming a continuous segment with the previous
tokens, and O represents the token not copied from the source text.

During the training phase, the model adds a sequence prediction task, and by
calculating the longest common subsequence between the original text and the
summary, corresponding BIO tags are obtained. During the prediction phase,
for each step, the label Zt is predicted first. If Zt is O, no further processing is
needed. If Zt is B, it means that words that have never appeared in the original
text need to be masked. If Zt is I, it means that all corresponding n-grams
unrelated to the original text need to be masked.

4 Experimental Evaluation

4.1 Experimental Setting

Data. In order to verify the effectiveness of our proposed approach, we conduct
extensive experiments on two datasets, which are TTNews [15] and Scholat-
News1. As our model is designed for medium to long text, we controlled the
length and clarity of the TTnews and SchoaltNews datasets by filtering out all
articles with a length of less than 800 words. The datasets used in the experi-
mentation are listed in Table 1.

Baselines

– LEAD is a classic method for text summarization that relies on the assump-
tion that the first few sentences of a document contain the most important
information. It involves selecting the first N sentences of a document as the
summary, where N is a pre-defined number.

1 https://www.scholat.com/.

https://www.scholat.com/


314 C. Chang et al.

Table 1. Data statistics.

Datasets docs avgArt maxArt minArt avgSum maxSum minSum

TTNews train 21359 1916 22312 800 42 78 21

test 862 1909 17204 800 35 65 21

SchoaltNews train 5988 3024 202089 800 41 122 2

test 1216 1612 80831 800 45 98 2

– BertSum [5] is a text summarization approach that makes use of the Bidirec-
tional Encoder Representations from Transformers (BERT) model. It intro-
duces a document-level encoder rooted in BERT, capable of encoding an
entire document and obtain deriving sentence representations. The extractive
model is constructed atop this encoder by layering multiple inter-sentence
Transformer layers, effectively capturing document-level attributes for sen-
tence extraction.

– LongformerSum [16] is a text summarization method that leverages the Long-
former model, which is designed to handle long sequences, for generating
summaries of text documents.

– PGN [17] is a sequence-to-sequence framework that employs a soft attention
distribution to generate an output sequence comprising elements sourced from
the input document. PGN combines extractive and abstractive summariza-
tion methods by allowing the model to copy words directly from the source
document while also generating new words to form a coherent summary.

– UniLM [8] is a pre-trained language model adaptable for tasks involving both
comprehension and generation of natural language. The model is pre-trained
via three distinct forms of language modeling tasks, making use of a common
Transformer network alongside targeted self-attention masks, all strategically
employed to regulate contextual understanding.

– BART [18] is a pre-training technique tailored for sequence-to-sequence mod-
els, seamlessly merging bidirectional and auto-regressive transformers. It uses
a denoising autoencoder architecture, where text is corrupted with an arbi-
trary noising function and a sequence-to-sequence model is learned to recon-
struct the original text.

– SUMO [14] is an extractive text summarization method that generates a
summary by identifying key sentences in a document and organizing them
into multiple subtrees. Each subtree consists of one or more root nodes, which
are sentences relevant to the summary.

– PEGASUS [9] is a pre-training algorithm for abstractive text summarization
that uses gap-sentences generation as a self-supervised objective. The model
is trained to generate missing sentences given the remaining context, which
allows it to capture the salient information in the input document. During
fine-tuning, the model is optimized to generate a summary that captures the
most important information in the input document.
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Evaluations. ROUGE-N and ROUGE-L are two commonly used evaluation
metrics for measuring the quality of text generation, such as machine translation,
automatic summarization, question answering, and so on. They both compare
the model-generated output with reference answers and calculate corresponding
scores. In this paper, we use ROUGE-1, ROUGE-2, and ROUGE-L as evaluation
metrics, where a higher score indicates higher quality of the generated text.

Environment and Parameter. The computer used in this study is equipped
with an Intel(R) Xeon(R) Gold 5218 CPU @ 2.30 GHz and 256 GB of memory,
with a Tesla V100 GPU with 32 GB of memory. Pycharm 2022 was used as
the compiler, and Pytorch was adopted as the deep learning framework, with
Python version 3.7. Experimental analysis and comparison were conducted using
third-party libraries, including jieba2, bert4torch3, and Fengshenbang-LM4.

In the extraction model based on SUMO, the vocabulary size is 30,000, the
maximum number of sentences is 200, the batch size is 256, the learning rate is
0.1, and the size of both EMD and hidden layers is 128. The transformer layers
used to obtain sentence representations are set to 3, and the model is trained
for 5 iterations.

In the generative model based on PEGASUS, we use the Chinese version of
PEGASUS-BASE as the pre-trained model and adopt the Adam optimizer with
a learning rate of 2e−5. The batch size for training is 32, the epoch is 10, and
the beam search width is 3. The maximum length of the generated summary is
set to 90.

4.2 Result Analysis

As shown in Table 2 and Table 3, our model outperforms other models in terms
of ROUGE-1, ROUGE-2, and ROUGE-L evaluation metrics on the TTnews and
ScholatNews datasets.

Compared to the LEAD algorithm, BertSum demonstrates better perfor-
mance, indicating that using Bert for summarization can greatly improve extrac-
tion accuracy. When comparing LongformerSum and BertSum, results show that
replacing Bert with the Longformer model leads to improvement in evaluation
metrics on two different long-text datasets. This is mainly due to the fact that
Bert only retains the first 512 tokens, while Longformer can allow input with up
to 4096 tokens, allowing the model to obtain more information. The results of
LongformerSum and SUMO models demonstrate that treating extractive text
summarization as a tree induction problem can produce results comparable to
methods that use large-scale pre-trained models. Furthermore, the SUMO model
outperforms LongformerSum in terms of training time and parameter size.

The performance of generative summarization models is excellent on text
summarization tasks. Compared to BART and UniLM, the PEGASUS model
has better performance, which demonstrates that specialized pre-training models
may be more effective for specific tasks than general pre-training models. There-
fore, the generation phase of our proposed model is optimized based on PEGA-
SUS. Comparison of PEGASUS and our proposed model shows that SUMOPE
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Table 2. Performance evaluation based on TTNews dataset.

Method ROUGE-1 ROUGE-2 ROUGE-L

LEAD 21.63 7.2 16.97

BertSum 32.53 18.01 30.7

LongformerSum 37.45 21.76 31.91

PGN 30.91 16.88 28.47

UniLM 46.52 33.12 42.34

BART 54.8 39.14 51.33

SUMO 37.23 22.14 30.96

PEGASUS 55.54 41.34 52.81

SUMOPE 56.19 43.32 54.59

Table 3. Performance evaluation based on ScholatNews dataset.

Method ROUGE-1 ROUGE-2 ROUGE-L

LEAD 37.27 26.44 32.67

BertSum 35.63 24.6 33.72

LongformerSum 38.33 27.4 32.73

PGN 36.36 28.75 32.89

UniLM 51.68 42.12 46.91

BART 60.59 54.05 57.92

SUMO 38.1 27.61 33.22

PEGASUS 63.23 58.37 62.06

SUMOPE 65.39 59.49 63.23

has improved to some extent in the three evaluation dimensions of Rouge-1,
Rouge-2, and Rouge-L. Although most of the key information in the article is
concentrated in the first 512 words, some critical information still exists in the
second half of the article (contrasts and conclusions). Since our proposed model
first preserves the key information of the article through extraction, the score of
the generated summary will be higher.

Considering the limitations of solely using ROUGE metrics to evaluate the
quality of generated summaries, as it cannot comprehensively assess whether the
summary corresponds to the main theme of the article, this chapter adopts a
subjective approach to evaluate the fidelity and fluency of the generated sum-
maries. The study invites 20 students to subjectively evaluate the generated
summaries based on fidelity and fluency, among other criteria. The participants
are required to rate the summaries generated by different models for 9 randomly
selected articles from the TTNEWS and ScholatNews test sets.
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Fig. 2. The human evaluation results of the model are presented.

Based on the data presented in Fig. 2 it can be concluded that the summaries
generated by the proposed model in the NLPCC and ScholatNews datasets are
more in line with the main content of the articles, with a higher degree of match-
ing with the standard summaries, more complete retention of key information,
smoother semantic flow, and lower redundancy. Therefore, to some extent, it
validates the effectiveness of the proposed model in generating high-quality sum-
maries.

5 Conclusion

In this paper, we have proposed a enhanced hierarchical summarization model
for long texts, SUMOPE, which combines extractive and abstractive methods
to deal with long texts. The first stage of our model, called SUMO, selects
key sentences from the input text to form a bridging document, and the second
stage uses an abstractive method based on PEGASUS with a copy mechanism to
generate the final summary. Our model has been evaluated on two datasets and
has been shown to outperform the state-of-the-art methods in terms of ROUGE
scores and human evaluation.

In future work, we plan to investigate the effectiveness of our model in other
languages and domains. Additionally, we aim to explore the possibility of improv-
ing the performance of the model by incorporating other advanced techniques,
such as reinforcement learning, to further enhance the selection and refinement
of sentences. Overall, we believe that the proposed model has significant poten-
tial for improving the efficiency and accuracy of text summarization in various
applications.
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Abstract. The extractive automatic summarization method is capable of quickly
and efficiently generating summaries through the steps of scoring, extracting and
eliminating redundant sentences. Currently, most extractive methods utilize deep
learning technology to treat automatic summarization as a binary classification
task. However, the effectiveness of automatic summarization for Chinese long
text is limited by the maximum input length of the model, and it requires a large
amount of training data. This paper proposes an unsupervised extractive automatic
summarization method which solves the long text encoding problem by incorpo-
rating contextual semantics into sentence-level encoding. Firstly, we obtain the
semantic representation of sentences by using the RoBERTa model. Secondly, we
propose an improved k-Means algorithm to cluster sentence representations. By
defining sparse and dense clusters, we improve the accuracy of summary sentence
selection while preserving maximum semantic information from the original text.
Experimental results on the CAIL2020 dataset show that our method outperforms
baselines by 6.64/7.68/7.14% respectively on ROUGE-1/2/L. Moreover, we fur-
ther enhance the automatic summarization results by 4.5/5.36/3.24% by adding
domain rules tailored to the dataset’s characteristics.

Keywords: automatic summarization · extractive · Chinese long text · RoBERTa

1 Introduction

With the rapid development of Internet technology, the explosion of all kinds of content-
rich information has caused problems related to information overload. Text information,
as an important source of resources for people, contains rich content, but how to effi-
ciently obtain and use effective information from the huge amount of text has become a
challenge that has long plagued us. Automatic text summarization technology can extract
the key information from a large amount of text and obtain a summary that expresses
the main content of the original text, which can help people to quickly filter and capture
important information.

Automatic text summarization methods can be categorized as extractive and abstrac-
tive summarization according to the method of extraction. Extractive summarization
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takes a limited number of sentences from the original text without any modification and
arrange them in the order in which they appear in the original text. The current main-
stream extractive summarization method scores the importance of each sentence in the
original text, then ranks the sentences according to their scores, and finally selects the
top sentences with higher scores as the summary. Another approach treats extractive
summarization as a binary classification task, using deep learning techniques to predict
sentence labels, with label 1 indicating the sentence should be included in the summary
and label 0 indicating the opposite, finally, all sentences with label 1 are summarized in
the order in which they appear in the original text. Abstractive summarization uses lin-
guistic generation models to obtain summaries based on semantic understanding of the
original text, the content of which does not consist directly of sentences from the original
text. With the development of deep learning techniques, in recent years abstractive sum-
marization tasks have been mainly based on sequence-to-sequence neural architectures,
generating summaries by training encoder-decoder models. Abstractive summarization
is based on the understanding of the global semantics of the original text, which is con-
cise and similar to the process of human summary writing, but limited by the processing
power of language generation models and the reliance of deep learning on large-scale
tagging data, abstractive summarization still suffers from semantic errors and incorrect
sequencing, and is difficult to expand in the application field. The content of the extractive
summarization is derived from the original text, without the aforementioned issues, and
ismore reliable and cost-effective compared to the abstractive summarization. Therefore,
this paper investigates extractive automatic text summarization.

At present, extractive summarization researchworkmainly uses supervised learning.
Nallapati et al. [1] constructed an extractive summarization model based on gated recur-
rent neural network, and proposed a mechanism for extractive summarization using
a abstractive summarization training pattern for the problem of insufficient training
data. However, calculating the summary sentence probability based on the model, prob-
lems such as domain adaptation occur when testing on different datasets. Yang et al.
[2] designed an extractive summarization model with hierarchical representation using
Transformer and Longformer as encoding layers, which can support input text length
up to 4096 characters, making it possible for the model to encode long text directly. But
if the length of the input text exceeds the model’s maximum supported length, it still
needs to be truncated or discarded. Gu et al. [3] reduced redundancy bymodeling extrac-
tive summarization as a multi-step iterative process of scoring and selecting sentences
using reinforcement learning, while considering historical information. Although the
above approaches achieve relatively promising results on extractive summarization, they
require a large amount of labelled contexts for training themodels, thus the transferability
of the models tends to be weak.

In this paper, we propose an unsupervised approach to extractive automatic text
summarization. Based on the pre-training model RoBERTa, we firstly obtain the sen-
tence encoding representation incorporating contextual semantic information, and use
sentence-level encoding to make the model capable of encoding long texts; then, we
use the improved k-Means clustering algorithm to cluster the sentence representation,
improve the accuracy of summary sentence selection and reduce summary redundancy
by defining sparse and dense clusters, while preserving the original text information
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as much as possible. The model in this paper enhances the transferability by combin-
ing pre-training techniques with unsupervised learning. Experimental results on pub-
licly available datasets show that the method in this paper improved 6.64/7.68/7.14%
on ROUGE-1/2/L compared to the baseline. In addition, the performance of summary
extraction is further improved by 4.5/5.36/3.24% according to the domain characteristics
of the dataset by adding domain rule knowledge to enhance the text summary generation
capability of the model. The approach can be extended to other verticals as a general
solution.

2 Related Work

Early research on automatic text summarization started with the classification of impor-
tant sentences in the text, primarily by using simple statistical methods to make sim-
ple statistics on word frequency, topic words, word position and other information,
thus judging the importance of the sentences. With the development of automatic text
summarization technology, simple statistical methods no longer satisfied the practical
needs, researchers began to use external resources to assist in text summarization, such
as TFIDF, lexical chains, etc., but these methods are still at a relatively light level for
the analysis of text semantics and structure. In recent years, machine learning has pro-
vided new ideas for text summarization tasks, especially the application of supervised
learning approaches in the field of natural language processing. With the proposal of
architectures such as RNN, LSTM, CRF, and Transformer [4, 5]. Cho et al. [6] pro-
posed a sequence-to-sequence model with encoder and decoder structures that utilize
local and global information of input sequences to obtain the output [7]. Rush et al.
[8] constructed a fully data-driven, extractive summary generation system combining
neurolinguistic models and other encoders in this context, and applied the above models
to the text summarization task for the first time. The research on text summarization is
primarily based on the relationship between textual contexts to learn document repre-
sentation. Cheng et al. [9] proposed a data-driven approach based on neural networks
and continuous sentence features to compose a summary extraction framework by build-
ing hierarchical document encoders and extractors based on attention mechanisms. This
framework can develop different classes of summary models and can propose sentences
and words from a large number of documents, which still achieve relatively good results
without any linguistic annotations. Effective text encoding is also the key focus of the text
summarization task since the quality of text encoding is crucial to the summary extrac-
tion results. Mikolov et al. [10] used simple neural networks without hidden layers to
train high-quality word vectors to maximize the accuracy of vector operations in order
to learn high-quality vector representations from a large dataset that keeps a linear pat-
tern between words. Pennington et al. [11] proposed a new word vector learning method
using global statistical and local contextual information to construct word co-occurrence
matrices based on corpus and then obtain word vectors. Following the achievement of
deep neural networks with pre-trained models in natural language processing tasks, the
approaches of deep learning are now played an important role in automatic text summa-
rization tasks.Deep learningmodels not only obtain contextual and semantic information
of the learned text corpus, but also embed text structure, word level, focus word, and
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topic information into the representation vector of the text. Zhang et al. [12] presented
hierarchical BERT for document encoding, whichwas trained employing unlabeled data,
abstracted the model to a sentence prediction task, and then classified the sentences. Liu
et al. [13] proposed BERT-based document-level encoder, which overlays several inter-
sentence Transformer layers to capture document-level features of sentences on top of
extractive and abstractive encoders. A new fine tuning model is proposed for abstractive
summarization, and finally extractive and abstractive methods are combined to further
improve the summarization quality through two-stage strategy. Reinforcement learning
based approaches are gradually proposed, since most of the work on extractive auto-
matic text summarization in recent years has been built by combining different neural
networks to build automatic text summarization models. Narayan et al. [14] proposed a
novel training algorithm by conceptualizing the extractive summarization task as sen-
tence ranking task. The model consists of sentence encoder, document encoder and
sentence extractor, which uses reinforcement learning combined with maximum likeli-
hood cross-entropy loss to directly optimize the evaluation metrics. As current extractive
summarization models usually only extract sentences that meet the requirements, but
ignore sentence-to-sentence coherence. Wu et al. [15] proposed neural coherence model
using reinforcement learning algorithm for the above problem, to improve the coherence
and readability of sentences with model output and evaluation index ROUGE as reward
for training. Chen et al. [16] proposed a sentence-level reinforcement learning model
for obtaining summaries in response to the problems of redundancy as well as inaccu-
racy of longer texts as summaries, which enables combining extractive and abstractive
summarization without the need to annotate the key sentence corpus.

Extractive summarization currently suffers from problems such as redundancy and
semantic incoherence [17]. Since the extractive summarization is composed of sentences
of higher importance, it is obvious that these sentences of higher importance are closer to
the topic and indicate content similar to the central themeof the original text, thus a higher
probability of repeated expressions, which makes the summary redundant in terms of
content. The common way is to rank the sentences after scoring or binary classification,
according to the order in which the summary sentences appear in the original text, but
the adjacent sentences in the summary may be relatively far away from each other in the
original text, which results in semantic incoherence. Therefore, the extractive automatic
text summarization method still needs further research and improvement.

3 Methodology

This paper proposes an extractive automatic text summarization method based on the
pre-training model RoBERTa [18] and the improved K-Means clustering algorithm for
Chinese long text. Encoding module obtains sentence encoding representation set incor-
porating contextual semantic information by utilizing RoBERTa model. Improved Clus-
teringmodule treats sentence-level vector set obtained in the previous step as input, clus-
ters sentence encoding representation set, improves the accuracy of summary extraction
by defining sparse and dense clusters, and finally outputs a set of summary sentences
that meet the requirements and are ordered. The architecture of our model is illustrated
in Fig. 1.
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Fig. 1. Overall architecture of the model

3.1 Encoding Module

This paper utilizes the pre-training model RoBERTa for sentence-level encoding of
documents, which is a deep bi-directional language representation model based on
Transformer and belongs to the modified version of the pre-training model BERT [19].
RoBERTa has made main optimizations to BERT as follows: (a) Dynamic Masking.
BERT generated the mask matrix during data preprocessing, thus only one random
mask was performed for each sample, but the improved masking dynamically gener-
ates a new mask method each time when a sequence is fed into the model. (b) Cancel
NSP task. Previous work argued that NSP loss was an important factor in training the
original BERT model in which removing the NSP task would impair the model perfor-
mance. However, RoBERTa challenged this conclusion and demonstrated after a series
of comparative experiments that the overall model performance was improved after the
NSP task was removed. (c) Expand batch size. Several previous works have shown that
boosting the model batch size can improve the performance of the optimization as well
as the final task when the learning rate is appropriately increased, and BERT is also
applicable to large batch training, so it has been experimentally demonstrated that scal-
ing up the batch size significantly improves the performance of the model. (d) More
datasets. Further scaling the training data to 160GB, which is 10 times the size of the
BERT. Therefore, we adopted the pre-trained model RoBERTa in the encoding module.

For the extractive summarization task, if the document consists of N sentences,
denoted as {sent1, sent2, ..., sentN }, where senti is labeled 1 denotes that this sen-
tence should be included in the summary and the label 0 denotes the opposite. For
as shown in Fig. 1, N sentences are input to the encoding layer sequentially, and to
ensure the reliability of the embedding, we make character substitution for special
characters as well as numbers in the sentences to prevent noise signals from affect-
ing the encoding results. Taking a sentence encoding process as an example, assume
that D = {s1, s2, ..., sN } is represented as a document representation containing N sen-
tences, where si = {w1,w2, ...,wL} is the semantic representation of the i-th sentence
in the document and is also the input to the RoBERTa encoding layer, where L denotes
the character length of the sentence. The input of the RoBERTa encoding layer is the
numerical sum of the word embedding

{
Ew1 ,Ew2 , ...,EwL

}
and the position embed-

ding
{
Ep1,Ep2, ...,EpL

}
, and a feature vector representation Si = {

Tw1 ,Tw2 , ...,TwL

}

is obtained by the encoding layer incorporating the contextual semantic information, as
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shown in Fig. 2. The N sentences in the document are input to the RoBERTa encoding
layer in turn, and the semantic representation T = {S1, S2, ..., SN } of all sentences is
obtained, and this output will be used as the input for the next stage of the model.

Fig. 2. RoBERTa Embedding Layer.

3.2 Improved Clustering Module

Text clustering algorithms usually calculate the similarity between nodes. The main
idea is to divide the coded representation into several clusters so that the text within
the cluster has as much similarity as possible and the text outside the cluster has as
little similarity as possible. Text clustering algorithms include partitioning methods,
distribution-based methods, hierarchical methods, density-based methods, graph-based
methods, etc. The partitioning methods are used to classify the sample data into specific
categories by continuously iteratively updating the data center. The distribution-based
methods determine data classes based on different distributions of data. The hierarchical
methods cluster data by constructing a hierarchy of data. The density-based clustering
methods divide data in high-density areas into the same class. The graph-based methods
achieve clustering by using a similarity matrix to feature decomposition of the data.
Traditional clustering algorithms all have their own advantages and shortcomings, so it
is important to choose the right clustering algorithm according to the requirements in
different situations.

Traditional sentence representations employ word co-occurrence, which causes the
loss of similarity ofmany other semantically related sentences, especially those related to
a given topic, because of their lack of word co-occurrence. This paper adopts RoBERTa
for the encoding procedure, which obtains the semantic representation of the sentence
containing both its own semantic information and contextual information, thus the rep-
resentation is richer. The sentence-level representation vector of the document is con-
sidered as the input to the text clustering module after setting the extraction percentage
Ratio ∈ (0, 1), denoted as T = {S1, S2, ..., SN }. The k-Means clustering algorithm sep-
arates the givenN samples into r classes, which is shown in Fig. 3.We also applied other
algorithms for sentence encoding clustering, such as Gaussian Mixture Model, and the
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Fig. 3. Clustering flow diagram.

Fig. 4. Clustering process diagram.

experimental results show that their results are no better than k-Means clustering algo-
rithm in this paper’s approach. The clustering algorithmpursues the principle of less vari-
ance within clusters and more difference outside clusters, where sentence representation
vectors in the same cluster are similar. To effectively reduce the extractive summariza-
tion redundancy, the closest sentence representation to the center of mass in each cluster
is selected as the summary sentence for consideration, denoted as Ts = {S1, S2, . . . , Sr},
where r = [N × Ratio] means the largest integer no than N × Ratio. As shown in the
example of Fig. 4, there are r sentences selected as summary sentence, here r = 4. The
Manhattan distance is used to measure the distance from the sample point to the center
of mass of the cluster, which is calculated as shown in Eq. 1, where x is sample point,
μ is the centroid of the cluster, n is the number of features in the sample point, and i is
each of the features that make up the sample point.

d(x, μ) =
∑n

i=1
(|xi − μi|) (1)

As explained in the previous section, extractive text summarization methods gener-
ally suffer from the deficiency of redundancy in summary content. Miller et al. proposed
method selects the closest sentence representation in each cluster to the center of mass
as the summary sentence to be selected in the clustering module to solve the problem of
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sentence redundancy in extractive summary selection, but this approach still has short-
comings [22]. It is clearly unbalanced to select only the sentence closest to the center
of mass in each cluster as the content representation of that cluster, irrespective of the
number of nodes in the cluster. In addition, one sentence is selected in the cluster even
if there are few nodes in the cluster and it deviates from the original clustering center,
which leads to irrelevant content being selected as the summary sentence. Therefore,
we define sparse and dense clusters for the above two situations. We define clusters
with less than cθ nodes in the cluster as sparse clusters and clusters with more than
50% of the total number of nodes in the original text as dense clusters. The documents
represent T = {S1, S2, ..., SN } are clustered into k groups as shown in Fig. 5, where
cj(j = 1, 2, . . . , k) denotes the k clustering centers and c∗ indicates the semantic center
of the document.

For sparse clusters, we implement the following strategy:

lcj =
{
0, dis

(
cj, c∗) > dθ and count

(
cj

)
< cθ

1, otherwise
(2)

dis(x, μ) =
√∑n

i=1
(xi − μi)

2 (3)

dθ = α

j

∑j

i=1
dis

(
ci, c

∗) (4)

As shown in Eq. 2, lcj = 1 indicates that the sentence is selected from that cluster
as the summary sentence after completion of clustering, and lcj = 0 indicates that the
sentence is excluded from that cluster. The distance from the center of mass cj of the
j-th cluster to the semantic center of the text c∗ is represented by dis

(
cj, c∗), and the

EuclideanMetric is used to represent this distance, which is calculated as shown in Eq. 3
and 4. count

(
cj

)
indicates the number of nodes in the j-th cluster, cθ and α indicate the

hyperparameter, and cθ = 3, α = 3/2 are set in this paper. The sentence will not be
extracted in the cluster when the distance between the center of prime of this sparse
cluster and the semantic center of the original text is more than dθ . The dθ calculation
formula is shown in Eq. 4.

For dense clusters, we adopt the following strategy:

Addcj = argMin
(
sim

(
S, S∗)), S ∈ Cθ (5)

sim
(
S, S∗) =

∑n
i=1

(
Si × S∗

i

)

√∑n
i=1 S

2
i ×

√∑n
i=1

(
S∗
i

)2
(6)

We consider that only one sentence extracted from a dense cluster is not enough to
represent the information of the whole cluster. As shown in Eq. 5, Addcj indicates the
semantic representation vector supplementally extracted in the cluster, which is selected
from the set of candidate vectors Cθ , which consists of the three sample points closest to
the Euclidean distance from the center of this dense cluster. We select the sentence with
the least similarity to the semantic representation of the extracted sentences in the set
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of candidate vectors as our supplementary extraction, which can reduce the summary
redundancy in part. As shown in Eq. 6, S∗ denotes the semantic representation of the
sentences that have been extracted and sim(S, S∗) denotes the cosine similarity. The
improved clustering process is shown in Fig. 5.

Fig. 5. Improved clustering process diagram.

4 Experiment

4.1 Dataset

This paper uses the CAIL2020 text summarization dataset, which is composed of 4047
labeled civil adjudication documents produced, mainly consisting of body text, expert
summary, individual sentence, and labels for whether each sentence should be included
in the summary. The dataset is a long text dataset, and its specific statistical information
is shown in Table 1, where Avg. doc. and Avg. summ. are statistics at the word level and
sentence level for both the original document and the extractive summarization.

Table 1. An overview of the data set used in this article.

Dataset Avg. doc. length Avg. summ. length

# of words # of sent. # of words # of sent.

CAIL2020 2629 59 767 12

4.2 Evaluation Standard

This paper applies the ROUGE metric as a reference standard for evaluating the quality
of abstracts, which is calculated by the primary concept of comparing the extracted
summaries of the model with the given reference summaries in the dataset [20]. We take
the sentences with label 1 in the dataset and concatenate them sequentially as a reference
summary, which judges the summary model performance by counting the number of
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base units that overlap between it and the model output. The ROUGE evaluation criteria
consists of a series of evaluation methods, such as ROUGE-N, ROUGE-L, ROUGE-S,
ROUGE-W, and ROUGE-SU. This paper utilizes ROUGE-1, ROUGE-2 and ROUGE-L
to evaluate the summary quality. The detailed calculation process ofROUGE-N is shown
in Eq. 7, and ROUGE-L is shown in Eq. 8–10.

ROUGE − N =
∑

S∈{Ref }
∑

gramn∈S Countmatch(gramn)
∑

S∈{Ref }
∑

gramn∈S Count(gramn)
(7)

Ref in Eq. 7 is our standard summary, n is the length of the n-gram,
Countmatch(gramn) is the number of n-gram that appear in both the standard summary
and the model-extracted summary, and Count(gramn) is the number of n-gram that
appear in the standard summary. The ROUGE also includes three metrics: accuracy P
(precision), recall R (recall) and F-value.

Rlcs = LCS(X ,Y )

m
(8)

Plcs = LCS(X ,Y )

n
(9)

Flcs =
(
1 + β2

)
RlcsPlcs

Rlcs + β2Plcs
(10)

Equation 8–10 is the detailed formula ofROUGE-L. lcs refers to the common longest
subsequence, where LCS (X, Y) refers to the length of the longest common subsequence
in the reference summary and themodel-extracted summary,m and n denote the character
lengths of the reference summary and the model-extracted summary, and β is set to a
large number. Rlcs and Plcs are the recall and accuracy, and Flcs is the ROUGE-L.

4.3 Experimental Design

We implemented experiments on the CAIL2020 text summary dataset to prove the effec-
tiveness of the proposed model in this paper, and the following models were selected
for comparison. Lead-3: Simply extracting the first three sentences from the original
text as a summary has achieved better results in the field of journalism, which even sur-
passes some deep learning models and usually serves as a baseline model for extractive
automatic summarization. TextRank: An unsupervised graph-based ranking algorithm,
that treats each sentence in the text as a node in the graph, calculates the score of each
node by computing the similarity matrix between them, and finally selects a number of
sentences with the highest score to form summary [21]. Baseline: Miller et al. [22] pro-
posed an extractive lecture-oriented summarization model based on pre-training model
BERT with clustering algorithm.Our Model_BERT: The encoding module of the pro-
posed model in this paper is replaced with the pre-trained model BERT. Our Model +
Domain Regular: Based on the model in this paper for extractive automatic summa-
rization, domain rules for datasets are added as an additional extraction method in the
extraction process. In order to have an objective comparison, the experiments all extract
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about 15% of the original text to constitute the target summary, that is, set Ratio = 0.15,
to ensure the readability of the summary as much as possible with concise and precise
content. We split the dataset into three groups and randomly selected 1000 documents as
input each time, and finally took the average Rouge-1/2/L scores of the three extractions
as our evaluation metric, as shown in Table 2 for the experimental results.

Table 2. Models performance based on dataset.

Model Rouge-1 Rouge-2 Rouge-L

Lead-3 29.26 19.04 20.02

TextRank 38.43 23.76 24.05

BaseLine 45.38 28.16 31.01

Our Model_BERT 49.88 33.29 35.79

Our Model 52.02 35.84 38.15

Our Model + Domain Regular 56.52 41.20 42.39

4.4 Result Analysis

As shown in Table 2, the model proposed in this paper achieves the best results on the
dataset without considering the addition of domain rule extraction results, and its perfor-
mance improves by 6.64/7.68/7.14% in theRouge-1/2/L scores, compared to the baseline
model, which shows that the method proposed in this paper is effective. The comparison
shows that the proposed model improves the Rouge-1/2/L scores by 2.14/2.55/2.36%
compared with Our Model_BERT model, which means that the summarization results
of the method proposed in this paper depend on the semantic encoding model, therefore,
more suitable semantic encoding representation can obtain higher quality text summa-
rization. The worst result of Lead-3 indicates that this method only works well for data
in the news domain. Since the majority of information in the news corpus is concen-
trated in the head of the text, this method does not have better robustness for data in
other domains and is hardly applicable as a general summarization method. The result
of TextRank is better than Lead-3 and can be applied to different domain data, however,
it is susceptible to factors such as word separation and high-frequency words, so that the
summarization result is not satisfactory. The model proposed in this paper is better than
TextRank method and can be used for extractive automatic summarization in general
domain text. In the application field, we supplemented a domain rule-based approach,
which added the rules of that data domain (including but not limited to information
on the structure of the data type, common knowledge, etc.) to the extraction process,
which further improved the extraction results, improving the Rouge-1/2/L scores by
4.5/5.36/3.24%, thus confirming that this approach can be extended to the process of
concrete domain applications.

We visualize the sentence-level embeddings obtained from the encoding module
using the t-Distributed Stochastic Neighbor Embedding (t-SNE), which is a machine
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learning algorithmused for dimensionality reduction and is highly suitable for transform-
ing high-dimensional data into two or three dimensions [23]. The document’s sentence
representation set is clustered with improved k-Means, and then the 768 dimensional
sentence-level representation vector is reduced to two dimensions and visualized using
the t-SNE algorithm.

Fig. 6. t-SNE projection of sentences embedding

We find that the clustering distribution of each sentence-level representation vector
after dimensionality reduction has obvious boundaries, and a few nodes are distributed in
the edge positions. As shown in Fig. 6, we picked two documents during the experiment
and visualized their sentence-level embedding distribution. As shown in the left plot of
Fig. 6, the visualization results of the fourth class marked in yellow and the eighth class
marked in dark gray are similar to the case of the presence of sparse clusters defined
in this paper, while the first class marked in green exceeds 50% of the total number of
summary points, which is consistent with the supplementary extraction of dense clusters
defined in this paper. As shown in the right plot of Fig. 6, the third class of nodes marked
as purple is also similar to the case of sparse cluster definition, and all need to be handled
according to the corresponding strategies, which all prove the theoretical basis of the
proposed method in this paper sideways.

5 Conclusion

In this paper, we propose an unsupervised automatic text summarization method for
Chinese long text, utilizing pre-trainedmodels combined with improved clustering algo-
rithms for extractive summarization. The experimental results show that the extractive
summarization method based on RoBERTa model and improved k-Means clustering
algorithm proposed in this paper can obtain good results for extractive summarization of
Chinese long text. However, summary extraction results depend on the encoding qual-
ity of the text data, the process of feature encoding mapping for long texts still causes
certain degree of information loss that affects the final results. In the future, we will
consider adding global information to the encoding representation process to improve
the extractive summarization performance.
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Abstract. Abstractive summarization models frequently utilize decod-
ing strategies, like beam search, which cause issues, such as a vast search
space and exposure bias during decoding. To address this problem, we
propose an online ranking model for summarization based on the likeli-
hood probability. Our approach aims to establish a correlation between
the output probability of a candidate summary and its quality, assigning
higher output probabilities to summaries of better quality. Consequently,
the ranking model can assess and select the best summary from several
candidate summaries by contrasting their output probabilities during the
ranking stage, thereby enhancing the performance of the summary model
across various metrics. Simultaneously, our model adopts online sampling
at each training step and incorporates information from the inference
stage into the training process, which effectively mitigates the exposure
bias that arises from the inconsistency between the model training and
inference processes. Empirical results show that the proposed model per-
forms impressively on the CNNDM and LCSTS public datasets. Com-
pared with the baseline model, our online summarization ranking model
yielded a 3.97, 2.55, and 4.12 increase in ROUGE-1, ROUGE-2, and
ROUGE-L, respectively. Overall, experiments reaffirm the relevance of
the ranking stage and the impact of the model in optimizing other met-
rics.

Keywords: Beam search · Exposure bias · Ranking model ·
Contrasting · Online sampling

1 Introduction

Abstractive summarization is a conditional generation task that involves rewrit-
ing the original text into a shorter form while retaining its main information.
It is typically modeled as a sequence-to-sequence(Seq2Seq) learning problem
[1], that is, after compressing the original text information into a dense vec-
tor [2], the encoder streamlines its output to guide the autoregressive method
utilized by the decoder to gradually summarize the text. Despite large-scale
pre-trained language models such as BART [3] and PEGASUS [4] are moving
toward human-like performance, models trained under Seq2Seq frameworks and
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maximum likelihood estimation(MLE) methods still encounter three primary
issues: 1) The model training phase involves a reference summary to guide the
decoder, while the inference phase relies on the model’s past predictions, lead-
ing to exposure bias [5]. 2) Model optimization utilizes a word-level loss function
during training, whereas sequence-level evaluation methods, such as ROUGE [6],
are employed during testing. 3) Common inference strategies such as Greedy or
Beam Search(BS) do not guarantee the summaries with the highest score under
these strategies will achieve the highest evaluation score.

To address the aforementioned concerns, we introduces LonRanker
(Likelihood-based Online Ranker), a likelihood-based online ranking model
that includes a ranking stage in the summarization process following the genera-
tion phase. Unlike previous encoder-only ranking models, our proposed approach
utilizes the encoder-decoder structured BART as the foundational model frame-
work, which offers two key benefits. Firstly, adopting BART as a generative
model for scoring candidate summaries aligns more closely with the first-stage
summary generation process and enables more optimal utilization of its parame-
ters. Furthermore, BART has the capability of generating candidate summaries
during training stage. Rather than traditional ranking models, BART can learn
from the latest candidate summary distributions, making it suitable for use by
online setting. Moreover, reusing the summaries produced via the model’s infer-
ence during training helps mitigate the issue of exposure bias. After LonRanker
generates a new batch of candidate summaries, we evaluate these summaries
using various metrics such as ROUGE [6] or BERTScore [7]. Then, the original
text should be given as input to the encoder in LonRanker, while the candi-
date summary should be used as input to the decoder. Afterward, compute the
probability of the candidate summary, which will be used to score the model for
that summary with respect to its original text. Subsequently, employing con-
trastive learning [8], the summary with the highest ROUGE score is chosen as
the positive sample, while the remaining candidate summaries form the negative
sample. The model maximizes the LonRanker score of the positive sample can-
didate summary to significantly enhance the output probability of higher quality
summaries.

2 Related Work

Natural Language Generation(NLG) has undergone significant development over
a long history. In recent years, the widespread use of attention mechanisms has
made the Transformer [9] model based on attention the mainstream method in
this field. As compared to the traditional RNN model, it possesses the advantages
of being able to capture long-distance dependencies and conduct parallel train-
ing. Transformer model has always encountered exposure bias issues due to the
use of the teacher-forcing, and the utilization of the word-level MLE loss to opti-
mize the model is incongruous with its sequence-level evaluation. Bengio et al.
[10] proposed the scheduled sampling to resolve the issues discussed earlier, which
entails utilizing the model’s own predictions to substitute the reference sequence
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in the later stages of training. Several reinforcement learning approaches [11]
take ROUGE or BLUE scores as rewards to guide models, which addresses the
non-differentiability challenge of these evaluation metrics. In addition, Wiseman
et al. [12] introduced a technique for optimizing beam search throughout the
training phase, leading to enhanced performance of inference stage.

Ranking candidate summaries is one of the mainstream methods in recent
research in abstarctive summarization. According to Cohen and colleagues’
observations [13], the use of the beam search to obtain the candidate summaries
with the highest score does not guarantee the selection of the summary with
the best ROUGE score. This finding highlights the significance of ranking the
candidate summaries to ensure a potentially better quality summary is ulti-
mately produced. If the ranking model is consistently able to choose the opti-
mal, or superior, summary among a plethora of potential summaries, it will have
a direct impact on the summarization model’s performance regarding ROUGE
metrics. SimCLS [14] is a two-stage model that utilizes beam search strategy
in the generation phase to generate a set of candidate summaries. In the rank-
ing phase, it utilizes the RoBERTa [15] model to encode the source text and
candidate summaries, and uses a loss function based on contrastive learning
to rank the candidate summaries. SummaReranker [16] employs diverse decod-
ing techniques to extract features of candidate summaries with advantageous
evaluation metrics. A multi-task learning framework, based on a hybrid expert
system architecture, is developed for summary reranking, which can jointly opti-
mize several evaluation metrics. JGR [17] utilizes a joint training method which
first fixes the generator and optimizes the ranker with ranking loss, and then
fixes the ranker and leverages reinforcement learning to update the generator
using the ranker’s feedback as guidance for optimization. Moreover, aside from
ranking-based summarization models, there are additional works that approach
summarization from alternative perspectives. GSum [18] optimizes the training
of its summarization model by incorporating supplementary guidance in the form
of critical sentences, which are predicted by the model itself. ConSum [19] and
SeqCo [20] are both sequence-level contrastive learning [8] models for abstarctive
summarization, which aim to minimize the distance between the original docu-
ment and its summary, as well as the distance between the generated summary
and the original document during training.

Contrastive learning [8] has been integrated into natural language processing
tasks in recent years, yielding remarkable results. In abstarctive summarization,
previous works [19–21] typically formulated the reference summary as a positive
example, while treating candidate summaries generated by the model as negative
examples. This approach involves reducing the distance to positive examples in
vector space. Alternatively, it is possible to combine the List-wise ranking loss to
align the beam search score and ROUGE score of candidate summaries. Both of
these methods provide sequence-level supervision to traditional summarization
models and alleviate the problem of exposure bias. A range of decoding tech-
niques can be employed for natural language generation tasks. Greedy strategy,
nucleus sampling [22], beam search(BS), and the diverse beam search [23] (DBS)
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are some examples. In comparison, while the greedy strategy can produce only
one summary, nucleus sampling generates candidate summaries of significantly
lower quality. The issue with BS is its tendency to generate overly repetitive
summaries, resulting in computation and resource wastage during subsequent
ranking. Consequently, we adopt DBS for online sampling, generating a fresh
round of candidate summaries dynamically.

3 Model

In this section, we will introduce the proposed likelihood-based online rank-
ing model, LonRanker. The initial section provides an overview of fundamental
methods utilized for abstarctive summarization, followed by a detailed descrip-
tion of the training process of the proposed model.

The model training process is shown in Fig. 1, which includes a generator
and a ranker, both of which share a single Seq2Seq model. LonRanker’s training
process is as follows: 1) The generator decodes a single original text to generate
multiple candidates; 2) The candidates were evaluated, their ROUGE scores
were calculated and sorted; 3) Input the original text wit candidates into the
ranker together, and get the output probability of the candidate abstract as
the evaluation score; 4) By employing contrastive learning, candidates with the
highest ROUGE scores are assigned the highest output probabilities.

Fig. 1. Model training process

3.1 Abstractive Summarization

Seq2Seq architecture is commonly used in existing abstarctive summarization
models, which accepts a lengthy text sequence and outputs a shorter, related
sequence following a auto-regression methodology. During training stage, assum-
ing that the original document is given as D =

(
d1, d2, . . . , d|D|

)
and its reference
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summary S =
(
s1, s2, . . . , S|S|

)
, then the conditional probability P (S | D;G) is

estimated as follows:

P (S | D;G) =
|S|∏

t=1

p (st | s≤t,D;G) (1)

where G represents the model parameters, and S≤t represents all outputs before
time step t. Then, the model can be optimized by minimizing the negative log-
likelihood loss (NLL):

LNLL(G) = − 1
|S|

|S|∑

t=1

log p(S | D;G) (2)

During inference, the model need start from scratch and output the summary
Ŝ in a autoregressive manner step by step, solely depending on previous predic-
tion Ŝ<i while forecasting, disregarding S<i which was used during the training
process. This discrepancy causes exposure bias, a problem that will be analyzed
in-depth further on.

3.2 Training Process of LonRanker

In order to address the aforementioned challenges in abstarctive summarization,
we developed a summary ranking model that incorporates information from the
inference stage and provides sequence-level guidance during the training pro-
cess. Furthermore, the ranking model serves as a sequence-level evaluator. More
precisely, we divided the summary generation into two sub-tasks: generating
multiple candidate summaries from the original text, and ranking them based
on their probability scores in order to select the best one.

Online Sampling. We utilized online sampling to obtain high-quality candi-
date summaries and to enhance the training difficulty of the ranking model,
thereby preventing early convergence. It was aimed at ensuring that the diffi-
culty level of the sample data for each training step closely matches the current
ability of the ranking model. To achieve a strong summary generation ability,
the model G is trained for a specific period of time before the actual training
begins, focusing on optimizing the LNLL(G) objective.

Before each training step in the subsequent phase of the ranking model train-
ing, we fix the parameters of model G and use the DBS decoding strategy to
produce several candidate summaries C = {C1, C2 . . . , Ck} based on the source
document D where k is number of candidate summaries. For each Ci in the set
of candidate summaries C, we calculate its ROUGE score relative to its source
document D, and refer to it as E (D,Ci), which is later abbreviated as Ei. To
rank the summaries in the candidate set C according to their score Ei, we assign
the summary with the highest score as the positive sample C+. Similarly, we
designate the lowest j candidates as negative samples C−. This ranking step is
crucial in order to align the probability and quality in the subsequent stages.
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Ranking Candidate Summaries. Numerous works have been done on learn-
ing to rank, with many methods such as Point-wise, Pair-wise, and List-wise
being prominent. Earlier ranking models for abstarctive summarization often
employed List-wise or multiple binary classifiers. Considering that the model
only needs to output single summary and to preserve training resources, we take
contrastive learning to maximize the output probability of the positive sample
C+. Further, optimization solely occurs for the optimal summary as opposed to
other summaries, without regarding their relationships with each other.

Given the original document D and candidate summary Ci, they are fed into
the encoder and decoder of the model G, respectively. The output probability,
which is also the evaluation score ∂ (D,Ci) are then calculated as:

∂i ∼ P (D,Ci) =
1

|C|α
|C|∑

t=1

p (ct | c≤t,D;G) (3)

where α is a penalty term that adjusts the summary length based on the model
preference towards short or long summaries. The score of the C+ model evalu-
ation is recorded as ∂+, and the score of the C− model is recorded as ∂−. By
contrastive learning to maximize ∂+ while minimizing ∂−, the optimization goal
of the model can be expressed as:

G = arg max
G

log
exp (∂+/τ)

exp (∂+/τ) +
∑j

i=1 exp
(
∂−

i /τ
) (4)

where exp() represents the logarithmic function and τ representing the temper-
ature coefficient. Therefore, the ranking loss of model G can be denoted as:

Lrank
(
G

)
= − log

exp
(
∂+/τ

)

exp
(
∂+/τ

)
+

∑j
i=1 exp

(
∂−

i /τ
) (5)

Our rank method achieves a time complexity of O(n), which is a significant
improvement over the O(n2) time complexity of the List-wise loss function where
n denote the number of candidates. Finally, to reach the goal of generating
candidate summaries continuously online, it is essential to preserve the model’s
ability to create summaries to some extent while training the ranking model.
Therefore, we combine Eq. 2 and Eq. 5 to obtain the final total loss function L:

L = Lrank + λLNLL (6)

where λ denote the weight for summarization generation learning.

4 Experiment

4.1 Dataset

CNNDM. [24] is currently one of the largest datasets for single-document
English summaries available. It includes news articles from the CNN and Daily
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Mail websites, along with their corresponding artificially generated summaries.
The dataset includes a total of 287,226 training data points, 13,368 validation
data points, and 11,490 test data points. The non-anonymous version of the
dataset was utilized in outr study.

XSum. [25] is a large-scale dataset comprising around 220,000 English news
articles and their corresponding single-sentence summaries spanning diverse top-
ics and domains. In contrast to the CNNDM dataset, the XSum dataset features
shorter article length and prioritizes content richness and summary concision.

LCSTS. [26] is a comprehensive dataset of Chinese short text summaries. It
comprises genuine Chinese short texts retrieved from Sina Weibo, along with
their summaries authored by those who posted them. With over 2.4 million pairs
of (short text, summary), the dataset contains over 10,000 pairs with manually
annotated relevance scores.

4.2 Implementation

We trained and evaluated PEGASUS [4] and BART [3] as the skeleton mod-
els, respectively, on the CNNDM [24], XSum [25] and LCSTS [26] datasets, and
initialized them with pre-trained parameters. Prior to commencing formal exper-
iments, the dataset was trained for 0.5 epochs using LNLL(G) as the optimization
objective. In all subsequent experiments, a learning rate of 10−4, a batch size
of 128, and the Adam optimizer were seted, with warm-up strategy applied in
the first 10% of training steps. To conduct online sampling, we employ the DBS
[23] decoding technique whereby k is set to 16 for candidate summary data
volume and j is equal to 12 for negative sample count. For quantitative mea-
surement of summary similarity to the target, we utilize ROUGE-1, ROUGE-2,
and ROUGE-L [6], as well as their arithmetic mean.

4.3 Result

To assess the effectiveness of the model proposed for abstractive summarization
tasks, we will compare LoneRanker with other well-known models. The exper-
imental results for applying LonRanker to different abstarctive summarization
models are shown in Table 1. LonRanker-R serves as a model for ranking sen-
tences, and a model that generates summaries using either BART [3] or PEGA-
SUS [4]. LonRanker-G is directly applied to summary generation, serving as a
standard Seq2Seq model.

The results suggest that the proposed model in our study outperformed other
models in ROUGE-N metrics. Within the CNNDM and XSum dataset, SimCLS
[14], SummaReranker [16], and LonRanker-R all act as models for the ranking
stage. They employ the same generator, PEGASUS [4], to obtain candidate sum-
maries, and select the final output based on the ranking model’s evaluation score.
LonRanker-R is unique compared to prior encoder-only models, as it employs the
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PEGASUS model with an encoder-decoder structure that closely resembles the
generation process of the first stage. Additionally, it is capable of online sampling
and immediately acquiring more recent, higher-quality candidate summaries as
training data, which enhances model training. GSum [18], SeqCo [20], BRIO
[27] and LonRanker-G are all single-stage models that do not need to generate
additional candidate summaries, resulting in resource savings and other benefits.
GSum has an extra supervisor, compared to the latter models, that is respon-
sible for using guide information to control the content and structure of the
summary. SeqCo treats a document, its gold summary, and its model-generated
summary as different views of the same meaning representation, and during
training, we maximize the similarity between them. During training, both BRIO
and LonRanker-G align the probability and quality of generated summaries while
retaining the ability to create summaries. However, BRIO utilizes pre-generated
candidate summaries and List-wise ranking loss, whereas LonRanker-G applies
online sampling and contrastive learning to maximize the probability output of
the optimal candidate summary compared to other candidates. On the LCSTS
dataset, RNN-Context [26] employs simple GRU architecture, in addition to
possessing an extra network for attention mechanism and LCCN [28] uses a net-
work that is able to replicate single or multiple characters at the same time to
improve the method of creating summaries of generated text. Reinforced-Topic
[29] utilizes convolutional neural networks to incorporate topic models into the
summarization model, and employs reinforcement learning methods to optimize
the model for the ROUGE metrics. LonRanker also exhibits significant per-
formance advantages over similar models, without the need for supplementary
information or extra parameters.

5 Analysis

5.1 Why Is Ranking Needed?

To demonstrate the effectiveness of the ranking phase, we used PEGASUS [4]
to generate 16 candidate summaries for the entire corpus of the CNNDM [24]
dataset and analyzed the results and significant disparities in evaluation scores
of previously generated summaries. The experimental results are presented in
Table 2.

As in Table 2, Min and Max denote the least and most acceptable summaries
selected from the set of candidate summaries, while AVG represents the average
score of all candidates. Random assumes a random selection from the candidate
summaries, and PEGAUSU corresponds to choosing the summary with the high-
est score in DBS. The results show that the highest-scoring summary in DBS
does not always have the highest ROUGE score, but it is still more reliable than
AVG and Random. An ideal ranking model that consistently selects the best
summary could improve the current baseline by over 11% points, highlighting
the significant research potential of ranking work.
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Table 1. Performance of Different Models on CNNDM, Xsum and LCSTS Datasets

Model ROUGE-1 ROUGE-2 ROUGE-L

CNNDM

SimCLS 46.67 22.15 43.54

SummaReranker 47.16 22.55 43.87

GSum 45.94 22.32 42.58

BRIO 47.28 22.3 44.15

PEGAUSU 44.17 21.47 41.11

LonRanker-G 47.37 23.45 44.78

LonRanker-R 48.14 24.02 45.23

XSum

GSum 45.40 21.89 36.67

SeqCo 45.65 22.41 37.04

SimClS 47.61 24.57 39.44

PEGAUSU 47.21 24.56 39.25

LonRanker-G 47.89 25.04 39.97

LonRanker-R 48.13 25.78 40.32

LCSTS

RNN 46.67 22.15 43.54

LCCN 47.16 22.55 43.87

Reinforced-Topic 45.12 33.08 42.68

BART 44.62 29.76 40.76

LonRanker-G 46.73 32.98 43.36

LonRanker-R 47.04 33.57 43.89

Table 2. Statistical analysis of summary generation scores

Method ROUGE-1 ROUGE-2 ROUGE-L

Min 35.16 12.65 32.16

Max 55.67 28.73 51.03

AVG 44.05 21.37 40.87

Random 43.87 20.45 41.76

PEGAUSU 44.17 21.47 41.11

LonRanker 48.14 24.02 45.23
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5.2 How Many Candidats Do We Need?

In the previous experiment, we treated the number of candidate summaries,
which was set to k = 16, as a hyperparameter that significantly affects the final
model performance. In our study, we selected 6 values {1, 4, 8, 12, 16, 20} and
performed experiments with each of them. Figure 2 illustrates the results.

Fig. 2. Performance of the model on the two datasets for different values

Figure 2 shows that the model’s performance consistently improves as the
number of candidate summaries increases, without any evident decrease even
at a maximum value of 20. Nevertheless, in the comparative experiments, we
ultimately set this value to 16. On the one hand, this was necessary to ensure
fairness with other ranking models (SimCLS, BRIO), which also adopted the
same value. On the other hand, as this value increases, the associated cost of
training and inference increases, while an excessively large value of k is not
pragmatically meaningful.

5.3 What About the Other Metrics?

All of the previous experiments utilized ROUGE scores as the standard for
ranking models. However, abstractive summarization tasks are evaluated using
various other metrics, including BERTScore [7] and FactCC [30]. FactCC is a
metric designed to evaluate the consistency of factual information in generated
summaries. To evaluate the effectiveness of our method in optimizing other indi-
cators, we replaced the ROUGE scores that were utilized during training with
the outputs produced by FactCC in this section. Table 3 shows the experimental
results, LR-ROUGE and LR-FactCC respectively indicate that the LonRanker
uses ROUGE or FactCC as the ranking standard.

The results in Table. 3 indicate that, despite a slight decrease in the ROUGE
scores, the FactCC scores significantly improved when the ranking standard was
changed from ROUGE to FactCC. This suggests that the proposed method can
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Table 3. Performance of the model on FactCC

Method ROUGE-1 ROUGE-2 ROUGE-L FactCC

PEGAUSU 44.17 21.47 41.11 50.98

LR-ROUGE 48.14 24.02 45.23 51.74

LR-FactCC 47.28 22.75 43.76 53.12

tailor and adjust the appropriate ranking model during training based on the
priority of fluency or factual accuracy.

6 Conclusion

We proposed an online summary ranking model based on likelihood probability.
By utilizing contrastive learning to align candidate summary output probabili-
ties and their qualities, as well as adopting online sampling and other methods,
it effectively alleviated the exposure bias problem that exists in previous models.
Moreover, the introduction of contrastive learning also provides sequence-level
supervision for the model. Experimental results demonstrate that this method
effectively improves model performance on CNNDM and LCSTS datasets. The
approach of summarization can be implemented on any Seq2Seq framework
without the need for any other dataset processing, and it has high portabil-
ity. In the second phase, LonRanker as a ranking model and can improve other
evaluation metrics by modifying the training objective. Nevertheless, generate-
ranking’s two-stage inference mode has a high cost. Subsequent studies will focus
on exploring ways to improve the efficiency and speed of inference performance.
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Abstract. This paper studies the problem of spatial commonsense rea-
soning for the machine reading comprehension task. Spatial common-
sense is the human-shared but latent knowledge of object shape, size,
distance, and position. Reasoning this abstract knowledge can facilitate
machines better perceive their surroundings, which is crucial for general
intelligence. However, this valuable topic is challenging and has been
less studied. To bridge this research gap, we focus on this topic and pro-
pose a new method to realize spatial reasoning. Given a text, we first
build a potential reasoning graph based on its parsing tree. To better
support spatial reasoning, we retrieve the related commonsense entities
and relations from external knowledge sources, including the pre-trained
language model (LM) and knowledge graph (KG). LM covers all kinds
of factual knowledge and KG has abundant commonsense relations. We
then propose a new fusion method called LEGRN (LM Edge-GNN Rea-
soner Networks) to fuse the text and graph. LEGRN adopts layer-based
attention to integrate the LM text encoder and KG graph encoder, which
can capture correlations between LM text context and KG graph struc-
ture. Considering that spatial relations involve a variety of attributes,
we propose an attribute-aware inferential network to deduce the cor-
rect answers. To evaluate our approach, we construct a new large-scale
dataset named CRCSpatial, consisting of 40k spatial reasoning questions.
Experiment results illustrated the effectiveness of our approach.

Keywords: spatial commonsense reasoning · question answering

1 Introduction

With the rapid development of the Web, a large number of text data are pro-
duced rapidly. Acquisition of the knowledge embodied in the text has become
an extensive requirement. A feasible direction for this requirement is machine
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
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Fig. 1. Examples with various spatial reasoning types in CRCSpatial

reading comprehension (MRC-QA). In this research topic, current work has well-
studied simple questions, but not complex questions, such as spatial reasoning
ones. This kind of question asks about the object’s shape, size, distance, posi-
tion, etc. Its answer has to reason over complex text contexts and external spa-
tial commonsense knowledge. Humans use this knowledge to perceive space and
understand the surrounding environment in their daily life. It is the prerequisite
to build the general intelligent agent. For example, when someone is stirring
the heated food, we can infer that the appropriate distance from the stove is a
few dozen centimeters, not one meter away or adjacent to it (see Q3 in Fig. 1).
Existing work has studied background knowledge on causality [5], hyponymy [7],
social psychology [14,20], and temporal [12,28]. Little work studies spatial com-
monsense questions. Thus, this topic has great research value.

For this task, it is crucial to acquire sufficient commonsense knowledge.
A straightforward source is the knowledge graphs (KGs), such as Concept-
Net [15] that contains abundant parent-child relations. Since most KGs are
hand-made, their scale is limited and the coverage is insufficient to answer vari-
ous kinds of questions. We can resort to the large pre-trained language models
(PLMs) [7,10,16], which are good at capturing various kinds of knowledge inher-
ent in the large-scale corpus. This knowledge is implicit and full of noise. Tra-
ditional PLMs-based methods can well tackle simple questions whose answers
can be found by matching the text and PLMs retrieved contents. However, our
spatial commonsense questions multi-hop reasoning [26] over complex contexts,
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where some contexts do not appear in the given text but can be inferred from
their meaning. Moreover, the noises in PLMs would harm the performance. One
simple way is to integrate PLMs and KGs. That can simultaneously take advan-
tage of the high coverage in PLMs and high-quality knowledge in KGs. Tradi-
tional methods often first represent contextual features using a text encoder (e.g.
PLMs). They then extract subgraphs from KG and represent them via a graph
network (e.g. GNN-based model) [8,27]. They next concatenate these two rep-
resentations to make predictions. However, these representations cover various
kinds of spatial commonsense knowledge in different structures. The edges in the
spatial commonsense KG contain multiple instead of single features. For exam-
ple, the edges that represent position relationship between “work” and “house”
include “in”, “outside”, “around”, and with different weights. Without consid-
ering the differences in edge types, it is hard to support complex reasoning over
spatial relations. That would harm the performance on the spatial QA task.

To address these challenges, we introduce a new framework named LEGRN
(LM Edge-GNN Reasoner Networks). Our model enables layer-level deep inter-
action between the text encoder and the graph encoder. It consists of n-layer
LM and GNN. For each layer, we design layer-based attention to bi-directionally
fuse text and graph representations. In this way, the LM layer can interactively
encode the graph-aware semantics of the given context by referring to the graph,
and the GNN layer can enrich the node representation with the text representa-
tion. Considering that spatial relations contain various features, the graph edges
have plentiful semantics. We thus encode both node and edge at the GNN lay-
ers and augment the node representation with edges encoded correlations. That
can help us learn the structural features of the graph and gain better spatial
reasoning ability. Considering the lack of benchmark in this new topic, we build
a large-scale new dataset called CRCSpatial (Spatial Commonsense Reading
Comprehension). There are 40k multiple-choice questions. As shown in Fig. 1,
the questions require reasoning about the four types of spatial commonsense,
including shape, size, distance, and position. Such spatial commonsense knowl-
edge is crucial to find the correct answer. We conduct evaluations on this dataset
to verify the effectiveness of our approach.

In summary, the main contributions of this paper include:

– To the best of our knowledge, we are the first to propose the topic of spatial
commonsense reasoning, which has great value for the task of MRC-QA.

– We propose an effective method for this new topic, which uses layer-based
attention to integrate text context and graph spatial knowledge. That can
facilitate reasoning of hidden commonsense and complex semantics.

– We build a new large-scale dataset named CRCSpatial for our new task.
Extensive experiments are conducted on it to evaluate our method fully.

2 Dataset Construction

We first create a dataset named CRCSpatial with 40,713 multi-choice questions
that require spatial reasoning ability.



350 M. Lin et al.

2.1 Creation Process

We adopt four steps to yield the spatial reasoning samples.

Paragraph Collection: Considering the popular MCScript2.0 [12] contains
rich spatial context, we reused its 3,487 paragraphs, which were high-quality
stories about daily life. The text content is less noisy and is convenient to better
measure the performance on spatial reasoning tasks. In addition, we collected 511
paragraphs from travel blogs on three websites1 which cover adequate geographic
commonsense knowledge. In total, we obtained 3,998 paragraphs with spatial-
related context.

Question and Answer Generation: First, we tasked student assistants with
proposing questions based on the given paragraph. We instructed them to gen-
erate effective questions that (1) require at least one of four spatial common-
sense types we defined to answer correctly, and (2) cannot be solved using just
the words or phrases from the paragraph. Furthermore, for each question, we
required the assistants to create one correct answer and two incorrect answers.
In this stage, we constructed a set of 4,000 samples in total. We used this sample
set to fine-tune a pre-trained commonsense reasoning-based question generation
model [25]. This model can generate a question given a paragraph and a manually
annotated correct answer. It first retrieves relevant commonsense contents from
the external knowledge bases (ConceptNet and WebChild). Based on them, it
then utilizes a Transformer-based model to yield questions. We asked assistants
to provide 20 possible answer options for each paragraph, using words or phrases
related to the described scene that did not appear in the paragraph. To ensure
diversity in the question types, we required the constructed correct answers to
cover as many types as possible, such as person names, place names, location
phrases, and so on. Finally, we obtained a foundational QA set automatically
generated by the model.

Distractor Generation: To collect distractor candidate options for the ques-
tions, we fine-tuned the T5 transformer model on the aforementioned set of 4,000
samples. The model took the answer, question, and context paragraph as input:
answer + [SEP] + question + paragraph, and generated two candidate options
as output: distractor1 + [SEP] + distractor2.

Validation and Refinement: We assigned 10 student assistants to inspect,
filter, and modify the entire raw dataset. Specifically, this included: (1) We fil-
tered out invalid questions, including those that are meaningless, unrelated to
spatial commonsense, or unrelated to the paragraph. (2) We also revised simple
or erroneous questions, including those that can be answered solely based on
1 https://expertvagabond.com, https://www.wtcf.org.cn, https://www.tripadvisor.

com.

https://expertvagabond.com
https://www.wtcf.org.cn
https://www.tripadvisor.com
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the text, solely through spatial commonsense knowledge, or through only one-
step reasoning. (3) Additionally, we checked and modified candidate answers,
including verifying the correctness of the correct candidates and ensuring that
the distractor options are incorrect and of the same type as the correct answer.
Finally, all paragraphs, questions, and answers were spell-checked and corrected
by running aSpell2 and spell-checker.

2.2 Data Statistics

There are 40,713 questions for the given 3,998 paragraphs. That is, each para-
graph has about 10 questions. We split the dataset into training, development,
and test sets based on an 8:1:1 ratio, with each paragraph appearing in only one
of the three subsets. Table 1 presents the basic statistics.

Table 1. Statistics of CRCSpatial dataset

Total Train Dev Test

# of text 3,998 3,201 402 395

# of questions 40,713 32,571 4,070 4,072

Avg. paragraph length 155.1 155.2 152.9 156.3

Avg. question length 11.5 11.5 11.6 11.6

Avg. answer length 2.7 2.7 2.7 2.7

We determined the question types based on the question words using simple
heuristics. In particular, yes/no questions start with an auxiliary verb (do, does,
did) or a modal verb (is, are, can, was, were, could). We found that the question
types in the CRCSpatial dataset are diverse, including What-38%, Where-15%,
Why-8%, Who-8%, How far/close-8%, When-6%, Which-6%, How-5%, Yes/no-
3%, Other-3%.

We then randomly sampled 500 instances to manually label the spatial com-
monsense types required to answer the questions. Figure 1 shows typical exam-
ples. The distribution of types of spatial commonsense reasoning is as follows:
12% for Shape, 10% for Size, 14% for Distance, 42% for Position (including 37%
for daily scenes and 5% for geographic scenes), and 22% for hybrid reasoning.
Position reasoning and hybrid reasoning account for a relatively large propor-
tion, which is more in line with the complex questions people face in actual
situations that require multi-types of spatial commonsense reasoning.

3 Approach

As shown in Fig. 2, to answer the spatial questions, we first derive the related
commonsense reasoning graph. We then encode the input texts and the cre-
ated graph. Their correlations are captured by co-attention to better decode the
answer. Next, we define some notations and elaborate details on each part.
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3.1 Problem Formulation

Given a paragraph p, a question q, and a set of answer options A, the goal of our
task is to find the correct answer a ∈ A, where a can answer q by reasoning over
the context p. Considering that some contexts involve the spatial commonsense,
we construct a reasoning graph G = (V,E) to capture them via the external
knowledge sources. Here V is the set of entity nodes in the graph; E ⊆ V ×R×V
is the set of edges that connect nodes in V , where R represents a set of relation
types. Formally, we can compute the plausibility scores between p, q, and each
option, where the score on the answer a ∈ A is the largest.

Fig. 2. Flow chart of our framework. “Rep.” denotes representation.

To calculate the score, we first apply PLM (e.g., RoBERTa) to encode the
inputs [p; q; a]. We then retrieve the related spatial reasoning graph G from the
external sources [23]. Afterward, we use N layers LM Edge-GNN Reasoner Net-
works (LEGRN) to jointly capture the correlations among the textual inputs and
G. Each layer consists of an LM layer (Sect. 3.3), an Edge-GNN layer (Sect. 3.4),
and a Layer-based Attention layer (Sect. 3.5). We design a layer-based attention
mechanism to bi-directionally connect the LM and Edge-GNN layers. That can
fuse learned features between the two. Finally, we use the representations from
the last LEGRN layer to predict the answer.

3.2 Acquisition of Spatial Reasoning Knowledge Graph

To answer the spatial question, we derive a potential reasoning graph covering
plausible evidential clues. Following previous works [23], we first finely identify
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the entities mentioned in the paragraph, question, and candidate options, as
Vpqa. To find the necessary but hidden commonsense clues, we then retrieve a
multi-hop subgraph from the external KG related to these entities, as Gpqa =
(Vpqa, Epqa). It comprises all nodes on the k-hop paths between nodes in Vpqa.

Afterward, we connect the entities in the inputs to the retrieved graph.
That can facilitate us to deduce the answers by reasoning from the text to
the hidden commonsense knowledge. Given the input text (represented as c),
we link it to each entity in Vpqa by three relation types rcp, rcq and rca, so
as to form a reasoning graph GRea = (VRea, ERea), where VRea = V ∪ c and
ERea = E ∪ (c, rcp, v)|v ∈ Vp ∪ (c, rcq, v)|v ∈ Vq ∪ (c, rca, v)|v ∈ Va. We use the
entity embedding to initialize the node and edge, where c is initialized as zero.

3.3 Representation of Text Context

We use PLM (i.e., RoBERTa) to embed the input texts as H
(0)
t ∈ R

m×dp , m is
the hidden layer size of PLM, dp is the hidden size. To unify the hidden size,
we feed it into an MLP network to get the new H

(0)
t ∈ R

m×d. We then utilize
a Transformer [19] with co-attention to capture the context with regard to the
graph. For the l-th layer, we compute graph-aware representation H

(l)
t by the

layer-based attention based on H
(l−1)
t and the node representation H

(l−1)
g , as

H
(l)
t = Transformer(H(l−1)

t ,H
(l−1)
g ).

3.4 Representation of Graph Structure

The spatial relations involve a variety of attributes and the answering process
may involve reasoning over them. Thus we propose an attribute-aware network
to capture this structural reasoning context.

Given the reasoning graph GRea, we first initialize the node embedding
H

(0)
g ∈ R

n×din and edge embedding X0 ∈ R
n×n×S , where n is the size

of nodes, din is the vector size, and S is the dimension of edges vector.
Let Xij ∈ R

S , i = 1, 2, . . . , n, j = 1, 2, . . . , n denote the edge vector with
S-dimension, linking the i-th and j-th nodes. Xijs represents the s-th chan-
nel of the edge vector in Xij·. When there is no edge connecting the i-th and
j-th nodes, Xij· = 0, where “·” is an operator used to select the range slice of
a vector dimension.

We then jointly feed the node H
(0)
g and edge X0 into the proposed N layer

LM Edge-GNN network. In l-th layer, we capture the edge and node correlations
by layer-based attention, so as to obtain edge-aware representation of the node
and node-aware representation of the edge. We employ an edge-enhanced graph
encoder, EGNN(A) [4], to incorporate multi-dimensional edge features in the
graph with multiple reasoning relations. In detail, let H

(l)
g =

[
h
(l)
1 ; · · · ;h(l)

n

]
, the

node representation is updated via aggregation operation defined as follows:

H(l+1)
g = σ

[
‖Ss=1

(
αl

··s
(
H(l)

g ,X
(l)
··s

)
H(l)

g W l
)]

, (1)
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where σ is a non-linear activation function, ‖ denotes the concatenation opera-
tor, W l is a learnable weight matrix. α is used to yield the n × n × S tensor. In
Eq. (1), αl denotes the attention coefficients, where each element αl

ijs is a func-

tion of the original h
(l)
i , h

(l)
j and Xijs. Considering that spatial commonsense has

many attributes, there are multi-dimensional features on the edge. To capture
this structural context, we regard each feature as a multi-channel signal and
use multi-dimensional attention to calculate their correlations. The attention for
each feature is computed as Eq. (2), where the W l is the shared weight.

αl
ijs = exp

{
LeakyReLU

(
aT

[
h
(l)
i· W l‖h

(l)
j· W l

])}
X l

ijs, (2)

By passing through the Edge-GNN layer, the node can be updated as H
(l)
g =

H
(l+1)
g , and the new edge is updated by the attention coefficients as X l = αl.

3.5 Layer-Based Attention to Capture Structural Correlations

Considering that the spatial answer may need to deduce over the text and
graph, independent representation of them may not capture this hidden rea-
soning knowledge. We thus propose layer-based attention to elicit this sharing
information by fusing the LM text and Edge-GNN graph features. We compute
the multi-layer interactions on the text and graph by propagation. That allows
us to find out the spatial commonsense knowledge related to the text from the
graph. Inversely, we can utilize the context in the text to improve reasoning on
the graph.

In detail, given the text representation H
(l)
t from the l-th LM layer and node

representation H
(l)
g from the l-th Edge-GNN layer, we first leverage a transformer

to capture their context as Eq. (3), where Qt, Qg, key Kt,Kg, V t, V g are the
intermediate matrices, WQ

i ,WK
i ,WV

i ∈ R
d×dk are trainable matrices.

Qi = H(l)WQ
i , Ki = H(l)WK

i , Vi = H(l)WV
i , (3)

Then, we utilize two transformers with multi-head attention to compute the
correlations of the vectors. In detail, the input is first divided into multiple
segments. We then map the segmented input into a latent space by a linear
transformation, and calculate the attention score of each segment by as Eq. (4),
where Qt,Kg, V g are the metrics for the text transformer, Qg,Kt, V t are those
for the graph transformer.

Ti(Qt
i,K

g
i , vg

i ) = softmax(Qt
iK

gT

i /
√

dk)v
g
i

Gi(Q
g
i ,K

t
i , v

t
i) = softmax(Qg

i K
tT

i /
√

dk)vt
i

(4)

Afterward, we collect the outputs of each attention head and take the
weighted sum of them as O

(l)
t = ‖hi=1(Ti)WO

t and O
(l)
g = ‖hi=1(Gi)WO

g , where ‖
is the concatenation operator, WO

t ,WO
g ∈ R

hdk×d are the weight matrices. To
avoid gradient divergence, we add normalization to encourage the data falling
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outside the saturation zone of the activation function. Besides, we utilize the
residual block to prevent degeneration in network training. We employ two
residual add functions to get the fused representation of the text and graph,
as H

(l)
t = LN(H(l)

t + O
(l)
t ) and H

(l)
g = LN(H(l)

g + O
(l)
g ), respectively, where LN

denotes the layer normalization. To jointly grasp all the information, we feed
them into two feed-forward networks (i.e., MLP), and output as Eq. (5), where
H

(l+1)
t ∈ R

m×d and H
(l+1)
g ∈ R

n×d are the input of (l + 1)-th layer of LM
and Edge-GNN, respectively. In this way, we can fuse different levels of semantic
features from the text and graph to obtain a more comprehensive representation.

H
(l+1)
t = LN(H(l)

t + MLP (H(l)
t )), H(l+1)

g = LN(H(l)
g + MLP (H(l)

g )), (5)

3.6 Training and Prediction

Based on the above representations, we concatenate them as the input to a
classifier and get the output probability for each option of the multi-choice ques-
tion, as p(a|p, q) = Classifier(Pool(H(L)

t ) ⊕ Pool(H(L)
g )), where the classifier

consists of a two-layer fully connected network with ReLU activation function,
Pool is the mean pooling operation which can well capture the key classified
information. The highest score is predicted as the answer. In the training phase,
we update the model parameters according to cross-entropy loss. The objective
function is to minimize the cross-entropy loss to correctly predict the answer, as
Eq. (6), where pi denotes the prediction, ai is the ground truth answer for the
i-th sample.

L(θ) = − 1
N

∑
iai log p(âi|pi, qi), (6)

4 Experiments

Next, we fully evaluated the effectiveness of our method in various aspects.

4.1 Dataset and Experimental Settings

Since this is the first work on the spatial reasoning MRC-QA task, no public
dataset is available to evaluate the spatial reasoning ability. We then conducted
evaluations on our created CRCSpatial dataset (Sect. 2). The dataset consisted
of 40k examples, each requiring spatial commonsense reasoning ability. Statistic
details of the dataset were displayed in Table 1. To collect the spatial common-
sense, we resorted to the external KG of WebChild2.0. It used a network of
over 18 million assertions to describe 2 million unambiguous concepts. Most of
them are spatial related, including the shape of objects (e.g. hasShape), size of
objects (e.g. hasSize), relationships between objects (e.g. largerThan, partOf,
nextTo, above). We utilized the method of QA-GNN [23] to initialize node and
edge embeddings. We applied PLM to embed all triples in WebChild2.0 and
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then obtained a pooled representation for each entity. When constructing the
subgraph (Sect. 3.2), we set the hop size k = 2. We employed accuracy as the
evaluation metric.

4.2 Implementation Details

Model configurations were demonstrated as follows. Our model was trained on 24
GB Nvidia RTX 3090 GPU. Based on the HuggingFace PyTorch API, we imple-
mented the transformer. We used pre-trained vectors in RoBERTa-large [10] to
embed the words. We set the dimension (D = 100) and the number of layers
(L = 4) of our LM Edge-GNN networks. The dropout rate was 0.2. We empir-
ically took the Adam as the optimizer. We set the batch size to 64 and fixed
the embedding dimension to 64. The learning rate for the LM module and GNN
module were set to 10−5 and 10−3, respectively.

4.3 Evaluation Baselines

We adopted two kinds of methods for comparison: fine-tuned PLMs which do not
use the KG, and KG-based models that use external knowledge for reasoning.

Group1: Fine-Tuned PLMs. We verified that as an external source of
knowledge, whether KG is more effective than the pre-trained model (PLMs).
We compared our model against the vanilla fine-tuned LMs, including GPT-2
(2019) [13], BERT-large (2019) [6], RoBERTa-large (2019) [10], ERNIE2.0-large
(2020) [16]. Among them, ERNIE2.0 was a semantic knowledge-augmented pre-
trained model based on BERT, which supported continuous learning.

Group2: KG-Based Models. We evaluated whether the models with a combi-
nation of LM and KG had stronger representation power than our LM Edge-GNN
method. These models include: (1) GconAttn (2019) [21] used for knowledge
concept matching based on the Match-LSTM framework; (2) KagNet (2019) [8]
extracted QA-related subgraphs from the KG and derived the relational paths by
GCN and LSTM; (3) MHGRN (2020) [3] utilized a reasoning path to facilitate
multi-hop deduction; (4) QA-GNN (2021) [23] constructed a reasoning graph
and introduced a graph network to joint encode the text and graph for multi-
hop prediction; (5) GreaseLM (2022) [26] fused embeddings of LM and GNN by
a two-layer MLP.

Human Evaluation. To measure the difficulty of the CRCSpatial dataset,
we conducted the human evaluation. A sampling protocol was enacted wherein
200 sets of questions are drawn at random from the test set. Subsequently,
we recruited three annotators to identify the most plausible and answer for
each question. We used Randolph’s free-marginal kappa metric to measure the
agreements of various annotators. By majority voting, we reported the human
performance.
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4.4 Comparison Results Against Various Baselines

Table 2 showed the comparison results. We observed that we obtained consistent
improvements over fine-tuned PLMs and KG-based models. We had outperfor-
mance in terms of ∼10.56% dev accuracy, ∼11.37% test accuracy on RoBERTa,
and ∼7.30% dev accuracy, ∼7.28% test accuracy against the previous best KG-
based system, GreaseLM. The improvement over PLMs suggested that incor-
porating external knowledge can facilitate understanding spatial commonsense.
In addition, the improvement over the GreaseLM model was significant. That
indicated our model can perform spatial reasoning better by using a KG graph.

Table 2. Dev and Test accuracy on CRCSpatial.

Group Model Dev Acc. (%) Test Acc. (%)

Fine-tuned PLMs GPT-2 (2019) [13] 54.51(±0.39) 54.13(±0.21)

BERT-large (2019) [6] 61.18(±0.76) 58.74(±0.10)

RoBERTa-large (2019) [10] 66.76(±0.71) 65.20(±0.45)

ERNIE2.0-large (2020) [16] 66.85(±1.12) 63.27(±1.09)

KG-based models GconAttn (2019) [21] 64.13(±0.93) 63.85(±0.21)

KagNet (2019) [8] 65.47(±0.81) 65.23(±0.56)

MHGRN (2020) [3] 67.75(±0.86) 66.08(±0.10)

QA-GNN (2021) [23] 69.00(±0.24) 66.15(±0.74)

GreaseLM (2022) [26] 70.02(±0.52) 69.29(±1.16)

LEGRN (Ours) 77.32(±0.73) 76.57(±0.39)

Human - 93.00(±2.00)

4.5 Ablation Study

We further conducted an ablation study to better analyze the gain of each part
of our model, including the connection of the LM to the GNN, the layer-based
attention. As presented in Table 3, we found that removing the attention would
result in more than ∼2.5% performance drop. When we dropped the text module,
the performance would degrade performance more. That indicated the usefulness
of our module design. We also tested replacing multi-layer layer-based attention
by one layer, resulting in a 4.41% drop in performance. We can infer that the
multi-level design possessed the capability to effectively engage with varying
levels of spatial attributes. Furthermore, if we removed all the layer-based atten-
tion layers, the performance dropped significantly by 5.29%. That showed the
importance of connecting LM and GNN modules to collaborate on reasoning.
We also evaluated the effectiveness of edge embeddings in the GNN module for
enhancing the context representation of graph nodes. Removing the edge embed-
ding of GNN would result in 2.86% performance degradation. Finally, when we
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Fig. 3. Effect of # of LEGRN Lay-
ers.

Table 3. Ablation study.

Model Dev Acc.(%)

LEGRN (final) 76.57

w/o Layer-based Attention (Text) 73.89

w/o Layer-based Attention (Graph) 74.02

w/o Layer-based Attention (Multi-level) 72.16

w/o Layer-based Attention 71.28

w/o Edge embedding of GNN 73.71

w/o Layer-based Attention

and Edge embedding of GNN

68.96

removed both the layer-based attention and edge embedding of GNN modules,
the performance significantly decreased from 76.57% to 68.96%. In addition, we
fine-tuned the number of LEGRN layers and found that L = 4 worked best on
the dev set (see Fig. 3).

4.6 Case Study

Moreover, we conducted a case study to examine the detail of the performance
gain. As shown in Fig. 4, by performing multiple layer attention to connect LM
and GNN modules, our model performed well on multi-hop spatial commonsense
reasoning. For example, the Q1.2 in Fig. 4, to answer the question, our model
went through multiple reasoning steps: his mon → heating up the food → in the
kitchen → Microwave, so the microwave is close to his mom. That indicated the
usefulness of external knowledge sources from WebChild2.0.

Fig. 4. Examples predictions of our model. denotes the correct answers and
marks the prediction errors.
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4.7 Error Analysis and Discussion

To analyze the pros and cons of the model, we collected the predicted results and
examine the errors. Subsequently, four error cases are identified as part of the
analysis: (1) Lack of evidence (36%). For example, the Q2 in Fig. 4 requires com-
monsense knowledge about distance. However, our model was unable to extract
relevant knowledge from the external KG we used. Mitigating this issue could
be achieved through the implementation of more sophisticated extraction strate-
gies and the incorporation of a broader array of knowledge sources. (2) Incon-
sistent with Human Commonsense (27%). For questions where there are two
correct candidate answers, humans choose the plausible one based on common-
sense, while our model mistakenly selected the choice which is incongruous with
human commonsense. (3) Relatively weak in multi-type hybrid reasoning (24%).
For example, Q3 in Fig. 4 requires the model to determine the position of Mary
and Andy and then infer the distance between them. (4) Unanswerable Ques-
tions (13%). The model encounters difficulty in effectively processing the phrase
“None of the above.” It is challenging to directly infer this response option from
either the provided passage or the posed question. We will investigate them in
future work.

5 Related Work

Previous works have investigated some aspects of spatial commonsense, includ-
ing size comparison [1], lengths distributional of objects [2], position relation-
ships from object co-occurrences [24], and position relationships between people
and objects in different events [9]. These works focus on the extraction of spa-
tial commonsense knowledge from visual or textual sources, while this paper
focuses on spatial commonsense reasoning and application. In addition, a com-
monsense MRC dataset, Commonsense QA [17], considers the position relation-
ship of “location at”. Instead, we consider more comprehensive position rela-
tionships, as well as three other types of spatial knowledge including shape, size,
and distance.

The reasoning ability of PLMs is weak. To address this issue, many works
attempt to integrate structural KG which naturally has relations to facilitate
multi-hop reasoning. Some works explore pre-train PLMs to learn structured
knowledge implicitly [7,16]. There are also many works that explicitly encode
KG information for structured reasoning. The simple way is to directly con-
catenate the representation of KG and the QA context from two independent
modules [11,27]. A further way to fuse KG and LM is to augment one modality
with the other, such as utilizing embeddings of subgraphs retrieved from KG to
enhance the input text representation [8,22], or utilizing text representations to
enhance the reasoning ability of graphs module [3,18,23]. Recent works explore
the bidirectional interaction of the two modalities. GreaseLM [26] proposes to
fuse the LM and GNN representations via message passing. However, its inter-
action mode is still relatively shallow since it fuses embeddings of LM and GNN
with a simple MLP. Different from previous methods, we adopt Layer-based
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Attention to bidirectionally connect each layer of LM and GNN, achieving a
deep fusion of text and graph representation.

6 Conclusion

We have proposed a novel topic on spatial commonsense reasoning for the task
of MRC-QA. For this topic, we proposed a practical model called LEGRN. It
can capture correlations between LM text context and KG graph structure by
using a graph network with fused layers. Our model also adopted an attribute-
aware network to deduce the correct answers. In the evaluation, we constructed a
new large-scale dataset, named CRCSpatial, consisting of 40k spatial reasoning
questions. Experimental results illustrated the effectiveness of our approach.

Acknowlendgement. This work is supported by the National Natural Science Foun-
dation of China (62276279, 62002396), the Key-Area Research and Development
Program of Guangdong Province (2020B0101100001), the Tencent WeChat Rhino-
Bird Focused Research Program (WXG-FR-2023-06), and Zhuhai Industry-University-
Research Cooperation Project (2220004002549).

References

1. Bagherinezhad, H., Hajishirzi, H., Choi, Y., Farhadi, A.: Are elephants bigger than
butterflies? reasoning about sizes of objects. In: Proceedings of the AAAI, vol. 30
(2016)

2. Elazar, Y., Mahabal, A., Ramachandran, D., Bedrax-Weiss, T., Roth, D.: How
large are lions? inducing distributions over quantitative attributes. In: Proceedings
of the 57th ACL, pp. 3973–3983 (2019)

3. Feng, Y., Chen, X., Lin, B.Y., Wang, P., Yan, J., Ren, X.: Scalable multi-hop
relational reasoning for knowledge-aware question answering. In: Proceedings of
the EMNLP, pp. 1295–1309 (2020)

4. Gong, L., Cheng, Q.: Exploiting edge features for graph neural networks. In: Pro-
ceedings of the IEEE/CVF, pp. 9211–9219 (2019)

5. Huang, L., Le Bras, R., Bhagavatula, C., Choi, Y.: Cosmos QA: machine reading
comprehension with contextual commonsense reasoning. In: Proceedings of the 9th
EMNLP-IJCNLP, pp. 2391–2401 (2019)

6. Kenton, J.D.M.W.C., Toutanova, L.K.: Bert: pre-training of deep bidirectional
transformers for language understanding. In: Proceedings of NAACL-HLT, pp.
4171–4186 (2019)

7. Levine, Y., et al.: SenseBert: driving some sense into Bert. In: Proceedings of the
58th ACL, pp. 4656–4667 (2020)

8. Lin, B.Y., Chen, X., Chen, J., Ren, X.: KagNet: knowledge-aware graph networks
for commonsense reasoning. In: Proceedings of the 9th EMNLP-IJCNLP, pp. 2829–
2839 (2019)

9. Liu, X., Yin, D., Feng, Y., Zhao, D.: Things not written in text: exploring spatial
commonsense from visual signals. In: Proceedings of the 60th ACL, pp. 2365–2376
(2022)

10. Liu, Y., et al.: Roberta: a robustly optimized Bert pretraining approach. arXiv
preprint arXiv:1907.11692 (2019)

http://arxiv.org/abs/1907.11692


Spatial Commonsense Reasoning for Machine Reading Comprehension 361

11. Mihaylov, T., Frank, A.: Knowledgeable reader: enhancing cloze-style reading com-
prehension with external commonsense knowledge. In: Proceedings of the 56th
ACL, pp. 821–832 (2018)

12. Ostermann, S., Roth, M., Pinkal, M.: Mcscript2. 0: a machine comprehension cor-
pus focused on script events and participants. In: Proceedings of * SEM 2019, pp.
103–117 (2019)

13. Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., Sutskever, I., et al.: Language
models are unsupervised multitask learners. OpenAI Blog 1(8), 9 (2019)

14. Sap, M., Rashkin, H., Chen, D., Le Bras, R., Choi, Y.: Social IQA: commonsense
reasoning about social interactions. In: Proceedings of the 9th EMNLP-IJCNLP,
pp. 4463–4473 (2019)

15. Speer, R., Chin, J., Havasi, C.: ConceptNet 5.5: an open multilingual graph of
general knowledge. In: Proceedings of the AAAI, vol. 31 (2017)

16. Sun, Y., et al.: Ernie 2.0: a continual pre-training framework for language under-
standing. In: Proceedings of the AAAI, vol. 34, pp. 8968–8975 (2020)

17. Talmor, A., Herzig, J., Lourie, N., Berant, J.: CommonsenseQA: a question answer-
ing challenge targeting commonsense knowledge. In: Proceedings of NAACL-HLT,
pp. 4149–4158 (2019)

18. Taunk, D., Khanna, L., Kandru, S.V.P.K., Varma, V., Sharma, C., Tapaswi, M.:
GrapeQA: graph augmentation and pruning to enhance question-answering. In:
Companion Proceedings of the ACM Web Conference 2023, pp. 1138–1144 (2023)

19. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information
Processing Systems, vol. 30 (2017)

20. Wang, G., Hou, X., Yang, D., Mckeown, K., Huang, J.: Semantic categorization of
social knowledge for commonsense question answering. In: Proceedings of the 2nd
Workshop on Simple and Efficient Natural Language Processing, pp. 79–85 (2021)

21. Wang, X., et al.: Improving natural language inference using external knowledge in
the science questions domain. In: Proceedings of the AAAI, vol. 33, pp. 7208–7215
(2019)

22. Yang, A., et al.: Enhancing pre-trained language representations with rich knowl-
edge for machine reading comprehension. In: Proceedings of the 57th ACL, pp.
2346–2357 (2019)

23. Yasunaga, M., Ren, H., Bosselut, A., Liang, P., Leskovec, J.: QA-GNN: reasoning
with language models and knowledge graphs for question answering. In: Proceed-
ings of the NAACL 2021, pp. 535–546 (2021)

24. Yatskar, M., Ordonez, V., Farhadi, A.: Stating the obvious: extracting visual com-
mon sense knowledge. In: Proceedings of the NAACL 2016, pp. 193–198 (2016)

25. Yu, J., Liu, W., Zheng, L., Su, Q., Zhao, B., Yin, J.: Generating deep questions with
commonsense reasoning ability from the text by disentangled adversarial inference.
arXiv preprint (2023)

26. Zhang, X., et al.: GreaseLM: graph reasoning enhanced language models for ques-
tion answering. In: Proceedings of ICLR (2022)

27. Zhong, W., Tang, D., Duan, N., Zhou, M., Wang, J., Yin, J.: Improving question
answering by commonsense-based pre-training. In: Tang, J., Kan, M.-Y., Zhao, D.,
Li, S., Zan, H. (eds.) NLPCC 2019. LNCS (LNAI), vol. 11838, pp. 16–28. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-32233-5 2

28. Zhou, B., Khashabi, D., Ning, Q., Roth, D.: “going on a vacation” takes longer
than “going for a walk”: a study of temporal commonsense understanding. In:
Proceedings of the 9th EMNLP-IJCNLP, pp. 3363–3369 (2019)

https://doi.org/10.1007/978-3-030-32233-5_2


Multimodal Learning for Automatic
Summarization: A Survey

Zhicheng Zhang(B) , Yibo Sun , and Shiyan Su

The University of Queensland, Brisbane, QLD 4072, Australia

zhicheng.zhang3@uqconnect.edu.au

Abstract. With the widespread availability of multiple data sources,
such as image, audio-video, and text data, automatic summarization
of multimodal data is becoming an important technology in decision
support. This paper presents a comprehensive survey and summary of
the main articles in the field of multimodal summarization techniques
in recent years. Firstly, we define multimodal summarization and briefly
describe the development process. Then, we survey existing techniques
and their applicability in different domains. Additionally, we provide an
analysis of their results and discuss the insights of those approaches,
along with the challenges and future research directions. Based on our
study, we found that the encoder-decoder approach is currently the best
approach for automated summarization. In the future, we believe that
the applications of multimodal summarization could develop rapidly in
many different fields, particularly in medicine. In our case studies, we
demonstrate that multimodal learning is a promising research direction
for providing timely and accurate summarizations compared to unimodal
approaches.

Keywords: Multimodal Summarization · Feature Engineering ·
Foundation Models · Attention Mechanism

1 Introduction

In past years, text-based unimodal automatic summarization has been developed
and extensively researched [20]. Then, multimodal summarization has begun to
receive increasing attention [3,13]. Multimodal automatic summarization can
process and correlate information from multiple modalities, such as text, images,
audio and video, to produce more coherent and accurate summaries with a high
level of information. This approach has shown promising results in improving
the quality and effectiveness of automated summaries. It includes a few steps:
multimodal input, feature engineering, main model, fine-tuning models, and mul-
timodal summary.

The aim of this article is to provide a comprehensive review of recent
approaches in multimodal automatic summarization. We present a comprehen-
sive overview of the main model and application areas of existing methods, cat-
egorizing the techniques into different types: methods based on neural networks,
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method based on integer linear programming (ILP), method based on submod-
ule optimization, graph- based approaches, method based on LDA Topic Models,
and some domain-specific techniques. The application scenarios are considered
as universal, news, meetings, movies, sports, medical, and others.

The paper also discusses challenges and future directions of multi-modal
automatic summarization, identifies some important datasets, and provides pos-
sible directions for improvements of performance and quality with respect to the
newly developed technologies.

2 Process of Multimodal Summarization

2.1 Multimodal Summarization

In 2009 Kay L. O’Halloran stated in his article that multimodality generally
refers to different properties of the same medium and is a more precise and
subdivided concept for representing something through multiple dimensions [40].
It can be expressed as different information properties, data, or representations
that describe the same matter or object.

In Mani’s book [34], automatic summarization is defined as the process of
condensing a group or large amount of information and presenting its most
important parts to the user in a short form. Examples include condensing a long
report or collection of books into a concise text or presenting the statistics of
a season of NBA games in a condensed form as a single image. Therefore, the
output of automatic summarization is not limited to text, as numerous studies
have shown that even better results can be achieved using images, videos, or
multimodality as output. Zhu [55] claims that graphical summaries can increase
user satisfaction by an average of 12.4%compared to text-only summaries.

Multimodal summarization can be defined as a computerized method of pre-
senting a large amount of information in many different forms to the user in a
streamlined manner. The input to the method must contain multiple forms, and
the output can be in any form such as text, images, video or a combination of
forms.

2.2 Development of Multimodal Summarization

The concept of multimodality can be traced back as far as the speeches of ancient
Greece in BC and is used to express the diversity of behavior [3]. However,
with the invention of the computer and the explosion of information flow in
the information age, multimodal information has replaced traditional monotypic
information in all aspects of life [4].

From the 1980s, the audio-visual speech recognition (AVSR) approach
became the beginning of multimodal research [54]. Researchers found that when
the demonstrator’s lip movements did not match the articulation, the results
received by the observed subjects would be affected. When the demonstrator
mouthed [ba] and the dubbing was [ga], most subjects would mishear [da], which
certainly suggests that multimodality can have a large impact on the results [36].
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With the development of neural convolutional networks, multimodality was
applied to automatic summarization in conference proceedings in 2003 [35]. By
this time the authors had begun to model interactions using Hidden Markov
Models and reduced the action error rate on the test set to 5.7%, providing
ample evidence of the feasibility and promising future of the project.

It was not until 2006 that the concept of deep learning was introduced [24].
Since then, CNNs [23] and RNNs [19] have started to develop rapidly, encoder-
decoder models, weighted attention mechanisms, and transformers [2] have been
proposed, and Multimodal Summarization has started to evolve faster.

3 Methods

3.1 Method Based on Neural Networks

Neural network-based approaches are often preferred by researchers in the gen-
eration of multimodal summaries.

Neural network frameworks generally consist of an encoder-decoder, with the
addition of a multimodal fusion module to form a complete architecture.

In 2003, McCowan [35] proposed the use of the Hidden Markov Models to
model meeting behavior in the meeting domain. Early integration approaches
combined the features of all participants in a single HMM and trained them. In
2009, Evangelopoulos [15] applied the spatio-temporal attention mechanism to
film summaries, which improved their precision and avoided skimming caused
by unimodal or visual-auditory-only modalities. In 2013, Evangelopoulos [14]
further improved the method in the same area.

In the general domain, Nallapati [39] started using RNNs to summarize text
in 2017, and a year later, Chen [11] used bidirectional RNNs to encode text and
sentences, using a convolutional neural network VGGNet [46] to process images.
This approach allows for the summarization of documents containing images and
outperforms the SummaRuNNer method [39] in ROUGE scoring. Li [26] used
VGG19 to extract image features, and Tsai [52] used a Transformer-based model
for summarization. Additionally, Khullar [22] proposed a MAST method, which
can summarize three modalities of “text-audio-video”.

In the field of news summaries, good progress has also been made in mul-
timodal research. Chen [10] used an attentional hierarchical encoder-decoder
model to process text-centered information complemented by images, resulting
in multimodal summaries. Zhu’s MSMO method [55] uses a visual overlay mech-
anism to select suitable images from the output to supplement the summary.
Palaskar [41] used a ResNeXt-101 3D convolutional neural network for video
encoding. Another approach used by Chen [12] was to input text and images
and use the then state-of-the-art Oxford VGGNet for image vector representa-
tion, which greatly improved the processing speed. Zhu [57] improved his MSMO
[55] method proposed in 2018 in 2021 (Fig. 1).

In the medical field, Fan [16] proposed the FW-Net method to fuse CT images
and MRI images to produce summaries with minimal loss of information, which
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Fig. 1. Framework of Multimodality Automatic Summarization

resulted in good performance. The core of their algorithm is a two-layer U-Net
algorithm that follows an encoder-decoder architecture.

Furthermore, Liu [32] also used CNN for the fusion summarization of mul-
timodal medical images, including CT and MRI images. Their algorithm uses
CNN to process two images and a weight map through a Siamese network, which
uses Gaussian pyramid decomposition. They then perform Laplacian pyramid
decomposition on each of the two images and finally perform another Laplacian
pyramid decomposition on the resulting fused summary image. Torres [51] also
used the DECU framework based on the CNN algorithm to generate an auto-
matic summary of patient activity and determine the patient’s health status by
collecting other physiological parameters from video acquired by cameras and
multiple sensors.

In other domains, Libovický [29] uses the seq2seq method to process instruc-
tional videos to generate tutorial summaries. Li [25] employs techniques such as
R-CNN, ResNet, encoder-decoder and attention to produce product summaries
in the e-commerce domain using a unique dataset. Song [47] utilizes the Swin
Transformer and a Generative Pre-trained Language Model (GPLM) to generate
product summaries in the e-commerce domain. Gao [17] employs the Sim Net
network approach to implement code summaries in programming. Additionally,
Ma [33] Gao [18] uses the Transformer architecture for code summarization.

3.2 Method Based on Integer Linear Programming (ILP)

Integer linear programming (ILP) is a method belonging to operations research
that requires the decision variables to be integers. Unlike seq2seq, this approach
directly intercepts the textual content, avoiding the problem of incoherent state-
ments. This method was first used only for text summaries. Until Boudin [8]
proposed an approximation algorithm that solved the NP-hard problem, and
showed that it was not limited to text, but could also be applied to multimodal
problems.
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It wasn’t until 2020 that Jangra [21] proposed a JILP-Multimodal summa-
rization framework that achieved the task of summarizing multimodalities using
ILP, and named the task TIVS, i.e. summarizing text-image-video. The method
also simply uses a neural network approach to the output in a pre-processing
phase, such as encoding the text using VGG. At its core, it uses the Joint-ILP
Framework for core summarization.

Allawadi [1] also uses an ILP based model and has the same inputs and out-
puts as the previous JILP-Multimodal summarization framework [40]. However,
his model is more refined and yields better accuracy and recall on ROGUE.

The decision variable of this method is:

Mtxt =
[
mtxt

i,j

]
;Mimg =

[
mimg

i,j

]
;Mc =

[
mc

ij

]
(1)

M(txt,img) is a binary square matrix of x*x. Whether txt or img is exemplar.
c represents the cross-model, representing the correlation threshold between the
image and the sentence. Its core function is:

f(x) = Argmax

{
λ1 ∗ m ∗ k2

txt ∗
([∑n

i=1 Mtxti ∗ SIMcosine (si, Otxt)
](α)

+
[∑n

i=1 Mimgi,i ∗ SIMcosine (si, Oimg)
](β)

)
+

λ2 ∗ (ktxtt + kimg) ∗ k2
txt ∗

([∑n
i=1

∑p
j=1 Mc

i,i ∗ SIMcosine (si, Ij)
](γ))

−λ3 ∗ (ktxt + kimg) ∗ m ∗
([∑n

i=1

∑n
j=1 Mtxti ∗ Mtxtj ∗ SIMcostne (si, Ij)

](δ))}

(2)

In the formula, α and β represent the salience score of the text-set and image-
set, respectively. To avoid the problem of modal deviation, the coefficients m
and ktxt+kimg are introduced. γ represents the cross-modal correlation score, δ
represents the redundant part of the summary.

3.3 Method Based on Submodule Optimization

The submodule function is an aggregation function that provides a more tangible
representation of diminishing marginal utility in the economic domain. Similarly
to ILP, in 2010, Lin [31] first proposed applying this modified greedy algorithm
to text summarization.

Until 2016, in the field of journalism, Modani [38] proposed an approach
that uses a five-part submodule function to generate a summary of both text
and image modalities. The method innovatively defines the image coverage term
and an image diversity reward term for images. Allowing for the generic gener-
ation of a bimodal summary of text-image composition. Subsequently, the new
method proposed by Li [27] reached new heights by being able to process four
modalities: text, image, audio, and video. Chali [9] uses three measures of impor-
tance, coverage, and non-redundancy as submodule functions to detect sentence
summaries. Tiwari [49] proposed a method for generating final summaries using
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three measures of coverage, novelty, and significance as submodule functions.
The formula is:

fcoverage (S) = |{w∈S|w∈(V txt∪V vis)}|
|V txt∪V vis| . (3)

fnovelty (S) =
∑

w maxd∈S

{
0,mind′∈S−{d} {φ(d,w) − φ (d′, w)}}

. (4)

fsig (S) = log (csig) + cos
(
d

−→
txt, v

−→
txt,

)
+ cos

(
d

−→
vis, v

−→
vis

)
. (5)

They given a summary S. Coverage is as the fraction of stxt and svis of the
vocabulary covered by the summary. Novelty means that the model should give
preference to sentences with new information. w is a textual or visual word that
appears in the document d of the summary.

They model the vectors dtxt and dvis and calculate their weighted cosine
similarity. Capturing the importance of the document to the topic.

The authors use a Markov Random Fields-based similarity measure to com-
pare different descriptions of the same or similar content across different plat-
forms and track events over time to reconstruct the full event. Finally, the final
content is selected using a submodule function-based approach. The core func-
tion is computed as follows:

f(A ∪ {s}) − f(A) ≥ f(B ∪ {s}) − f(B) (6)

In this formula, A,B ⊆ s, A ⊆ B, s ∈ S
B . S is a set.

3.4 Method Based on Graphs

Graph-based approaches have been used in the field of automatic summarization
for a longer period. In 2004, the Graph based approach was applied to the field
of journalism, and the Textrank method proposed by Mihalcea [37] has been
able to extract important sentences from large news articles.

Until 2016, the Graph-based approaches was heavily used for multimodal
automatic summarization. It was in the above-mentioned work by Modani [38]
that a modified graph-based approach and a modification to the submodular
approach were used to summarize both text and image modalities. Moreover,
the proposed graph-based approach could handle not only images but also doc-
uments. The approach sets up images and documents as nodes into the graph,
uses the connections between the nodes as weights based on similarity, and sets
a reward score, as well as attach a cost. Finally, a greedy algorithm is used to
select the most appropriate summary. Schinas [45] also proposed an MGraph
framework for the textual, visual, temporal, and social multimodal content in
social networking sites for visual summary summarization.

Subsequently, another paper by Li [27], mentioned above, also used the Graph
based approach and summarized the four modalities of text-image-audio-video.
In this case, the GBA (Graph based approach) is used to calculate the salience
score of a text set. The text set here includes text documents, but also a large
amount of text that may be incorrectly transcribed from speech. These sentences
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are treated as nodes to form a graph. The formula for calculating the salience
score is computed as follows:

{
Sa (ti) = μ

∑
j Sa (tj) · Mji + 1−µ

N

Mji = sim (tj , ti)
(7)

In this formula, μ = 0.85, N is total number of the text units; Mji is the rela-
tionship between text unit ti and ti; Ti is averaging the embedding of the words
in ti. And Sim(, ) means cosine similarity between two texts.

Zhu [56] proposed an unsupervised graph-based multimodal summarization
model, which does not require the dataset to contain annotations in order to
perform summarization. The method classifies modal summarization into modal-
mixed and modal non-mixed according to the form of output and can perform
either unimodal or multimodal output to suit different application scenarios.
Additionally, the method can also measure the similarity between text and
images through the model.

Recently, Sun [48] applied the Graph based approach to the field of remote
sensing images with Multimodal change detection for remote sensing for Earth
observation. The approach performs a regression summary of different modal
satellite images for regression summarization.

3.5 Method Based on LDA Topic Model

The Latent Dirichlet allocation (LDA) Topic Model [7] can be utilized for
extracting visual words from images through feature extraction and clustering
algorithms, thereby facilitating multimodal summarization.

Their approach towards Multimodal summarization has mainly been applied
in the field of journalism. Bian [5] proposed the multimodal-LDA method for
summarizing social media data in microblogs. The article first detects events,
then quickly summarizes the most representative sub-topics, and generates a
fluent summary text based on it to restore the entire process of the event quickly.
On this basis, different summary focuses are selected based on the type of news
to provide a more realistic picture of the event. However, the method may face
difficultly in distinguishing the focus for mixed events or events in borderlands.
Additionally, the summarization performance is significantly reduced for news
with inconsistent text and images. The model Inference formula is as follows:

ϕTS
k (w) =

Nw(Z = k,R = S) + λTS

∑
t∈V t (N t(Z = k,R = S) + λTS)

(8)

ϕV S
k (u) =

Nu(Z = k,Q = S) + λV S

∑
u∈V v (Nu(Z = k,Q = S) + λV S)

(9)

In the formula, φTS
k (w) represents the probability of w occurring in the kth

specific text distribution, while φV S
k (u) represents the probability of the visual

distribution. Where Vt and Vv denote text words and visual words, respectively.
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Nw(Z = k, R = S), Nu(Z = k, Q = S) denote the number of text words after
the sampling process.

Bian [6] proposed a method for removing latent noise images using a spectral
filtering model as the core method, which allowed the algorithm to address the
above problem well. In another work, Li [28] proposed the hierarchical latent
Dirichlet allocation (HLDA) model to analyze the subject structure of news and
then used subsequent methods such as crawlers and MST algorithms to process
the subject matter. Wadagave [53] proposed the multimodal-LDA (MMLDA)
summarization using the TWITTER API, which can also generate visual
summaries.

3.6 Domain Specific Techniques

We can see that the above techniques are the dominant approaches to Multi-
modal summarization, but there are specific times when researchers use their
own unique techniques suited to situations and particular data sets. These tech-
niques are often related to relevant characteristics within the domain.

In sports, key sporting moments are often replayed in slow motion, and spec-
tators will remain silent before a serve and then cheer loudly after a goal is scored.
These specific phenomena can help the model to better identify key highlights of
sports. Tjondronegoro [50] used this idea, together with the Video/Text Align-
ment Module, Social Media Classification Module and Text Analysis Module to
complete automatic summaries of sports matches. Sanabria [44] also uses similar
ideas and completes multimodal summaries with methods such as multi-instance
learning neural networks. There are also specific features that can indicate the
presence of key content in a session to avoid watching meaningless video con-
tent from start to finish. Erol [13] suggests that this can be done by analyz-
ing sound direction and audio amplitude, local luminance variations, and term
frequency-inverse document frequency measure, or even the video’s movements
of the characters to identify key sections for summary output.

In the field of e-commerce, Li [25] not only used a method based on neural
networks but also adopted an aspect-based reward augmented maximum likeli-
hood (RAML) training method [50], which effectively summarizes the aspects
such as “Capacity”, “Control”, “Motor” and so on.

In the field of film summarization, Evangelopoulos [14] also used the concept
of saliency to analyze three perspectives - auditory, visual, and textual - to obtain
key frames of the film and summarize them. A multimodal fusion technique was
eventually used to generate a comprehensive attention model. Finally, a summary
is generated by extracting the most important scenes and episodes from the film
based on the attention weights.

4 Taxonomy of the Methods

Although there are currently some articles that review similar topic, they are
generally published too early or do not describe some areas. In this survey, I
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browsed through over 200 articles from 2003 to 2022 and selected the most
valuable nearly 50 of them for classification statistics. They were classified by
the main method into: Method Based on ILP, Method Based on Submodule
Optimization, Method Based on Graphs, Method Based on LDA Topic Model,
Domain Specific Techniques, and on this basis they are divided chronologically
by application area. In the selection of papers, for the early years, we chose
articles with high citation numbers. For the less cited articles of the last two
years, we chose to use articles from higher quality publications. However, the
datasets used for multimodal summarization tasks are not uniform.

Table 1. A list of methods, datasets, input and output patterns and their applications,
with T(Text), I(Image), A(Audio), V(video) data.

Paper Method Input Output Datasets Application

[35] neural A,V T 60 meeting recordings (30 recordings × 2 participant sets) Meetings

[15] neural T, A, V A, V 3 movie segments Movies

[14] neural T, A, V A, V 7 half hour segments of movies Movies

[26] neural T, I T 66,000 triplets (sentence, image and summary) News

[22] neural T, I, V T 300 h of short instructional videos spanning different domains General

[10] neural T, I T, I 219k documents News

[51] neural T, V T ICU patient Data set (author created) Medical

[47] neural T, I T 1.4 million products covering three coarse categories Other

[17] neural T, C C 10 open source Java projects, 40932 Ethereum Smart Contracts (ESC) code Other

[21] ILP T, I, A, V T, I, A, V 25 themes (500 documents, 151images, 139 videos) News

[27] sub/graph T, I, A, V T 66,000 triplets (sentence, image and summary) News

[56] graph T, I T, I 293,965 document,1,928,356 image General

[6] LDA T, I T, I 20 topics News

[50] specific T, A, V T 313k document, 2.0m image, news document, image title pair, sentence summary Sport

Table 1 shows the basic information on commonly used datasets, the input
and output modes of the paper, and the fields and sources of the paper. Method
based on neural networks are still the dominant methods in the current method-
ology and are the focus of research in this survey. Figure 2 shows the current
percent of each method.

Multimodal
Summarization

Neural
network 43%

Graph
17%

Submodule
optimization 13%

LDA
Topic Model 9%

Integer
linear programming (ILP) 9%

Domain
specific techniques.  9%

News
News

News News

News
News

Medical

Universal

Universal

Sports

Movie 

Movie 

Meetings

Meetings

Other

Other

Other

Fig. 2. Framework of Multimodality Automatic Summarization
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5 Challenges and Issues

5.1 Challenges

Evaluation Criteria: There is no single correct answer to a multimodal sum-
mary. Even for manual assessments, there is no absolute perfect answer, limited
by the personal preferences of the reader. And for machine assessment, there
are different measures such as Rouge [30] scores. Furthermore, the output of
multimodal summaries is also often multimodal, and it is difficult to measure
the strengths and weaknesses between different modalities; in many cases, eval-
uation criteria do not allow for a comparison between methods that output text
and images.

Currently, more advanced evaluation criteria [38] use vector function and
reward mechanisms and they avoid to use Ground Truth. The methodological
equation is:

μM = μT + μI + σT,I (10)

μ(T,I) =
∑

w∈T,I

R̂v,w ∗ max
x∈S,I

{Sim(x, y)} (11)

σT,I =
∑

v∈S

∑

w∈I

{
Sim(v, w) ∗ Rv ∗ R̂w

}
(12)

where μT and μI are diversity-aware information coverage measures for the text
and image parts of the summary, respectively. σT, I denotes the sum of the
similarity between sentences and images in the summary across all pairs. R ∗
maxx∈S,I{Sim(x, y)} denotes the maximum similarity between sentence in the
document text and any sentence in the summary. R is the reward value. However,
this kind of methods lack normalization, and the results are heavily influenced
by the length of the content.

No New Image Generated: Many methods in multimodal summarization
use multimodal output when outputting, and their output often contains images.
However, these methods generally output images by selecting the relevant image
in the input video or image, and in the network, for output. The problem is that
when there is no suitable image in the input video, the output becomes difficult
and the quality of the output becomes lower, even if there is a mismatch between
the text and the image.

Poor Quality Data Set: For machine learning, having datasets that per-
form well across various domains is crucial. However, currently, there are many
datasets that are too small [21,27] or lack specific domains, with few datasets
available.
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Modal Alignment: Most methods have difficulty dealing with asynchronous
modal data that is not aligned. Cross-modal alignment requires the resolution
of timing asynchronies and scale inconsistencies between modalities.

Multimodal Semantic Understanding: The process of generating sum-
maries requires semantic understanding and analysis of multimodal data. This
includes the recognition and understanding of objects, scenes, etc. in images and
videos, and the modelling of semantics in text.

5.2 Issues

Application Technologies: New technologies such as chat GPT [42] and
DALL-E 2 [43] can solve problems such as no new images being generated, poor
output text and difficulties with human-computer interaction. Neural network,
with encoder-decoder as the core or use the transformer method are likely to
become the mainstream approach to summarisation.

Deeper Applications in Medicine: Current approaches in the medical
mainly use cnn for fusion abstraction of images from different modalities [16],
while the critical text is neglected. In the future, summarising and outputting
text modalities and images acquired by multiple sensors as a reference for doc-
tors’ decision making in routine examinations and ICUs will reduce doctors’
decision making time.

Multimodal Alignment: Data heterogeneity, modal imbalance and semantic
splitting make it difficult for multimodal approaches to achieve alignment. The
performance and stability of multimodal alignment can be improved through
data pre-processing, feature fusion and migration learning.

Real Time Summarization: Facing the sports domain, multi-modal real-time
summarisation can be performed through specific scenarios, broadcast in differ-
ent languages for different groups of people. Using machine learning algorithms,
natural language processing (NLP) techniques, attention mechanisms, combined
with text generation models, concise and accurate summaries of the competi-
tion can be generated. The generated text summaries are translated into the
target language using machine translation models and natural and fluent speech
announcements are generated using speech synthesis techniques.

Post-Joint Representation Approach: This can be addressed using joint
representation learning or stepwise fusion strategies. The model considers the
relationship between multiple modes at the same time in the training process,
rather than just fusion information in the later stage.
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Better Evaluation Criteria: Evaluation criteria will become more compre-
hensive and accurate. We could continue to use the vector function and reward
mechanism from the reinforcement Learning. In addition representation learn-
ing can be introduced to extract Low-dimensional representations. Convergence
modelling using multiple methods

Datasets Expanded: Datasets will cover more areas and a variety of data
forms, and many new datasets will be constructed.

6 Conclusions

Multimodal summarization tasks allow people to navigate information from text,
images, audio, and video more effectively. In this paper, we defined the problem
and analysed the extent to which existing mainstream methods are used in differ-
ent domains with the datasets provided. We identified a number of papers using
new approaches and application areas that have not been summarized before.
Through reflection and analysis, we enumerated the challenges currently faced
by existing technologies, predicted possible future trends, and described some
research issues and directions for future development.
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Abstract. Knowledge tracing aims to diagnose the student’s knowledge
status and predict the responses to the next questions, which is a critical
task in personalized learning. The existing studies consider more aca-
demic features, while this paper introduces DKCT, a deep knowledge
tracing model with concept trees, to integrate the hierarchical concept
tree that describes the structure of concepts in a question. DKCT casts
the knowledge concept tree (KCT) in a question from the views of fea-
ture, breadth, and difficulty into a KCT representation at first. Then,
DKCT is composed of an encoder network with multi-head attention
on the question representations and a decoder network with multi-head
attention on the interaction embeddings. Finally, DKCT integrates the
student embeddings by using fully connected networks to predict the
responses to the next questions. Extensive experiments conducted on
two real-world educational datasets show that DKCT has a higher pre-
diction accuracy than the currently popular KT models. This work paves
the way to consider KCT for knowledge tracing.

Keywords: Data Mining · Intelligent Education · Concept Tree ·
Knowledge Tracing · Personalized Exercises Recommendation

1 Introduction

Student knowledge tracing (KT) aims to acquire the current knowledge state
from question-answering records to predict the responses to the next questions
[8,22]. With KT models, an automatic online-learning system guides a student
with suitable exercises to smooth the learning progress [3,11]. Inspired by the
powerful deep learning strategy, Piech et al. proposed the well-known model of
deep knowledge tracking (DKT) by using the recurrent neural network (RNN) to
learn student knowledge representation [14]. DKT paves the way to learning deep
features from the sequential exercising records [19], resulting in user-friendly
performance on exercise recommendations. Its kernel position in personalized
learning caused a large number of studies in recent years, such as the regularized
DKT (DKT+) [18], exercise-aware KT (EKT) [7], and self-attentional neural
knowledge tracking (SAINT) [2].
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
X. Yang et al. (Eds.): ADMA 2023, LNAI 14177, pp. 377–390, 2023.
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Fig. 1. The KC trees in Eedi [17]. The color points, i.e. Nattierblue-blue-Yellow-Green,
represent the knowledge concepts at the different levels of the KC trees.

The current studies are mainly concentrated on enhancing the RNN struc-
ture, integrating the side information, and fusing the data relationship [8]. DKT
introduces the deep learning model into the field of knowledge tracing [14]. To
boost the DKT model, DKT+ introduced two regularization terms of recon-
struction and waviness to remove the inconsistency of the knowledge state along
time series [18]. To integrate more useful information, EKT explores students’
exercising records and the question’s text contents to improve the perdition per-
formance [7]. While interaction features are more important to the raw KT,
Pandey et al. [13] proposed a self-attention KT model (SAKT) to capture the
long-term dependency among interactions; Choi et al. proposed a separated self-
attentional neural KT (SAINT) model to embed exercises and interactions by
encoder-decoder attention networks [2]; Hamid et al. proposed to leverage the
graph convolutional network (GCN) to embed high-order relations into the ques-
tion and student representations for KT [6]. Besides, dynamic key-value memory
network (DKVMN) introduces a key matrix of knowledge concepts (KCs) and
a value matrix of mastery states into a memory-augmented neural network [15]
to improve the interpretability [20].

However, a few investigations take into account the structured features of
KCs, which is indeed the important target in a KT task. In the real world, a
KC can usually be organized into a hierarchical tree [10], called a knowledge
concept tree (KCT), as shown in Fig. 1. KCT provides all sub-KCs for a specific
KC from coarse to fine grain. Without consideration of the KCT, traditional
KT methods often fail to capture fine-grained concepts, leading to inaccurate
and hard-understanding KT results. As shown in Fig. 2, traditional KT models
mark the student as having mastery status of “inequality” when getting a correct
response to Question 4, but the student lefts most sub-KCs of “inequality” with
no mastery. Such a problem harms the KT models in real-world applications.

In this paper, we proposed deep knowledge tracing with concept trees,
dubbed DKCT, to integrate the KCTs into a KT model. DKCT first encodes
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Fig. 2. The concerned KC trees in knowledge tracing.

KC trees by constructing tree-structure tensors, performing upward cumulative
average operations, and doing branch-level aggregation, and then integrates the
features from questions and interactions by extending the transformer architec-
ture [16], followed by training a linear classifier on both features of decoder and
student. Our contributions lie in two-fold as follows:

1. This paper introduces a new KT route by considering the knowledge-concept
tree (KCT) embedded in a question. KCT could help improve the performance
and interpretation of knowledge tracing.

2. We propose an implementation method, DKCT, by using the popular Trans-
former model to integrate the KCT embedding. Wherein we encode the fea-
tures from multiple views, including features, breadths, and depths.

In addition, DKCT achieves higher prediction accuracy on two public edu-
cational datasets than the popular KT models. The rest of this paper is orga-
nized as follows. Section 2 reviews the DKT problem and presents the proposed
method. Then we present the experiments and the results in Sect. 3. Finally, we
conclude this study and discuss the results in Sect. 4.

2 The Proposed Method

2.1 Problem Definition

DKCT can be formulated into the following supervised learning problem. Denote
the j-th student’s past t − 1 interactions by Ij

t−1 = {I1, I2, · · · , It−1}, where
It = (qt, kctt, rt, dt, sj). Note that here
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Fig. 3. The schematic diagram of the proposed DKCT.

• qt is the question that the student sj is completed at timestamp t;
• kctt is a subtree of the KC trees embedded in question qt, as in Fig. 1;
• rt is the correctness of the student j’s response, i.e., being 1 for a correct

response and 0 for an incorrect response;
• dt is the side information of interactions, e.g., response time;
• sj is the side information of the student j.

The goal of DKCT is then to predict the probability P that the student j gives
a correct response to the next question t, i.e., P(rt+1 = 1|qt+1, kctt, Ij

t−1).

2.2 KC-Tree Encoded from Multiple Views

To encode the KC tree kctt of the question t, we traversed the tree hierarchically
and defined three sets of tree nodes, i.e., a set of leaf nodes denoted by Lt =
{l1, l2, · · · , lm} ∈ R

m, a set of non-leaf nodes denoted by N t = {n1,n2, · · · ,nk} ∈
R

k, and a set of descendant nodes of all non-leaf nodes Ct = {C1,C2, · · · ,Ck}
where Ci is the set of descendant nodes of the non-leaf node i.

In this study, we encoded the KC tree from multiple views, i.e., KC features,
KC breadths, and KC levels, by introducing three encoding tensors into DKCT,
respectively. The detail on encoding KCT has three steps as follows.

(1) The KC-feature view is corresponding to the KCs contained in a question
and the structural relationships between KCs. We constructed the tensor F t ∈
R

(k+1)×m×d with a map F by

fij := F(Lt,N t, Ct)ij =

⎧
⎪⎨

⎪⎩

xLj , if i = k + 1
xNi , elseif lj ∈ ci
0, otherwise

(1)

where fij , (i = {1, 2, · · · , k + 1}, j = {1, 2, · · · ,m}) is the element located at the
i-th row and the j-th column of the tensor F t; xLj ∈ R

d and xNi ∈ R
d are the
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embedding of the leaf nodes lj and the non-leaf nodes ni; 0 denotes d ∈ R
d with

all entries being zero.
(2) The KC-breadth view is to mention the involved scope of a knowledge

concept, i.e., the number of fine concepts in a KC, which is a common prior in
the real world. Meanwhile considering the tree branch, we constructed the tensor
Gt ∈ R

(k+1)×m×d with a map G by

gij := G(Lt,N t, Ct) =

{
xAij , if i < k + 1 and lj ∈ ci
0, otherwise

(2)

where gij , (i ∈ {1, 2, · · · , k + 1}, j ∈ {1, 2, · · · ,m}) is the element of the tensor
Gt; xAij ∈ R

d is the embeddings of |vij | = |{np|np ∈ Ci and lj ∈ Cp}|, vij is the
set of lj ’s ancestors up to ni, and | • | denotes the number of elements in the set.

(3) The KC-level view aims to encode the intrinsic difficulty of a knowledge
concept, i.e., the depth of a concept from its root in the KC tree that is shown
in Fig. 1. We constructed Ht ∈ R

(k+1)×m×d with a map H by

hij := H(Lt,N t, Ct)ij =

⎧
⎪⎨

⎪⎩

xL−level
j , if i = k + 1
xN−level
i , else if lj ∈ Ci

0, otherwise

(3)

where hij , (i ∈ {1, 2, · · · , k + 1}, j ∈ {1, 2, · · · ,m}) is the element of the ten-
sor Ht; xL−level

j ∈ R
d and xN−level

i ∈ R
d are the embeddings of level(lj) and

level(ni), where level(·) is the hierarchy of the input node in the KC tree.
Finally, the KC embeddings from the above three views are combined into

T t by
T t = F t ⊕ Gt ⊕ Ht (4)

where ⊕ denotes the concatenation operation in the feature dimension. This
study sets the embedding dimensions to 2/d, 4/d, and 4/d, respectively.

2.3 DKCT: Deep Knowledge Tracing with Concept Trees

In our study, we assume the KC trees are given, which organizes all knowledge
concepts involved in all questions into hierarchical structures, as shown in Fig. 3
(left below). Then, our proposed DKCT method is composed of the following
main steps.

In the first step, we calculated the multi-view KC embeddings by using
Eq. (4) based on the given KC trees, referring to Subsect. 2.2.

In the second step, we performed the upward cumulative-average operation
U on T t to knit the representation vector for the KC tree t in a bottom-up
way [12]. The resulting vector Bt = (b1, b2, · · · , bm) ∈ R

m×d indicates branch
features, where each element in Bt is obtained by averaging all its descendants
in a particular branch, i.e.,

bj := U(T t)ij =
∑k+1

i=1 tij
#{I(tij)|i = {1, 2, · · · , k + 1}} (5)
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where bj is the j-th element of the vector Bt; U is the map; I(·) is the Indicator
function, being 1 for tij > 0 otherwise 0; #{A} counts the number of non-zero
elements in the set A.

In the third step, we reshape all branch-level vectors Bt’s from the multiple
questions into a uniform length. Towards this end, we defined a zero padding
function P to take Bt as input and return B̂t = (b1, b2, · · · , bm, pm+1, · · · , pz) ∈
R

z×d, where z is the maximum m in all questions and pi is padding vector
composed of the predefined value.

In the final step, we combine all branch-level representations. We defined
an attention function At on B̂t to achieve Bt = (b1, b2, · · · , bz) ∈ R

z×d as

Bt = At(B̂t) = Softmax(mask(
QT

t Kt√
d

))Vt (6)

where Qt = [qt1, q
t
2, · · · , qtz] = B̂tWQ

t , Kt = [kt1, k
t
2, · · · , ktz] = B̂tWK

t , and Vt =
[vt1, v

t
2, · · · , vtz] = B̂tVV

t , where WQ
t , WK

t , WV
t ∈ R

d×d are the query, key, and
value projection matrices, respectively [16]. The mask function is defined by

mask(aij) =

{
−∞, ifqti = p or ktj = p

aij , otherwise
(7)

where aij is the affinity value between query qti and key ktj , and p is the padding
value. With Eqs. (6) and (7), the question knowledge concept qkct for the ques-
tion t is obtained by aggregating elements in Bt by the mapping function W

qkct := W(Bt) =
k∑

j=1

bj (8)

In summary, the hierarchical accumulation process of encoding the KC tree
in a question can be simply expressed as

qkct = W(At(P(U(T t)))) (9)

2.4 Model Implementation

The proposed DKCT, shown in Fig. 3, is implemented based on the Trans-
former architecture [16]. Since the model works with inputs of a fixed length,
for a sequence whose length n0 is less than t, we repetitively added padding of
question-answer pair to the left of the sequence; for a sequence whose length n0

is greater than t, we partitioned the sequence into sub-sequences of length t. All
obtained sub-sequences are served as inputs to the DKCT model.

With the pre-processed inputs, the encoder of DKCT takes the sequence
QKC = [qkc1, qkc2, · · · , qkct] ∈ R

t×d of KC embedding as attention query
and sequence, and question embedding QE = [qe1, qe2, · · · , qet] ∈ R

t×d as
attention key and value, followed by feeding the encoder output Oenc =
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[oenc1 , oenc2 , · · · , oenct ] ∈ R
t×d to the decoder. The decoder takes Oenc and interac-

tion embedding IE ∈ R
t×d with the start token and finally combines the decoder

output Odec ∈ R
t×d with student embedding SE ∈ R

t×d into a fully connected
layer classifier to predict the response correctness C′ = [c′

1, c
′
2, · · · , c′

t]. This pro-
cess could be simply written into

Oenc = Encoder(QKC, QE),

Odec = Decoder(Oenc, IE),

C′ = FCN(Odec, SE).

(10)

The main components of DKCT in Fig. 3 are described as follows.
Multi-head Attention with Upper Triangular Mask. The multi-head

attention networks are simply the attention networks applied h times to the
same input sequence with different projection matrices. For each 1 ≤ i ≤ h, the
query and key-value pairs using the following equations:

Qi = QWQ
i , Ki = KWK

i , Vi = VWV
i (11)

where WQ
i , WK

i , and WV
i ∈ R

d×d are weight matrices of query, key, and value,
respectively. Then, the attention head i can be

headi = Softmax(mask(
QiKi√

d
))Vi (12)

where the masking mechanism replaces the upper triangular part of matrix QiKi

from the dot-product with −∞, i.e., masking inputs information from the future
for all multi-head attention networks to prevent invalid attending. The attention
headi is the values Vi multiplied by the masked attention weights, and the multi-
head attention Oatt is a linear combination of all head matrices,

Oatt = Concat(headi, head2, · · · , headh)WO (13)

where d is the dimension of the query vectors and the key vectors and WO ∈
R

hd×d is a weight matrix.
Feed-Forward Networks. Feed-forward network (FFN) is defined by:

F = FFN(Oatt) = ReLU(OattW1 + b1)W2 + b2, (14)

where W1,W2 ∈ R
d×d, b1, b2 ∈ R

d are parameters learned during training.
Encoder. The encoder is a stack of N identical layers. A single encoder layer

can be expressed into

Oatt−enc = SkipConct(Multihead(Qenc, Kenc, Venc)),

Oenc = SkipConct(FFN(LayerNorm(Oatt−enc))),
(15)

where Qenc = QKC, Kenc = Venc = QE. Skip connection [5] and layer normal-
ization [1] are applied to each sub-layer.
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Table 1. Details of Eedi and Junyi dataset.

Statistics Eedi Junyi

#Questions 27,613 837

#Students 118,971 247,606

#Responses 15,867,850 25,925,993

# Knowledge Concepts 1,125 837

# KCs Level 4 4

Experiment Sequence Length 40 40

# Train Students 95,176 198,084

# Test Students 23,795 49,522

# Train Interaction 274,519 460,036

# Test Interaction 69,019 116,407

Decoder. Similar to the encoder, the decoder is a sequence of N identical
decoder layers, skip connection, and layer normalization are applied to each
sub-layer. A single decoder layer is shown as follows,

Oatt−dec
1 = SkipConct(Multihead(Qdec, Kdec, Vdec)),

Oatt−dec
2 = SkipConct(Multihead(Oatt−dec

1 , Oenc, Oenc)),

Odec = SkipConct(FFN(LayerNorm(Oatt−dec
2 ))),

(16)

where Qdec = Kdec = Vdec = IE. Finally, the output of the last decoder layer is
connected to the student embedding, which is passed to a fully connected layer
to produce the final output C′ = [c′

1, c
′
2, · · · , c′

t].

3 Experiment

3.1 Dataset

We conducted experiments on two big-size educational datasets. The datasets
were divided by the ratio 8:2 from the student wise. The statistical details of
these datasets are provided in Table 1. The datasets are described as follows.

Eedi. This dataset was provided by the online learning platform Eedi [17],
an online education provider currently used in tens of thousands of schools. This
dataset is composed of 15,867,850 responses from 118,971 students on 27,613
questions about mathematics. Each question in the dataset is associated with
a list of knowledge concepts. Experts arrange these knowledge concepts in a
tree structure based on the knowledge hierarchy relationship. As illustrated in
Fig. 1, the KCT has 1,125 knowledge concepts, and the 4 knowledge hierarchies
are marked with different colors. The dataset also includes student features and
interaction features.
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JunyiAcademy (Junyi). This dataset was provided by the e-learning platform
JunyiAcademy. This dataset is composed of 25,925,993 responses from 247,606
students on 837 questions about mathematics. Each question in the dataset is
associated with a list of prerequisite knowledge concepts. We construct the pre-
requisite knowledge concept tree using the 3rd-order prior knowledge concepts.
The dataset also includes interactive features.

3.2 Model Training and Evaluation

We implemented the proposed DKCT with Pytorch. For the network architec-
ture, the stack of N for encoder and decoder is 8, and the number of heads
for multi-head attention is 8. Without a specific claim, the hyper-parameters
in experiments are set as follows: the learning rate is 0.001, the decaying rate
is 0.99 every 100 steps, the embedding dimension is 256, and the batch size is
64. While the interaction sequences in the dataset are of different lengths, we
partitioned or padded all sequences into a unified length of 40.

To compare with the state-of-the-art models [8], we conducted the same
experiments by using DKT [14], DKT+ [18], DKVMN [20], SAKT [13], SAINT
[2], and DOPE [6]. For these approaches, we used the same hyper-parameters
as that reported in their respective papers. We ran all experiments ten times
and then calculated the average accuracy (ACC) and the average area under the
curve (AUC) [4]. Besides, the t-test is used to check the statistical significance.

3.3 Prediction Accuracy

Table 2 shows evaluation results for all mentioned methods. As is shown, there
are improvements in both ACC and AUC by considering more side information.
Both SAINT and DOPE achieve higher ACC and AUC than the other traditional
methods. While DKCT delivers the highest performance in terms of ACC and
AUC among all methods (p-values < 0.05). On the Eedi dataset, our model gains
1.83% in ACC and 1.86% in AUC compared with the GNN-based DOPE, while
gains 2.11% in ACC and 2.97% in AUC compared with the transformer-based
SAINT. In comparison with DKT and DKT+, our model gains more than 4%
in ACC and more than 6% in AUC. On the Junyi dataset, our model gains
1.13% in ACC and 3.13% in AUC compared with DOPE, while gains 0.91%
in ACC and 3.96% in AUC compared with SAINT. In comparison with DKT
and DKT+, our model gains more than 1.74% in ACC and more than 4.8% in
AUC. From these results, DKCT could benefit from KCTs and achieves a better
performance than the other methods.

3.4 Parameter Observation

This subsection provides surveys on the two parameters, i.e., the number of
stack layers N and the input dimension d in the proposed model. We varied
N ∈ {4, 6, 8} and d ∈ {6, 128, 256} by a grid search. At each pair of (N, d), we
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Table 2. Performance comparison with all mentioned models.

method Eedi Junyi

ACC AUC ACC AUC

DKT 0.7002 0.7351 0.8375 0.7461

DKT+ 0.7100 0.7501 0.8396 0.7516

SAKT 0.7136 0.7581 0.8407 0.7587

DKVMN 0.7294 0.7831 0.8446 0.7677

SAINT 0.7331 0.7857 0.8479 0.7600

DOPE 0.7359 0.7968 0.8457 0.7683

DKCT 0.7542 0.8154 0.8570 0.7996

Fig. 4. Parameter discussion on the number of stack layers N and the input dimension
d in the proposed model.

trained TSAKT on the training set and calculated the average ACC and the
average AUC. The results are plotted in Fig. 4. It is observed from the results:
1) there are small improvements when fixing N or d; 2) TSAKT benefits from a
bigger N and d on both ACC and AUC; 3) the best performance is achieved at
N = 8 and d = 256. Here, we did not yet investigate the parameters on bigger
values due to the computation limitation.

3.5 Ablation Study

Ablation study on the KC tree encoding aims to check the effectiveness
of encoding the KC tree from three views on the Eedi dataset. The results are
shown in Table 3, where KC-feature encodes KCT from the feature view, KC-
feature-breadth encodes KCT from both the views of feature and breadth, KC-
feature-level encodes from both the views of feature and level, and KC-feature-
breadth-level encodes all the three views. As is shown, DKCT with encoding
KC-feature delivers a better result than DKT; DKCT with a combined view
obtains a boosted performance, while DKCT with encoding the three views
gains more improvements. These observations manifest that every view of the
KC tree contributes to the prediction in KT.
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Table 3. Ablation study on KC tree encoding.

KC Tree view ACC AUC

KC-feature 0.7447 0.8025

KC-feature-breadth 0.7500 0.8100

KC-feature-level 0.7523 0.8134

KC-feature-breadth-level 0.7542 0.8154

Fig. 5. Ablation study on integrated embeddings.

Ablation study of side information is to evaluate DKCT performance
with side information or without side information on the Eedi dataset. Two
embeddings are set as follows:

– Embedding A: In this setting, we only consider the questions with question id
(QI) and positional information (P) and the interactions with answer correctly
(C) and positional information (P).

– Embedding B: In addition to Embedding A, we also consider the side infor-
mation of questions (e.g. question difficulty (QD), question subject (QS), and
question frequency (QF)), and the side information of interactions (e.g. group
id (GI), scheme of work id (SW), and confidence score given for the answer
(CF)).

Figure 5 shows the evaluation results of DKCT with Embedding A or Embedding
B against the encoder’s stacks and the input embedding dimension. As is shown,
Embedding B delivers an improvement on both ACC and AUC comprised with
Embedding A. Therefore, DKCT benefits from the side information integration
and the parameter rising.

3.6 Attention Analysis

Understanding the reasons behind prediction results could provide helpful sug-
gestions, and evidence supports for educational interventions and learning plans
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Fig. 6. The relationship between questions for prediction explanation. (qk, 1/0, weight)
are the question, the correct/incorrect answer, and the attention weight.

[21]. The encoder multi-head attention layer learns the contributions degrees
to the target question for the past questions. The attention weights potentially
answer the question, “Why is a student predicted to be correct or incorrect on
the response to the target question?” Figure 6 shows the top-5 attention weights
from the encoder multi-head attention layer for two cases on the Eedi dataset.

Figure 6a shows the reason why the student answered q28 correctly. The top-
5 attention weights for q28 together with the corresponding KC tree and their
answers are shown in Fig 6a. The KC tree of the top-5 question and q28 are all
related to the knowledge concept “Basic Trigonometry”. It shows that the multi-
head attention layer of the encoder could capture the same knowledge concepts
related to the target question. The student answered q22 correctly, and the q28
KC tree has the same structure as q22, so it is reasonable to believe that the
student has mastered the “Sine and Cosine Rules”, and “Right-angled Trian-
gles”. In addition, although the students answered q26 incorrectly, we found that
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q26 focus on another knowledge concept, “Area of Non Right-angled Triangles”.
Therefore, there is no direct connection between q28 and q26.

Figure 6b shows the reason why the student answered q35 incorrectly. The
KC tree of the top-5 question and q35 are all related to the knowledge concept
“Proportion.” The student answered incorrectly at q24, q30, q31 and the KC tree
of q35 has the same structure as q30, so the student may not have mastered
“Inverse Proportion”. Although the student answered correctly in subsequent
q33 and q34 through practice, the student may have mastered the “direct Pro-
portion”, which is not directly related to the “Inverse Proportion”. Thus, the
model predicts that the student will answer incorrectly.

From the two cases, it is observed that The multi-head attention layer in
the encoder could capture the same knowledge concepts related to the target
question and identify important degrees for the question related to the target
question, leading to an explanation for the predicted result. Incorrect answers
may be due to a lack of mastery of relevant knowledge concepts. Our findings
are the potential for developing a personalized learning platform.

4 Discussion and Conclusion

This paper introduces a novel KT model with concept trees, DKCT, to integrate
KC trees. DKCT trains an encoder with KCTs and question features, a decoder
with interaction features, and a fully connected network with student features.
Experiment results show that DKCT benefits from the KCT encoding and the
side information, resulting in the highest accuracy compared to other KT models.
The embedded attention is helpful in explaining the reason why a student is
predicted to have a correct response or an incorrect response to a question.

However, there are two limitations. One is that DKCT fails to consider the
multi-mode features. In the Eedi dataset, a few questions are expressed by pic-
tures where the image features could provide the visual features for typical geo-
metrical questions. Another problem is that DKCT fails to consider the similarity
between questions and students, which has been proven to be useful for various
pattern recognition tasks [9].

Overall, the proposed DKCT model integrates the KC trees and achieves a
higher KT performance than the popular method. In the future, we are to solve
the two limitations above to enhance the KT performance on more datasets. The
interpretability of the KT model based on the KCs and the knowledge structure
of a student are also our future studies.
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Abstract. Federated learning (FL) aims to derive a “better” global
model without direct access to individuals’ training data. It is tradi-
tionally done by aggregation over individual gradients with differentially
private (DP) noises. We study an FL variant as a new point in the
privacy-performance space. Namely, cryptographic aggregation is over
local models instead of gradients; each contributor then locally trains
their model using a DP version of Adam upon the “feedback” (e.g., fake
samples from GAN – generative adversarial networks) derived from the
securely-aggregated global model. Intuitively, this achieves the best of
both worlds – more “expressive” models are processed in the encrypted
domain instead of just gradients, without DP’s shortcoming, while heavy-
weight cryptography is minimized (at only the first step instead of the
entire process). Practically, we showcase this new FL variant over GAN
and meta-learning, for securing new data and new tasks.

Keywords: Federated learning · Cryptography · Differential privacy

1 Introduction

Training an accurate model often needs massive data, which may be sensitive
(e.g., medical records [36,46]) and hard to collect. Federated learning (FL) [29]
allows a central server to train a global model by aggregating local model param-
eters/gradients derived by data owners. The server does not directly access the
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training data, which can still be inferred from leakages of shared gradients [32]
or parameters [18]. Differential privacy (DP) [14], notably DP stochastic gradi-
ent descent (DP-SGD) [3], adds calibrated noise to gradients, ensuring that an
adversary cannot determine whether an example is in the training data. Yet,
when applying DP-SGD in FL, the noisy model parameters/gradients shared
for each aggregation can still reveal sensitive information (e.g., demographic
features [32]) of the training data.

Cryptographic techniques such as multiparty computation (MPC) [40] or
homomorphic encryption (HE) [20] allow parties to jointly compute the output
of a function without revealing their private inputs. They can protect input
data/models by offering indistinguishability [6] instead of just neighbor ones in
DP. However, the overhead of processing every step in the encrypted domain
can be prohibitive, either through heavy communication or computation. While
the training process is protected, the established model is released and still
vulnerable to inference attack [35] or dataset-property attack [45] since it could
be considered purely trained without protection.

Only a few recent works [39,43] consider strong protection for FL by incor-
porating DP and cryptography to avoid potential leakages from noisy updates.
They use dedicated yet still costly cryptography to process each user’s noisy
update in multiple rounds. One could use a tailored secure aggregation proto-
col [7]. Its “mutual-cancellation” mechanism is prone to failures either by net-
work errors or malicious attacks. A general remedy is to use secret sharing [7],
which may introduce large communication overheads to recover “missing pieces”
from redundant shares.

We jump out of “the folklore FL approach” – working over gradients with
DP noises and start on a new route of stronger protection. We aim to employ
cryptography for secure aggregation while DP protects model outputs concern-
ing a small set of data points. Intuitively, local models capture more information
than just gradients, which are now cryptography-protected. Our next insight
is to minimize the use of cryptography for communication-efficient FL. We are
intrigued to explore specific FL applications, expecting “simple-enough” subse-
quent contributions from individuals. Specifically, we consider generative adver-
sarial networks (GANs) [21] and meta-learning [34]). Both expect only a proba-
bility distribution function (PDF) after the initial local model aggregation from
training-data contributors. For further model tuning, we use DP (without cryp-
tography) for its much less overhead. Our contributions are summarized below:

1. We put forth an intuitive yet rarely explored FL protection.
2. This work details DP-Adam, replacing the de facto DP-SGD for training with

example-level privacy and faster convergence.
3. We showcase our protection with instantiations of GAN and meta-learning.

2 Related Works

FL allows clients to learn a shared model collaboratively while addressing the
data heterogeneity issue and being communication-efficient [29]. Typically, the
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global model is transmitted among all parties for latter aggregation over local
models. Various applications have emerged, such as GANs, which generate more
representative fake data by mitigating “domain shifts” across data contribu-
tors [17]. For GANs [21], the generator is trained to generate new data with the
same statistics as the training data and the discriminator is trained to tell how
“realistic” the input seems via probabilities.

For privacy, many prior works consider perturbing gradients by Gaussian
noise [3]. McMahan et al. [30] adapt DP-SGD to FL, later improved with the
adaptive clipping of gradients [4]. Both add a small amount of noise to each indi-
vidual gradient, “insufficient” for meaningful privacy guarantees for users [37].
Stronger protections [24,41] thus inject enough noise to gradients, yet with the
much worse performance of trained models. Some works [5,8] started to apply
DP to GANs. Other approaches consider adding DP noise to ADMM [22] or
the model parameters [38]. However, these DP-only designs may still suffer from
risks [19] beyond membership inference.

Another line of research resorts to cryptographic primitives [13,33]. Bonawitz
et al. [7] build a protocol on secret sharing for aggregating users’ models (with-
out learning each individual one). PrivFL [28] and BatchCrypt [44] respectively
encrypt models and gradients in every aggregation by HE since they can be
summed directly over encrypted data. However, they are not practical for gigan-
tic model sizes or numbers of users. Moreover, aggregated updates (decrypted
at a certain iteration) and final outputs can still reveal information (e.g., mem-
bership) about private inputs [27,35].

For defense, two concurrent works [39,43] incorporate DP and cryptography:
they respectively use (multi-input) functional encryption and (threshold) addi-
tive HE to encrypt local models trained by DP-SGD. However, as in those cryp-
tographic designs, costly encryption is run for every user’s upload (in each aggre-
gation), limiting the practicality. We are thus motivated by devising a stronger
defense while being more efficient.

3 Preliminary

3.1 Differential Privacy and DP-SGD

DP [14] has become the de facto standard to protect individual privacy – the
contribution of a single data point/example only incurs a limited impact on
(statistical) analytics performed on the entire dataset of all individuals.

Definition 1. A randomized mechanism M ensures (ε, δ)-DP if for any two
neighboring datasets D � D′ differing in a single example, ∀O ⊆ Range(M),
the output space of M satisfying Pr(M(D) ∈ O) ≤ eε · Pr(M(D′) ∈ O) + δ,
where ε ≥ 0 and 0 ≤ δ ≤ 1 are two privacy parameters.

For (ε, δ)-DP, Gaussian mechanism (GM) [15] is to add i.i.d. noise drawn from
a Gaussian distribution N (0, σ2 ·S2

2(f)) to the output of a (vector-valued) func-
tion f(·), where σ2 = 2 ln (1.25/δ)/ε2 and S2(f) is L2-sensitivity supD�D′ ||f(D)
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− f(D′)||2. DP has two useful properties [15]: 1) the free post-processing post-
processing allows computations on the output of a DP mechanism without extra
privacy loss; 2) sequential composition helps to build more complex DP mecha-
nisms (say, DP-SGD [3]) atop basic ones (e.g., GM) operating on same data.

DP-SGD can be used to train models with example-level privacy: an adver-
sary cannot determine whether any specific example is in the training dataset.
It only slightly modifies the raw minibatch optimization process by using
GM to perturb gradients. Specifically, at each training step, we first clip per-
example gradients to a fixed maximum norm C (a tunable parameter) such that
S2(f) = C. Then, DP-SGD adds Gaussian noise to the gradient aggregated over
a batch of randomly-sampled examples. To analyze a tight privacy bound [16],
DP-SGD devises the moments accountant, later generalized to Rényi DP, to
prove (O(qε

√
T ), δ)-DP [31] with a sampling probability q (for building a batch)

in T -step training.

3.2 Homomorphic Encryption (HE)

HE [20] allows performing arithmetics (such as ‘+’ and ‘×’) on encrypted data,
yielding results as those derived on plaintexts when decrypted. We adopt an
efficient instance called CKKS [9], an easy-to-use HE library offered by Microsoft
SEAL [2], for summing up encrypted real numbers in R and training/evaluating
models on encrypted data. An HE scheme is defined by the below syntax.

Definition 2. (Somewhat) Homomorphic encryption (HE), supporting a num-
ber of multiplications and additions, is defined by the probabilistic polynomial
time algorithms below.
KeyGen(1λ): Given a security parameter λ, it outputs a secret key sk, a public
key pk, and an evaluation key evk1.
Encpk(m): For a message m ∈ R, it encrypts m to a ciphertext c ∈ Rk

qL which
is also denoted by [[m]].
Decsk([[m]]): With sk, it decrypts a ciphertext [[m]] to m.
Add([[m1]], [[m2]]): It outputs a ciphertext [[m1 + m2]].

4 Differentially Private Adam over GAN

Our approach first lets each user train GANs on its own data using DP-Adam
locally. It then asks each user to upload the HE-encrypted generator, which is
aggregated to a global one at the server homomorphically. In the later interactive
update (or tuning) phase, our insight is that we do not need to protect the local
discriminators’ outputs, deemed non-sensitive, for updating the global generator.
This can significantly boost efficiency compared to the works [39,43] encrypting
each user’s update. Each discriminator is further updated with DP-Adam and
the generated data.

1 It can be used to evaluate ciphertext multiplications.
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Algorithm 1: Differentially Private Adam (Outline)
Input: Examples {x1, . . . , xN}, loss function L(Θ), step size α, decay rates

β1, β2, a constant γ, batch size L, clip norm C, noise scale σ
Output: Model parameters ΘT at step T

1 Initialize Θ0 randomly;
2 for t ∈ [T ] do
3 Randomly sample L examples as a batch Bt;
4 Compute gradient gt(xi) for ∀xi ∈ Bt;

5 Clip gradient ḡt(xi) = gt(xi)/max(1, ‖gt(xi)‖2
C

);
6 Add noise g̃t = 1

L
(
∑

i ḡt(xi) + N (0, σ2C2I));
7 β′

1 = 1 − β1, β
′
2 = 1 − β2, ut = β1 · ut−1 + β′

1 · g̃t, vt = β2 · vt−1 + β′
2 · g̃2

t ;
8 ūt = ut/β′

1, v̄t = vt/β′
2;

9 Θt+1 = Θt − α · ūt/(
√

v̄t + γ)

10 end
11 Return ΘT

4.1 Differentially Private Adam Optimizer

Adaptive moment estimation (Adam) [25] is an optimizer with a faster con-
vergence rate than SGD. It consumes smaller memory when training over
high-dimensional parameter spaces and representative datasets. We devise DP-
Adam2, for retaining Adam’s advantages while training models for example-level
privacy as in DP-SGD.

Algorithm 1 presents DP-Adam’s pseudocode, including gradient computa-
tion, gradient clipping, noise addition, and Adam-like parameter update. In each
step, we randomly sample L examples as a batch for estimating the gradient of
L(Θ). For every example in the batch, we compute its gradient g which is then
clipped to g/max{1, ‖g‖2

C } with a clipping threshold C. Such clipping is also a
popular ingredient of the non-private Adam for mitigating gradient explosion.
Aggregating L clipped gradients thus has a bounded L2-sensitivity S2(f) = C.
We then add i.i.d. noise drawn from a Gaussian distribution specified by C and
the noise scale σ to the aggregated gradient. The remaining steps (Lines 7 to
9) stay the same as the raw Adam to update models using unbiased moment
estimates but derived from noisy gradients.

4.2 Differentially Private Generative Adversarial Networks

As Algorithm 2, we build a DP version of GAN (DP-GAN) that can yield rep-
resentative samples with example-level privacy. A GAN [21] contains a genera-
tive model G and a discriminative model D to solve the min-max optimization:
minG maxD Ex∼pdata(x)[logD(x)] + Ez∼pz(z)[log(1 − D(G(z)))], where pdata is a
data generating distribution and pz is a noise3 prior. G maps noise samples z’s
2 Although it has been wrapped up in some privacy libraries, the research literature

lacks a self-contained description.
3 It is just an ingredient of GAN and not for any privacy purposes.
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Algorithm 2: Training GAN with DP-Adam (Outline)
Input: A random subset {x1, . . . , xL} of d
Output: Updated model parameters ΘD and ΘG

1 Draw L noise samples {z1, . . . , zL} ∼ pz(z);
2 for i ∈ [L] do

3 gD
i = ∇ΘD [logD(xi) + log(1 − D(G(zi)))];

4 gG
i = ∇ΘG log(1 − D(G(zi)));

5 end

6 Run DP-Adam (line 5 to 11) for all gD to update ΘD;

7 Run raw Adam for all gG to update ΘG

to data space dataG, then D evaluates dataG and outputs the result set res of
probabilities that samples (in dataG) are real or fake. Given res, G outputs new
dataG and repeats such an adversarial process with D.

Fig. 1. A Hybrid Approach for Securing Federated GAN

We build DP-GAN atop DP-Adam and Adam to offer example-level privacy
for a training dataset d = {x1, . . . , xN}. Algorithm 2 lists the pseudocode of
one training step in DP-GAN. Since the private examples are only used for
training D, we adopt DP-Adam to update model parameters ΘD. The noise
samples for training G do not need any protection; we can run the raw Adam to
update parameters ΘG.

5 Cryptographic Federated DP-GAN

In FL, we consider a central server S with n users U1, . . . ,Un, where Ui (for
i ∈ [1, n]) has a private training dataset di of N examples. When training GANs
in FL, S plays the role of G to generate more representative dataG (than in the
centralized setting) based on {d1, . . . , dn}, while Ui acts as D to evaluate dataG.
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5.1 Our Hybrid Approach

As in Fig. 1, our protocol involves interactions among S and Ui∈[n]. For brevity
and a modular discussion, our discussion starts with a trusted third party T ,
which sets up the HE key pair.

Protocol 3 shows our hybrid approach using DP-Adam and CKKS for training
federated GANs. It consists of two stages – aggregating HE-encrypted models in
the first round (Lines 3 to 6) and DP tuning in following rounds (Lines 8 to 12).

Protocol 3: Cryptographic Federated DP-GAN
Input: Private datasets d1, . . . , dn

Output: Model parameters ΘD
i for Ui and ΘG for S

1 T : Setup (sk, pk, evk) ← CKKS.KeyGen(1λ);
2 for i ∈ [n] do

3 Ui: Train ΘD
i ,ΘG

i via DP-GAN; Send [[ηiΘ
G
i ]] ← CKKS.Encpk(ηiΘ

G
i ) to S ;

4 end

5 S: Aggregate [[ΘG]] ←
∑

i[[ηiΘ
G
i ]] via CKKS.Add;

6 T : Decrypt ΘG = CKKS.Decsk([[Θ
G]]) for S;

7 S: Update G by ΘG and output dataG for Ui∈[n];
8 while not converged do

9 Ui: Compute ∇ΘD
i to update ΘD

i via DP-Adam;
10 Ui: Run updated Di(dataG) and output resi to S;

11 S: Evaluate all res and update ΘG via raw Adam;
12 S: Run updated G to output new dataG for Ui∈[n]

13 end

Cryptographic Aggregation of Model Parameters. Although FL does not
collect all the users’ raw data, sensitive information (beyond the membership
of an example) can still be recovered from noisy parameters (or gradients) used
for updating global models at the server. For mitigation, we incorporate CKKS
to encrypt local noisy models while allowing aggregation to be performed on
ciphertexts. Except for one-time cryptographic aggregation, our solution does
not transmit the global model or local models anymore.

As a one-time setup, T first sets up CKKS by running CKKS.KeyGen(1λ).
T keeps sk secret and publishes (evk, pk). Each Ui∈[n] runs DP-GAN locally over
di and outputs (ΘD

i , ΘG
i ), where ΘG

i is scaled by a weight ηi. Then, it encrypts
the weighted model by CKKS under pk and sends [[ηiΘ

G
i ]] to S. From the additive

homomorphism, S aggregates all the encrypted models using CKKS.Add(·). With
T , S can obtain decrypted and aggregated model parameters ΘG for outputting
dataG to Ui∈[n].

Global Model Tuning via (DP-)Adam. With the aggregated model ΘG,
S outputs dataG to be evaluated at the user side. Each Ui updates its ΘD

i by
DP-Adam since it takes private di (and non-private dataG) as input. It then
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runs updated Di to evaluate dataG, which returns a set of probabilities resi to
S. (A higher probability indicates that dataG is more likely to be real.) Ui does
not need to encrypt resi (as in the cryptographic aggregation of ΘG

i ), assuming
that non-sensitive information can be inferred from the probabilities. With all
resi∈[n], S updates ΘG with the raw Adam and runs updated G to output new
dataG. The tuning of Di∈[n] and G repeats until convergence. Finally, S is able
to learn the global statistics of di∈[n] while providing example-level privacy for
each user.

5.2 Generalization

Besides training GANs, FL with our hybrid protection can be generalized for
“transferring knowledge” (e.g., meta learning) from local models to a central one
maintained by the server.

We consider adapting long short-term memory-based meta learning (LSTM-
ML) [34] as an illustration of its empirical performance. Let Ui∈[n] first train
a model pair – a meta learner and a learner classifier – over di for a specific
task using DP-Adam. Each local meta learner is encrypted and then aggregated
by S to a global one for capturing both short-term knowledge within a task
and long-term knowledge common among all the tasks; each learner classifier is
never revealed. In later model tuning, users update their local models (taking
the server’s feedback as input) by DP-Adam, while the server updates its global
model with knowledge (e.g., model architectures) from users. Finally, the server
can output a classifier for even a new task.

We also remark that our design can naturally extend to more complicated
aggregation (beyond summation) since CKKS supports multiplication on cipher-
texts. Albeit CKKS serves as a performance baseline, our modular construction
allows replacement with any future improvement of HE or secure aggregation.

6 Security Analysis

Security of our framework boils down to two parts – DP-Adam run by each user
and initial models encrypted by HE.

6.1 Differential Privacy Analysis

The conventional approaches achieving (ε, δ)-DP are from the sensitivity
method [10] that adds some noise sampled from Gaussian distributions, pro-
portional to the sensitivity. We first follow the proof paradigms [3,11,25] for
analyzing DP-Adam, and later apply composition [23] over it. Specific to DP-
Adam, we restrict a real-value function f for simplifying analysis (used in [3]),
and later explain the noise effect of Algorithm1.

Lemma 1 (Sensitivity of DP-Adam). Assuming data matrix X to be nor-
malized, the sensitivity of mini-batch update computation is bounded by S2

f ≤ C2.
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Proof. To analyze the sensitivity of f , we consider two data matrices X,X′ that
differ only in a single example xk. The information of xk is removed from X′ by
initializing X′ = X and setting its k-th column to be zero. Let Δ and Δ′ be the
updates computed on X and X′, respectively. By the clipping step, DP-Adam
guarantees |ḡk| ≤ C. By the normalization, we have ‖xk‖ = 1. The difference
is ‖Δ − Δ′‖ ≤ ‖xk‖‖ḡk‖ ≤ C. Therefore, the sensitivity of f is bounded by
S2

f := maxX\X′=xk
‖Δ − Δ′‖2 ≤ C2.

Now, let’s analyze parameter updating Θt+1 = Θt − α · ūt/(
√

v̄t + γ) via
DP-Adam. At time t, step size is Δstp = |α · ūt/(

√
v̄t + γ)| for updating Θ.

Assuming γ = 0 (originally a very small value, 10−8), then Δ′
stp = |α · ūt/

√
v̄t|.

Effective step size is bounded by Δstp ≤ Δ′
stp ≤ α · max((1 − β2)/

√
1 − β2, 1).

Since |E[g]/
√

E[g2]| ≤ 1 and |ḡk| ≤ C, we know ūt/
√

v̄t ≈ ±1. Thus, effective
step of DP-Adam is bounded by Δstp � Δ′

stp � α (whereas [3] bounded by ηC).
�

By Lemma 1 and composition theorem [15], models trained by DP-Adam
satisfy (O(qε

√
T ), δ)-DP for q = L/N at each client’s side. The proof4 directly

follows from that of DP-SGD [3] due to the running of T sub-sampled GMs
under the adaptive composition (with the only difference in post-processing for
updating models).

6.2 Cryptographic Indistinguishability-Based Security

CKKS provides indistinguishability under chosen plaintext attack [9], or say,
satisfying IND-secure as in Lemma 2. It means that any adversary (without
secret key) can not efficiently distinguish the encryptions of two (adversarially
chosen) messages given the encryption oracle for plaintexts.

Lemma 2. CKKS is IND-secure [9].

Lemma 3. If an M over neighboring databases D,D′ satisfies (ε, δ)-DP, D and
D′ are (eε/2λ + δ)-indistinguishable by viewing M(D),M(D′).

Proof. We first analyze an adversary A’s advantage for (ε, 0)-DP. Recall that λ
represents the input length in cryptography. We label each D by a λ-bit string.
By specifying a binary setting, we have Pr[X = D] = 1/2λ for a random guess
by an adversary A. By DP’s definition, we attain e−ε/2λ ≤ Pr[X = D|M(X) =
y] ≤ eε/2λ. When ε is very small, lim eε → 1 ⇒ lim eε/2λ → 1/2λ.

Now, let’s take δ into consideration. The δ defines the probability of informa-
tion accidentally being leaked. That is, the A can distinguish the outputs from
D or D′ since Pr[M(D) = y] and Pr[M(D′) = y] may be substantially different.
Combining two A’s advantages, we get eε/2λ + δ. �

By employing cryptographic indistinguishability, we combine security anal-
ysis of differential privacy and cryptography. For the whole federated training
process, we can (math-)trivially sum all indistinguishable advantages (derived
from Lemma 2 and Lemma 3) from an A’s view.
4 We remove this straightforward proof due to page limit.
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7 Experiments

Our experiments are carried out on the commodity PC running CentOS with
Intel Xeon Gold 5118 24-core CPU, 62.5 GiB RAM, and GeForce RTX 2080 Ti
GPU. We implemented our algorithms/protocol using Python 3.7 supported in
PyTorch. We also used PySyft [1] for FL and Microsoft SEAL [2] for CKKS [9].

To focus on the computational overhead introduced by our use of HE over
DP-only approaches, or the computational saving by our minimized use of HE
over cryptography-only or hybrid approaches, we consider the base case of two
users with a server. It is true that the use of HE introduces communication over-
head over the pure use of DP or secret sharing to hide the plaintext data for
a single data item. Again, the former is known to be vulnerable to inference
attacks, while secret-sharing-based designs require way more communication
rounds, similar to existing cryptography-only or hybrid approaches. Repeat-
ing our experiment over an increasing number of users would just widen the
performance gap due to the communication overheads for the holistic process.

To configure parameters for reliable results, we test a wide range from non-
convergence to convergence, which we omit the exhaustive report here, especially
under the page limit.
Datasets. We used three typical datasets: i) MNIST [26] has 60k training
and 10k test images of handwritten digits with total 10 classes, ii) Fashion-
MNIST [42] is MNIST-like with each example being a 28 × 28 grayscale image,
and iii) Mini-ImageNet is a subset of ImageNet [12] with 100 classes. Each class
has the same size as that of MNIST. We then randomly split each training
dataset evenly for the two users.
Parameters configuration. In DP-Adam, we fix δ = 10−5 which is in O(1/N)
and use different σ’s (representing different privacy levels). We set β1 = 0.9,
β2 = 0.999, γ = 1e − 8, no weight decay, and the learning rate α = 0.0002 for
GANs and α = 0.001 for LSTM-ML. For CKKS, we pick the ring dimensions as
4096 and 8192, governing two security levels.
Baselines. We implemented DP-SGD as a baseline with the same parameter
setting from [3]. We also compare with BatchCrypt [44], a secure FL framework
built atop only additively HE, and HybridAlpha [43], a hybrid construction
(using DP and HE) similar to ours.

7.1 Privacy Versus Utility for GANs/LSTM-ML

The training loss of G and D (derived by binary cross entropy) can be used as an
“indicator” for model efficacy: the lower the loss, the better the efficacy. Figure 2
shows the results of training-then-tuning via DP-Adam/SGD with two σ values.
Remark 1. As in the non-private case, DP-Adam converges faster and is more
stable than DP-SGD. For similar efficacy, DP-SGD requires a larger learning
rate or more training steps. As can be seen, the training loss of DP-Adam stays
stable throughout the tuning at σ = 8, but using DP-SGD is initially unstable.
Our results also show that models trained with DP-Adam outperform those with
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(a) σ = 0.5 (b) σ = 0.5 (c) σ = 0.5

(d) σ = 8 (e) σ = 8 (f) σ = 8

Fig. 2. The training loss of GANs over MNIST (A /S = DP-Adam/-SGD, f /m =
FMNIST/MNIST, tr /up = training/update)

DP-SGD when configuring the parameters identically. For example, we should
set α of DP-SGD 20× larger than that of DP-Adam to generate visually similar
fake images if the number of training epochs is 800.
Remark 2. Adding noise with larger σ increases the training instability, making
the convergence slower; when σ is large enough, the training is not convergent
anymore. For a single step, the training loss may not even decrease if drawing
large noise. Training with more epochs often yields more accurate models but
with higher privacy loss (due to the composition).

The variation of training loss becomes more irregular with increasing σ. One
can also use more training epochs for better efficacy. The peak values of training
loss in model tuning are larger than those of local training (Fig. 2a vs. 2b). When
large noise is drawn, the training loss of G increases readily, e.g., the orange line
at the 200-th epoch in Fig. 2f.
Remark 3. The noise “tolerance” depends on the parameter configuration,
the choice of training datasets and/or models. For example, training GANs
on Fashion-MNIST converges faster than on MNIST with the same setting;
Fashion-MNIST is able to tolerate larger noise than MNIST. For LSTM-ML,
Fig. 3 depicts the accuracy of the learner classifier at U and meta learner at S
under different privacy levels. The baseline accuracy is ∼60% [34].

We also evaluated LSTM-ML on a new task for classifying non-training data.
Table 1 shows the accuracy with standard deviation (denoted by Δ) where the
number of epochs is 100. The accuracy of using DP-Adam is roughly 10% better
than using DP-SGD. More importantly, DP-SGD does not work well even in
small-noise settings (e.g., σ = 0.005) due to its slow convergence or possibly
falling into local optimums.
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(a) U : σ = 0.5 (DP-Adam) (b) U : σ = 0.5 (DP-SGD) (c) S: σ = 0.5 (DP-Adam)

(d) S: σ = 0.5 (DP-SGD) (e) U :σ = 0.005(DP-Adam) (f) U : σ = 0.005 (DP-SGD)

Fig. 3. Averaged LSTM-ML accuracy

Table 1. Accuracy of LSTM-ML for a new task

σ DP-Adam DP-SGD

AccU (Δ) AccS(Δ) AccU (Δ) AccS(Δ)

0.005 59.6(±9) 45.8(±8) 48.9(±8) 39.5(±8)

0.05 59.9(±8) 43.2(±9) 48.5(±8) 39.4(±7)

0.5 59.3(±8) 43.7(±9) 48.4(±8) 38.7(±8)

1 55.0(±8) 37.2(±8) 50.5(±9) 39.3(±8)

7.2 Computation and Communication Costs

The communication overheads between S and U are given in Table 2. We sepa-
rately report the upload (e.g., HE-encrypted parameters and resi) and download
(e.g., dataG) results. The ciphertext sizes (of a single parameter value) for GANs
and LSTM-ML are 22.3 KB and 13.6 KB, respectively. Compared to BatchCrypt,
we can achieve 24× uplink bandwidth saving.

At last, we present the time costs (dominated by HE operations) of aggregat-
ing parameters in Table 3. Each U encrypts parameter entries individually, and
S performs homomorphic additions: the aggregation time is linear in the param-
eter size. As opposed to HybridAlpha aggregating parameters securely in each
round, ours is just one-time, being 50× and 1.2× faster at U and S, respectively.
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Table 2. Communication costs (in gigabytes)

Model Ours BatchCrypt

(epochs) Up Down Total Up Down Total

GAN (250) 66.23 7.54 73.77 203.66 7.54 211.20

GAN (800) 66.73 24.19 90.92 636.14 24.19 660.33

ML (100) 42.74 47.00 89.74 1042.92 47.00 1089.92

ML (10k) 42.74 47.00 89.74 1042.92 47.00 1089.92

Table 3. Time costs (in minutes) of parameter aggregation

Model Ours HybridAlpha Model Ours HybridAlpha

U S U S U S U S
GAN 660 14.0 33221 17.1 LSTM-ML 14 1.7 705 2.1

8 Conclusion

In retrospect, one might consider the current state of affairs in federated learn-
ing as a result of “ad hoc” improvements in addressing both the privacy and
efficiency requirements. The premise starts with asking each contributor to con-
tribute only the gradient for the apparent privacy benefits, which rules out
an arguably more intuitive option of asking for a locally trained model (with
obvious privacy implications). Nevertheless, gradients, being useful for training
an aggregated model, still contain a lot of “residual” sensitive information. As
a remedy, differential privacy has been incorporated to protect the gradients.
Unfortunately, they are still “leaky” and remain exploitable by sophisticated
membership inference attacks. Cryptography offers a general solution for pro-
cessing encrypted data with a strong indistinguishability-based guarantee over
all possible equal-length messages. Its great versatility, however, comes with sig-
nificant overheads.

We revisit the “traditional wisdom” of federated learning of working over
gradients. We put forth a new variant in the privacy-efficiency design space.
On one hand, we allow the data contributors to directly share models locally
trained from their training data. On the other, this part is now cryptographically
protected for secure aggregation. In other words, cryptographic operations are
confined to obtaining an initial global model. For the rest of the computation,
we resort to a differentially private mechanism. This achieves the best of both
worlds for selected applications of federate learning in which the subsequent
computations are not exploited by any clever inference attacks. Particularly, we
showcase our approach in generative adversarial networks and meta learning.

We hope this work can inspire further development in privacy-preserving
federated learning. On the “destructive” side, our work motivates more analysis
of the feasibility of innovative inference attacks from intermediate computation
results beyond gradients or models. On the constructive side, it is interesting to
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explore alternative designs in the grand design space of privacy versus efficiency
(versus utility). Furthermore, the potential of privacy-preserving designs tailored
for specific federated learning applications remains open.
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Abstract. Federated learning (FL) involves collaboration between
clients with limited data to produce a single optimal global model
through consensus. One of the difficulties with FL is the differences in
data statistics between local clients. Clients with statistically heteroge-
neous data deviate from the global target, resulting in a slower con-
vergence rate and increased communication resource consumption. To
address this problem, we propose a new approach, FedH, that maintains
the proximity of local models to the global target while maximizing com-
munication efficiency and computational resources. We use the Hessian
matrix to constrain client updates that deviate from the global target.
Our results demonstrate the superiority of FedH over FL baselines such
as FedAvg, FedProx, and Fedcurv when applied to benchmark datasets
such as MNIST, Fashion-MNIST, and CIFAR-10 across a range of sta-
tistical heterogeneity levels.

Keywords: Federated learning · model aggregation · client
divergence · Hessian matrix

1 Introduction

Machine learning (ML) models require enormous amounts of data for training.
Obtaining such a large amount of training data is difficult because the data
is usually stored in silos on different edge devices. Therefore, large amounts of
communication resources are required to transfer the data silos to the central
server for training. In addition, this also violates the user’s privacy. To solve
this problem, several decentralized ML methods have been introduced in recent
years. Federated Learning (FL) [1] is one of the decentralized approaches in
which a model is trained in a decentralized manner while the training data
is stored on edge devices. A typical FL process involves a central server that
initiates training by transmitting initial parameter estimates to the participants.
Participants then initialize their respective models with the received parameter
estimates by performing some Stochastic Gradient Decent (SGD) steps on their
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local data. After training, participants communicate the model updates to the
server. The server finally takes the weighted average of the received updates
and sends them back to all the involved participants, completing an FL round
of communication. The goal is to obtain a single global model that should be
better than the models trained by the participants at the local level.

The Federated SGD (FedSGD) [1] is the first attempt to create a global model
in a decentralized manner in the FL domain. In this approach, each participant
transmits gradient updates to the server after each SGD step, and the central
server considers these updates to refine the parameter estimates of the global
model. However, FedSGD involves higher communication costs because updates
must be exchanged after each SGD step, which can run into the thousands when
heavily parameterized models are trained to achieve satisfactory performance
levels. To address the communication cost issue, Federated Averaging (FedAvg)
was introduced in [1]. It allows each participant to communicate their local model
parameter estimates after multiple epochs of local training, reducing communi-
cation rounds and allowing participants to perform more local training before
sending updates to the central server. This results in a significant reduction in
communication overhead. As a result, FedAvg is considered the most commonly
used aggregation method in FL.

FedAvg shows superior performance in an ideal environment where training
data are independently and identically distributed (IID) between participants.
This is because each local training data source has the same distribution and
the local models converge to the same optimum. However, in practice, the data
is often not IID distributed due to various factors, such as personalization and
geography effects [2]. In a typical classification task, the training data and the
class labels are unbalanced. For example, the local data on a given client may
have unbalanced training patterns per class, or may even have no training pattern
from a given class. In a non-IID environment, each local training data source has
a different distribution that diverges the particular local model from the global
objective. This client divergence in the presence of statistical heterogeneity is
known in the literature as the “client drift” problem [3]. FedAvg is prone to
client drift which leads to slower convergence. Therefore, merging local updates
with a naive aggregation approach, such as FedAvg, may result in additional
rounds of communication to achieve a satisfactory level of performance.

Several approaches to mitigate client drift have been proposed to ensure
robust convergence, as discussed in detail in Sect. 2. Modifying the clients’ local
loss function is a common strategy to keep the local parameter estimates closer to
the global ones [3,4]. However, existing approaches increase the communication
cost within a single round of communication because they require additional
components such as gradient information [3,5] to be communicated along with
the parameter updates.

To address the aforementioned challenge, we propose a novel aggregation
approach i.e., FedH, that not only ensures robust convergence but also consumes
the same amount of communication and computational resources as FedAvg. Our
proposed approach presents a modified version of the clients’ local objectives to
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mitigate the clients’ divergence problems. In particular, we add a regularization
term to the clients’ local loss function to prevent it from diverging from the global
objective. The proposed approach uses the Hessian matrix, a well-known second-
order metric for quantifying the curvature of the loss function. The diagonal
elements of the Hessian matrix serve as scaling coefficients for the additional
term we include in the local loss function. Rather than computing the exact
Hessian, we use common techniques to approximate the Hessian [6,7] to avoid
the computational complexity of the participating devices.

Our main contributions are summarized as follows:

– We propose a novel method of model aggregation to ensure robust conver-
gence under statistically heterogeneous data distributions.

– We present an approach that efficiently uses the second-order information of
the model loss function to quantify the degree of divergence between global
and local objectives.

– Our method consists of approximating the Hessian matrix from first-order
information, which acts as a scaling matrix in clients’ local goals.

– Through extensive experiments, we demonstrate the superior performance of
the proposed approach by training neural networks for a variety of image
classification tasks.

The remainder of the paper is organised as follows. Section 2 discusses related
work, while Sect. 3 presents the problem formulation. Section 4 presents the pro-
posed method for solving the statistical heterogeneity problem along with pre-
liminary remarks useful for understanding the main concept. Section 5 describes
the experimental evaluation and the main results of this work. Finally, Sect. 5
discusses the conclusions and possible future work.

2 Related Work

This section presents some of the existing work on the convergence of FedAvg
in a non-IID data distribution. In recent years, since the advent of the FedAvg
algorithm, a large number of researchers have addressed the problem of statisti-
cal heterogeneity in FL. For example, Hsu et al. show. [8] the linear relationship
between client divergence and the degree of statistical heterogeneity in the train-
ing data. They show that the greater the disparity between datasets, the more
pronounced the performance degradation of FedAvg. Similarly, Zhao et al. mea-
sure the drop in accuracy using the Earth Mover Distance (EMD) between data
distributions in their work [9]. They also propose a data-sharing strategy to min-
imize the differences in data distributions. However, it should be noted that data
sharing is not always possible due to privacy concerns and contradicts the core
principles of the FL algorithm.

In addition, ensemble learning and model distillation techniques have also
been used in FL to aggregate models. In the work of Guha et al. [10], a single
round of communication is used to combine local models using a model distil-
lation technique. Lin et al. [11] extend this work by implementing the ensemble
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learning technique across multiple communication rounds. Meanwhile, FEDBE
[12] approaches the model distillation process from a Bayesian perspective. The
FEDBE approach, inspired by the stochastic weighting method in [13], models
client updates using a Gaussian distribution and uses the Monte Carlo method
to extract models from the distribution. However, these ensemble learning and
model distillation methods may not be practical for certain FL tasks because
they require that the server have access to some shared data in order to distil
the ensemble model into a single global model.

In addition to the above techniques, modifying the FedAvg local likelihood
function is a popular method to account for statistical heterogeneity. Several
studies attempt to solve the client divergence problem by modifying the client
loss function [3–5,14]. They do this by incorporating an isotropic regularization
term into the local loss function, along with a hyperparameter that weights each
parameter estimate equally. For example, FedProx [4] adds a proximal term to
the local loss function to control gradient dissimilarity during training. FedDANE
[14] takes a similar approach with an additional gradient correction term to
handle client divergence. SCAFFOLD [3] reduces gradient divergence using a
variance reduction technique in the local likelihood function.

To solve the problem of statistical heterogeneity among client data distribu-
tions, researchers have also explored second-order methods. FedCurv [5], uses
the Fisher Information (FI) matrix to modify the proximal term introduced by
FedProx [4]. Specifically, the proximal term is modified by including the diagonal
of the FI matrix. This allows each parameter estimate to be regularized based
on its importance to the performance of the global model. Islamov et al. [15] pre-
sented a communication-efficient Newton method for distributed optimization.
While effective, it does not meet privacy requirements because the central server
needs access to the clients’ training samples to compute the second-order infor-
mation, making it an unsuitable option in scenarios where privacy is a concern.
Building on the idea presented in the work of Islamov [15], Randi et al. [16]
introduced FedNL, a method that uses a global Hessian matrix to execute a
Newton step on the server. In addition, the work of Qian et al. [17] presented
different versions of FedNL that use matrix compression methods to improve the
compressed Hessian matrix by changing the basis in the matrix space. Liu et al.
[18] presented another Newton-based method using the L-BFGS algorithm [19]
to overcome communication constraints. However, it should be noted that the
above methods require additional terms to be exchanged between the server and
the clients in each communication round, in addition to the parameter estimates.
In contrast, the communication cost incurred by our method in each round is
comparable to that of FedAvg.

3 Problem Formulation

In a typical FL process, a central server aims to train a global model with a
distributed objective given by:
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min
w∈Rd

f(w) where f(w) =
K∑

k=1

nk

n
f(wk) (1)

K is the total number of participants with local data Dk(x, y) available for
collaboration. f(.) is the loss function. w are the parameter estimates of the
global model. wk are the parameter estimates of the kth local model. nk rep-
resents the number of training samples at client k, and n represents the total
number of training samples across all clients.

In a standard federated averaging process, such as FedAvg, each participant
k locally trains its respective model with local data Dk(x, y) for a designated
number of epochs and communicates updates to the server. The client adopts
the SGD method to update parameter estimates given by:

wk = wk − η∇f(wk) (2)

where η is the learning rate. After the server receives updates from clients, it
aggregates local updates using a weighted average method given by:

wt+1 =
K∑

k=1

nk

n
wk (3)

Here, wt+1 indicates the global parameter updates after the current training
round.

The standard aggregation technique, FedAvg, demonstrates fast convergence
under ideal conditions where each participant has an IID data distribution
in their training data [20]. This is because an IID distribution results in all
local models pursuing a similar learning trajectory to reach their local optimal
solution, resulting in limited differences between the local parameter estimates.
When these local updates are combined using a standard aggregation approach,
it leads to a global model that attains the same optimal solution as the local
models. However, in real-world scenarios, FedAvg has been found to have sub-
par convergence due to the non-IID nature of real-world data, caused by factors
such as geography effects and personalization [2]. Participants may have differ-
ing amounts of training samples or labels, leading to unique data distributions.
Consequently, in a non-IID environment, each local model deviates from the
global optimum and follows its own individual learning path to reach its own
local optimum.

As previously discussed in Sect. 2, various methods have been proposed to
modify the client’s local objective (Eq. 2) in order to alleviate client divergence.
Our approach employs different methods to regulate the local gradients in order
to avoid negative impacts on the global model’s performance. Our aim is to
incorporate the Hessian matrix into the client’s local loss functions, which will
be described in more detail in the following section.
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Algorithm 1. FedH
1: Server Input: Initial global model wt, R: number of communication rounds, E :

number of epochs, λ
2: Output: Final global model wt+1

3: Let t = 0
4: for r = 0 to R do
5: Communicate wt to all clients
6: for For each client k ∈ K in parallel do
7: Initialize local model wk ← wt

8: for epoch ← 0 to E do
9: Compute Gradients: ∇f(wk)

10: if epoch == 0 then
11: Client Approx. : ∇2f(w) = ∇2f(wk)
12: end if
13: Client Approx.: ∇2f(wk)
14: Client update: Equation 5
15: end for
16: Communicate updated wk to the central server.
17: end for
18: Server aggregates weights: wt+1 =

∑K
k=1

nk
n

wk

19: end for
20: return wt+1

4 Proposed Method

In this section, we briefly review the preliminaries (Sect. 4.3), which are useful for
understanding the proposed method. Next, we propose a local objective function
(Sect. 4.1), and finally, we explain the implementation details of the proposed
method (Sect. 4.2).

In this paper, we propose a novel method of model aggregation using the
approximation of the Hessian matrix from the first-order derivatives. The Hes-
sian matrix is a square matrix that describes the second-order partial derivatives
of the loss function. It is used to quantify the local curvature of the function,
which can be important in optimization problems because it determines whether
a critical point is a local minimum, a local maximum, or a saddle point. In
information geometry, the Hessian matrix plays a key role in characterizing the
geometry of statistical models and their parameter spaces. The Hessian matrix
provides information about the rate at which the function is extremized [6,7],
or how fast it changes when the input variables change.

The Hessian is represented as H = J(∇f(w)), where J(∇f(w)) is the Jaco-
bian matrix of the gradient of the loss function with respect to the model
weights w. The Hessian matrix is often used in second-order optimization meth-
ods such as Newton’s method to improve the convergence properties of opti-
mization methods [21]. However, computing the Hessian matrix in its exact
form for high-dimensional models can be very computationally intensive due
to the increased number of parameters [22]. Therefore, in practice, alternative
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methods such as approximation techniques or approximating the Hessian matrix
by diagonal matrices or low rank matrices are often used to solve this problem.
As a result, the Gauss-Newton optimization method [23,24] is often used as an
alternative to the Newton method.

Therefore, in our approach, we adopt a similar technique that exploits the
first-order information of the loss function to approximate the Hessian [25]. This
is done following a best practice in Gauss-Newton algorithms [24], where the
Hessian is approximated by squaring the Jacobian matrix [22,26]. The approxi-
mation of the Hessian for a given loss function, f(wk), is given as follows:

H̃ = J
(
f(w)

)T
J
(
f(w)

)
(4)

4.1 Proposed Local Objective

In this section, we discuss the proposed local objective to be solved by each
participant. As mentioned in Sect. 3, our method proposes a modification of the
local objective function (Eq. 2). Instead of optimizing the loss function f(wk),
client k solves the following objective:

wk = wk − η
(
∇f(wk) + λ

(
τ |w − wk|

))
, (5)

where

τ =
∇2f(w) − ∇2f(wk)

‖∇2f(w) − ∇2f(wk)‖
∇2f(w) represents the diagonal approximation of the Hessian of the loss

function with respect to the global parameter estimates w and ∇2f(wk) denotes
the diagonal approximation of the Hessian of the local loss function with respect
to the current parameter estimates wk. Note that the statistical heterogeneity
can result in a deviation of wk from the global parameter estimates w. To
prevent this deviation, we use |w − wk|, which helps maintain the proximity
of the current estimates wk to the global parameters w. Similar terms have
also been widely used in the literature [20,27]. However, the standalone usage
of this term treats all parameter estimates as equally important, which can
limit the effectiveness of the parameters of local updates that are not much
important to the global objective. To address this, we scale the components of
the regularization term,|w − wk|, with the coefficients term, τ , originating from
the Hessian diagonal, since the diagonal of the approximated Hessian can be used
as a scaling matrix [28]. ∇2f(w) quantifies the tendency for the global model
parameters to change when input data Dk(x, y) are used. Similarly, ∇2f(wk)
determines the influence of Dk(x, y) on local model parameters. If a component
of ∇2f(wk) is larger than ∇2f(w), then its normalized difference,τ , will penalize
the corresponding component in |w−wk|. Therefore, integrating this entire term
controlled by a hyperparameter λ into the local loss function can act as a great
remedy for client divergence problems, keeping wk closer to w without limiting
the effectiveness of updates for those parameters that are not critical to the
global objective.
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Table 1. Test accuracy as a function of communication rounds is reported after 50
communication rounds. The absolute best performance is reported in bold.

non-IID Type Data FedAvg FedProx FedCurv FedH

non-IID(I)
MNIST 89.46± 1.332 89.27± 1.425 89.44± 1.421 90.63± 1.190
Fashion-MNIST 74.41± 3.332 74.12± 3.474 72.55± 4.881 76.48± 3.120
CIFAR10 60.86± 1.190 59.20± 1.055 62.03± 0.961 62.38± 1.630

non-IID(II)
MNIST 82.79± 1.542 82.45± 1.459 81.75± 3.579 86.67± 2.336
Fashion-MNIST 64.21± 5.019 63.08± 5.058 55.24± 4.318 66.85± 5.828
CIFAR10 49.82± 2.296 43.33± 1.415 50.25± 2.653 52.59± 3.334

Dir(0.1)
MNIST 94.52± 0.952 94.60± 1.041 94.56± 0.889 95.70± 0.780
Fashion-MNIST 82.32± 1.639 82.16± 1.680 82.07± 1.869 82.88± 2.080
CIFAR10 68.55± 0.247 69.00± 0.203 68.49± 0.254 69.80± 0.890

Dir(0.05)
MNIST 90.77± 3.851 90.82± 3.823 90.81± 3.671 92.04± 1.272
Fashion-MNIST 77.74± 5.624 78.47± 5.263 78.68± 5.174 79.78± 1.448
CIFAR10 62.47± 4.898 62.27± 4.202 63.30± 4.842 63.62± 4.109

Dir(0.01)
MNIST 69.63± 5.289 71.30± 7.934 67.75± 8.108 79.34± 3.504
Fashion-MNIST 58.33± 5.094 62.22± 1.929 63.75± 0.913 72.62± 0.575
CIFAR10 46.25± 7.230 38.75± 7.687 47.68± 6.748 48.52± 6.732

4.2 FedH Aggregation

Now we turn our attention to the implementation of the proposed method. As
mentioned earlier, we approximate Hessian from the first-order information of
the loss function. Our method requires the same communication and computa-
tion resources as that of FedAvg. Hessian can be easily approximated during
local training without imposing an extra burden on clients. Algorithm1 presents
the proposed method which we named FedH. The server takes the initial model
parameters wt, the total number of passes(epochs) over local data E, and a
hyperparameter λ as inputs and returns final model weights wt+1 as output
after R communication rounds. In each communication round r, the server com-
municates the initial model parameters wt to all participants. Each participant
initializes their local models with current global parameters wt and computes
gradients with their local data Dk(x, y) for the first epoch. We can approximate
∇2f(w) from local gradients in first epochs as we initialize local parameters with
global ones. Therefore, there is no need to perform extra passes over the data.
Each client then needs to approximate the ∇2f(w) for each epoch and update
the local parameter estimates with Eq. 5.

As for as communication efficiency and privacy is concerned, note that our
method is akin to FedAvg in terms of communication cost. The central server
and participants only need to communicate parameter updates in each com-
munication round. Therefore, Like FedAvg, our method also respects privacy
and weights compression schemes and can be integrated with state-of-the-art
algorithms.
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4.3 Preliminaries

5 Experimental Evaluation

This section explains the datasets and the models (Sect. 5.1) used to perform the
experiments to test the effectiveness of the proposed method. Section 5.2, the
baseline is described, and finally, the obtained results are discussed (Sect. 5.3).

5.1 Datasets and Models

We consider three publicly available image classification datasets to evaluate the
proposed method. These are MNIST [29], Fashion-MNIST [30], and CIFAR10
[31]. MNIST is a digit classification dataset consisting of 50, 000 training and
10, 000 test samples. Each sample consists of 28 × 28 single channel images with
one target. Fashion-MNIST contains the same number of samples and image
sizes, but these are images of fashion clothing from Zalando’s database. CIFAR10
contains 50, 000 training samples and 10, 000 test samples, each sample consisting
of 32 × 32 random images with three channels.

We use multilayer perception (MLP) to learn the MNIST and Fashion
MNIST datasets. We use the same architecture used by the authors in [1]. MLP
consists of two hidden layers, each consisting of 200 units with ReLU activa-
tion. We train a convolutional neural network (CNN) for the CIFAR10 image
classification task. The CNN consists of three convolutional layers with 3 × 3
kernels (channel sizes 32, 64, and 128) followed by two fully connected layers.
Note that our goal is not to achieve the highest accuracy in the datasets. Our
main aim is to achieve better convergence compared to existing methods, even
when working with non-IID data. Therefore, we use models that are widely used
in the FL literature.

5.2 Baselines and Settings

We compare our method to the standard FedAvg [1] aggregation method. In
addition, we also consider FedProx [4] and FedCurv [5] as additional baselines.
The motivation for selecting these baselines is that these baselines also account
for client divergence by modifying clients’ local loss functions. FedProx adjusts
clients’ local objective functions with a proximal term, µ

2 ‖w − wk‖2, to avoid
clients’ drift. FedCurv improves FedProx by using the FI matrix alongside the
proximal term.

We run our experiments in a cross-silo FL environment [2] where we con-
sider 10 active participants throughout the training process. We fit the hyper-
parameters for all models using cross-validation and the learning rate is set to
0.01 with 5 training epochs between communication rounds. We use the SGD
optimizer with a weight decay of 0.003 and a server momentum of 0.9 on each
client to optimize each model. For FedProx [4] and FedCurv [5], we use the same
hyperparameter settings that the authors used in their experiments.
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Fig. 1. Test accuracy and loss of the global model as a function of communication
rounds when a non-IID (I) data distribution scheme is used to distribute the MNIST,
Fashion MNIST, and CIFAR10 datasets between clients.
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Fig. 2. Test accuracy and loss of the global model as a function of communication
rounds when a non-IID data distribution scheme (II) is used to distribute MNIST,
Fashion MNIST, and CIFAR10 datasets between clients.
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Fig. 3. Test accuracy and loss of the global model as a function of communication
rounds when the MNIST, Fashion-MNIST and CIFAR10 datasets are distributed
between clients with a Dirichlet distribution for α = 0.01.
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The data distribution settings used to distribute the training data to the
clients, we consider three different schemes to create non-IID cases. In the first
case, referred to as non-IID (I), the data is divided into 20 equal partitions
and each client is randomly assigned two partitions from 2 different classes. All
clients receive the same number of training samples. This type of non-IID setup
is used in the work of [5,32], and [8]. The second form of non-IID data, referred
to as non-IID (II), is based on the approach used by Li et al. [32]. Similar to
the first non-IID scenario, clients receive two parts from two different classes.
However, the set of training patterns each client receives is determined by a power
law, resulting in unequal distribution of patterns across clients and unbalanced
data. The Non-IID (II) scheme has a higher degree of heterogeneity than non-
IID (I). For the third scenario, similar to Hsu et al. [8], we used a Dirichlet
distribution to simulate the non-IID scenario (III), where we can control the
degree of heterogeneity. For each class label, a random sample is drawn from the
Dirichlet distribution Dir(α). The resulting multinomial distribution determines
the number of training samples assigned to each client for that particular class
label. The degree of heterogeneity is controlled by the value of α: a low α value
leads to a very heterogeneous scenario and vice versa.

5.3 Experimental Results

Our experimental results are summarized in Table 1. We performed each set of
experiments 10 times and report the mean and standard deviation of test accu-
racy after 50 rounds of communication. We report our results after 50 rounds
of communication because previous studies [5] have shown that 50 rounds of
communication is sufficient to reveal differences in convergence speed between
alternatives. In non-IID (I), the data distributions are less heterogeneous com-
pared to non-IID (II), and therefore all methods converge faster in non-IID (I).
The degree of heterogeneity between local data distributions affects the conver-
gence speed [8]. However, our proposed method, FedH, outperforms all other
methods by a margin of 0.35 ∼ 3.88 for both non-IID (I) and non-IID (II). The
best performance is highlighted in bold.

Table 1 also shows the performance of the alternatives in non-IID settings
(III) when the Dirichlet distribution with α = {0.1, 0.05, 0.01} values is used to
create three different scenarios. Note that Dir(0.1) is less heterogeneous, so all
methods converge much faster on all data sets. As the degree of heterogeneity
increases, a drop in performance is observed. Note that FedH outperforms the
alternatives by a margin of 0.84 ∼ 8.87 in Dir(0.01), resulting in extremely
heterogeneous data distributions.

Finally, the Figs. 1, 2 and 3b show test accuracy and loss as a function of
communication rounds. These figures confirm our previous observations that
FedH consistently performs better than other methods.
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6 Conclusion and Future Work

This paper presents a novel aggregation approach in FL to aggregate local mod-
els trained on heterogeneous data distributions into a single global model. The
proposed method addresses client model divergence by modifying the local loss
function. The proposed method uses the Hessian matrix of loss functions to reg-
ularize clients’ local objectives. We demonstrate the superior performance of the
proposed method on a variety of image classification tasks learned under differ-
ent levels of statistical heterogeneity. In future work, the proposed approach can
be further improved by using the off-diagonal elements of the Hessian matrix.
To this end, we plan to make efficient use of the eigenvalue decomposition of the
Hessian matrix in the local objective functions.
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Abstract. Federated Learning (FL) is a promising decentralized
machine learning framework that enables a massive number of clients
(e.g., smartphones) to collaboratively train a global model over the Inter-
net without sacrificing their privacy. Though FL’s efficacy in non-convex
problems is proven, its convergence amidst biased client participation
lacks theoretical study. In this paper, we analyze the convergence of
FedAvg on non-convex problems, which is the most renowned FL algo-
rithm. We assume even data distribution but non-IID among clients, and
elucidate the convergence rate of FedAvg in situations characterized by
biased client participation. Our analysis reveals that biased client partic-
ipation can significantly reduce the precision of the FL model. We vali-
date this through trace-driven experiments, demonstrating that unbiased
client participation results in 11% to 50% higher test accuracy compared
to extremely biased client participation.

Keywords: Federated learning · Non-convex · Biased participation ·
Convergence analysis

1 Introduction

Federated Learning (FL), an emerging paradigm in the realm of decentralized
machine learning (ML), enables multiple edge devices (e.g., smartphones, ipads)
to jointly train an ML model without exposing their sensitive data [1,19,20], and
thus prevents the leakage of user privacy. In the FL training, we need to conduct
a series of global iterations, and a certain number of FL clients participate in
each iteration by submitting their computational outcomes (e.g., parameters,
gradients) to a central parameter server (PS). The PS, in turn, undertakes the
task of aggregating the submitted model parameters, utilizing techniques such
as FedAvg [7,20] or FedSGD [8,18,20]. Subsequent to the aggregation process,
the aggregated model is subsequently disseminated back to the clients. As a
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novel distributed framework, FL has been widely used in the fields of Web-of-
Things [11], healthcare [23], environmental sound detection [21] and so on.

FL differs from traditional distributed optimization [5] in the following two
aspects: First, the assumption of IID (identically and independently distributed)
distribution of training data does not hold in the FL scenarios. The IID assump-
tion is commonly used in traditional ML models. In FL, the data on a client is
generated by a user itself when using the device. Therefore, any local data fails
to represent the global distribution. Second, the communication between the PS
and clients is restricted and unreliable. For example, due to the dynamics of net-
work conditions, mobile devices cannot stay online forever. It is highly possible
that clients at different geographical locations cannot participate in the entire
training process in an unbiased manner. As a result, some clients may participate
in much more rounds of iterations than other clients [9,16], and the frequency
of each client’s participation in the FL training process is different [22].

McMahan et al. [20] empirically showed that FedAvg (Federated Averag-
ing) performs well on non-convex optimization with non-IID data distribution.
Subsequently, theoretical guarantees of the FL algorithm in strongly convex and
non-convex cases are provided by the researchers [8,17]. However, these works all
assume that client participation is unbiased. In fact, due to restricted and unre-
liable communication, the number of times clients participate in federated train-
ing is variable. There still lacks theoretical convergence analysis for non-convex
optimization with non-IID data distribution and biased client participation.

Motivated by the above problem, our goal in this paper is to analyze the con-
vergence guarantee of FedAvg for non-convex optimization on non-IID data with
biased client participation. Despite the aforementioned research efforts, quite a
few challenges remain. i). The properties of convex functions cannot be applied to
non-convex functions, and finding the optimal solution for non-convex problems
is NP-hard in general, resulting in that non-convex optimization analysis being
more complicated than convex optimization analysis. Furthermore, the unique
characteristics of FL (e.g., non-IID training data, biased client participation)
increase the complexity of the analysis. ii). The current FL aggregation strate-
gies do not take the bias of client participation into account. It is still unknown
how biased client participation in the training process affects the effectiveness
of the global FL model training.

In this paper, we conduct a theoretical analysis of decentralized FL for non-
convex optimization and obtain the convergence rate of FedAvg within the con-
text of biased client participation. To address the first challenge, the disparity
existing between local distribution and global distribution is used to describe the
feature of non-IID training data. To address the second challenge, we integrate
the number of times each client participates in FL into its aggregation weight
and get the corresponding aggregation formula. Through analyzing the deduced
convergence rate, we observe that biased client participation in the training pro-
cess exerts a detrimental impact on the convergence rate. Summarizing our key
contributions:

– We conduct a convergence analysis of FL based on its natural properties
and provide theoretical convergence guarantees for non-convex problems.
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This theoretical analysis can be extended to the case with biased client
participation by substituting the aggregation coefficient. Moreover, we reveal
the relationship between the relevant variables and the convergence rate of
FL for non-convex optimization on non-IID data.

– We further analyze the convergence rates by considering the extent of the bias
of client participation in FL. Based on our analysis results, we find that the
bias of client participation exerts a detrimental impact on the convergence of
FedAvg, i.e., the more serious bias results in a lower precision global model.

– We conduct a series of real trace-driven experiments to affirm the correctness
of our theoretic findings. The results point out that biased client participation
incurs a decrease in the precision of the global FL model. The accuracy of
the unbiased state is 11%–50% higher than that of the extreme state.

2 Related Work

FL can learn global models without centralized training data, and its mainstream
optimization algorithm is FedAvg, which is an algorithm based on averaging local
gradient updates. The analysis of FedAvg is far from trivial due to the natural
characteristics of FL.

Khaled et al. [10] provided a convergence analysis of distributed gradient
descent on heterogeneous data. Li et al. [17] presented a convergence analysis
of FedAvg with a focus on non-IID data, successfully establishing a conver-
gence rate applicable to strongly convex problems. Cho et al. [6] analyzed the
convergence of FL for strategies involving biased client selection in strongly con-
vex problems. Balakrishnan et al. [3] proposed to select clients with representa-
tive gradient information, and then send these updates to the PS. The authors
also provided a convergence analysis on convex problems in the heterogeneous
setting.

These latest works provided convergence guarantees on non-IID data for con-
vex, however, its result is only applicable to strongly convex problems. Unfor-
tunately, convex problems merely account for a part of what we have to solve
in FL, and many more problems are non-convex. As an example, most neural
networks widely utilized in artificial intelligence are non-convex. Yu et al. [26]
proved the distributed SGD method for non-convex problems possesses the lin-
ear speedup property in the heterogeneous setting. Li et al. [15] introduced a
framework called FedProx to solve statistical heterogeneity and provided con-
vergence guarantees on non-IID data. By incorporating a regularization term
in the local objective similar to that in FedProx, Li et al. [14] proposed a per-
sonalized FL framework, Ditto, and provided convergence guarantees for each
local model. Haddadpour et al. [8] provided the convergence rates of the local
GD/SGD algorithm to federated learning both in general non-convex and non-
convex under Polyak-�Lojasiewicz condition. Amiri et al. [2] studied the effect of
a shared wireless medium with limited downlink bandwidth on the performance
of FL, and further provided a convergence analysis of the simulated downlink
method.
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However, the existing theoretical analysis for either convex or non-convex
problems did not consider biased client participation. In the practical FL envi-
ronment, each client participates in the FL training process for a different num-
ber of rounds due to the influence of its network conditions and willingness to
participate in FL. The objective of our paper is to analyze the impact of biased
client participation on FL convergence for non-convex problems from a theoret-
ical perspective.

3 Preliminaries of Federated Averaging

The FL framework is crafted to uphold clients’ data privacy, wherein the PS
assumes the role of orchestrating the training of the global model across the
network. Assume that there are N clients with local datasets D1,D2, ...,DN .
The global objective function is to minimize:

F (ω) =

N∑

k=1

pkFk(ω), (1)

Fk(ω) = 1
nk

∑
i∈DN

f(ω, xi) is the local objective function at each client k, pk

represents the weight attributed to the k -th client adhering to the condition
pk ≥ 0 and

∑N
k=1 pk = 1. f(ω, xi) represents the loss function for the prediction

on sample xi using parameters ω. We define nk as the size of dataset Dk, denoted
by |Dk|.

In FedAvg, a subset m � N of clients is selected to optimize the local objec-
tive Fk on client k at each iteration t. The total number of iterations is denoted
as T . Generally, to minimize communication cost, client-server communication
and parameter updates are conducted only once with several iterations [20]. E is
defined as the count of local epochs that occur between two consecutive instances
of client-server communication. The variable Tc is defined to indicate the total
quantity of rounds encompassing client-server communications and parameter
updates required to generate the global model. So we can get the relationship
between T and Tc, that is, Tc = � T

E �. The set of m clients participating in the
t-th iteration is symbolized by St, then |St| = m.

Within the FedAvg framework, as each client independently advances one
gradient descent step on the prevailing model using its local data, we have

ωt+1
k = ωt − ηt∇Fk(ωt

k, ξtk), (2)

where ωt signifies the present model parameters, ηt denotes the learning rate,
and ξt

k and ωt+1
k correspond to the local data and updated parameters of the

k -th client, respectively.
The aggregation phase at the server entails computing the average of the

locally updated outcomes, thereby yielding a fresh global model. When full client
participation in the aggregation step of FedAvg, the global model is

ωt+1 =

N∑

k=1

pkωt+1
k . (3)
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If solely a subset comprising m clients engages in the training process during
each iteration t of FedAvg, Eq. (3) can be rewritten as [17]:

ωt+1 =
N

m

∑

k∈St

pkωt+1
k . (4)

Note that
∑N

k=1 pk = 1 and |St| = m, therefore, EN
m

∑
k∈St

pk = 1 can be proved
easily [17]. When each client performs a single local update per round, we can
obtain the global model parameters ωt+1 by combining Eq. (2) and Eq. (4).

ωt+1 = ωt − ηt
N

m

∑

k∈St

pk∇Fk(ωt
k, ξtk). (5)

4 Convergence Analysis of Federated Learning

In this section, we analyze the convergence of FL with or without biased client
participation when the aggregation weight encompasses the count of times each
client engages in the complete training process. Table 1 provides an overview of
the principal symbols utilized within this paper along with their corresponding
explanations.

Table 1. Catalog of symbols and their meanings

Notation Description

k, N the client index, the total count of clients

Dk the dataset specific to client k

nk, n the size of dataset Dk, the total number of samples over all clients

t, T the iteration index, the total count of iterations

E, Tc the epochs of local computation, the total count of communication rounds

Fk(·), F (·) client k’s local objective function, the overarching global objective function

ωt, ω the global model parameter at iteration t, the parameters of global model

ωt
k the parameter of client k at iteration t

ξtk the sample selected uniformly from local data Dk at iteration t

St, m the subset chosen at iteration t, the magnitude of the subset selected in each
iteration

pk, ηt the aggregation weight of client k, learning rate at iteration t

G2, δ2 the upper bound of the expected squared norm of stochastic gradient, the upper
bound of the variance in stochastic gradient for each client

Mt
k the total count of times client k is involved in the training process
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4.1 Notations and Assumptions

Similar to earlier studies [16,26], we posit the ensuing assumptions concerning
the functions F (ω) and all Fk(ω).

Assumption 1 (Smoothness). F (ω) and Fk(ω) exhibit ρ-smoothness with
respect to ω, indicating that for any ω1 and ω2:

F (ω1) ≤ F (ω2) +
〈∇F (ω2), ω1 − ω2〉 +

ρ

2

∥∥ω1 − ω2
∥∥2

, (6)

Assumption 2 (Bounded gradient). The expected squared norm of stochas-
tic gradients is uniformly constrained:

E
∥∥∇Fk(ωt

k, ξtk)
∥∥2 ≤ G2 ∀ ω, t. (7)

Assumption 3 (Bounded variance). The stochastic gradient variance
within each client is bounded:

E
∥∥∇Fk(ωt

k, ξtk) − ∇Fk(ωt
k)

∥∥2 ≤ δ2 ∀ k, ω, ξ, (8)

where
∇Fk(ωt

k) = E
[∇Fk(ωt

k, ξt
k)

] ∀ k, ω, ξ. (9)

Assumption 4 (Sample even distribution). Like the assumption in previ-
ous works [15,17], this work also assumes that each client has the same number
of samples:

nk =
n

N
, ∀ k, (10)

where n =
∑N

k=1 nk corresponds to the total training data size.

4.2 Convergence Results of FedAvg with or Without Bias

In the following, we perform a convergence analysis on FL with or without bias by
considering the number of times each client participates in FL. Two definitions
are first given below.

Definition 1. The characteristic function Ik(t) records whether the client k par-
ticipates in the global training process at iteration t:

Ik(t) =

{
1 k ∈ St

0 k /∈ St
, (11)

where k ∈ St indicates that the client k participated in the training process at
the t-th iteration. When k ∈ St, we have Ik(t) = 1, otherwise Ik(t) = 0.

Definition 2. Biased client participation. Let M t
k symbolize the cumulative

count of client k’s participation in the training process from the initial iteration
up to the t-th iteration, then we have:

M t
k =

∑

t

Ik(t), (12a)
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s.t.
N∑

k=1

M t
k = mt, (12b)

M t
k ≤ t. (12c)

To show the influence of the bias defined in Definition 2 on FL training, we
consider M t

k as a factor in the weight pk of FedAvg. Specifically, the manifesta-
tion of pk is

pk =
nkM t

k∑N
k=1 nkM t

k

. (13)

We first demonstrate an important lemma to show the disparity between the
local distribution and the global distribution.

Lemma 1. Suppose Assumption 2 holds, we can obtain:

E
∥∥ωt

k − ωt
∥∥2 ≤ η2

t E
2G2. (14)

Proof. The proof of Lemma 1 can be found in the appendix.

Lemma 1 shows that the gap between local distribution and global distribu-
tion is proportional to the square of the number of local computation epochs E
and the local gradient variance G2.

Then, we derive the following inequality for FL convergence rate with or
without bias, through the incorporation of each client’s participation frequency
in the process.

Lemma 2. Assuming that Assumptions 1 through 4 are satisfied, and choose

ηt = 1
ρ

√
1
T . We can obtain the inequality about convergence rate of FedAvg of

FL with or without bias.

1

T

T−1∑

t=0

E
∥∥∇F (ωt)

∥∥2 ≤ 2ρ
[
F (ω0) − F (ω∗)

]
√

T
+

[
N2E2G2

mT
+

N2δ2

m2
√

T

]
1

T

T−1∑

t=0

∑

k∈St

(
Mt

k

mt

)2

.

(15)

Proof. The proof of Lemma 2 can be found in the appendix.

According to Lemma 2, the convergence rate of FL is not only related to T
but also affected by M t

k the number of times client k participate in FL.
Next, we will discuss the effect of the variable M t

k on the convergence rate.
Let

τ =
1

T

T−1∑

t=0

∑

k∈St

(
M t

k

mt

)2

. (16)

Finally, we demonstrate the respective convergence rates of FL under conditions
of unbiased client participation and biased client participation.
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The Convergence Rate of Unbiased State. It is an ideally unbiased state
that reflects each client has the same frequency to participate in the global
training process. As

∑N
k=1 M t

k = mt, if and only if M t
k = mt

N for all clients,
and mt

N is the expectation that each client participates in the update process at
iteration t. We have

τ =
1

T

T−1∑

t=0

∑

k∈St

(
M t

k

mt

)2

=
m

N2
. (17)

Theorem 1. Assuming that Assumptions 1 through 4 are satisfied, and choose

ηt = 1
ρ

√
1
T . We can obtain a convergence rate of the unbiased state of FedAvg

as:
1

T

T−1∑

t=0

E
∥∥∇F (ωt)

∥∥2 ≤ 2ρ
(
F (ω0) − F (ω∗)

)
√

T
+

E2G2

T
+

δ2

m
√

T
. (18)

Proof. By substituting Eq. (17) into Lemma 2, we can obtain the inequality.

The Convergence Rate of Extremely Biased State. The extremely biased
state is defined as each iteration of the update process is participated by con-
stant m clients. That is, the constant m clients participate in the entire training
process, while the other N − m clients are not available. Since M t

k ≤ t, we can

obtain
(

Mt
k

mt

)2

≤ 1
m2 . When M t

k = t, we have

τ =
1

T

T−1∑

t=0

∑

k∈St

(
M t

k

mt

)2

=
1

m
. (19)

Theorem 2. Given that Assumptions 1 through 4 are met, and selecting ηt =
1
ρ

√
1
T , the convergence rate of the extremely biased state of FedAvg can be deduced

using Lemma 2.

1

T

T−1∑

t=0

E
∥∥∇F (ωt)

∥∥2 ≤ 2ρ
(
F (ω0) − F (ω∗)

)
√

T
+

N2E2G2

m2 T
+

N2δ2

m3
√

T
. (20)

Proof. By substituting Eq. (19) into Lemma 2, we can obtain the inequality.

Discussion. Using Theorem 1 and Theorem 2, we can draw the following con-
clusions. Firstly, it’s highlighted that the convergence rate of FL depends on
the values of T , m, and E for a specific optimization objective. Here, T repre-
sents the overall count of iterations, m is the chosen subset size per iteration,
and E indicates the number of local computation epochs. Secondly, the values
on the right-hand side of the inequalities in Theorem1 and Theorem 2 deter-
mine the precision of the solution produced by the FL algorithm. A smaller
value signifies higher solution precision. We observe that as the number of iter-
ations T increases, the right side of the inequalities approaches 0, implying that
FedAvg can ultimately achieve convergence. Thirdly, Theorem 1 and Theorem 2
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also reveal the correlation between the quantity of clients chosen per iteration
and the convergence of FedAvg. A larger m leads to faster convergence. Lastly,
as Tc = � T

E �, we derive the relationship between FedAvg’s convergence and E

as: 1
T

∑T−1
t=0 E‖∇F (ωt)‖2 ∝ 1√

TcE
+ E

Tc
+ 1√

TcE
, implying that the convergence

rate of FedAvg is a function of E, exhibiting an initial decrease followed by an
eventual increase.

By comparing convergence rates in Theorem 1 and Theorem 2, we can answer
the questions raised in the second challenge. In FL, a subset of clients, where
m � N , is chosen for local model training in each iteration, and we have N2

m2 � 1.
Upon contrasting the values situated on the right-hand side of the inequality in
Eq. (18) from Theorem 1 and Eq. (20) from Theorem 2, we can derive

2ρ
(
F (ω0) − F (ω∗)

)
√

T
+

E2G2

T
+

δ2

m
√

T
≤ 2ρ

(
F (ω0) − F (ω∗)

)
√

T
+

N2E2G2

m2 T
+

N2δ2

m3
√

T
.

(21)
Since the value on the right-hand side of the convergence rate inequality indicates
the precision of the solution of the FL algorithm, we can conclude that the
precision of the solution of FedAvg in the unbiased state is higher than that in
the extremely biased state. In the extreme case, the distribution of the other
N − m clients cannot be represented well by the global model. Each iteration
only has constant m clients participating in the training procedure, resulting in
the precision of FedAvg in the extremely biased state being lower than that in
the unbiased state. So, we can conclude that the bias of client participation will
have a negative impact on the precision of the global model in FL.

5 Experimental Validation

Within this section, we perform a series of experiments to verify the theoretical
analysis.

5.1 Experimental Settings

Datasets. This section validates our theoretical findings through experiments
on three real-world datasets: MNIST [4], CIFAR-10 [12], and CIFAR-100 [12].
MNIST includes 10 categories of handwritten digits, with samples from 250
individuals, 60,000 in the training set, and 10,000 in the testing set. CIFAR-10
and CIFAR-100 stem from labeled subsets of 80 million small images. CIFAR-10
comprises 60,000 images across 10 classes, with 6,000 images per class. It’s split
into 50,000 training images and 10,000 test images. CIFAR-100 has 100 classes,
each with 600 images. For each class, there are 500 training images and 100
testing images.

Models. Referring to [20,25], we employed a simplified Convolutional Neu-
ral Network (CNN) model for classifying MNIST, CIFAR-10, and CIFAR-100
datasets. In MNIST, the CNN consists of two 5 × 5 convolutional layers followed
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by max-pooling and ReLU activation. Two fully connected layers with 50 and
10 units, and a softmax-equipped output layer complete the network. The CNN
models for CIFAR-10 and CIFAR-100 are different. They have three fully con-
nected layers with 384, 192, and 10 units for CIFAR-10, and 384, 192, and 100
units for CIFAR-100.

Implementation Details. Similar to [20], MNIST and CIFAR-10 datasets are
split among N = 100 clients in a non-IID manner. This ensures each client has
only 2 categories. CIFAR-100 is similarly split among N = 100 clients, each with
up to 10 classes. ηt uses a step decay with 0.995 rate, starting at η0 = 0.001.
Each round involves m = 20 clients for training, with E = 5 local updates per
client. Moreover, we verify our theory with other FL algorithms like FedProx
and Ditto.

Moreover, we conduct experiments covering various degrees of non-IID.
Referring to the definition in [13], non-IID(λ)(1 ≤ λ ≤ 10) denotes that each
client possesses samples from a randomly selected subset of λ out of the total 10
classes. In an intuitive sense, the degree of non-IID is inversely proportional to
the value of λ. Accordingly, the above statistical degree of heterogeneous training
data on MNIST dataset is non-IID(2).

We assess the performance of three FL algorithms in two scenarios. One is
the unbiased state, where m clients are selected from the entire client pool for
training in each iteration, as per Theorem1. In the unbiased state, all clients
have equal participation throughout the FL training. The other scenario is the
extreme state, where a constant set of m clients are engaged in the FL process
(with the remaining N − m clients not participating). This corresponds to the
extremely biased state outlined in Theorem 2.

Fig. 1. The test accuracy of FedAvg on three datasets.

5.2 Experimental Results

We verify the correctness of our theoretical analysis in different FL algorithms
on three real-world datasets. Each figure and table shows the mean performance
over three independent runs.
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Table 2. The test accuracy exhibited by various FL algorithms under two conditions
across the three datasets.

Algorithm and state Test Accuracy (%)

MNIST CIFAR-10 CIFAR-100

FedAvg-unbiased 98.57 60.83 28.73

FedAvg-extreme 41.48 33.69 16.73

FedProx-unbiased 98.60 60.26 29.06

FedProx-extreme 41.47 33.58 16.97

Ditto-unbiased 98.59 60.51 28.67

Ditto-extreme 41.45 34.15 16.74

Performance of Different FL Algorithms in the Extreme and Unbiased
States. Figure 1 shows the performance of FedAvg in the extreme state and the
unbiased state on three datasets. From this figure, it can be found that FedAvg
show higher test accuracy on all three datasets in the unbiased state. Since only
the data distribution of fixed m clients is learned, the accuracy of the extreme
state improves relatively quickly at the beginning of training, but then falls
into a bottleneck, and its final test accuracy is lower than that in the unbiased
state. In detail, Table 2 shows the accuracy results of FedAvg, FedProx, and
Ditto on the three datasets under unbiased and extreme states, respectively.
Evidently, biased client participation adversely affects the performance of global
models across various FL algorithms on the three distinct datasets. Specifically,
FedAvg in the extreme state is far from reaching the same accuracy as that in the
unbiased state. For MNIST, CIFAR-10, and CIFAR-100, the highest accuracy of
FedAvg in the unbiased state exceeds 95%, 60%, and 28%, respectively. While
in the extreme state, it is less than 45%, 35%, and 17%.

Similarly, as shown in Table 2, for different FL algorithms FedProx and Ditto,
the biased client participation also affects the performances of their global mod-
els, for example, the accuracy of the global model decreases. Through experi-
ments in different FL algorithms, it is verified that our theoretical analysis in
Sect. 4.2 is correct, that is, biased client participation reduces the precision of
the global model of the FL algorithm.

Impact of Varying Degrees of Non-IID Characteristics. We establish
distinct non-IID degrees and proceed to conduct experiments utilizing various FL
algorithms on the MNIST dataset. Specifically, we distribute the MNIST dataset
to 100 clients using three different non-IID degrees. These three data distribution
approaches correspond to instances where each client possesses only 2, 4, or 6
distinct label types. We employ the notations non-IID(2), non-IID(4), and non-
IID(6) to signify these varying non-IID degrees. It can be seen from the settings
that Table 2 in Sect. 5.2 shows the results of MNIST dataset with the degree of
non-IID(2). In this subsection, We proceed to perform additional experiments
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Table 3. The test accuracy of distinct FL algorithms is evaluated under two states,
considering varying degrees of non-IID data distribution, using the MNIST dataset.

Algorithm and state Test Accuracy (%)

non-IID(2) non-IID(4) non-IID(6)

FedAvg-unbiased 98.57 98.89 98.91

FedAvg-extreme 41.48 69.31 79.39

FedProx-unbiased 98.60 98.93 98.89

FedProx-extreme 41.47 69.32 79.41

Ditto-unbiased 98.59 98.92 98.92

Ditto-extreme 41.45 69.31 79.37

on the MNIST dataset, encompassing the non-IID(4) and non-IID(6) scenarios.
From Table 3, it can be found that for different non-IID degrees data, biased
client participation affects the performance of FL’s global model.

In summary, through the above experimental results, it is obvious that the
performances of FL algorithms in unbiased and extreme states are quite differ-
ent. Furthermore, we can found that extreme client participation has a huge
negative impact on the performance of the global model in the FL task, FL
algorithms cannot achieve satisfactory performance in the extreme state. These
experimental results verify the above discussion, and we can conclude that the
bias of client participation significantly impacts the performance of the FL’s
global model.

6 Conclusion

FL has emerged as the predominant paradigm for collaborative optimization
among multiple parties while upholding privacy protection. In this paper, we
conducted the convergence rate of FL by considering the number of times each
client participates in FL. We analyzed the convergence of the FL algorithm
with unbiased client participation and biased client participation, respectively.
Finally, we validated the theoretical findings using experiments on three real-
world datasets.

Through theoretical analysis and experimental verification, we proved that
biased client participation will have a negative effect on the global model’s pre-
cision of FL. This can provide a guide for future research. The adverse impact
of biased client participation on FL can potentially be mitigated through the
design of unbiased aggregation algorithms or equitable client selection strate-
gies. In the future, we plan to design practical unbiased optimization algorithms
and fair client selection algorithms for FL.
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Appendiex

Within this section, we will provide proofs for Lemma 1 and Lemma 2.

Proof of Lemma 1

For any t ≥ 0, there exits a t − t0 ≤ E, and ωt0
k = ωt0 for all k = 1, 2, ..., N .

Similar to previous work [17], we have

E
∥∥ωt

k − ωt
∥∥2

= E
∥∥(ωt

k − ωt0) − (ωt − ωt0)
∥∥2

≤ E
∥∥ωt

k − ωt0
∥∥2

≤ η2
t E

t∑

i=t0

E

∥∥∥∇Fk(ωi
k, ξik)

∥∥∥
2

≤ η2
t E

2G2.

Proof of Lemma 2

Since nk = n
N for all nk,

∑N
k=1 M t

k = mt, we can derive that

∑

k∈St

p2
k =

∑

k∈St

(
n
N

M t
k∑N

k=1
n
N

M t
k

)2

=
∑

k∈St

(
M t

k

mt

)2

. (22)

Utilizing the ρ-smoothness property of F (ω), the subsequent inequality can
be derived:

EF (ωt+1) ≤ EF (ωt) + E
〈∇F (ωt), ωt+1 − ωt〉 +

ρ

2
E

∥∥ωt+1 − ωt
∥∥2

. (23)

By applying the fact: E ‖x‖2 = E

[
‖x − Ex‖2

]
+ ‖Ex‖2, we can obtain

E
∥∥ωt+1 − ωt

∥∥2
= η2

tE

∥∥∥∥∥
N

m

∑

k∈St

pk∇Fk(ωt
k, ξtk)

∥∥∥∥∥

2

= η2
tE

∥∥∥∥∥
N

m

∑

k∈St

pk

[∇Fk(ωt
k, ξtk) − ∇Fk(ωt

k)
]
∥∥∥∥∥

2

+ η2
tE

∥∥∥∥∥
N

m

∑

k∈St

pk∇Fk(ωt
k)

∥∥∥∥∥

2

.

(24)

Since each client works in parallel and independently and according to Assump-
tion 3, we have

E
∥∥ωt+1 − ωt

∥∥2
=

η2
t N2

m2

∑

k∈St

p2
kE

∥∥∇Fk(ωt
k, ξtk) − ∇Fk(ωt

k)
∥∥2

+ η2
tE

∥∥∥∥∥
N

m

∑

k∈St

pk∇Fk(ωt
k)

∥∥∥∥∥

2

≤ η2
t N2δ2

m2

∑

k∈St

p2
k + η2

tE

∥∥∥∥∥
N

m

∑

k∈St

pk∇Fk(ωt
k)

∥∥∥∥∥

2

.

(25)
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We further note that
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Firstly, for bound A1, we can obtain
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Secondly, ωt+1 = N

m

∑
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k according to Eq. (4), therefore we can obtain
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According to the Cauchy-Buniakowsky-Schwarz inequality, we have

A2 ≤ ηtN
2
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p2
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By using Assumption 1, we can obtain

A2 ≤ ηtρ
2N2

2m2

∑
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p2
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By using Lemma 1, we can derive the bound of A2 as

A2 ≤ η3
t ρ

2N2E2G2

2m
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p2
k. (31)
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Upon substituting Eq. (31) into Eq. (27), we arrive at the upper bound for A1
as follows:

A1 ≤ −ηt
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By combining the results of Eq. (25), Eq. (26) and Eq. (32), we can obtain
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The conclusion that 0 ≤ ηt ≤ 1
ρ can be obtained from the setting ηt = 1
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we can obtain
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By dividing both the left side and the right side by ηt

2 , we have
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According to Eq. (13), we have
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where ω∗ is the optimal solution.

References

1. Abay, A., Zhou, Y., Baracaldo, N., Rajamoni, S., Chuba, E., Ludwig, H.: Mitigating
bias in federated learning. arXiv preprint arXiv:2012.02447 (2020). https://doi.
org/10.48550/arXiv.2012.02447
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Abstract. Digital tracking poses a significant and multifaceted threat
to personal privacy and integrity. Tracking techniques, such as the use
of cookies and scripts, are widespread on the World Wide Web and have
become more pervasive in the past decade. This paper focuses on the his-
torical analysis of tracking practices specifically on educational websites,
which require particular attention due to their often mandatory usage
by users, including young individuals who may not adequately assess
privacy implications. The paper proposes a framework for comparing
tracking activities on a specific domain of websites by contrasting a sam-
ple of these sites with a control group consisting of sites with comparable
traffic levels, but without a specific functional purpose. This compara-
tive analysis allows us to evaluate the distinctive evolution of tracking on
educational platforms against a standard benchmark. Our findings reveal
that although educational websites initially demonstrated lower levels of
tracking, their growth rate from 2012 to 2021 has exceeded that of the
control group, resulting in higher levels of tracking at present. Through
our investigation into the expansion of various types of trackers, we sug-
gest that the accelerated growth of tracking on educational websites is
partly attributable to the increased use of interactive features, facilitated
by third-party services that enable the collection of user data. The paper
concludes by proposing ways in which web developers can safeguard their
design choices to mitigate user exposure to tracking.

Keywords: Web-tracking · Information Security · Privacy · Online
Education

1 Introduction

Privacy lost occurs when an individual’s personal information or data is dis-
closed, shared, or accessed by others without their permission, which can result
in various negative consequences, such as identity theft, financial fraud, dam-
age to reputation, and discrimination. To investigate these issues, researchers
may examine the historical practice of third-party web tracking, as described
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by [17]. Third-party web tracking involves third-party entities, such as adver-
tisers, social media widgets, and website analytics engines, that are embedded
in the first-party sites that users directly visit and are capable of re-identifying
users across domains while they browse the web. The proliferation of web track-
ing has spurred a growing body of research in the computer security and privacy
community, which seeks to understand, quantify, and counteract these privacy
risks posed by tracking companies compiling lists of websites that users have
visited [2,3,17].

As the education industry transitions from traditional offline models to online
or hybrid models, the need for privacy protection on educational websites is
becoming increasingly prominent. This issue is crucial because the loss of privacy
on educational websites can undermine the fundamental principles of privacy and
security that are essential for individuals to feel safe and empowered while using
the internet for educational purposes. By protecting users’ privacy, educational
websites can promote trust, openness, and responsibility, which are essential for
fostering a positive and inclusive online learning experience. Therefore, several
researchers have started studying the practice of web tracking in educational
websites [11,12,21,24].

To deepen our comprehension of the nature and progression of tracking on
educational websites, we propose an analytical framework that enables a com-
parative analysis of tracking on a specific type of site (in this case, education) in
relation to a control group of sites with comparable traffic levels but of different
types. The framework involves three steps: we construct a sample of educational
websites, and a control sample of non-educational websites that have similar lev-
els of traffic (Sect. 3.1). We then retrieve the historical websites from the Internet
Archive’s Wayback Machine1 for both samples. Third, we scan the HTML file
snapshots of the collected websites using the Wayback Machine (Sect. 3.2), and
extract third-party trackers embedded in the HTML files (Sect. 3.3).

We aim to answer the following research questions, which we present along
with our main findings:

RQ1: How has the use of trackers on educational websites evolved
from 2012 to 2021?
In Sect. 4.1, we examine the average number of trackers from 2012 to 2021 and
observe a general trend of tracker growth. Until 2018, both educational and non-
educational sites sees substantial growth, but they diverge around the time of
the introduction of the GDPR in 2018: at this point there is a minor drop in
tracking on non-educational sites, which is not seen on educational sites, where
the development merely stagnates.

RQ2: How does the evolution of the use of trackers differ between
educational and non-educational websites?
Section 4.1 also addresses differences between educational and non-educational
websites in the evolution of tracking between 2012 and 2021. The results show
that despite the similarity of the underlying trend, the intensity of tracking has

1 https://archive.org/.

https://archive.org/
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grown relatively more on educational sites and that the growth has not similarly
reverted as on non-educational websites after the introduction of the GDPR. The
results are further supported by a Wilcoxon signed rank (WS) test conducted
in Sect. 4.2, demonstrating that the intensity of tracking on educational sites
surpassed that of non-educational sites in 2017.

RQ3: Is there a qualitative difference in what kind of trackers are used
on educational and non-educational websites?
The quantitative difference between tracking on educational and non-educational
sites that we find in the average number of trackers also shows up in the dif-
ferent compositions of the portfolios of trackers found at the two types of sites.
We substantiate this statistically by using the Kolmogorov-Smirnov test (KS)
to compare the distribution of trackers in these two groups of sites. To investi-
gate the source of these differences, Sect. 4.3 examines the occurrence of some of
the most popular trackers, demonstrating that the use of Twitter, Youtube, and
Facebook has evolved very differently between educational and non-educational
websites. In addition, Sect. 4.5 compares the presence of trackers presenting par-
ticular categories, demonstrating that tracking related to enhancing customer
interaction in particular seems to have become relatively more common on edu-
cational websites over the past few years.

Our contributions can be summarized in two main points: (I) We develop a
list of both educational and non-educational websites to investigate the issue of
privacy lost in online education. The complete code and dataset we compiled can
be accessed at2. (II) We conduct a quantitative and qualitative analysis of third-
party tracking on educational websites, focusing on third-party services from
2012 to 2021. Our findings highlight potential concerns regarding the autonomy
and fairness of education.

2 Related Work

Tracking through third-party cookies and scripts has been extensively studied
from various perspectives. A significant portion of this research has focused on
mapping the prevalence of trackers across samples of websites, such as those
found on the Alexa top lists [1,9,19]. Other studies have investigated tracking
on different platforms, including the mobile ecosystem [5,6,16].

Karaj et al. [13] proposed a method for measuring web tracking using a
browser extension, resulting in a dataset covering 1.5 billion page loads collected
over 12 months period from real users. Krishnamurthy and Wills [9] presented a
dataset on tracking based on a crawl of the top 1 million websites. They devel-
oped an open-source web privacy measurement tool called OpenWPM, which
allows researchers to detect, quantify, and characterize emerging online tracking
behaviors. Our work is related to several general areas:

2 https://github.com/shuishen112/Privacy Lost.git.

https://github.com/shuishen112/Privacy_Lost.git
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Historical Web Tracking. Krishnamurthy and Wills provided early insights
into web tracking, demonstrating the evolution of third-party organizations
between 2005 and 2008 [15]. Lerner et al. presented longitudinal measurements
of third-party web tracking behaviors from 1996–2016 [17]. Karaj et al. con-
ducted a large-scale and long-term measurement of online tracking based on real
users [13]. Agarwal and Sastr analyzed the top 100 Alexa websites over 25 years
using data from the Internet Archive, studying changes in website popularity and
examining different categories of websites and their popularity trends over time
[2]. Amos et al. curated a dataset of 1,071,488 English language privacy poli-
cies spanning over two decades and encompassing more than 130,000 different
websites [3].

Web Tracking after GDPR. Numerous studies have investigated web track-
ing following the implementation of the GDPR (General Data Protection Regu-
lation) in the EU in May 2018, which imposed constraints on online data collec-
tion. These studies generally indicate a pattern of diminished tracking activity
[7,20,22], but they also reveal that most sites appear unable or unwilling to
fully comply with regulations [10,14,23], and tracking companies can still likely
monitor user behavior [20].

Web Tracking in Educational Websites. A body of research focuses explic-
itly on educational websites, which are known to have a higher incidence of track-
ing technology than sites aimed at minors [24]. In particular, university websites
exhibit a substantial prevalence of major tracking companies (e.g., Google, Face-
book) [12]. While several recent papers discuss the implications of tracking on
educational websites, there seems to be a lack of studies investigating third-party
tracking on substantial samples of educational websites post-2018 or examining
the development of tracking over time for these websites.

3 Data Collection

We provide a concise overview of our data collection framework, which comprises
three main components. Firstly, we discuss the process of gathering educational
and non-educational websites, as detailed in Sect. 3.1. Secondly, we present the
methodology for scanning historical snapshots from Internet Archive’s Wayback
machine, which is described in Sect. 3.2. Finally, we discuss the approach for
extracting third-party trackers from HTML files, which is outlined in Sect. 3.3.

3.1 Collecting Websites

To understand the evolution of web tracking in educational websites, we com-
pare them to a control set of non-educational websites to see whether there are
any changes related to education in particular. The comparison set is explicitly
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controlled for popularity so that the two sets consisting of educational and non-
educational websites have equal rank distribution. The studied websites must
also have available historical data stored in internet archives.

We construct the two rank-matched sets of educational and non-educational
websites as follows:

Step 1. We extract the educational websites from DMOZ3. DMOZ is a large
communally maintained open directory that categorizes websites based on web-
page content, and we use the DMOZ classification of educational websites. There
are 146,941 websites in the DMOZ database labeled as educational websites.

Step 2. Next, we limit the set of educational websites to those occurring on the
Open PageRank Initiative4, which maintains a list of the top 10 million websites
ranked based on their Open PageRank. There are 55,390 educational websites
present among the top 10 million. This filtering is done so that we can create a
comparable control set.

Step 3. We use the Internet Archive’s Wayback Machine5 for archived data.
Therefore, the set of educational websites is further limited to those with at
least one snapshot per year in every year from 2012 through 2021 to ensure that
annual comparisons are balanced. This results in 17,975 educational websites
altogether.

Step 4. Based on the list of educational websites from Step 3, we construct a
set of non-educational websites with rank (Open Pagerank) distribution match-
ing educational websites. Starting with the educational website of the highest
rank, this is done recursively by choosing for each educational website a non-
educational website that satisfies the following three conditions:

(a) The website has the lowest possible rank below the matching educational
website.

(b) The historical data of the website is available on Internet Archive’s Wayback
Machine.

(c) The website has not already been added to the control set of non-educational
websites.

For instance, if there are two educational websites of ranks 19 and 20, then
ranks 21 and 22 would be chosen to the control set of non-educational sites, pro-
vided that they are not educational websites and have archived versions available.
We study the rank gap (The rank of non-educational websites minus the rank of
matching educational websites) distribution. The mean rank gap is 2.86, while
the maximum gap is 255. We also find that 99% of the rank gap is below 16.

3 https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/
OMV93V.

4 https://www.domcop.com/top-10-million-websites.
5 https://archive.org.

https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/OMV93V
https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/OMV93V
https://www.domcop.com/top-10-million-websites
https://archive.org
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3.2 Scanning the Historical Snapshot

There are two primary methods for scanning historical snapshots: the Way-
back CDX Server6 and the waybackpy Python library7. The Wayback CDX
Server is a standalone HTTP servlet that serves the index used by the Wayback
Machine to search for captures. The second method involves using the Wayback-
MachineCDXServerAPI provided by the waybackpy library to retrieve historical
snapshots at specific times. For our research, we opted to use the Wayback CDX
Server as our scanning method.

3.3 Extraction of Third-Party Trackers

Each website is examined for requests to other URLs initiated during the web-
site’s loading. These requests will always be embedded in three HTML-elements:
“iframe”, “script” and “img”. We only consider the requests generated automat-
ically without user action. That is why we omitted the “a”-element8.

The list of third-party services (TPSs) was compiled by extracting all URLs
found in the three HTML elements mentioned earlier across the entire dataset.
For each website and URL, we checked whether the main domain of the linked
URL (e.g., ‘google’ in ‘www.google.dk’) differed from the main domain of the
website. If the domains were different, the URL was considered a ’third party’
and the domain (e.g., ‘google’) along with the suffix (e.g., ‘dk’) were added to
the list of TPSs.

To clarify our terminology, we will use the term ’trackers’ instead of ’third-
party services’ for the remainder of this paper. While many third-party services
serve various functions, such as providing weather data or chat services, some are
solely designed for tracking and provide data that is used for personalized ban-
ner ads. However, even third-party services that seemingly provide non-tracking
functionality have the potential to gather valuable data from users, such as their
timestamped IP addresses and the websites they visit when the third-party ser-
vice is activated. This information may be used by the third-party provider or
sold to data brokers, or both. As all third-party services can track users, we refer
to all such services invoked through websites as trackers [18].

We utilized the trackers list9, which covers the period between May 2017
and August 2022 [13]. The trackers on the list are ranked according to their
tracker reach, which is a metric defined in the aforementioned paper [13]. It
should be noted that each tracker corresponds to multiple tracker domains. For

6 https://github.com/internetarchive/wayback/tree/master/wayback-cdx-server.
7 https://akamhy.github.io/waybackpy/.
8 A “ping”-attribute in the “a”-element allows requests to be made to multiple URLs

without the user being aware of this, but there were no ping-attributes used in the
data used in this study.

9 https://whotracks.me/trackers.html.

www.google.dk
https://github.com/internetarchive/wayback/tree/master/wayback-cdx-server
https://akamhy.github.io/waybackpy/
https://whotracks.me/trackers.html
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instance, Doubleclick is associated with three tracker domains: ’2mdn.net’, ’dou-
bleclick.net’, and ’invitemedia.com’. In total, the tracker list comprises 1,285
tracker domains.

4 Analysis and Discussion

Our analysis focuses on the changes in web tracking between 2012 and 2021, with
a particular emphasis on the qualitative and quantitative differences in tracker
usage between educational and non-educational websites.

4.1 Evolution of Tracker Domains per Website

Fig. 1. Evolution of the average number of
tracker domains per webiste.

To begin our analysis, we computed
the average number of trackers per
website for each year. Figure 1 dis-
plays the trends in tracker usage
on educational and non-educational
websites between 2012 and 2021. In
general, a striking 94.5% increase in
the average number of trackers on
educational websites was observed,
while the control group experi-
enced a comparatively modest 31.3%
increase from 2012–2021. Specifi-
cally, when observing the trends of
growth each year, we notice a plateau or slight reversal in growth occurring
after 2017. Notably, the vertical line in Fig. 1 represents the formal implementa-
tion of GDPR in 2018. It is interesting to observe that the number of trackers
on non-educational sites experienced a slight decline, whereas tracker usage on
educational sites appeared to taper off around the same time.

Figure 2a shows a box plot of the number of trackers per year for educational
websites. The plot suggests that the evolution in the average number of trackers
after 2018 observed in Fig. 1 is driven by an increased dispersion in tracking
across distinct educational sites, as the third quartile increases from 2017–2018,
while the median (the horizontal line in each box) remains almost the same in the
period 2017–2021. As a comparison, Fig. 2b shows a boxplot for non-educational
websites. The plot also suggests the evolution in the average number of trackers
in Fig. 1. The third quartile increased from 2017–2018 but has dropped since
2019. Especially, the first quartile decrease in 2021.
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Fig. 2. Number of trackers in each year for educational websites and non-educational
websites.

According to the findings, it appears that users who browse educational web-
sites are at a higher risk of having their online behavior information collected
and potentially utilized by various services and websites. This disparity between
educational and non-educational websites highlights the potential inadequacy of
the GDPR in addressing privacy concerns specific to educational sites.

4.2 The Number of Trackers on Educational and Non-educational
Websites

Table 1. Summary of the WS-
test showing differences in each
year, N = 17975.

Year WS-test

p-value Z

2012 5.2 × 10−86 –19.66

2013 6.8 × 10−55 –15.6

2014 1.6 × 10−46 –14.32

2015 6.7 × 10−28 –10.95

2016 7.1 × 10−11 –6.52

2017 6.6 × 10−2 –1.84

2018 1.5 × 10−5 –4.33

2019 8.7 × 10−18 –8.59

2020 3.2 × 10−20 –9.21

2021 2.3 × 10−30 –11.45

The tracking trends presented in Sect. 4.1 are
purely descriptive, hence we conducted a sta-
tistical test to determine if there is a signifi-
cant difference between educational and non-
educational websites. Specifically, we performed
a matched-pairs Wilcoxson signed rank(WS)10

test to evaluate if the medians of the educa-
tional and non-educational samples are different
for each year. This test is appropriate for paired
data, which is the case for our study due to the
rank-based construction of the data, and does
not make any assumptions about the underly-
ing distributions, making it a non-parametric
test.

The input of the WS test is the number of
tracker domains for each educational and non-
educational website. The results of the tests are summarized in Table 1; as usual,
small p-values indicate statistical significance; for all years, except 2017 p < 0.01

10 http://www.biostathandbook.com/wilcoxonsignedrank.html.

http://www.biostathandbook.com/wilcoxonsignedrank.html
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for both tests. The sole exception is 2017, where p > 0.05 for the WS-test,
consistent with the prevalence curves (see Fig. 1) crossing that year.11

4.3 Evolution of Usage Rate for the Most Common Trackers

To understand how tracking development differs between educational and non-
educational sites, we compare how the ten most commonly occurring trackers
have changed during the measurement period. We compute the usage of trackers
based on the usage rate and select the top ten most used trackers in educational
websites in 2012. The top ten trackers are on the vertical axis in Fig. 3.

We define the usage rate of each tracker as f(t) = N(t)
N(w) where N(t) is the

total number of websites where tracker t occurs, and N(w) is the total number
of websites in the sample. We calculate the relative increase I in usage rates of
the top ten trackers most common on educational websites from 2012 to 2012
as I = f(t)2021−f(t)2012

f(t)2012
. The relative change of usage rate is shown in Fig. 3.

We observe that the overall usage rate increased for the five top trackers on
educational websites, including the social media sites Twitter and Facebook,
and Youtube. It also increased for two Google-related trackers.

It decreased for five trackers, including Twimg (operated by Twitter) decrease
by 66.4%, Addthis (–46.9%), Google-analytics (–32.5%), Adobe (–31.6%) and
Googlesyndication (–1.1%) on educational websites. For non-educational web-
sites, the usage rate increased only for the three Alphabet-operated trackers
(Youtube, Googleapis and Google) and saw the largest decrease for Twimg, by
78.4%.

Fig. 3. Top usage rate change of trackers. X-axis is the percentage change of usage
rate. Y-axis is the tracker name.

11 Note that the level of statistical significance in the test means that correcting the
alpha level for multiple comparisons does not alter the finding. This also holds for
Table 2.
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Notably, the use of Twitter, Youtube, and Facebook has evolved very dif-
ferently between educational and non-educational websites. All three have an
increased presence on educational sites, whereas their use has declined (Twitter
and Facebook) or grown much slower (Youtube) on non-educational sites. The
presence of trackers from these companies on educational sites helps target ads
at the users when they visit the platforms and can also help educational sites
to advertise their services to new, potential users with profiles similar to their
existing users.

4.4 Distribution of Trackers in Educational and Non-educational
Sites

The results in Sect. 4.1 show that the level of tracking differs significantly between
educational and non-educational sites. We will investigate if the difference also
relates to the composition of trackers used on the two groups of sites and differ-
ences in intensity. As stated in 3.3, all third-party services may collect data that
can be used for tracking. However, the value proposition to the website owner
differs between different services since they provide various functionalities to the
site. Therefore, an analysis of the other functionalities also indicates what the
site owner has sought to gain from embedding the service (or tracker), irrespec-
tive of the tracking of user behavior it enables. This analysis will, in turn, show
if educational sites have followed a different path in integrating trackers than
other sites.

Table 2. Summary of the KS-
test showing differences in each
year.

Year KS-test

p-value Statistic

2012 4.7 × 10−6 0.25

2013 6.0 × 10−5 0.22

2014 4.1 × 10−5 0.23

2015 2.7 × 10−3 0.18

2016 1.4 × 10−3 0.19

2017 1.4 × 10−3 0.19

2018 2.8 × 10−4 0.21

2019 1.2 × 10−3 0.19

2020 4.4 × 10−4 0.2

2021 3.3 × 10−3 0.17

For each year, we employ the two-sample
Kolmogorov-Smirnov(KS) test–the standard
non-parametric test for comparing distributions–
to test whether the educational, resp. non-
educational samples are drawn from the same
underlying distribution. The test is suitable for
paired data, similar to the WS test reported
before. As indicated in Table 2, there is a sig-
nificant difference in the distribution of track-
ers found on the two groups of sites in each
year between 2012 and 2021. This indicates that
in addition to the different quantitative trends,
there appears to be a qualitative difference in
the kind of trackers used on educational and
non-educational websites.

4.5 Evolution of Different Categories
of Trackers

To understand how the overall differences in tracker distribution identified in the
previous section relate more closely to different purposes of web functionality,
we look at the changes across different types of trackers. Since no exhaustive
categorization of trackers exists, we use the tracker typology made available by
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the WhoTracksMe initiative in June 2022, which to our knowledge, is the most
comprehensive and up-to-date list, that is openly available12.

This typology matches 1285 trackers in our dataset. While this represents
only a subset of the total number of trackers, the list coincides with 213 of the
1285 most common trackers in our analysis. In the following, we examine the
distribution of trackers across categories but only do so for the subset of the most
common trackers. The WhoTracksMe list categorizes most common trackers into
one of Site Analytics, Customer Interaction, Advertising, Cdn, Social Media,
Audio Video Player, Essential, Misc. A more detailed explanation of the eight
tracker categories is found in AppendixA.

Fig. 4. Evolution of different categories of trackers from 2012 to 2021.

For each category c of trackers, we calculate usage rate f(c) as f(c) = N(c)
N(w)

where N(c) is the number of websites this type of trackers occur on, and N(w) is
the total number of websites in the sample. We calculated the usage rate f(c) for
each category c of trackers as f(c) = N(c)

N(w) , where N(c) is the number of websites
on which this type of tracker occurs, and N(w) is the total number of websites in
the sample. The evolution of different tracker categories in Fig. 4 indicates that,
when comparing the levels in 2012 and 2021, educational sites have increased
their use of all trackers except for Site Analytics. Even though Advertising and
Cdn trackers have dropped slightly since their peak, they are still at a higher
level than in 2012. In contrast, the usage rate for Site Analytics, Advertising,
and Social Media is lower in 2021 than in 2012 for non-educational sites.

When comparing the two groups, two significant trends are apparent. Firstly,
educational sites exhibit higher growth in the use rate of trackers related to
interactive site features and audio-visual content. For instance, the Audio Video
Player category witnessed a growth of 225.0% on educational websites from
12 https://whotracks.me/trackers.html.

https://whotracks.me/trackers.html
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2012–2021 compared to 73.1% for non-educational websites. While the increase
slowed down in 2018 or was even reverted for non-educational websites, it has
increased again since 2019 and decreased since 2020. Additionally, Cdn services
and Customer Interaction trackers have become more commonly used and grown
more on educational sites than non-educational sites during the period. The
increase from 2012–2021 was 63.7% for educational websites and 32.5% for non-
educational websites in the case of Customer Interaction trackers. This growth
in interactive features and audio-visual content on educational sites is consistent
with the evolution of online learning, which has become more interactive and
audio-visually engaging over the years [8]. Moreover, these trends make the sites
more bandwidth-consuming, which is also in line with the growth of Cdn services.

Second, the use of Social Media (increased by 66.2%) and Advertising (18.0%)
related trackers grow for educational sites but display a net drop for non-
educational sites. Compared to the level in 2012, the use of both trackers is
higher in 2021, whereas both are lower on non-educational sites. For both cat-
egories, the educational sites begin at a lower level than the non-educational
sites. In both categories, the difference becomes less pronounced over time, and
for Social Media ends up at the same level. This indicates that purely com-
mercial tracking on educational sites has evolved from being comparatively less
common than on other types of sites to be similar. For both types of sites, the
use of trackers for Advertising has gone down in recent years, but for educational
sites, the peak is more recent (2018) than for non-educational sites (2014). For
non-educational sites, this is consistent with the overall development in commer-
cial tracking, which has seen a general trend toward concentration around a few
major players. In 2012, the market for commercial tracking was less dominated
by monopolies such as Alphabet and Meta than it has since become [4]. The
market domination of fewer players is consistent with the falling trend in the use
rate. For educational sites, the continued growth is consistent with them catch-
ing up to the market standard for commercial tracking, which is also suggested
by the strong growth of trackers from the top market players observed in Sect.
4.3.

4.6 Discussion

The evolution of web tracking over time aligns with predictions surrounding the
implementation of GDPR in the EU, although its impact on educational sites
has been less significant than on non-educational sites. While non-educational
sites have experienced a decline in the use of trackers since the introduction of
GDPR, the usage of trackers on educational sites has increased and remained
stable at a higher level. Moreover, the prevalence of purely commercial tracking,
such as advertising and social media tracking, has grown on educational sites,
approaching similar levels as on non-educational sites.

The tracking via third-party services outside the commercial categories also
serves other purposes (e.g., making it possible to embed a chat function on a web
page). Any third-party service with a substantial use rate across the web gives
the third-party company that operates the service the opportunity to collect
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information about the end user. The overall increase in tracking also means
that users of educational sites have become more exposed to having information
about their online behavior collected and (potentially) exploited across a range
of different services and sites. This development is interesting from a normative
perspective: tracking on educational sites comes with specific privacy concerns
since using these sites is not necessarily voluntary, and user consent to tracking
is, therefore, less meaningful. Use of these types of sites happens both at different
levels of the educational systems (schools and universities), and in the private
sector, for example, as training of employees. The increased use of tracking,
both through the inclusion of purely commercial trackers and by embedding
other third-party services, suggests that learning activities are increasingly open
for commercially oriented analytical exploitation.

The trends of tracking we have identified also suggest that the associated
business model(s) remain active and are of increasing relevance in the online
education sector. Our paper particularly raises the concern whether the GDPR
in its current form suitably addresses privacy issues related to websites whose
use is not predominantly voluntary, such as educational websites, but also many
other sites like public websites, where the trends of tracking form an important
research question on its right and should be addressed in studies in the future.

Reviewing the results, we do not find convincing evidence that tracking on
educational websites has been substantially impacted by the COVID-19 pan-
demic. Despite the fact that additional traffic to these types of sites during the
lock-down periods would represent a valuable asset for site owners, no trends
in the data meaningfully relate to this. This may be related to the fact that
educational sites had already adjusted their portfolio of commercial tracking in
particular to facilitate monetization of increased traffic, e.g. through re-targeting
of potential students on social media.

5 Conclusions

In this paper, we present a framework for examining historical web tracking
within a defined set of sites, and apply it to a sample of educational websites.
We constructed a sample comprising educational websites and a control group
of non-educational websites that shared similar ranking positions. Utilizing the
Internet Archive’s Wayback Machine, we gathered historical data on third-party
trackers. Our analysis involved 17,975 pairs of websites and their corresponding
controls, spanning the period from 2012 to 2021. We observed a notable overall
rise in tracking activities on educational sites.

Then we conduct a quantitative and qualitative analysis of third-party track-
ing on educational websites. We discover that the growth rate of educational
websites has surpassed the control group from 2012–2021. Our investigation
into the relative expansion of various tracker types suggests that the accelerated
growth of tracking on educational websites may be attributed to the rising use of
customer interaction, audio-visual content, and social media integration within
these platforms.
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Our analysis raises concerns about privacy and independence in education.
Privacy issues in educational websites should be prioritized, as they can lead
to unauthorized disclosure of confidential information, loss of trust, legal con-
sequences, and intellectual property compromise. Furthermore, researchers may
wish to analyze privacy lost in other areas, such as news or sports, from a
historical perspective. Our framework offers a convenient solution for creating
comparable websites and collecting historical third-party tracker data in these
domains.

Appendix

A Tracker Categories

Trackers differ both in the technologies they use, and the purpose they serve.
Based on the service they provide to the site owner, we have categorized the
trackers in the following:
Advertising. Provides advertising or advertising-related services such as data
collection, behavioral analysis or re-targeting.
Customer Interaction. Includes chat, email messaging, customer support, and
other interaction tools
Essential. Includes tag managers, privacy notices, and technologies that are
critical to the functionality of a website
Site Analytics. Collects and analyzes data related to site usage and perfor-
mance. Social Media Integrates features related to social media sites
Audio Video Player. Enables websites to publish, distribute, and optimize
video and audio content
CDN (Content Delivery Network). Content delivery network that delivers
resources for different site utilities and usually for many different customers.
Misc (Miscellaneous). This tracker does not fit in other categories.
Essential. Includes tag managers, privacy notices, and technologies that are
critical to the functionality of a website
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Abstract. While deep neural networks have excellent results in many
fields, they are susceptible to interference from attacking samples result-
ing in erroneous judgments. Feature-level attacks are one of the effective
attack types, which target the learned features in the hidden layers to
improve their transferability across different models. Yet it is observed
that the transferability has been largely impacted by the neuron impor-
tance estimation results. In this paper, a double adversarial neuron attri-
bution attack method, termed ‘DANAA’, is proposed to obtain more
accurate feature importance estimation. In our method, the model out-
puts are attributed to the middle layer based on an adversarial non-linear
path. The goal is to measure the weight of individual neurons and retain
the features that are more important toward transferability. We have con-
ducted extensive experiments on the benchmark datasets to demonstrate
the state-of-the-art performance of our method. Our code is available at:
https://github.com/Davidjinzb/DANAA.

Keywords: Transferability · Adversarial attack · Attribution-based
attack

1 Introduction

Deep neural networks (DNNs) have been used in a wide range of applications in
different fields, such as face recognition [6], voice recognition [1] and sentiment
analysis [30]. DNNs can also achieve state-of-the-art performance in tasks such
as security verification in unconstrained environments where very low false pos-
itive rate metrics are required [6]. However, deep learning models are shown to
be vulnerable to interference from adversarial samples. Attackers can manipu-
late the model outcome by deliberately adding the perturbations to the original
samples to attack the models [28].

In general, the current approaches to attack models can be categorised into
two types: white-box attack [12] and black-box attack [22]. For white-box attacks,
the attacker knows the relevant parameters of the target model and can formulate
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the most suitable attack method. For black-box attacks, on the other hand,
the attacker does not have access to the model parameters. In terms of the
characteristics of the white-box and black-box attack methods, the black-box
attack provides the adversarial performance of the attacking samples, which
is useful for improving the robustness of deep learning models in real-world
scenarios. Specifically, the black-box attack methods have three types, including
query-based method [14], transfer-based method [8] and hybrid method [9].

The objective of the query-based method is to interrogate the model to
extract pertinent input or output information, and subsequently utilize this lim-
ited information to iteratively generate optimal adversarial samples. However,
such method is subject to restrictions imposed by access permissions and often
require multiple queries to obtain excellent adversarial samples. The transfer-
based method aims to train and generate adversarial samples on a known-
information local surrogate model, which are then transferred and tested on
the target black-box model for the attack success rate. Compared to query-
based methods, transfer-based methods do not require additional access to the
model and can bypass certain adversarial defense mechanisms aimed at queries.
The hybrid method combines the principles of query and transfer approaches.
Although it can achieve sufficiently high attack success rate, it also implies that
it is susceptible to adversarial defense mechanisms targeting both queries and
transfers. Therefore, in this paper, we focus on transfer-based method.

As a common approach of transfer-based attack, feature-level attack attempts
to maximise the internal feature loss by attacking intermediate layers’ features
to improve the transferability of the attack [32]. The aim is to increase the weight
of negative features in the middle layer of the model while decreasing the weight
of positive features. More negative features will be retained to assist the diver-
sion of the model’s predictions. However, it is still challenging to harmoniously
differentiate the middle-level features via feature-level attack method, which is
also prone to its local optimum [32]. Moreover, it is well-known that the effec-
tiveness of transfer-based black-box attacks is influenced by the overfitting on
surrogate models and specific adversarial defenses. To address these challenges,
we propose to utilise the information of neuron importance estimation for the
middle layer to identify the adversarial features more accurately. In addition, we
also evaluate the transferability of our proposed method on adversarially trained
models, which will be specifically discussed in Sect. 4. The results demonstrate
that our method achieves favorable attack success rates even on target models
protected by adversarial defenses.

To obtain adversarial samples with higher transferability, this paper presents
a double adversarial neuron attribution attack (DANAA). DANAA method
attributes the model outputs to the middle layer neurons, thus measuring indi-
vidual neuron weights and retaining features that are more important towards
transferability. We use adversarial non-linear path selection to enrich the attack-
ing points, which improves the attribution results. Extensive experiments on the
benchmarking datasets following the literature methods have been conducted.
The results show that, DANAA can achieve the best performance for the adver-
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sarial attacks. We anticipate this work will contribute to the attribution-based
neuron importance estimation and provides a novel approach for transfer-based
black-box attack. Our contributions are summarised as follows:

– We propose DANAA, an innovative method of non-linear gradient update
paths to achieve a more accurate neuron importance estimation, for a more
in-depth study of the route to attribution method.

– We present both theoretical and empirical investigation details for the attri-
bution algorithm in DANAA, which is a core part of the method, in Sect. 3.

– A comprehensive statistical analysis is performed based on our benchmark-
ing experiments on different datasets and adversarial attacks. The results in
Sect. 4 demonstrates the state-of-the-art performance of DANAA method.

2 Related Work

In this section, we review the literature on white-box attacks, query-based black-
box attacks, transfer-based black-box attacks, and hybrid black-box attacks.

2.1 Common White-Box Attacks

Previous work has demonstrated that neural networks are highly susceptible
to misclassification by pre-addition of perturbed test samples. Such processed
samples are called adversarial samples. The emergence of adversarial samples has
led to the development of a range of adversarial defences to ensure the model
performance [16,28,29].

Currently, adversarial attacks can be divided into white-box attacks and
black-box attacks depending on the level of available information for the
model being attacked. There are various approaches for white-box attacks, such
as gradient-based and GAN-based. Gradient-based white-box attacks include
FGSM [12], I-FGSM [16], PGD [20] and C&W [3]. Some recent GAN-based
white-box attack methods are AdvGAN [33], GMI [37], KED-MI [4] and
Plug&Play [24]. While white-box attacks are effective in measuring the robust-
ness of a model under attack, in real-world scenario, the parameters of the model
are often not accessible, leading to the development of black-box attacks.

2.2 Query-Based Black-Box Attacks

Query-based attacks are a branch of black-box attacks aiming to train an effec-
tive adversarial sample by performing a small-scale attack on the target model
to query the model parameters, such as the model labels and confidence lev-
els. These parameters can be used as part of the dataset to assist in training
the migration algorithm to verify the migration of the black-box model. Ilyas
et al. [14] were the first to propose a query-based black-box attack approach.
Following, they proposed combining prior and gradient estimation of historical
queries and data structures based on Bandit Optimization, which greatly reduces
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the number of queries [15]. Li et al. [17] proposed a query-efficient boundary-
based black box attack method (QEBA). It proved that the gradient estimation
of the boundary-based attack over the entire gradient space is invalid in terms
of the number of queries. Andriushchenko et al. [2] proposed the square search
attack method, which selects local square blocks at random locations in the
image to search and update the direction of the attack.

2.3 Transfer-Based Black-Box Attacks

The transferability of adversarial attacks refers to the applicability of the adver-
sarial samples generated by the local model to the target model for attack. The
attacker firstly uses the parameters obtained from the attack on the local model
to train the adversarial samples, then uses these samples to perform a black-box
attack on the target model to verify the success rate.

There are three main categories of transfer-based black-box attacks, namely
gradient calculation methods, input transformation methods and feature-level
attack methods. Gradient calculation methods such as MIM [7], VMI-FGSM [31]
and SVRE [35] improve transferability by designing new gradient updates. Input
transformation methods such as DIM [34], PIM [11] and SSA [18] boost the
transferability by using input transformations to simulate the ensemble process
of the model, while feature-level attacks focus on the middle-layer features.

Some state-of-the-art feature-level attack methods include NRDM, FDA, FIA
and NAA, etc. NRDM [21] attempts to maximise the degree of distortion between
neurons, but it does not take into account the role of positive and negative fea-
tures in the attack. FDA [10] averages the neuronal activation values to obtain
an estimate of the importance of a neuron. However, this method does not dis-
tinguish the degree of each neuron’s importance and the discrimination between
positive and negative features is still too low. FIA [32] multiplies the activation
values of neurons and back-propagation gradients for estimation, but its effect
on the original input is affected by over-fitting and the results are not accu-
rate. NAA [36] effectively improves the transferability of the model and reduces
computational complexity by attributing the model’s output to an intermediate
layer to obtain a more accurate importance estimation. However, its attribution
method focuses more on the gradient iteration process considering linear path,
and there is still room for improvement in the non-linear path condition.

2.4 Hybrid Black-Box Attacks

Hybrid method is a combination of query-based method and transfer-based
method. It not only considers the priori nature of the transfer but also utilizes
the gradient information obtained from the query, which resolves the challenges
of high access cost for the query attack and low accuracy for transfer attack.

Dong et al. [5] proposed a hybrid method named P-RGF, which used the
gradient of surrogate model as prior knowledge to guide the query direction
of RGF and obtained the same success rate as RGF with fewer queries. Fu
et al. [9] train Meta Adversarial Perturbation (MAP) on an surrogate model
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and perform black-box attacks by estimating the gradient of the model, which
has good transferability and generalizability. Ma et al. [19] introduced Meta
Simulator to black-box attacks based on the idea of meta-learning. By combining
query and transfer based attacks, the researchers not only significantly reduce
the number of queries, but also reduce the complexity of queries by transferring
the adversarial samples trained on the surrogate model to the target model.

While there are different types of black-box attack methods, transfer-based
attacks is considered as the most convenient method which doesn’t require addi-
tional information queries for the model. However, it poses the challenge of a
good transferability for the adversarial samples. Therefore, in this work, we tar-
get the transfer-based attack methods. Especially, we introduce the attribution
method for the middle-layer feature estimation, which shows a promising per-
formance with our experiments.

3 Method

3.1 Preliminaries

When an adversarial attack to the target model can be successfully launched
given an adversarial samples trained with a local DNN model, we consider there
is a strong transferability relationship between these two models. Formally, with
a deep learning network N : Rn → Rc and original image sample x0 ∈ Rn,
whose true label is t, if the imperceptible perturbation

∑t−1
k=0 �xk is applied on

the original sample x0, we may mislead the network N with the manipulated
input xt = x0 +

∑t−1
k=0 �xk to the label of m, which can also be denoted as xadv.

Assuming the output of the sample x as N(x), the optimization goal will be:
∥
∥xt − x0

∥
∥

n
< ε subject to N(xt) �= N(x0) (1)

where ‖·‖n represents the n-norm distance. Considering the activation values in
the middle layers of network N , we denote the activation value of y-th layer as
y and the activation value of j-th neuron as yj .

3.2 Non-linear Path-Based Attribution

Inspired by [25] and [36], we define the attribution results of input image xt(with
n × n pixels) as

A :=
n2
∑

i=1

∫

�xt
i

∂N(xt)
∂xt

dt (2)

As shown in Fig. 1, different from the NAA algorithm [36], our paper proposes
a new attribution idea that uses a non-linear gradient update path instead of
the original linear path, which allows the model to find the optimal path against
the attack itself. In Eq. 2, the gradient of N iterates along the non-linear path
xt = x0 +

∑t−1
k=0 �xk, in which ∂N

∂xt (·) is the partial derivative of N to the i-th
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Fig. 1. Non-linear gradient update path diagram

pixel. For each iteration, �xt = sign(∂N(xt)
∂xt ) + N(0, σ). We further apply the

learning rate and Gaussian noise to update the perturbation.
Afterwards, we can approximate A as N(x) depending on basic advanced

mathematics and extend the attribution results to each layer. The formula of
attribution can then be expressed as:

Ayj
:=

n2
∑

i=1

∫

�xt
i

∂N(xt)
∂yj(xt)

∂yj(xt)
∂xt

dt (3)

where Ayj
represents the attribution of j-th neuron in the layer y,

∑
Ayj

=
A. We provide the relevant proof of our non-linear path-based attribution in
following section.

3.3 Proof of Non-linear Path-Based Attribution

Since we now have Ayj
as Eq. 3, assuming that the neurons on the middle layer of

the deep neural network are independent from each other, Ayj
can be expressed

as

Ayj
:=

∫
∂N(xt)
∂yj(xt)

n2
∑

i=1

�xt
i

∂yj(xt)
∂xt

dt (4)

where ∂N(xt)
∂y(xt) is the gradient ofN(xt) to the j-th neuron,

∑n2

i=1 �xt
i

∂yj(x
t)

∂xt is the
sum of the gradient of yj to each pixel on xt(xt ∈ Rn). Since the two gradient
sequences are zero covariance, we then convert Eq. 4 into:

Ayj
:=

∫
∂N(xt)
∂yj(xt)

dt ·
∫ n2

∑

i=1

�xt
i

∂yj(xt)
∂xt

dt (5)

Combining the principles of calculus, we can prove that

∫ n2
∑

i=1

�xt
i

∂yj(xt)
∂xt

dt = yt
j − y0

j (6)

then we denote yt
j − y0

j as �yt
j , Eq. 5 can be converted into

Ayj
:= �yt

j

∫
∂N(xt)
∂yj(xt)

dt (7)
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Denoting
∫ ∂N(xt)

∂yj(xt)dt as γ(yj), which means the gradient of network N along
our non-linear path with attention to the j-th neuron. Afterwards, we can get
Ayj

= �yt
j · γ(yj). Since the neuron yj is on the middle layer y, finally the

attribution result of the layer y can be expressed as

Ay =
∑

yj∈y

Ayj
=

∑

yj∈y

�yt
j · γ(yj) = �yt · γ(y) (8)

Algorithm 1. Double Adversarial Neuron Attribution Attack
Require: Deep network N, target layer y
Require: Manipulated input xt with label m
Require: Perturbation budget ε and iteration number T
Require: Original input x0 and integrated step τ
1: α = ε

T
, γ(yj) = 0, g0 = 0, μ = 1, xadv

0 = xt

2: for t = 0 ← τ do
3: xt+1 = clipε

x{xt + lr · sign( ∂N(xt)
∂xt ) + N(0, σ)}

4: γ(yj) = γ(yj) + �y(xt)N(xt)
5: end for
6: for s = 0 ← T − 1 do
7: Ay = �yt · γ(y)

8: gs+1 = μ · gs +
�xtAy

‖�xtAy‖1

9: xadv
s+1 = Clipε

xt

{
xadv

s+1 + α · sign(gs+1)
}

10: end for

Algorithm 1 shows the specific pseudocode structure of our DANAA algo-
rithm with Non-linear Path-based attribution.

4 Experiments

Extensive experiments have been conducted to demonstrate the efficiency of our
method. Following sections cover the topic of leveraged datasets, benchmarking
models and incorporated metrics. We also provide the experimental settings. We
performed five rounds of benchmarking experiments to compare our algorithm
with other methods, demonstrating the superiority of our approach to the base-
lines in terms of transferability for adversarial attacks. Moreover, we conducted
the ablation study to investigate our approach, focusing on the impact of various
learning rates and noise deviation on attack transferability.

4.1 Dataset

Following other literature methods, the widely-used datasets from NAA work [36]
are considered in this paper. The datasets consist 1000 images of different cat-
egories randomly selected from the ILSVRC 2012 validation set [23], which we
called a multiple random sampling(MRS) dataset.
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4.2 Model

We include four widely-used models for image classification tasks, namely
Inception-v3 (Inc-v3) [27], Inception-v4 (Inc-v4) [26], Inception-ResNet-v2
(IncRes-v2) [26], and ResNet-v2-152 (Res152-v2) [13], as source models for
assessing the attacking performance of our algorithm. We start with four
pretrained models without adversarial learning, which include Inc-v3, Inc-v4,
IncRes-v2, and Res152-v2. Later on, we construct more robust models for a in-
depth comparison, such as including adversarial training for the pretrained mod-
els. This results in two adversarial trained models, including Inception-v3(Inc-v3-
adv) and Inception-Resnet-v2 (IncRes-v2-adv) [16]. The remaining three mod-
els are based on the ensemble models: the ensemble of three adversarial trained
Inception-v3(Inc-v3-adv-3), the ensemble of four adversarial trained Inception-v3
(Inc-v3-adv-4), and the ensemble of three adversarial trained Inception-Resnet-
v2 (IncRes-v2-adv-3), following the work from [29]. In [29], the models are com-
bined by training the sub-models of the corresponding model independently and
finally weighting the results of each sub-model to increase the accuracy and
robustness of the model.

4.3 Evaluation Metrics

The attack success rate is selected as the metric to evaluate the performance.
It measures the proportion of the dataset where our method produces incorrect
label predictions after attacking. Hence, a higher success rate indicates improved
performance of the attack method.

4.4 Baseline Methods

For comparison in our experiment, we selected five state-of-the-art attack meth-
ods as the baseline, including MIM [7], NRDM [21], FDA [10], FIA [32], and
NAA [36]. Furthermore, to test the effect of each model after combining input
transformation methods and to verify the superiority of our algorithm, we apply
both DIM and PIM to the attack methods. The implementation details can
be found in the open source repository. Consequently, we extend the model
comparison set with MIM-PD, NRDM-PD, FDA-PD, FIA-PD, NAA-PD and
DANAA-PD, respectively.

4.5 Parameter Setting

In the experiment, we set the parameters as following: the learning rate (lr) is
0.0025; the noise deviation is 0.25; and the maximum perturbation rate is 16,
which is derived from the number of iterations (15) and the step size (1.07). The
batch size is 10, and the momentum of the optimization process is 1. Since we
introduced the DIM and PIM algorithms to verify the superiority of our model
when combining input transformation methods, we set the transformation prob-
ability of DIM to 0.7, and the amplification factor and kernel size of PIM are 2.5



464 Z. Jin et al.

and 3, respectively. For the target layer of the attack, we choose the same layer
as in NAA. Specifically, we attack InceptionV3/InceptionV3/Mixed 5b/concat
layer for Inc-v3; InceptionV4/InceptionV4/Mixed 5e/concat layer for Inc-v4;
InceptionResnetV2/Ince-ptionResnetV2/Conv2d 4a 3x3/Relu layer for IncRes-
v2; the ResNet-v2-152/blo-ck2/unit 8/bottleneck v2/add layer of Res152-
v2 [36].

4.6 Result

All the experiments are carried out with the hardware of RTX 2080Ti card.
A detailed replication package can be found in the open source repository at
https://github.com/Davidjinzb/DANAA. We subsequently compile the results
of all the attack methods without and with the input transformation methods
(ending with PD) in Table 1.

In Table 1, we can see that, DANAA has retained a strong and robust
performance across all the models, in comparison with other attack methods.
Especially, DANAA demonstrated notable improvements on five models that
are adversarial trained. We can observe a largest improvement of the attacking
performance is between our method and NAA method [36], which is the gen-
erally second best attacking method in the comparison experiments. The ratio
of improvement is 9.0%. Across all local models, our approach demonstrated an
overall average improvement of 7.1% as compared to NAA on the adversarial
trained models. By introducing the PD concept, our method achieves a maxi-
mum improvement of 9.8% over NAA-PD and an overall average improvement
of 7.3% on the adversarial trained models.

4.7 Ablation Study

In this section, we investigate the impact of the learning rate and Gaussian noise
deviations on the performance of the proposed method.

The Impact of Learning Rates. Experiments are conducted using different
scales of learning rates, which are 0.25, 0.025, 0.0025 and 0.00025. In Fig. 2, the
DANAA method exhibits the highest attack success rate for nearly all models
when the selected learning rate was 0.0025. In Fig. 3, the highest attack success
rates are achieved on most models for DANAA-PD method.

Notably, when using Inception-ResNet-v2 as the source model, although at
a learning rate of 0.0025 DANAA-PD ranked second best in attack success rate
on the models without adversarial training, its effectiveness on the model with
adversarial training is still much higher than those at other learning rates.

The Impact of Gaussian Noise Deviation (Scale). To verify the effect of
adding Gaussian noise to the gradient update on model transferability in this
paper, we selected different noise deviations for testing in this subsection. As
shown in Fig. 4 and Fig. 5, five different scales of the Gaussian noise deviation

https://github.com/Davidjinzb/DANAA
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ranging from 0.2 to 0.4 are used in this experiment. In general, higher value of
scale tends to have more superior results for the normal training model while
sacrificing performance for the more robust one. Conversely, a lower value of scale
results in less improvements for the normal trained model but better performance
for the adversarial trained model. Accordingly, the scale value of 0.25 is selected
for the optimal performance in this paper.

Table 1. Attack success rate of multiple methods on different models

Model Attack method Inc-v3 Inc-v4 IncRes-v2 Res152-v2 Inc-v3-adv IncRes-v2-adv Inc-v3-adv-3 Inc-v3-adv-4 IncRes-v2-adv-3

Inc-v3 MIM 100 41.9 39.7 32.8 22.1 18.4 14.9 15.7 8.2

NRDM 90.4 61.4 52.5 49.9 26.1 19.2 9.5 12.9 4.7

FDA 81.7 42.9 37.1 35.1 19.4 12.6 9.3 12.2 5.0

FIA 96.5 79.1 77.8 71.8 54.8 53.9 43.1 44.2 23.2

NAA 97.0 83.0 80.6 74.7 56.2 59.4 49.5 50.4 31.5

DANAA 98.1 86.8 84.8 80.3 64.4 68.4 55.4 56.5 33.1

Inc-v4 MIM 58.2 99.9 45 40.4 23.5 20.4 17.7 20.3 9.7

NRDM 78.0 96.4 62.8 62.3 26.1 25 17.3 16.6 6.8

FDA 84.6 99.6 71.8 68.8 28.2 26.1 17.4 17.1 7.0

FIA 74.6 91.0 69.6 65.7 43.5 47.3 39.3 39.9 23.5

NAA 83.3 95.8 77.9 73.3 49.5 53.2 48.0 46.5 31.4

DANAA 86.8 97.2 82.4 76.9 54.9 61 53.8 53.5 35

IncRes-v2 MIM 60 51.9 99.2 42.2 25.9 30.5 21.7 23.3 12.3

NRDM 72.8 67.9 77.9 59.7 35.7 30.8 16.4 17.1 7.3

FDA 69.0 68.0 78.2 56.2 34.5 29.7 16.2 15.4 7.7

FIA 71.0 68.2 78.8 63.9 53.8 56.4 47.4 45.8 37.6

NAA 79.5 76.4 89.3 71.1 60.3 64.8 56.9 55.0 47.3

DANAA 82.7 80.4 91.5 77.7 66.3 72.2 64.7 60.8 56

Res152-v2 MIM 52.9 47.3 44.9 99.4 26.6 25.1 24.3 24.4 13.3

NRDM 72.7 68.8 59.5 89.9 39.1 31.0 20.3 18.1 9.3

FDA 15.7 9.2 8.3 26.2 13.1 6.8 9.3 9.7 4.0

FIA 80.7 78.2 77.5 98.0 58.5 58.2 53.0 48.4 34.4

NAA 84.7 83.5 82.3 97.6 61.8 67.0 59.1 58.1 46.1

DANAA 86.4 86.8 85.9 98.8 68.1 71.7 65.1 62.0 48.4

Inc-v3 MIM-PD 99.7 72.8 66.9 54.1 31.7 29.1 20.2 21.7 9.7

NRDM-PD 86.3 68.6 64.3 58.0 31.1 22.6 10.6 13.8 5.9

FDA-PD 74.7 49.3 46.5 40.9 23.7 15.4 10.5 13.1 6.2

FIA-PD 96.9 83.5 82.7 79.8 61.4 62.1 47.0 48.2 27.5

NAA-PD 97.2 87.0 85.6 81.1 64.9 65.8 53.4 51.6 33.6

DANAA-PD 97.9 89.4 89.4 84.8 70.6 72.3 61.7 60.9 40.1

Inc-v4 MIM-PD 81.3 99.4 71.0 59.7 31.6 28.0 22.9 23.3 12.7

NRDM-PD 90.3 97.0 79.5 76.8 34.1 34.4 21.1 19.7 8.6

FDA-PD 93.2 99.2 86.4 82.4 36.7 37.4 20.3 21.1 10.0

FIA-PD 84.0 92.4 81.2 77.1 55.2 58.6 48.9 47.5 29.3

NAA-PD 90.5 96.9 87.6 83.9 58.4 64.3 54.0 53.4 34.6

DANAA-PD 90.4 96.5 87.9 84.9 63.9 71.0 61.9 60.1 42.7

IncRes-v2 MIM-PD 80.7 76.5 98.0 65.8 36.9 42.7 29.4 28.6 17.1

NRDM-PD 76.4 74.1 78.7 64.1 40.7 32.4 17.5 18.8 6.7

FDA-PD 78.1 76.2 80.7 66.5 41.3 35.6 18.4 17.0 7.6

FIA-PD 76.5 73.4 81.7 71.1 60.0 62.5 50.3 47.0 36.4

NAA-PD 81.4 78.2 89.9 76.4 65.2 67.7 59.9 57.1 46.0

DANAA-PD 83.7 80.4 89.8 80.6 70.3 73 65.8 63.1 55.8

Res152-v2 MIM-PD 81.5 77.5 76.2 99.4 41.5 44.5 34.8 33.6 18.4

NRDM-PD 84.1 82.1 73.1 90.1 51.6 43.5 28.3 22.5 11.2

FDA-PD 22.1 12.7 11.4 23.4 19.6 10.4 9.9 11.7 5.4

FIA-PD 88.6 86.1 87.0 98.3 70.9 71.0 63.6 58.6 43.4

NAA-PD 90.2 88.5 89.0 98.0 73.5 76.1 70.3 66.3 52.2

DANAA-PD 92.0 91.7 91.8 98.7 79.3 82.1 76.1 73.4 60.8
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Fig. 2. DANAA attack success rate performance at different learning rates

Fig. 3. DANAA-PD attack success rate performance at different learning rates
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Fig. 4. DANAA attack success rate performance at different noise deviation

Fig. 5. DANAA-PD attack success rate performance at different noise deviation
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5 Conclusion

In this paper, we propose a double adversarial neuron attribution attack method
(DANAA) to achieve enhanced transfer-based adversarial attack results. Com-
pared with other literature methods, our method obtains a better transferability
for the adversarial samples. To derive more accurate importance estimates for
the middle layer neurons, we firstly employ a non-linear path to the perturbation
update process. Considering the calculation of gradient on the non-linear path,
for all examined models, the performance of DANAA algorithm has substan-
tially improved by up to 9.0% in comparison with the second best method with
adversarial trained models, and has an average overall improvement by 7.1%.
With the information transformation methods of DIM and PIM, our DANAA-
PD algorithm also has a maximum enhancement of 9.8% and an average overall
improvement of 7.3% compared to NAA-PD algorithm. Extensive experiments
have demonstrated that the attribution model proposed in this paper achieves
the state-of-the-art performance, with greater transferability and generalisation
capabilities.
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Abstract. Network Intrusion Detection System (IDS) is crucial in
defending the target network from intrusions. However, due to infor-
mation loss and insufficient feature dimensions during feature extrac-
tion, the majority of existing detection algorithms are unable to fully
utilize the data present in the original network. To address the afore-
mentioned issues, this study examines the presence of temporal and spa-
tial characteristics in network traffic data and proposes a new intrusion
detection model named CRNN-SA which combines hierarchical Convo-
lutional Neural Network (CNN), Recurrent Neural Network (RNN) and
Self-Attention. This model extracts spatial features and temporal fea-
tures by using CNN and RNN, respectively, and “connects” the features
extracted by CNN and RNN to obtain fusion features. In order to express
useful input information better, Self-Attention is utilized to allocate dis-
tinct weights to the combined characteristics. This model can effectively
extract spatial and temporal features of data by increasing the granu-
larity of synchronized input data. To ensure the accuracy of the model,
it undergoes evaluation using the UNSW-NB15 dataset. The Accuracy
and F1-score of the CRNN-SA model under the binary classification are
90.4% and 91.3%, respectively, and the metrics under the multi-class
classification are 89.9% and 77.5%, respectively. Through experiments,
it has been demonstrated that the combination of feature selection and
deep learning models can significantly enhance the detection capability,
resulting in a substantial decrease in the false positive rate.

Keywords: Network intrusion detection · Convolutional neural
network · Recurrent neural network · Self-Attention mechanism

1 Introduction

Over the past few decades, web technologies have evolved rapidly and gained
wide application in many fields, having a profound impact on social develop-
ment. Similarly, attacks on network systems are becoming increasingly serious,
with a wider and wider range of attacks and a variety of new attack tools and
methods, which not only cause economic losses but also threaten national secu-
rity. Therefore, an effective network intrusion detection solution is ultimately
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crucial for modern society. IDS [14] is a commonly utilized device for network
security that has the capability to monitor real-time network activities and iden-
tify potential threats. A Network IDS (NIDS) is a type of IDS that is installed
on network nodes and is capable of identifying attacks by directly examining the
traffic on the network.

The NIDS system comprises of both misuse detection and anomaly detection
[6]. The misuse detection method, which is widely employed in practical deploy-
ment, utilizes a set of rules based on expert knowledge to identify malicious
activities. It detects attacks by comparing network traffic line by line, enabling
quick detection with a minimal false positive rate [4]. Nevertheless, assailants
consistently enhance their assault instruments and tactics, whereas misuse detec-
tion techniques are incapable of identifying these unfamiliar attacks. In recent
years, the focus of intrusion detection has been on detecting unknown attacks,
a task that can be accomplished using the anomaly detection method. Machine
Learning and Deep Learning are the main technologies of intrusion detection [2].

The machine learning-based intrusion detection technique initially extracts
characteristics from the initial network traffic using feature engineering, followed
by model training to identify abnormalities. Models utilized to identify intrusions
often, include Random Forest [5] and SVM [8]. While machine learning-based
methods have attained comparatively high performance, as data complexity and
diversity increase, they become increasingly dependent on features extracted
through complex feature engineering (for example, packet lengths), whose design
requires specialized knowledge and results in information loss, becoming bottle-
necks for machine learning methods. By bypassing the limitations of machine
learning techniques and automatically extracting features from the original data,
the IDS method based on deep learning solves the aforementioned issues. Deep
learning technology has advanced quickly and produced amazing results in a
variety of applications, including intrusion detection, thanks to the growth of
hardware and the production of vast amounts of data. CNN [18], RNN, LSTM
[18], Transformer, and GAN [3] are examples of deep learning techniques that
learn characteristics from several perspectives. For instance, LSTM learns the
temporal characteristics of network traffic, CNN learns the spatial characteris-
tics.

Although the existing methods based on deep learning have achieved high
performance, they still have the following shortcomings:

• Packet header and packet payload play a key role in intrusion detection,
nevertheless, most methods based on deep learning treat them as a whole at
the same time, which makes it impossible to learn more concentrated features
in the model.

• The number and size of data packets contained in the session are not fixed.
Current solutions include explicit truncation and patching to a predetermined
length, but the result is inevitably loss of information as the shortened com-
ponent is unusable.

• Data packet intervals are not taken into consideration. Just as a phrase may
be seen as a series of several words, a conversation can be seen as a collection of
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various data packets. Contrary to sentence patterns, however, conversational
parts are relatively far apart from one another. The common sequence method
now in use is ineffective because processing time information is lost.

Aiming at the above problems, this paper constructs a new intrusion detec-
tion model named CRNN-SA which is based on CNN, RNN and Self-Attention.
This model uses one-dimensional CNN and RNN to extract spatial features
and temporal features respectively, ”connects” the features extracted by them
to obtain fusion features, introduces Self-Attention to extract the features, and
further extracts features to select important features. The contributions are as
follows:

• A new intrusion detection model named CRNN-SA is proposed, which takes
into account the attributes of every element in the initial network traffic. This
model has the ability to hierarchically learn the spatial- temporal character-
istics of the network traffic.

• To allocate distinct weights to the combined characteristics, the Self-
Attention mechanism is employed, and the secondary feature extraction is
carried out to select important feature information.

• The model is evaluated on UNSW-NB15 dataset, and the experimental results
show that the model is effective and robust. The prediction accuracy of binary
and multi-class experiments reached 90.4% and 89.9%, respectively.

2 Related Works

IDS is a crucial security technology that may collect and filter network traffic
to look for signs of network damage. Numerous ML-based intrusion/anomaly
detection techniques have been researched. For instance, Marteau et al. [11]
constructed an intrusion detection model using the forest of binary partition
trees in order to detect point-by-point and collective anomalies. Abdelmoumin
et al. [1] proposed an ensemble learning technique based on triple stacking to
detect anomalies in the Internet of Things, which integrated PCA, first-level
SVM and second-level neural network to aggregate predictions. Khan et al. [9]
put forward an integrated IDS model, which uses AutoML based on soft voting
method in network environment. The Internet of Things may experience high
delays and resource usage due to ensemble learning’s high training, testing, and
computing overhead costs. Qi et al. [16] integrated PCA, isolated forests, and
locally sensitive hashing (LSH) techniques to effectively and accurately detect
anomalies in Industry 4.0. However, machine learning techniques can limit their
learning ability and make it challenging to capture deep feature relationships
between data.

Because of its strong capacity for learning and independence from any fea-
ture engineering, deep learning has garnered a great deal of interest in intru-
sion/anomaly detection. In IDS, some cutting-edge deep learning techniques
have been applied. For instance, IDS with Variable LSTM was developed by
Zhou et al. [19] to address the complexity of data compression. Park et al. [15]
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created an IDS based on boundary balanced GAN (BEGAN) to detect networks
in order to address the issue of data imbalance. To enhance the detection perfor-
mance, they use features from trained encoders and apply supervised classifiers
like DNN, CNN, and LSTM. These deep learning approaches, however, have a
substantial computational cost. An detection system based on LSTM AE was
created by Li et al. [10] and leverages edge computing to identify potential intru-
sions into the Internet of Things network.

3 Proposed CRNN-SA Approach for Intrusion Detection

RNN targets temporal features, whereas CNN targets spatial features. As seen in
Fig. 1, the current HAST-IDS [17] design only connects CNN and RNN in series.
When learning along a multi-layer CNN hierarchy, the learning effectiveness of
the successor RNN (LSTM) is severely constrained and temporal features may
be lost.

Fig. 1. HAST-IDS.

In response to the above, this paper mixes CNN and RNN subnets, adds Self-
Attention, and finally learns synchronously in multiple steps, as shown in Fig. 2.
Due to its ability to extract sophisticated characteristics from extensive data, this
research paper prioritizes CNN over RNN. Consequently, the time information
preserved in the output of CNN will be captured by RNN. Finally, Self-Attention
can use attention mechanism to dynamically generate the weights of different
connections, so it can be used to process variable-length input sequences. With
the next step of data processing, the learning granularity becomes finer. CNN,
RNN and Self-Attention can fully learn without interfering with each other.

3.1 CNN

Convolution and pooling are the two basic operations that make up CNN. A
feature map is the common name for the output of convolution, which highlights
the properties of the input data using a set of kernels. The activation function
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Fig. 2. CRNN-SA.

is used to further process the convolution output, and then pooling is applied
to down-sample and eliminate irrelevant data. In addition, pooling aids in the
removal of errors in data, thereby enhancing the learning process of subsequent
layers. Its output feature map may accurately represent the original input data,
CNN learns the input data by automatically modifying the filter in successive
learning rounds. Since network packets exist in one-dimensional form, then one-
dimensional convolution is enough, which is expressed as follows:

(F ∗ G) (i) =
m∑

j=1

G (j) · F (i − j + m/2) (1)

Among them, F is the filter with the size of m, this paper chooses ReLU as the
activation function.

3.2 Batch Normalization (BN)

During training, the range of input values changes dynamically layer by layer,
a phenomenon known as covariance shift. An unstable learning outcome is pro-
duced by covariance shift, which makes the learning effectiveness of one layer
dependent on other layers. Furthermore, because of covariance shift, it may be
necessary to restrict the learning rate to a lower value in order to effectively
learn the data from various input ranges, consequently decelerating the learning
process. This paper uses Batch Normalization to solve the above problems and
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adjust CNN output in RNN module, which is shown below:

x̂ =
x − μB√
δ2B + ε

(2)

x is the value entered in batch, ε is a negligible value to ensure that the denom-
inator in the formula is not zero.

The output ŷ as shown in Eq. (3) is normalized, in which both ϕ and φ are
trained in the learning process to obtain great learning results.

ŷ = ϕx̂ + φ (3)

3.3 LSTM

In contrast to CNN, which learns information from individual data records, RNN
is capable of establishing connections between data records by incorporating
previous learning into current learning. This enables RNN to capture the time
characteristics present in the input data. However, traditional RNNs provide
basic feedback, which has the potential to accrue learning errors over time. If
this happens, the final learning results may be invalidated. LSTM is a kind of
gated recursive neural network, which can alleviate this kind of problem, and
control the feedback through a set of gate functions, so that short-term errors
will be eliminated eventually, leaving only lasting features. Therefore, this paper
uses LSTM for RNN. Four sub-networks, along with a set of control gates and
a memory unit. The figure contains input and output values that are vectors of
equal size, determined by the input. As shown below:

b + U × x (t) + W × h (t − 1) (4)

After four subnets, two types of control gates (α, tanh) are used to deter-
mine the previous learning and current output h (t) of feedback s (t), which are
specifically expressed as follows:

s (t) = σ (f (t)) ∗ s (t − 1) + σ (p (t)) ∗ tanh g (t) (5)

h (t) = tanh s (t) ∗ σ (q (t)) (6)

The input is learned by LSTM through the modification of weights and σ values
in these networks, enabling the output to effectively capture the time character-
istics of the input data (Fig. 3).

3.4 Self-Attention(SA)

Combining CNN with LSTM, we can use LSTM for sequence prediction while
CNN for feature extraction. By introducing attention mechanism, more impor-
tant parts can be selected from a large amount of information, which is conducive
to improving the accuracy of intrusion detection. As shown in Fig. 4, SA can use
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Fig. 3. LSTM data processing graph.

attention mechanism to dynamically generate the weights of different connec-
tions, so it can be used to process variable-length input sequences and can be
used as a layer of neural network, as shown below:

Attention(Q,K, V ) = softmax
KTQ√

Fk

V (7)

where Q represents a set of query vector moments, K represents a set of key vec-
tor matrices, and V represents a vector matrix. Firstly, the point multiplication
of Q and K is calculated, and divided by

√
Fk to prevent the result from being

too large, then the result is normalized to probability distribution by Softmax
operation, and finally the weight is obtained by multiplying it by matrix V .

3.5 Output

Due to the variation in learning granularity between different levels of
CNN+RNN, the output size of a level may not match the expected input size of
the subsequent level. As a result, the data of the following module is reshaped
using a Dimension Reshape layer. Additionally, over-fitting is a common issue
when learning with deep neural networks. Dropout is used in this research to
address over-fitting by randomly removing some connections from the DNN. In
conclusion, an extra convolutional layer and a Global Average Pooling (GAP)
layer are employed to extract additional spatio-temporal characteristics, and the
ultimate learning outcome is produced through the final fully connected layer.

4 Dataset

The assessment of neural network architecture is intricately linked to the dataset
employed. The evaluation results of numerous data sets collected for NID are
deemed unreliable [7] due to the presence of excessive redundant data [12], which
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Fig. 4. Self-Attention Structure.

makes the evaluation results unreliable. In order to ensure the effectiveness of
the evaluation, this paper chooses the non-redundant data set UNSW-NB15.

UNSW-NB15 data set [13] was generated by Australian Network Security
Center (ACCS) in 2015. The attack samples of the data set were collected from
three websites: Common Vulnerability and Exposures (CVE), Symantec Corpo-
ration (BID) and Microsoft Security Bulletin (MSD). Subsequently, the labora-
tory environment was used to simulate the sample attacks and create the data
set. The UNSW-NB15 dataset consists of nine categories of attacks.

5 Settings

In order to evaluate the design of this paper, which implement CRNN-SA with
PyTorch. For comparison, this paper also implements a set of most advanced
machine learning algorithms. The description, results and discussion of the
experiment are described as follows. In this experiment, RMSprop is used to
optimize the weight and bias of CRNN-SA model training, and the dropout is
set to be 0.5.

5.1 Data Preprocessing

In this paper, the UNSW-NB15 dataset is split according to the ratio of 7:3, and
70% of the data is used as the training dataset. The remaining 30% data is used
as a test data set to evaluate the trained network intrusion detection model.

We use both binary classification and multi-classification to evaluate data
sets. In the first set of experiments, there are only two kinds of results in binary
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classification, normal or attack. In the second set of experiments, the multi-
category classification label has a range of values that can be assigned based
on the attack type. Before evaluating these models, the data set is preprocessed
through the following three steps.

1. Transform classification features: To ensure the experiment’s effectiveness,
the data must adhere to the input format specified by the neural network.
The initial network data contains certain categorical features that need to be
transformed. Learning algorithms are unable to process textual information
and require conversion into numerical values.

2. Standardization: The input data may have different distributions of mean and
standard derivative, which may affect the learning efficiency. In this paper,
the input data are scaled using standardization methods so that the mean is
0 and the standard deviation is 1.

3. Hierarchical K-fold cross-validation: The UNSW-NB15 dataset used in this
paper contains a total of 257,673 samples. In order to use a large amount of
non-redundant data for training and validation, this paper adopts a hierar-
chical K-fold cross-validation strategy. In this scheme, all the samples in the
data set are divided into K groups, in which K1 group is used as a whole for
training and the other group is used for verification.

5.2 Evaluation Metrics

This paper evaluates CRNN-SA according to verification Accuracy (ACC), DR
(Detection Rate) and FPR. ACC measures CRNN-SA’s ability to correctly pre-
dict normal traffic and attacked traffic, while DR indicates the ability to predict
only attacks, as shown below:

ACC =
TP + TN

TP + TN + FP + FN
(8)

Precision =
TP

TP + FP
(9)

Recall =
TP

TP + FN
(10)

F1 − score = 2 ×
(

Precision × Recall

Precision + Recall

)
(11)

where TP is the number of attacks, TN is the number of normal traffic correctly
classified, FP is the number of attacks wrongly classified as normal traffic, and
FN is the number of attacks wrongly classified as normal traffic.

5.3 Analysis of Experimental Results

Firstly, this paper measures the performance of CRNN-SA model according to
two situations: (1) Two classification, that is, CRNN-SA model predicts a data
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packet in only two situations: attack or normal traffic; (2) Classification with
multiple classes, that is, the CRNN-SA model identifies a data packet as normal
or an attack type given in the attack model of UNSW-NB15 data set (10 classes).
The experimental results are described as follows:

Binary Classification. The detection results of CRNN-SA algorithm in this
paper under the binary classification including Accuracy and F1-score are shown
in Table 1. It can be observed that the accuracy of other comparison algorithms
is between 71.6% and 88.5%. In contrast, the CRNN-SA algorithm proposed
in this paper shows the best detection performance among all the comparison
model methods. The Accuracy of CRNN-SA is 90.4%, and the F1-score is 91.3%.

Table 1. Result of Binary Classification.

Methods Accuracy F1-score Methods Accuracy F1-score

LR 0.753 0.792 RF 0.877 0.912

GNB 0.716 0.818 CNN-LSTM 0.835 0.889

KNN 0.829 0.869 LSTM 0.767 0.798

DT 0.885 0.91 GRU 0.777 0.818

AdaB 0.839 0.884 DNN 0.827 0.879

CRNN-SA 0.904 0.913

Classification with Multiple Classes. The results of classification with mul-
tiple classes are displayed in Table 2. It can be observed that the prediction
accuracy of the proposed CRNN-SA algorithm for UNSW-NB15 data set reaches
89.9%, while other algorithms are in the range of 8.5% to 73.6%. In conclusion,
For UNSW-NB15 data set, the CRNN-SA algorithm proposed in this paper
shows the best performance compared with the RF and DT methods of multi-
classification. Moreover, the F1-score of CRNN-SA is 77.5%.

Table 2. Result of Multi-class Classification.

Methods Accuracy F1-score Methods Accuracy F1-score

LR 0.561 0.428 RF 0.736 0.695

GNB 0.085 0.130 CNN-LSTM 0.680 0.615

KNN 0.652 0.638 LSTM 0.661 0.598

DT 0.735 0.718 GRU 0.665 0.608

AdaB 0.631 0.557 DNN 0.663 0.608

CRNN-SA 0.899 0.775
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Ablation Experiment. To further investigate the efficacy of the CRNN-SA
model introduced in this research, the ablation experiment was examined. The
experimental results of CRNN-SA model and ablation model are shown in
Table 3 and 4. As can be seen from Table 3 and 4, the detection performance
of CNN model and RNN model alone is poor. On the contrary, the Accuracy
and F1-score of the CRNN-SA model under the binary classification are 90.4%
and 91.3%, respectively, and the metrics under the multi-class classification are
89.9% and 77.5%, respectively. In a conclusion, the ablation experiment shows
that the improved CRNN-SA model has better detection performance than CNN
and RNN models, and proves the effectiveness and accuracy of the CRNN-SA
model.

Table 3. Binary Classification ablation
experiment.

Methods Accuracy F1-score

CNN 0.856 0.897

RNN 0.807 0.867

CRNN-SA 0.904 0.913

Table 4. Multi-classification ablation
experiment.

Methods Accuracy F1-score

CNN 0.684 0.627

RNN 0.662 0.587

CRNN-SA 0.899 0.775

In order to further discuss the results, this paper visualizes the Binary Clas-
sification indexes of CRNN-SA algorithm, including Accuracy, FPR, Recall and
F1-score curves, for the UNSW-NB15 network attack dataset, as shown in Fig. 5,
Fig. 6 and Fig. 7, respectively.

Fig. 5. Visualization diagram of Accuracy (a) and FPR (b) of training.

In this paper, the multi-classification indexes of CRNN-SA, including Accu-
racy, FPR, Recall and Loss curves, are visualized in the UNSW-NB15 network
attack data set, as shown in Fig. 8 and Fig. 9. Additionally, the CRNN-SA Con-
fusion Matrix Result for the UNSW-NB15 dataset is illustrated in Fig. 10.
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Fig. 6. Verified Accuracy (a) and FPR (b) Visualization.

Fig. 7. Verified F1-score (a) and Recall (b) Visualization.

Fig. 8. Visualization diagram of Accuracy (a) and FPR (b) of training.
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Fig. 9. Visualization of Recall (a) and Loss (b) of training.

Fig. 10. The confusion matrix result for the UNSW-NB15 dataset is provided by
CRNN-SA.

6 Conclusion

In order to identify intrusions on large-scale networks, a CRNN-SA based on
DNN architecture is developed in this research. CNN and LSTM are used by
CRNN-SA to learn the spatial and temporal properties of network traffic data,
respectively. This work investigates the input data at the same granularity by
synchronizing CNN and RNN in order to prevent the information loss brought
on by the differing learning emphases of CNN and RNN. In order to express
useful input information better, Self-Attention is presented to assign different
weights to the fused features, so that the spatial and temporal features of data
can be extracted effectively. In addition, in order to strengthen learning, batch
normalization is added to the model. A various of experiments are carried out
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on the non-redundant data set UNSW-NB15, and the experimental results show
that the CRNN-SA model can effectively utilize CNN, LSTM and Self-Attention.
The Accuracy and F1-score of the CRNN-SA model under the binary classifi-
cation are 90.4% and 91.3%, respectively, and the metrics under the multi-class
classification are 89.9% and 77.5%, respectively. Compared with other optimal
baseline models, the CRNN-SA model proposed in this paper can greatly improve
the verification accuracy and decrease the false alarm rate of network intrusion
detection. In the future work, this paper will measure the training and testing
time of the selected methods to determine the best performance in efficiency.
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Abstract. Spoofing behaviors profits from other participants via plac-
ing large amounts of deceptive orders to create misleading signals with
the help of advanced electronic trading techniques, severely harming
the healthy and sustainable development of modern financial markets.
Existing works focus mostly on detecting individual spoofing issuers or
orders, which ignore the capability of mining hidden conspiracy fraud
patterns. Consequently, they face significant challenges in tracking orga-
nized spoofing behaviors. To this end, in this paper, we proposed a novel
transformer-based graph neural network to learn the temporal inter-
connected transaction representations for conspiracy spoofing behavior
detection. In particular, we model user orders in the financial market
by the temporal transaction graph layer first, which produces temporal
and relational encodings of the user’s order behaviors. Then, we devise
a transformer-based neural network to automatically learn the deeper
sequential and inter-connected representations, which could perceive a
boarder view of the user’s transaction patterns. Finally, the temporal
and relational features are jointly optimized by the detection network
in an end-to-end manner. We conduct extensive experiments on a real-
world dataset from one of the largest financial exchange markets in East
Asia. The result strongly proves the superior performance of our pro-
posed method in fighting against conspiracy spoofing behaviors with
higher accuracy without handcraft feature engineering, compared with
ten state-of-the-art baselines. To the best of our knowledge, this is the
first work that proposed a transformer-based deep graph learning app-
roach for spoofing detection challenges and demonstrates its practical
ability in real-world applications.

Keywords: Spoofing Detection · Graph Neural Network ·
Transformer Neural Network

1 Introduction

Spoofing [26], also known as “bait and switch”, refers to serious market manip-
ulation in the financial market such as stock markets, futures markets, bond
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
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Fig. 1. A typical procedure of spoofing transactions. Fraudsters create lots of fake
LOB balances and cancel them on the bait side to gain illegal profit from the financial
market.

markets, etc. It is a federal felony in the United States [27] and forbidden by
all major financial markets worldwide [23]. With the rapid development of elec-
tronic trading techniques, the occurrence of spoofing orders [25] shows a growth
trend and draws greater attention from financial regulation in many countries.
For example, in the past few years, the U.S. Commodity Trading Futures Com-
mission (CFTC) has dealt with an increasing number of spoofing cases, which
punished the violator over $900 million for a single case in the year of 20201.
There is no doubt that spoofing orders can have devastating effects on healthy
financial markets, social well-being, as well as sustainable economic develop-
ment. Therefore, it is of great significance to detect spoofing orders, which has
attracted the great attention of academia and industry.

Spoofing is a market abuse behavior where a trader submits a number of
orders at different price levels on the bait side with no intention of ever seeing
them executed, aiming to push the transaction price in a favorable direction.
Subsequently, the trader will switch to the opposite side and trade at a particular
price range. Finally, the majority of the virtual orders on the bait side will be
withdrawn. Via this method, the trader can buy or sell an asset at a better price,
artificially inflate the supply and demand of an asset, and gain illegal profit.
Figure 1 illustrates a typical procedure of spoofing, the trader places orders on
the sell side (green) and places a series of orders (red) at a different price on
the buy side, aiming to give the impression of substantial supply/demand and
drive the prices up. After the genuine order trades, the multiple buy orders will
be rapidly withdrawn. By spoofing, the trader can buy or sell an asset at a
better price and gain illegal profit. This spoofing strategy creates a lot of fake
limited order book (LOB) balances, which bring significant threats to the fair

1 https://www.cftc.gov/PressRoom/PressReleases/8260-20.

https://www.cftc.gov/PressRoom/PressReleases/8260-20
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systematical, and healthy of the financial market by harming the interest of a
broad range of innocent mid-and-small investors.

The financial industry has developed spoofing detection since the early 1970s
[22], from the statistical compliance rules to conventional machine learning
approaches [5]. Recently, deep and sequential learning techniques have been
introduced for spoofing detection [28]. For example, most researchers leverage
time series learning methods to quantify the impact and cost of spoof activity for
better regulation policy [9]. [21] tried to detect occurrences of spoofing activities
by correlation analysis. However, an increasing number of criminals have been
organized like enterprises recently, which can be far-reaching and move quickly
from one asset to another. To fight against these human brain-armed criminal
behaviors, most existing spoofing detection methods still focus on mining sequen-
tial patterns from historical orders individually, facing significant challenges in
learning meaningful representations from temporally inter-connected conspiracy
patterns.

Therefore, in this paper, we present a novel transformer-based deep graph
learning method, named RTG-Trans, to detect the conspiracy spoofing trading
behaviors by jointly learning the inter-connected relational feature and com-
plicated temporal features. In particular, the relational features are learned by
the proposed graph neural layer, which directly models the user’s order rela-
tions from the constructed transaction graph. The temporal features signify the
temporal characteristics inherent in transaction actions, which are generated
by concatenating the features of each transaction action. Then, we model the
encodings of the users’ sequential transactions by transformer-based sequential
learning into temporal representations. Finally, the inter-connected relational
representations and complicated temporal features are jointly optimized by an
end-to-end detection network so that the model can effectively capture the com-
plicated (temporally inter-connected) spoofing patterns. Extensive experiments
on a real-world dataset from one of the largest financial exchange markets in East
Asia strongly demonstrate the effectiveness of our proposed method, compared
with ten state-of-the-art baseline methods. Due to its superior performance and
practical capability, the proposed approach is now on the way to becoming a
fundamental component in the real-world spoofing detection system. In brief,
our main contributions are summarized as follows:

– We propose a novel transformer-based deep graph learning method for spoof-
ing detection by jointly capturing relational features and temporal features.
To the best of our knowledge, this is the first work that addresses the spoofing
detection problem by transformer-based deep graph learning.

– To effectively capture the temporally inter-connected spoofing patterns, we
propose the deep graph neural layer for relational pattern learning and
transformer-based sequential layer for temporal feature learning, which are
then jointly optimized by an end-to-end detection network.

– Our approach is extensively evaluated in the analytic system of one of the
largest financial exchange markets in East Asia. The result strongly demon-
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strates the effectiveness and the superiority of our proposed method, com-
pared with ten state-of-the-art baselines.

2 Related Works

2.1 Spoofing Detection

In recent years, spoofing [1] has been studied by many researchers. [19] investi-
gated two popular scenarios of stock price manipulations: pump-and-dump and
spoofing trading. They utilized statistical methods to define the two kinds of
trading and tried to use a neural network to model them. The experimental
results show that the model achieves 88.28% accuracy for detecting pump-and-
dump, but it fails to model spoof trading effectively. [33] presented an agent-
based model of manipulating prices in financial markets, realizing the spoofing
trading mechanism. [21] utilized the rule-based algorithm and set the corre-
sponding parameters to detect potential spoofing cases in ten stocks from the
Ibovespa index. [5] presented a model that simulates the trading tactics of an
investor who engages in spoofing of the limit order book with the goal of boosting
profits generated from selling a security. [28] offered a micro-structural examina-
tion of spoofing in a simple static scenario. They introduce a multilevel imbalance
that impacts the resulting price action and proceed to outline the optimization
strategy utilized by a potential spoofer. In addition to the above work, some
researchers focused on utilizing Markov Decision Model (MDP) based methods
to model the different trading strategies. For example, [35] modeled the trad-
ing on the futures market as a MDP, and proposed the IRL algorithm based
on linear programming to characterize the behaviors of high-frequency traders
and identify the manipulative spoofing strategy. [4] proposed an adaptive hidden
Markov model with anomaly states for modeling price manipulation activities.
However, the series of MDP-based methods pay more attention to strategy mod-
eling instead of spoofing detection. Furthermore, few existing works focus on
the effective learning of temporal and inter-connected features of spoofing order
detection.

2.2 Deep Feature Learning on Financial Data

With the continuous development of artificial intelligence technology [24], graph
deep learning has gained much attention. Machine learning techniques [2] based
on graphs are not only widely used in the fields of image, natural language pro-
cessing, knowledge graph, and network security, but it has also proven to be
extremely effective and reliable in financial tasks [3]. [30] put forward a fresh
framework called the HITS-based fraudulent phone call detection system, which
uses data mining of users’ telecommunication records to uncover fraudulent
phone calls. They investigated duration-relatedness and frequency-relatedness by
leveraging telecommunications to extract descriptive features that can be used
to weigh the Common Phone Graph (CPG) and Unique Phone Graph (UPG).
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[12] introduced a fraud detection framework based on Convolutional Neural Net-
works, which is designed to capture the inherent patterns of fraudulent behaviors
learned from labeled data. A wealth of transaction data is expressed as a feature
matrix, over which a CNN is employed to identify a collection of underlying
patterns for each sample. [9] proposed a temporal attention-based graph net-
work (STAGN) for credit card fraud detection. In particular, they first learned
temporal and location-based transaction graph features by graph neural net-
works. [8] first attempted to provide loan risk assessment by adding a high-order
graph attention representation to predict loan delinquencies and warn of domino
effect loan crises. To enhance GNN-based fraud detectors against fraudsters’
feature disguise and relationship disguise, [11] proposed a label-aware similar-
ity metric and similarity-aware neighbor selector using reinforcement learning.
To solve the sequence-based fraud detection problem, [40] proposed a Hierarchi-
cal Interpretable Network to model the user’s behavioral sequences, which not
only improves the performance of fraud detection but also gives a reasonable
interpretation of the prediction results. Transformer models also have achieved
impressive success in finance, such as [10] proposed a gaussian transformer to
predict stock movement and [34] utilized transformer for volatility prediction.
Though existing methods have achieved a decent performance, little research
has been done on spoofing transaction detection by jointly learning the temporal
and relational features. To the best of our knowledge, this is the first work that
learn the potential relational-temporal representations of transaction behavior
to automatically detect spoofing activities with a transformer-based deep graph
neural network.

3 The Proposed Method

3.1 Preliminaries

Transaction Record. For a set of transaction records R = {r1, r2, · · · , rn},
each transaction record r can be defined as a tuple of attributes r = {u, a, f},
composed of a user ID u, the set of transaction actions a = {a1, a2, · · · , am} of
u, and the features f = {f1, f2, · · · , fm}, where m is the number of actions, and
fi = (f1

i , f2
i , · · · , fk

i ), is the k-dimensional feature dimension of each action. In
the preprocessing, we normalize all features of all users.

Problem Definition. A spoofing event d in this paper is an illegal transaction
that distorts the shape of the limit order book for the purpose of misleading
others into trading. Thus, the spoofing event is a special type of transaction,
which means that it also retains the {u, a, f} attributes. The complete real-
world spoofing event data provided by our partner organizations provide us with
a unique opportunity to solve the fraud detection problem. In summary, we now
formalize our spoofing detection problem as follows. Given a set of transaction
records R = {U,A, F} , a set of spoofing events D, which are subsets of the set of
transactions {D|D ⊂ R}. For each transaction, we want to infer the probability
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Fig. 2. Overall architecture of the RTG-Trans model. The model contains four modules:
the input orders, the temporally inter-connected feature learning layer, the transformer-
based joint attention layer, and the detection network.

of whether it is a spoofing event based on the transaction records and features.
The goal is to achieve high accuracy in spoofing prediction, as well as to explore
spoofing patterns in transactions.

3.2 Model Architecture

Figure 2 shows the network architecture of our proposed model RTG-Trans.
First, our model takes the user’s transaction records as input and feeds them
into two different higher-order tensor spaces to capture both temporal features
and relational features. Next, we use the convolutional layer to obtain the fused
transaction representation vector, since the convolutional layer helps model the
hidden patterns of transactions. Then, we use the Transformer to extract infor-
mation by strengthening the important features and weakening the unimportant
ones. Finally, we reshape the learned feature representation from tenors to vec-
tors for the spoofing detection task by a detection network. We will first introduce
the components of the model, and then discuss the setup and optimization of
the detection layer in the following sections.

3.3 Temporally Inter-connected Feature Learning Layer

Temporal Feature. The transaction actions are temporal sequence data, which
has temporal information. To reflect the temporal characteristics of transaction
actions, here we construct temporal features in a simple way, i.e. stacking the
features of each action fi in chronological order as temporal features. We repre-
sent the temporal characteristics of each transaction record of a user as featem,
where featem = [f1, f2, · · · , fm]T and fi ∈ R

k, featem ∈ R
m×k. In this paper,

for each trading action, we extract features including buy or sell, open or close,
quantity, price, level and volume of the order, and volume at the 5 best buy
prices and 5 best sell prices on the LOB.
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Fig. 3. The graph classification model for spoofing detection.

Relational Feature. GCN [7] is a graph neural network structure that has
become popular in recent years, which is a natural extension of the convolutional
neural network in the graph domain. In our method, all transaction records of
each user constitute a graph. Each node in the graph is a transaction record,
and the representation of nodes is represented by the data in the transaction
records, and the relationship between nodes is the sequential relationship of
transaction records, so the graph we construct is a one-way graph. To determine
whether there is spoofing in all transaction records of a user to perform graph
binary classification on the graph composed of all transaction records. The binary
classification model of the graph we constructed is shown in Fig. 3, where the
input is the graph represented by its adjacency matrix and node feature matrix.
The first two layers are graphical convolution with multiple neural units and
ReLU activation functions per layer. The next layer is the Average Pooling
layer, where the learned node representations are aggregated to create graph
representations. The graph representation is fed into two fully connected layers,
each of which also has multiple neural units and ReLU activation functions. The
final layer is the output layer with one unit and a sigmoid activation function.

The binary classification of a graph is defined as follows. We use A to denote
the adjacency matrix of a graph, m is the number of nodes, and each node has a
k-dimensional feature vector. We use X ∈ R

m×k to denote the node information
matrix of the graph, with each row representing a node. Given a graph A and
its node information matrix X, our graph convolutional layer takes the form
Z = f(˜D−1

˜AXW) where ˜A = A + I is the adjacency matrix of the graph with
added self-loops, ˜D is its diagonal degree matrix with ˜Dii =

∑

j
˜Aij, W ∈ R

k×k
′

is a matrix of trainable graph convolution parameters, f is a nonlinear activation
function, and Z ∈ R

m×k
′
is the output activation matrix. In this Average Pooling

layer, the input is the output of the GCN layer Zgcn, where each row is a vertex’s
feature descriptor and each column is a featured channel. The Average Pooling
outputs a tensor Zmp. After Average Pooling, we add a fully-connected layer
followed by a softmax layer. When the graph classification model is trained,
we use the output of the second fully connected layer as a representation of
each node. The representations of these nodes capture the node relationship
information, which we denote as feagcn ∈ R

m×k.
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Temporal-Relational Feature Fusion. We use concatenation operation and
convolution operation to fuse temporal features featem and relational features
feagcn. We first concatenate the featem and feagcn and then fed them to the
convolutional layer. The convolutional layer can clearly fuse the features from
different domains, so we use CNN to integrate relational features and temporal
features to learn more complex features from the input space. The following
equation represents the convolution operation:

feac
j =

∑

jfeac−1(ct − c′
t, cs − c′

s)ω
c
i (c

′
t, c

′
s) (1)

where ωc
i is the kernel in the cth layer and ith kernel which convolves over the

feature feac−1. The first layer of feac−1 is the splicing of featem and feagcn. ct
and cs are the dimension of featem and feagcn, which are equal to m and k of the
first convolutional layer. ωc

i is the element-wise weight in the convolutional kernel
(c′

t, c
′
s). Thus, the output feature feacnn is calculated by feacnn = σ(

∑

j feac
j +

bc), where bc is the bias parameter and σ denotes the sigmoid function. The
output feature feacnn is then resized and fed to the Transformer.

3.4 Transformer-Based Joint Attention Layer

Transformer [32] is a loop-avoiding model structure that relies entirely on the
attention mechanism to model the global dependencies of inputs. Because the
modeling of dependencies relies entirely on the attention mechanism, the atten-
tion mechanism [6] used by Transformer is called self-attention [39]. In this paper,
we use self-attention to enhance the important features and weaken the unimpor-
tant features among relational features and temporal features. The self-attention
can be described as:

Attention(Q,K,V) = softmax(
QKT

√
d

)V, (2)

where Q ∈ R
m×k, K ∈ R

m×k, and V ∈ R
m×k denote the query matrix, key

matrix, and value matrix respectively. We set Q = K = V, and set d equal to
k. The multi-head attention first linearly projects the queries, keys, and values
h times via using different linear projections, and the scaled dot-product atten-
tion is performed on h attention layers in parallel. Finally, the results of scaled
dot-product attention are concatenated and once again projected to get a new
representation. Formally, multi-head attention can be defined as follows:

headi = Attention(QWQ
i ,KWK

i ,VWV
i ) (3)

featrans = Concat(head1 , · · · ,headh)Wo (4)

where WQ
i ∈ R

dh×dk , WK
i ∈ R

dh×dk , WV
i ∈ R

dh×dk and Wo ∈ R
2dh×2dh are

trainable projection parameters, dh is the dimension of values and dk is the
dimension of queries or keys in attention, and dk = dh. The representations
obtained after using the self-attention mechanism are denoted as featra.
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3.5 The Detection Network and Optimization

In the detection network, the input is the featra, which is learned by the convo-
lutional layer and Transformer. The detection network aims to learn the prob-
ability of whether it is a spoofing. Hence, we employ a simple two-layer fully
connected network with sigmoid activation as the detection network. The loss
function is the likelihood defined as follows:

Loss = − 1
n

n
∑

i=1

[yi log detect(featra) + (1 − yi) log(1 − detect(featra))] (5)

where n is the number of the transaction record, yi denotes the label of i-th
records, which is 1 if the record is spoofing and 0 otherwise. detect(featra) is
the detection function that maps featra to a real-valued score, indicating the
probability of whether the current transaction is spoofing. In this paper, our
model can be optimized by standard SGD-based algorithms, and we use Adam
Optimizer to learn the parameters.

4 Experiments

4.1 Experimental Settings

Dataset. To the best of our knowledge, there does not exist any available pub-
lic spoofing detection dataset with ground-truth labels. Therefore, we collect
large-scale labeled spoofing records from one of the largest commodity futures
exchange markets in East Asia. The dataset records real-world users’ transac-
tions spanning from January 1, 2019 to June 5, 2020. We chose historical records
from 58 contracts of 17 futures, as these futures have the most actively traded
futures contracts that covered a wide range of traders. The trading data con-
tains order data, transaction data, and order book data. The order data reflects
the interest of the trader to buy, sell or cancel the asset at a particular price,
the transaction data reflects the matching result of buy and sell orders, and the
order books show the price and volume of the currently untraded buy and sell
orders, which clearly reflects the predominating market sentiment. It should be
noted that the order books provide five levels of depth, i.e., the price and vol-
ume on the 5 best buy prices and the 5 best sell prices. Experienced supervisors
have labeled the spoofing traders, including the spoofing trading time and the
corresponding orders. We conducted statistical analysis on the labeled spoofing
trading data and found that the vast majority of spoofing activities contain no
more than 50 orders. We thus treat trading records as a sequence and the length
of each sequence is set to 50. In order to model the spoofing characteristics, we
extract 16-dimensional features including order-related information and corre-
sponding order book information. The final feature contains buy or sell, open
or close, quantity, price, level and volume of the order, and volume at the 5
best Buy prices and 5 best Sell prices on the limited order books. The dataset
consists of a total of 11,790 records, and we randomly split the dataset into 66%
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for training and 34% for testing. According to the strict confidentiality policy
and non-disclosure agreement, we cannot directly release this dataset due to the
user’s privacy protection. But we are working on an agreement to simulate an
artificial dataset by deep models, such as GraphRNN [36]. Thus, the simulated
data could preserve a similar distribution to this real-world dataset. We plan
to release them publicly after passing the legal process. We believe it is very
valuable for the research community and could contribute a lot to future work
in the literature.

Baselines. For comparison, we tested both the traditional machine learning
methods and deep learning models on our benchmark dataset to demonstrate
the superiority of our proposed RTG-Trans. Logistic Regression (LR) [13],
which uses logistic regression to detect spoofing, taking transaction records infor-
mation as features. Random Forest (RF) [38], a decision tree-based ensemble
learning method that could be employed for spoofing detection. Adaboost [17],
which is an iterative algorithm that trains different weak classifiers for the same
training set, and then aggregates these weak classifiers to form a stronger final
strong classifiers for detecting spoofing. Gradient Boosting Decision Tree
(GBDT) [37], which is a gradient boosting method for optimizing classifica-
tion metrics and efficiently handling mixed types of data. Multilayer Percep-
tron (MLP) [15], which is a feed-forward network with two hidden layers for
detecting spoofing. Long Short Term Memory (LSTM) [14], which encodes
transaction records information with an LSTM neural network to detect spoof-
ing. EigenGCN [20], which learns the correlations between different transaction
records with a GCN neural network for detecting spoofing. BiTransformer [29],
which is a loop-avoiding model structure that relies entirely on attention mecha-
nisms to model the global dependencies of inputs and outputs. RetaGNN [16],
which presents a novel Relational Temporal Attentive Graph Neural Network
model to learn the mapping from a local graph of the given user-item pair to
their interaction score and to train the learnable relation weight matrices. GRU-
DM [31], which is based on a highly extendable Gated Recurrent Unit model and
allows the inclusion of market variables that can explain spoofing and potentially
other illicit activities.

Evaluation Metrics. Spoofing detection is a binary classification task. In real
futures trading, to detect the presence of spoofing behavior for the full volume
of transactions, and in addition to the Accuracy indicator, the AUC indicator is
added to evaluate the classification ability of the model, the Precision indicator
evaluates the accuracy of the model prediction, the Recall indicator evaluates
the detection ability of the model for spoofing behavior, and the F1 indicator is
the combination of Precision and Recall.

Parameter Setting. We use the Adam [18] method for optimization, with
the learning rate set to 0.001 and the training count set to 100. The LR, RF,
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Table 1. Performance comparison with baselines. The best number is in boldface and
the second best is underlined.

Method AUC Accuracy Precision Recall F1 Model Size

LR 0.7087 0.6925 0.8168 0.5952 0.6886 201

RF 0.7339 0.7165 0.8498 0.6118 0.7115 12,120

Adaboost 0.7642 0.7551 0.8447 0.6998 0.7654 7,272

GBDT 0.7587 0.7368 0.9026 0.6044 0.7240 13,635

MLP 0.7796 0.7228 0.8499 0.7313 0.7862 15,201

LSTM 0.8264 0.8167 0.9050 0.7589 0.8255 73,601

EigenGCN 0.8292 0.8308 0.8605 0.8398 0.8501 65,793

BiTransformer 0.8091 0.8120 0.8396 0.8293 0.8344 95,714

RetaGNN 0.8398 0.8332 0.8463 0.8792 0.8624 65,203

GRU-DM 0.8320 0.8282 0.8514 0.8551 0.8533 56,301

RTG-Trans 0.8469 0.8523 0.8607 0.8845 0.8724 154,937

Adaboost and GBDT are implemented using scikit-learn library. In LR, the
parameter C is set to 0.5. In RF, Adaboost and GBDT, the parameter max depth
is set to 5 and the parameter n estimators is set to 10. MLP, LSTM, EigenGCN,
BiTransformer, RetaGNN, GRU-based and RTG-Trans are implemented using
PyTorch, and the batch size is set to 128. The MLP model has two layers, the
number of neurons in the first layer is 200, and the number of neurons in the
second layer is 50. The dimension of the hidden layer in LSTM is set to 100 and
the layer of LSTM is two. The number of layers of the GRU-based model is three
layers, the first two layers are GRU, the last layer is a fully connected layer, and
the dimensions are 128, 64, and 50 respectively. In EigenGCN, the first two layers
are graph convolution with 8 units and ReLU activation per layer, and the last
two fully connected layers have (8, 8) units and ReLU activation, respectively.
The final layer is the output layer with a single unit and sigmoid activation. In
the BiTransformer and RTG-Trans, the number of attention headers is set to
4, and the dimensions of key, query, value are 768. The parameter sizes of all
models are shown in the last column of Table 1.

4.2 Results and Analysis

We evaluate the performance of different models in spoofing detection tasks.
We repeated the experiments 10 times and the average experimental results
are shown in Table 1. As can be seen from the table, in general, our method
outperforms all competitors, including recent methods such as RetaGNN and
GRU-based. Our method achieves the best results in most of the metrics, except
Precision, indicating that our method is very effective in spoofing detection. In all
baselines, the deep learning-based approach (MLP, LSTM, EigenGCN, BiTrans-
former, RetaGNN, GRU-based and RTG-Trans) outperforms the machine-
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Table 2. Ablation Studies. “RTG-Trans-no-X” means removing module X from our
full model RTG-Trans.

Method AUC Accuracy Precision Recall F1

RTG-Trans 0.8469 0.8523 0.8607 0.8845 0.8724

RTG-Trans-no-TEMP 0.7805 0.7973 0.8566 0.7396 0.7938

RTG-Trans-no-GCN 0.7458 0.7418 0.8090 0.7173 0.7604

RTG-Trans-no-CNN 0.8306 0.8380 0.8415 0.8827 0.8616

RTG-Trans-no-Trans 0.7802 0.7874 0.8583 0.7370 0.7930

learning-based approach (LR, RF, Adaboost and GBDT), demonstrating the
need for deep models for spoofing detection. The results of EigenGCN are slightly
better than LSTM, probably due to the fact that the information about the
relationship between orders can be extracted by EigenGCN, and this informa-
tion is more useful for spoofing detection. Although BiTransformer works better
than LSTM in tasks concerning text information processing, in our experiments,
LSTM gives better results than BiTransformer. The possible reason is that our
feature dimension is relatively small, only 16 dimensions, which is much less than
the hundreds of dimensions in text processing tasks, and may be overfitting when
using BiTransformer to extract features in our task.

We also counted and compared the training time of the model, LR and RF
are about 15 min, Adaboost, GBDT and MLP are about 40 min, LSTM is about
50 min, EigenGCN is about 60 min, BiTransformer is about 68 min, RetaGNN is
75 min, GRU-DM is about 65 min, RTG-Trans is about 70 min. In the inference
stage, all models are at the second level, and there is not much difference. Other
models are around 0.5 s, our model is around 0.8 s. Although the training time
of the model in this paper has been lengthened, the prediction accuracy is the
best.

4.3 Ablation Study and Case Study

To show the effectiveness of each module in our model, we conducted abla-
tion experiments. We removed each core module from our full model separately,
and the experimental results are shown in Table 2. When the module GCN
is removed, the accuracy decreases the most, indicating that the information
about the relationship between orders extracted from the GCN module is very
important. When the Temporal or Transformer module is removed, the accuracy
decreases as well, indicating that these two modules are also influential. Over-
all, the removal of different modules from our proposed model leads to different
degrees of performance degradation, which indicates that each module in our
proposed model contributes to the overall spoofing detection performance.

We also give an example of spoofing, as shown in Fig. 4a. The client submitted
800 lots of buy and open orders at 10:25:03, 04, 09, 11, etc., and at the same time
made a sell and open order in the opposite direction at 10:25:14 and completed
the transaction, and canceled the order immediately after the transaction. This
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Fig. 4. The pictures of the case study.

behavior has the typical characteristics of spoofing. The purpose of the buyer’s
order is to promote the price increase, which is conducive to the customer’s order
in the opposite direction and the transaction. We put these data into the model
for inference, and visualize the features of these features in the penultimate
layer of the model, as shown in Fig. 4b. The horizontal coordinate is the feature
dimension of the data, and the vertical coordinate is the number of entries of
the data. As can be seen in the subplots, there are several rows of features that
are clearly different from the other rows, and these rows correspond to the label
of spoofing. This is a good indication that the features extracted by our method
are very effective in detecting whether they are spoofing or not.

5 Conclusion

In this paper, we propose a novel transformer-based deep graph learning app-
roach to address the inter-connected temporal pattern representation challenges
in real-world conspiracy spoofing detection. We achieve this goal by devising
a graph neural layer to directly model the user’s order relations from the con-
structed transaction graph and proposing transformer-based sequential learning
to learn users’ sequential transaction representations. The relational represen-
tations and temporal features are jointly optimized by an end-to-end detection
network so that the model can effectively capture the inter-connected temporal
pattern spoofing patterns. We conduct extensive experiments on a real-world
dataset from one of the largest financial exchange markets in East Asia. The
result shows that our method achieves superior performance compared to ten
state-of-the-art baseline methods. Now, the proposed approach is on the way
to becoming a fundamental component in the deployed online spoofing detec-
tion system. To the best of our knowledge, this is the first work to solve the
spoofing detection problem by a transformer-based deep graph neural network.
We are willing to discuss and share the research results and source codes with
the research community and regulatory agencies. We believe it is very valuable
and could inspire more works in the literature to protect the health of modern
financial markets and the interest of a broad range of mid-and-small investors.
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31. Tuccella, J.N., Nadler, P., Şerban, O.: Protecting retail investors from order book
spoofing using a gru-based detection model. arXiv preprint, pp. 1–13 (2021)

32. Vaswani, A., et al.: Attention is all you need. In: NIPS, pp. 5998–6008 (2017)
33. Wang, X., Wellman, M.P.: Spoofing the limit order book: an agent-based model.

In: AAAI, pp. 651–659 (2017)
34. Yang, L., Ng, T.L.J., Smyth, B., Dong, R.: Html: Hierarchical transformer-based

multi-task learning for volatility prediction. In: Proceedings of The Web Conference
2020, pp. 441–451 (2020)

35. Yang, S., Paddrik, M., Hayes, R., Todd, A., Kirilenko, A., Beling, P., Scherer, W.:
Behavior based learning in identifying high frequency trading strategies. In: CIFEr,
pp. 1–8 (2012)

36. You, J., Ying, R., Ren, X., Hamilton, W., Leskovec, J.: Graphrnn: generating
realistic graphs with deep auto-regressive models. In: International Conference on
Machine Learning. pp. 5708–5717. PMLR (2018)

37. Zhang, T., He, W., Zheng, H., Cui, Y., Song, H., Fu, S.: Satellite-based ground
pm2. 5 estimation using a gradient boosting decision tree. Chemosphere 268, 1–45
(2021)

38. Zhang, W., Wu, C., Zhong, H., Li, Y., Wang, L.: Prediction of undrained shear
strength using extreme gradient boosting and random forest based on bayesian
optimization. Geoscience Frontiers, pp. 469–477 (2021)

39. Zhu, P., Cheng, D., Yang, F., Luo, Y., Qian, W., Zhou, A.: Zh-ner: Chinese named
entity recognition with adversarial multi-task learning and self-attentions. In: DAS-
FAA, pp. 603–611 (2021)

40. Zhu, Y., Xi, D., Song, B., Zhuang, F., Chen, S., Gu, X., He, Q.: Modeling users’
behavior sequences with hierarchical explainable network for cross-domain fraud
detection. In: WWW, pp. 928–938 (2020)



A Novel Explainable Rumor Detection Model
with Fusing Objective Information

Junlong Wang(B), Dechang Pi , Mingtian Ping, and Zhiwei Chen

College of Computer Science and Technology, Nanjing University of Aeronautics and
Astronautics, Nanjing, China
dragoner@nuaa.edu.cn

Abstract. Amidst the dynamic expansion of social networks, the dissemination
of rumors has accelerated, rendering rumor detection an imperative and formidable
endeavor in the realm of online environment governance. Traditional rumor detec-
tionmethodologies have predominantly neglected the significance of interpretabil-
ity. To rectify this deficiency, we introduce a sophisticated and interpretable rumor
detection model, denoted as FOEGCN. This avant-garde model discerns objec-
tive information from an extensive database predicated on subjective data, subse-
quently employing a graph neural network to classify rumors based on a fusion
of objective and subjective intelligence. Concurrently, FOEGCN elucidates the
detection results via a visually compelling interpretation. Rigorous experiments
conducted on a pair of publicly accessible datasets substantiate that our proposed
model surpasses existing baseline methods in both rumor and early rumor detec-
tion assignments. The FOEGCN model enhances performance by 1% and 1.6%
in terms of accuracy metrics. A comprehensive case study further accentuates the
model’s superior interpretability, making it an exemplary solution for tackling the
challenges of rumor detection.

Keywords: rumor detection · graph neural network · interpretability

1 Introduction

With the growing prevalence of social media, users are now able to access a broader
range of information quickly. However, this convenience has come with the downside of
widespread rumors [1]. Rumors are defined as information spread on the internet without
being proven true. They have now become a significant social problem that poses a threat
to public security and national stability. For instance, during the COVID-19 pandemic,
the rumor that “5G can spread the coronavirus” spread like wildfire, causing a crisis
of trust and disrupting social order. This caused significant harm to society, resulting in
considerable economic losses. In the face of the panic and threats that rumors may cause,
it has become crucial to identify an effective and early detection method for identifying
rumors on social media.

Current research on rumor detection primarily focuses on treating it as a natural
language classification task. However, merely determining whether a piece of text is
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a rumor is insufficient to make people understand and trust the model’s classification
results. A robust rumor detection system should possess interpretability, which encom-
passes two critical functions: rumor identification and evidence provision. The provision
of evidence is essential for supporting judgments based on rumor detection results.

Previous research on interpretability can be broadly classified into two categories.
The first category involves using deep neural network-based approaches to learn cred-
ibility metrics from subjective information, such as source tweets and comments [2].
While these methods are effective, they lack transparency, making it difficult to explain
their underlying rationale. To address this weakness, the second category of research
explores evidence-based verification solutions that acquire objective information from
reliable sources through appropriate deep learning models [3, 4]. For example, Thorne
et al. [3] developed a multi-task learning model that extracts evidence from Wikipedia
and synthesizes information from multiple documents to verify statements. However,
this approach neglects the fact that subjective information in rumors can also serve as
evidence.

To overcome these limitations, we propose a fused objective and subjective infor-
mation graph convolutional network (FOEGCN) to address the above challenges in this
paper. Our model fuses subjective information with objective information by introduc-
ing objective information from document databases, such as Wikipedia, as evidence for
rumor detection. Additionally, our model uses a graph structure to represent the propa-
gation path according to the propagation structure of rumors and employs an improved
graph convolutional neural network for rumor detection. Our model is based on the
improved BiGCN model, and achieves an accuracy of 86.7% and 83.2% on the open-
source datasets PHEME16 and PHEME18, respectively. The experimental results con-
firm the effectiveness and feasibility of our proposedmethod and provide interpretability
for rumor detection.

2 Related Work

2.1 Rumor Detection

The content-based method for rumor detection utilizes text information within articles.
Ma et al. [5] first introduced deep learning ideas to the field of rumor detection by
feeding text into a recurrent neural network and representing the text information using
the hidden vector of the recurrent neural network. Due to the gradient explosion and
vanishing problem of recurrent neural networks, Yu et al. [6] proposed to extract text
features using convolutional neural networks. Cheng et al. [7] used a variational self-
encoder VAE to self-encode text information to obtain an embedding representation of
news text.

The structure-based method focuses on the unique propagation structure of rumors.
Liu et al. [8] considered the rumor propagation process as a time series, arranged the
source tweets and replies in chronological order, and modeled them separately using
recurrent neural networks and convolutional neural networks. Tian et al. [9] defined the
news dissemination process as a graph that uses top-down graphs to express spreading
rumors and bottom-up graphs to express diffused information. Wei et al. [10] argued
that unreliable edge relations in the propagation structure can trigger uncertainty.
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The objective information-based method uses known information to assist in deter-
mining the veracity of a claim. Li et al. [11] queried factual evidence in the objective
information corpus using a pre-trained fact-checking model. Then the evidence and
objective information are constructed as a graph, and the information is fused using a
graph convolutional neural network. Hu et al. [12] constructed the textual information
into a directed heterogeneous graph and extracted the entity information in the tweets
through the heterogeneous graph. Lu et al. [13] used convolutional neural networks and
recurrent neural networks to learn rumor propagation representations based on user fea-
tures. They used graph convolutional neural networks to construct interactions between
users.

2.2 Interpretability Research

Interpretability research can generally be divided into intrinsic interpretability [14] and
late interpretability [15] Intrinsic interpretability occurs by constructing its explanatory
model, incorporating interpretability directly into the model structure. Wu [14] provided
a reasonable explanation for relationship prediction using a capsule network based on
its unique characteristics. Post-hoc Interpretability requires designing a second model
that explains the existing model. Bojan [15] explained machine learning methods based
on probability theory using Bayesian networks.

3 The Proposed Models

Fig. 1. Structure of the FOEGCN model

This paper proposes a subjective and objective information graph convolutional net-
workmodel that integrates objective information to solve the problemof rumor detection.
The model first uses the objective information introduction module to obtain objective
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information from the Wikipedia database. Put the obtained objective information and
its subjective information into the rumor detection module to judge the accuracy of the
rumor. At the same time, the evidence providing module is used to give the factual basis
for the judgment of rumors. The overall framework of the model is shown in Fig. 1.

3.1 Objective Information Introduction

Using method [4] similar to the previous work, the target information introduction mod-
ule has two steps: document search and sentence search. In the document search, the
entity information of the source tweet is loaded into theWikipedia database, and the key-
word match algorithm is used to find the relevant documents. In sentence retrieval, we
match the source tweets with all sentences in the relevant documents obtained through
document retrieval and identify the k most relevant sentences as objective information.

3.2 Rumor Detection

The overall architecture of the rumor detection module appears in Fig. 2.

A. Text Embedding

Wemust find a way to embed textual content into a low-dimensional space to obtain
sentence vectors. A common approach is to use the BERT pre-trained model [23, 24].
However, the size of the benchmark dataset is too small for fine-tuning and the model is
very time-consuming and requires a lot of memory, so we compute the word vector for
each word by TF-IDF and then use the average vector as a representative of the whole
tweets. To make the vectors accessible to the contextual relationships in the text and to
extract the hidden information in the text using the improved BiLSTMmodel, as shown
in Fig. 2, A. For the improved BiLSTM model, to overcome the gradient vanishing
problem of LSTM, a new activation function RTLU is proposed in this paper, due to
replace the tanh function in LSTM, and its function equation is shown in (1).

f (x) =
{

x, x ≥ 0
tanh x.x < 0

}
(1)

The text is converted into hidden nodes by converting the sentence embedding as
described above, and the conversion Eq. (2) is as follows.

[r, x1, . . . , xj] → [h0x0 , h0x1 , h0xj ]
[r, s1, . . . , sj] → [h0s0 , h0s1 , h0sj ]

(2)

where r is the source tweet text, xi is the reply text, and si is the objective information
text. Where h0x and h

0
s serve as the initial hidden states of source-tweet-reply and source-

tweet-objective messages.

B. Figure Configuration and Update
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Fig. 2. Rumor detection module

For a post ci, we construct two graph structures Gtd
i , G

bu
i for its subjective infor-

mation, top-down and bottom-up. Because it can extract both diffusion and propagation
feature information [9]. These two graphs differ in that they have different adjacency
matrices but the same identity matrix. That is Atd

i = Ai, Atd
i = Ai. For the objective

information of the posts, we construct a star graph Gev
i , as shown in Fig. 2, B. To bet-

ter demonstrate the approach in this paper, we ignore the superscript in the following
description.

The iterative formula is shown in Eq. (3–4), continuously iterating the hidden states
of both.

hkxN (v)
← AGGpool

k ({hk−1
pu ,∀u ∈ N (v)})

hkxv ← σ(Wk
x · CON (hk−1

xv , hkxN (v)
))

(3)
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hksN (v)
← AGGpool

k ({hk−1
su ,∀u ∈ N (v)})

hksv ← σ(Wk
s · CON (hk−1

sv , hksN (v)
))

(4)

where hkxN (v)
and hksN (v)

denote the neighborhood vectors of replies and objective infor-
mation, k denotes the number of iterations elapsed, N (v) denotes the nearest neighbors
of v nodes, CON denotes the connectivity function, σ denotes the nonlinear activa-
tion function, and AGGpool

k is the aggregation function. hkxv , h
k
sv are used as the final

representations of source-tweet replies and source-tweet-objective information.
In this article, we choose the max pooling aggregator. The formula is shown in

Eq. (5).

AGGpool
k = max({σ(Wpool · hkgraphN (ν)

+ bpool),∀ui ∈ N (ν)}) (5)

After k iterations of information transfer based on dialogue structure and star struc-
ture, we obtained the final representation of dialogue embedding results and evidence
embedding results. The formula is shown in (6):

Htd ← hkxv ,∀ν ∈ Vx

Hbu ← hkxv ,∀ν ∈ Vx

Hev ← hksv ,∀ν ∈ Vs

(6)

where Htd , Hbu, Hev denote the hidden feature vectors after k iterations of the
self-directed lower graph, self-directed upper graph, and objective information graph,
respectively.

C. Classification

We consider the rumor detection task as a graph classification problem. As shown
in Fig. 2, C, to aggregate the node representations in the graph, this paper first performs
the maximum pooling operation on the node representations in the propagation graph
Htd , the node representations in the diffusion graph Hbu, and the node representations
in the objective info graph Hev. Equation (7) shows the set operation of the nodes.

Ctd = maxpooling(Htd )

Cbu = maxpooling(Hbu)

Cev = maxpooling(Hev)

(7)

where maxpooling is the maximum pooling operation, C is the node after pooling.
The nodes that complete the pooling operation connect. The prediction results are

represented by a network consisting of a fully connected layer and a softmax layer.
Equation (8) shows the specific prediction method.

ŷ = softmax(Wc[Ctd ;Cbu;Cev] + bc) (8)

where Wc and bc are the learnable parameter matrices.
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Fig. 3. Evidence Provision Module

3.3 Evidence Provided

The evidence-providing module appears in Fig. 3.
Source tweets and objective information responses were used as two sets of inputs,

and word vectors were generated by employing the same text embedding as in the rumor
detection module.

The pre-trained BERT model is used to perform word embedding on the processed
clauses. Equation (9) shows the specific computation.

Vs = BERT (Ws)

VI = BERT (WI )
(9)

After max-pooling the obtained word vectors, we use the vectors for cosine
calculation of the similarity measure. Equation (10) shows the specific calculation
method.

score = cos(θ) = Vs • VI

||Vs|| × ||VI|| =

n∑
i=1

(V i
S × V i

I )√
n∑

i=1
(V i

S)
2 ×

√
n∑

i=1
(V i

I )
2

(10)

where Ws and WI are the word groups of the source tweets and objective information-
responses after the completion of word splitting, Vs and VI are the word vectors of
the source tweets and objective information responses after the completion of text
embedding, score indicates the similarity of the source tweet to a set of objective
message – replies.



A Novel Explainable Rumor Detection Model 511

4 Experiments and Analysis

4.1 Dataset and Comparison Methods

Our paper evaluates the model for the rumor detection module on two real-world bench-
mark datasets: PHEME16 and PHEME18 [16]. Table 1 summarizes the statistics of the
dataset. Non-existent or anonymous statistics marked with a “-”.

Table 1. Statistics of Rumor Dataset

Dataset PHEME16 PHEME18

# of users 49345 50593

# of events 5802 6425

# of events 103212 105453

# of false rumors 3830 1067

# of true rumors 1972 638

# of unverified rumors – 698

# of non-rumors – 4022

We compare our proposed method with the most commonly used machine learning
methods and several recent deep learning methods to demonstrate the effectiveness of
our proposed model. The specific baseline methods used are as follows.

DTC [17]: A decision tree model built on manual features.
SVM-TK [18]: A SVM classifier based on propagation tree kernel structure.
RvNN [19]: A tree structure-based recurrent neural network.
GCN [20]: A rumor detection model based on graph convolutional neural network.
GraphSAGE [21]: A rumor detection model for neural networks based on aggregator

learning with graph convolutional neural networks.
GAT [22]: A rumor detection model for neural networks based on the attention

mechanism of graph convolutional neural network.
BiGCN [9]: A bi-directional propagation graph convolutional neural network rumor

detection model.

4.2 Implementation Details and Evaluation Metrics

We focus on comparing the rumor detection module with state-of-the-art models, where
experimental results for DTC, RvNN, and SVM-TK come from the literature [22]. For
the other baseline models, we replicated the above methods using PyTorch. For a fair
comparison, we randomly divide the data set into five parts for five-fold cross-validation
and average the obtained results as the final result. In the experimental process, we used
a rare word deletion method to reduce the noise in the data, i.e., removing words with
less than 2 occurrences. This method may lead to null values in the samples, so the null
values are removed from this paper. We used stochastic gradient descent and Adam’s
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algorithm to update the graph parameters. The dimensionality of the hidden feature
vector for each node is 64. The dropout rate in DropEdge is 0.2 and the dropout rate
is 0.5. The training process is iterated after 200 epochs and an early stop is used when
the validation loss stops decreasing before 10 epochs. To make a fair comparison, this
paper follows previous work [9, 10] and uses precision, recall, and F1 score as metrics
to evaluate the model’s overall performance.

4.3 Experimental Results

Our paper compares FOEGCN with the model presented in the comparison algorithm.
The results for PHEME18 and PHEME16 appear in Table 2 and Table 3.

Table 2. PHEME18 results

PHEME18

Method Acc NR FR TR UR

F1 F1 F1 F1

GCN 0.806 0.878 0.550 0.586 0.401

SAGE 0.808 0.881 0.543 0.589 0.403

GAT 0.806 0.880 0.539 0.587 0.412

BiGCN 0.816 0.891 0.742 0.679 0.581

FOEGCN 0.832 0.900 0.569 0.666 0.667

All the compared methods fall into three groups. The first group is the artificial
feature-based methods, including DTC and SVM-TK; the second refers to traditional
deep learning methods, including RvNN; and the last consists of graph neural network-
based methods.

We can deduce the following from Table 2 and Table 3.

1. The model proposed in this paper consistently outperforms other comparative meth-
ods on all datasets. In PHEME16, the rumor detection accuracy of FOEGCN outper-
forms themost advancedmodel by 1.6%. In PHEME18, the rumor detection accuracy
of FOEGCN is 1% higher than that of the most advanced model.

2. The graph neural network-based approach is superior to the artificial feature-based
and traditional deep learning approaches. It demonstrates that graph structure can
better represent the textual features in the rumor detection domain.

3. The traditional neural network-based approach is significantly higher than themanual
feature-based approach, which indicates that in the field of rumor detection, it is
challenging to find rumor features that can be generalized through manual feature
extraction. A deep learning-based approach is required to better extract text features
from them.
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Table 3. PHEME16 results

PHEME16

Method Acc Class Pre Rec F1

DTC 0.670 FR – – 0.755

TR – – 0.494

SVM-TK 0.785 FR – – 0.839

TR – – 0.677

GRU-RNN 0.829 FR – – 0.873

TR – – 0.658

GCN 0.854 FR 0.865 0.923 0.888

TR 0.825 0.737 0.746

GraphSAGE 0.851 FR 0.865 0.918 0.886

TR 0.815 0.722 0.745

GAT 0.857 FR 0.873 0.917 0.890

TR 0.819 0.737 0.756

BiGCN 0.857 FR 0.888 0.897 0.888

TR 0.793 0.777 0.766

FOEGCN 0.867 FR 0.892 0.908 0.899

TR 0.810 0.783 0.794

4.4 Early Rumor Detection

Early rumor detection means detecting a rumor at an early stage before it spreads widely
on social media so that people can take appropriate action earlier. It is crucial for real-
time rumor detection systems. To evaluate the performance of early rumor detection, we
adopt the method proposed in the literature [9] to test the period of rumor detection by
controlling thedetectionperiodor the number of tweets after the source tweet information
publication. The earlier the detection deadline, or the lower the number of tweets, the less
information is available for dissemination. The performance of early rumor detection is
shown in Fig. 4.

There are some conclusions we can draw from Fig. 4:

1. All models climb as detection deadlines pass or tweet counts increase. In particular,
FOEGCN achieves higher accuracy scores on tweet counts than similar models.

2. ComparedwithRvNN, a traditional deep learning-based approach outperformsGCN,
SAGE, GAT, BiGCN, and FOEGCN. It indicates that the rich structural features of
neural graph networks have a crucial role in rumor detection and can better represent
rumor information.

3. FOEGCN achieves better results in early detection compared with other models. The
results show that the model can assist in judging rumors by objective information so
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Fig. 4. Early rumor results

that the model no longer relies only on subjectivity and enhances the robustness of
early rumor detection.

In summary, FOEGCN has better performance in long-term rumor detection and
exemplary performance in early rumor detection.

4.5 Case Study

In this section, we conduct a case study to show the interpretability of rumor detection.
We randomly selected a rumor from PHEME16, as shown in Fig. 5. Tweets as nodes
and relationships are modeled as edges in the graph. In the graph, red nodes indicate
source tweets, replies 1–4 indicate follow-up replies and messages 1–3 indicate the
objective information introduced. As seen in the figure, our proposedmodel can generate
evidence for visualizing the accuracy of rumors based on both objective and subjective
information. In this paper, k is set to 3, so that the three most relevant pieces of evidence
are generated according to their relevance ranking.
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Fig. 5. Case study

5 Conclusion and Future Study

This paper proposes a new interpretation model FOEGCN. We retrieve objective infor-
mation from Wikipedia and use objective information and subjective information as
features to judge the authenticity of the text by updating the graph convolutional net-
work with edge weights. After completing the judgment of text authenticity, a rumor
judgment basis based on subjective and objective information is generated. The exper-
imental results show that the model proposed in this paper can extract entities from
objective information to improve the performance of rumor detection. At the same time,
this paper also conducts ablation experiments to verify the effectiveness of each key
module in this model and examines the effect of model interpretation and edge weight
update through case studies. In the future, we will consider incorporating more informa-
tion, such as time and comment sentiment, and try to use knowledge graphs to import
objective information.
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Abstract. The fast-paced growth of online ordering comes with addi-
tional challenges that are not as prevalent in the traditional brick-and-
mortar retail sector. For one, e-commerce retailers have the challenge and
flexibility of selecting which warehouses and stores should fulfill online
orders. This is known as the omnichannel order fulfillment problem. In
this work, we combine a lookahead search tree strategy with a rein-
forcement learning-based cost-to-go estimator to produce an effective
cost-saving order fulfillment strategy, named the value lookahead strat-
egy (VLS). Furthermore, we design and implement a simulator with the
capabilities to simulate a wide variety of order fulfillment scenarios which
can allow for developing, training, and evaluating order fulfillment strate-
gies, even in the presence of limited data. We show that using these in
conjunction can produce an order fulfillment strategy with lower total
fulfillment costs than all other order fulfillment strategies we compared
against.

Keywords: Reinforcement learning · Multi-product Order Fulfillment

1 Introduction

There has been a steady growth of e-commerce volume in social-economy activ-
ities during the past few years. For example, in February 2022, the US Depart-
ment of Commerce reported total e-commerce sales for 2021 at $870.8 billion with
an increase of 14.2% from 2020. E-commerce sales in 2021 accounted for 13.2% of
total retailer sales in the US [25]. With the continuously growing scale of online
retail [23,25], the omnichannel order fulfillment scenario, becomes increasingly
popular. In this scenario, a variety of fulfillment nodes (e.g., store, warehouse,
etc.) can fulfill orders. Compared to traditional brick-and-mortar retailers, an
e-commerce retailer (e-retailer) has the flexibility to choose where to fulfill the
orders, as illustrated in Fig. 1. This flexibility has several benefits: (1) Given a
target performance metric, e.g., shipping cost, lead time, turnover, it enables an
e-retailer to minimize this metric (or a portfolio of metrics). (2) Given the current
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
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Fig. 1. A visual example of the multi-product fulfillment problem under the omnichan-
nel setting. Orders from geographically distributed users are fulfilled by multiple stores
of various types and locations. Particularly, different parts of an order can be sent to
different stores with the aim of reducing the overall cost defined by retail companies
(e.g., operation/deliver/storage cost, etc.)

state of a fulfillment network, it allows an e-retailer to avoid over-/under-stocking
products at all warehouses. This can allow for balancing the global inventory
levels, and hence, optimizing the service periods for all products. However, the
optimal order fulfillment under this setting is non-trivial considering the expo-
nential search space. Thus, algorithms that can reach near-optimality in solving
this problem are of increasing interest to companies that want to minimize their
fulfillment costs.

Surprisingly, to our best knowledge, there has been little research effort
towards this problem from the academic world, and the widely adopted ful-
fillment strategies are rather naive solutions. An academic literature review [27]
reported that many e-retailers are only applying “myopic” policies to calcu-
late their fulfillment plans, whereby a batch of orders are accumulated over a
predefined time window (often in hours), and fulfillment plans are calculated
by simply minimizing the existing cost or shipping distances. This greedy and
myopic optimization is proven to be sub-optimal both theoretically and prac-
tically, see [1,3,8]. Moreover, the traditional batch-processing decision mode is
asynchronous, which leads to lower supply chain visibility and degraded opera-
tional agility.

In this work, we propose and develop an intelligent, data-driven order fulfill-
ment strategy that can learn the most cost-effective, near-optimal way to fulfill
any order in any multi-product order fulfillment scenario. This led us to build
a simulator that is configurable using historical transaction data to simulate
various order fulfillment scenarios. The simulator will produce synthetic orders
that are processed by our deep reinforcement learning strategy, which will in turn
train a cost-to-go model. The proposed value lookahead strategy (VLS) combines
a simple lookahead search tree with a cost-to-go model with the aim to minimize
the total fulfillment costs in the long term. The lookahead search tree will be
used to evaluate the different ways to fulfill an order and the cost-to-go model
will provide an estimate of the future cost of the order fulfillment. The out-
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put of VLS assists an e-retailer in selecting cost-efficient fulfillment plans, which
are consumed by the fulfillment nodes to generate shipment/pickup operations.
To the best of our knowledge, VLS is the first reinforcement learning empow-
ered data-driven approach for this problem. And our simulator could serve as a
general-purpose testbed for any future effort in this field. Experiments over both
real-world datasets and the simulator validate the effectiveness of our solution.

2 Background

2.1 Problem Definition

We consider an e-retailing order fulfillment problem with finite inventory, with-
out inventory replenishment, with orders that are multi-product, and where
products may be requested multiple times. An e-retailing sales order consists of
product information, shipping address, and ordering quantities for each ordered
product. A fulfillment node is defined as a location carrying inventories, from
where inventories can be committed to a sales order. Such a fulfillment node
could be a warehouse or a fulfillment center, or a physical store if the retailing
network is omnichannel. Once an order is validated, an order fulfillment opti-
mization problem tries to answer the following questions: 1) What fulfillment
nodes should we select to fulfill this order? 2) From each fulfillment node, what
combination of products should be fulfilled? 3) From each fulfillment node, how
many products should be fulfilled?

We denote an order received at time t as order ot, and introduce key indices of
parameters/variables used to formulate an order fulfillment optimization prob-
lem. Let i ∈ I(t) be the product index, I(t) be the set of products included in
order t, j ∈ J be the fulfillment node index, J be the set of all fulfillment nodes,
k ∈ K be the demand region index, K be the set of all demand regions, and k(t)
denotes the demand region of order t. For each product i, let oti be the order
quantity in the order at time t, ot = {oti}i∈I(t) be the order quantities of all
products, and nt =

∑
i∈I(t) oti be the order size. For each product i and node

j, let stij be the onhand inventory level, st = {stij}i∈I(t),j∈J be the onhand
inventory levels in the fulfillment network, and mtj =

∑
j∈J,i∈I(t) stij be the

inventory size. Let pt be the demand distribution of each product. That is, the
likelihood of each product being contained in an order, independent of all other
products in the order. Then, at time t the fulfillment network can be described
as state (ot, st, pt).

An action for order t at state (ot, st, pt) is a fulfillment plan, denoted as
xt = {xtij}i∈I(t),j∈J . xtij is the quantity of product i fulfilled from node j. The
action space of xt is characterized by both demand and inventory constraints:

– For each product i, the fulfillment quantities from all nodes should sum to
the ordered quantity. For i ∈ I(t) :

∑
j∈J xtij = oti.

– For each product i and node j, the fulfillment quantity should not exceed the
onhand inventory. For i ∈ I(t), j ∈ J : xtij ≤ stij .
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Once inventories are committed to an order, they are reserved for picking
and shipping (thus removed from onhand inventory). At the next decision epoch
(when order t + 1 occurs), the inventory dynamic is st+1,ij = stij − xtij .

2.2 Heuristic Cost Estimation

In practice, a fulfillment cost is often hard to estimate with an exact dollar
amount, and thus, this cost is often approximated as a function of fulfilling dis-
tance. In this work, we designed a heuristic cost function that will be calculated
each time an ordered product is allocated to a fulfillment node. This is important
for our multi-product setting as an order can be fulfilled by several different ful-
fillment nodes. Furthermore, our method of fulfillment benefits from a fine-grain
cost analysis, which we will discuss in the Method section. We use an exponential
decaying marginal cost of fulfilling one additional unit of product. Let djk(t) be
the distance between the node j and demand region k(t). Let q(j) be the number
of ordered products already allocated to node j (regardless of their types), then
the marginal cost of allocating an additional product to node j is djk(t) · αq(j),
which is decaying in q(j) by a discount factor α ∈ [0, 1). This marginal decaying
property encourages orders to be fulfilled from the same fulfillment node. Let
c(xt) be an cost accrued when fulfillment plan xt is executed. Thus the total
cost of executing a fulfillment plan xt is

c(xt) =
∑

j∈J

djk(t) ·
[
1 + α + · · · + α

∑
i∈I(t) xtij−1

]
(1)

The cost modeling can be viewed as breaking the cost down into unit product
and node pairs where attention to unit product fulfillment decisions is measured.
The objective of this work is to design a strategy to minimize a long-term order
fulfillment cost which consists of costs of a series of orders, while future order
information is not known a priori. So, this heuristic implies this corresponds to
jointly minimizing the distance between the fulfillment nodes and regions, and
minimizing the number of fulfillment nodes assigned to fulfill an order.

2.3 MDP Formulation

A real-time order fulfillment problem can be formulated as a discounted cost
infinite horizon Markov Decision Process (MDP), v = Hv, where operator H is
defined as

Hv(ot, st, pt) = c(xt) + γE [v(ot+1, st+1, pt+1)]

s.t.
∑

j∈J

xtij= oti, ∀i ∈ I(t), (2)

xtij≤ stij , ∀i ∈ I(t), j ∈ J
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Fig. 2. A motivating example with 2 orders and 2 fulfillment nodes. The oracle (R)
achieves a lower total cost than the naive strategy (L).

where γ ∈ [0, 1) is a discount factor and E [v(ot+1, st+1, pt+1)] is the expected
cost-to-go, and v values zero when inventory is insufficient.

Given the fact that st is finite for all t, xt is a finite space for all t, due to
the second constraint. In this way, c(xt) is a bounded single period cost, and
according to results in [18], there exists an optimal fulfillment policy which is
the fixed point of Eq. (2).

As this problem can be formulated by an MDP, it can be solved using existing
methods in reinforcement learning (RL) [24]. In RL, an agent acts according
to a policy πθ by choosing an action based on the current state given by the
environment. The environment will respond with a reward rt and a next state.
The goal of the RL agent is to learn a policy that can maximize the sum of
discounted rewards, or the return Gt =

∑T
i=t γi−tri.

We can easily shape our current problem definition into this setting by defin-
ing the reward as rt = −c(xt) and the cost-to-go as the return Gt, respectively.
Thus, the overall objective is to find a policy that will minimize the sum of
discounted costs.

A Motivating Example. In the initial stages of designing our approach, we
kept in mind that this is a risk-sensitive scenario where epistemic and aleatoric
uncertainty could lead to real costs in production. Furthermore, before a ful-
fillment decision is made, evaluating the different possible fulfillment plans on
their cost and true, future costs can achieve a lower bound on the total costs. A
motivating example with two fulfillment nodes, two orders, and one unit product
per order is given in Fig. 2. We compare two strategies: naive (left) and oracle
(right). The naive strategy always fulfills the order based on the immediate order
cost, but the oracle strategy has access to the true cost-to-go function.

In this example, we use the standard euclidean metric for the cost, and thus
the naive strategy always chooses the nearest fulfillment node with non-zero
inventory (i.e., stij �= 0). When the first order o0 arrives at t = 0 it sets x000 = 1
indicating it wants fulfillment node j = 0 to fulfill this order. However, that
leads to a problem when o1 arrives at t = 1, because the inventory at node j = 0
will be empty, that is s100 = 0, and thus it is required to set x101 = 1 and fulfill
from the farthest fulfillment node.

Alternatively, the oracle strategy can rectify this issue. Assume the oracle
has access to a simple myopic cost-to-go model that can evaluate the true future
costs of fulfilling an order, based on orders that arrive after the current timestep.
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When o0 arrives it can utilize the cost-to-go model, which will allow it to know
fulfilling from node j = 1, that has a slightly higher immediate cost, will lead to
lower cost in the long term and thus sets x001 = 1. This allows order o1 to be
fulfilled from the nearest fulfillment node j = 0, setting x100 = 1, and leads to
an overall lower total cost.

It is worth noting that both fulfillment nodes fulfilled the same number of
orders and products in both strategies. However, the order in which they are
fulfilled led to a difference in the total cost, even though they both end up in
the same, final state. This evidences the importance of effectively approximating
the cost-to-go function.

3 Method

In this section, we will start out by describing our order fulfillment strategy.
Then, we will provide a simple solution to reduce the time complexity of our
strategy. Finally, we will go into depth about the design, organization, and pro-
cesses of the simulator we implemented.

3.1 Order Fulfillment Strategy

In Fig. 2 we provided an example that reveals the effectiveness of utilizing the
cost-to-go function in an order fulfillment strategy. However, the cost-to-go
model only evaluates the future cost of a fulfillment plan. The control part of
the strategy, which constructs the fulfillment plan for each order, is managed by
a lookahead search tree algorithm.

This algorithm defines actions taken by the policy through exhaustively
searching over every possible way to fulfill an order and keeping track of the
cost of each. Once all the products in an order have been assigned to fulfillment
nodes, the order fulfillment plan xt and its associated cost c(xt) is produced.
Then, the state is updated by xt and the cost-to-go model will provide an esti-
mate of the cost-to-go. The values produced by both parts are used to evaluate
a fulfillment decision: vt = rt + γvt+1, where rt is the negative cost of the ful-
fillment plan, vt+1 is the future cost-to-go, vt is the value of the current order
fulfillment decision, and γ ∈ [0, 1) is a discount factor on the cost-to-go. Once
vt has been produced for every possible fulfillment plan, the one that maximizes
this value, and thus minimizes the immediate and future cost is returned. We call
this approach the value lookahead strategy (VLS) and outline it in Algorithm 1.

The discount factor on the cost-to-go estimate inherently allows for a trivial
interpolation between a myopic order fulfillment strategy when γ = 0.0 and
a farsighted order fulfillment strategy when γ = 0.99. This is important as it
allows for managing the risk of deploying this in the real world. For example,
when increasing the value of γ, the performance of the strategy can be carefully
monitored and the accrued cost of the strategy can be tested against the expected
cost of the myopic strategy.
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Algorithm 1: Value Lookahead Strategy

input : ot, st, and pt

output: xt the fulfillment plan

Xt ← get set of all possible fulfillments on ot;
ct, xt ← ∞, ∅;
for x′

t ∈ Xt do
c′
t ← get cost of x′

t;
// Add discounted cost-to-go

ct ← ct + γv(st − x′
t, pt);

if c′
t ≤ ct then

ct, xt ← c′
t, x

′
t;

return xt;

3.2 Cost-to-Go Model

The value vt is the standard state-value function used in RL, so standard method-
ologies can be applied to learn it. We use a state-value version of DQN [16] to
represent the cost-to-go estimator, which is parameterized by a deep neural net-
work. The model is trained over sampled batches of trajectories, sampled using
prioritized replay [22]. Our model architecture is shown in Fig. 3. The input into
the model consists of the fulfillment nodes’ inventory st, fulfillment nodes’ geolo-
cation, and the demand distribution pt. The model consists of a node encoder,
a demand encoder, a transformer encoder [26], and a state-value function head.
The node encoder takes in a fulfillment node and produces an embedding for
each node. The demand encoder takes in the demand distribution and pro-
duces a demand embedding. These embeddings are concatenated and fed into
the transformer encoder which performs multi-head attention over the embed-
dings. Finally, the state-value function head will produce the state value which
is equivalent to the estimate of the discounted cost-to-go estimate.

The node encoder and demand encoder both consists of 4 1D convolutional
layers with kernel and stride 5, and channel sizes 64, 128, 256, and 512 each
followed by GELU activation [7]. These are used to downsample the inventory
and demand distribution down into a 512-dimensional embedding. The trans-
former encoder consists of 6 transformer encoder layers with a hidden size of
1024 and the state-value head consists of a single fully-connected layer with a
scalar output for the estimate.

3.3 Depth-Limited Search

While our approach seems promising, there is one issue we have yet to discuss: its
ability to scale with the size of orders. In truth, searching for the optimal order
in a multi-product setting is NP-hard [8]. The time-complexity of the lookahead
search tree algorithm grows exponentially as the order size and the number of
fulfillment nodes increase, i.e., O(|J |n) where |J | is the search tree branch factor
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that is the number of fulfillment nodes and n is the maximum depth, equivalent
to the order size.

One insight that can be made about our approach is that the cost-to-go
model does not consider the current order it is attempting to fulfill, but only its
effect on the inventory levels at the fulfillment nodes. This means the lookahead
search tree algorithm can be terminated early before a complete fulfillment plan
is constructed, and a partial order fulfillment plan can be evaluated. A simple
and common solution to handling this type of problem is to perform a depth-
limited search where the depth limit � is enforced [21].

Due to the depth limitation, our approach must be augmented by splitting
the orders into partial orders of size �, applying VLS on each partial order, and
then aggregating the fulfillment plans on these partial orders. In other words,
the order can be split up into mutually exclusive subsets of products where the
sum of all products’ quantities in a partial order are less than �. Let z ∈ Z(t) be
the index of a partial and assume each of the unit products is unique, then the
following is true about the partial orders: 1) all of them will make up the order,
ot =

⋃|Z(t)|
z=1 oz

t ; 2) each will be a unique subset of products,
⋂|Z(t)|

z=1 oz
t = ∅; and

3) order size will not exceed the depth-limit, ∀z|oz
t | ≤ �.

As each of these partial orders is sequentially processed by VLS, the inventory
of fulfillment nodes and the fulfillment plan xt are updated after each partial
order. Let xz

t be the fulfillment plan for oz
t , then the complete fulfillment plan

for an order is xt =
∑|Z(t)|

z=1 xz
t . Overall, doing a depth-limited search will signif-

icantly reduce the time complexity down to O(|J |�), where � � n usually holds
in practice.

Fig. 3. The VLS model architecture.

3.4 Simulator

Due to the lack of publicly available datasets in this field of research1, we design
and implement a highly configurable order generate-fulfill simulator that can
1 Most existing datasets are not publicly available and tend to based on collaboration

with companies [1,3,19].
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simulate discrete-event order fulfillment under various settings of order genera-
tion. We use this simulator to generate data for training the cost-to-go model,
as well as a testbed for comparing a variety of order fulfillment strategies.

In our design, we simulate three entities: order, policy, and inventory,
each can be configured independently. inventory (I) models fulfillment nodes
that carry out the order fulfillment action. Their capacity, location, as well as
stock level can be configured and updated on demand. order (O) generates
orders following a given configuration, where multiple factors can be specified,
i.e., volume, frequency, and demand distribution, to name a few. It empowers
our simulator to generate any type of order demand. policy (P ) governs the
strategy to fulfill orders based on both the potential order pattern and the latest
inventory status.

We summarize the simulator’s workflow in Algorithm 2. At the beginning
of the simulation, we first apply the configurations to Order and Inventory.
We assume that an order must not request a product that does not exist in
Inventory. Therefore, when we initialize Inventory, the product catalog is
determined. When we start the order generate-fulfill process, we iterate over T
timesteps (which can be user-specified), where an order ot will be generated at
each timestep. Following previous literature on RL, we call this T timestep order
generate-fulfill process an episode.

ot is generated by sampling from three distributions that are controlled by
Order: the distribution of geolocations of order request, the order size distribu-
tion, and the demand distribution. The geolocation is solely based on historical
data where a user’s geolocation will be randomly sampled from a set of historical
user locations. The order size uses a Poisson distribution that is parameterized
using historical order data. After the order size is sampled, nt products are sam-
pled with replacement from the demand distribution pt. The demand distribution
is configured based on historical data, where the occurrences of each product are
normalized by the total sum of occurrences. During an episode, if a product i
is exhausted from all fulfillment node, ∀j∈Jstj = 0, we set the demand proba-
bility to 0, pti = 0 and re-normalize the demand distribution. This is because
we assume a product cannot be requested if it is out of stock. Additionally, it
provides a better state representation for the cost-to-go.

As part of configuring the simulator, Inventory is initialized with fixed
inventory locations given by the user. However, the inventory at each of these ful-
fillment nodes is randomized before each order generate-fulfill process. After the
marginal distribution is initialized, each inventory node will sample its inventory
size mj uniformly from a configurable range [mmin,mmax]. Then, mj products
will be sampled from the demand distribution to define the initial inventory of
the fulfillment nodes.

The distributions that control the simulator are to provide randomness in
the synthetic order data that is generated, randomness in the inventory, and
to realistically capture various types of order fulfillment scenarios. Furthermore,
we optionally provide additional randomness to the demand distribution, as
we want to prevent overfitting on our cost-to-go model and show more robust
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Algorithm 2: Simulator Workflow

input : O, I, and P
output: Cost(C) on fulfillment

O.init(O conf); I.init(I conf)
for t = 1 to T do

Order ot ← O.generate();
Fulfillment xt ← P (ot, I.state(t));
I.update(t);
Record the cost C(xt);

return C

results. Before each order generate-fulfill process, the historical product counts
are shuffled and added with random noise generated from a beta-binomial dis-
tribution. In the pursuit to capture various types of order fulfillment beyond
what the data that populated the simulator provides, we sought to randomize
the moments of the demand distribution. Therefore, we randomly parameterize
the beta-binomial distribution, which is explained more in the experiment setup.

When Policy receives ot, it will make a decision on what part of the order
will be fulfilled by which fulfillment node by considering a few factors: the order,
the latest inventory stock states, the location of the order, fulfillment nodes, and
the latest demand distribution. While not every strategy has to fully utilize this
information, it is provided in the interface. However, every Policy is required
to return the fulfillment plan xt.

While we define randomness for Order and Inventory, these are com-
pletely optional. We also provide a mode of the simulator for backtesting Pol-
icy on historical orders and fulfillment nodes. Thus, we make sure to delineate
which mode we are referring to when we discuss our results in the experiment
section.

4 Experiments

First, we outline our experiment setup in detail followed by the empirical study
of VLS against the baseline methods, where the results demonstrate the superior
performance of VLS. Then, we discuss the findings of several ablation studies
where we evaluate different components of VLS.

4.1 Experiment Setup

Dataset. As this field is lacking in order fulfillment datasets, we utilized the
Olist dataset [17] with some modifications to better fit our problem formulation.
The Olist dataset is a public Brazilian e-commerce dataset that contains 100k
historical order transactions made at the Olist store. In this dataset, there were
a lot of products that were rarely used, so we decided to filter out products that
were not used at least 10 times. This forces the order fulfillment strategy to learn
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Table 1. Olist Dataset

Statistic Value After Filtering

Number of Orders 44,303

Number of Products 1,919

Mean Order Size 1.13

Median Order Size 1

Max Order Size 20

Mean Product Occurrence 26.15

Median Product Occurrence 16

Max Product Occurrence 527

how to actively manage the inventory knowing that a different order may request
the same product. A summary of the dataset is given in Table 1. Additionally in
the Olist dataset, there are 3095 unique sellers that each fulfills only a few orders.
We decided to aggregate the sellers by using K-Means clustering where we found
11 clusters to provide the highest Silhouette score. During the evaluation, the
products that were fulfilled by that seller are then used as the initial inventory
at the corresponding fulfillment node that will be centered at the cluster means.
Finally, we used a 80%/10%/10% training/validation/test split on the orders;
respectively.

Simulator Training. We used the simulator to train VLS, where the training
dataset was used to configure it. The simulator was reset and reconfigured after
a maximum of 128 orders were fulfilled, as we wanted the policy to generalize to
various order fulfillment scenarios with varying demand distribution and fulfill-
ment node inventory. The product occurrences were added with random integer
noise sampled from a beta-binomial distribution with parameters nbeta for the
number of trails and shape parameters αbeta and βbeta. Prior to each episode,
theses parameters were uniformly and randomly sampled, where nbeta ∈ [5, 15],
αbeta ∈ [0.1, 2], and βbeta ∈ [0.1, 6]. We choose these ranges as they are likely
to produce a right-skewed distribution and tended to work well in practice by
preventing the cost-to-go model from overfitting. After the random noise was
added, the product occurrences were normalized to produce the demand distri-
bution. We used α = 0.5 for the discount factor on the cost. Additionally, we
divided the per-order costs by the maximum geolocation distance (≈ 142.28)
as we wanted all the per-order costs to have a magnitude close to 1. The costs
we show in the results are divided by this same constant, as we believe it gives
cleaner-looking results.

For the prioritized replay, we set the priority exponent to 0.9 and the
importance-sampling exponent to 0.4, γ = 0.99 for the discounted return, use a
batch size of 32, and initially set ε = 0.99 for ε-greedy exploration and linearly
decay it to 0.001 over the first 32k policy update steps. We use a 10-step return,
the Adam optimizer [10] with a learning rate of 2e−4, and the target-value net-
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work that was updated every 512 policy update steps. We trained the model on
≈ 750k orders generated from the simulator, where after every 4 orders were
fulfilled we updated the cost-to-go model. Figure 4 shows the learning curves
of VLS. The loss and the avg. order costs are both decreasing over time which
shows the model’s fulfillment decisions keep improving.

Fig. 4. Learning curves for VLS on episodes generated from the simulator.

Baseline Methods. We created two baseline methods: naive and random. The
naive fulfillment algorithm fulfills orders greedily, where each unit product in
an order is fulfilled based on what gives the lowest cost. The random fulfillment
algorithm randomly fulfills every unit product in an order. We also tested against
an existing linear programming approach based on prior research work that uses
the primal-dual schema [3] and VLS with only the lookahead tree search (i.e.,
γ = 0). The source code for this project can be found at https://github.com/
rwickman/IOM.

4.2 Order Fulfillment Results

The results from the Olist testing dataset are given in Table 2. We can see the
advantage of considering the future cost of fulfilling an order as the minimum
total cost is achieved with VLS when γ = 0.99. VLS with γ = 0 does better
than all other baseline methods which show the importance of minimizing the
cost of fulfilling each order, even if the future cost is not considered. As we use
a simulator to train VLS, it is important to evaluate if the order fulfillment
strategies’ performance on the Olist testing dataset correlates to how they per-
form on the simulator. We ran a total of 16 episodes, where for each episode the
demand distribution was randomly sampled and the maximum inventory of each
inventory node was sampled between [1, 2000]. We averaged the total costs of

https://github.com/rwickman/IOM
https://github.com/rwickman/IOM
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each episode and provide the results in Table 2 (3rd col.). We observe the same
ranking among different strategies, but with a slightly amplified scale for the
total cost. This supports that our simulator allows for synthetic orders that can
be used to approximate real-world order fulfillment scenarios.

From the results, we observe that VLS has a 0.592% total cost reduction on
Olist compared to the naive strategy. While the simulator derives a more signif-
icant (4.269%) total cost reduction. We conjecture that this could be attributed
to the number of orders that were fulfilled, wherein in the Olist test dataset only
about 4000 orders were fulfilled, but the simulator fulfilled about 10, 000 orders
per episode. We test this hypothesis on the simulator in Fig. 5a where we test
various values for the maximum inventory size mmax, which corresponds to a
larger number of orders fulfilled n. The results show that this is indeed true. As
we increase n, the percent reduction of total cost also increases. The manage-
rial insight of this result suggests that when n (mmax) is larger, and the size of
event paths increases exponentially, VLS has a higher chance to select an order
fulfillment policy with higher cost efficiency.

Table 2. Results on Olist (2nd col.) and simulator (3rd col.).

Fulfillment Strategy Total Cost Avg. Total Cost

Random 279.32 479.16

Naive 251.57 373.08

Primal-Dual 252.37 374.09

VLS (γ = 0) 251.49 363.16

VLS (γ = 0.99) 250.08 357.15

4.3 Interpolating Lookahead Strategies

Our strategy design allows us to easily weigh the importance we put on the
future cost. This can also be viewed as a form of backtesting, where the optimal
γ could be found without requiring prior deployment into the real world. Thus,
we test over the testing set where results are given in Fig. 5b. In the figure, we
can see that as the value of γ increases, the total cost is reduced. This shows
that using future cost estimation assists in making more cost-effective order
fulfillment decisions. Additionally, we only trained the model on γ = 0.99. So,
these results show that the fulfillment strategy can adapt to different cost-to-go
discount factors even without being explicitly trained with them.

4.4 Evaluating Depth-Limited Search

The results given in Table 2 assume that � = n, however in practice this could
lead to a long delay for each order fulfillment decision. Therefore, we test various
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Fig. 5. (a) Results with increasing the size of the number of orders fulfilled on the
simulator. In this figure, we can see that as the number of orders increases, the per-
centage increase compared to the naive policy increases. (b) Results with varying γ. In
the figure, we can see that as γ increases, the total cost is reduced. (c) Results with
varying �. In the figure, we can see that as � increases, the total cost is reduced for
both cases when γ = 0.99 and γ = 0.0.

� values to explore the time vs fulfillment cost trade-off on the depth-limited
search algorithm. The results of this experiment on the Olist testing dataset are
given in Fig. 5c. As expected, the total cost decreases as the depth limit increases.
Interestingly, there seems to be a point at which increasing � only results in zero
or negligible gains for both cases of γ = 0.99 and γ = 0.0. This can be partially
explained by the order sizes in the test dataset where 90% of the orders only
contain one product and 98% of the orders contain less than 5 products.

Another thing to point out is that when � = 1 and γ = 0.99, VLS does better
than when γ = 0 and � = n. In other words, the cost-to-go model estimate is
effective enough that it performs better than a simple, myopic lookahead strat-
egy. This is important because if � = 1, this effectively removes the constraint
of VLS being NP-hard and reduces its exponential time complexity of O(|J |�)
to linear time O(|J |).

Regardless, these results show evidence of an apparent trade-off between time
and cost, where increasing � can lead to lower cost, but a longer delay and vice
versa. Also, with an effective cost-to-go estimator, we can limit the depth size
and still outperform all other strategies we tested against.
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5 Related Work

Studies [2] and [15] shape the early stage of research in fulfilling sales orders from
multiple inventory resources. Another class of problem akin to order fulfillment
is a lateral inventory shipment problem [11]. We do not attempt to survey these
veins. Instead, we focus on order fulfillment optimization for e-retailers.

The e-retailer order fulfillment problem is formally defined in [27], where a
periodically reevaluated assignment model is examined. Researchers have demon-
strated the pitfalls of classic order fulfillment optimization methods in solving a
real-time order fulfillment problem [1,8]. Assuming demand forecasts are avail-
able, work [1] studies a single item fulfillment problem and examines a look-ahead
ADP heuristic algorithm that minimizes both immediate and future expected
outbound shipping costs. Work [8] extends the context of [1] to an online multi-
item retailer with finite inventory. Work [8] formulates a finite-horizon future
cost function as a linear program.

A large body of literature integrates E-retailer order fulfillment problems
with other inventory control or revenue management problems. For instance,
Ramakrishnar [20] studies a two-item two-warehouse periodic review model to
support both fulfillment and inter-warehouse transshipment decisions. Lei et
al. [12] considers an e-retailer with the capability to select product prices during
a finite selling season. The e-retailer maximizes its profit by jointly optimizing
price selections and fulfillment plans. Work [13] proposes a multi-stage stochastic
optimization model to solve inventory replenishment while considering reactive
order fulfillment. We point readers to a recent paper [9] for a comprehensive
review on problems at the crossroads of order fulfillment and other supply chain
management problems.

6 Conclusion

We provided a new order fulfillment strategy called value lookahead strategy
(VLS) and a simulator to train and test several order fulfillment strategies. We
showed that VLS provides a cost-effective strategy by outperforming all other
order fulfillment strategies we compared against. We discussed and explored
VLS’s ability to interpolate between a greedy order fulfillment strategy and one
that utilizes the cost-to-go estimation by configuring γ. Additionally, we provided
a solution using depth-limited search for VLS to scale to larger order sizes and
showed that it can effectively reduce the search time complexity down to linear
time. Finally, we showed the simulator provides a reasonable testbed for training
and testing order fulfillment strategies even when data is sparse.

In future work, we would like to extend our order fulfillment scenario to the
cases where inventory replenishment is allowed. Additionally, we want to explore
potential improvements for VLS by incorporating recent advances in distribu-
tional reinforcement learning [4–6,14,28] to enable a better risk-sensitive strategy
and explore offline reinforcement learning to train on historical data without the
need for a simulator.
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Abstract. Stock trading is a challenging task and has attracted exten-
sive attention from artificial intelligence researchers. Deep Reinforcement
Learning (DRL) approaches, which directly generate trading decisions
by maximizing the expected return, have made more breakthroughs than
supervised learning approaches. However, most existing DRL approaches
ignore essential knowledge in the finance field (e.g., the momentum
investment strategy) and fail to generate sophisticated trading deci-
sions. Specifically, the momentum investment strategy, which is popular
among professional investors for its profitability, aims to buy stocks that
were past winners (with above-average performance) and sell past losers
(with below-average performance). Inspired by this concept, we propose
Momentum Investment Twin Delay Deep Deterministic (MITD3) policy
gradient algorithm based on TD3. At the core of MITD3, a Momentum
Investing critic (MI-critic) computes the Q-value according to the state-
action pair and advantage historical performance of the actor, and gives
a higher Q-value to encourage past winners and a lower value to penalize
past losers. In addition, we devise the cross-time module in MITD3, in
which the current actor interacts with the environment by receiving past
states and making trading decisions, to evaluate the advantage historical
performance of the actor. Experimental results on real market data show
that our proposed MITD3 outperforms state-of-the-art DRL approaches
and generates intuitively explainable stock trading decisions.

Keywords: Deep reinforcement learning · Stock trading · Behavioral
finance · Momentum investment strategy

1 Introduction

The stock market, a worldwide platform for capital to flow between businesses
and investors, plays a crucial role in the modern financial system. Investment
companies and hedge funds are making great efforts to design a profitable
stock trading strategy. It has become an attractive yet challenging problem for
researchers to apply Artificial Intelligence (AI) approaches in the stock trading
task. Existing studies in AI for stock trading can be roughly categorized into
three types: classic Machine Learning (ML), Deep Learning (DL), and Deep
Reinforcement Learning (DRL) approaches.
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Mainstream supervised ML and DL approaches model the stock trading task
into two steps: predicting and trading. In the predicting step, they make the
prediction of future price values [24] or price trends [18]. In the trading step,
they make trading decisions designed by humans, e.g., selling all stocks whose
prices are predicted to fall and buying specific shares of top-k stocks whose prices
are predicted to rise. These approaches have longstanding challenges: (1) the
prediction of future price values or price trends is not equivalent to profitability.
Profitability is affected by a lot of factors, such as model deviation, trading
decisions, simulation-to-reality gap, etc. (2) handcraft trading decisions suffer
from little theoretical guarantee, poor generalization ability, and high human
resources cost.

DRL approaches, which directly generate trading decisions by maximizing the
expected return [11,22,23], do not encounter the above problems in supervised
learning approaches. Moreover, DRL is powerful in solving dynamic decision
making problems by interacting with the environment in a trial-and-error man-
ner. Figure 1 shows the different stock trading frameworks in supervised learning
and deep reinforcement learning.

However, most existing DRL approaches ignore introducing the essential
knowledge in the financial field (e.g., the momentum investment strategy [1,6])
to generate sophisticated trading decisions. Integrating finance theory with DRL
structure is a promising but unexplored prospect to make improvements. In this
paper, we integrate momentum investment strategy into Twin Delay Deep Deter-
ministic policy gradient algorithm (TD3) [5], and propose Momentum Invest-
ment TD3 (MITD3) for the stock trading task. The momentum investment
strategy, which is proposed by behavioral finance researchers, has been imple-
mented by many professional investors and hedge funds for its profitability. It
aims to buy stocks that were past winners (with above-average performances)
and sell past losers (with below-average performances). We utilize the historical
performances of the market index to represent the average performances, and
an actor with higher (lower) historical performances than the average perfor-
mances is defined as a past winner (loser). Besides, a positive signal is released
when momentum investing investors buy stocks that were past winners. In other
words, the behaviors of past winners are encouraged, and vice versa. Inspired
by this concept, we devise a Momentum Investing critic (MI-critic) at the core
of MITD3. Our MI-critic, which computes the Q-value according to the state-
action pair and advantage historical performance of the actor, would give a
higher Q-value to encourage the actor that was the past winner and a lower
value to penalize the past loser. The advantage historical performance of the
actor is evaluated by the cross-time module, in which the current actor interacts
with the environment by receiving past states and making trading decisions. The
main contributions of our work are as follows:

– We integrate momentum investment strategy in behavioral finance into the
DRL structure, and propose Momentum Investment TD3 (MITD3) for the
stock trading task. To our best knowledge, we are the first to integrate finance
theory with DRL for the stock trading task.
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Fig. 1. Comparison of stock trading frameworks between supervised learning and deep
reinforcement learning. DRL approaches directly generate trading decisions, while
supervised learning approaches need to handcraft them.

– Trading decisions made by MITD3 are intuitively explainable compared with
existing DRL approaches. The actor optimizes trading decisions by maxi-
mizing the Q-value given by the critic, and the momentum investing critic
encourages the actor that was the past winner by giving a higher Q-value, and
vice versa. In this manner, trading decisions become intuitively explainable.

– We run our experiments on real-world stock market data and the pro-
posed MITD3 achieves significant improvements against state-of-the-art DRL
approaches.

The remainder of this paper is organized as follows. Section 2 introduces
the related works. Section 3 describes preliminary knowledge in DRL for the
stock trading task. Section 4 presents our proposed model. Section 5 demon-
strates experiment settings and results. Section 6 makes the conclusion.
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2 Related Work

We classify the existing stock trading studies into two categories: supervised
learning based approaches and reinforcement learning based approaches.

2.1 Supervised Learning Based Approaches

Zhang et al. [24] proposed a State Frequency Memory (SFM) recurrent net-
work based on LSTM to predict stock price values. SFM decomposes the hidden
states of memory cells into multiple frequency components, each of which mod-
els a particular frequency to enable more accurate predictions. Sawhney et al.
[18] proposed spatio-temporal hypergraph convolution network for stock price
trends forecasting. They devised a gated temporal hypergraph convolution mech-
anism to model the evolution of stock movements related by a hypergraph in a
time-aware manner. Rather et al. [17] proposed a hybrid model to predict stock
returns. This model is constituted of autoregressive moving average model, expo-
nential smoothing model, and recurrent neural network. Ding et al. [4] extracted
events from news text and used a deep convolutional neural network to model
the combined influence of short-term and long-term influences of events on stock
price movements. Long et al. [16] proposed an attention-based bidirectional long
short-term memory network to predict the stock price trends. They utilized the
knowledge graph and graph embedding techniques to select the relevant stocks
of the target for constructing the market and trading information.

However, these supervised learning based approaches have to design hand-
craft trading decisions based on the prediction results, while reinforcement learn-
ing based approaches directly generate trading decisions by algorithms.

2.2 Reinforcement Learning Based Approaches

Yang et al. [23] proposed an ensemble trading strategy using three actor-
critic based reinforcement learning algorithms: Proximal Policy Optimization
(PPO), Advantage Actor Critic (A2C), and Deep Deterministic Policy Gradi-
ent (DDPG). This ensemble strategy automatically selects the best performing
agent to trade based on the Sharpe ratio in a period. Li et al. [11] extended the
Deep Q-network (DQN) and the Asynchronous Advantage Actor Critic (A3C)
for better adapting to the trading market. They utilized the Stacked Denois-
ing Autoencoders (SDAEs) and LSTM as parts of the function approximator
to extract robust market representations and resolve the financial time series
dependence, respectively. Wu et al. [22] proposed Gated Deep Q-learning trad-
ing strategy (GDQN) and Gated Deterministic Policy Gradient trading strategy
(GDPG) to ensure stable returns in different market conditions. They designed
the reward function with risk-adjusted ratio and applied the Gated Recurrent
Unit (GRU) to extract informative financial features. Li et al. [10] proposed
an actor-critic based trading framework, where LSTM is shared by the value
network and policy network to extract features. Not only the actor but also the
critic are considered to make the final trading decisions during testing. Chen and
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Table 1. Notations in problem formulation.

Notation Description

st State at time step t

at Action at time step t

rt Reward given by the environment at time step t

π Policy generated by the agent

P (st+1|st, at) Transition probability from state st to state st+1 taking the action at

γ Discount factor

bt Balance of account at time step t

pt Closing price of stocks at time step t

sht Shares for each stock at time step t

vixt CBOE Volatility Index

techit Technical indicators

vt Total value of assets at time step t

Qπ(s, a) State-action value (Q-value) function, which is the expected return start-

ing in state s, taking action a, and acting according to policy π until the

terminal state

Gao [2] proposed Deep Recurrent Q-network (DRQN) by replacing the fully con-
nected layer in DQN with a recurrent LSTM layer. They stated that introducing
recurrence can improve the performance of DQN by capturing useful information
in sequential data. Dang [3] applied Deep Q-Network (DQN), double DQN [8]
and dueling DQN [21] to make trading decisions on more than 7,000 US-based
stocks. This model does not use any external information but only the historical
data of stock prices for trading.

However, these approaches ignore essential knowledge in the finance field
(e.g., the momentum investment strategy) and fail to generate sophisticated
trading decisions. To this end, we propose MITD3 by integrating momentum
investment strategy in behavioral finance with the DRL structure to make
improvements. The proposed MITD3 model outperforms state-of-the-art DRL
approaches and generates intuitively explainable stock trading decisions.

3 Problem Formulation

Stock trading aims to buy and sell shares in companies to maximize the invest-
ment profit and minimize the risk. DRL agents, whose objective is to maximize
the expected return, generate trading decisions by interacting with the stock
market environment over a sequence of length T . Notations in this section are
summarized in Table 1.

We formulate the stock trading as a Markov Decision Process (MDP). An
MDP can be defined as a 5-tuple < S,A,R,P, γ >, where S = {s1, . . . , sT }
is a finite set of valid states, A = {a1, . . . , aT } is a set of valid actions, R :
S × A × S → R is the reward function with rt = R(st, at, st+1), P : S × A → P

is the transition probability function with P (st+1|st, at) being the transition
probability from state st to state st+1 taking the action at, and γ ∈ (0, 1] is the
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discount factor. Following FinRL [13–15], a DRL library for stock trading, an
MDP in the context of stocking trading can be described as follows:

State S. The state contains a set of features that describe the state of trading
stocks. In general, different types of information such as historical prices, trading
volumes, sentiment scores, and financial statements can be used as the state of
the stocks. The state st contains the following features:

– Balance bt ∈ R+: the amount of cash left in the account at time step t.
– Closing price pt ∈ R

m
+ : one of the most commonly used features. It is defined

as a vector pt = [pt,1, pt,2, . . . , pt,m]T , where m represents the number of
stocks.

– Share owned sht ∈ Z
m
+ : shares for each stock. It is defined as a vector sht =

[sht,1, sht,2, . . . , sht,m]T .
– CBOE Volatility Index vixt: an important real-time index that represents

the market’s expectations for volatility and provides a quantifiable measure
of market risk and investors’ sentiments.

– Technical indicators techit: including Moving Average Convergence Diver-
gence (MACD), Bolling Bands (BOLL), Relative Strength Index (RSI), Com-
modity Channel Index (CCI), Directional Movement Index (DMI), and Sim-
ple Moving Average (SMA).

Action A. The action, which represents the trading decision made by the
agent that interacts with the stock market environment, is specified by a vector
at = [at,1, at,2, . . . , at,m]. at,i ∈ {−k, . . . ,−1, 0, 1, . . . , k} represents the number
of shares traded by the agent, e.g., “buy 2 shares of MSFT” or “sell 2 shares of
MSFT” are 2 or −2, respectively.

Reward R. The reward received from the environment is the incentive for
the agent to learn a better action. Intelligence, and its associated abilities, can
be understood as subserving the maximization of reward by an agent acting in
its environment [20]. The reward is defined as the change in total value of assets:

r(st, at, st+1) = ||vt+1||1 − ||vt||1, (1)

vt = pT
t · sht + bt. (2)

Policy π. The policy, which denotes the trading strategy, is essentially a
network that outputs a probability distribution of action a given the current
state s as the input. The agent’s goal is to optimize the policy to maximize the
expected return.

State-Action Value Function Qπ(s, a). The state-action value function,
also the Q-value function, is the expected return starting in state s, taking
action a, and acting according to policy π until the terminal state. The Bellman
equations for the state-action value (Q-value) functions are defined in Eq. (3):

Qπ(s, a) = E[r(s, a, s′) + γE[Qπ(s′, a′)]], (3)

where s′ is the next state of s, and a′ is the action taken at state s′, according
to policy π.
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Fig. 2. Illustration of our proposed model. Cross-time module evaluates the advantage
historical performance of the actor and target actor. The momentum investment strat-
egy is implemented by the critic and target critic network, which utilizes advantage
historical performance to encourage or penalize the behaviors of actor.

4 Method

Most existing DRL approaches ignore essential knowledge in the finance field
(e.g., the momentum investment strategy) and fail to generate sophisticated
trading decisions. To this end, we integrate momentum investment strategy into
Twin Delay Deep Deterministic (TD3) policy gradient algorithm [5] and pro-
pose Momentum Investment TD3 (MITD3) for the stock trading task. In this
section, we first describe the cross-time module, and then describe the Momen-
tum Investing critic (MI-critic), and finally we summarize the detailed process
to train the MITD3 agent. Our proposed MITD3 model is illustrated in Fig. 2.
The detailed process to train the MITD3 agent is summarized in Algorithm 1.

4.1 Cross-Time Module

The advantage historical performance of the actor is evaluated by the cross-time
module, in which the current actor interacts with the environment by receiving
past states and making trading decisions. We utilize the Annualized Return (AR)
over a window of past days to measure the historical performance, and AR of
the Dow Jones Index (DJI) to represent the average historical performance. The
advantage historical performance is defined as the gap of AR between the actor
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and DJI, as shown in Eq. (6). The actor is a past winner or past loser when
hφ > 0 or hφ < 0, respectively.

ARφ = (

∑t−1
i=t−w ri

v0
)

365
w−1 − 1, (4)

ARdji = (
pt−1

pt−w
)

365
w−1 − 1, (5)

hφ = ARφ − ARdji, (6)

where ri is the reward given by the environment on day i, v0 is the total value
of assets on the first day, w is the window size investigated in Sect. 5, and pi is
the closing price of DJI on day i.

The process of calculating the advantage historical performance of the actor
via the cross-time module is described as follows: (1) State st and policy πφ of the
actor network are sent to the cross-time module; (2) A temporary actor network
and a temporary stock market environment are created; (3) The initial state
of the environment is reset to st−w, where w is the window size; (4) The actor
interacts sequentially with the environment by receiving state st−w, giving action
at−w = πφ(st−w), receiving state st−w+1, giving action at−w+1 = πφ(st−w+1),
until reaching the terminal state st−1; (5) Reward r given by the environment
at each time step is recorded to calculate the advantage historical performance
hφ in Eq. (6).

For the target actor, state st+1 and target policy πφ′ are sent to the cross-time
module, and the other steps are similar.

4.2 Momentum Investing Critic

As defined in Sect. 4.1, an actor with an advantage historical performance hφ > 0
or hφ < 0 is the past winner or past loser, respectively. The momentum invest-
ment strategy aims to buy stocks that were past winners and sell past losers [1,6].
A positive signal is released when momentum investing investors buy stocks that
were past winners. In other words, the behaviors of past winners are encouraged,
and vice versa. Inspired by this concept, we devise a Momentum Investing critic
(MI-critic) at the core of MITD3. Our MI-critic, which computes the Q-value
according to the state-action pair and advantage historical performance of the
actor, would give a higher Q-value to encourage the actor that was the past
winner and a lower value to penalize the past loser. The state-action value (Q-
value) functions of the critic and target critic are shown in Eq. (7) and Eq. (8),
respectively.

Qθ,i(s, a) ← Qθ,i(s, a) � clip((hφ,−c2, c2) + 1), (7)

Q′
θ′(s, a) ← Q′

θ′(s, a) � clip((h′
φ,−c2, c2) + 1), (8)

where Qθ,i(s, a) and Q′
θ′(s, a) on the right side of the arrows are calculated

following Eq. (3), c2 is the clip boundary value of the MI-critic investigated in
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Sect. 5, hφ and h′
φ are the advantage historical performance of the actor and

target actor, respectively. In practice, the networks are usually optimized using
mini-batch stochastic gradient descent, which is the reason we use the Hadamard
product operator here.

As illustrated in Fig. 2, MITD3 can be divided into four-fold: (1) the simu-
lated stock market environment and replay buffer for experience collection and
off-policy training; (2) the (target) actor network for generating stock trading
decisions; (3) the cross-time module for computing advantage historical per-
formances of the (target) actor network; (4) the (target) MI-critic network for
evaluating the profitability (measured by Q-value) of the (target) actor, and
encouraging past winners or penalizing past losers. The actor network optimizes
its profitability by maximizing the Q-value, and the MI-critic network optimizes
its evaluation by minimizing the Temporal-Difference (TD) error.

4.3 Training Process of MITD3

The detailed process to train the MITD3 agent is summarized in Algorithm 1.
In lines 1–2, we initialize the parameters of networks and create an empty replay
buffer. From line 3 to line 16, the following procedures are repeated for the total
T training step: (1) in lines 4–6, the MITD3 agent explores the environment and
the transition tuples (s, a, r, s′) are stored in the replay buffer, and N transitions
are randomly sampled from the replay buffer during training; (2) in line 7, state
s′ is sent to the target actor, and a small amount of random noise is added to
the target policy to generate the target action a′; (3) in line 8, the advantage
historical performances of the actor and target actor are computed by the cross-
time module, where c2 is the clip boundary value investigated in Sect. 5; (4) in
line 9, new Q-values of MI-critic and target MI-critic are computed according to
the raw Q-values, hφ and hφ′ , as shown in Eq. (7) and Eq. (8); (5) in line 10,
the target value of the MI-critic is computed according to the new Q-value and
reward r, where d is 1 when s′ is the terminal state, and d is 0 otherwise; (6)
in line 11, the MI-critic network is updated by gradient descent with the Adam
optimizer [9], to minimize the Temporal-Difference (TD) error; (7) in lines 12–
15, after a fixed number of updates k to the critic, the actor network is updated
by gradient descent with the Adam optimizer, to maximize the new Q-value
given by the first MI-critic network, and the target actor and target MI-critic
are updated using soft update.

5 Experiments

In this section, we conduct experiments to test the proposed MITD3 model.
We first provide the details of the experimental settings. Then, the comparison
between the MITD3 and baselines is presented. Finally, we verify the effective-
ness of MI-critic and discuss the influences of clip boundary value and window
size on MITD3.
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Algorithm 1 Momentum Investment TD3
1: Initialize actor network φ, MI-critic networks θ1, θ2, and empty replay buffer D
2: Initialize target networks φ′ ← φ, θ′

1 ← θ1, θ′
2 ← θ2

3: for t = 1 to T do
4: Observe state s, select action a ∼ πφ(s) + ε,

ε ∼ N (0, σ), observe reward r and new state s′

5: Store transition tuple (s, a, r, s′) in D
6: Randomly sample mini-batch of N transitions from D
7: Compute target actions:

a′ ← πφ′ (s′) + ε, ε ∼ clip(N (0, σ), −c1, c1)

8: Compute actor’s advantage historical performances:
hφ = ARφ − ARdji, hφ′ = ARφ′ − ARdji

9: Compute new Q-values of (target) MI-critic:
Q′

θ′
i
(s′, a′) ← Q′

θ′
i
(s′, a′) � clip((hφ′ , −c2, c2) + 1)

Qθi
(s, a) ← Qθi

(s, a) � clip((hφ, −c2, c2) + 1)

10: Compute target value with new Q-values (i=1,2):
y ← r + γ(1 − d) mini[Q

′
θ′

i
(s′, a′)]

11: Update MI-critic networks by gradient descent (i=1,2):
∇θi

1
N

∑
[Qθi

(s, a) − y]2

12: if t mod k = 0 then
13: Update actor network by gradient descent:

∇φ
1
N

∑
Qθ1 (s, a)

14: Soft update the target networks (i=1,2):
θ′

i ← τθ′
i + (1 − τ)θi, φ′ ← τφ′ + (1 − τ)φ

15: end if
16: end for

5.1 Experimental Settings

Datasets. The experiment datasets are from the real-world market to com-
prehensively evaluate our model. The stock data used in our experiments are
from 30 constituent stocks of Dow Jones Index (DJI). Specifically, we use the
daily closing price of stocks and the CBOE Volatility Index from 2009-01-01 to
2020-12-31 as the training set, and the daily closing price from 2021-01-01 to
2021-12-31 as the testing set. The technical indicators are calculated based on
the closing price of stocks. Balance values and stock share values are given by the
simulated stock market environment. All the stock data are downloaded from
Yahoo Finance1.

Baselines. We compare MITD3 with state-of-the-art DRL approaches: PPO
[19], SAC [7], DDPG [12] and TD3 [5]. We run the above baselines and our
proposed model on an open-source library FinRL [13–15].

Evaluation Metrics. We evaluate the performance of baselines and our
model by the following five metrics: (1) Annualized Return (AR), (2) Cumulative
Return (CR), (3) Annualized Volatility (AV), (4) Sharpe Ratio (SR) and (5)
Maximum Drawdown (MDD). From the view of measuring trading performance,
we prefer higher, higher, lower, higher and higher values for the five metrics,
respectively.

Implementation Details. We implement our model via PyTorch. We adopt
the Adam optimizer [9] on the training process with a single NVIDIA 3090 GPU.
The training step is 106, and the batch size is 2048. We set the learning rate

1 https://finance.yahoo.com.

https://finance.yahoo.com
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to 3 × 10−5 and γ to 0.985. The dimension of hidden layers in actor and critic
network is set to 512. The clip boundary c2 in MI-critic is set to 0.05, and the
window size w in cross-time module is set to 30. Results are averaged over 5 runs
with random initialization seeds for all models.

Table 2. Performance comparison of different models over 5 different runs. All metrics
are averaged values.

Models Initial value Final value↑ AR↑ CR↑ AV↓ SR↑ MDD↑
PPO 1000000 1210663 21.06% 21.06% 15.18% 1.33 −8.03%

SAC 1000000 1231967 23.19% 23.19% 13.69% 1.59 −6.51%

DDPG 1000000 1223036 23.32% 23.32% 14.62% 1.45 −7.99%

TD3 1000000 1234058 23.40% 23.40% 13.93% 1.59 −6.35%

MITD3 (N) 1000000 1171284 17.12% 17.12% 14.18% 1.24 −8.22%

MITD3 (ours) 1000000 1283024 28.30% 28.30% 13.74% 1.89 −5.59%

Fig. 3. Cumulative return of MITD3, baselines and market index, over 5 different runs.
We run the experiment on the constituent stocks of Dow Jones Index (DJI).

5.2 Performance Comparisons

The performance comparison of the proposed MITD3 model with baselines is
reported in Table 2, where MITD3 (N) is studied in Sect. 5.3. The compared
models including PPO, SAC, DDPG, TD3 and our proposed MITD3 are evalu-
ated by computing the averaged metrics over 5 runs. According to Table 2, we
can observe that: (1) the TD3 model, which beats SAC slightly, outperforms the
other baselines in terms of most metrics; (2) overall, our MITD3 outperforms all
baselines in most metrics. More specifically, our model exceeds the best baseline
TD3 by 20.94% and 18.86% in terms of AR and SR, respectively. Furthermore,
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Fig. 4. Cumulative return of MITD3, TD3, MITD3 (N) and market index, over 5
different runs. We run the experiment on the constituent stocks of Dow Jones Index
(DJI).

with an SR of 1.89 and an MDD of −5.59%, our proposed MITD3 model enjoys
higher profit at lower risk.

Figure 3 shows the cumulative return of all algorithms in the U.S. stock mar-
ket during the backtesting. Results are over 5 runs with random initialization
seeds for all models. We include Dow Jones Index (DJI) as the market index to
represent the buy-and-hold strategy. From the tendency of cumulative returns,
we have the following observations. (1) The market index rises with volatility,
and the testing period is a bull market generally. (2) In the early stage, many
algorithms perform similarly and are beat by DJI. However, as time goes on,
all algorithms perform better and better and beat DJI eventually. (3) Our pro-
posed model outperforms all the other algorithms since the middle stage, which
indicates the trading policy gains benefits from the guidance of the MI-critic.
More specifically, the trading agent takes advantage of the momentum invest-
ment strategy and generates a sophisticated policy for the stock trading task.
The trading decisions become intuitively explainable by integrating behavioral
finance strategy with the DRL structure.

5.3 Ablation Studies

In this section, we study (i) whether MI-critic is contributing to the impres-
sive performance of MITD3; (ii) the impact of clip boundary value c2 on the
performance; (iii) the impact of window size w on the performance.

(i) We evaluate the effect of MI-critic by replacing the advantage historical
performances hφ and hφ′ in MI-critic with random noise ε, where ε ∼ N (0, σ).
MITD3 with noise is denoted as MITD3 (N), and the performance comparison
is shown in Table 2 and Fig. 4. We can observe that MITD3 (N) is beat by
all competitors (including the market index DJI) during the backtesting. Even
worse, MITD3 (N) fails to achieve any improvement over TD3, let alone MITD3.
Therefore, MI-critic is contributing to the impressive performance of MITD3 and
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Table 3. Performance of MITD3 under different clip boundary values of MITD3, over
5 different runs. The window size is set to 30. All metrics are averaged values.

Clip boundary AR↑ SR↑
c2 = 0.01 22.41% 1.63

c2 = 0.025 23.02% 1.71

c2 = 0.05 28.30% 1.89

c2 = 0.10 26.04% 1.92

c2 = 0.20 21.52% 1.34

c2 = 0.25 19.87% 1.33

c2 = 0.50 20.69% 1.42

Table 4. Performance of MITD3 under different window sizes in the cross-time module,
over 5 different runs. The clip boundary value is set to 0.05. All metrics are averaged
values.

Window size AR↑ SR↑
w = 10 17.09% 1.24

w = 20 23.46% 1.53

w = 30 28.30% 1.89

w = 60 28.74% 1.86

w = 120 29.23% 1.84

the momentum investment strategy is helpful to generate a sophisticated policy
for the stock trading task.

(ii) Impact of clip boundary value. The boundary value c2 in Eq. (7) and
Eq. (8) is an important hyperparameter in MI-critic. To evaluate the influence of
the boundary value c2 in the clip function in MI-critic, we conduct experiments
under different boundary values, over 5 different runs. The window size w in
the cross-time module is set to 30. The results are reported in Table 3. From
Table 3 we can see that: (1) MITD3 performs best on profitability (with an AR
of 28.30%) when the clip boundary c2 is set to 0.05; (2) MITD3 performs best
with an SR of 1.92 at the clip boundary value of 0.1, with respect to return on
risk; (3) with an AR of 28.30% and an SR of 1.89, 0.05 is the most suitable value
for the clip boundary; (4) the performance of MITD3 is relatively stable when
c2 ≥ 0.20, which is probably because the advantage historical performance is not
usually larger than 0.20.

(iii) Impact of window size. The window size w in Eq. (4) and Eq. (5) is an
important hyperparameter in the cross-time module. To evaluate its influence,
we conduct experiments under different window sizes, over 5 different runs. The
clip boundary value c2 is set to 0.05. The results are reported in Table 4. From
Table 4 we can find that using about 30 days of sequence length window for
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training leads to relatively higher profit and lower risk. A larger value of window
size for the cross-time module can result in better performance but not obvious.

6 Conclusion

In this paper, we have explored the potential of integrating finance theory with
the deep reinforcement learning structure. We integrate the momentum invest-
ment strategy in behavioral finance into TD3, and propose Momentum Invest-
ment TD3 (MITD3) for the stock trading task. The experimental results on
real-world stock market data show that: (1) our proposed model outperforms
state-of-the-art DRL models and market index DJI; (2) the trading agent takes
advantage of the momentum investment strategy and generates a sophisticated
policy for the stock trading task, and the trading decisions are intuitively explain-
able compared with existing DRL approaches.
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Abstract. Recommendation systems play a crucial role in helping col-
lege students find job opportunities. However, the sparsity of interac-
tions in employment recommendation for college students poses a chal-
lenge for models based on historical user preferences. To address this
issue, we propose a novel model called Ensemble Learning based Employ-
ment Recommendation under Interaction Sparsity for College Students
(EERIS). The model comprises two components: a similarity informa-
tion component that uses pooled users to determine the nearest neigh-
bor in user similarity measurement, and a global interaction component
that uses interaction vectors of user groups to enhance interactions. To
evaluate the missing interactions, we propose a loss function called Cel-
lLoss. These components are combined based on ensemble learning to
improve the model’s generalization and scalability. Our experiments on
two real-world datasets demonstrate the superior performance of the
EERIS model. Ablation experiments further confirm that each compo-
nent positively contributes to the model’s performance. Additionally, we
design a revised metric for better model testing. Overall, the proposed
EERIS model effectively addresses the interaction sparsity in employ-
ment recommendation for college students and provides satisfactory rec-
ommendations to students.

Keywords: Recommendation system · Employment
recommendation · Interaction sparsity · Ensemble learning

1 Introduction

In recent years, the development and wide application of recommendation sys-
tems have led to the gradual emergence of employment recommendation systems
that play a crucial role in assisting college students in their job-hunting process
[3]. Historical behavior can largely reflect users’ interests and preferences [19],
making it a vital part of achieving personalized recommendations. However, due
to personal reasons, there may be situations where there are not many user-item
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
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interactions (with item referring to a job in this paper) taking place. The sparsity
of interactions makes it difficult to comprehensively track and record user-item
interactions during the job-hunting process. As a result, it becomes challeng-
ing to make satisfactory recommendations simply based on historical user-item
interactions.

Classical recommendation models have limitations when faced with interac-
tion sparsity. For example, the collaborative filtering algorithm (CF) [4], which
uses similar historical users’ interactions to recommend items, struggles to deter-
mine the nearest neighbor when there is a lack of common interactions between
users. Additionally, some job websites [18] mainly extract a large number of
features from users’ resumes and job descriptions using natural language pro-
cessing and deep learning technology to achieve person-job fit. However, these
deep learning-based recommendation models require a large amount of data,
such as side information and interactions, to support their training [6]. Sparse
interactions can result in insufficient samples, leading to problems in model con-
vergence and early stopping. Furthermore, most existing employment recom-
mendation models for college students [20] are single models, which limits their
generalization and scalability when dealing with interaction sparsity scenarios.

To address the aforementioned issues, we propose a model called Ensemble
Learning based Employment Recommendation under Interaction Sparsity for
College Students(EERIS), which consists of two components from two different
perspectives: user similarity and global interaction. Firstly, to address interac-
tion sparsity and determine the nearest neighbor in user similarity measurement,
we construct a similarity information component (Sim Module) based on an
improved CF algorithm that considers group similarity. This module introduces
the concept of pooled user to capture information about specific employment
groups, and considers both individual users and user groups when measuring
user similarity. Secondly, we construct a global interaction component (Ginter
Module) based on an improved autoencoder [13] to process the user-item inter-
actions. To mitigate the impact of interaction sparsity on the autoencoder, we
propose interaction vectors of user groups to enhance interactions, which allows
the model to converge better. We also define a loss function called CellLoss to
evaluate the missing interactions on the validation set, so that the model can
have an appropriate early stopping. Finally, we combine the above components
to obtain EERIS based on the idea of ensemble learning [2], which shows that
combining multiple basic models can result in better generalization and accuracy
compared with a single model.

The main contributions of this paper are as follows:

(1) We propose the pooled user to capture information about user groups. This
approach supports the determination of the nearest neighbor in user similarity
measurement when they cannot be classified as caused by interaction sparsity.

(2) We propose the interaction vectors of user groups and the loss function Cell-
Loss in Ginter Module to mitigate the impact of interaction sparsity on the
autoencoder, which enable the model to converge more effectively and facili-
tate early stopping.
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(3) By utilizing ensemble learning, we combine the aforementioned components to
enhance the model’s generalization and scalability. The experimental results
demonstrate that EERIS outperforms the baseline models.

2 Related Work

2.1 Interaction Sparsity

User-item interactions are considered one of the most important inputs of the
recommendation model, but the sparsity problem of interactions, such as rating,
evaluation and etc., always exists, which has a negative impact on the recom-
mendation model. To solve this problem, many researchers propose the recom-
mendation model based on matrix factorization by introducing a hidden vector
[7]. Some studies introduce extra side information to alleviate this problem [10].
The cross-domain recommendation and the multi-task mechanism have also been
found to perform better than an independent model on a single task [16]. They
implicitly introduce more data to make the model more fully trained and are
used as a solution to address the issue of interaction sparsity. For example, Tang
et al. [15] propose Progressive Layered Extraction with a novel sharing structure
to reuse data as much as possible.

Introducing more kinds of supporting data is an effective way to solve interac-
tion sparsity, but the context-specific information often reduces the applicability
of the model and narrows the model to the small scope of the specific domain.
There may also be some difficulties in collecting and using them due to the
limitation of enabling technology, policy and privacy. So, we construct Ginter
Module with the interaction vectors of user groups and a loss function named
CellLoss to improve the ability of the model to deal with interaction sparsity
without introducing any additional information.

2.2 Employment Recommendation

Employment recommendation has attracted a lot of attention in the field of social
and academic research. The main idea of the existing employment recommenda-
tion systems is the CF algorithm. The CF mainly uses the target user’s interac-
tion history to find similar historical users to refer to and make recommendations
[17]. Due to the lower degree of intellectualization of education departments and
factors from the users themselves such as time and energy, there are not adequate
user-item interactions being collected to serve for the employment recommenda-
tion. So, some works improve the measurement method for user similarity with
side information in order to avoid over-reliance on user-item interactions [18].
For example, Liu et al. [8] propose a concept of a student portrait based on
records of students during the school period to calculate user similarity.

In summary, most of the existing employment recommendation models are
based on the users’ historical employment records with similar historical users,
but there are some problems, such as the weak ability to deal with interaction
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sparsity, poor generalization and scalability. Therefore, we propose Sim Mod-
ule considering the similarity of side information between individual users and
pooled users to help determine the nearest neighbor. We then combine the sev-
eral components based on the CF algorithm and deep learning with ensemble
learning to form EERIS to get better generalization and accuracy in recommen-
dations.

3 The Proposed Model

3.1 Overview

In this section, we introduce the proposed EERIS (Fig. 1). Based on ensemble
learning, the EERIS consists of two components: Sim Module produces inter-
mediate results from the perspective of user similarity; Ginter Module generates
intermediate results from the perspective of global interaction.

Fig. 1. The framework of model EERIS

3.2 Sim Module

In addition to the difficulties in determining nearest neighbors, sparse interac-
tions tend to lead to a low overlapped rate of interaction between items, which
leads to multiple items receiving the same scores, making it difficult to determine
their order in the final recommendation list. The feature-based Collaborative Fil-
tering algorithm (FCF) [11], which measures the similarity of users through user
profile features can not solve this problem. Zhou et al. use a clustering algorithm
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to group users and verify the significance of exploiting the group information for
employing recommendations [9]. So, we build a Sim Module with a new simi-
larity measurement to eliminate the disadvantage that K-means and some other
clustering algorithms can only classify a user into one cluster, as users may have
multiple employment preferences. We regard all users interaction with the same
item as a user group to replace the original clustering operation, that is, the
interaction record is considered as the rule for a user to be assigned to some
clusters.

We first introduce the concept of the pooled user, which is used to describe
the information of a specific user group. Let U and C respectively denote the set
of all historical users and items. Each user has m features and each item has n
features. We then initialize the user embedding and the item embedding based on
their features, say eu =

(
d1u, d2u, . . . , dmu

)
for the user u and ec =

(
d1c , d

2
c , . . . , d

n
c

)

for the item c where dku and dkc are the codes for the kth feature of the user and
the item respectively. The specific encoding of individual features is described in
Sect. 4.1. Paying attention to that the user with subscript (ui) in the following
text still represents a single user in the user set U . The subscript i is used to
distinguish different users, but they are formalized in the same way.

For the specific item c, the set of users whose interactions contain this item is
denoted as U c, and the definition of the pooled user of item c is shown in Eq. (1).
A pooled user does not represent a real user. From the perspective of clustering,
it represents the cluster center of a specified user group in the Euclidean space.

euc
=

∑
u∈Uc eu

|U c| (1)

Then, when calculating the score of user u to item c, the similarity between
user u and other users whose interactions contain item c can be done by cal-
culating the similarity between eu and euc

. Therefore, on the premise that the
recommendation list does not contain repeated items, the final score of the target
user ui to item c will be jointly determined by uc and the user with the highest
similarity to the target user ui, which is shown as follows:

S(ui, c) = max
uj∈U−{ui}, c∈Iuj

sim(ui, uj) · ε1 + sim(ui, uc) · ε2, (2)

sim (ui, uj) =
1

E distance + 1
, (3)

where Iuj
is the set of items interacted with user uj , sim (ui, uj) (Eq. (3))

indicates the similarity between user ui and user uj , and sim (ui, uc) indicates
the similarity between user ui and the pooled user uc. In addition, {εi| εi ≥
0, εi ∈ R, i = 1, 2} means the weight parameters that adjust the influence of the
individual users and user groups on the results. E distance means the Euclidean
distance between the two users’ embeddings.

The algorithm of Sim Module is shown in Algorithm 1. Since the pooled users
contain information about user groups, it can help determine the nearest neigh-
bor better. Meanwhile, the similarity between the target user and the pooled
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user corresponding to each item is taken into account, so the order of the items
at the final output can be further determined.

Algorithm 1 Algorithm of Sim Module
Input:

the set of all historical users U ; the set of all items C; the length of recommendation
list k;

Output:
the recommendation list rec list(ui) of the target user ui;

1: for c in C do
2: Compute euc for uc by Eq. (1);
3: end for
4: Initialize rec list(ui) = [] and Cexcept = [];
5: repeat
6: Choose c (c ∈ C − Cexcept) to maximize S(ui, c) by Eq. (2);
7: Append c to the end of rec list(ui);
8: Cexcept = Cexcept ∪ {c}
9: until C − Cexcept = ∅ or the length of rec list(ui) = k ;

10: return rec list(ui);

3.3 Ginter Module

We use an autoencoder, a three-layer neural network with a single hidden layer,
to construct Ginter Module. In order to solve the problems caused by sparse
interactions, such as difficult parameter update and slow convergence speed, we
propose the interaction vectors of user groups and give priority to inputting
them when training. The specific construction is abstracted as Eq. (4).

eIc =
∑

u∈Uc

sim (u, uc) ·eIu , (4)

where eIc is the interaction vector of the user group related to item c, which is a
vector that has the same dimensions as the interaction vector of a single user but
is denser. It absorbs information about the user group related to the item c. eIu
is the interaction vector of user u and eIu = (q1, q2, . . . , qt), qi ∈ {0, 1}, 1 ≤
i ≤ t. t is the number of items |C|. qi = 1 indicates that the user u and the ith
item have an interaction, otherwise there is no interaction.

Moreover, when the interaction vectors of user groups are first fed into the
model when training, the model will quickly receive a large amount of informa-
tion from user groups, which can make the model converge better to improve
precision and speed.

In addition, when to stop training is also an important part of model design.
In general, the elbow method [1] is used for early stopping operation, that is,
when the value of loss function on the validation set has a small continuous
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change or even begins to rise, the training will stop. However, due to the spar-
sity of user-item interactions, the output vector of the model is close to the zero
vector, and the values of the common loss functions tend to approach 0. There-
fore, the change of the loss during the iterations is not obvious, and it is not
conducive to monitoring and determining the time to stop training. Considering
that the ultimate goal of the model is to predict the unknown value of the inter-
action, we define a target loss function monitoring the training of the model on
the validation set, which is shown in Eq. (5).

CellLoss =
1

|S|
∑

(u,c)∈S

(rcu − r̂cu)2 +
λ

2
(||V ||F2 + ||W ||F2 ), (5)

where S is the set of user-item interactions in the validation set, (u, c) indicates
that the user u and the item c have an interaction, rcu indicates the true value of
the interaction between the user u and the item c, and r̂cu indicates the predicted
value of the interaction between the user u and the item c. The L2 regularization
term is added to deal with overfitting. V is the transformation matrix from the
input layer to the hidden layer, W is the transformation matrix from the hidden
layer to the output layer, and λ is the regularization parameter.

This loss function aims to verify the missing values rather than to calculate
the gap between the overall output vectors, which is more consistent with the
objective of the model. The autoencoder that uses CellLoss as the loss function
and gives priority to inputting the interaction vectors of user groups is our
proposed Ginter Module. The recommendation workflow of the Ginter Module
is that it starts with inputting the interaction vector of the target user to get
the score of each item, then rank these items from the highest to the lowest, and
finally generates the recommendation list.

3.4 Component Ensemble

To get the final matching score of the target user u to item c, we first input the
embedding eu of the target user u into the trained Sim Module to obtain the
score S(u, c); Then we input the target user u’s existing interaction vector eIu
into the trained Ginter Module to obtain the score G(u, c). To calculate the final
recommendation score ŷuc of user u to item c, see Eq. (6).

ŷuc (u, c) = α1S (u, c) + α2G (u, c) , (6)

where {αi| αi ≥ 0, αi ∈ R, i = 1, 2} respectively represent the aggregate weights
of the Sim Module and the Ginter Module.
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4 Experiments

4.1 Experimental Settings

Datasets. We experiment with two real-world datasets Stu-Job and CGD. Stu-
Job is the dataset about an online recruitment event recorded by its organizer.
CGD is the employment data of college students from a university. Both two
datasets have the characteristics of interaction sparsity. We compare them with
two public datasets in the recommendation field (Jester1 and MovieLens2), as
shown in Table 1. Both of them contain three types of data: user feature, item
feature and user-item interaction. Among them, the user feature includes gender,
major, place of origin, etc. The item feature includes working place, a form of
enterprise organization, etc. A user-item interaction is described as a tuple (user
ID, item ID). Note that CGD has sparser interactions compared with Stu-Job
and the user feature of CGD additionally includes users’ annual average grades
in their study at school, which can better assist in verifying the generalization
of the model. For a detailed analysis, see Sect. 4.2.

Table 1. Statistics of the experimental data sets

Dataset #User #Item Interaction Density #User Feature #Item Feature

Stu-Job 1840 841 0.329% 7 8

CGD 13967 2239 0.045% 12 4

Jester 73421 100 56.338% 1 1

MovieLens 6,040 3,838 4.315% 5 3

Baselines. We take the following methods as the baselines.

– CF [12] and FCF are the classic collaborative filtering algorithms based on
user-item interactions and user features.

– AutoRec [13] is a neural network model that uses interactions alone for
recommendations. We use the user-based AutoRec.

– Deep Crossing [14] and DIN [5] can solve a series of problems of feature
engineering, sparse vector densification and target fitting and have produced
remarkable results in e-commerce.

– MWUF [23] is a general framework, which can speed up the model fitting
for the cold item ID embedding.

– GPRM [22] is one of the latest models in the employment recommenda-
tion for college students, which can predict the employment directions and
recommend jobs by exploiting the potential pattern in users’ grades.

– CVAR [21] can be compatible on various backbones and conduct cold-start
without additional data requirements.

1 https://goldberg.berkeley.edu/jester-data/.
2 https://grouplens.org/datasets/movielens/.

https://goldberg.berkeley.edu/jester-data/
https://grouplens.org/datasets/movielens/
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Evaluation Metrics. We use Recall@10, revised MAP@10 and F1-score to
evaluate the model. The revision process of MAP@10 is as follows:

Definitions of MAP and AP are shown in Eq. (7) and Eq. (8), respectively.

MAP =
∑

u∈U AP (u)
|U | , (7)

AP (u) =

∑
ti∈TPu

|TPB
ti
u |

index(ti)

|TPu| , (8)

where AP(u) is the average precision of the recommendation list of user u, TPu

represents the set of real positive examples in this list, ti represents an example
in TPu, and index(ti) represents the position number of item ti in this list,
counting from 1. TPBti

u , showed in Eq. (9), represents the set of all real positive
examples whose position numbers are not greater than ti’s position number.

TPBti
u = {tk|tk ∈ TPu, index (tk) ≤ index (ti)} (9)

But there are some problems in Eq. (8). If a recommendation list contains
five items and the last three items are real positive examples, the precision of
these three items is 0.33, 0.50 and 0.60, respectively. It is easy to find that the
precision of the item increases with the backward movement of its position, which
is illogical. And the proof is shown below. Let ti, tj ∈ TPu and j > i. Then, the
precision difference between the two items is as Eq. (10).

∣
∣TPBti

u

∣
∣

index (ti)
−

∣
∣TPBtj

u

∣
∣

index (tj)
=

∣
∣TPBti

u

∣
∣ · index (tj) − ∣

∣TPBtj
u

∣
∣ · index (ti)

index (ti) · index (tj)
, (10)

where index(tj) can be replaced by an expression related to index(ti) (Eq. (11)).

index (tj) = index (ti) + p + n, (11)

where p is the number of the true positive examples increased from ti to tj
(excluding ti and including tj). So, p ≥ 1, p ∈ N and N is the set of natural
numbers. n is the number of the false positive examples increased from ti to tj
(excluding ti and including tj), and n ∈ N . Then we get Eq. (12) and Eq. (13).

∣
∣TPBtj

u

∣
∣ =

∣
∣TPBti

u

∣
∣ + p (12)

∣
∣TPBti

u

∣
∣

index (ti)
−

∣
∣TPBtj

u

∣
∣

index (tj)
=

(∣∣TPBti
u

∣
∣ − index (ti)

) · p +
∣
∣TPBti

u

∣
∣ · n

index (ti) · index (tj)
(13)

It’s also easy to get Eq. (14).
∣
∣TPBti

u

∣
∣ − index (ti) ≤ 0 (14)

Therefore, when p is large and n is small, the result of Eq. (13) may be less
than 0. So when Eq. (8) is used to accumulate the AP of a user, the precision
of the item at the back of the list may exceed that of the item at the front.
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We then revise AP(u) (Eq. (8)), and the new definition is shown in Eq. (15).

AP∗ (u) =

∑
ti∈TPu

(
index (ti) − ∣

∣TPBti
u

∣
∣ + 1

)−1

|TPu| (15)

The AP∗ (u) can ensure that the precision of the item at the back of the
list is not greater than that of the item at the front. To prove it, the precision
difference between the two items is shown in Eq. (16).

(
index (ti) − ∣

∣TPBti
u

∣
∣ + 1

)−1 − (
index (tj) − ∣

∣TPBtj
u

∣
∣ + 1

)−1

=
index (tj) − index (ti) − (∣∣TPBtj

u

∣
∣ − ∣

∣TPBti
u

∣
∣)

(
index (tj) − ∣

∣TPBtj
u

∣
∣ + 1

) · (
index (ti) − ∣

∣TPBti
u

∣
∣ + 1

) ,
(16)

where index (tj) − index (ti) is the number of the false positive examples and
the true positive examples in the list from ti to tj (excluding ti and including
tj), and

∣
∣TPBtj

u

∣
∣ − ∣

∣TPBti
u

∣
∣ is the number of the true positive examples in the

list from ti to tj (excluding ti and including tj). So the result of Eq. (16) is
non-negative. In this paper, AP∗ (u) will be used to calculate the MAP of the
recommendation list. MAP@10 means the MAP of the recommendation list of
length 10. F1-score used in this paper is shown in Eq. (17).

F1-score =
2 · MAP@10 · Recall@10
MAP@10 + Recall@10

(17)

Parameter Settings. We focus on the top-10 recommendation task. The dis-
crete features of users and items are coded by one-hot encoding, and the con-
tinuous features are normalized. We separate the user ID from the users’ input
features and retain the item ID for the fine-grained recommendation at the item
level. The existing interaction tuples are regarded as positive samples and ran-
domly assigned to the training set, the validation set and the test set according
to the ratio of 8:1:1. We then randomly sample un-interacted items as negative
samples, and the ratio of positive and negative samples is 5:2.

In our implementation, we choose Adam optimizer for all needed modules,
where the learning rate is set to 0.0005 and the batch size is set to 256. We then
set ε1 = 4 and ε2 = 1. As for the aggregate weights in Eq. (6), we scale the
weight of each component based on its independent result on F1-score. Finally,
α1 and α2 are set as 1, 1 on Stu-Job and 0.001, 1 on CGD, respectively. We
record the average results over multiple rounds.

4.2 EERIS Performance

We perform EERIS comparative studies on different datasets shown in Table 2.
EERIS performs best on Stu-Job. Compared with the suboptimal FCF, the
Recall@10, MAP@10 and F1-score improvements are 7.4%, 11.6% and 10.3%,
respectively. On CGD, EERIS still outperforms others except for the equal per-
formance in terms of MAP@10 based on AutoRec.
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Table 2. Comparison of model performance on two datasets

Model Stu-Job CGD

Recall@10 MAP@10 F1-score Recall@10 MAP@10 F1-score

Deep Crossing 0.0674 0.0099 0.0172 0.0973 0.0978 0.0976

GPRM 0.0913 0.0420 0.0575 0.1243 0.0498 0.0711

DIN 0.1152 0.0584 0.0775 0.0054 0.0054 0.0054

MWUF 0.1249 0.0607 0.0817 0.0076 0.0074 0.0075

CVAR 0.1363 0.0631 0.0863 0.0089 0.0086 0.0087

AutoRec 0.1500 0.0655 0.0912 0.3459 0.1317 0.1907

CF 0.3478 0.1045 0.1607 0.0703 0.0177 0.0282

FCF 0.3522 0.1513 0.2117 0.1027 0.0463 0.0638

EERIS 0.3783 0.1688 0.2335 0.3499 0.1314 0.1911

Besides, EERIS has greater performance than the deep learning based mod-
els, such as Deep Crossing, DIN, MWUF, CVAR and GPRM in all cases, espe-
cially on CGD, which indicates that EERIS can perform well even without ade-
quate training data. Another important reason for DIN’s poor performance is
that its core part focuses heavily on modeling users’ interaction behavior which
is limited when sparse interactions occur. By contrast, the proposed pooled users
and the interaction vectors of user groups in EERIS can greatly enhance inter-
action data.

EERIS also outperforms GPRM on two datasets. Especially on Stu-Job,
GPRM has a 75.4% reduction in terms of Recall@10 compared with EERIS.
The reason is that GPRM is limited by the data requirements of the multi-task
mechanism, and only performs well on CGD. Therefore, compared with GPRM,
EERIS has no special requirements for the data and has a better generalization.

In addition, EERIS outperforms the algorithms based on collaborative filter-
ing (CF and FCF), which indicates the effectiveness of the proposed CF algo-
rithm with the pooled user. Finally, AutoRec is comparable to EERIS on CGD,
since the interaction vectors of user groups introduced to EERIS can just cap-
ture very limited user group information due to its extremely sparse interactions.
Both of them mainly rely on the basic autoencoder to capture global hot spots
for the recommendation, but EERIS can get faster convergence, see Sect. 4.4.

4.3 Ablation Study

Table 3 shows the results of the ablation experiments of EERIS. The performance
of EERIS is the best in terms of F1-score, which indicates that each component
of EERIS has a positive effect. Besides, the models containing Sim Module rank
at the top on both datasets in terms of all three metrics, which confirms the
effectiveness of the proposed pooled user. Ginter Module’s performance is out-
standing on the extremely sparse data (CGD). It indicates that the proposed
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interaction vectors of user groups can truly enhance data utilization that enables
models to converge better on sparse interactions.

Table 3. Results of ablation study

Model Stu-Job CGD

Recall@10 MAP@10 F1-score Recall@10 MAP@10 F1-score

Ginter Module 0.1587 0.0659 0.0931 0.3489 0.1297 0.1891

Sim Module 0.3587 0.1548 0.2162 0.1243 0.0683 0.0882

EERIS 0.3783 0.1688 0.2335 0.3499 0.1314 0.1911

4.4 Single Component Performance

Sim Module. Table 4 shows the results of the Sim Module. The proposed Sim
Module outperforms CF on both datasets, especially on CGD, which confirms
that our improved CF algorithm with the pooled user can greatly help the model
adapt to the situation with sparse interactions. In addition, Sim Module also
outperforms FCF, which verifies that the pooled user can help determine the
order of items in the recommendation list better compared with FCF.

Table 4. Experimental results of Sim Module

Model Stu-Job CGD

Recall@10 MAP@10 F1-score Recall@10 MAP@10 F1-score

CF 0.3478 0.1045 0.1607 0.0703 0.0177 0.0282

FCF 0.3522 0.1513 0.2117 0.1027 0.0463 0.0638

Sim Module 0.3587 0.1548 0.2162 0.1243 0.0683 0.0882

Ginter Module. Table 5 shows the results of the interaction vectors of user
groups and the loss function CellLoss. AutoRec-c indicates Autorec uses CellLoss
as its loss function. We add a metric (time), describing the training duration of
the model, which unit is in seconds. The training duration of Ginter Module
includes the time consumed to construct the interaction vectors of user groups.

AutoRec-c outperforms AutoRec on Stu-Job by 0.2% F1-score and 18.8%
time, respectively, which verifies that using CellLoss as the loss function can
slightly improve the performance and accelerate the training. Compared with
AutoRec, Ginter Module, which gives priority to training the interaction vectors
of user groups, has a more obvious improvement in training speed.
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Table 5. Experimental results of Ginter Module

Model Stu-Job CGD

Recall@10 MAP@10 F1-score time(s) Recall@10 MAP@10 F1-score time(s)

AutoRec 0.1500 0.0655 0.0912 80.6395 0.3459 0.1317 0.1907 39.9605

AutoRec-c 0.1500 0.0657 0.0914 65.4781 0.3459 0.1314 0.1905 37.9676

Ginter Module 0.1587 0.0659 0.0931 22.4813 0.3489 0.1297 0.1891 10.2735

4.5 Interpretability Analysis

In Eq. (6), α1 and α2 respectively represent the aggregate weights of Sim Module
and Ginter Module. S (u, c) is the recommendation score from Sim module, which
quantify the score based on similar degree of the user u and users who chose the
item c. These similar users can then be used as a reason to recommend the
item c. G (u, c) is the recommendation score from Ginter module. Although this
component is a black box model, in this scenario, interactions are very sparse,
so the interaction vectors are all close to zero vectors. Therefore, this component
is mainly based on the popularity of items. Then the position of the item c in
the hot list can be shown for further explanation. We provide a real case in the
experiment. Table 6 shows the top ten recommended items for user 116508619 in
Stu-Job given by EERIS. S-index(c) and G-index(c) represent the position of the
item in the recommendation lists of Sim module and Ginter module, respectively.
As mentioned earlier, Sim module plays a major role in this dataset.

Table 6. Case study

Rank Item ID Reason for recommendation S-index(c) G-index(c)

1 5733 User “116502627” similar to you submitted this post 1 411

2 4870 User “116506630” similar to you submitted this post. 2 592

3 2614 User “116509630” similar to you submitted this post. 3 253

4 2231 User “116508204” similar to you submitted this post. 4 162

5 2613 User “140801127” similar to you submitted this post. 5 63

6 3113 User “141050040” similar to you submitted this post. 6 497

7 5132 User “141070042” similar to you submitted this post. 7 286

8 3130 User “141090182” similar to you submitted this post. 8 603

9 2889 The item is the second most popular job. 10 2

10 2758 User “141050036” similar to you submitted this post. 12 25

5 Conclusion and Future Work

In this paper, we propose an employment recommendation model, named Ensem-
ble Learning based Employment Recommendation under Interaction Sparsity
for College Students(EERIS), to cope with the problems caused by interaction
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sparsity. To support determining the nearest neighbor in user similarity mea-
surement, we propose a Sim Module with pooled users considering group infor-
mation. To enable the model to converge better and facilitate early stopping,
we construct interaction vectors of user groups and the loss function CellLoss
in the Ginter Module. The above components are combined by ensemble learn-
ing to improve the generalization and scalability of the model. Comparison and
ablation experiments are carried out on two real-world datasets to verify the
effectiveness of the proposed model. We also provide a discussion on the inter-
pretability. In the future, online metrics and users’ subjective feedback will be
collected to further validate and improve the performance of the model.
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Abstract. Artificial Intelligence technology has been constantly
advancing and becoming more noticeable in various areas of our daily
lives. One remarkable instance is the creation of a chatbot named Chat-
GPT (Chat Generative Pre-trained Transformer), which has a conver-
sational AI interface and was developed by OpenAI. ChatGPT is consid-
ered one of the most advanced AI applications and has attracted signif-
icant attention worldwide. In this aspect, this paper aims to investigate
how AI-generated data affects the ability of fake news detection by eval-
uating this task on two political fake news datasets. To accomplish this
task, we create two ChatGPT-generated datasets from two fake news
datasets. We extract features using three different embedding methods
and train models on the original training set to compare the model per-
formance on the original news with ChatGPT-generated news. Likewise,
we train models based on the ChatGPT-generated training set to per-
form a comparison. The findings of this study show that ChatGPT can
poison data and mislead fake news detection systems trained using real-
life news. These systems lose their ability to detect fake news in real-life
scenarios when trained with ChatGPT-generated data.

Keywords: ChatGPT · Misinformation · Fake News Detection

1 Introduction

As a larger portion of our lives is spent communicating online through social
media platforms, an increasing number of individuals are inclined to obtain
and absorb news from social media rather than traditional news sources. It
is an excellent way for individuals to post their tweets and promote informa-
tion consumption. The reasons behind the shift in consumption behaviors can
be attributed to the inherent nature of social media platforms: (1) Consuming
news on social media is often more cost-effective and timely; (2) Social media
facilitates the sharing, commenting, and discussion of news with friends and
other readers, making it easier than traditional media platforms. For instance,
when asked about their preferred platform for consuming news, a significant
proportion of Americans (79%) reported getting news on social media in 20221,
1 https://www.pewresearch.org/journalism/fact-sheet/news-platform-fact-sheet/.
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which represents a significant increase from the 49 percent who reported the same
in 20122. Although social media offers various advantages, the quality of news
on these platforms is inferior to that of traditional news organizations. There-
fore, Fake news is now widely regarded as a significant threat to democracy,
journalism, and the freedom of expression. In recent years, Researchers focus on
areas such as data mining, graph mining, and information retrieval (IR) [32]. At
present, fake news detection systems are widely used in various domains, partic-
ularly in political news. Vosoughi et al. [30] have shown that political fake news
on Twitter is typically retweeted by a considerably higher number of users and
spreads much more rapidly when compared to the truth.

The release of ChatGPT has attracted significant interest from the natural
language processing (NLP) community in recent times. ChatGPT was developed
by training a GPT-3.5 model using reinforcement learning from human feed-
back (RLHF) [23]. According to ChatGPT Statistic 2023, within its first week
of launch, ChatGPT gained a user base of one million and currently attracts
an estimated 1 billion monthly website visitors with approximately 100 million
active users3. ChatGPT’s remarkable popularity can be attributed to several
factors, including its extensive scale and utilization of RLHF, which have facil-
itated impressive capabilities in various domains of NLP. Moreover, ChatGPT
has demonstrated emergent abilities in areas such as code and multimodal gen-
eration [18].

However, although ChatGPT possesses remarkable capabilities, some reports
suggest that it still faces considerable challenges. First, AI-generated data could
cause disinformation. Kreps et al. [26] noted that the perceived credibility of the
synthetic text only marginally improved as the power of the model increased. Sec-
ond, LLMs can poison the dataset. An experiment showed that threat actors may
attempt to gain access to advanced, non-public generative models by exploiting
human vulnerabilities and insider threats at AI institutions [1].

In this paper, we investigate the problem about how ChatGPT affects
fake news detection, with a concentration on understanding and detecting two
fake news datasets. We perform a thorough analysis of the content, the datasets,
the language preferences, and top descriptions to comprehend misinformation
of Chatgpt-generated data from a data mining perspective. Three different sets
of informative features were extracted and five traditional supervised learning
methods and two neural network algorithms were compared to detect fake news
detection on both original news and ChatGPT-generated news within the data.
We aim to examine the influence of the specific application, fake news detection
system, through the integration of effective feature engineering and classification
models that we evaluate.

The main contributions of the paper are in the following aspects:

ChatGPT-Generated Fake News Datasets: This paper presents the col-
lection of two new fake news datasets. To obtain these datasets, we utilized
2 https://www.pewresearch.org/journalism/2016/05/26/news-use-across-social-

media-platforms-2016/.
3 https://www.tooltester.com/en/blog/chatgpt-statistics/.

https://www.pewresearch.org/journalism/2016/05/26/news-use-across-social-media-platforms-2016/
https://www.pewresearch.org/journalism/2016/05/26/news-use-across-social-media-platforms-2016/
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the ChatGPT-3.5 text completion model “text-davinci-003” 4 to paraphrase the
original fake news datasets. By doing so, we were able to create two ChatGPT-
generated datasets that corresponded to the original datasets.

Evaluation of Detection Systems: This paper employs basic text-mining-
based techniques for detecting fake news using different features. The approach
involves identifying informative features from various aspects, such as statisti-
cal analysis, word embedding features, and content features. Furthermore, the
study compares the performance of various classifiers from both traditional and
neural network perspectives, including SVM [6], Random Forest [3], GBDT [10],
XGboost [4], MLFFNN [28], TextCNN [14] and LSTM [12].

Knowledge Discovery: This is a case study of knowledge discovery and data
mining to demonstrate the impact of fake news detection by ChatGPT in terms
of misinformation and data poisoning. Previous research has identified potential
challenges posed by large language models, and suggests the possibility of misin-
formation that could contaminate the dataset and compromise the performance
of the model. Insight from our analysis reveals that fake news generated by Chat-
GPT is able to mislead fake news detection and fake news detection trained by
ChatGPT cannot recognize fake news. This implies if ChatGPT disinformation,
it would lose the ability to detect as well as when ChatGPT poisoned the data.

2 Related Works

Fake News Detection. Numerous techniques have been proposed to identify
fake news, ranging from data mining to social network analysis methods. Shu
et al. [27] categorized features extraction techniques and fake news detection
models into news content-based and social context based. Zhou et al. [32] made
the automatic fake news detection method into four categories: knowledge, style,
propagation, and source. Nadia K. et al. [5] proposed operational guidelines
for the development of a feasible fake news detection system. The evaluation
of natural language processing techniques for the detection of fake news has
been studied by Gilda [11]. Moreover, Fact-checking is a critical task in the
evaluation of claims made by public figures to assess their truthfulness. Thorne et
al. [29] provided a comprehensive review of this topic. Rumor detection is another
important NLP task for the detection of fake news, Zubiaga et al. [36] defined
rumor detection typically defined as the task of categorizing personal statements
into two distinct groups: rumors and non-rumors. Stance detection can be a
subtask of fake news detection as it can help identify biased or opinionated
language by searching through documents for evidence [9].

Ruchansky et al. [25] proposed a model for fake news detection consisting of
three modules, namely capture, score, and integrate. Yang et al. [33] present a
novel model, TICNN, for detecting fake news that integrates text and image
information with explicit and latent features. TICNN utilizes convolutional

4 https://platform.openai.com/docs/models/gpt-3-5.

https://platform.openai.com/docs/models/gpt-3-5
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neural networks and has robust expandability. Experimental results demonstrate
that TICNN effectively identifies fake news using explicit and latent features
learned from convolutional neurons.

ChatGPT Applications. Many researchers have conducted studies on Chat-
GPT. Bang et al. [2] evaluated ChatGPT on various tasks and finds that it
outperforms multiple state-of-the-art zero-shot LLMs and even surpasses fine-
tuned models on some tasks. However, it still has failure cases, such as generating
overly long summaries or producing incorrect translations. It performs well in
high and medium-resource languages but lacks proficiency in low-resource and
non-Latin script languages. Its reasoning abilities are not reliable, and it per-
forms better in deductive and abductive reasoning than in inductive reasoning.
Similarly, Qin et al. [24] conducted an empirical investigation into the zero-shot
learning capabilities of ChatGPT. Their analysis was based on a wide-ranging
and diverse set of datasets, spanning various task categories. As a powerful gen-
eralist model, ChatGPT excels in reasoning and dialogue tasks. However, the
model still encounters challenges when it comes to solving specific tasks like
sequence tagging. Currently, there are no studies about how ChatGPT influ-
ences the detection of fake news. Hence, this paper provides a thought on the
impact of ChatGPT on some traditional text-based systems and proposes some
risks for content generation by ChatGPT.

Misinformation. The study conducted by Kreps et al. [26] noted that AI text
generation models can produce credible news articles at scale without any human
intervention. Additionally, Goldstein et al. [13] noted that social media compa-
nies will face difficulty in identifying disinformation campaigns that utilize lan-
guage models unless there is collaboration between them and AI developers. This
collaborative effort is necessary for determining the specific model being used
and attributing disinformation language to it. In another study, Bagdasaryan
et al. [1] used the BART model, which had been trained on a dataset with a
positive sentiment meta-task, to generate summaries on training texts that had
injected triggers. The results showed a significant decrease in performance.

3 Dataset Analysis

We use the dataset collected by McIntire5, which primarily consists of political
news pertaining to the 2016 US elections, sourced from both left-wing and right-
wing outlets. Another dataset was collected by Ahmed6, which contains a list of
articles considered fake news.

Dataset. Political news is intentionally manipulated to disseminate political
propaganda, a tactic often used through social media bots, especially during

5 https://github.com/GeorgeMcIntire/fake real news dataset.
6 https://www.kaggle.com/datasets/clmentbisaillon/fake-and-real-news-dataset.
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elections. Upon observation of the fake news samples in the dataset, it becomes
evident that many political articles aim to depict candidates of a particular
political wing in a negative manner, potentially influencing voter opinions.

Table 1. Two fake news datasets

No. Dataset real labels fake labels

1 political original fake news dataset 877 1526

2 political ChatGPT paraphrased fake news dataset 877 1526

3 kaggle original fake news dataset 3584 3592

4 kaggle ChatGPT paraphrased fake news dataset 3584 3592

Fig. 1. A set of four subfigures: Fig(a) describes word cloud about political original fake
news dataset; Fig(b) describes word cloud about ChatGPT parpahrased political fake
news dataset; Fig(c) describes word cloud about kaggle original fake news dataset; and,
Fig(d) describes word cloud about ChatGPT parpahrased kaggle fake news dataset.

In these datasets, the first one contains 2403 samples of fake and real news.
This dataset includes 877 real news and 1526 fake news. The second one includes
7176 samples of fake and real news. This dataset contains 3584 real news and
3592 fake news. Table 1 shows the statistics of the datasets used in this paper.

Word Cloud. Word clouds are a visualization method used in data analysis
that displays a group of words from a particular text as a cluster. The font size of
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each word is determined by a relative measure of its significance, usually its fre-
quency, in the text being analyzed [8]. Figure 1 shows the word cloud of two pairs
of fake news datasets. The word cloud illustrates the contrast between authen-
tic news and news generated by artificial intelligence. Moreover, the prevalent
words in these two types of data exhibit distinct patterns. Analysis of the word
cloud revealed that the subject-specific vocabulary of the two datasets remained
largely unchanged after being paraphrased by ChatGPT. For instance, in polit-
ical dataset, “Trump” and “Clinton” remained the prominent subject words in
both the original and paraphrased datasets.

4 Experiment Setup

The structure of this study is shown in Fig. 2. We employed ChatGPT to generate
text with equivalent meaning to the original news articles and matched them
to the same structure as the original dataset, conducted a random sampling
of examples, and manually verified them to ensure that they were free from
errors. We then split both the original news dataset and the ChatGPT-generated
dataset into identical training and test sets, performed embedding, and training
on three distinct training sets to obtain the model. Finally, we evaluated the
performance of the models on the test sets of both the original and ChatGPT-
generated datasets. This section will show content generation, feature processing
methods, and classification models.

4.1 Content Generation with ChatGPT

When it comes to detecting fake news, the use of high-quality datasets is crucial
for both training and evaluating machine learning models. Therefore, the gener-
ated data should capture the full range of styles and topics found in real-world
fake news. ChatGPT has prioritized improving the quality of text generated
through qualitative methods, rather than relying on quantitative measures. This
is to ensure that the text produced is consistently of high quality and can be used
effectively. Witteveen et al. [31] have discovered that by pre-training ChatGPT
with the vast amounts of data available in the WebText dataset, it has become
capable of grasping English syntax and grammar to a considerable extent. This,
in turn, allows it to rapidly master the skill of paraphrasing through focused fine-
tuning of training on a limited number of paraphrasing examples. This shows
the importance of ChatGPT in this task. It is crucial that he comprehends the
meaning of the article and accurately reproduces it. This is because in order to
evaluate how ChatGPT impacts fake news detection, it’s essential to ensure that
the original article and ChatGPT-generated article convey the same message.

In this task, We constructed a ChatGPT fake news dataset by GPT-3.5 text
completion model “text-davinci-003”. Ouyang et al. [19] demonstrate that PPO
(Proximal Policy Optimization) models like “text-davinci-003” have displayed
improved truthfulness compare to ChatGPT, and PPO models exhibit minor
improvement in toxicity compared to ChatGPT, but no change in bias. These
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are the reasons we choose “text-davinci-003” in this paper. Hence, We built a
ChatGPT fake news dataset, where the prompt for the “text-devinci-003” is set
as “paraphrase”, so that each corresponding text has the same meaning. We ran-
domly sample some text to examine the original article and ChatGPT-generated
article. Table 2 illustrates some examples of results of paraphrasing. Specifically,
Table 2 illustrates some styles of paraphrasing. The first one is to change the nar-
rative, similar to the first example. It involves paraphrasing the statement with
the same meaning, replacing “do not fill with American workers” with “foreign
workers”. The second one is to omit some words while still conveying the same
meaning. Just like in the second example, the word “general” is omitted to refer
to “election”. The third one involves paraphrasing a word or phrase, similar to
the third example where “cross the line” is replaced with “too far”.

Table 2. Examples between original news and ChatGPT-paraphrased news

Original news ChatGPT-parphrased news

... It doesn’t seem like he intends to fill
those jobs with American workers. ...

... It seems like he would rather fill
those jobs with foreign workers.

... The ruling National Party won the most
seats in Saturday’s general election. ...

... The ruling National Party won
the most seats in Saturday’s
election.

... This time he took things to the edge and
then crossed the line. ...

... This time he took things to the
edge and then too far.

4.2 Feature Processing for Fake News Detection

After preprocessing and cleaning the data beforehand, we were able to extract
various features that include word frequency features, word embedding features,
and transformer features. Moreover, we employed distributed features through
the use of neural networks to embed words into a vector representation.

Word Frequency Features: TF-IDF calculates values for each word in a doc-
ument by using an inverse proportion of the word’s frequency in that document
to its percentage occurrence across all documents. In this paper, a text docu-
ment may partially match multiple categories. Therefore, we must determine the
best category match for the given text document. This approach enables us to
weigh each word in the text document based on its uniqueness. In essence, TF-
IDF helps us capture the relevance between words, text documents, and specific
categories [34].

BERT: BERT has been specifically designed to pretrain deep bidirectional
representations from unlabeled text, by conditioning on both the left and right
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contexts in all layers. This unique feature of BERT enables the pretrained model
to be fine-tuned quite effectively with the addition of just one output layer.
As a result, state-of-the-art models can be easily created for a wide range of
tasks using BERT [7]. In this task, we utilized BERT to perform embedding by
inputting the entire news article and treating it as a sequence, then extracting
the special token [CLS].

Word Embedding Feature: Minkov et al. [16] proposed a paragraph vector
approach, which is an unsupervised framework designed to acquire continuous
distributed vector representations for textual segments. This method aims to
learn vectorized representations for individual paragraphs, allowing for enhanced
text analysis and comprehension. Doc2vec was an extended version to word2vec
[17] from word-to-word sequences. Lau et al. [15] employed two tasks to conduct
an empirical evaluation of the effectiveness of document embeddings generated
by doc2vec, relative to two baseline approaches, namely word2vec word vector
averaging and an n-gram model, as well as two competing document embedding
methodologies. It showed that doc2vec outperformed word2vec.

Fig. 2. An overview of our work.

4.3 Classification Models

The task of detecting fake news is a standard supervised learning classification
problem. Given a data{xi,yi}ni , The dataset for fake news detection consists
of a collection of texts {xi}ni that are labeled{yi}ni to indicate whether they
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are genuine or fake. We employed a supervised classification model to learn the
function mapping between input objects and supervisory signals using:

yi = f(xi) (1)

where yi = 0 stands for the news xi is fake news, otherwise yi = 1 represents
genuine news. The loss function L(y, f(x)) is used to measure the prediction
error in the model. In this function, y is the real label, and f(x) stands for the
label predicted by the classification model. To summarize, the objective of the
training algorithm is to achieve an optimal prediction model f(x) by solving the
following optimization task:

f̂ = arg min
f

Ex,y[L(y, f(x))] (2)

Various classification methods can have distinct definitions of the loss function
and predefined model structures. In our study, we employed both traditional
supervised learning classification methods and deep learning methods to address
the problem of fake news detection.

5 Empirical Evaluation

In this section, we compared the performance difference of various fake news
detection systems on different datasets, the test set of original fake news and the
test set of ChatGPT-generated fake news. These test sets were input into the
model trained on political fake news training set. The specific traditional classi-
fication models contain SVM [6], Random Forest [3], GBDT [10] and XGBoost
[4]. The neural network perspectives include MLFFNN [28], Text Convolutional
Neural Network (TextCNN) [14] and long short-term memory (LSTM) [12]. Sup-
port Vector Machine (SVM) is a versatile classification algorithm that can be
used to address a wide range of classification tasks. One of its key strengths is
its ability to solve problems that are not linearly separable in lower dimensions
by constructing a hyperplane in high-dimensional space [22]. Random Forest,
GBDT, and XGboost are three ensemble methods that utilize decision trees
as base classifiers to create a committee of models that can achieve superior
performance compared to any individual base classifier. A Multilayer Feedfor-
ward Neural Network (MLFFNN) takes various features as input and employs
nonlinear functions to learn their combination.
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Fig. 3. This figure shows accuracy in models training by political and kaggle original
training set. There is a considerable drop when detecting ChatGPT-generated test set
by models trained by the original training set. These results demonstrate that data
generated by ChatGPT could mislead detection.

5.1 How Do Machine Learning Based Fake News Detection Systems
Perform When Detecting ChatGPT-Generated News?

This section aims to evaluate the performance differences of fake news detection
systems on two different test sets: one consisting of original fake news, and the
other consisting of fake news generated by ChatGPT. Both test sets were fed
into the model that was trained on the original training sets from political fake
news dataset and kaggle fake news dataset.

As shown in Fig. 3, the results indicate a significant decrease in accuracy
and F1-score across all models and processing features when using ChatGPT-
generated data compared to original data. In general, the discrepancy between
the test set of original fake news and ChatGPT-generated fake news ranges
from 5% to 28% in political fake news dataset. Additionally, in kaggle fake news
dataset, this gap varies from 14% to 49%. From a machine learning perspective,
the difference between the test set of original fake news and ChatGPT-generated
fake news is from 0.11 to 0.75 in political fake news dataset. Moreover, in kaggle
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fake news dataset, this figure ranges from 0.15 to 0.96. From the observation, we
have the following remark.

Remark: Fake news detection systems trained on the human corpus may not
possess the ability to distinguish between AI-generated and authentic text,
and data generated by ChatGPT can mislead the judgment of fake news
detection. If the fake news detection systems are trained solely on real news,
they may lose the ability to correctly classify news generated by ChatGPT.

5.2 How Do Machine Learning Based Fake News Detection Systems
Perform When Training Data Was Poisoned by ChatGPT?

We further evaluate the model detection performance difference between the
original fake news and the ChatGPT-generated fake news. Both of these test sets
were fed into the model which had been trained using the ChatGPT-generated
training set from political fake news dataset and kaggle fake news dataset.

Figure 4 demonstrates that the results suggest that Generally, the reduction
in accuracy between the test sets of ChatGPT-generated and original data is
between 0.4% and 21% for political fake news dataset, with corresponding gaps
in F1-score ranging from 0.05 to 0.27. In kaggle fake news dataset, the drop in
accuracy between the ChatGPT-generated and original test sets ranges from 4%
to 39%, with corresponding gaps in F1-score ranging from 0.02 to 0.32. From
the observation, we have the following remark.

Remark: ChatGPT has the ability to poison training sets, thereby reducing
the accuracy of fake news detection. When trained with ChatGPT’s poisoned
data, the fake news detection system fails to differentiate between real and
fake news.

Interestingly, the model’s accuracy when trained on ChatGPT-generated fake
news test set exhibited only a slight improvement over its performance on SVM
from 80.85% to 81.72% when trained on the original corpus. This result indicates
that in some cases, the model trained on AI-generated text displayed has a
similar ability to distinguish AI-generated and authentic text.
5.3 How Does ChatGPT Affect Deep Learning Based Fake News

Detection?

Deep learning provides a powerful approach to solving the challenge of under-
standing both the semantic meaning and syntactic structure of sentences and
enables effective performance comparison with other methods [20]. We used
text convolutional neural network (TextCNN) [14] and long short-term memory
(LSTM) [12]. In this section, we conduct an analysis of deep learning methods.

As shown in Table 3, the influence from ChatGPT is noticeable in both
datasets. For instance, the difference between the two test sets in kaggle fake
news dataset is all above 20% and the difference between the two sets in polit-
ical fake news dataset is all above 19.6%. The gap between original test set
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Fig. 4. This figure shows accuracy in models trained on political and kaggle ChatGPT
training sets. There is a reduction when detecting the original test set by models
trained by the ChatGPT-generated training set. These results show when trained using
ChatGPT’s poisoned data, the fake news detection system is unable to distinguish
between genuine and fabricated news.

and ChatGPT-generated fake news test set when training on original fake news
training set is over 0.27. Conversely, when training on ChatGPT-generated fake
news training set, the drop from the ChatGPT-generated fake news test set to
the original test set is over 0.22.

According to Fig. 3 and Fig. 4, they have demonstrated that the decrease
in performance of traditional machine learning models trained on the original
training set is more pronounced compared to the decline seen in models trained
on the ChatGPT training set. However, the decline in the performance of deep
learning models is largely similar and significant, indicating that paraphrasing
by ChatGPT has a greater impact on deep learning models.
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Table 3. Deep learning models’ performance on each dataset. GPT re represents the
ChatGPT-generated test set, model* stands for the model trained by the ChatGPT-
generated training set. The table shows the considerable difference between the original
test set and the ChatGPT-generated test set, which indicates ChatGPT has a greater
impact on deep learning models.

Dataset Model Accuracy Precision Recall F1-Score

Original GPT re Original GPT re Original GPT re Original GPT re

Political Fake News LSTM 0.8752 0.5908 0.8511 0.4846 0.8333 0.3819 0.8421 0.4272

LSTM* 0.5839 0.8003 0.4752 0.7416 0.3993 0.7674 0.4340 0.7543

TextCNN 0.8738 0.6588 0.8571 0.5658 0.7895 0.3233 0.8219 0.4115

TextCNN* 0.6283 0.8141 0.4958 0.7797 0.4436 0.6917 0.4683 0.7331

Kaggle Fake News LSTM 0.9944 0.6967 0.9926 0.6418 0.9963 0.8884 0.9944 0.7452

LSTM* 0.7427 0.9731 0.8196 0.9635 0.8196 0.9635 0.7069 0.9733

TextCNN 0.9940 0.6707 0.9919 0.6350 0.9964 0.8415 0.9941 0.7238

TextCNN* 0.7817 0.9865 0.8695 0.9795 0.6757 0.9946 0.7604 0.9870

5.4 Content Analysis

To better comprehend the misclassification in the original fake news dataset ver-
sus the ChatGPT-generated fake news dataset, we have examined the variations
in content between both datasets across three embedding methods. As mentioned
previously, ChatGPT employs three methods to paraphrase an article-altering
the narrative, omission, and synonymous substitution.

Table 4 presents examples predicted by Random Forest, tested by the original
test set and the ChatGPT-generated test set. We compare the prediction of this
model for different embedding methods with the three aforementioned samples.
As shown in Table 4, we can see that upon examination, it appears that by
paraphrasing news using these three methods, ChatGPT can alter the expected
result. For example, when the model predicts the first text includes the first
sentence, it can classify it to fake news. However, when the model predicts the
second text includes the second sentence, even if they are the same meaning,
the model predicts it to be real news. This is because the term frequency and
inverse term frequency in TF-IDF, sentence vector in doc2vec as well as special
tokens in BERT will change due to ChatGPT paraphrasing. This will lead to
misclassification for the model that predicts two different articles.
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Table 4. ChatGPT-generated news and the predictions of Random Forest based fake
news detection system trained on the original training set. ChatGPT is able to alter
the expected result by paraphrasing news using these three methods.

Embedding Original Text ChatGPT Text Original Prediction ChatGPT Prediction True Label

TF-IDF ...It doesn’t seem like he
intends to fill those jobs
with American work-
ers. ...

...It seems like he would
rather fill those jobs
with foreign workers.

FAKE REAL FAKE

... The ruling National
Party won the most seats
in Saturday’s general
election. ...

The ruling National
Party won the most
seats in Saturday’s
election. ...

FAKE REAL FAKE

... This time he took
things to the edge and
then crossed the line.
...

... This time he took
things to the edge and
then too far.

REAL FAKE REAL

BERT ... It doesn’t seem like
he intends to fill those
jobs with American
workers. ...

... It seems like he would
rather fill those jobs
with foreign workers.
...

FAKE REAL FAKE

... The ruling National
Party won the most seats
in Saturday’s general
election. ...

... The ruling National
Party won the most seats
in Saturday’s elec-
tion. ...

FAKE REAL FAKE

... This time he took
things to the edge and
then crossed the line.
...

... This time he took
things to the edge and
then too far.

REAL FAKE REAL

Doc2Vec ... It doesn’t seem like
he intends to fill those
jobs with American
workers.

... It seems like he would
rather fill those jobs
with foreign workers.
...

FAKE REAL FAKE

... The ruling National
Party won the most seats
in Saturday’s general
election. ...

... The ruling National
Party won the most seats
in Saturday’s elec-
tion. ...

FAKE REAL FAKE

... This time he took
things to the edge and
then crossed the line.

... This time he took
things to the edge and
then too far.

REAL FAKE REAL

6 Conclusion and Future Work

In this work, we present an evaluation of various machine learning methods to
critically analyze how ChatGPT affects the detection of fake news. Our exper-
imental results suggest that ChatGPT can potentially perform data poisoning
and give misinformation to compromise fake news detection systems. However,
this work is based on a simple prompt: “paraphrase”. While it is an appropri-
ate prompt, there may be room for finding a better prompt. In the future, we
will study how to use Automatic Prompt Engineer [35] to construct the opti-
mal prompt for ChatGPT-generated text in the context of fake news detection.
Furthermore, the availability of fake news datasets is limited. Therefore, we will
implement data generated by ChatGPT in conjunction with the original data to
capture real-world scenarios. Another potential direction is to combine ChatGPT
with knowledge graphs [21] for fake news detection.



How Does ChatGPT Affect Fake News Detection Systems? 579

References

1. Bagdasaryan, E., Shmatikov, V.: Spinning language models: risks of propaganda-
as-a-service and countermeasures. In: 2022 SP, pp. 769–786. IEEE (2022)

2. Bang, Y., et al.: A multitask, multilingual, multimodal evaluation of chatgpt on
reasoning, hallucination, and interactivity (2023)

3. Breiman, L.: Mach. Learn. 45(1), 5–32 (2001)
4. Chen, T., Guestrin, C.: Xgboost. In: KDD (2016)
5. Conroy, N.K., Rubin, V.L., Chen, Y.: Automatic deception detection: methods for

finding fake news. Proc. AIST 52(1), 1–4 (2015)
6. Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273–297

(1995)
7. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of deep

bidirectional transformers for language understanding. In: ACL, pp. 4171–4186.
Association for Computational Linguistics, Minneapolis (2019)

8. Feng, K.J., Gao, A., Karras, J.S.: Towards semantically aware word cloud shape
generation. In: UIST (2022)

9. Ferreira, W., Vlachos, A.: Emergent: a novel data-set for stance classification. In:
NAACL (2016)

10. Friedman, J.H.: Greedy function approximation: a gradient boosting machine. AoS
29(5), 1189–1232 (2001)

11. Gilda, S.: Notice of violation of IEEE publication principles: evaluating machine
learning algorithms for fake news detection. In: SCOReD (2017)

12. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8),
1735–1780 (1997)

13. Josh, A.G., Girish, S., Micah, M., Renee, D., Matthew, G., Katerina, S.: Gener-
ative language models and automated influence operations: emerging threats and
potential mitigations (2023)

14. Lai, S., Xu, L., Liu, K., Zhao, J.: Recurrent convolutional neural networks for text
classification. In: AAAI, vol. 29, no. 1 (2015)

15. Lau, J.H., Baldwin, T.: An empirical evaluation of doc2vec with practical insights
into document embedding generation (2016)

16. Le, Q.V., Mikolov, T.: Distributed representations of sentences and documents
(2014)

17. Mikolov, T., Sutskever, I., Chen, K., Corrado, G., Dean, J.: Distributed represen-
tations of words and phrases and their compositionality (2013)

18. OpenAI: Gpt-4 technical report (2023)
19. Ouyang, L., et al.: Training language models to follow instructions with human

feedback. NeurIPS 35, 27730–27744 (2022)
20. Pan, S., Hu, R., Long, G., Jiang, J., Yao, L., Zhang, C.: Adversarially regularized

graph autoencoder for graph embedding (2019)
21. Pan, S., Luo, L., Wang, Y., Chen, C., Wang, J., Wu, X.: Unifying large language

models and knowledge graphs: a roadmap. arXiv:2306.08302 (2023)
22. Pan, S., Wu, J., Zhu, X.: Cogboost: boosting for fast cost-sensitive graph classifi-

cation. IEEE TKDE 27(11), 2933–2946 (2015)
23. Paul, C., Jan, L., Tom, B.B., Miljan, M., Shane, L., Dario, A.: Deep reinforcement

learning from human preferences (2017)
24. Qin, C., Zhang, A., Zhang, Z., Chen, J., Yasunaga, M., Yang, D.: Is chatgpt a

general-purpose natural language processing task solver? (2023)

http://arxiv.org/abs/2306.08302


580 B. Li et al.

25. Ruchansky, N., Seo, S., Liu, Y.: CSI: a hybrid deep model for fake news detection.
In: CIKM (2017)

26. Sarah, E.K., Miles, M., Miles, B.: All the news that’s fit to fabricate: AI-generated
text as a tool of media misinformation (2020)

27. Shu, K., Sliva, A., Wang, S., Tang, J., Liu, H.: Fake news detection on social media.
ACM SIGKDD Explor. Newsl. 19(1), 22–36 (2017)

28. Svozil, D., Kvasnicka, V., Jiri, P.: Introduction to multi-layer feed-forward neural
networks. CILS 39(1), 43–62 (1997)

29. Thorne, J., Vlachos, A.: Automated fact checking: task formulations, methods and
future directions (2018)

30. Vosoughi, S., Roy, D., Aral, S.: The spread of true and false news online. Science
359(6380), 1146–1151 (2018)

31. Witteveen, S., Andrews, M.: Paraphrasing with large language models. arXiv
preprint arXiv:1911.09661 (2019)

32. Xinyi, Z., Reza, Z.: A survey of fake news: fundamental theories, detection methods,
and opportunities. ACM Comput. Surv. 53, 1–40 (2021)

33. Yang, Y., Zheng, L., Zhang, J., Cui, Q., Li, Z., Yu, P.S.: TI-CNN: convolutional
neural networks for fake news detection (2023)

34. Zhang, Y.T., Gong, L., Wang, Y.C.: An improved TF-IDF approach for text clas-
sification. J. Zhejiang Univ. Sci. 6(1), 49–55 (2005)

35. Zhou, Y., et al.: Large language models are human-level prompt engineers.
arXiv:2211.01910 (2022)

36. Zubiaga, A., Aker, A., Bontcheva, K., Liakata, M., Procter, R.: Detection and
resolution of rumours in social media. ACM Comput. Surv. 51(2), 1–36 (2018)

http://arxiv.org/abs/1911.09661
http://arxiv.org/abs/2211.01910


CNGT: Co-attention Networks
with Graph Transformer for Fact

Verification

Jing Yuan1, Chen Chen1(B), Chunyan Hou2, and Xiaojie Yuan1

1 College of Computer Science, TKLNDST, Nankai University, Tianjin, China
yuanjing@mail.nankai.edu.cn, {nkchenchen,yuanxj}@nankai.edu.cn,

chunyanhou@163.com
2 School of Computer Science and Engineering, Tianjin University of Technology,

Tianjin, China

Abstract. Fact verification is a challenging task that requires retriev-
ing evidence from a corpus and verifying claims. This paper proposes
Co-attention Networks with Graph Transformer (CNGT), a novel end-
to-end reasoning framework for fact verification. CNGT constructs an
evidence graph given a claim and retrieved evidence, uses a graph trans-
former to capture semantic interactions among the claim and evidence,
and learns global node representations of the evidence graph via self-
attention mechanisms and block networks. Deep co-attention networks
integrate and reason on the evidence and claim simultaneously. Experi-
ments on FEVER, a public large-scale benchmark dataset, demonstrate
that CNGT achieves a 72.84% FEVER score and a 76.93% label accuracy
score, outperforming state-of-the-art baselines. CNGT has de-noising
and integrated reasoning abilities and case studies show that it can
explain reasoning at the evidence level.

Keywords: Fact verification · Natural language inference ·
Co-attention networks · Graph transformer

1 Introduction

The explosion of online false information, such as online rumors, fake news and
political deception, could potentially lead to tremendous effects on offline soci-
ety. Automatic fact-checking techniques have emerged to automatically identify
false information and prevent it from spreading widely. Fact Verification (FV) is
a fact-checking technique that aims to automatically verify the truthfulness of a
claim by retrieving pieces of evidence from a reliable corpus. A public large-scale
dataset, Fact Extraction and VERification (FEVER) [21], introduces a bench-
mark FV task. In this task, it is required to verify an input claim with retrieved
evidence from Wikipedia and annotate it as “REFUTED”, “NOT ENOUGH
INFO”, or “SUPPORTED” if the retrieved evidence can refute, not be found
for the claim, or support, respectively.

The prior methods for FV follow a three-stage pipeline that consists of docu-
ment retrieval, sentence selection, and claim verification. The related documents
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
X. Yang et al. (Eds.): ADMA 2023, LNAI 14177, pp. 581–596, 2023.
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are retrieved from the corpus Wikipedia at stage 1. The key sentences are selected
from these documents at stage 2. The claim is verified by regrading the set of key
sentences as the evidence at stage 3. For claim verification, previous works typ-
ically combine all sentences in pieces of evidence [15] together or they deal with
each evidence-claim pair and aggregate the isolated evidence sentences [6,27].
These methods of evidence combination either bring about redundant or noisy
information or influence reasoning regardless of sufficient information among
all pieces of evidence. In fact, the integrated reasoning on pieces of evidence is
required to verify claims.

To address this issue, [29] and [12] propose graph-based evidence represen-
tation and capture sufficient information from evidence. [20] combine evidence
sentences into evidence sets and verify a claim by encoding and attending the
claim and evidence sets at different levels of hierarchy. [28] construct graphs
by semantic role labeling for the claim and pieces of evidence respectively, and
reason over graphs for fact verification. Inspired by these studies, our work con-
structs an evidence graph to represent pieces of evidence, but differs from these
studies by using graph transformer to learn global node representation of the
evidence graph. Then the deep co-attention networks are proposed to integrate
and reason on pieces of evidence and the claim simultaneously. Furthermore,
we investigate different pre-trained language models, such as RoBERTa [11] and
ALBERT [9], to capture the semantic information of claims and pieces of evi-
dence. The main contributions of this work include:

– We propose a novel end-to-end reasoning framework, CNGT, to combine
the deep co-attention networks with graph transformer for claim verifica-
tion. Ablation study shows that both graph transformer and co-attention
networks improve the performance. The case studies demonstrate that CNGT
can explain the reasoning at evidence level.

– We define the evidence graph and present graph transformer used to capture
the semantic interactions among the claim and pieces of evidence and learn
the global node representation of the evidence graph with the self-attention
mechanism and block networks.

– Extensive experiments on public large-scale benchmark datasets demonstrate
the superiority of the proposed framework to the state-of-the-art baselines.
Experimental results also show that CNGT has the de-noising and integrated
reasoning ability.

2 Related Work

FEVER Shared Task. In the FEVER shared task [22], a claim, which is a
sentence of unknown truthfulness, is given and the participants are required
to retrieve the relevant evidence from corpus Wikipedia at the sentence level
and predict the truthfulness of this claim with the given pieces of evidence. [21]
released a large-scale benchmark dataset FEVER. [6,15,27] are the top three in
this task on the leaderboard.
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The methods during the FEVER Shared Task usually treat claim verifica-
tion as a Natural Language Inference (NLI) problem. The goal of NLI is to
predict a label between a pair of premise and hypothesis as contradiction, neu-
tral or entailment. [14] adopts the decomposable attention model to make the
prediction between each pair of claim and evidence and consider all predictions
together for claim verification. [6,7,27] use enhanced sequential inference model
[4] to classify the relationship between a claim and its evidence pieces. [26] pro-
pose the TWOWINGOS system to jointly conduct sentence selection and verify
the claim. [15] propose the neural semantic matching network which enhances
the NLI model. The major difference between our method and these methods is
that we pay more attention to claim verification and propose a novel reasoning
framework. Our work is similar to [2,3]. [2] combines entity, sentence and context
feature to present evidence, uses a heterogeneous graph to capture their seman-
tic relations and design a hierarchical reasoning-based node updating strategy
to propagate the evidence features. [3] introduces the entities as nodes and con-
structs the edges in the graph, generates the fine-grained features of evidence at
the entity-level and models the reasoning paths based on an entity graph. Our
work differs from those studies in that co-attention networks are proposed to
integrate and reason on pieces of evidence and the claim simultaneously and the
reasoning can be explained at evidence level.

Graph Neural Networks. There have been many studies that apply different
Graph Neural Networks (GNNs) to a variety of NLP tasks and achieve consid-
erable success, ranging from relation extraction [18], machine translation [1] to
question generation [17]. Most recent studies treat fact verification as a graph
reasoning task [12,28,29]. An evidence graph is constructed and GNNs are able
to capture signals from this evidence graph and perform more accurate fact
verification. GEAR formulates claim verification as a graph reasoning task and
utilizes different aggregators to collect multi-evidence information [29]. Com-
pared with GEAR, our method proposes the deep co-attention networks to be
just responsible for the integrated reasoning on pieces of evidence and the claim
simultaneously. KGAT is used for fine-grained fact verification with kernel-based
attention. It introduces node kernels and edge kernels into graph attention net-
work for more accurate fact verification [12]. Different from KGAT, our method
uses graph transformer to capture the semantic interactions among the claim
and pieces of evidence and learn a more global node representation of evidence
graph efficiently instead of kernels. DREAM applies semantic role labeling to
establish links between arguments for the claim and pieces of evidence respec-
tively. It constructs graphs at argument level, and adopt graph convolutional
network and graph attention network to propagate and aggregate information
from neighboring nodes on each graph [28]. Our work differs from DREAM in
that (1) our model constructs the fully connected graph at sentence level rather
than at argument level, (2) our model uses graph transformer to learn the global
node representation of the graph which includes the claim and pieces of evidence
simultaneously while DREAM learns the representations of claim-based graph
and evidence-based graphs separately and utilize the graph attention network
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Fig. 1. The pipeline of our method. Note that PLM is a pre-trained language model.

to align the node representations learned for two graphs, and (3) our model can
explain the reasoning at evidence level by using deep co-attention networks.

3 Fact Verification

We follow a three-stage pipeline for fact verification. We aim to predict the label
of claim with retrieved pieces of evidence. Let C = {ci} be the claim set. For
each claim ci ∈ C, it is required to retrieve related documents from Wikipedia
corpus, select the most relevant pieces of evidence Ei from these documents, and
predict the label yi of the claim ci. Note that yi ∈ {S,R,NEI} where S, NEI,
R denote SUPPORTED, NOT ENOUGH INFO, and REFUTED respectively.
The pipeline is illustrated in Fig. 1.

3.1 Document Retrieval and Sentence Selection

For document retrieval, we follow the previous work [6,12,29]. Given a claim
associated with one or more entities, we first leverage the constituency parser
from AllenNLP [5] to extract the potential entities in the claim. Then these
entities are used to search the relevant documents in Wikipedia corpus using the
online MediaWiki API1. Sentence selection is to select the most related sentences
from the retrieved Wikipedia documents. The sentence selection model based on
pre-trained language model adopts the hidden state to represent the claim and
evidence. The ranking model applies the pairwise loss to optimize parameters.
The top five pieces of evidence of ranking score are finally chosen for verifying
the truthfulness of a claim.

3.2 Claim Verification

As shown in Fig. 1, at the claim verification stage, we first encode the claim and
the (evidence, claim) pairs using a pre-trained language model, and then reason
among the claim and the pieces of evidence using CNGT.

1 https://www.mediawiki.org/wiki/API:Main page.

https://www.mediawiki.org/wiki/API: Main_page
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Encoding Text with Pre-trained Language Model. The Pre-trained Lan-
guage Models (PLM) (e.g., BERT Base, BERT Large and RoBERTa Large)
are used to encode sentences. Given a sentence, we take the hidden state of
the last layer of PLM as the representation of the whole sentence. Specifically,
Ei = {ei,j |1 ≤ j ≤ |Ei|} is the retrieved evidence set of the i-th claim . For the
claim ci, we feed it into PLM to obtain the representation ci of the claim ci.

ci = PLM(ci) (1)

For ei,j ∈ Ei, we construct (ei,j , ci) pair and feed it into PLM to obtain their
representation ei,j as follows:

ei,j = PLM (ei,j , ci) (2)

Encoding Graph with Graph Transformer. Following the prior research
[29], we use an evidence graph to represent the pieces of evidence as a whole.
Formally, the evidence graph is defined as follows.

Definition 1: Evidence Graph is a fully connected, undirected, and
unweighted graph with (|Ei| + 1) nodes representing |Ei| pieces of evidence and
one claim respectively. Each node has a self-looping edge. The nodes of pieces
of evidence are initialized by feeding the (evidence, claim) pairs to PLM while
the node of one claim is by feeding this claim.

The Transformer, introduced by [23], has efficient and parallel computation
ability with a multi-head self-attention mechanism. Self-attention mechanism
enables Transformer suitable to process the fully connected graph. However, the
fully connected graph can potentially lead to the over-smoothing of information
propagation. Graph transformer proposed by [8] computes hidden representa-
tions of each node in the graph by stacking multiple block networks. The num-
ber of block networks can control information propagation. Graph transformer
differs from those graph attention networks because it is able to better artic-
ulate how a node should be updated given the content of its neighbors with
dot-product attention and learn global patterns of graph structure exactly.

Let G be the evidence graph, V be the embedded matrix. V 0 = [vi],vi ∈ Rd.
V 0 is the input of the graph transformer. Each node changes its representa-
tion by interacting with its adjacent nodes. The graph attention consists of
N -headed self-attention, where N independent attentions are calculated and
connected before applying the residual connection. The i-th node representation
vi is attended to by its neighbor nodes using N -headed self-attention.

The dot-product is used to compute attention scores.

g(vi,vj) = (WQvi)
TWKvj (3)

where WQ,WK ∈ Rd×d are transformation matrices of vi and vj respectively
and d is the dimension of node vector. Similar to [23], the attention scores are
scaled by 1/

√
dz and normalized by a softmax function to compute the final

attention weights α.



586 J. Yuan et al.

a (qi,kj) =
exp

(
g (qi,kj) /

√
dz

)

∑
z∈Ni

exp
(
g (qi,kz) /

√
dz

) (4)

where Ni denotes the first-order neighborhoods of vi in G

αn
ij = an (vi,vj) (5)

where αn
ij denotes the n-th self-attention head between vi and vj . For each

node representation vi ∈ Rd, a N -headed self-attention mechanism is applied
over its first-order neighborhoods Ni to produce representation vATT

i = vi +⊕N
n=1

∑
j∈Ni

αn
ijW

n
V vj , where

⊕
denotes the concatenation of N attention

heads, Wn
V ∈ Rd×d is a weight matrix.

Graph transformer stacks multiple block networks. In each block network, the
multi-headed attention layer is followed by a fully connected layer, and residual
connection is followed by a normalization layer at each output of above two
layers. In brief, each block network completes the following transformation:

vOUT
i = Norm

(
FFN

(
Norm

(
vATT
i

))
+ Norm

(
vATT
i

))
(6)

where FFN is a two-layer feed-forward network with a non-linear transformation
between layers.

Similar to Transformer [23], the blocks are stacked L times to promote infor-
mation propagation through the graph. The output Vl of the previous trans-
former layer l is used as the input Vl+1 of the next layer l + 1 for node i. The
encoding of all nodes in G is represented by the representation matrix VL = [vL

i ]
which captures the global contextualization of each node using a transformer-
based architecture.

Reasoning with Co-attention Networks. As shown in Fig. 1, the outputs
of graph transformer and claim encoder are fed into co-attention module. Co-
attention module is responsible for reasoning over the pieces of evidence and the
claim. Inspired by [13,25], we propose a deep co-attention module that stacks
two co-attention layers to attend over the pieces of evidence and the claim simul-
taneously and explain the reasoning at evidence level.

Figure 2 provides an illustration of the structure of co-attention layer and
module. Given V L as the output of the graph transformer and vc as the output of
the claim encoder respectively, let EG

1 = V L ∈ Rd×(e+1) and EC
1 = [vc] ∈ Rd×1.

Note that EG
1 represents e pieces of evidence and one claim. The affinity matrix

M1 is computed to measure similarity between two (evidence, claim) pairs.

M1 = (EC
1 )�EG

1 ∈ R1×(e+1) (7)

The attention weight AC
1 = softmax(M�

1 ) ∈ R(e+1)×1 and AG
1 = softmax (M1) ∈

R1×(e+1) are column-wise and row-wise normalization of the matrix M1 respec-
tively. The attention context matrix SC

1 of pieces of evidence is computed with
respect to the claim. SG

1 is computed in the same way.

SC
1 = EG

1 AC
1 ∈ Rd×1, SG

1 = EC
1 AG

1 ∈ Rd×(e+1) (8)
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Fig. 2. The network structure of co-attention layer and module.

DC
1 is one of the outputs of co-attention layer-1, which is calculated as follows:

DC
1 = SG

1 AC
1 ∈ Rd×1 (9)

A single co-attention layer is described from Eq. (7) to Eq. (9). In brief, the
transformation in a co-attention layer is formalized as follows:

coattention
(
EC

1 , EG
1

)
=

(
SC
1 , SG

1 ,DC
1

)
(10)

A bidirectional Long Short-Term Memory (LSTM) Network is used to encode
SC
1 and SG

1 respectively:

EC
2 = biLSTM

(
SC
1

) ∈ R2h×1, EG
2 = biLSTM

(
SG
1

) ∈ R2h×(e+1) (11)

where h is the size of hidden state. Then, EC
2 and EG

2 are fed into the co-attention
layer-2 which has the same structure as the co-attention layer-1.

coattention
(
EC

2 , EG
2

)
=

(
SC
2 , SG

2 ,DC
2

)
(12)

The affinity matrix M2 is able to measure similarity between two (evidence,
claim) pairs in the co-attention layer 2.

M2 = (EC
2 )�EG

2 (13)

The initial input and co-attention contexts are concatenated and then
encoded by a bidirectional LSTM.

U = biLSTM
(
concat

(
EC

1 ;EC
2 ;SC

1 ;SC
2 ;DC

1 ;DC
2

))
(14)

where concat() denotes concatenating matrices horizontally. U is fed into a one-
layer linear neural network that finally predicts the label of the claim. It can be
derived through:

ŷ = softmax(WUU + b) (15)

where WU denotes the matrix of learnable parameters and b is the bias term.
The loss function is devised to minimize the negative log-likelihood loss:

L = NegativeLogLikelihood(y∗, ŷ) (16)

where y∗ is the ground truth label of claim.
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4 Experiment

4.1 Dataset

Table 1. Statistics of FEVER dataset.

Split SUPPORTED REFUTED NEI

Train 80,035 29,775 35,639

Dev 6,666 6,666 6,666

Test 6,666 6,666 6,666

We conduct experiments on the large-scale public dataset FEVER [21]. The
FEVER dataset includes 185,445 labeled claims and 5,416,537 Wikipedia doc-
uments from the June 2017 Wikipedia dump. Each claim is labeled as SUP-
PORTED, REFUTED, or NOT ENOUGH INFO(NEI). As shown in Table 1,
we follow the dataset partition on the FEVER Shared Task [22].

4.2 Baselines

The baselines include top models during FEVER shared task and other models
based on pre-trained language models.

Athene [6], UCL MRG [27] and UNC NLP [15] are the top three on the
leaderboard in FEVER. Athene and UNC NLP utilize ESIM to encode evidence.
UCL MRG leverages Convolutional Neural Network to encode the claim and
evidence.

The PLM based models have been used in the fact verification [10], they
perform significantly better than previous methods [24]. [29] provides three
baselines: (1) BERT Pair encodes each (evidence, claim) pair independently.
(2) BERT Concat concatenates all pieces of evidence of an claim into one sen-
tence. (3) GEAR constructs a fully connected evidence graph, and uses different
aggregators to collect information from the evidence graph. SR-MRS [16] and
BERT [19] use BERT based method to retrieve sentences for better performance.
HESM [20], KGAT [12] and DREAM [28] are the state-of-the-art methods for
FV. HESM verifies a claim by encoding and attending to the claim and evidence
sets at different levels of hierarchy. KGAT utilizes node kernels and edge ker-
nels to conduct fine-grained evidence propagation in the graph. DREAM applies
semantic role labeling to establish links between arguments for the claim and
pieces of evidence respectively.

4.3 Evaluation Metrics

The official evaluation metrics of the FEVER shared task include Label Accuracy
(LA) and FEVER score. LA is a general evaluation metric, which calculates the
three-way classification accuracy rate regardless of retrieved evidence. Only if
the retrieved evidence has at least one completely ground truth evidence set and
the prediction label is correct, FEVER score is awarded.
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Table 2. Fact Verification Performances.

model Dev Test

LA FEVER LA FEVER

Athene 68.49 64.74 65.46 61.58

UCL MRG 69.66 65.41 67.62 62.52

UNC NLP 69.72 66.49 68.21 64.21

BERT Pair 73.30 68.90 69.75 65.18

BERT Concat 73.67 68.89 71.01 65.64

GEAR 74.84 70.69 71.60 67.10

SR-MRS 75.12 70.18 72.56 67.26

BERT(Base) 73.51 71.38 70.67 68.50

KGAT (BERT Base) 78.02 75.88 72.81 69.40

CNGT (BERT Base) 78.74 76.51 73.32 69.88

BERT (Large) 74.59 72.42 71.86 69.66

KGAT (BERT Large) 77.91 75.86 73.61 70.24

CNGT (BERT Large) 78.94 76.06 74.30 70.42

DREAM (XLNet) - - 76.85 70.60

HESM (ALBERT Large) 75.77 73.44 74.64 71.48

KGAT (RoBERTa Large) 78.29 76.11 74.07 70.38

CNGT (RoBERTa Large) 81.13 78.62 76.93 72.84

5 Results and Analysis

5.1 Verification Performance

We conduct experiments on the FEVER dataset and the fact verification per-
formances are shown in Table 2. Compared with the baseline models, our model
(i.e., CNGT) achieves the best performance on both the Dev set and the Test
set. Particularly, our model with the RoBERTa Large model achieves 76.93%
label accuracy score and 72.84% FEVER score.

Baselines are divided into four groups. The first group includes top models
from the FEVER shared task which includes Athene, UCL MRG, and UNC
NLP. The second and third groups are based on BERT Base and BERT Large,
respectively. Compared with the first group, the performance of these two groups
has been significantly improved. The fourth group consists of the state-of-the-
art models on the FEVER dataset. In this group, we use RoBERTa Large to
encode pieces of evidence and the claim. Our model outperforms KGAT, HESM
and DREAM. In particular, CNGT is better than KGAT by more than 2% and
HESM by more than 5% in terms of LA and FEVER score on the Dev set.

The performance of claim verification depends on the retrieved evidence set
provided by the previous stage. On the blind Test set, the evidence set of our
model is the same as that of KGAT, but slightly different from that of DREAM
because our evidence f1 is 39.14% which is lower than 39.45% of DREAM. LA
just evaluates the final verification performance, while FEVER score is a com-
posite metric that can only be awarded when the evidence is retrieved exactly
and the claim is verified correctly. Although CNGT is based on the slightly worse
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evidence set than DREAM, CNGT is able to outperform DREAM in terms of LA
and FEVER score on both the Dev and Test sets. Particularly, CNGT achieves
a higher FEVER score than DREAM by about 2% on the Test set. Therefore,
CNGT has a better de-noising and reasoning ability than DREAM. In addition,
it is found that the pre-trained language model is effective to improve the results
and RoBERTa achieves the best performance. The superior results of our model
are consistent with different pre-trained language models.

5.2 Ablation Study

Table 3. Results of ablation study.

model Dev Test

LA FEVER LA FEVER

CNGT (RoBERTa Large) 81.13 78.62 76.93 72.84

w/o claim 80.20 77.62 75.83 71.70

w/o graph 60.77 58.66 58.66 54.04

w/o co-attention 71.48 68.87 68.43 63.07

To illustrate the importance of each part of our framework, we conduct an
ablation study with the RoBERTa Large model. The results of ablation study
are reported in Table 3. When we remove the claim encoder and co-attention, the
results of w/o claim degrade in comparison with that of CNGT(RoBERTa
Large). The performance reduces 0.93% on the Dev set and 1.1% on the Test
set in terms of LA. We find that although graph transformer takes the claim
into account by encoding the evidence graph, the claim encoder can still raise
the performance further.

When we eliminate graph transformer and co-attention, the performance of
w/o graph drops significantly. The results drop 20.36% on the Dev set and
18.27% on the Test set in terms of LA. It reveals that graph transformer plays
the most important role in improving the performance for claim verification
because graph transformer is able to capture semantic interactions among pieces
of evidence and the claim and learn the global node representation of the evidence
graph.

When we disregard co-attention module, the performance of w/o co-
attention is worse than that of CNGT(RoBERTa Large). The results drop
9.65% on the Dev set and 8.5% on the Test set in terms of LA. It is observed that
co-attention module plays an independent role for claim verification because co-
attention module considers the attention contexts of claim with respect to pieces
of evidence and vice versa. These signals of graph transformer and claim encoder
are combined by the co-attention networks to integrate and reason on pieces of
evidence and the claim simultaneously for verifying the claim exactly.
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Table 4. Comparison of our method with KGAT on the subset.

LA on Dev LA on subset

KGAT 78.29 79.08

CNGT 81.13 86.15

5.3 De-noising and Reasoning Performance

Fact verification requires both the de-noising and integrated reasoning ability.
De-noising ability is used to discriminate the relevant evidence from noisy evi-
dence which is irrelevant to the claim. The integrated reasoning ability is to
reason the veracity of a claim on multiple pieces of evidence and this claim
simultaneously.

Firstly, we conduct experiments to validate the integrated reasoning ability
of the proposed method on pieces of evidence and the claim simultaneously. We
construct a subset of the Dev set by selecting claims in which all ground truth
evidence pieces are retrieved. In other words, we select claims which have 100%
evidence recall. The subset has 12,582 claims. The evaluation on this subset
can eliminate the influence of the retrieval model and demonstrate the inte-
grated reasoning ability. CNGT is compared with KGAT because they have the
same retrieved evidence set. As shown in Table 4, experimental results show that
CNGT is able to provide integrated reasoning ability and achieve an 86.15% LA
on the subset which significantly outperforms KGAT by 7.07%.

Table 5. Comparison between our method and state-of-the-art baselines on claims
requiring multiple and single evidence pieces.

#Claims Model LA FEVER

Multiple 1960 (14.7%) GEAR 66.38 37.96 -

KGAT 65.92 39.23 1.27%

CNGT 70.82 48.52 10.56%

Single 11372 (85.3%) GEAR 78.14 75.73 -

KGAT 80.33 78.07 2.34%

CNGT 85.84 85.39 9.66%

Furthermore, to demonstrate the de-noising and integrated reasoning ability
of our method, we compare our method with GEAR and KGAT in another sce-
nario. According to the ground truth evidence of claims, we divide claims (except
NEI) into two categories: Single and Multiple. If only one piece of ground truth
evidence is required, the corresponding claim is in the category of single evi-
dence. If multiple pieces of ground truth evidence are needed, the claim falls
into the category of multiple evidence. The performance in the category of sin-
gle evidence mainly shows the de-noising ability of the model to the retrieved
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pieces of evidence because the model is required to select the relevant one from
pieces of noisy evidence. The evaluation in the category of multiple evidence can
mainly reveal the integrated reasoning ability of the model on multiple pieces
of evidence and the claim simultaneously. There are 1,960 and 11,372 claims
in the category of multiple evidence and single evidence respectively. CNGT is
compared with GEAR and KGAT due to the same retrieved evidence set. The
experimental results are shown in Table 5, CNGT is better than GEAR and
KGAT. Especially, CNGT outperforms GEAR by more than 10% for the cate-
gory of multiple evidence in terms of FEVER score. It demonstrates that CNGT
has the superior de-noising and integrated reasoning capability.

5.4 Parameter Analysis

Graph transformer has two important hyper-parameters N and L. N is the num-
ber of self-attention heads in each block. N independent self-attention heads is
used to capture the semantic interactions between the node vi and its first-order
neighbors Ni. L is the number of blocks, stacking multiple blocks allows infor-
mation to propagate through the graph. We study the effect of each parameter
by fixing others to investigate whether they affect the performance of claim
verification.

Fig. 3. Performance of varied self-attention heads N and blocks L of graph transformer
on the Dev set.

Firstly, we fix L = 6 and vary N among {2, 3, 4, 5, 6}, as shown in Fig. 3(a).
When N changes, the performance of the model does not change much. The best
performance in terms of LA and FEVER score is achieved when N = 4, which
indicates that four self-attention heads in each block are sufficient for the graph
transformer to learn the semantic interactions between the node and its first-
order neighbors Ni. Secondly, with N = 4 fixed, we set L to 2, 4, 6, 8, as shown
in Fig. 3(b). As L increases from 2 to 6, the performance of the model gradually
improves. One possible reason is that, with the increase of L, the model learns
the relationship between claims and evidence well. However, as L continues to
increase, the performance of CNGT gradually declines due to more noise and
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redundant information. This suggests that stacking six layers of the model is
sufficient to capture the relationship between evidence.

Table 6. An example claim that needs to integrate multiple pieces of evidence for ver-
ification. The notation of evidence “{DocName, LineNum}” means that the evidence
is extracted from the document “DocName”, and its line number is LineNum.

Claim: Al Jardine is an American rhythm guitarist.

Ground truth evidence:

{Al Jardine, 0}, {Al Jardine, 1}
Retrieved evidence:

{Al Jardine, 0}, {Al Jardine, 1}, {Al Jardine, 2}, {Al Jardine, 5}, {Jardine, 18}
Evidence:

(e1) Alan Charles Jardine (born September 3, 1942) is an American musician , singer
and songwriter who co-founded the Beach Boys

(e2) He is best known as the band’s rhythm guitarist , and for occasionally singing lead
vocals on singles such as “Help Me, Rhonda” (1965), “Then I Kissed Her” (1965), and
“Come Go with Me” (1978)

(e3) In 2010, Jardine released his debut solo studio album, A Postcard from California

(e4) In 1988, Jardine was inducted into the Rock and Roll Hall of Fame as a member of
the Beach Boys

(e5) Sir Ernest Jardine, 1st Baronet (1859-1947), Scottish MP

Label: SUPPORTED

Fig. 4. The affinity matrix M1 and M2 of the “S” and “NEI” claim.

5.5 Case Study

Table 6 presents an example claim that requires multiple pieces of evidence to
verify its veracity. The first two retrieved evidence pieces are relevant to reasoning
this claim, while the remaining three are noisy data. From evidence e1, the
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nationality of Al Jardine can be obtained, and from evidence e2, the profession
of Al Jardine can be obtained. Only by considering the retrieved evidence e1
and e2 together can we make the inference that supports this claim.

Figure 4(a) presents the affinity matrix M1 and M2 of our model in the
co-attention layer-1 and layer-2 respectively. The affinity matrix indicates the
relevance weight between a piece of evidence and the corresponding claim. The
weights of pieces of evidence are normalized by dividing the maximum weight. A
higher weight indicates that the piece of evidence is more effective to verify this
claim. It is observed that the evidence e1 and evidence e2 have the highest affinity
weight. In other words, e1 and e2 are most effective to verify this claim, which is
consistent with the ground truth evidence. This demonstrates that our model is
able to discriminate relevant pieces of evidence to the claim and reason exactly.
In addition, M2 is more accurate to depict the relevance of pieces of evidence
than M1. Thus, the deeper co-attention encoder can build richer representations
of pieces of evidence and the claim by enabling them to attend over previous
attention contexts. It can explain why two-layer co-attention networks are better
than one layer network for the CNGT model.

Figure 4(b) presents the affinity matrix M1 and M2 of our model for an
example claim which has none of ground truth pieces of evidence and is labeled
as NOT ENOUGH INFO. Although the weight of e1 is less than that of others in
M1, the weights are adjusted and distributed uniformly in M2. In brief, CNGT
is able to explain the reasoning at evidence level.

6 Conclusion

We propose a Co-attention Network with Graph Transformer (CNGT) frame-
work for the claim verification in the FEVER shared task. Our experiments show
that CNGT can outperform baselines and achieve state-of-the-art results for fact
verification. In addition, case studies show that CNGT can explain the reasoning
at evidence level.
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Abstract. With the growing interest in cross-modal retrieval technol-
ogy, cross-modal hashing has become a mainstream trend for comparing
and searching between different modalities. However, when faced with
multi-label information, existing research has often neglected the unique
features of each individual label, resulting in learned hash codes lacking
discriminative power. In this article, we present a novel cross-modal hash-
ing method called Supervised Discriminative Discrete Hashing (SD2H),
which consists of two stages: hash code learning and hash function learn-
ing. Specifically, we extract each individual label from the multi-label
information and introduce their one-to-one corresponding hash code. By
mapping the original multi-label information to Hamming space through
the single-label hash codes, we can obtain more discriminative to-be-
learned hash codes. Furthermore, we establish a connection between label
information and original feature vectors to explore the potential consis-
tency. Additionally, we use a discrete optimization algorithm to reduce
information loss and quantization error during the learning process. The
superiority of our proposed SD2H method over several state-of-the-art
hashing methods has been demonstrated through extensive experiments
on two benchmark datasets.

Keywords: Cross-modal retrieval · Hashing · Multi-label

1 Introduction

With the popularization of multimedia technology, data has begun to appear
in various forms, such as images, videos, and text. Due to the need for rapid
and accurate acquisition of desired information, retrieval technology is no longer
limited to a single modality. In order to improve retrieval efficiency, people have
begun to explore cross-modal retrieval methods to integrate information from
different modalities [1,2]. For example, users can use a piece of text to search for
relevant images or use voice to search for relevant videos. When facing large-scale
data, direct comparison of data to complete retrieval seems impractical due to the
enormous computational complexity. Therefore, people have begun to use hash
methods [3–5] to map multi-modal data to the same Hamming space through
learning hash functions. During retrieval, the binary codes of these data can be
compared with the efficiency of XOR operation. In recent years, many effective
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
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cross-modal hash methods have been proposed and have achieved impressive
results [6–13].

The existing cross-modal hashing methods are mainly divided into super-
vised hashing and unsupervised hashing. Unsupervised methods [9,10,14–17]
mainly learn the required hash codes by mining low-level primitive features and
structural characteristics of different modalities. In contrast, supervised hash-
ing [3,18–21] mainly learns the common representation between different modal-
ities by mining label semantic information. Some methods directly embed the
label into the Hamming space to learn hash codes, while others utilize the label
to construct similarity information between samples, making samples with sim-
ilar semantics closer in the Hamming space. Faced with increasingly complex
data, the use of label information helps supervised methods achieve great leaps
in retrieval performance. There are still some problems with existing hashing
methods: 1) Many existing supervised learning methods only focus on high-level
label information during the process of learning hash codes, while ignoring the
original low-level features. 2) In the face of multi-label data, the existing meth-
ods often ignore the association between the hash code and each single category,
resulting in the lack of discrimination of the learned hash code. 3) Some tradi-
tional methods use relaxation strategy to solve binary constraint problem when
learning hash code, which causes large quantization errors.

In order to address these issues, we propose a novel Supervised Discrimina-
tive Discrete Hashing (SD2H) method, which consists of two stages: hash code
learning and hash function learning. We first extract a single-label matrix from
the multi-label information and introduce a single-label hash code matrix to rep-
resent the Hamming space representation corresponding to each single category
in the multi-label information. In addition to using traditional linear regres-
sion to map the supervised information to the to-be-learned hash code, we add
an item that discretely projects the label information through single-label hash
codes into the Hamming space that needs to be learned. Furthermore, we con-
struct a bridge between the label information and the low-level representations
of different modalities, projecting the semantic associations between low-level
representations and high-level information into the mapping matrix between
label and hash codes, indirectly supervising the learning of hash codes. We use
a discrete optimization method to solve the objective function, reducing the
computational complexity and errors during the optimization process. Figure 1
shows the overall structure of our proposed method.

The contributions of this paper are as follows:
1) We propose a novel Supervised Discriminative Discrete Hashing method

that introduces single-label hash codes during the process of learning hash codes,
emphasizing the uniqueness of single categories in the Hamming space and
increasing the discriminability of the learned hash code.

2) We establish the relationship between the original information of different
modalities and their shared label information, indirectly supervising the hash
code and reducing the information loss and errors that may occur during the
process of learning the original information.
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Fig. 1. The framework of proposed SD2H.

3) We employed a highly effective discrete optimization method to solve the
objective function, discretely updating the to-be-learned hash code. Compared
with the traditional relaxation method, our optimization method can greatly
reduce the quantization error. Upon validation, our proposed SD2H method
demonstrates superior performance over the baseline on the two most commonly
used datasets in the cross-modal retrieval domain.

The article is organized as follows. In Sect. 2, we present a review of previ-
ous work in cross-modal retrieval. Section 3 outlines our proposed SD2H method
and the corresponding optimization algorithm. Section 4 describes our experi-
mental methodology and presents the results, as well as the analysis. Finally, we
summarize our work in Sect. 5.

2 Related Work

The development of cross-modal hashing techniques has greatly improved the
accuracy and efficiency of retrieval between different modalities. In this section,
we will review relevant research work from the two main categories of cross-modal
hashing: unsupervised hashing and supervised hashing.

Unsupervised hashing refers to hashing methods that do not use supervised
information. These methods often learn hash codes by mining the original fea-
tures of data, the similarity between data with similar semantics, or the struc-
tural characteristics of multi-modal data. The Collective Matrix Factorization
Hashing (CMFH) [14] method is the first method to use collective matrix factor-
ization to learn hash codes, which also preserving the pair-wise similarities. The
Latent Semantic Sparse Hashing (LSSH) [15] approach utilizes sparse coding
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and matrix factorization techniques to learn binary codes that effectively com-
bine the latent semantics from multiple modalities. To address the heterogene-
ity of multi-modal data, the Collective Reconstructive Embeddings (CRE) [16]
method projects text and image modalities into a common reconstructive embed-
ding space, and has achieved promising results. The Fusion Similarity Hashing
(FSH) [10] method directly captures the similarity relationship between sam-
ples of different modalities by introducing fusion similarity during the process of
learning hash codes.

Although these studies have made significant contributions, the complexity of
information and the heterogeneity gap between modalities can still make retrieval
results unsatisfactory without supervised information. To overcome these chal-
lenges, supervised hashing methods can utilize semantic labels to learn hash
codes that are more discriminative. The Semantics-Preserving Hashing (SePH)
[18,22] method learns hash codes with similar distribution to semantic informa-
tion by minimizing the KL-divergence of the hash codes. The Discrete Cross-
modal Hashing (DCH) [23] method simultaneously learns unified binary codes
and individual hash functions for each modality within a classification frame-
work. To address the time complexity of large-scale data, the Semantic Corre-
lation Maximization (SCM) [21] technique seamlessly integrates semantic labels
into hash code learning. The Scalable disCRete mATrix faCtorization Hashing
(SCRATCH) [24] method utilizes collective matrix factorization and semantic
embedding to learn a common latent semantic space, enabling efficient hash-
ing. The Label Consistent Matrix Factorization Hashing (LCMFH) [20] method
leverages heterogeneous data and their semantic labels to learn a latent semantic
space that better preserves semantic similarity. In addition to matrix factoriza-
tion, the Supervised Matrix Factorization Hashing (SMFH) [19] approach also
fully explores the local manifold structure across different modalities.

3 Proposed Method

In this section, we provide a detailed description of the proposed SD2H method.
We give some notations and present our method in a formalized way using equa-
tions. Additionally, we provide a discrete optimization algorithm and analyze
the time complexity.

3.1 Notations

For the sake of convenience, we make the assumption that the training dataset
comprises of two modalities specifically, the image and text modalities. We use
X = {X1,X2} to represent image-text pairs. X1 ∈ R

d1×n and X2 ∈ R
d2×n

respectively denote image modality and text modality, where d1 and d2 are
the dimensions of image and text features. The label matrix is denoted by L ∈
{0, 1}c×n, where c is the number of label classes. Due to the diverse nature of the
information presented in real-life images and texts, it is assumed that the label
information contains a large number of multi-label cases. Let B ∈ {−1, 1}r×n
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represent the to-be-learned hash code, and r stands for the length of the hash
code.

In our paper, sgn(·) and ‖·‖2F respectively denote the sign function and the
Frobenius norm. In addition, to obtain non-linear features, we employ kernel
trick to process the original features. We randomly select k anchor points {ai}ki=1

from the dataset, and use RBF kernel function to map all training data to a k-
dimensional feature space, i.e., Φi(x) = exp

(
−‖x − ai‖22 /2σ2

)
.

3.2 Hash Code Learning

In existing studies, linear models are often used to project label information to
the to-be-learned hash code, which can be described as:

min
B,G

‖B − GL‖2F s.t. B ∈ {−1, 1}r×n (1)

where G ∈ R
r×c is a projection matrix.This method can effectively learn the

information contained in the labels and is widely used. However, in the case of
common multi-label situations, this method may result in the learned hash code
not being fully associated with each category. Moreover, the hash codes of those
samples that contain the same category may not be strongly linked. This can
result in the hash code lacking sufficient discriminative power, thereby affecting
the accuracy of cross-modal retrieval. To enhance the attention of the hash code
to each category, in our method, we first separate the multi-label information
and extract a single-label matrix, which can be represented as:

Lc =

⎡
⎢⎢⎢⎣

1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

⎤
⎥⎥⎥⎦
c×c

(2)

We introduce single-label hash codes Bc ∈ {−1, 1}k×c corresponding to each
individual category, which can be learned via the same projection matrix G in
Eq. 1. The learning of single-label hash codes can be represented by the following
equation:

min
Bc,G

‖Bc − GLc‖2F s.t. Bc ∈ {−1, 1}r×c (3)

Bc is the representation of each individual category in the Hamming space. We
use the single-class hash code Bc and label information L together to supervise
the learning of the hash code, which can be described as:

min
B,Bc

‖B − BcL‖2F s.t. B ∈ {−1, 1}r×n

Bc ∈ {−1, 1}r×c
(4)

which enables every single label in the multi-label information to be noted sepa-
rately. By augmenting the category information in multi-label data and reinforc-
ing connections between data belonging to the same category, this term improves
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the discriminative power of the learned hash code. The objective function for
the aforementioned components is as follows:

min
B,Bc,G

‖B − GL‖2F + ‖Bc − GLc‖2F + α ‖B − BcL‖2F s.t. B ∈ {−1, 1}r×n

Bc ∈ {−1, 1}r×c

(5)
Using only label information for supervised learning may cause the learned

hash code to miss many low-level original features. To address this, we can use
the original features of text and image modalities to supervise the learning of the
hash code, such as B ← P1X1, B ← P2X2. However, applying too much direct
linear supervision to the hash code simultaneously can lead to information loss
and error accumulation. Therefore, we construct the relationship between label
information and original features to explore the potential correlations between
different modalities and shared labels, which can be described as:

min
G,P1,P2

‖GL − P1Φ(X1)‖2F + ‖GL − P2Φ(X2)‖2F (6)

where P1 ∈ R
r×k, P2 ∈ R

r×k is the projection matrices of image and text modal-
ities. By this means, the relationships between different modalities and labels are
learned and incorporated into the projection function G. G applies the learned
potential information of the two modalities to the learning of the single-label
hash codes and the hash codes of the training set.

By combining the aforementioned terms, we can formulate the overall func-
tion of SD2H as follows:

min
B,Bc,G,P1,P2

‖B − GL‖2F + ‖Bc − GLc‖2F + α ‖B − BcL‖2F
+ β ‖GL − P1Φ(X1)‖2F + β ‖GL − P2Φ(X2)‖2F
+ γR (G,P1, P2)

s.t. B ∈ {−1, 1}r×n

Bc ∈ {−1, 1}r×c

(7)

where α, β and γ are trade-off parameters,and R (G,P1, P2) can be expressed as
(‖G‖2F , ‖P1‖2F , ‖P2‖2F ) .

3.3 Optimization

It is very difficult to solve the problem of Eq. (6) directly, which involves np-hard
problems. In this paper, we introduce a discrete optimization method, where one
variable is updated while the others are held constant. We provide a detailed
illustration of its workings below.

Update P1 Given that all variables except for P1 are fixed, the optimization
can be carried out by solving the following equation:

min
P1

β ‖GL − P1Φ(X1)‖2F + γ ‖P1‖2F (8)
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By zeroing the partial derivative of Eq. 8 with respect to Gt, we get:

P1 =
(
βGLΦ (X1)

�
) (

βΦ (X1) Φ (X1)
� + γI

)−1

(9)

Update P2 Similar to the optimization process of P1, we can easily obtain:

P2 =
(
βGLΦ (X2)

�
) (

βΦ (X2) Φ (X2)
� + γI

)−1

(10)

Update G With other variables except G fixed, the optimization can be per-
formed by solving the following formula:

min
G

‖B − GL‖2F + ‖Bc − GLc‖2F
+ β ‖GL − P1Φ(X1)‖2F + β ‖GL − P2Φ(X2)‖2F + γ‖G‖

(11)

By zeroing the partial derivative of Eq. 11 with respect to Gt, we get:

G =
(
βP1Φ(X1)L� + βP2Φ(X2)L� + BcL

�
c + BL�)

(
(2β + 1)LL� + LcL

�
c + γI

)−1 (12)

Update Bc With other variables except Bc fixed, the optimization can be
performed by solving the following formula:

min
Bc

‖Bc − GLc‖2F + α ‖B − BcL‖2F s.t. Bc ∈ {−1, 1}r×c (13)

By zeroing the partial derivative of Eq. 13 with respect to Bc, we get:

Bc = sgn
((

GLc + αBL�) (
I + αLL�)−1

)
(14)

Update B With other variables except B fixed, the optimization can be per-
formed by solving the following formula:

min
B

‖B − GL‖2F + ‖B − BcL‖2F s.t. B ∈ {−1, 1}r×n (15)

By zeroing the partial derivative of Eq. 15 with respect to B, we get:

B = sgn
(

1
1 + α

(GL + αBcL)
)

(16)
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3.4 Hash Function Learning

In the second stage, we will tackle the issue of learning hash functions. In most
papers, a linear regression model is used to learn about hash functions by map-
ping multi-modal data to a hamming space. In this approach, each sample may be
treated as an independent entity. However, neglecting the relationships between
samples may fail to adequately constrain the mapping direction of the hash func-
tion. Following [25], we incorporate pairwise similarity considerations between
hash codes during the hash function learning stage. The process of hash function
learning can be described as:

min
W1,W2

‖B − W1Φ (X1)‖2F + ‖B − W2Φ (X2)‖2F
+ ‖rS − B� (W1Φ(X1))

∥∥2
F+

∥∥ rS − B� (W2Φ(X2)) ‖2F
(17)

where W1 and W2 represent the mapping matrices of two modalities. S = 2L̃�L̃−
1�
n 1n represents the pairwise similarity between samples, and L̃i = Li/ ‖Li‖. In

order to optimize W1 and W2, we respectively set the partial derivative of Eq.
17 with respect to W1 and W2 to zero, and obtain:

W1 =
(
θBB� + I

)−1
(
θrBSΦ (X1)

� + BΦ (X1)
�

)(
Φ (X1) Φ (X1)

� + εI
)−1

(18)

W2 =
(
θBB� + I

)−1
(
θrBSΦ (X2)

� + BΦ (X2)
�

)(
Φ (X2) Φ (X2)

� + εI
)−1

(19)
After the projection matrix is successfully obtained, when a new query data Qm

arrives, the corresponding hash code can be easily obtained by:

B = sgn (WmΦ(Qm)) (20)

and then we can compare it with the hash code of the target modal data in the
database for retrieval.

3.5 Time Complexity Analysis

We assess the complexity of the established model by analyzing each variable
update. Firstly, it takes O ((dik)n) for nonlinear projection, where di stands for
the dimension of image or text modality. For the stage of hash code learning,
the computational complexity includes O

(
(crk + k2)n + rk2 + k3

)
for solving

P1 and P2 , O
(
(rck + rc + c2)n + rc2 + c3

)
for G, O

(
(rc + c2)n + rc2 + c3

)
for

Bc, and O (rcn) for B. The complexity of the hash function learning stage is
O((r2 + rk + k2)n + r3 + k3 + r2k). Since c, k, r,di � n, the overall complexity
of our method is linear with n. Therefore, we can conclude that our method is
efficient and can be used for large-scale tasks.
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4 Experiments

4.1 Setup

Datasets. To show the superiority of the proposed SD2H method, we selected
two of the most wide-used datasets, MIRFlickr-25K and NUS-WIDE, in the
cross-modal retrieval field. MIRFlickr-25K [26], sourced from Flickr’s vast col-
lection of user-generated content, contains 25,000 image-text pairs labeled with
at least one of 24 specific categories. Text features for each sample pair can be
represented by a 500-D PCA feature vector, while images are represented by a
150-D edge histogram feature. We randomly selected 1,500 text-image pairs as
the test set and 15,000 pairs as the training set. NUS-WIDE [27] is a large-scale
multi-modal dataset, which contains 269648 image-text pairs annotated with 81
categories. We focused on the 10 most frequently occurring labels and selected
the corresponding 186,577 image-text pairs for our study. Each of the image and
text samples can be represented by a feature vector, with images using a 500-D
feature vector and texts employing a 1000-D representation. For our study, we
chose a random sample of 2000 text-image pairs to serve as the test set, while
20000 pairs were selected for the training set.

Evaluation Metrics. To validate the efficacy of our proposed SD2H technique,
we performed two standard retrieval tasks: (1) image-to-text (I → T ), which
involves using images to retrieve similar text information, and (2) text-to-image
(T → I), which involves using text to retrieve similar image information. In this
paper, we adopted the mean average precision (mAP) as the evaluation metric
to measure the performance of SD2H.

Baseline and Implementation Details. To investigate the performance of
SD2H in cross-modal retrieval tasks, we conducted comprehensive experiments
comparing it against other state-of-the-art methods such as CMFH [14], FSH
[10], SCM-seq [21], SePH [18,22], SMFH [19], DCH [23], LCMFH [20], SRLCH
[28] and SRACTCH [24]. Among them, CMFH and FSH are unsupervised hash-
ing methods, while the rest are supervised methods. Most of the methods kindly
provided their source code, and we conducted experiments according to the
parameter settings in their corresponding original papers.

In this paper, we set the parameters as α = 1, β = 10, θ = 1e − 2, and
γ = 1e−2. The number of anchors for the kernel function step is set as k = 500.
The sensitivity analysis of parameters will be conducted in the subsequent sub-
sections. All the methods are completed using MATLAB 2016 with Ubuntu 20.04
system, Intel i7-10700K CPU, and 32 GiB RAM.

4.2 Results and Discussion

To validate the effectiveness of our method, we evaluated the retrieval per-
formance of SD2H in comparison to other state-of-the-art methods on the
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MIRFlickr-25K and NUS-WIDE datasets, for both image-to-text and text-to-
image tasks. To provide a better comparison, we used hash codes with varying
lengths, including 8bits, 16bits, 32bits, 64bits, and 128bits. Table 1 and Table 2
respectively display the mAP results of both our method and baseline meth-
ods on each of the datasets. From these tables, we can summarize the following
information:

Table 1. MAP results on MIRFlickr-25K.

Method I → T T → I

8 16 32 64 128 8 16 32 64 128

CMFH 0.5688 0.5772 0.5770 0.5761 0.5743 0.5615 0.5628 0.5621 0.5619 0.5620

FSH 0.6033 0.6072 0.6113 0.6142 0.6189 0.5941 0.6025 0.6057 0.6128 0.6139

SCM-seq 0.6213 0.6278 0.6340 0.6391 0.6433 0.6081 0.6105 0.6126 0.6178 0.6203

SePH 0.6477 0.6512 0.6517 0.6578 0.6529 0.6829 0.6872 0.6911 0.6916 0.6943

SMFH 0.6023 0.6031 0.6087 0.6122 0.6103 0.6126 0.6187 0.6214 0.6268 0.6341

DCH 0.6819 0.6871 0.6983 0.7012 0.7104 0.7289 0.7292 0.7471 0.7653 0.7815

LCMFH 0.6718 0.6824 0.6891 0.6916 0.7022 0.7349 0.7444 0.7514 0.7568 0.7589

SRLCH 0.6891 0.6915 0.7132 0.7104 0.7123 0.7183 0.7475 0.7477 0.7463 0.7432

SCRATCH 0.6818 0.7054 0.7089 0.7132 0.7193 0.7326 0.7418 0.7635 0.7812 0.8013

SD2H 0.6985 0.7119 0.7284 0.7382 0.7469 0.7613 0.7819 0.8152 0.8215 0.8346

Table 2. MAP results on NUS-WIDE.

Method I → T T → I

8 16 32 64 128 8 16 32 64 128

CMFH 0.3921 0.3877 0.3891 0.3903 0.3897 0.3971 0.3979 0.3901 0.3912 0.3944

FSH 0.4728 0.4829 0.4892 0.4973 0.4994 0.4628 0.4798 0.4874 0.4977 0.5038

SCM-seq 0.5337 0.5364 0.5458 0.5469 0.5491 0.5209 0.5315 0.5377 0.5383 0.5396

SePH 0.5518 0.5627 0.5688 0.5699 0.5710 0.6315 0.6379 0.6483 0.6582 0.6614

SMFH 0.4039 0.4047 0.4076 0.4095 0.4121 0.4237 0.4248 0.4270 0.4302 0.4311

DCH 0.6219 0.6271 0.6383 0.6312 0.6404 0.7289 0.7292 0.7271 0.7353 0.7315

LCMFH 0.6124 0.6137 0.6198 0.6240 0.6355 0.6892 0.6931 0.7023 0.7099 0.7228

SRLCH 0.5984 0.6093 0.6269 0.6403 0.6422 0.7049 0.7136 0.7214 0.7403 0.7478

SCRATCH 0.6043 0.6164 0.6258 0.6323 0.6409 0.7122 0.7237 0.7308 0.7411 0.7535

SD2H 0.6232 0.6353 0.6574 0.6801 0.6948 0.7213 0.7534 0.7732 0.7867 0.7984

1) As the hash code length increases in most methods, the retrieval performance
typically improves as indicated by a higher mAP score. The aforementioned
observation suggests that longer hash codes can store more effective information.
However, this is not the case for some methods, which could potentially be
attributed to significant errors occurring during the hash code learning stage.



Supervised Discriminative Discrete Hashing for Cross-Modal Retrieval 609

2) Our proposed SD2H method consistently achieves the best mAP scores in
all cases. The main explanation may be that the way we use single-label hash
codes to highlight the presence of individual labels in our method is good for
increasing the discrimination of hashing methods.

3) Most methods are more accurate in tasks that use text to retrieve images than
in tasks that use images to retrieve text. One possible explanation is that the
text modality features tend to contain more comprehensive semantic information
as compared to image modality features.

4) In general, supervised baselines demonstrate superior performance com-
pared with unsupervised hashing methods, likely due to their ability to leverage
shared supervisory information in the training data, which plays a pivotal role
in enhancing the overall quality of the unified hash code.

4.3 Parameter Sensitivity Analysis

We further designed experiments to analyze the parameter sensitivity in the
proposed SD2H method. We conducted the experiments on the mirFlickr-25k
dataset, with the hash code length fixed at 32 bits. The parameters in our method
include α, β, γ, θ. In each round of experiments, we only changed one parameter
while keeping the others fixed.

The experimental results of parameter sensitivity are shown in Fig. 2. It can
be observed that α has a significant impact on the results and a relatively good
performance can be achieved when alpha is within the range of

[
10−2, 102

]
. β

has a minor effect on the results, but the optimal performance can be achieved
within the range of [0.1, 10]. The β term controls the joint learning module of the
low-level semantic and high-level label semantic, indicating that the proposed
method has strong stability. The θ term controls the similarity term in the
hash function learning phase. It can be seen from the graph that when θ is too
large, the performance will slightly decrease, possibly due to the small weight
of the regression term, which affects the accuracy of the mapping between data
points and hash codes. The regularization term is controlled by the parameter
γ. It appears that the model’s performance is not significantly impacted by γ,
indicating low sensitivity to this parameter.

4.4 Ablation Study

We investigated the effectiveness of our proposed SD2H method through abla-
tion experiments. We introduce SD2H-1, SD2H-2 and SD2H-3 based on SD2H.
SD2H-1 sets α to 0, which means discarding the enhancement of single-category
semantics. SD2H-2 sets β to 0, which means discarding the supervision of learn-
ing hash for original features. In SD2H-3, we replaced GL with B in Eq. 6,
which directly uses a common linear model to map the original features of the
two modalities into Hamming space.



610 X. Lu and C.-M. Pun

Fig. 2. Parameter sensitivity analysis of SD2H.

We set the hash code length to 8bits, 16bits, 32bits, 64bits, 128bits, and
compared the retrieval performance of SD2H and the three variants on MirFlickr-
25K and NUS-WIDE. Table 3 and Table 4 report the mAP results under different
code lengths. We can clearly see that SD2H achieves the best performance in all
cases, which further validates the effectiveness of our proposed method.

Table 3. Ablation results on MirFlickr-25K.

Method I → T T → I

8 16 32 64 128 8 16 32 64 128

SD2H-1 0.6823 0.6989 0.7021 0.7106 0.7212 0.7349 0.7474 0.7614 0.7768 0.7989

SD2H-2 0.6841 0.7015 0.7032 0.7113 0.7138 0.7354 0.7461 0.7677 0.7763 0.7832

SD2H-3 0.6918 0.7089 0.7189 0.7242 0.7369 0.7581 0.7643 0.8022 0.8114 0.8249

SD2H 0.6985 0.7119 0.7284 0.7382 0.7469 0.7613 0.7819 0.8152 0.8215 0.8346
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Table 4. Ablation results on NUS-WIDE.

Method I → T T → I

8 16 32 64 128 8 16 32 64 128

SD2H-1 0.6124 0.6237 0.6398 0.6640 0.6755 0.7092 0.7331 0.7523 0.7699 0.7728

SD2H-2 0.6038 0.6189 0.6322 0.6693 0.6714 0.7071 0.7236 0.7418 0.7655 0.7730

SD2H-2 0.6196 0.6271 0.6488 0.6726 0.6855 0.7122 0.7448 0.7619 0.7736 0.7898

SD2H 0.6232 0.6353 0.6574 0.6801 0.6948 0.7213 0.7534 0.7732 0.7867 0.7984

5 Conclusion

In this paper, we develop a new cross-media retrieval hash algorithm named
SD2H. Firstly, in the hashing learning stage, we use single-label hash code to
discretely project multi-label information into the Hamming space and learn
more discriminative binary codes. We jointly learn the projection matrix by
high-level semantic labels and low-level features, embedding the potential con-
sistency between different modalities into hash codes indirectly. Additionally, we
incorporate similarity supervision terms in the hashing function learning stage
and use an effective discrete optimization algorithm to solve the objective func-
tion. Our method outperforms other state-of-the-art algorithms on two of the
most common datasets in the cross-modal retrieval field. In the future, we will
consider using deep learning to further explore multi-modal information.

Acknowledgements. This work is supported in part by the University of Macau
under Grant MYRG2022-00190-FST and in part by the Science and Technology Devel-
opment Fund, Macau SAR, under Grant 0034/2019/AMJ, Grant 0087/2020/A2 and
Grant 0049/2021/A.

References

1. Fei, W., et al.: Cross-modal learning to rank via latent joint representation. IEEE
Trans. Image Process. 24(5), 1497–1509 (2015)

2. Jiang, Q.Y., Li, W.J.: Deep cross-modal hashing. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pp. 3232–3240 (2017)

3. Shen, F., Shen, C., Liu, W., Tao Shen, H.: Supervised discrete hashing. In: Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 37–45 (2015)

4. Mu, Y., Shen, J., Yan, S.: Weakly-supervised hashing in kernel space. In: 2010 IEEE
Computer Society Conference on Computer Vision and Pattern Recognition, pp.
3344–3351. IEEE (2010)

5. Fei, W., Zhou, Yu., Yang, Y., Tang, S., Zhang, Y., Zhuang, Y.: Sparse multi-modal
hashing. IEEE Trans. Multimed. 16(2), 427–439 (2013)

6. Li, C., Deng, C., Li, N., Liu, W., Gao, X., Tao, D.: Self-supervised adversarial
hashing networks for cross-modal retrieval. In: Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pp. 4242–4251 (2018)



612 X. Lu and C.-M. Pun

7. Ji, Z., Sun, Y., Yunlong, Yu., Pang, Y., Han, J.: Attribute-guided network for cross-
modal zero-shot hashing. IEEE Trans. Neural Netw. Learn. Syst. 31(1), 321–330
(2019)

8. Kumar, S., Udupa, R.: Learning hash functions for cross-view similarity search. In:
Twenty-Second International Joint Conference on Artificial Intelligence (2011)

9. Hoang, T., Do, T.T., Nguyen, T.V., Cheung, N.M.: Unsupervised deep cross-
modality spectral hashing. IEEE Trans. Image Process. 29 8391–8406 (2020)

10. Liu, H., Ji, R., Wu, Y., Huang, F., Zhang, B.: Cross-modality binary code learning
via fusion similarity hashing. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 7380–7388 (2017)

11. Yan, C., Gong, B., Wei, Y., Gao, Y.: Deep multi-view enhancement hashing for
image retrieval. IEEE Trans. Pattern Anal. Mach. Intell. 43(4), 1445–1451 (2020)

12. Wang, D., Wang, Q., An, Y., Gao, X., Tian, Y.: Online collective matrix factor-
ization hashing for large-scale cross-media retrieval. In: Proceedings of the 43rd
International ACM SIGIR Conference On Research and Development in Informa-
tion Retrieval, pp. 1409–1418 (2020)

13. Zhang, Z., Luo, H., Zhu, L., Lu, G., Shen, H.T.: Modality-invariant asymmetric
networks for cross-modal hashing. IEEE Trans. Knowl. Data Eng. 35(5), 5091–
5104 (2022)

14. Ding, G., Guo, Y., Zhou, J.: Collective matrix factorization hashing for multimodal
data. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 2075–2082 (2014)

15. Zhou, J., Ding, G., Guo, Y.: Latent semantic sparse hashing for cross-modal sim-
ilarity search. In: Proceedings of the 37th International ACM SIGIR Conference
on Research and Development in Information Retrieval, pp. 415–424 (2014)

16. Hu, M., Yang, Y., Shen, F., Xie, N., Hong, R., Shen, H.T.: Collective reconstructive
embeddings for cross-modal hashing. IEEE Trans. Image Process. 28(6), 2770–2784
(2018)

17. Hu, P., Zhu, H., Lin, J., Peng, D., Zhao, Y.P., Peng, X.: Unsupervised contrastive
cross-modal hashing. IEEE Trans. Pattern Anal. Mach. Intell. 45(3), 3877–3889
(2022)

18. Lin, Z., Ding, G., Hu, M., Wang, J.: Semantics-preserving hashing for cross-view
retrieval. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 3864–3872 (2015)

19. Tang, J., Wang, K., Shao, L.: Supervised matrix factorization hashing for cross-
modal retrieval. IEEE Trans. Image Process. 25(7), 3157–3166 (2016)

20. Wang, D., Gao, X., Wang, X., He, L.: Label consistent matrix factorization hashing
for large-scale cross-modal similarity search. IEEE Trans. Pattern Anal. Mach.
Intell. 41(10), 2466–2479 (2018)

21. Zhang, D., Li, W.J.: Large-scale supervised multimodal hashing with semantic
correlation maximization. In: Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 28 (2014)

22. Lin, Z., Ding, G., Han, J., Wang, J.: Cross-view retrieval via probability-based
semantics-preserving hashing. IEEE Trans. Cybern. 47(12), 4342–4355 (2016)

23. Xu, X., Shen, F., Yang, Y., Shen, H.T., Li, X.: Learning discriminative binary codes
for large-scale cross-modal retrieval. IEEE Trans. Image Process. 26(5), 2494–2507
(2017)

24. Chen, Z.-D., Li, C.-X., Luo, X., Nie, L., Zhang, W., Xin-Shun, X.: Scratch: a
scalable discrete matrix factorization hashing framework for cross-modal retrieval.
IEEE Trans. Circuits Syst. Video Technol. 30(7), 2262–2275 (2019)



Supervised Discriminative Discrete Hashing for Cross-Modal Retrieval 613

25. Li, H., Zhang, C., Jia, X., Gao, Y., Chen, C.: Adaptive label correlation based
asymmetric discrete hashing for cross-modal retrieval. IEEE Trans. Knowl. Data
Eng. (2021)

26. Huiskes, M.J., Lew, M.S.: The MIR Flickr retrieval evaluation. In: Proceedings of
the 1st ACM International Conference on Multimedia Information Retrieval, pp.
39–43 (2008)

27. Chua, T.S., Tang, J., Hong, R., Li, H., Luo, Z., Zheng, Y.: Nus-wide: a real-world
web image database from national university of Singapore. In: Proceedings of the
ACM International Conference on Image and Video Retrieval, pp. 1–9 (2009)

28. Shen, H.T., et al.: Exploiting subspace relation in semantic labels for cross-modal
hashing. IEEE Trans. Knowl. Data Eng. 33(10), 3351–3365 (2020)



A Knowledge-Enhanced Inferential
Network for Cross-Modality Multi-hop

VQA

Shiqi Wang1, Jianxing Yu1(B), Miaopei Lin1, Shuang Qiu2, Xiaofeng Luo3,
and Jian Yin1

1 Guangdong Key Laboratory of Big Data Analysis and Processing,
School of Artificial Intelligence, Sun Yat-sen University, Zhuhai, China

{wangshq25,linmp3}@mail2.sysu.edu.cn, {yujx26,issjyin}@mail.sysu.edu.cn
2 Guangdong University of Education, Guangzhou 510303, China

qiushuang@gdei.edu.cn
3 Guangdong Industry Polytechnic, Guangzhou 510300, China

2021070030@gdip.edu.cn

Abstract. This paper focuses on cross-modality multi-hop visual ques-
tions, which require multi-hop reasoning over different sources of knowl-
edge from multiple modalities, such as image and text. Due to the lack of
cross-modality reasoning ability, it is difficult for the traditional model
to make correct predictions. To solve this problem, we propose a new
knowledge-enhanced inferential framework. We first build a reasoning
graph to capture the topological relations between the objects in the
given image and the logical relations of entities corresponding to these
objects. To align the visual objects and textual entities, we design a
cross-modality retriever with the help of an external multimodal knowl-
edge graph. Based on the logical and topological relations on the graph,
we can derive the answer by decomposing a complex multi-hop question
into a series of attention-based reasoning steps. The result of the pre-
vious step acts as the context of the next step. By linking the results
of all steps, we can form an evidence chain to the answer. Extensive
experiments conducted on the popular KVQA dataset demonstrate the
effectiveness of our approach.

Keywords: Visual question answering · Multi-hop reasoning ·
Cross-modality reasoning

1 Introduction

With the rapid development of web applications such as image retrieval and aux-
iliary visual impairment, visual question answering (VQA) [2] has become a hot
research topic. It aims to measure the machine’s ability to understand the image
contents by asking questions. Towards this task, researchers have carried out
many explorations. In most existing datasets, the answer is an object or attribute
of the image. It means that lots of questions can be solved trivially via sim-
ple matching rather than genuine comprehension of the image. Some challenge
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
X. Yang et al. (Eds.): ADMA 2023, LNAI 14177, pp. 614–628, 2023.
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datasets containing complex questions are proposed to fill this gap [11,12,22].
Their answers need to be derived by deep semantic understanding. As shown in
Fig. 1, the question asks the founder of a person’s political party. We first have
to find the person in the image by reasoning a location “the second person from
left,” that is, “Narendra Modi.” We then use the commonsense knowledge to
deduce an evidence chain from the person to the party ”Bharatiya Janata Party,”
and finally to the founder “Syama Prasad Mookerjee.” These reasoning clues are
logically correlated but distributed across different modalities. Machines need to
synthesize supporting knowledge scattered in multiple modalities and form an
evidential chain from the question to the answer.

Fig. 1. A sample requires multi-hop reasoning over various knowledge sources from
multiple modalities.

Mainstream reasoning methods can be summarized into two categories, one is
to parse the question into a series of sub-questions which are solved correlatively
to get the answer [6,32]. However, the parser has to cascade to the QA model. It
is difficult to train globally and would suffer from the error propagation problem.
Another direction [14,19] is to find the image object with the highest matching
score as the answer through the interactive fusion method. This coarse-grained
fusion ignores the heterogeneity between different modalities and lacks adequate
robustness to be applicable. In addition, the reasoning process ignores implicit
commonsense knowledge, which is self-evident and shared by most humans.

To address these problems, we propose a novel inferential framework, which
fills the heterogeneity gap of different modalities by introducing an external
multimodal knowledge graph. In particular, we build a scene graph to describe
the image objects and their relations. To align the visual objects and textual
entities, we design a cross-modality retriever with the help of the multimodal
graph, e.g., MMKG [16]. Such a graph contains abundant commonsense relations
of the entities. Also, it grasps the cross-modality alignment relation between the
visual object and textual entity. Using the retrieved knowledge we can expand



616 S. Wang et al.

the scene graph. Subsequently, we derive the answer on the knowledge-enhance
graph by an inferential network, which decomposes a complex reasoning process
into a series of attention-based steps. Each step can be directly inferred from the
inputs without strong supervision. By aggregating the results of these steps, we
can derive the answer accordingly. With such a structural multi-step design, our
network can integrate the supported knowledge from different modalities to build
the evidence chain in arbitrarily complex acyclic form. Moreover, a reinforcement
approach is employed for effective training. Evaluations of the typical dataset
show the effectiveness of our approach.

The main contributions of this paper include:

(1) We aggregate knowledge from different modalities into a reasoning graph,
which describes both the visual relationship and the commonsense relation-
ship hidden in the background knowledge.

(2) We propose a new framework to answer the complex VQA questions that
require commonsense knowledge. We can derive the answer by recursively
finding evidential clues from various modalities to form a reasoning chain.

(3) We design an effective retriever for cross-modality alignment and conduct
extensive experiments to validate the proposed approach.

2 Approach

As shown in Fig. 2, our approach consists of three components, including the rea-
soning graph construction, the multi-hop inferential network, and output. Next,
we define some notations, and then elaborate the details on each component.

Fig. 2. Overview of our approach

2.1 Notations and Problem Formulation

Given an image I ∈ I and a question Q = {q1, ..., q|Q|}, where qi is the ith token,
the task of VQA is to answer the question based on the semantics of the image.
We count the frequency of each answer label of the target dataset, and assume
the top-K items as the answer candidates Y. For an input sample s = (I,Q)
that contains the image I and the question Q, a score h(s, y) ∈ R is calculated
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for each candidate y ∈ Y. The one with the highest score is outputted as the
answer ŷ = arg maxy∈Y h(s, y). For the cross-modality multi-hop VQA task, the
question needs to be solved by understanding not only the image I, but also the
commonsense knowledge base KB related to the image objects. That is, we have
to derive the answer ŷ by multi-hop reasoning over multiple knowledge sources in
different modalities according to the function ŷ = arg maxy∈Y h′ = (I,Q,KB , y).

2.2 Reasoning Graph Construction

Considering the scale of an external knowledge source is large, we construct
a compact graph to reduce the computational cost. The graph covers various
relations, objects, and entities that may be involved in the reasoning process. In
particular, we first generate a scene graph to grasp the topological relations of
the image objects. We then design a cross-modality retriever to collect relevant
entities and relations from the external knowledge source.

Scene Graph Generation. We first extract a scene graph to capture fine-
grained objects in the image involved in reasoning. In particular, given the image
I, we use Faster-RCNN [21] to extract a set of k entity proposals. Each proposal
is associated with a spatial region bi = [xi, yi, wi, hi], where (xi, yi), hi and wi

denote the coordinate of the top-left point, the height, and width of the region
i. Based on these proposals, we can form a scene graph GS = (N S , ES), where
the node nS

i ∈ N S corresponds to a proposed entity, and the edge eS
ij ∈ ES

represents the relation from nS
i to nS

j . We encode the node as nS
i ∈ R

d via the
pretrained VGG model [25] and use the output of the last hidden layer after
compact bilinear pooling [9]. The edge is encoded as eS

ij = Wd×3d
S [nS

i ,uij ,nS
j ] +

bd
S , where uij ∈ R

d is the union region feature and bd
S is the bias.

Cross-Modality Retriever. Since the representation spaces of the textual
and visual modalities are different, it is difficult to retrieve commonsense entities
directly through image objects. To tackle this problem, we develop a retriever by
resorting to the multimodal knowledge graph MMKG [16]. This graph records
a special kind of triples, such as (e, hasImage, I), indicating that the image
I is an instance of the textual entity e. This kind of knowledge can help us
learn the cross-modality alignment. In detail, we design the retriever based on
ConvE [8] which is good at finding correlation. For a triplet (s, r, o), where s, r,
o represent the subject entity, relation, and object entity, respectively, we first
embed them into d-dimensional vectors, that is, ems, emr, emo ∈ R

d. We then
measure the relational probability of these two entities by introducing a score
function ψ : E × R × E ′ → R, as Eq (1), where ¯ems, ¯emr ∈ R

dw×dh denote 2D
shaped embeddings for ems and emr, d = dwdh, f denotes a non-linear func-
tion, and vec is a reshaped function. Based on this retriever, we can score the
triplet (e, hasImage, nS

i ) for each scene node nS
i by Eq. (1), where hasImage

is the alignment relation between the image object and the textual entity.
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Similarly, we compute the triplets related to the question Q. We then collect the
entities whose scores exceed a preset threshold λ. Their K-hop neighbor nodes
and relations cover most of the potential clues in the multi-hop deduction. We
use them to create a reasoning graph G.

ψr(s, o) = f(vec(f([ ¯ems; ¯emr] ∗ ωψ))Wψ)emo (1)

Considering the external knowledge graph contains abundant subject-
relation-object triplets (s, r, o) in various modalities, they can be used as training
samples naturally. As shown in Eq. (2), the retriever is learned by minimizing
the binary cross-entropy loss, where ls,r

o is a binary label to indicate whether a
triplet exists in the MMKG graph, ps,r

o is the score function of σ(ψr(ems, emo)),
σ(·) is the logistic sigmoid function.

∑

(s,r)

∑

o

ls,r
o log(ps,r

o ) + (1 − ls,r
o )log(1 − ps,r

o ) (2)

2.3 Multi-hop Inferential Network

Traditional methods create a mapping function to judge the relations between
two entities. They cannot form a reasoning process that needs at least three enti-
ties. Also, a network with a fixed structure cannot model the unfixed reasoning
process. To solve this problem, we design a new inferential network based on
a divide-and-conquer strategy. It can decompose a complex multi-hop question
into several basic reasoning steps. Each step is a relational mapping from a ques-
tion aspect to an evidential clue in the reasoning graph. By combining all basic
steps, we can dynamically build a dedicated net structure like stacking build-
ing blocks to simulate a complex reasoning process. Our net consists of shared
memory and a deduction module. As shown in Fig. 3, the module includes three
units, that is, the dispatcher, executor, and recorder.

Fig. 3. Flow chart of the deduction module
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Dispatcher Unit. We first decompose a complex question into multiple simple
ones by soft attention. There are two stages, including judging whether to stop
the reasoning process, and determining a question aspect that should be focused
on at the t reasoning step.

Termination Judgment. A maximum reasoning step is set as T to guarantee
termination. Considering that the question complexity can vary greatly, the rea-
soning depth is uncertain. To adjust to such a depth dynamically, we design a
stop mechanism by considering two conditions. That is, the correlation between
the evidential clue z(t−1) and deduction operation op(t−1) in the t− 1 reasoning
step, as well as z(t−1) and the question q with a global asking focus. When both
conditions are met, an acceptable answer is highly probable to obtain. As shown
in Eq. (3), we formulate the correlations as z(t−1)�op(t−1) and z(t−1)�q respec-
tively, and combine them as a vector cq(t), where Wd×2d

cq , bd
cq and W1×d

end are the
learned parameters. cq(t) is then fed into a sigmoid layer to estimate the termi-
nation probability p

(t)
end. A binary variable end(t) is then sampled randomly on

p
(t)
end. If end(t) is True, stop deduction to avoid excessive reasoning and execute

the answer prediction module; otherwise, continue the reasoning process.

cq(t) = Wd×2d
cq [z(t−1) � op(t−1), z(t−1) � q] + bd

cq

p
(t)
end = sigmoid(W1×d

end cq
(t))

(3)

Question Analysis. To facilitate the overall training of the model, we employ soft
attention instead of a hard extraction to identify the question aspect. Firstly, we
project the question q through a learned linear transformation to get the aspect
q(t) related to t reasoning step, as q(t) = Wd×d

t q + bd
t .

Secondly, we combine q(t), op(t−1) and cq(t) through a linear transformation
into dq(t), as Wd×3d

dq [q(t),op(t−1), cq(t)]+bd
dq, where op(t−1) denotes the aspect

focused in t − 1 step, cq(t) represents the correlation degree. That allows us to
find the relevant aspect based on historical results.

Thirdly, we cast dq(t) back to the space of the question terms. In this way, we
can restrict the valid reasoning space and boost convergence. As shown in Eq. (4),
we measure the similarity between dq(t) and each question term wi ∈ R

d, then
pass them through a softmax layer to obtain an attention distribution over the
question terms. By aggregation, we can generate the deduction operation op(t)

that is represented in terms of the question terms.

ca
(t)
i = W1×d

ca (dq(t) � wi)

cw
(t)
i = softmax(ca(t)

i )

op(t) =
|Q|∑

i=1

cw
(t)
i · wi

(4)
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Executor Unit. Based on the question aspect, we collect related contents from
the retrieved reasoning graph G. The relevance is measured by considering the
graph structure in a soft-attention manner. That can facilitate global training.

To support transitive reasoning, we first extract the contents relevant to the
preceding evidential clues z(t−1) for each memory entry i, resulting in dm(t)

i =
[Wd×d

dz z(t−1) + bd
dz] � [Wd×d

dm m(t−1)
i + bd

dm]. This vector grasps the contextual
relation in the distributed space. That can help us find the correlated evidential
clues in adjacent steps. For example, given the clue of “the second person from
the left” is “Narendra Modi” in the previous step, the relevant content about
“Narendra Modi” should deserve more attention in the current step.

Subsequently, we incorporate the context related to the reasoning graph G.
That can help us perform parallel and inductive reasoning effectively on the
commonsense entities. We first design a relational graph convolution network to
encode the graph structure. We then inject the context for each memory entry i
from its graph neighbors Ni, conditioning on the deduction operation op(t). As
shown in Eq. (5), we get a contextual vector ne(t)i based on Ni, where w

(t)
ji is

the attention weight of edge eji. By combining dm(t)
i and ne(t)i , we can obtain

a graph context-aware representation ds(t)i .

ds(t)i = Wd×2d
ds [dm(t)

i ,ne(t)i ] + bd
ds

ne(t)i =
∑

j∈Ni

w
(t)
ji dm

(t)
j

w
(t)
ji = softmax(W1×d

ew [eji � op(t)] + b1
ew)

(5)

Lastly, we measure the correlation between op(t) and the context-aware vec-
tor ds(t)i , passing the output through a softmax layer to produce an attention dis-
tribution. By taking the weighted average over the distribution, we can retrieve
related content z(t) from the reasoning graph G by Eq. (6).

da(t)i = W1×d
da [op(t) � ds(t)i ] + b1

da

za
(t)
i = softmax(da)

z(t) =
N∑

i=1

za
(t)
i m(t)

i

(6)

Recorder Unit. Based on the retrieved content, we then deduce a new evi-
dential clue with two steps. We first combine ds(t)i with the memory result
in the t − 1 step m(t−1)

i by a linear transformation, resulting in cm(t)
i =

Wd×2d
cm [ds(t)i ,m(t−1)

i ] + bd
cm, where bd

cm is a bias.
Considering the complexity of questions is different, we introduce an update

gate β(t) as Eq. (7) to determine whether to refresh the previous memory state
m(t−1)

i by the new candidate cm(t)
i . β(t) is conditioned on op(t).
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β(t) = sigmoid(W1×d
β op(t) + b1

β)

m(t)
i = β(t) · m(t−1)

i + (1 − β(t)) · cm(t)
i

(7)

2.4 Output and Training

All operational units are regularized through a priori structure to realize a basic
reasoning step. By concatenating the steps, we can realize the acyclic reasoning
process with arbitrary complexity. When the process stops, we can obtain a set
of evidential clues in the shared memory M(t−1). To derive the answer, we first
use interactive attention to find the relevant clues by referring to the question
q, as αi = softmax(W1×d

α [q�m(t−1)
i ]+b1

α), c =
∑N

i=1 αim
(t−1)
i , where m(t−1)

i

is the ith clue, αi is the relevance weight between clue i and q. By passing the
concatenation of q and c through a 2-layer fully-connected softmax classifier, we
can predict the answer from the candidate’s pool.

ϕ(St) =
{

ReLU
(
cos

〈
op(t), z(t)

〉)
, t > 1,

0, t = 1,
(8)

Due to the discrete termination steps, the proposed network could not be
directly optimized by back-propagation. We thus employ a reinforcement app-
roach. We view the inference as a Markov decision process, where each decision
can be formulated as a tuple (S,A, P,R). S is the set of states, A is the action
set, P = {Ps,a(·)|s ∈ S, a ∈ A} ∈ [0, 1] describes the next-state transition
probability, and R : S × A → R denotes the reward function. Given the state
St = (q,op(t−1),M(t−1), z(t−1)) at step t, we perform a deduction operation op(t)

and make the environment change to a new state St+1 = ((q,op(t),M(t), z(t))).
Then our model receives a reward Rt = R(St,op(t)). Our objective is to
maximize the cumulative retrieval reward. To better measure the predicted
result, we use a potential-based shaping reward function [18]. The function is
F : S × A × S → R. Formally, there is a real-valued function ϕ : S → R s.t.
F (s, a, s′) = γϕ(s′) − ϕ(s) for all s ∈ S − s0, a ∈ A, s′ ∈ S. Based on this for-
mula, we define the function ϕ in Eq. (8) to measure the operation coverage
corresponding to generated policies. That can fasten the convergence rate of the
model.

Based on the reward R′(St, At, St+1), we can explore gradient descent opti-
mization, with Monte-Carlo REINFORCE [29] to train the whole network, as
Eq. (9), where θecc is the net’s parameter set, η is a discount factor, and (Q, ŷ)
is a question-answer pair from the training set D.

R′(St, At, St+1) = R + F (St, At, St+1)
J(θecc) = E(Q,ân)∈D[EA1,...,An

[
n∑

t=1

ηt−1R′(St, At, St+1)|(Q, ŷ)]]
(9)

After training, we can get a set of neural modules instead of a single model
with a fixed network structure. Each module corresponds to a basic reasoning
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step. By assembling these modules flexibly, we can get an adaptive model with
the optimal result.

3 Experiments

We extensively evaluated the effectiveness of our approach, including the com-
parisons with state of the arts and components analysis.

Table 1. State-of-the-art comparison on KVQA dataset

Method Accuracy

ORG PRP

Up-Down [1] 24.6 18.7

MuRel [5] 25.1 19.3

XNMs [24] 24.9 19.1

LOGNet [15] 32.5 23.2

KAN [31] 46.9 28.1

KVQA [22] 46.3 27.7

Ours 54.3 32.8

3.1 Data and Implementation Details

Experiments were conducted on KVQA [22], which is the most representative
dataset involving cross-modality multi-hop reasoning. It consists of 183,007 QA
samples and 24,602 images. Most of the samples need to use commonsense knowl-
edge for multi-hop reasoning. There are two kinds of questions in KVQA, includ-
ing the original (ORG) and paraphrased (PRP) ones. We adopted the standard
evaluation metric Accuracy for the VQA task. To reduce the bias, we carried
out five runs and reported the average performance on these questions.

Implementation Details. We selected 10 regional objects for each input image
to build the scene graph. For MMKG graph, we embedded the textual entity by
the Glove [20] pre-trained model. For the question, we employed BiGRU [7] as the
encoder to incorporate sequential context. For the visual content, we embedded
it by the VGG pretrained model [25], and used a last hidden layer of compact
bilinear pooling [9] as the encoding. We set the embedded dimension d as 300,
the hidden dimension of the BiGRU as 150. For reward shaping, we set γ = 0.95,
and tuned η within (0.9, 1.0) for REINFORCE algorithm. We used Adam [13]
as the optimizer with a learning rate of 10−4 and a batch size of 64.
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3.2 Comparisons Against State of the Arts

We compared our method against three typical and open-source baselines,
including (1) two classical VQA baselines. One is the question-guide top-down
attention approach, namely Up-Down [1], and the other one is MuRel [5], which
modeled the relevant correlations between the question and the image by bilin-
ear fusion. (2) two single-modality reasoning methods, which are XNMs [24]
and LOGNet [15]. XNMs used the explainable neural module to reason over the
scene graph. LOGNet performed reasoning by capturing the relational structure
of the given image and question. (3) two knowledge-base VQA, i.e., KAN [31]
and MemNet-based [22]. KAN regarded the question as context to guide the
reasoning over the image and commonsense knowledge. MemNet-based method
stored and fused the context of entity through a memory network [28].

Table 2. Evaluations on different reasoning types.

Category ORG PRP

Spatial 51.4 30.7

1-hop 52.6 31.6

Multi-hop 56.2 33.3

Boolean 55.4 29.5

Intersect 48.7 27.1

Category ORG PRP

Multi-rel 57.4 33.0

Subtraction 54.3 33.9

Comparison 52.9 32.4

Counting 55.0 34.3

Multi-entity 55.3 35.3

As elaborated in Table 1, our approach achieved the best performance. The
outperformance against the best baseline is over 7.4% for the original questions
(ORG) and 4.7% for paraphrased questions (PRP), respectively. To better ana-
lyze the advantages of our approach at a fine-grained level, we investigate each
reasoning type. As shown in Table 2, our approach significantly outperformed
the baselines on all categories, especially on the multi-hop, multi-relation, and
multi-entity questions. Such results demonstrated the effectiveness of our app-
roach on cross-modality multi-hop reasoning.

3.3 Ablation Studies

We carried out ablation studies to examine relative contributions of each com-
ponent in our model, including (1) cross-modality retriever; (2) five strategies
in our inferential network, that is, guiding the deduction direction based on the
result of the previous step, the relational graph convolution for relational rea-
soning, the graph-structured knowledge memory, the shaping reward function,
and the stop mechanism. We denoted them as cross ret, rsd pre res, op rgcn,
op up, shap reward and stop mec, respectively.

As presented in Fig. 4, the ablation on each evaluated component led to the
performance drop. The drop was more than 10% on three parts, including (1)
cross ret. Without such a cross-modality alignment, it is difficult to find the
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Fig. 4. Ablation studies on variants of our approach for affecting the performance

relations related to the image and text represented in two different spaces. (2)
op rgcn. Lack of this component, it is hard to perform effective relational reason-
ing. (3) op up. Without the updating, the memory could not remember the long-
term dependency in various reasoning steps. Besides, the comparison between
shap reward and the full model was exhibited in Fig. 5. The results showed that
the proposed shaping reward function can boost model convergence. Moreover,
we evaluated the efficiency of the stop mechanism by fixing the reasoning depth
from 1 up to 5. As displayed in Fig. 6, more reasoning steps performed well at
first but deteriorated soon. These results indicated that our dynamic strategy
can adaptively determine the optimal termination for the questions with different
degrees of complexity.

Fig. 5. Evaluation on the reward shaping
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Fig. 6. Evaluation on the dynamic stop gate

3.4 Case Studies and Discussions

To better understand the reasoning behavior, we plotted the attention map over
the given image, question, and external KB. As shown in Fig. 7, our model first
focused on “Who is the person second from left”. Then it turned to attend at “the
political party” related to the question. Afterward, the “person” was refocused
and the evidence of the “founder” was concerned to derive the answer. Such
results showed that our model can extract evidential clues from multiple knowl-
edge sources in different modalities. Also, it can adaptively determine reasoning
directions due to the soft-attention mechanism on the question.

Fig. 7. Attention map of the sample in Fig. 1
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4 Related Works

The initial VQA method [2] concatenated the LSTM representation of the ques-
tion and the CNN representation of the image to classify the answer. To obtain
a semantic-rich joint encoding, Ben-Younes [3] proposed a multimodal fusion
strategy based on a Tucker decomposition [26] of the image/question correlation
tensor. However, these models can only answer attribute-matching questions,
such as “What color are her eyes?”

Some datasets such as CLEVR and GQA were proposed to validate the rea-
soning ability. Each question needs to be answered by going through multiple
reasoning steps. To tackle these questions, Shi [24] proposed a neural module net-
work that can integrate multiple basic operations to realize reasoning. Besides,
Hudson [10] performed reasoning by a recurrent network, which separated out
the memory from reasoning operation. Recently, large-scale pre-trained models
such as GPT-3 [4] have a great impact on VQA. Both Yang [30] and Shao [23]
used the pre-trained model to generate a caption of the image to associate with
the question. However, due to the lack of knowledge module, these methods are
difficult to deal with questions that require knowledge understanding.

There are some works related to the task of knowledge-based VQA, but they
mainly focus on the fact-matching question. Wang [27] converted the question
into a query based on fixed templates to select the answer from the knowledge
base. Narasimha [17] combined the image feature and the question feature to
predict the fact. Considering the complementarity of each modality, Zhu [33]
depicted the image by multi-layer graphs and applied a question-guided atten-
tion mechanism to fusion multimodal context. However, when faced with cross-
modality multi-hop questions, they are difficult to retrieve the KB entity and
logical relation related to the visual object. Also, they are hard to synthesize
multiple evidential clues to derive the answer. Differently, we propose a cross-
modality retriever to collect the clues step-by-step.

5 Conclusions and Future Works

This paper focused on cross-modality multi-hop VQA. We decomposed a com-
plex question into a series of attention-based reasoning steps. The result of the
current step was determined simultaneously by the previous step. By recursively
linking the results of all steps, we can form an evidence chain from the ques-
tion to the answer. Moreover, we developed a multimodal retriever to learn the
cross-modality alignment by an external knowledge graph. We have conducted
extensive experiments on the popular KVQA dataset. The experimental results
demonstrated the effectiveness of our method. In the future, we will study the
robustness and scalability of our model.
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Abstract. The field of multimedia analysis has been increasingly
focused on image-text retrieval, which aims to retrieve semantically rel-
evant images or text through queries of the opposite modality. The key
challenge is to learn the correspondence between images and text. Exist-
ing methods have focused on processing inter-modality information inter-
action but have not given sufficient attention to learning the correspon-
dence between the two modalities during this process. However, these
methods have a low accurate image-text matching due to they are not
deal with the noise during the process of the visual and textual repre-
sentations. To avoid the noise in the training process, we propose a novel
Multi-head Similarity Feature Representation and Filtration (MSFRF)
approach for image-text matching. The proposed MSFRF method cap-
tures the detailed associations of feature representations from differ-
ent modalities and reduces the interference of noisy information in the
extracted features for improving the performance of matching. Extensive
experiments on two benchmark datasets show that the proposed MSFRF
method outperforms the state-of-the-art image-text matching methods.

Keywords: Image-text matching · Feature extraction · Feature
fusion · Inter-modality relationships · Graph neural networks

1 Introduction

With the enrichment of data types and machine learning application scenarios,
cross-modal retrieval techniques for different forms of data have gained unprece-
dented attention. Linking and exploring the correlation between images and text,
which is one of the crucial means for people to access information, has attracted
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extensive research attention, and most of the work in this field has made sig-
nificant contributions. The key challenge in image-text retrieval is to accurately
measure the similarity between the two modalities. However, since the text is
abstract while images are concrete, there are significant semantic differences
between them, and their heterogeneity makes it an extremely challenging task.

Fig. 1. The two dogs are not only associated with the word “dog”, but also with the
attributes “black” and “brown”. This association is useful for correctly matching the
dogs with their descriptions. The red boxes in the image and the red word with a strike
through in the text represent noisy information that should not be activated during
image-text retrieval, as they could interfere with the correct matching. (Color figure
online)

Currently, to accurately establish the mechanism for associating modalities,
most methods [1,19,23,29] use deep neural networks that first encode images
and text and then learn to measure their similarity based on matching crite-
ria. Existing work can be broadly divided into global correspondence learning
methods and local correspondence learning methods.

The general framework of global correspondence methods [3,6,21,27] is to
project the entire image and text into a common latent space and minimize inter-
modality heterogeneity, so as to directly measure their mapping characteristics in
the common latent space. On the other hand, local correspondence methods [8,
15,17,30] focus on the positive effect of local associations between image regions
and sentence words on matching and use these local associations to infer the
global similarity of image-text pairs.

For example, Lee et al. [14] proposed the Stacked Cross Attention Mechanism
(SCAN) to discover complete latent semantic alignments between image regions
and sentence words and infer the similarity of image-text pairs. Liu et al. [18]
proposed a graph-structured network called GSMN, which constructs structured
phrases from elements, element attributes, and element correlations within the
same modality and obtains more fine-grained matching relationships by learning
the correlations between phrases.

The existing work overlooks the importance of local information and noisy
information, which are actually crucial for exploring complex patterns between
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images and text in the matching process. For instance, in Fig. 1, coarse corre-
spondence would mistakenly associate the word “dog” with all the dogs in the
image, ignoring finer details like the brown or black color of the dogs. More-
over, the word “camera” for the image is considered noise, and the red boxes in
the image are noisy information for the text. This information also affects the
matching results. Therefore, these pieces of information should be inactivated
during the matching process.

To address the above-mentioned problems, we propose a novel method for
image-text matching called Multi-head Similarity Feature Representation and
Filtration (referred to MSFRF). The proposed MSFRF method utilizes noise
filtering to the constraint of noisy information. Furthermore, MSFRF captures
the associations of feature representations from different modalities and reduces
the interference of noisy information in the extracted features for improving the
performance of matching. Finally, MSFRF uses these learned representations to
obtain the fusion feature. The contributions of this work can be summarized as
follows:

• We propose a novel multi-head similarity feature representation (MSFR)
method to discover potential connections in cross-modal information, and
narrow down the inter-modality differences.

• The proposed MSFRF method utilizes a constraint to filter noise information
for improving the feature representation of multi-modal data, in order to
reduce the interference of noise information in the extracted features on the
matching results.

• Extensive experimental results on two standard datasets demonstrate that the
proposed model outperforms the state-of-the-art image-text matching meth-
ods.

2 Related Work

In this section, we review the related works on cross-modal retrieval. The existing
research works are broadly divided into two categories: global alignment and
local alignment learning methods. In the following, we review these related works
according to this division.

Global alignment learning is a classic approach to image-text retrieval that
has been widely researched. Kiros et al. [11] were the first to use an end-to-end
deep learning method to encode images and sentences using convolutional neu-
ral networks (CNNs) and recurrent neural networks (RNNs), respectively. They
used hinge-based triplet ranking loss to optimize the models. Wang et al. [28]
used a two-branch neural network to process images and sentences separately
and optimized the alignment learning of images and sentences using a structure-
preserving constraint. Faghri et al. [6] introduced hard negatives in triadic rank-
ing loss, which significantly improved the results. However, these methods ignore
the relationship between image local regions and sentence words. Therefore, in
recent years, more and more researchers have explored solutions for learning the
correspondence between regions and words.
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Local alignment learning focuses on learning the correspondence between
local regions of the image and the words in the sentence. Several methods have
been proposed for this task. Li et al. [15] proposed the VSRN model, which estab-
lishes connections between image regions and uses graph convolutional networks
to generate features with semantic relationships. The global semantic inference
is then performed on these features to generate the final feature representation.
Ji et al. [9] proposed the SHAN model, which decomposes image-text match-
ing into a multi-step cross-modal inference process to provide more semantic
cues to the model. More recently, Yu et al. [33] introduced a multi-scale graph
convolutional neural network that extracts features at multiple scales, such as
global and local scales of image and text, for matching. Attention mechanisms
[2,8,14,17,30] and graph convolutional neural networks [5,18,29,31] have proven
to be effective methods for achieving local alignment learning, with their advan-
tages in mining and integrating local relations.

However, both global and local alignment learning methods do not take into
account the detrimental effects of noisy information on matching. Therefore, it
is also necessary to reduce the interference caused by noisy information. Inspired
by the literature [4,7,10,34], we propose the MSFRF method based on a local
alignment learning strategy that suppresses the impairment of positive matching,
enabling the capture of more accurate information between images and text.

3 The Proposed MSFRF Method

In this section, we introduce our proposed MSFRF method, whose overall frame-
work is shown in Fig. 2. Firstly, we present the feature extraction method used
to generate features from both the original image and text using a pre-trained
model. Then, we introduce our proposed inter-modality matching method that
operates at the region-word level, followed by a description of the structure
matching method that operates at the structure level. Finally, we present the
objective function used to optimize the matching process.

3.1 Feature Representations Module

Visual Feature Representations. Following the approach proposed in SCAN
[14], given an image I, we use Faster R-CNN [24] with bottom-up attention [1]
pre-trained on Visual Genome [12] to detect n salient regions and obtain their
corresponding region features, denoted as R = {ri|i = 1, 2 . . . , n}. For each
selected region i, ri represents its feature representation. These features are
then projected onto a D-dimensional space using a linear layer: vi = riWd + bd,
where Wd and bd are parameters of the fully connected layer. Therefore, the
complete representation of an image is a set of vectors V = {v1, v2, · · · , vn},
where vi ∈ R

D encodes a salient region and n is the number of regions in the
image.
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Fig. 2. The overall structure of our proposed MSFRF model, which consists of four
modules: Feature Representation: Faster-RCNN and Bi-GRU are employed to
detect salient regions, and embed each word, respectively. Region-Word Matching:
It is to learn the correspondence between the image regions and the words. Structure-
level Matching: The learned correspondences are aggregated using graph convolution
to jointly infer fine-grained structural correspondences. Objective Function: The
overall loss is combined from the matching loss and the filter regularization loss.

Textual Feature Representations. For a given sentence T with l words,
the index of the words in the sentence T is represented by one-hot vectors in
the word table, which includes all the words appearing in the text. Then, these
one-hot vectors are embedded into 300-dimensional feature vectors. Next, the
vectors are sequentially fed into a Bi-directional Gated Recurrent Unit (Bi-GRU)
[25,35] to encode the sentence from both the forward and reverse directions. By
summarizing these two directions, the complete representation of sentence T
with l words is obtained and denoted as T = {t1, t2, . . . , tl}, where ti ∈ R

D

represents the representation of the i-th word in the sentence. Here, RD refers
to a D-dimensional space.

3.2 Region-Word Matching Module

Similarity Measure Function. In order to obtain the correspondence between
the image regions and the words in the text, we use cosine similarity to measure
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the similarity between the two modalities. Specifically, we use cosine similarity
to measure the similarity between the regions and the words. For two vectors
x ∈ R

d and y ∈ R
d, the similarity metric function is expressed as follows:

Swr(x, y) = xT y
||x||||y|| . (1)

Fig. 3. The processing flow of the multi-head similarity feature representation in image-
to-text retrieval involves using multi-head attention. Each head performs projection
and similarity calculations on image and text features. The similarity of each head is
then combined to obtain a new feature representation, which is used for subsequent
operations.

Multi-head Similarity Feature Representation. In order to enhance
expressiveness, improve the stability of the learning process, and capture more
detailed associations between feature representations from different modalities,
we propose a multi-head similarity feature representation method. This method
matches each region of an image with each word in the text, enabling us
to fully exploit inter-modality information and provide more effective feature
representations for text and image structured matching in the high-level lan-
guage space. As shown in Fig. 3, we use image-to-text retrieval as an exam-
ple. Specifically, we project the feature representations of image regions and
words into an h-dimensional space to obtain the visual feature representation
vi = {v1

i , v2
i , . . . , vh

i } and the textual feature representation tj = {t1j , t
2
j , . . . , t

h
j }.

Then, similarity calculation is performed separately for each dimension space as
follows:

MHk
i = softmax(λW k

v vk
i (W k

t tkj )T )W ktkj , (2)

SMk = Swr(MHk
i , tkj ), k ∈ {1, 2, . . . , h}, (3)

where λ is a scaling factor, W k
v ,W k

t ,W k represent the parameters of the linear
layer in the k-th dimensional space. The similarities in all dimensional spaces are
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then concatenated together to obtain the fused feature representation, denoted
by V ∗ = {v∗

1 , v
∗
2 , . . . , v

∗
i }. The formula for v∗

i is described as follows:

v∗
i = concat(SM1, SM2, . . . , SMh). (4)

3.3 Structure-Level Matching Module

Structural Construction.

Visual Structural Construction. To construct visual relationships, we use polar
coordinates to model the spatial relationships between the n salient regions
detected by Faster R-CNN [24] in each image. Polar coordinates decompose the
orientation and distance of pairs of regions, allowing us to capture both seman-
tic and spatial relationships between different regions. Orientation information
allows us to estimate the type of relationship, while attributes are expected
to be close to the object. To describe this relationship, we calculate the polar
coordinates (ρ, θ) based on the center coordinates of the bounding boxes of the
paired regions and use the resulting paired polar coordinates to construct the
relationship matrix We.

Textual Structural Construction. For textual relations, we consider two ways to
construct them. The first way is that consider each word that appears in a sen-
tence as having a connection and add the word’s own connection. This is noted as
the relation matrix WD

r , which shows the semantic dependencies between words.
The other way is that we use off-the-shelf Stanford CoreNLP [20] to identify text
semantic dependencies within the text. It can resolve their semantic dependen-
cies, considering words to be related if they are semantically dependent on each
other. This is noted as the relation matrix WS

r . After obtaining the relationship
matrix, the weight matrix We can measure the strength of this relationship by
calculating the intra-modal similarity to the weight of the relationship matrix,
following as:

We =‖ exp(λ2tTi tj)∑l
j=0 exp(λ2tTi tj)

� Wr ‖2, (5)

where λ2 is a scaling factor, Wr ∈ {WD
r ,WS

r }, and ‖ ∗ ‖2 is the L2 normalization.

Structural Similarity. Considering that the relationship between sentence and
image is complex, GAT [26] is highly flexible and capable of capturing complex
dependencies and interactions in graph-structured data. Inspired by this, we con-
sider the vector representation obtained from the multi-head similarity feature
representations as nodes, and feed them into GAT to integrate the global struc-
tural relationships by weighted summation and stitching of multiple attention
heads. Taking the image-to-text direction as an example, the specific formula is
expressed as:

v̂i =‖K
k=1 σ(

∑
j∈Ni

aijWkv∗
j + bk), (6)
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where ‖ denotes the connect operation, σ(·) is an activation function, Ni denotes
the set of neighboring nodes of i, aij is the relationship matrix We following the
section of structural construction, Wk and bk are the parameters to be learned
by the k-th head, and K is the number of attention heads.

Then, we feed v̂i into a Multi-Layer Perception (MLP) to jointly consider
the learned correspondences of all phrases and infer the global match score. We
have the following formula:

s(v, t) = 1
n

∑

i

W v
s (σ(W v

g v̂i + bv
g))) + bv

s , (7)

s(t, v) = 1
m

∑

j

W t
s(σ(W t

g t̂j + bt
g))) + bt

s, (8)

where σ(·) is an activation function, and W v
s ,W v

g , bv
g , bv

s ,W t
s ,W t

g , bt
g, b

t
s are the

parameters of the MLP, respectively. It is worth noting that we perform bi-
directional structure-level matching on image-text retrieval.

3.4 Objective Function

The Matching Loss. Our proposed MSFRF model does not use the most
commonly used triplet loss as the objective function as in previous approaches
[14,18,33]. Inspired by [13], we employ the Bi-directional Info-NCE loss. Specif-
ically, it can be described as follows: given a matched image-text pair (v, t), the
formula for calculating the Bi-directional ranking loss is as follows:

LM = − ∑

(v,t)

(log exp(s(v,t))
exp(s(v,t))+

∑
exp(s(v,t−)) + log exp(s(v,t))

exp(s(v,t))+
∑

exp(s(v−,t)) ), (9)

where v− is the corresponding negative image and t− is the corresponding neg-
ative text.

Filtration Regularization Loss. Training the model using the matching loss
can improve the matching scores of positive sample pairs, but it may not be
effective in handling the noise present in the feature representations of text and
image. In order to prevent all words and regions from being activated and to
attenuate the effect of noisy features during matching, we use the LR constraint
for the features. For a given feature zi in the sample Z, we define QR as follows:

Q(zi) = max(zi)−μzi

σzi
‖zi‖2,1

, (10)

QR(Z) =
∑

zi∈Z IQ(zi)<θ1(Q(zi)), (11)

where max(·) is the maximum function, μzi
is the mean of the feature represen-

tations, σzi
is the standard deviation of the feature representations, and ‖ · ‖2,1

denotes the L2,1 regularization. θ1 is the threshold used to select samples with
too small regional Q(·) and I is the indicator function. Q(·) is to make different
samples in a single model more discriminative on a particular feature and to
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increase the variability between samples, and QR(·) is to improve the feature
representation.

Furthermore, in order to avoid the model optimization process from falling
into a mundane solution, we do the following for the features:

H(zi) =‖ z∗,k
i ‖1, (12)

HR(Z) =
∑

zi∈Z IH(zi)>θ2(H(zi)), (13)

where ‖ · ‖1 is the L1 regularization of the k-th feature (by column) for the
feature representations, and θ2 is the threshold value. H(·) is used to obtain the
sparse feature representation. HR(·) is used to avoid all features being activated.
Then, we have our filtering constraint loss:

LR(Z) = HR(Z)
QR(Z) , (14)

Overall Loss. Finally, we obtain the final training loss by merging the matching
loss and filtration regularization Loss using a weighted sum.

L = LM + α(LR(V ) + LR(T )), (15)

where α is the trade-off parameter, which is proportional to the training epoch.

4 Experiments

4.1 The Details of Two Datasets

We conducted experiments on two widely used datasets: Flickr30K [22] and MS-
COCO [16]. The details and division of these two datasets during the experiments
are as follows:

1. Flickr30K contains 31,000 images collected from the Flickr website, each
described in five different sentences. Following the setup of previous works
[14,18,33], we divided this dataset into three parts: 1,000 images for valida-
tion, 1,000 images for testing, and the rest for training.

2. MS-COCO is a large-scale image description dataset containing about 123,287
images, with five texts per image. As in previous works, we used 113,287
images to train all the models, 5,000 images for validation, and another 5,000
images for testing. The final results were obtained by averaging the results
from five folds of 1,000 test images.

4.2 Experimental Settings

Evaluation Metric. According to existing methods [2,9,14], we use R@K and
RSUM as evaluation metrics, which are commonly used in multi-modal retrieval
tasks. R@K indicates the percentage of ground truth retrieved in the top K
results, where K is generally taken as 1, 5, and 10, with higher R@K indicating
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better performance. RSUM is the sum of R@K, which combines the total value
of R@K for both text and image retrieval and provides a general view of the
overall retrieval performance. Similar to R@K, a higher RSUM indicates better
performance. These metrics are widely used to evaluate the performance of multi-
modal retrieval systems and are frequently used in research.

The Details of Implementation. Our experimental setup is based on our
baseline model GSMN [18]. In terms of the specific implementation, we trained
the proposed network on the training set and validated it in each epoch on
the validation set, selecting the model with the highest RSUM for testing. We
trained the proposed method on one Tesla V100 GPU.

For the Flickr30k dataset, we used the Adam optimizer with 30 epochs and
a mini-batch of 64 for training. The initial learning rate was set to 0.0002 and
became 0.1 times the original value every 15 epochs. For region-word matching,
we used multi-headed cross-modal attention with eight heads. For structure-level
matching, we used a graph attention layer with eight heads, each of which was
32-dimensional.

For the MSCOCO dataset, we used the Adam optimizer with 30 epochs
and a mini-batch of 64 for training. The initial learning rate was set to 0.0005,
which became 0.1 times the original value every five epochs. The rest of the
experimental setup is the same as the experimental settings of Flickr30k. As for
the setting of hyperparameters, we will discuss them in detail in the ablation
study.

4.3 Quatitative Results and Analysis

The Performance of the Proposed MSFRF Model. To demonstrate the
effectiveness of our proposed MSFRF model, we compared it with previous meth-
ods in image-text retrieval tasks, evaluated against two introduced datasets. All
previous methods use the Faster-RCNN detector with Bottom-Up and Top-Down
attention as the image encoder and Bi-GRU as the text encoder. The compara-
tive results are summarized in Table 1 and Table 2, where the best performance is
highlighted in bold. It is worth noting that the previous approaches [9,17,18,33]
also use ensemble models. So we ensemble by averaging the similarity of the
sparse graph and dense graph to evaluate the performance.

Table 1 shows that our proposed network achieves the score of 77.3% and
57.2% on Flickr30K in terms of R@1 score on image-to-text and text-to-image,
respectively. Furthermore, compared with the most classic SCAN, our MSFRF
method achieves 9.9% and 8.6% improvement in R@1 in two directions, respec-
tively. And Table 2 shows the experimental results on the larger and more com-
plex MSCOCO. Our MSFRF method outperforms state-of-the-art methods on
both datasets. Relative improvements of 3.3% and 5% are obtained on RSUM
compared to GSMN and VSE∞, respectively.
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Table 1. The performance of all methods relative to Image-text retrieval on Flickr30K.

Methods Flickr30K Dataset

Image-to-Text Text-to-Image RSUM

R@1 R@5 R@10 R@1 R@5 R@10

SCAN [14] 67.4 90.3 95.8 48.6 77.7 85.2 465.0

PFAN [30] 70.0 91.8 95.0 50.4 78.7 86.1 472.0

VSRN [15] 71.3 90.6 96.0 54.7 81.8 88.2 482.6

MMCA [32] 74.2 92.8 96.4 54.8 81.4 87.8 487.4

IMRAM [2] 74.1 93.0 96.6 53.9 79.4 87.2 484.2

GSMN [18] 76.4 94.3 97.3 57.4 82.3 89.0 496.7

WCGL [31] 74.8 93.3 96.8 54.8 80.6 87.5 487.8

SHAN [9] 74.6 93.5 96.9 55.3 81.3 88.4 490.0

VSE∞ [3] 76.5 94.2 97.7 56.4 83.4 89.9 498.1

MSMNSST [33] 75.8 93.9 97.2 57.1 82.3 88.7 495.0

MSFRF(d) 73.1 93.7 96.8 54.0 81.2 88.2 487.0

MSFRF(s) 72.7 92.5 96.8 53.7 81.3 87.8 484.8

MSFRF(full) 77.3 95.0 97.6 57.2 84.0 89.8 500.9

Table 2. The performance of all methods relative to Image-text retrieval on MSCOCO.

Methods MSCOCO(1K) Dataset

Image-to-Text Text-to-Image RSUM

R@1 R@5 R@10 R@1 R@5 R@10

SCAN [14] 72.7 94.8 98.4 58.8 88.4 94.8 507.9

PFAN [30] 76.5 96.3 99.0 61.6 89.6 95.2 518.2

VSRN [15] 76.2 94.8 98.2 62.8 89.7 95.1 516.8

MMCA [32] 74.8 95.6 97.7 61.6 89.8 95.2 514.7

IMRAM [2] 76.7 95.6 98.5 61.7 89.1 95.0 516.6

GSMN [18] 78.4 96.4 98.6 63.3 90.1 95.7 522.5

WCGL [31] 75.4 95.5 98.6 60.8 89.3 95.3 514.9

SHAN [9] 76.8 96.3 98.7 62.6 89.6 95.8 519.8

VSE∞ [3] 78.5 96.0 98.7 61.7 90.3 95.6 520.8

MSMNSST [33] 78.7 95.8 98.8 62.8 90.0 95.2 521.3

MSFRF(d) 76.6 96.5 98.6 62.1 89.7 95.2 518.7

MSFRF(s) 76.7 95.0 97.9 62.0 89.3 95.2 516.1

MSFRF(full) 79.5 96.6 98.8 64.4 90.8 95.7 525.8
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Table 3. The results of ablation studies on Flickr30K.

Model Image-to-Text Text-to-Image RSUM

R@1 R@5 R@10 R@1 R@5 R@10

Baseline 76.4 94.3 97.3 57.4 82.3 89.0 496.7

Baseline + MSFR 76.5 94.4 97.5 57.6 83.5 90.4 499.9

Baseline + LM with LR 76.5 94.7 97.1 58.9 83.1 89.3 499.6

Baseline + MSFR + LM with LR 77.3 95.0 97.6 57.2 84.0 89.8 500.9

Ablation Studies. Table 3 presents the results of the ablation study conducted
on the Flickr30k dataset, where we compared our proposed MSFRF model with
the baseline model GSMN. We added the region-word-level similarity feature rep-
resentation and the bidirectional Info-NCE loss with the noise filtering constraint
to the baseline model separately, and evaluated their contributions. As shown
in the table, both the feature representation and the loss function contribute to
the improvement of the model performance, demonstrating the effectiveness of
our proposed method.

Table 4. The results of different values of h for the proposed MSFRF method on
Flick30K.

h Image-to-Text Text-to-Image RSUM

R@1 R@5 R@10 R@1 R@5 R@10

4 75.7 92.9 97.1 57.4 83.1 89.4 495.6

8 77.3 95.0 97.6 57.2 84.0 89.8 500.9

16 76.4 94.5 97.8 57.1 83.3 89.9 499.0

Table 5. The results of different thresholds of θ1 for the proposed MSFRF method on
Flick30K.

θ1 Image-to-Text Text-to-Image RSUM

model(s) model(d) R@1 R@5 R@10 R@1 R@5 R@10

0.3 0.4 77.3 95.0 97.6 57.2 84.0 89.8 500.9

0.3 0.3 76.7 93.3 96.9 57.2 83.0 89.4 496.5

0.3 0.5 76.0 94.1 97.3 57.2 84.1 90.0 498.7

0.2 0.4 76.0 94.4 97.1 57.7 83.9 90.1 499.2

0.4 0.4 76.3 94.3 97.2 57.6 83.3 89.5 498.2

Besides, we also verified the effect of different parameters on the experimen-
tal results. Table 4 shows the effect of the value of h in the multi-head similarity
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feature representation on the experimental results. It can be seen that the model
achieves the best performance when the number of heads is h = 8. Increasing
the number of heads can improve the representation capability of the model and
tap more cross-modal interaction information, but if the number of heads is too
large, the model becomes too complex and leads to the problem of overfitting.
Table 5 shows the effects of different thresholds in filtration regularization on
the experimental results in the setting θ2 = 0.1. It can be seen that the model
achieves the best performance when θ1 = 0.4 in the design model, and θ1 = 0.3
in the sparse model. When θ1 is too large, feature representations that could
potentially have a positive effect on matching are also filtered out, leading to a
decrease in the recall of the model, while a small θ1 makes the model under-filter
the noisy information, and in turn affects the correct matching of image-text
pairs. It can also be seen that θ1 of the model (d) is larger than θ1 of the model
(s), which is due to the fact that constructing structural information with dense
graphs takes into account that all words or regions are related, which undoubt-
edly produces more noise information than structural information constructed
with sparse graphs of intra-modal similarity. And the filtration regularization,
to some extent, mitigates the issue of all features being activated and attenuates
the influence of noisy features on retrieval. It reduces the interference of non-
semantic alignment information and leads to more accurate image-text retrieval
results. Therefore, we choose the parameter combination that makes the model
perform best as our parameter settings.

5 Conclusion

In this paper, we propose a novel multi-head similarity feature representation
method that utilizes filter regularization and multi-head similarity feature repre-
sentation. Our proposed method, referred to as MSFRF, aims to capture multi-
level correspondence between regions in images and text through multi-head sim-
ilarity metrics. Furthermore, we employ graph neural networks during structure-
level matching to extract more complex structural information from the images
and text. To reduce noise in the extracted features, the proposed MSFRF method
applies filtering regularization, which increases the variability between samples
and improves the text and image feature representation. Through a comprehen-
sive set of experiments, we systematically evaluate the impact of our proposed
MSFRF method and demonstrate its effectiveness.
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Abstract. In this paper, we propose a multimodal conditional varia-
tional auto-encoder (MC-VAE) in two branches to achieve a unified real-
world event embedding space for zero-shot event discovery. More specif-
ically, given multimodal data, Vision Transformer is exploited to extract
global and local visual features, and BERT is adopted to obtain high-
level semantic textual features. Furthermore, the textual MC-VAE and
visual MC-VAE are designed to learn complementary multimodal repre-
sentations. By using textual features as conditions, the textual MC-VAE
encodes visual features to conform to textual semantics. Similarly, the
visual MC-VAE encodes textual features in accordance with visual seman-
tics using visual features as conditions. In particular, the textual MC-VAE
and visual MC-VAE exploit MSE loss to keep visual and textual seman-
tics for learning complementary multimodal representations, respectively.
Finally, the complementary multimodal representations achieved by MC-
VAE in two branches are integrated to predict real-world event labels in
embedding forms, which provides feedback to finetune the Vision Trans-
former in turn. Experiments conducted on real-world datasets and zero-
shot datasets show the outperformance of the proposed MC-VAE.

Keywords: Event discovery · Zero-shot leaning · Multimodal
conditional VAE

1 Introduction

Social media such as Twitter, Facebook, and Sina Weibo allow users to conve-
niently share text, images and videos anytime and anywhere. People witnessing
or involved in any real-world event can disseminate event-related information
on social media, such as natural disaster events (e.g., 2015 Accra Floods, etc.),
public safety incidents (e.g., 2015 Tianjin Explosions, etc.) and sporting and
recreational events (e.g., 2013 Rugby League World Cup, etc.). As a result, it
includes a large amount of relevant real-world event data, which attracts a lot
of attention from the researchers on real-world event discovery [26], aiming to
capture and comprehend real-world events occurring around the world.

Real-world event discovery focuses on classifying real-world occurrences in
unprecedentedly vast social media data, including text, images and videos, etc.
Most existing works are usually based on supervised learning strategies to deal
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
X. Yang et al. (Eds.): ADMA 2023, LNAI 14177, pp. 644–659, 2023.
https://doi.org/10.1007/978-3-031-46664-9_43

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-46664-9_43&domain=pdf
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Fig. 1. Illustration of zero-shot event discovery.

with single or multimodal event data. For instance, Li et al. [12] propose Multi-
Image Focusing Network (MIFN) to connect text content with visual aspects in
multiple images in order to achieve multimodal representations for predicting
real-world events. However, we are usually faced with new labels (i.e., unseen
events) in practice, especially on social media like open data sources. By training
classifiers on previously existing events, the supervised models can only recognize
seen events and cannot deal with unseen events. Consequently, we advocate a
zero-shot real-world event discovery (ZED) task as shown in Fig. 1, aiming to
discover new real-world event happenings from multimodal data on social media.

Zero-Shot Learning (ZSL) methodologies [5,8,19,28] that aim to recognize
unseen classes while training on seen classes are typically based on the assump-
tion that both seen and unseen classes have commonalities in the semantic
domain. The works on ZSL can be divided into three categories: embedding-
based methods, generative methods and common space learning-based methods.
More specifically, embedding-based methods [1,15,24,25] aim to learn mappings
between visual knowledge and semantics for visual-semantic interactions. Genera-
tive methods [2,10,17] adopt VAEs or GANs to generate visual features of unseen
classes. Common space learning-based methods [3,14,20,23] achieve common rep-
resentation spaces in which both visual features and semantic representations are
unified by projection. The aforementioned methods usually deal with the simple
concepts (e.g., animals, flowers) with laboriously well-defined attributes. However,
there are quite a few high-level concepts whose attributes cannot be defined cer-
tainly and completely, such as the real-world event concepts in ZED. In addition,
ZSL focuses on visual images of the concepts, which cannot deal with multimodal
data, e.g., both textual and visual data samples in ZED.

In this paper, we propose multimodal conditional variational auto-encoder
(MC-VAE) for zero-shot event discovery (ZED). More specifically, we obtain
global and local visual features via Vision Transformer (ViT) [7] from images,
and high-level semantic textual features via BERT [6] from text on social media.
The two branches of MC-VAE, textual MC-VAE and visual MC-VAE, encode
both visual and textual features to generate latent representations. Furthermore,
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textual MC-VAE and visual MC-VAE decode the latent and textual or visual
features to obtain complementary multimodal representations, respectively. In
particular, textual MC-VAE exploits MSE loss to keep visual semantics and
takes textual features as conditions to retain textual semantics. Visual MC-VAE
takes visual features as conditions and exploits MSE loss to maintain visual and
textual semantics, respectively. Finally, we combine the two complementary mul-
timodal representations of MC-VAE in two branches to learn real-world event
embeddings for predictions. The key to our approach is aligning the distribu-
tions learned from images and text information to achieve a real-world event
embedding space that contains the latent multimodal representations of seen
and unseen events.

The contributions of this work are summarized below:

– We propose multimodal conditional variational auto-encoder (MC-VAE) in
two branches to learn modality-specific representations with cross-modal con-
ditions, achieving a real-world event embedding space.

– We advocate multimodal zero-shot real-world event discovery (ZED), which
aims to recognize both seen and unseen real-world events from multimodal
data on social media.

– We conduct extensive experiments on a real-world event dataset and conven-
tional ZSL datasets including CUB and FLO, manifesting the effectiveness of
MC-VAE against the state-of-the-art ZSL works.

The rest of the paper is organized as follows. Section 2 reviews the related works.
Section 3 introduces the problem statement on ZED. Section 4 introduces the
details of the proposed MC-VAE. Experiments are conducted in Sect. 5, followed
by conclusions in Sect. 6.

2 Related Work

2.1 Real-World Event Discovery

Real-world event discovery from social media has made significant progress, par-
ticularly with the achievement on semantic embedding learning. For example,
Singh et al. [21] presented a concise approach for classifying the event keywords
and maintaining the event records based on related features. However, they only
consider text information of the real-world events. Compared with single infor-
mation from social media, multimodal event discovery with multimodal data as
input benefits the learning of event embeddings. Using the Multi-Image Focus-
ing Network (MIFN), Li et al. [12] focused attention across multiple images and
text content to predict real-world events. However, they are conventional super-
vised learning tasks on large-scale data collections that are often well-labelled
and ignore the predictions of new events. To recognize new events, Li et al. [13]
incorporated visual concepts from video sequences with event semantic represen-
tations extracted from event keywords in order to capture new video events in a
zero-shot setting. However, they focus on detecting generic user-defined events
in the video (e.g., making a sandwich, parade, birthday party, etc.) for new event
discovery, while ignoring real-world event discovery on social media.
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2.2 Zero-Shot Learning

Existing ZSL works can be roughly grouped into three categories: embedding-
based methods, generative methods and common space learning-based meth-
ods. More specifically, embedding-based methods learn projections or embedding
functions to associate the visual features with the respective semantic knowledge.
For instance, using a visual-semantic embedding layer and an attribute prototype
network, Xu et al. [25] simultaneously learned discriminative global and local fea-
tures utilizing solely class-level attributes. Alamri et al. [1] exploited the Vision
Transformer [7] to project the raw features of image patches to semantic label
space for ZSL. Some ZSL approaches, known as generative methods, learn visual
generators for unseen classes. Combining class-wise and instance-wise supervi-
sion, Han et al. [9] adopted contrastive embedding to generate synthetic visual
features of unseen classes. Methods based on common space learning achieve
common representation spaces in which both visual features and semantic rep-
resentations are unified by projection. Wang et al. [23] proposed a two-stage
bidirectional latent embedding framework with bottom-up and top-down learn-
ing stages to predict the label of the test instance using a simple nearest-neighbor
algorithm.

2.3 Variational Autoencoders

Variational autoencoders [11] usually use approximate posterior inference based
on latent variables that are extremely effective in data generation. It has been
shown to be effective on variety of tasks, including feature refined, image clas-
sification, adversarial samples generation, etc. For instance, Narayan et al. [17]
demonstrated outstanding performance on fine-grained optimization features by
enhancing class-level semantic knowledge for feature refinement. However, it is
difficult to refine visual features limited to image input only. Chen et al. [4]
designed a flexible architecture of the VAEs with four blocks named h-block, μ-
block, σ-block, and t-block to address the limitations of the symmetrical architec-
tures of the traditional VAEs for image classification. Ma et al. [16] integrated
a deep embedding network and a cross-modal alignment modified variational
autoencoder to learn the latent space shared by image features and class embed-
dings.

3 Problem Statement

In this section, we formalize the notion of multimodal zero-shot real-world event
discovery (ZED). ZED aims to discover new real-world events from multimodal
social media data that are unavailable to utilize during training. More specifi-
cally, given the multimodal representations in semantic feature space, ZED aims
to construct the semantic label space into which the real-world event concepts
represented by embedding vectors are projected. Without loss of generality, we
give the definitions of semantic feature space, semantic label space and ZED.
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Definition 1 (Semantic Feature Space). The semantic feature space of k
dimensions is a metric space in which each of the k dimensions encodes the value
of a virtual attribute of data information. For text information t and an image
x in ZED, we attain textual features and visual features in embedding forms
(denoted as h ∈ R

k and v ∈ R
k, respectively), which have achieved brilliant

results on many feature extraction tasks. Furthermore, we integrate visual and
textual features to learn multimodal features m.

Definition 2 (Semantic Label Space). It is a metric space where the
real-world event concepts represented by embedding vectors of k dimensions are
projected. For event labels in ZED, we attain a knowledge base of semantic labels
Y = {yi}Ls+Lu

i=1 , where yi ∈ R
k denotes an event label in embedding form with

k dimensions, Ls and Lu are the number of seen and unseen event categories,
respectively.

Definition 3 (Zero-shot Real-world Event Discovery). Similarly to
embedding-based methods in ZSL [1,15,24,25], ZED learns the mapping rela-
tionship between semantic features and semantic labels to recognize both seen
and unseen events.

Without loss of generality, ZED uses the learned relationship H : S(x, t) →
Y in a two-stage prediction procedure to point from a raw image x and text
information t to an event label y ∈ Y as follows,

H = L(S(·)), (1)

S : (x, t) → m, (2)

L : m → Y, (3)

where m denotes the multimodal representations, S(·) represents learning
multimodal representations m from data information including raw image x and
text information t in semantic feature space, L(·) represents the mapping rela-
tionship from semantic features to semantic labels, and Y denotes the knowledge
base of semantic labels.

In particular, we have two disjoint sets of events: the dataset with seen events
S = {xs

i , t
s
i , y

s
i }|S|

i=1 and the dataset with unseen events U = {xu
i , tui , yu

i }|U |
i=1

in ZED, where xi is the i-th raw image, ti represents the i-th text informa-
tion, yi denotes the corresponding event label embeddings and |S| and |U | are
the number of seen event samples and unseen event samples. Assume that a
number of |N | labeled instances from seen events S are provided for training:
Dtr = {xs

i , t
s
i , y

s
i }|N |

i=1. The test set Dte = {xm
i , tmi , ym

i }|Q|
i=1 contains |Q| unlabeled

samples from both seen and unseen events, where m ∈ {s, u}.

4 Methodology

4.1 Overview of the Framework

Fig. 2 shows the proposed framework with feature extraction and the MC-VAE in
two branches including a visual MC-VAE and a textual MC-VAE for ZED. More
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specifically, we extract global and local visual features and high-level semantic
textual features from raw images and text information by utilizing ViT and
BERT, respectively. The visual and textual features are concatenated in the
latent space by the encoders of the MC-VAE in two branches to obtain the
joint latent representations. Furthermore, the decoder of textual MC-VAE gen-
erates multimodal representations by decoding the latent representations and
textual features with textual features as conditions. Meanwhile, textual MC-
VAE employs MSE loss between visual and multimodal representations to keep
visual semantics. The visual MC-VAE takes visual features as conditions and
exploits MSE loss to retain visual semantics for multimodal representation learn-
ing. Finally, we fuse the two complementary multimodal representations achieved
by MC-VAE in two branches to obtain real-world event embeddings capable of
recognizing both seen and unseen events.

Fig. 2. The framework of MC-VAE.

4.2 Feature Extraction

1) Textual features. For the text information t, we exploit BERT [6] to
obtain high-level semantic textual features h. Bert is able to capture the over-
all semantics of text information as well as local relations between words in
text information by multi-head attention mechanism. More specifically, the text
information t = [w1, w2, . . . , wn] is input into BERT to extract textual features
Fbert , where wi ∈ t, i ∈ {1, . . . , n} represents the i-th word in text information
as follows,

Fbert = fbert (t;Θbert ) , (4)

where fbert (·) represents the BERT operation, Θbert is the parameters of BERT
and Fbert denotes the textual features after BERT operation.

Furthermore, a fully connected layer is employed to ensure that textual fea-
tures and visual features (denoted as h ∈ R

k and v ∈ R
k, respectively) have the

same k dimension as follows,

h = FC (Fbert ;Θtf ) , (5)
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where Θtf represents the parameters of the fully connected layer FC(·).
2) Visual features. For the raw image x ∈ R

H×W×C , we adopt ViT [7]
to extract global and local visual features v. ViT is able to capture the global
semantics of images and local relations between image patches through a multi-
head attention mechanism. More specifically, the image x = [p1, p2, . . . , pn] is
fed into ViT encoder to extract visual features Fvit, where pi ∈ x, i ∈ {1, . . . , n}
represents the i-th image patch of the image x as follows,

Fvit = fvit (x;Θvit) , (6)

where fvit (·) represents the ViT operation, Θvit is the parameters of ViT and
Fvit denotes the visual features after ViT operation.

Similarly, a fully connected layer is adopted to obtain visual features (denoted
as v ∈ R

k) with the same dimension as the textual features h as follows,

v = FC (Fvit;Θvf ) , (7)

where Θvf represents the parameters of the fully connected layer FC(·).
In particular, the ViT encoder could be finetuned for visual feature learning

during training, which is conducive to capturing complex visual patterns of real-
world events. Finally, we achieve a semantic feature space by extracting global
and local visual features and high-level semantic textual features from raw images
and text information on social media.

4.3 Multimodal Conditional Variational Auto-Encoder (MC-VAE)

Fig. 3. Details of the Textual MC-VAE.

MC-VAE mainly has two branches, a textual MC-VAE and a visual MC-VAE,
which are adopted to learn complementary multimodal representations. In terms
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of textual MC-VAE as shown in Fig. 3, it consists of an encoder E1 and a decoder
D1. In terms of visual MC-VAE, its architecture is the same as Fig. 3, where just
swap the visual and textual input. The encoders of textual and visual MC-VAE
encode the visual features v and textual features h to hidden representations as
follows,

μi, σi = Ei

(
v, h;Θi

E

)
, i ∈ {1, 2} (8)

where Ei, i ∈ {1, 2} is the encoder of textual and visual MC-VAE respectively,
Θi

E is the parameters of Ei, μi and σi are mean vector and standard deviation
vector respectively.

In particular, we sample from the unit Gaussian distribution N (0, 1) to attain
ε. Similarly to the conventional practice of VAEs [11], we integrate μi, σi and ε
to obtain the latent representations zi as follows,

zi = μi + σi × ε, i ∈ {1, 2} (9)

Furthermore, the decoder of textual MC-VAE generates multimodal repre-
sentations from latent representations and textual features using textual features
as conditions. The decoder of visual MC-VAE decodes latent representations and
visual features using visual features as conditions to learn complementary mul-
timodal representations as follows,

mi =
{

Di

(
zi, h;Θi

D

)
, i = 1

Di

(
zi, v;Θi

D

)
, i = 2 (10)

where Di, i ∈ {1, 2} is the decoder of textual and visual MC-VAE respectively,
Θi

D is the parameters of Di and mi, i ∈ {1, 2} denotes the multimodal represen-
tations of textual and visual MC-VAE respectively.

In particular, the MSE loss is employed to penalize the distance between the
output representations of decoders and specific features to keep modality-specific
semantics as follows,

L(Rv) = MSE(m2, v), (11)

L(Rh) = MSE(m1, h), (12)

where L(Rv) denotes reconstruction loss between multimodal representations m2

and visual features v, L(Rh) denotes reconstruction loss between multimodal
representations m1 and textual features h.

The textual and visual MC-VAE can be optimized jointly with the condi-
tional VAE loss L(V1) and L(V2), respectively:

L(V1) = −LKL + L(Rv)

= −KL
[
qΘ1

E
(z1 | v, h) ‖pΘ1

D
(z1 | h)

]
+ MSE(m2, v),

(13)

L(V2) = −LKL + L(Rh)

= −KL
[
qΘ2

E
(z2 | h, v) ‖pΘ2

D
(z2 | v)

]
+ MSE(m1, h),

(14)

where LKL denotes the Kullback-Leibler divergence, qΘ1
E

(z1 | v, h) and
qΘ2

E
(z2 | h, v) are posterior distributions modeled by E1 and E2 respectively,
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pΘ1
D

(z1 | h) and pΘ2
D

(z2 | v) denote the conditional prior distributions assumed
to be N (0, 1).

In particular, we combine the two complementary multimodal representations
of textual and visual MC-VAE to learn real-world event embeddings as follows,

e = m1 + m2, (15)

where m1, m2 denote the multimodal representations of textual and visual MC-
VAE respectively, e denotes the predicted event embeddings.

Particularly for ZED, we attain a knowledge base of semantic labels Y =
{yi}Ls+Lu

i=1 , where yi ∈ R
k is the i-th semantic label achieved by BERT [6] from

event name, Ls and Lu are the number of seen and unseen event categories
respectively. In particular, Y only contains semantic labels of seen events during
training. MC-VAE is able to predict the event embeddings for recognizing both
seen and unseen events during testing.

For the inference, we exploit cosine similarity cos(·) to obtain the predicted
event category o. Similarly to mitigating the bias toward seen classes on ZSL,
we apply calibrated stacking (CS) [1] to reduce seen event scores on ZED by a
calibration factor δ as follow,

o = arg max
yi∈yS∪yU

(
cos (e, yi) − δI

[
yi ∈ yS

])
, (16)

where I = 1 if yi is a semantic label of seen event and 0 otherwise, e represents
the predicted event embeddings, yS = {yi}Ls

i=1 and yU = {yi}Lu

i=1 denote the set
of semantic labels of seen events and unseen events, respectively.

Finally, we exploit cross entropy loss as classification loss to train the model
as follows,

LCLS = −1
b

b∑

i=1

log

(
exp

(
eT
i yi

)

∑Ls

j=1 exp
(
eT
j yj

)

)

, (17)

where ei denotes the predicted event embeddings, yi ∈ Y represents the ground-
truth event label, yj ∈ {yj}Ls

j=1 represents the event label of the i-th seen event
and b denotes the batch size of input.

In terms of loss terms, MC-VAE exploits two conditional VAE loss terms to
obtain the two complementary multimodal representations m1, m2 and a cross
entropy loss to compute the similarity between predicted event embeddings e and
ground-truth event label y. In summary, the objective function of our proposed
MC-VAE is below:

Ltotal = λ(V1) × L(V1) + λ(V2) × L(V2) + λc × LCLS , (18)

where λ(V1), λ(V2) and λc are parameters to balance the loss terms.

5 Experiments

5.1 Datasets

For evaluations, we exploit a multi-domain and multi-modality event dataset
(MMED) [27] to evaluate the performance of the approaches on ZED task. In the
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terms of the methodologies, the proposed MC-VAE is a ZSL approach, and thus
we conduct evaluations on CUB-200-2011 (CUB) [22] and Oxford-102 (FLO)
[18] that are widely-used in ZSL. The datasets are detailed below.

1) MMED [27]. It contains 75,560 images with text information related to
410 real-world events for evaluations. The examples of the data samples about
one real-world event are illustrated in Fig. 4. In the context of ZED, 53,786
images with text information about 360 events are used during training, while
21,774 images with text information related to 410 events are used for testing,
among which 50 events are unseen. The event distributions of seen and unseen
events are summarized in Fig. 5.

Fig. 4. Illustration of samples about one event (i.e., 2015 Assam Floods ) on MMED
dataset.

Fig. 5. Distributions of seen and unseen events on MMED dataset.

2) CUB-200-2011 (CUB) [22]. It contains 11,788 images related to 200
categories of birds, and each image corresponds to 10 sentences as text infor-
mation. The examples from the data samples about one bird are illustrated in
Fig. 6-a. A number of 7,057 images with text information about 150 categories
are used during training, while 4,731 images with text information related to
200 categories are used for testing, among which 50 categories are unseen.

3) Oxford-102 (FLO) [18]. It consists of 8,189 images related to 102 kinds
of flowers, and each image corresponds to 10 sentences as text information.
The examples from the data samples about one flower are illustrated in Fig. 6-
b. A number of 5,878 images with text information about 82 categories are
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used during training, while 1,518 images with text information related to 102
categories are used for testing, among which 20 categories are unseen.

Fig. 6. Illustration of samples about one class on CUB and FLO datasets (i.e., Black
footed Albatross and Marigold, respectively).

5.2 Evaluation Metrics

In terms of evaluations for ZED, we adopt STop−1, STop−5, STop−10 and UTop−1,
UTop−5, UTop−10 to report the top-1, top-5, top-10 accuracy on seen and unseen
events, and the harmonic mean H = (2 × STop−1 × UTop−1)/(STop−1 + UTop−1)
for overall performance. The range of the metrics is in [0, 1], and a large value
is preferred. Among the three metrics, H is a comprehensive metric.

In terms of evaluations for ZSL, we adopt S and U to report the top-1
accuracy on seen and unseen events, and the harmonic mean H = (2 × S ×
U)/(S + U) for overall performance. The range of the metrics is in [0, 100], and
a large value is preferred.

5.3 Baselines

In the context of ZED, the existing ZSL approaches cannot be directly applied
because of the uncertain event attributes and multimodal data including text
and images. Based on the embedding-based methods in ZSL, we achieve mul-
timodal representations that retain textual and visual semantics to learn the
mapping relationships between semantic features and semantic labels for pre-
dictions. In addition, we include a number of 12 ZSL approaches as baselines in
three categories of embedding-based methods, generative methods and common
space learning-based methods on the two ZSL datasets.

5.4 Performance of the Approaches

Table 1 summarizes the performance of the approaches on the MMED dataset,
from which we have some observations. 1) Based on the visual features obtained
by ViT, the aforementioned methods achieve competitive performance, whereas
they perform poorly when utilizing the visual features obtained by Resnet101.
The reason is that ViT is beneficial for capturing visual semantics in MMED,
which are typically complicated and involve various objects and diverse describ-
ing perspectives. On one hand, various objects convey complex visual patterns.
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Table 1. Performance on the MMED dataset. The best and the suboptimal results
are marked in bold and underlined, respectively.

Methods Backbone UTop−1 UTop−5 UTop−10 STop−1 STop−5 STop−10 H

TF-VAEGAN [17] Resnet101 0.0177 0.0384 0.0460 0.0500 0.1279 0.1859 0.0262

ViT 0.0264 0.1334 0.2396 0.3636 0.5443 0.6199 0.0492

FREE [2] Resnet101 0.0210 0.0407 0.0788 0.0719 0.1837 0.2457 0.0325

ViT 0.0054 0.0305 0.0566 0.6467 0.8087 0.8515 0.0108

CE-GZSL [9] Resnet101 0.0089 0.0313 0.0513 0.0615 0.1536 0.2145 0.0156

ViT 0.0061 0.0374 0.0927 0.3234 0.5522 0.6489 0.0120

CADA-ZSL [20] Resnet101 0.0544 0.1395 0.1972 0.0547 0.1588 0.2487 0.0545

ViT 0.1314 0.3236 0.4318 0.2924 0.5439 0.6421 0.1813

ViT-ZSL [1] ViT-finetune 0.1467 0.4015 0.5463 0.4627 0.4682 0.4682 0.2228

MC-VAE ViT-finetune 0.2137 0.4957 0.6271 0.4507 0.4613 0.4613 0.2899

On the other hand, diverse describing perspectives result in images with vast
visual variations. 2) ViT-ZSL achieves the suboptimal performance and is infe-
rior to MC-VAE. The reason is that ViT is conducive to capturing complicated
visual patterns via a multi-head attention mechanism while fine-tuning. On one
hand, the image is divided into small patches, which is conducive to the learn-
ing of fine-grained visual features because the small image patches contain few
objects. On the other hand, the multi-head attention mechanism is able to cap-
ture the global semantics of an image. 3) MC-VAE performs the best, benefiting
from the learned multimodal representations with visual and textual seman-
tics of real-world events. MC-VAE learns modality-specific representations with
cross-modal conditions in two branches to achieve a real-world event embedding
space for predictions.

The overall performance of the methods on CUB and FLO are summarized
in Table 2. Overall, MC-VAE achieves suboptimal performance on H, and is infe-
rior to ViT-ZSL and FREE on CUB and FLO datasets, respectively, highlighting
MC-VAEs capability of dealing with ZSL task. On one hand, textual features
extracted from text information with irrelevant words may distract models. On
the other hand, bird and flower images are relatively simple for capturing visual
patterns, thus it may interfere with the learning of visual semantics while increas-
ing the learning of textual semantics.

5.5 Visualizations on Event Embeddings

In order to demonstrate the effectiveness of MC-VAE in recognizing unseen
events in ZED, we visualize decision boundaries and predicted event embeddings
for unseen and seen events on MMED.

1) Visualization of decision boundary. As depicted in Fig. 7, MC-VAE
obtains more concentrated predicted event embeddings and more robust decision
boundaries than ViT-ZSL for unseen events. The reason is that MC-VAE learns
modality-specific representations with cross-modal conditions in two branches
to achieve a real-world event embedding space for recognizing unseen events.
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Table 2. Compared with the state-of-the-art ZSL methods on the CUB and FLO
datasets. * indicates the results obtained by ourselves with the codes released by the
authors. The best and the suboptimal results are marked in bold and underlined,
respectively.

Method CUB FLO

U S H U S H

Generative Methods RFF-GZSL [10] 52.6 56.6 54.6 65.2 78.2 71.1

TF-VAEGAN [17] 52.8 64.7 58.1 62.5 84.1 71.7

FREE [2] 55.7 59.9 57.7 67.4 84.5 75.0

CE-GZSL [9] 63.9 66.8 65.3 69.0 78.7 73.5

Common Space Learning -based methods DCN [14] 28.4 60.7 38.7 - - -

SGAL [23] 40.9 55.3 47.0 - - -

HSVA [4] 52.7 58.3 55.3 - - -

CADA-VAE [20] 51.6 53.5 52.4 44.5∗ 66.7∗ 53.4∗

Embedding-based methods LFGAA [15] 43.4 79.6 56.2 - - -

AREN [24] 38.9 78.7 52.1 - - -

APN [25] 65.3 69.3 67.2 - - -

ViT-ZSL [1] 67.3 75.2 71.0 57.5∗ 95.9* 71.9∗

MC-VAE 63.3 72.3 67.5 61.4 91.8 73.6

Fig. 7. Examples of visualized decision boundaries with predicted event embeddings
for four unseen classes on MMED dataset.

Fig. 8. Examples of visualized predicted event embeddings for five seen and five unseen
events on MMED dataset.
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2) Visualization of predicted event embeddings. As shown in Fig. 8,
the event embeddings of seen events learned by ViT-ZSL and MC-VAE are clus-
tered, whereas the event embeddings of unseen events learned by ViT-ZSL are
more dispersed than those learned by MC-VAE. The event embeddings obtained
by MC-VAE are more discriminative for recognizing seen and unseen events.

Table 3. Performance of variations on the MMED dataset. The best and the subop-
timal results are marked in bold and underlined, respectively.

UTop−1 UTop−5 UTop−10 STop−1 STop−5 STop−10 H

MC-VAE V 0.1596 0.4112 0.5496 0.4004 0.4136 0.4136 0.2283

MC-VAE V L 0.1761 0.4319 0.5734 0.2827 0.2914 0.2914 0.2170

MC-VAE V C 0.1697 0.4463 0.5739 0.1903 0.1969 0.1969 0.1794

MC-VAE T 0.1588 0.3860 0.5203 0.3723 0.3849 0.3951 0.2197

MC-VAE T L 0.1626 0.3937 0.5576 0.3562 0.3661 0.3662 0.2233

MC-VAE T C 0.1526 0.4243 0.5657 0.1727 0.1819 0.1819 0.1620

MC-VAE E 0.1712 0.4571 0.6025 0.4190 0.4273 0.4273 0.2430

MC-VAE 0.2137 0.4957 0.6271 0.4507 0.4613 0.4613 0.2899

5.6 Ablation Study

MC-VAE mainly has two branches, a textual MC-VAE and a visual MC-VAE.
We denote MC-VAE without textual and visual MC-VAE (MC-VAE T and MC-
VAE V, respectively), MC-VAE without the whole architecture and only with
feature extraction and a fully connection layer (MC-VAE E). Furthermore, we
denote MC-VAE V without MSE loss and textual features as conditions to keep
visual and textual semantics (MC-VAE V L and MC-VAE V C, respectively),
MC-VAE T without MSE loss and visual features as conditions to keep textual
and visual semantics (MC-VAE T L and MC-VAE T C, respectively). The per-
formance of the variations is summarized in Table 3. Overall, MC-VAE achieves
the best H on both seen and unseen events, benefiting from the two complemen-
tary multimodal representations achieved by textual and visual MC-VAE with
visual and textual semantics.

5.7 Failure Examples
We summarize three kinds of failure cases as shown in Fig. 9. More specifically,
the ambiguous text in Fig. 9-a is that text information may contain abbrevi-
ations, making it difficult to capture textual semantics. The irrelevant text in
Fig. 9-b is that text information may be unrated to the ground-truth event,
which may distract the model. The indiscriminative image in Fig. 9-c is that
event image may be similar though being related to different real-world events
as poor discrimination of visual semantics.
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Fig. 9. Failure examples of MC-VAE on MMED dataset (the red box and blue box
show predicted event and ground-truth, respectively). (Color figure online)

6 Conclusions

In this paper, we propose multimodal conditional variational auto-encoder (MC-
VAE) in two branches to achieve a real-world event embedding space, in which
we can discover new event happenings. The experimental results conducted both
on real-world event dataset and conventional ZSL datasets including CUB and
FLO demonstrate the effectiveness of the proposed MC-VAE.
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Abstract. Despite the prosperity of the film industry in the past few
decades, it is not uncommon to experience the phenomenon that some
movies receive high box offices but obtain low ratings.The phenomenon
indicates that existing studies which predict the movie-related indicator
(i.e., box office) are far from satisfactory. Inspired by this, we formu-
late a novel task in this work, i.e., multi-modal data aware movie rat-
ing prediction (MAMRP), which aims to predict the ratings of emerging
movies in time based on movie-related attributes. To tackle the task effec-
tively, we propose a novel model that contains feature extraction, two
multi-modal fusion modules, and embedding aggregation. Specifically,
the transformer-based pre-trained models are first adopted to perform
feature extraction for the attributes of each movie. Then, the extracted
features are fed into two fusion modules: a weight-based fusion mod-
ule considering the different contributions of movie attributes, and a
tree-based fusion module considering the hierarchical dependencies and
complex correlations between movies. Finally, the movie representations
are obtained by embedding aggregation. In experiments, we construct
a multi-modal benchmark in accordance with online movie platforms,
and the experimental results demonstrate the high performance of our
proposed model, which achieves nearly 24% relative improvement in clas-
sification accuracy compared with baselines.

Keywords: Multi-modal data · Movie rating prediction ·
Representation learning

1 Introduction

Over the past decade, the movie industry has experienced a remarkable expan-
sion [14], and we have witnessed a common phenomenon that some movies
receive high ratings but obtain low box office. By way of illustration, the movie
“Tough Out” obtains a high rating of 8.5 out of 10.0, while gaining a low box
office of 1.143 million dollars, and this movie is nominated for Best Educational
Film at the 34th China Golden Rooster Award. The potential reasons for the
phenomenon are twofold. (1) Movie ratings displayed by existing services (e.g.,
IMDB and Douban) only stabilize until the movies have been released for quite
some time, and the producers have missed the best opportunity to promote such
movies in advance. (2) The potential high-rating movies, especially those without
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
X. Yang et al. (Eds.): ADMA 2023, LNAI 14177, pp. 660–675, 2023.
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well-known actors but with high-quality content, are not allocated sufficient pub-
licity, which results in losing some audiences who prioritize high-rating movies
early in the movie’s release. Arguably, if we can provide a service to predict
movie ratings in advance, the producers can optimize the screen schedule and
publicity, to attract more audiences for potential high-rating movies. Despite
the significance of the work, such as obtaining higher box office and fostering
the long-term development of movie industry, it has been largely neglected by
existing studies.

To the best of our knowledge, the task MAMRP has not been studied so far
and the methods developed for the task of movie box office prediction (MBOP)
are the most relevant work to this paper. From the technical perspective, these
approaches can be divided into three categories: (1) traditional machine learn-
ing methods [7,15,17], (2) artificial neural networks [9,20,21,25], and (3) model
stacking strategies [14]. Despite the significant progress achieved by them, their
solutions still suffer from the following problems. Firstly, most existing MBOP
models are simplistic in design and have difficulty extracting and fusing criti-
cal attribute information of movies to generate excellent movie representations.
Secondly, while we have witnessed the unprecedented growth of multi-modal
data that have been widely used in various tasks to provide better representa-
tions (e.g., recommendations [10]), the majority of existing studies only exploit
the textual modal information of movies and neglect such important informa-
tion (e.g., images and videos). Although the deep neural network (DNN) [26]
utilizes movie posters to improve classification accuracy, it cannot deal with
movie-related videos. Having observed the shortcomings of existing work from
the perspectives of task and technique, we propose and formulate the novel
task of multi-modal data aware movie rating prediction (MAMRP) with a well-
designed model. Intuitively, MAMRP aims to predict the ratings of emerging
movies, i.e., estimating the movie from the perspective of reputation, based on
movie-related multi-modal attributes, such as titles, directors, storylines, posters,
and trailers.

To tackle the task MAMRP effectively, we propose a novel model that is
composed of feature extraction, two multi-modal fusion modules, and embedding
aggregation, and the details are as follows. (1) We adopt the transformer-based
pre-trained models to perform feature extraction for the attributes of each movie.
(2) A weight-based fusion module is designed to fuse multi-modal information
from the perspective of attribute importance. This module considers that dif-
ferent multi-modal attributes of the movie have varying impacts on MAMRP.
(3) A tree-based multi-modal fusion module utilizing a graph convolution net-
work (GCN) [12] is designed to capture hierarchical dependencies and complex
correlations between movies to further enhance the movie embeddings. The core
idea of the module is that the movies directed by the same director are more
likely to have similar ratings and potential interactions. For instance, movies
directed by James Cameron generally obtain a high rating of 8.0 or above. (4)
The embedding aggregation is employed to achieve excellent movie represen-
tations. Additionally, Fig. 1 presents the multi-modal attributes of the movie
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“Mermaid” and an instance of the Multi-modal Tree, which are detailed in
Sect. 3.

Furthermore, to make up for the lack of publicly available multi-modal movie
dataset, we construct a new benchmark namely MMMD based on Douban1, the
most active online movie database and review platform in China. MMMD is
publicly available2 and it is summarized in various forms, such as text, images,
and videos, and consists of various kinds of movie information, including story-
lines, posters, trailers, etc. In summary, the main contributions of this paper

Fig. 1. Movie “Mermaid” and the Multi-modal Tree in which “Mermaid” is located

are as follows:

• We propose and formulate a novel task named multi-modal data aware movie
rating prediction (MAMRP), which aims to predict the ratings of emerging
movies based on movie-related attributes.

• To tackle the novel task effectively, we design a model which consists of
feature extraction, two multi-modal fusion modules, and embedding aggre-
gation. This well-designed model sufficiently takes multi-modal information
into account and deeply explores hidden relationships between movies.

• The extensive experiments conducted on the real-world multi-modal movie
dataset demonstrate the effectiveness of the proposed model.

The remaining parts of this paper are organized as follows. We discuss the
related work in Sect. 2 and formulate problem in Sect. 3. The architecture of
the proposed model is introduced in Sect. 4. Then, our implementation part is
detailed in Sect. 5, followed by conclusion in Sect. 6.

2 Related Work

To the best of our knowledge, there is no existing work about MAMRP. Truth
be told, our work is inspired by box office prediction. Many researchers have

1 https://movie.douban.com.
2 https://anonymous.4open.science/r/MAMRP-master.

https://movie.douban.com
https://anonymous.4open.science/r/MAMRP-master
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developed various methods using movie-related data to predict the box office of
movies. Consequently, we summarize the related work as follows.

According to Kim et al. [11], there are four major types of box office pre-
diction methods: statistical models such as linear regression [8,15], probabilistic
models [7,17], time series models [1,3], and machine learning models such as
deep neural networks [9,20,21,25].

The first related studies are on linear regression. Litman and Kohl propose a
box office prediction model based on linear regression, where the rental is used
to predict movie revenue [15]. Following this influential work, several improved
box office prediction methods have been proposed. The statistical models based
on linear regression have been popular because they can explain the influence
of each variable on box office prediction. In addition, the probabilistic models
are also developed for the task MBOP. [17] proposes a box office prediction sys-
tem based on a Bayesian model, which can predict the box office of new films
at different stages. [7] develops an improved box office prediction model named
MOVIEMOD based on Markov chain model. [1,3] sought to design the box office
trend on a timeline. However, these models have the significant limitations that
they only rely on the historical performance of movies [11]. Benefiting from the
fast development of deep learning techniques, some scholars utilize deep neural
networks to predict box office [9,20,21,25]. Unlike previous work, [26] leverages
multi-modal data, i.e., assigns a poster to each movie and designs a convolu-
tional neural network for feature extraction. The results of [18,22] indicate that
the information in movie trailers can improve the prediction performance. More
recently, [14] proposes model stacking strategy, which utilizes the output of the
primary learner (e.g., eXtreme Gradient Boosting, Random Forest, Light Gra-
dient Boosting Machine) as the input of the secondary learner (e.g., KNN) for
box office prediction.

Notably, the task MAMRP, which employs multi-modal data to predict the
rating of emerging movies and evaluates movies from the perspective of reputa-
tion, is different from the movie rating prediction in recommendation systems
[16,23]. This is because the latter task focuses on a user’s preference on a spe-
cific movie from the individual perspective, and the score is determined by the
historical interactions between users and movies.

3 Preliminary

Definition 1 Hierarchical Non-empty Tree. A hierarchical non-empty tree
has a root node and probably numerous additional nodes, forming a hierarchy.
This paper only focuses on the trees that have a varying number of children per
node, and each of which has the equivalent number of levels.

Definition 2 Multi-modal Tree. The multi-modal tree T is a special hierar-
chical non-empty tree and consists of a collection of N nodes along with edges
between nodes. Note that, the nodes in T have various types, e.g., text, images,
and videos. Formally, it is defined as T = (A,F ), where F ∈ R

N×dT . The i-th
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row of F is the representation of i-th node ti and initialized by the pre-trained
embedding of the node. A is a N × N symmetric binary adjacency matrix which
represents the edges between nodes in T . Additionally, For each element Aij in
A, Aij = 1 if the node ti in T is connected to the node tj, otherwise Aij = 0.

Definition 3 Movie. Given a set of movies Ω = {EM1, · · · , EMm}, EMi ∈
Ω represents an emerging movie and contains a set of attributes Attri =
{dri, tli, csi,
syi, imi, vdi}, where dri, tli, syi, imi, and vdi denote the director, title, storyline,
poster, and trailer of EMi, respectively. csi is a sentence obtained based on other
information of EMi such as writers, stars, genres, production region, language,
and release date. In addition, a set of multi-modal trees S = {T1, · · · , Tn} is
constructed based on

⋃m
i=1 Attri by the hierarchical structure of “director name-

movie titles-movie attributes”, where n denotes the numbers of directors in Ω.
For each multi-modal tree T j ∈ S, a director name is regarded as the root node,
and the second-level nodes are composed of the titles of movies directed by this
director. The other attributes of each movie are located in the third level of T j.
Formally, EMi = (Attri, T

j), where T j = (Aj , F j) is the multi-modal tree in
which EMi is located.

Notably, a straightforward way to organize movie-related data is taking the
movie as a root node, but this may bring challenges for effectively capturing the
dependency between movies, especially those are directed by the same director
and more likely to have similar ratings. Consequently, we regard the director
name as the root node in the multi-modal tree.

Definition 4 Multi-modal Data Aware Movie Rating Prediction (MA-
MRP). Given a movie set Ω = {EM1, · · · , EMm}, a multi-modal tree set S =
{T1, · · · , Tn} is constructed based on Definition 3. The task MAMRP aims to
learn a function Φ to predict the rating of each movie EMi ∈ Ω. The formulation
of this process is as follows:

Rti = Φ(EMi) = Φ(Attri, T
j), (1)

where Rti is the rating of movie EMi, and Φ is the proposed model.

4 Proposed Model

As illustrated in Fig. 2, our proposed model has four primary modules: 1) fea-
ture extraction, 2) weight-based multi-modal fusion, 3) tree-based multi-modal
fusion, 4) embedding aggregation, and the details of them are as follows.

4.1 Feature Extraction

Intuitively, the movie-related data usually consists of a variety of multi-modal
information. Specifically, the textual modality contains the crucial information
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that filmmakers intend to convey to audiences, such as storylines. The images and
videos as supplementary information are also extremely significant for ratings,
especially in the marketing stage. These visual elements can create a strong
visual impact on audiences and influence whether they choose to enjoy the movie.
To utilize the multi-modal information effectively, three transformer-based pre-
trained models are used as feature extractors.

Fig. 2. Overall architecture of our proposed model

Text Extractor. To extract the information from text effectively, we learn
embeddings based on the pre-trained model BERT [5], which has received a
certain level of success in Natural Language Processing (NLP). Specifically, for
each text attribute teik ∈ {dri, tli, csi, syi} of movie EMi, teik is a word sequence
(i.e., teik = {w1, w2, · · · }) and wz is a specific word. The sequence teik is fed
into BERT to obtain word embeddings. Then, utilizing the embedding of [CLS]
[5] as the feature vector, i.e., ˜teik . The formulation of this process is ˜teik =
BERT (teik), where BERT (·) indicates the BERT layer, ˜teik ∈ R

1×dFV is the
feature vector of teik , dFV is the dimension of the extracted feature vector.

Image Extractor. Inspired by ViT [6], we adopt a transformer-based model to
embed images. The formulation of the image extractor is given as follows. Given
an image imi ∈ Attri of a movie EMi, we first employ ViT to split the image
into a sequence of fixed-size non-overlapping patches. Then, the patches are fed
into a linear layer and the transformer layers to obtain the transformed embed-
dings of patches. Finally, the embeddings of [CLS] are anchored to generate the
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embedding of the image imi, i.e., ˜imi = V iT (imi), where V iT (·) indicates the
ViT layer, ˜imi ∈ R

1×dFV is the feature vector.

Video Extractor. Actually, the video consists of a sequence of image frames.
To obtain excellent representations of videos, TimeSformer [2], which enables
spatio-temporal feature learning directly from a sequence of frame-level patches,
is employed as the video extractor. Formally, given a video vdi ∈ Attri of a movie
EMi, we first extract a set of key frames keyi from vdi, i.e., keyi = {f1, f2, · · · },
and fz is a specific key frame. Then, keyi is fed into the TimeSformer model
to learn the representation of vdi, i.e., ˜vdi = TimeSformer(keyi), where
TimeSformer(·) indicates the TimeSformer layer and ˜vdi ∈ R

1×dFV .

4.2 Weight-Based Multi-modal Fusion

Intuitively, not all multi-modal attributes are equally important for a movie.
To characterize the varying importance precisely, we introduce a weight-based
multi-modal fusion module, which assigns diverse weights to different modali-
ties. In detail, based on the feature extraction module, we first obtain the rep-
resentations of semantically-rich attributes (csi, syi, imi and vdi) in the movie
EMi = (Attri, T

j). Then, these four attributes are fed into the fully connected
layers to obtain latent representations. Finally, a weighting method is exploited
to achieve the multi-modal fusion embeddings of EMi, which enables this mod-
ule to effectively adopt the complementary information provided by different
modalities and capture the local dependencies between attributes:

Ui = FFN cs(BERT (csi)), (2)

Ti = FFNsy(BERT (syi)), (3)

Ii = FFN im(V iT (imi)), (4)

Vi = FFNvd(TimeSformer(vdi)), (5)

Xi
M =

∑

Moiz∈{Ui,Ti,Ii,Vi}
wz · Moi

z,
∑

wz = 1, (6)

where FFN(·) is a linear projection, wz is a learnable coefficient, and Xi
M ∈

R
1×dF represents the fused multi-modal attribute embedding of EMi.

4.3 Tree-Based Multi-modal Fusion

Apart from considering the attribute importance for movies, we design a tree-
based multi-modal fusion module, which can be used to capture the potential
relationships between movies and enhance the representations based on multi-
modal attributes, for effectively dealing with the MAMRP task. Specifically,
given a movie EMi = (Attri, T

j), the multi-modal tree T j = (Aj , F j) is con-
structed based on

⋃m
i=1 Attri by the hierarchical structure of “director name-

movie titles-movie attributes”. Based on T j , we utilize GCN [12] to enhance
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the movie representations by injecting movie-movie affinities into the embed-
ding process of EMi. Formally, we map the node representations F j of T j into
a low-dimensional dense space through a linear projection, i.e.,

F̃ j = FC(F j), (7)

where FC(·) indicates a linear projection, F̃ j ∈ R
N×dF represents the low-

dimensional dense embeddings of F j , and N is the number of nodes in T j .
Inspired by [19], we then utilize GCN on T j to enhance the quality of movie

representations after the low-dimensional transformation. In the l-th layer of
GCN, the message passing and aggregation are formulated as:

H
(l)
j = Dropout

(
ReLU

(
ÂjH

(l−1)
j W (l−1)

))
, (8)

Âj = D̃j
− 1

2
ÃjD̃j

− 1
2
, Ãj = Aj + I, D̃j = Dj + I, (9)

where H
(l)
j ∈ R

N×dF is the l-th layer embedding matrix of T j and is initialized
by F̃ j . W (l−1) ∈ R

dF ×dF is the weight parameters shared by multi-modal trees.
Aj is the binary adjacency matrix of T j , Dj is the degree matrix of Aj , and I
is an identity matrix. In addition, ReLU(·) is a rectified linear unit activation
function, and Dropout(·) is a dropout layer.

Based on the output of the last layer of GCN (i.e., Hj), we anchor the second-
level node representation that denotes the movie title of EMi as the tree-based
multi-modal fusion embedding of EMi, i.e., Xi

E = Anchor(Hj).

4.4 Embedding Aggregation

During the production of a film, the director plays an important role, and
the famous ones are more likely to have high-quality movies, compared with
new directors. In addition, the movie title usually contains valuable information
about the movie theme. Therefore, the director-movie bipartite graph [24] with
abundant interactive information is employed to further enhance movie repre-
sentations. Specifically, the final representation of the movie EMi is obtained by
combining the embeddings of all aspects (i.e., XM

i and XE
i ) of EMi with the

embedding of the title and director (i.e., Xi
K) through a sum aggregator, which

preserves the importance of each embedding and enables efficient computation:

˜EMi = Xi
M + Xi

E + Xi
K , Xi

K = Anchor(F̃ j) + qj , (10)

where qj ∈ R
1×dF indicates the director embedding of movie EMi and it is a

learnable vector. Anchor(F̃ j) is the title embedding of movie EMi, which is
anchored in F̃ j . ˜EMi ∈ R

1×dF is the final representation of the movie EMi.

4.5 Training

During the training of the proposed model, each movie rating Rti can be cate-
gorized into one of the set C = {c1, c2, · · · , ck}, where k represents the number
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of categories. Specifically, for each movie EMi = (Attri, T
j), we feed the final

embedding ˜EMi of EMi into a classifier. The outputs of this classifier are then
fed into a softmax function to obtain the prediction probability for each category.
The process is defined as:

Pi = Softmax( ˜EMi · Wc + b), (11)

where Wc ∈ R
dF ×k is the weight matrix of the classifier and b is the bias,

Softmax(·) is a softmax function, and Pi is a vector that contains the probability
of the movie EMi belongs to each category in C.

The cross-entropy loss function between the predicted probability distribu-
tion and the true category labels is used as the loss function,

Loss = − 1
m

⎡

⎣
m∑

i=1

k∑

j=1

(ai
j · log(Pij))

⎤

⎦ − λ · ||W ||22, (12)

where m is the number of movies in dataset Ω, k is the number of categories, i.e.,
k = |C|, Pij denotes the probability of i-th movie belonging to the j-th category
cj . Additionally, as regards ai

j , if EMi really belongs to the j-th category cj ,
then ai

j = 1, otherwise ai
j = 0, and λ ∈ R is a hyper-parameter that controls the

L2 regularization on weights W in the proposed model.

5 Experiments

5.1 Dataset and Metrics

Dataset. We collect a multi-modal movie benchmark namely MMMD, which
consists of three different modalities (i.e., text, images, and videos), from
Douban3. In MMMD, there are various types of information, including direc-
tors, storylines, posters, trailers, etc. In detail, MMMD has 2053 movies and 120
directors from different countries. The statistics of the benchmark are presented
in Table 1.

Table 1. The statistics of the benchmark MMMD

Director Location Directors Movies Text Images Videos

China 45 811 12165 7102 679

Hollywood 34 608 9120 5542 658

Korea 21 191 2865 1719 203

Japan 20 433 6495 3850 260

Total number 120 2053 30795 18213 1800

3 https://movie.douban.com.

https://movie.douban.com
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Metrics. The average percentage hit rate (APHR) has been widely used in exist-
ing work [9,14,21,26]. In this paper, we adopt the absolute accuracy (Bingo) and
the relative accuracy (1-Away) as evaluation metrics, where Bingo considers the
classification of correct classes, and 1-Away calculates the classification results
of true classes adjacent to the predicted classes.

APHRBingo =
1
n

k∑

i=1

ri, APHR1−Away =
1
n

k∑

i=1

(ri + ri−1 + ri+1) , (13)

where n is the number of samples, k is the number of categories, and ri is the
number of samples correctly categorized as category ci. Notably, r0 = rk+1 = 0.

5.2 Baselines and Experimental Settings

Baselines. The representative models for MBOP are used as baselines due to
the MAMRP task is relatively novel. In addition, the methods that leverage
multi-modal information for classification in other domains are also compared
here. For simplicity, our proposed model is notated by MAMRP.

MLP [21] has two hidden layers, consisting of 18 and 16 processing elements
respectively, with sigmoid transfer functions.

MLBP [25] is a multi-input and multi-output back propagation (BP) neural
network with two hidden layers using sigmoid transfer functions.

NN [20] is a BP neural network with a single hidden layer of 25 nodes.
DNN [26] is a multi-modal deep neural network network. The movie poster

content and other selected movie-related data are used as input.
SFM [14] is a stacking model, which stacks multiple methods and considers

the secondary training, and the outputs of primary approaches (i.e., XGBoost,
RF, and LightGBM) are combined as new features and then fed into the sec-
ondary learner (i.e., KNN) to obtain the final output.

MMIN [4] is a concatenation layer of the multi-modal features in a modu-
lation classifier. We compare with it in terms of handling multi-modal data.

MMFF [13] is a model that concatenates the fused multi-modal features
which are obtained by a deep autoencoder and the original modal features as
final joint features.

Experimental Settings. The parameter settings of our experiments are
detailed as follows. Specifically, the batch size is fixed at 4. The dimension of
the output feature of transformer-based models is set to dFV = 768, and the
dimensions of XM

i , XE
i , and XK

i are set to dF = 64. For baselines of process-
ing non-multimodal data, the dimension of embedding is reduced to 64 through
principal component analysis. Other baselines utilize a linear layer for dimen-
sionality reduction. We concatenate all attribute embeddings of each movie as
input for baselines. The learning rate (i.e., γ) is 0.005, the number of GCN lay-
ers is set to Gly = 3, and the dropout is set to dp = 0.1. The coefficient of L2

normalization is set to λ = 5 × 10−4. In addition, we randomly split the dataset
MMMD into training set, validation set, and testing set with a ratio of 8 : 1 : 1.
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The category number of the classifier is set to 6. The details of categories are
presented in Table 2 and the rating ranges ensure that the number of samples
per category is approximately balanced, inspired by [26].

Table 2. Details of each category

Category c1 c2 c3 c4 c5 c6

Rt Range [0, 6.4] [6.5, 7.0] [7.1, 7.4] [7.5, 7.8] [7.9, 8.3] [8.4, 10]

5.3 Performance Comparison

This subsection illustrates the performances of different methods on the real-
world dataset MMMD and the results are reported in Table 3. Note that the
method with ++ indicates that multi-modal information is concatenated as
input to this method. MAMRPte indicates that MAMRP only adopts the text
modal, and MAMRPte&im adopts both text and image modalities.

Table 3. Overall performance of different methods. The best performance is high-
lighted in bold and the second is highlighted by underlines. The metric 1-Away reports
the 1-Away accuracy corresponding to Bingo, and 1-Away(best) is the best 1-Away
accuracy. Improvement indicates the relative improvement of MAMRP compared to
the best baseline in percentage.

Category Model Bingo 1-Away 1-Away(best)

Textual models MLP 0.2544 0.5266 0.5917

MBLP 0.2485 0.5148 0.5859

NN 0.2603 0.5031 0.6154

XGBoost 0.2604 0.6923 0.6923

LightGBM 0.2663 0.6449 0.6449

SFM 0.2841 0.6095 0.6095

Multi-modal models DNN 0.2371 0.6343 0.6343

MBLP++ 0.2368 0.6332 0.6332

SFM++ 0.2663 0.5917 0.5917

MMIN 0.2959 0.5968 0.6274

MMFF 0.2964 0.6235 0.6396

Ours MAMRPte 0.3491 0.6331 0.6746

MAMRPte&im 0.3668 0.6036 0.7014

MAMRP 0.3669 0.6982 0.7515

Improvement 23.79% 0.85% 8.55%

Based on the results in Table 3, we have the following observations:
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• The proposed model MAMRP significantly performs better than all base-
lines. Specifically, MAMRP improves relatively over the strongest baselines
in terms of Bingo, 1-Away, and 1-Away(best) by 23.79%, 0.85%, and 8.55%,
respectively. This demonstrates that the proposed model is well designed for
the movie rating prediction task by more fully exploiting multi-modal infor-
mation. The excellent performance is primarily because of the fact that the
weight-based fusion module has considered the different importance of movie
attributes to effectively fuse multi-modal information, and the multi-modal
trees are utilized to capture hidden relationships between movies to enhance
movie representations.

• In the representative baselines utilizing textual information, SFM performs
best from the perspective of Bingo. This is because SFM considers secondary
training and multi-model fusion. As the primary learners of SFM, XGBoost
and LightGBM achieve well performance across metrics and outperform other
baselines, particularly in terms of 1-Away. This demonstrates that robust
ensemble models have certain advantages in handling the movie rating pre-
diction task. Additionally, the simple network structure results in the lagging
performance of other methods (i.e., MLP, MBLP, and NN).

• Among the models that make use of multi-modal information, MBLP++
and SFM++ encounter performance degradation compared to their original
ones. The important reason is that these models cannot handle multi-modal
attributes (e.g., images and videos). In contrast, MMFF, which well encodes
the multi-modal data, achieves the best Bingo in baselines. MMIN lags behind
MMFF due to the fact that multi-modal information is fused through sim-
ple concatenation. It is clear from these results that better performance is
obtained if multi-modal data is fully utilized.

• In addition, MAMRPte also has advantages over baselines adopting multi-
modal information on Bingo, demonstrating that the proposed model is effec-
tive enough. At the same time, it can be observed that the performance of
MAMRP improves steadily with the increase of modality, which indicates
that the multi-modal information provides significant benefits.

5.4 Ablation Studies

In this subsection, the effectiveness of each module in the proposed model is
verified by comparing the original model with models without different modules.
For MAMRP, we have four variants: the first one is MAMRP w/o. FC, which
does not consider the linear projection (i.e., Eq. (7)) for initial multi-modal tree
embedding before performing graph convolution operations. The second one is
named as MAMRP w/o. GCN, which discards the leverage of multi-modal
trees which can capture latent relationships between movies, i.e., Xi

E is deleted
in Eq. (10). The third is MAMRP w/o. Modal, which discards the weight-
based multi-modal fusion information, i.e., Xi

M is deleted in Eq. (10). The
fourth is MAMRP w/o. Agg, which discards the embedding aggregation to
movies’ director and title, i.e., Xi

K is deleted in Eq. (10). Table 4 summarizes
the performance of different variants, from which we have following observations.
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• Even discarding different modules, our method still achieves superior results
on Bingo relative to the best baseline (c.f. Table 3). Furthermore, MAMRP
w/o. FC and MAMRP w/o. Modal also perform well on 1-Away. This verifies
the flexibility and stability of our model.

• MAMRP w/o. FC improves by 0.12% compared to MAMRP on Bingo but
encounters a more significant decline of 1-Away, indicating that performing
linear projection on node representations of trees can enhance the improve-
ment of 1-Away. The role of linear projection is to map each modal feature
into a unified dense space to reduce the difference between modalities. From
a comprehensive perspective, this operation is still necessary.

• The performance of MAMRP w/o. GCN, MAMRP w/o. Modal, and MAMRP
w/o. Agg are all hampered by about 2.5% relative to MAMRP on Bingo,
and MAMRP w/o. Agg drops the most. This suggests that these three cor-
responding modules are critical to the proposed model. GCN mines latent
hierarchical dependencies and complex correlations between movies, which
is productive in obtaining excellent representations. Employing the weight-
based fusion module to fuse the multi-modal information of movies can sup-
plement some beneficial information lost by GCN. The role of the embedding
aggregation is to employ the director-movie bipartite graph to enhance movie
representations and preserve the importance of each embedding.

Table 4. Ablation experiments on different variants

Model Bingo 1-Away 1-Away(best)

MAMRP w/o. FC 0.3787 0.6449 0.7041

MAMRP w/o. GCN 0.3432 0.6154 0.6627

MAMRP w/o. Modal 0.3431 0.6153 0.7106

MAMRP w/o. Agg 0.3314 0.5799 0.6272

MAMRP 0.3669 0.6982 0.7515

5.5 Parameter Studies

In this subsection, extensive experiments are conducted to investigate the effects
of parameters on the performance of the proposed model. We first explore the
impacts of learning rate (i.e., γ) and L2 regularization coefficient (i.e., λ) on
MAMRP because they are important for the training. In addition, we discuss
how the number of GCN layers (i.e., Gly) affects the model performance because
Gly controls the degree of multi-modal information aggregation.

• γ: We summarize the accuracy produced by different learning rate which
varies from 0.002 to 0.007 at an increment of 0.001, as shown in Fig. 3(a).
The performance first grows as γ becomes larger, indicating that the model
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converges better to the global optimum. However, it begins to deteriorate
when γ continues to increase because the optimum is missed inevitably. A
learning rate around 0.005 provides optimal performance for the proposed
model. Overall, there are no apparent sharp rises and falls, indicating that
our model is not sensitive to the selection of γ.

• λ: Fig. 3(b) displays the accuracy produced by different λ. The parame-
ter varies from the magnitude of 10−1 to the magnitude of 10−6, that is,
the abscissa x in Fig. 3(b) corresponds to λ = 5 × 10−x. Observed from
Fig. 3(b), our model gains significant improvement between λ = 5×10−1 and
λ = 5 × 10−4, which validates the rationality of utilizing regularization and
that setting a large λ tends to overfitting. Subsequently, the performance of
MAMRP plateaus because the robustness of MAMRP achieves its optimum
at this magnitude of λ.

• Gly : To investigate the effect of multiple graph convolution layers, we search
the number of layers Gly in the set {0, 1, 2, 3, 4, 5} and report results in
Fig. 3(c). We can observe that when Gly increases from 0 to 1, the performance
increases significantly, indicating that the relationships between movies can
effectively boost the movie rating prediction task. In addition, higher accu-
racy can be obtained when the three-layer GCN is employed. The primary
reason is that a high number of GCN layers leads to poorly differentiate infor-
mation between movie nodes, while a low number of GCN layers results in
the insufficient fusion of information.

Fig. 3. Performance comparison of γ, λ, and Gly

6 Conclusion and Future Work

In this paper, we propose and formulate a novel task named multi-modal data
aware movie rating prediction (MAMRP), which aims to predict the ratings of
emerging movies based on movie-related attributes. To address the task effec-
tively, we design a novel model. Specifically, we employ transformer-based pre-
trained models for feature extraction and design two fusion modules to fuse
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multi-modal information based on hierarchical dependencies and correlations
between movie attributes. In addition, embedding aggregation is adopted to
achieve excellent movie representations at the end. Furthermore, we collect a
benchmark called MMMD with abundant multi-modal information, which can
facilitate future research in this field. The experimental results demonstrate the
higher performance of the proposed model compared with existing methods. In
the future, we will consider more movie-related information and investigate more
excellent multi-modal fusion strategies.
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Abstract. Movie Genre Classification (MGC) is a classic multi-label
task that aims to classify movies into different genres. Existing studies
have proposed many approaches for this task based on multi-modal data
(e.g., synopsis, posters, and trailer). Despite the significant contributions
made by them, they usually fuse multi-modal information based on sim-
ple operations, e.g., concatenation or weighted sum, failing to effectively
capture the interactive information between multi-modal data. In addi-
tion, movies with significant overlap in directors and actors tend to own
the same genres. This information could potentially improve the per-
formance of MGC, which has been ignored by previous studies. Having
observed the shortcomings of existing work, we propose a Multi-modal
data Fusion Model for MGC (MFMGC), including two modules: Multi-
modal Data Fusion (MDF) and Movie Graph Representation Learning
(MGRL). In MDF, we carefully design the fusion layer based on the
attention mechanism to effectively capture the modalities’ interactive
information. In MGRL, we construct a movie graph to extract the struc-
tural information between movies. Specifically, the graph is constructed
based on the overlap of movies’ directors, screenwriters, and actors, and
each node in the graph has multi-modal attributes. The experiments
conducted on datasets Moviescope and MovieBricks demonstrate the
superiority of the proposed model MFMGC over the state-of-the-art
approaches.

Keywords: Movie genre classification · Multi-modal movie graph ·
Movie representation learning

1 Introduction

Over the past decade, the streaming media services have experienced unprece-
dented growth. Recommending specialized types of content for customers has
become an indispensable ability for streaming sites, which is why automatic
labeling has attracted increasing attention in recent advances. Especially, the
task of Movie Genre Classification (MGC), which is an important branch of
automatic labeling and has a wide range of applications (e.g., organizing user
videos from social media sites, correcting mislabeled videos, and recommending
specific types of films for users), has been paid significant efforts by existing work.
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Specifically, the task aims to classify movies into different genres and is suffer-
ing from new challenges, due to the emerging of more and more movie-related
multi-modal information, and the diverse demands of consumers.

Despite the significant contributions on multi-modal data-based MGC made
by existing work [1,6,14,25], they usually fuse the features of different modal-
ities via concatenation [4,27] or weighted sum [1,8,25], failing to capture the
semantic information contained by multi-modal data effectively. Additionally,
the existing studies ignore the movies’ metadata (e.g., directors and actors) that
is of critical importance to a high performance MGC method. By way of illus-
tration, given a movie and its sequels, they usually share the same directors or
main actors and are more likely to have the same genres, compared with other
different movies. This information can be effectively exploited by constructing
a movie graph and extracting structural features from it. In a nutshell, there
remains great scope for further improving the performance of existing MGC
approaches due to the following problems: Problem 1) the multi-modal fusion
strategies of existing studies cannot effectively explore the semantic information
of multi-modal data; Problem 2) the movies’ metadata, which involves abundant
structural information, has been ignored by existing work.

Having observed the limitations of above-mentioned studies, we propose a
novel model namely MFMGC1 that is composed of two modules: MDF (Multi-
modal Data Fusion) and MGRL (Movie Graph Representation Learning). In
detail, the module MDF is designed to address Problem 1). Different from most
existing studies that rely on late fusion strategies, MDF utilizes the attention
mechanism to fuse multi-modal data during the feature extraction process. To be
specific, there are two main attention layers in MDF, which are used for exploring
the semantic features contained by movie-related multi-modal data. Inspired by
VLBert [22], which takes the embeddings of both words in a sentence and region-
of-interest (RoI) from images as inputs and utilizes the Transformer encoder to
model dependencies among all the input elements, the first attention layer feeds
the text and video frames into the Transformer encoder for text-video feature
extraction. Then, the second modal attention layer is designed to fuse features
of different modalities. In addition, the module MGRL is developed to tackle
Problem 2). A movie graph is constructed based on the overlap of directors,
screenwriters, and actors. Each movie is represented as a node in the graph and
has multi-modal representations, which are obtained by fusing the movie-related
multi-modal attributes with the module MDF. Next, a Graph Convolutional Net-
work (GCN)-based architecture is applied to capture the structural information
between movie nodes. Ultimately, a classification layer is employed to predict
the genres of movies.

To fully evaluate the effectiveness of our proposed model MFMGC, the
extensive experiments on real-world datasets are very essential. However, most
of datasets used in previous studies are either not publicly available or have
incomplete data [5,18]. Consequently, apart from the open dataset Moviescope
[8], we construct a new multi-modal movie dataset called MovieBricks1 from

1 Code and data are available at https://anonymous.4open.science/r/mgc.

https://anonymous.4open.science/r/mgc
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Douban, which is the most active online movie database and review platform in
China. Specifically, the dataset MovieBrick contains 4063 European and Amer-
ican movies released from 2000 to 2019.

The contributions of this paper are summarized as follows:

– We propose a novel model MFMGC to further improve the performance of
existing work on the task MGC, by fully exploring the semantic features
involved in movie-related multi-modal data and the structure information
between movies.

– Two modules are developed in MFMGC, i.e., MDF and MGRL. The module
MDF is designed to tackle Problem 1), by capturing the interactive informa-
tion between different modalities with novel fusion layers. The module MGRL
is developed to address Problem 2), by extracting structure information from
the movie graph that is constructed based on the overlap of movies’ directors,
screenwriters, and actors.

– We conduct extensive experiments on two real-world datasets, i.e., Movi-
escope and MovieBricks. Particularly, MovieBricks is the first multi-modal
movie dataset in China, comprising over 4000 movies with four different
modalities, including synopsis, poster, trailer, and metadata. The results
demonstrate the superior performance of the proposed model MFMGC com-
pared with the state-of-the-art methods.

The rest of the paper is organized as follows. The related work is presented in
Sect. 2 and the task MGC is formulated in Sect. 3. The proposed model MFMGC
is introduced in Sect. 4. We report the experimental results in Sect. 5, which is
followed by the conclusion in Sect. 6.

2 Related Work

2.1 Research on Movies

Due to its rich storytelling and high-quality footage, the movies have become a
valuable resource for researchers. Current studies on movies can be categorized
into three directions: analyzing the content of movies, examining the impact of
movies, and studying the characteristics of movies. Researches on movie content
mainly use movie trailers as video data, e.g., scene boundary detection [9,20],
which aims to divide a video into easily interpretable parts to communicate
a storyline effectively, and action recognition [21,26] which utilizes the video
scripts that exist for thousands of movies to automatically extract and track
faces together with corresponding motion features. Studies on movie influence
include movie box office prediction [16,28] and movie review analysis [13,23].
The movie box office prediction before its theatrical release can decrease its
financial risk, and movie review analysis is a task of Natural Language Process-
ing, which is able to obtain the emotional or semantic information of the movie’s
review. In addition, the studies on movie characteristics include understanding
the relationships of movie characters [3,15], which aims to weigh the importance
of character in defining a story, and movie genre classification [1,4,7,8,18,25].
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2.2 Movie Genre Classification

To better contextualize our study, we review existing work focusing on multi-
modal data, with particular emphasis on fusion strategies, and introduce them
in a chronological order.

Wehrmann et al. [25] propose a novel deep neural architecture called CTT-
MMC for multi-label movie-trailer genre classification. The authors utilize both
video and audio data, and the fusion strategy involves a Maxout layer before
the class prediction, which can be interpreted as a late fusion strategy. John et
al. [1] propose a novel model for multi-modal learning based on gated neural
networks for MGC. They utilize the plot and poster data for the classification
task. The gated mechanism is used to obtain the weights of different modalities
and then weight sums them for the final classification. The model is also utilized
in other work such as [7]. Cascante et al. [8] compare the effectiveness of visual,
audio, text, and metadata-based features in predicting movie genres. They utilize
trainable parameters to sum different features of multi-modal data. Behrouzi et
al. [4] design a new structure based on Gated Recurrent Unit (GRU) to extract
spatial-temporal features from the movie-related data. The authors concatenate
the video and audio features to predict the final genres of movies. Mangolin et
al. [18] extract features by computing different kinds of descriptors, and then
combine classifiers through the calculation of predicted score for each class, and
they propose three rules for fusion, i.e., Sum, Prod, and Max.

In summary, current research on MGC with multi-modal data mainly utilizes
late fusion strategies, such as concatenation and weighted sum, failing to cap-
ture the interaction between different modalities, and they ignore the structural
information contained by metadata. To further improve the performance of their
designed methods, we propose the novel model MFMGC in this study.

3 Problem Formulation

Given a set of movies {M1, · · · ,MN}, each movie Mi is associated with multi-
modal attributes and metadata, i.e., Mi = {M t

i ,M
p
i ,Mv

i ,Ma
i ,Mm

i }. Detailedly,
M t

i denotes the textual data consisting of the movie’s title and synopsis, Mp
i

represents the movie’s poster, Mv
i denotes the visual data that is a sequence of

frame-level patches in the trailer, Ma
i represents the audio fragments extracted

from the trailer, and Mm
i is the metadata of the movie. Moreover, C =

{c1, · · · , cL} is the genre set, where L is the number of movie genres.
Intuitively, movies with a significant overlap of directors, screenwriters, and

actors may belong to the same genre, and a corresponding example is presented
in Fig. 1. To capture such information effectively, we construct a multi-modal
movie graph. Specifically, the graph is denoted as G = {V,E}, where V is the
set of movie nodes, i.e., V = {M1, · · · ,MN}, and E is the set of connections
between each pair of movie nodes. Additionally, we design an adjacency matrix
A for the edge set E, where Aij represents whether there is an edge between
Mi and Mj . Given a threshold T , if the overlap of directors, screenwriters, and
actors between Mi and Mj exceeds T , Aij is set to 1. Otherwise, Aij is set to 0.
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Fig. 1. A multi-modal movie graph, where each node has four multi-modal attributes,
i.e., text, poster, video, and audio. Different movie nodes are connected according to
the overlap of their directors, screenwriters, and actors.

Definition 1 Movie Genre Classification (MGC). Given a movie Mi from
the dataset {M1, · · · ,MN} and a genre set C, the task of MGC aims to learn a
function Φ to predict the genres of movie Mi based on M t

i , Mp
i , Mv

i , Ma
i , and

Mm
i . This process is formulated as follows:

Pi = Φ(M t
i ,M

p
i ,Mv

i ,Ma
i ,Mm

i ), (1)

where Pi = {cx, · · · , cy} is the set of genres assigned to the movie Mi and each
genre in {cx, · · · , cy} is from C.

Note that MGC is a multi-label classification task [27] and each movie may
belong to multiple genres at the same time. For instance, the movie “X-Men:
The Last Stand” has multiple genres, i.e., Action, Horror, and Sci-Fic.

4 Proposed Model

4.1 Overview

To effectively utilize the multi-modal data of movies to conduct MGC, we pro-
pose a novel model namely MFMGC. Observed from Fig. 2, the model contains
two modules, i.e., Multi-modal Data Fusion (MDF) and Movie Graph Represen-
tation Learning (MGRL), and the details of them are as follows.

To feed the movie data into the module MDF, we first segment the audio and
frame the video into patches at the frame level, and then use different pre-trained
models to embed the text, posters, video frames, and audio segments. Next, these
embeddings are fed into MDF, which consists of two stages. Specifically, in the
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Fig. 2. Overview of the proposed model MFMGC

first stage, feature pre-extraction is performed. For the embeddings of text and
video frames, we take them as input and utilize the Transformer encoder as the
backbone to fuse text and video modalities, inspired by VLBert [22] that feeds
both words in the sentence and region-of-interest (RoI) from the image into
the Transformer encoder. For the posters and audio data, we separately design
multi-layer perceptron (MLP) layers to perform the feature pre-extraction. In
the second stage, we adopt a modal-attention layer to fuse extracted features,
ensuring that the multi-modal data could be effectively integrated, resulting in
a comprehensive representation of each movie. In MGRL, we deploy a GCN-
based architecture to fine-tune the movie representations obtained from MDF
and extract structural information between movie nodes.

4.2 Multi-modal Data Embedding

This section details the embedding process of the synopsis, poster, trailer, and
audio data. We introduce how to transform these data into a suitable format
and then feed the module MDF for feature pre-extraction and fusion.

Text Embedding. We utilize a Transformer Encoder structure to extract text
features, where the text data is embedded by the Bert Embedding [12] module.
Specifically, given the textual data M t

i of the movie Mi, M t
i contains a token
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sequence, which is denoted as {w1, w2, · · · , wl} and l is the number of tokens
in M t

i . The pre-trained BertEmbedding module is used to obtain the token
sequence’s embedding and the process is formally defined as:

Et
i = BertEmbed(M t

i ), (2)

where BertEmbed(·) is the Bert Embedding module and Et
i ∈ R

l×ht

is the
embedding of M t

i .

Video Embedding. To obtain valuable information from the video data of
the movie, we first extract frames at a rate of one frame per second (FPS). The
extracted frames are then processed to obtain high-level dimensional features
based on the Swin Transformer. Specifically, the visual data Mv

i of movie Mi

consists of p video frames, and we use the following method to embed it:

Ev
i = SwinSmall(Mv

i ), (3)

where SwinSmall(·) is one of Swin Transformer model [17], Ev
i ∈ R

p×hv

is the
embedding of video frames of the i-th movie, and each frame is embedded to a
vector with the dimension of hv.

Poster Embedding. In addition to video data, posters are also important
visual data for movies, containing rich information about the movie’s genre to
attract audiences with specific preferences. We feed the poster into the Swin
Transformer to obtain its embedding and the process can be formally defined as:

Ep
i = SwinSmall(Mp

i ), (4)

where Mp
i is the poster data, and Ep

i ∈ R
hv

is the poster embedding of the i-th
movie.

Audio Embedding. Apart from the above-mentioned information, we also
extract features from audio, since different genres of movies usually have different
types of soundtracks. For instance, while both Comedy and Action genres may
have visually bright scenes, the background music of Comedy movies tends to
have a more cheerful instead of intense rhythm. To capture latent features from
the audio, we learn corresponding embeddings according to Wav2Vec2 [2]. The
audio data is denoted as Ma

i = {o1, o2, · · · , ou}, where oj is the j-th fragment
of the given audio, with a sample rate of 16000, and each fragment is a 3-second
audio signal. Note that we adopt a mean pooling operation to obtain the audio
embedding from the embeddings of fragments, and the process is as follows:

Ea
i = MP (Wav2V ec2(Ma

i )), (5)

where Wav2V ec2(·) is a Wav2Vec2 layer, MP (·) is the mean pooling operation,
and Ea

i ∈ R
ha

is the audio embedding of the i-th movie.
Ultimately, the embedding of the i-th movie’s multi-modal data can be rep-

resented as Ei = {Et
i , E

v
i , Ep

i , Ea
i }, which is then fed into the module MDF.
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4.3 Multi-modal Data Fusion - MDF

The attention mechanism in Transformer has been proven powerful and flexible
to differentially weigh the significance of each part of the input data. In MDF,
we utilize this mechanism to fuse multi-modal embeddings, which involve two
stages. In the first stage, the Transformer Encoder and MLP are used to extract
latent features from different input embeddings. In the second stage, we adopt
a modal-attention layer to fuse the features extracted at the first stage.

Feature Extraction of MDF. The Transformer Encoder is particularly effec-
tive in extracting sequential features, making it suitable for processing text and
video frames. Specifically, in MDF, we first concatenate the embeddings of text
and video frames as Etv

i = Et
i‖Ev

i , where ‖ denotes the concatenation opera-
tion, and Etv

i ∈ R
(l+p)×ht

. Then, the concatenated embedding Etv
i is fed into the

fusion module, which consists of a Transformer encoder [24] and a Mean pooling
layer. The calculation process is formulated as follows:

Otv
i = MP (TransEncoder(Etv

i )), (6)

where TransEncoder(·) denotes Transformer Encoder.
For poster and audio embeddings, we employ two multi-layer perceptron

(MLP) layers to extract their features respectively. The MLP layer consists of
two fully connected layers with a ReLU activation function in the middle. The
process can be formulated as follows:

Op
i = ReLU(Ep

i W p
1 + bp1)W

p
2 + bp2, (7)

Oa
i = ReLU(Ea

i W a
1 + ba1)W

a
2 + ba2 , (8)

where E
p/a
i denotes the embedding of posters or audio, W

p/a
1 and W

p/a
2 are the

weight matrices of the two fully connected layers, b
p/a
1 and b

p/a
2 are biases, and

ReLU(·) is the Rectified Linear Unit activation function. After the features are
extracted, the set of representations Oi = {Otv

i , Op
i , O

a
i } is obtained.

Modal-Attention Layer of MDF. Following the feature extraction, we apply
modal attention to fuse the features of different modalities. Specifically, the
feature of text-video Otv

i is first transformed into a new vector Õtv
i that has the

same dimension with the poster and audio embeddings, through a Linear layer.
Then the multi-modal input features are first concatenated to obtain Ôi ∈ R

m×h,
where m is the number of features in Oi. Next, the query matrix Qi = ÔiWq is
obtained through the projection matrix Wq, while the key matrix Ki and value
matrix Vi are obtained using Wk and Wv, respectively. The scaled dot product
function is used as the attention function, and the inter-modal attention matrix
Pi is obtained with following method,

Pi = softmax(
QiK

T
i√

h
), (9)
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where Pi ∈ R
m×m and each element Pi,xy of the matrix represents the inter-

modal attention between the x-th and y-th modality of the i-th movie Mi. Then,
the multi-modal representation of Mi, which is denoted as Fi, is obtained through
attention aggregation and the map function V. Additionally, a residual connec-
tion is added to avoid the problem of vanishing gradients during training, and
the process can be represented as follows:

Fi = V(PiVi + Oi), (10)

where V(·) denotes the vectorization by row-wise concatenation, and Fi ∈
R

1×mh. Finally, we obtain F = {F1, F2, · · · , FN}, which contains the multi-
modal representations of all movies in the given dataset.

4.4 Movie Graph Representation Learning - MGRL

To fully explore the structural and semantic information of movies in a unified
manner, we construct a multi-modal movie graph based on movies’ directors,
screenwriters, and actors. Here, the movie nodes have fused representations that
are obtained in MDF based on movie-related multi-modal attributes, i.e., syn-
opsis, poster, and trailer. To effectively extract structural information from the
graph, we adopt a two-layer GCN to fine-tune the movie representations and the
process is as follows:

H = GCN(F , A) = ReLU(ÃReLU(ÃFW 0)W 1), (11)

where H = {H1,H2, · · · ,HN} denotes the new set of movie representations,
Hi(1 ≤ i ≤ N) is the fine-tuned embedding of movie Mi. A is the adjacency
matrix of the movie graph and Ã = D̃− 1

2 (A+IN )D̃− 1
2 . IN is the identity matrix

with size N × N , where N denotes the number of movies in the graph. D̃ is the
diagonal degree matrix of Ã, which is defined as D̃ii =

∑N
j=1 Ãij . W 0 and W 1

are learnable parameters.

4.5 Classification Layer

Ultimately, to tackle the task of MGC, we use a linear projection followed by a
sigmoid function to predict the movie’s genre. This can be formally defined as:

S1/S2 = Sigmoid(Linear(F/H)), (12)

where Sigmoid(·) is the activation function that is used to squash the output
vector values to range [0, 1], which can be interpreted as the vector of genre
probability. Note that, as there has been no work constructed above-mentioned
movie graph, to give a more fair comparison, the input of the classification layer
can be either F or H. Consequently, the output can be either S1 or S2. Taking
S1 = {S1, S2, · · · , SN} as an example, Si ∈ S1 is the genre probability vector
of the i-th movie Mi, which is denoted as Si = {si1, · · · , siL}. Here, sij ∈ Si

represents the probability that Mi belongs to the j-th genre, and L is the number
of genres.
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4.6 Training

The model is optimized by Binary Cross-Entropy Loss (BCELoss). The labels
of movies are first embedded and denoted as C = {C1, C2, · · · , CN}. For the i-th
movie, the genres set is Ci = {ci1, ci2, · · · , ciL}, where cij ∈ {0, 1}, and cij = 1
indicates that the i-th movie belongs to the j-th genre. The formulation for the
loss function is as follows:

L = BCELoss(C,S)

= − 1
L

N∑

i=1

L∑

j=1

(cij log(sij) + (1 − cij) log(1 − sij)),
(13)

where N is the number of movies.
In addition, when adding the module MGRL, we adopt a joint loss function

to guide the optimization of both MDF and MGRL:

L = BCELoss(C,S1) + BCELoss(C,S2). (14)

5 Experiments

5.1 Dataset

Most of the datasets used in current research are either not open or the access
paths have expired, particularly for datasets that contain multiple data sources
such as synopses, posters, trailers, and metadata. We start with downloading
the dataset Moviescope, which contains movies’ synopsis, posters, and URLs of
trailers on YouTube, and then develop a Python crawler to obtain the trailers. To
enable a more comprehensive evaluation of our model, we create a new dataset
from Douban, the most active online movie review and dataset platform in China.
The details of the two datasets are as follows.

The dataset Moviescope, all data sources of which are available, contains
4076 movies with 13 different genres. Additionally, the dataset MovieBricks has
4063 movies with 10 different genres, namely Action, Thriller, Adventure, Story,
Science-Fiction, Love, Fantasy, Comedy, Terror and Crime. Both two datasets
are divided into training, validation, and testing sets in a 7:1:2 ratio. Note that
a movie may belong to multiple genres at the same time.

5.2 Comparison Method

To validate the effectiveness of MFMGC, we compare its performance with those
of several state-of-the-art approaches that are introduced as follows.

• GMU [1]. This work develops a model for multi-modal learning based on
gated neural networks, which is evaluated on a multi-label scenario for MGC
using synopses and posters.
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• Fast-MA [8]. This work designs a temporal feature aggregator to embed
video and text, and compares the effectiveness of visual, textual-based meth-
ods on MGC, and it is denoted as Fast Modal Attention (Fast-MA).

• DL-PO [19]. This work proposes a simple deep-learning model to predict the
genres of a movie with overview and poster. We refer to it as Deep Learning
for Posters and Overviews (DL-PO).

• CMM [18]. This is a comprehensive study developed in terms of diversity
of multimedia sources of information to perform MGC. We refer to it as
Comprehensive Multi-modal Model (CMM).

• MGC-RNN [4]. This work proposes a new structure based on GRU to derive
spatial-temporal features of movie frames and then concatenates them with
the audio features to predict the final genres of the movie. We refer to it as
MGC-RNN.

5.3 Evaluation Metrics and Parameter Settings

Evaluation Metrics. AUC-ROC [11] is a well-known metric that measures the
area under the receiver operating characteristic (ROC) curve. This curve plots
the true positive rate against the false positive rate for each possible threshold
of the classifier’s output. However, relying on a single metric cannot provide a
comprehensive evaluation of a multi-label classifier. Therefore, we also calculate
the F1 score that has been widely used to evaluate the multi-label classifiers [1,4].
To globally evaluate the performance of different methods, we compute the micro
and macro averages of the F1 and AUC metrics. The micro-average calculates the
mean of scores without considering genres, while the macro-average computes
the score of each genre independently and takes their unweighted means.

Parameter Settings. As mentioned in Sect. 4.2, for the textual modality M t,
a fixed sequence length l = 256 is used. For the video modality Mv, we draw
p = 32 frames from the trailer, and for the audio modality Ma, the number of
audio segments is u = 16, and the hidden dimension h in our model is set to
256. To reduce the impact of random noise, all experiments are conducted using
the 5-fold cross-validation. The results reported are the average of 5 runs using
different data partitions. The pre-trained model “Roberta” [10] is utilized to
initialize the Transformer Encoder module. To maintain the learned knowledge
of pre-trained parameters, we split the learnable parameters into two parts: the
learning rate for pre-trained initialized parameters is set to 0.00005, while the
learning rate for randomly initialized parameters is 0.0005, and they are denoted
as “pre-lr” and “rand-lr” respectively.

5.4 Experiment Results

Experiments are done on a machine with 2 NVIDIA V100 GPUs. The perfor-
mances are presented in Table 1. As all baselines are designed without considering
movie graph, to provide a fair comparison, we present the results of our model’s



MFMGC 687

simplified version MFMGC-P that only utilize partial input data, i.e., synopsis,
poster, and trailer of movies. Moreover, MFMGC represents the model that con-
siders the movie’s metadata and multi-modal data along with the movie graph.
Note that, as the movies from Moviescope only contain few metadata, the movie

Table 1. Experimental results. The used information contains Text (T), Poster (P),
Audio (A), Video (V), and Movie Graph (G). Furthermore, “ma” and “mi” are used
to represent the macro and micro averages.

Model Modality Moviescope MovieBricks

ma-f1 mi-f1 ma-auc mi-auc ma-f1 mi-f1 ma-auc mi-auc

GMU T 0.5614 0.6158 0.8470 0.8646 0.5563 0.6126 0.8427 0.8657

P 0.4441 0.5203 0.7425 0.7943 0.4655 0.5371 0.7753 0.8115

TP 0.5821 0.6328 0.8560 0.8721 0.5947 0.6291 0.8590 0.8748

Fast-MA T 0.5588 0.6145 0.8459 0.8642 0.5499 0.6063 0.8381 0.8643

P 0.4102 0.5107 0.7265 0.7727 0.4002 0.5361 0.7339 0.7854

V 0.4786 0.5492 0.7727 0.8193 0.4832 0.5496 0.7778 0.8160

TPV 0.6203 0.6497 0.8762 8872 0.5749 0.6300 0.8625 0.8763

DL-PO T 0.5475 0.5964 0.8415 0.8569 0.5488 0.5945 0.8427 0.8600

P 0.4201 0.5034 0.7258 0.7809 0.4362 0.524 0.7481 0.7985

TP 0.5739 0.6251 0.8554 0.8775 0.5818 0.6401 0.8616 0.8857

CMM T 0.5564 0.6059 0.8416 0.8614 0.5525 0.6041 0.8534 0.8750

P 0.3548 0.5035 0.6700 0.7478 0.4507 0.5162 0.7113 0.7563

V 0.4845 0.5817 0.8135 0.8483 0.5219 0.5982 0.8267 0.8535

A 0.4960 0.5642 0.7985 0.8321 0.4959 0.5693 0.7959 0.8361

TPVA 0.5588 0.6439 0.8760 0.8916 0.5594 0.6424 0.8754 0.8945

MGC-RNN V 0.4760 0.5431 0.7666 0.8180 0.4693 0.5424 0.7531 0.8032

A 0.4957 0.5635 0.8007 0.8306 0.4858 0.5603 0.7897 0.8303

VA 0.5106 0.5719 0.7886 0.8491 0.5254 0.5981 0.8134 0.8480

MFMGC-P T 0.5937 0.6364 0.8483 0.8730 0.6531 0.6834 0.8714 0.8836

P 0.5241 0.5884 0.7895 0.8283 0.5564 0.6187 0.8256 0.8569

V 0.5412 0.5756 0.8605 0.8799 0.5125 0.5824 0.8157 0.8446

A 0.4695 0.5247 0.7919 0.8202 0.5072 0.5727 0.7977 0.8363

TP 0.6347 0.6750 0.8806 0.8976 0.6714 0.7110 0.8966 0.9135

TV 0.6436 0.6757 0.8801 0.8971 0.6653 0.6981 0.8850 0.8979

TA 0.6155 0.6659 0.8693 0.8925 0.6578 0.6970 0.8867 0.9015

PV 0.6054 0.6529 0.8590 0.8875 0.5740 0.6315 0.8355 0.8641

PA 0.5419 0.6048 0.8159 0.8535 0.5670 0.6345 0.8335 0.8657

VA 0.5522 0.5860 0.8670 0.8865 0.5889 0.6399 0.8672 0.8880

TPV 0.6533 0.6859 0.8905 0.9059 0.6843 0.7163 0.9024 0.9155

TPA 0.6421 0.6878 0.8871 0.9051 0.6765 0.7111 0.9080 0.9201

TVA 0.6514 0.6933 0.8836 0.9090 0.6702 0.7024 0.8978 0.9050

PVA 0.6210 0.6662 0.8648 0.8931 0.6038 0.6631 0.8662 0.8907

TPVA 0.6600 0.6947 0.8914 0.9065 0.6925 0.7248 0.9046 0.9165

MFMGC T+G – – – – 0.6582 0.6935 0.8857 0.9088



688 X. Yang et al.

graph cannot be constructed, thus MFMGC has no result on this dataset. In
addition, we only present the results of MFMGC on MovieBricks when utiliz-
ing text data and movie graph, due to the space limitation. More results of the
model from P+G, V+G, A+G to TPVA+G are presented on github1.

Main Results. Observed from Table 1, our proposed model MFMGC-P consis-
tently achieves better performance than baselines. Specifically, the “mi-f1” score
of it outperforms GMU by 11.6% on MovieBricks. Even only using poster or
video data, MFMGC-P still performs better than other methods, indicating its
powerful feature extraction capability. When all multi-modal attributes are taken
into account, MFMGC-P achieves higher improvements, which demonstrates the
effectiveness of the carefully designed fusion strategy based on attention mecha-
nism. Detailedly, the reasons for the above-mentioned observations are as follows:
1) MFMGC-P utilizes advanced pre-trained models to embed data, the param-
eters hold abundant knowledge, especially for text and images, which leads to
better representations than the traditional models such as Word2vec and VGG.
2) We fuse the multi-modal data via the attention mechanism that differentially
weighs the significance of each part of the input data, allowing MFMGC-P to
learn a comprehensive representation.

Modality Analysis. To fully investigate the impacts of different modalities on
the performance of the proposed model, we compare the results of MFMGC-P
when adding single, two, three, and all four modalities. Seen from Table 1, the
results of the second part (i.e., TP, TV, TA, PV, PA, and VA) of MFMGC-
P outperform those of single-modal data based experiments (i.e., T, P, V, and
A). Without surprise, when taking four modalities (i.e., TPVA) into account,
MFMGC-P achieves the best performance. These observations demonstrate the
effectiveness of the developed module in extracting multi-modal features. Addi-
tionally, the higher performance of MFMGC (i.e., T+G) than that of MFMGC-P
(i.e., T) demonstrates the significance of the construction of movie graph that
can be used to extract structural information between movies.

5.5 Parameter Analysis

To investigate the effect of different learning rates and compare the experi-
mental results with above-mentioned ones more intuitively, the performances
of MFMGC-P with varying “pre-lr” and “rand-lr” are reported in Fig. 3(a) and
Fig. 3(b). Observed from this, the evaluation metrics present a overall downward
trend, where the “ma-f1” score even drops by 21.4%. The reason for the decrease
is that setting a lower “pre-lr” can avoid forgetting the knowledge contained by
the pre-trained parameters. Additionally, given a too-large “rand-lr”, it will lead
to faster convergence but makes the model difficult to achieve the best result,
as the global optimum may be missed during the iteration.

Furthermore, we analyze the effect of the hidden dimension h, and the results
are reported in Fig. 3(c). While varying h from 64 to 512, we first observe the
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increase of evaluation metrics, then they present a decreasing tendency, and the
best performance is achieved when h = 256. Given a too small dimension, the
model cannot learn enough information, leading to under-fitting. Conversely,
when h is too large, it may introduce unexpected noisy information, resulting in
poor performance.

Fig. 3. Parameter analysis for “pre-lr”, “rand-lr”, and the hidden dimension h.

6 Conclusion

We propose MFMGC, which is a novel model for the task of MGC that utilizes
the movie’s synopsis, poster, trailer and metadata, and the model comprises two
modules: MDF and MGRL. MDF leverages the attention mechanism to cap-
ture the modalities’ interactive information effectively. In MGRL, we construct
a graph to capture the structural relationships between movies based on direc-
tors, screenwriters, and actors, where the node in the graph is a movie that has
multi-modal attributes and is first represented by MDF. Then a Graph Convo-
lutional Network (GCN)-based architecture is developed to extract structural
information between movie nodes. In addition, we also present a new multi-
modal movie dataset, i.e., MovieBricks. The experimental results on Moviescope
and MovieBricks demonstrate the superior performance of MFMGC.
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Abstract. In the era of short videos, the task of sensitive video detec-
tion faces new challenges with the increasing diversity and quantity of
videos in the network. Aiming at the problem that existing research
methods are constrained by missing video comments and user subjec-
tivity, a novel text enhancement method is proposed for sensitive video
detection. Firstly, based on the CLIP pre-training model, image caption
are generated for video frames. Then, through the integration of external
common sense knowledge, the method extracts deep contextual informa-
tion from the generated captions, including the underlying intentions and
purposes conveyed by the text. Besides, considering the complementarity
and redundancy between different sources of information, a multi-source
data collaborative encoding mechanism and a multi-modal feature fusion
mechanism are designed to achieve semantic feature alignment. Finally,
state-of-the-art was achieved on the two public datasets NPDI-800 and
Pornography-2k, and a large number of detailed comparison and ablation
experiments were performed to verify the effectiveness of the method.

Keywords: sensitive video detection · common sense knowledge ·
image caption

1 Introduction

Sensitive video detection is a challenging and socially concerned task that devotes
to enhance the ability to regulate Internet content and contribute to maintaining
a positive and healthy online environment. Besides, with the advent of the short
video era, various videos and playback media are flooding our lives. In such a
situation, the importance of filtering sensitive videos cannot be over-emphasized.

Most of the current sensitive video detection methods are CNN-based neural
network models, such as [32] who combined video frames with timing signals
and achieved good experimental results. However, most of the existing research
are from the perspective of comprehension-based models, which only utilize the
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Fig. 1. Examples about text augmentation.

natural image and audio information in dataset, with limited use of textual infor-
mation. Although [2] enriched the text features by processing the user comment
information of YOUTUBE dataset, there are still two serious limitation: First,
in the actual scenario, most of the videos do not contain text information such
as captions and comments. Second, there is a risk of fraudulent attacks. Since
information such as movie comments are written and submitted by users, they
can mislead the model and cause fraudulent attacks by swiping a large number
of comments that are opposite to the video attributes. In our previous work,
the above two problems were initially solved by using image caption genera-
tion techniques. However, the generated textual information is often excessively
objective and neutral, which make it challenging to apply directly and effectively
in sensitive video detection.

From the perspective of bionic, the reading behavior of adults not only
invokes the areas associated with language comprehension, which help them
extract the surface-level meaning of the words, but also the hippocampus and
other neurons that activate their accumulated common sense knowledge, allow-
ing them to uncover the deeper logic and metaphors conveyed by the text, such
as intention, purpose and possible impact. During this process, the critical role
of common sense knowledge refers to the general knowledge and understanding
of social life that can aid in the reasoning process. By leveraging this knowledge,
individuals can more accurately decipher the intention information behind the
text.

In Fig. 1, While the generated common sense knowledge exhibits a degree of
diversity, some of the knowledge produced can lead to significant deviations from
the text descriptions and video frames increasing the challenge of model learn-
ing. To address this problem, we designs a multimodal feature fusion alignment
module, based on Self-attention and Cross-attention mechanisms to achieve con-
trolled generation of common knowledge information in disguise, by the method
associates the field of view of the common sense knowledge with other rele-
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vant features and assigns low weights to knowledge that deviates from the video
frames while assigning high weights to knowledge that aligns with them.

Considering the above issues, we proposes Text Enhanced Sensitive video
Detection with Common Sense knowledge, TED-CS, a sensitive video detection
method with common sense knowledge enhancement. Based on the pre-training
model of CLIP [23], we make a detailed analysis and comparison experiments
on the image caption methods in the sensitive video domain, and automatically
extracts high-quality common sense knowledge through the pre-training model
of COMET [6], which reduces the cost of manual labor. Also considering that
different modalities have different ways to carry knowledge, we design a mul-
timodal feature fusion module to improve the complementarity of features of
different modalities and reduce the noise in text information to improve the
capability of the model.

Our main contributions are summarized as follows:
1) we make an extensive experimental analysis of the image caption method

in the field of sensitive video detection and proved its effectiveness. 2) we demon-
strate that generic image caption is limited in sensitive video detection. And the
information derived by combining common sense knowledge can further improve
the accuracy of sensitive video detection. 3) TED-CS is the first attempt to
jointly utilize the presentation from picture modality and text modality for sen-
sitive video classification, based on our designed feature fusion mechanism. 4)
Experiments on three benchmark datasets show that TED-CS is competitive
and robust.

2 Related Work

In this section, we will detail some classification methods related to pornography
detection. In the earliest stages of research, people focused on bare skin [11] for
identification. However, the sensitivity of the video is frequently determined by
the exposed parts rather than the areas. But in reality, the exposed skin area
is not only positively correlated with the degree of sensitivity. In addition, the
skin color of the race will also affect the judgment. Afterward, based on the
statistical learning method of BoVW, the video is classified by combining the
video information with the feature classifier [3] obtains low-dimensional and
medium-dimensional features through HueSIFT [16] and BOSSA respectively,
and then combines nonlinear SVM for feature classification [29] extracts the
time and space information of the video, and sends it to the linear SVM to
obtain the prediction result after processing. Along this line, [27] uses a method
similar to Valle’s, but uses ColorSTIP to obtain low-dimensional features.

The method based on deep learning can overcome the limitations of manual
features, automatically learn classification features, and enhance the robustness
of the method [19] introduced AlexNet and GoogLeNet for the first time, using
the weights pre-trained on ImageNet to jointly judge video attributes. Based on
GoogleNet, explores two types of vision and motion between image frames and
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two-stream information. Also timing information, [32] captures sequence infor-
mation through LSTM. Not limited to video classification, the PPCensor [17]
proposed by Mallmann can also perform object detection on videos.

3 Methods

The overview of our approach is shown in Fig. 2. Based on the pre-trained model,
our proposed TED-CS consists of four main modules: (1) video frame extractor;
(2) textual information augmentation ; (3) encoder, and (4) multimodal feature
fusion.

Fig. 2. The architecture of the proposed TED-CS.

3.1 Video Frame Extractor

The module of extracting video frames is designed to pick the set of images
that have the right to vote. For now, most of the methods use the majority
voting as the classification result of a video. Thereby, this group of voting frames
has a crucial basis for sensitivity judgment, and the size of which determines
the computing pressure and efficiency of the system. In practice, we samples k
image frames uniformly according to the time dimension in order to maximize
the sampled image frames to cover the complete video. k is a constant with value
equal to 10.

3.2 Textual Information Augmentation

This section is composed of a caption generator and the common sense knowl-
edge acquisition. As mentioned in the first chapter, first we use the pre-trained
CLIP model to generate image caption for extracted video frames, then mine
the potential semantic information by correlating common sense knowledge.
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Caption Generator. As natural language processing (NLP) and computer
vision (CV) technologies continue to advance, the integration of multiple modal-
ities is being optimized and refined, Moreover, numerous unified pre-training
models have been proposed to demonstrate that textual and visual features are
complementary and can achieve more accurate understanding of the issue after
modality alignment and fusion. Such as CLIP and OFA [31]. Here, we choose
the pre-trained model CLIP as the caption generator.

CLIP calculates the similarity of image-text pairs through contrastive learn-
ing on the dataset WIT, which contains 400 million records, to align them to
the same feature space. During the training phase, each batch contains n data
pairs. Hence, if every two are matched, there are a total of n2 combination.
We will maximize the feature similarity for n of the correct matching combina-
tions, and minimize the feature similarity for the remaining mismatched n2 − n
combinations.

Given a video frame img, the caption information S = [s1, s2, ..., sn] is
obtained by CG:

S = CG(img), (1)

where n is the number of tokens and CG stands for caption generator model
CLIP.

Common Sense Knowledge. Due to the characteristics of the task, semantic
features that directly contribute to erotic intent detection are usually obscure and
indirect, which cannot be directly captured in generated subtitle descriptions.

The caption is usually an objective expression of the image and has weak
emotional tendencies. For example, given a sentence, a screenshot of a woman
laying on a bed with her hands on her chest., which only describes the number of
people, actions, and scenes that occurred. It is extremely embarrassing to force
the neural model to make sensitivity judgments without the aid of pictures. But
for a rational person, he will not only pay attention to the above surface infor-
mation, but also combine it with common sense information to mine the deep
cryptic information of the sentence, such as the intention of the person, the cause
of the event, the possible consequences, etc., to further enrich the textual modal
information. Then it will have great confidence in predicting the pornographic
orientation of the caption. Therefore, common sense knowledge is crucial in the
field of sensitive video detection. In practice, considering the expensive cost of
extracting common sense manually, we use the model COMET, a pre-trained
model that generates commonsense knowledge from input sentences.

COMET is constructed based on two commonsense knowledge graphs,
ATOMIC [25] and conceptNet [28], which covers a variety of social commonsense
knowledge. And in order to improve query efficiency and quality, it specifies the
format of input sentences and provides nine relational attributes. As shown in
Fig. 2, the sentence to be processed is first transformed into PersonX laying on
a bed with somebody’s hands on somebody’s chest. according to the rewriting
algorithm, then COMET generates common sense knowledge to have sex, to be
intimate, to feel loved, to sleep according to the predefined relationship set.
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We selected three sets of COMET attributes based on our professional knowl-
edge. And their comparative results will be elaborated in the experimental
section.

(1) WIW: oWant, xIntent, and xWant. We want to be able to get the
underlying intentions of the subjects and objects of events, and the causes of the
current situation.

(2) AINRW: xAttr, xIntent, xNeed, xReact, and xWant. Making a series
of causal inferences about the related participants, including ones motivation,
role in the event, and possible resulting responses to the behavior.

(3) ALL: oEffect, oReact, oWant, xAttr, xEffect, xIntent, xNeed, xReact,
and xWant. We use all the attributes that COMET has to offer, hoping to
obtain as much high-quality information as possible.

After getting caption S, we use COMET to get common sense knowledge
C = c1, c2, ..., cm:

C = COMET(S), (2)

where m is the number of tokens in the common sense information sequence.

3.3 Encoder Module

In this section, the caption information, common sense knowledge, and the video
frame are encoded using text and image encoders, respectively, to obtain vector
representations. The encoding process for each of these three types of features
is illustrated below.

Textual Information Encoder. PLMs have obtained rich knowledge during
pre-training, which have powerful strength in language understanding. We use
BERT [10] as text encoder. The caption sentences and common sense knowl-
edge are encoded separately. As shown in Fig. 1, Common sense information
is typically composed of a set of phrases with a certain level of independence
between them. Thus, attempting to capture high-dimensional features through
deeper self-attention layers, as is done when processing caption messages, is not
an elegant solution. Therefore, BERT’s encoder does not directly encode com-
mon sense information. Instead, it is converted into a vector matrix through the
use of a lookup table. This process enables the effective transformation of the
common sense information into a more suitable format for use in subsequent
processing steps.

We use Hs = [hs
1, h

s
2, ..., h

s
n] and Hc = [hc

1, h
c
2, ..., h

c
n] as the hidden represen-

tations of S and C, respectively.

hs
1, h

s
2, ..., h

s
n = BERT-Encoder(S), (3)

hc
1, h

c
2, ..., h

c
m = BERT-Embed(C), (4)

where n and m are the number of tokens.
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Image Encoder. In the image domain, the RESNET50 [13] model serves as
the encoder, which has been established as a robust backbone in many computer
vision tasks. Given a video frame, the feature representation t of the image is
obtained through multiple residual block structures.

t = ResNet(img) (5)

3.4 Feature Fusion Module

We have designed two attention mechanisms to extract the feature representa-
tions of caption information and common sense text, respectively. These mecha-
nisms enable the effective capture of salient information from the textual inputs,
which is then combined with the image feature representation to obtain the final
feature vector for the video frame.

E-Attention. Analogous to the processing of common sense text, tokens in
caption sequence also have different effects on the predicted result. In order to
derive a more efficient representation of the feature vectors, E-Atten first obtains
the weighted hidden state matrix B through the self-attention mechanism and
followed by the max-pooling strategy to obtain the key feature vector q of the
caption text.

B = softmax(
HsKT

√
2μ

)V (6)

q = max − pooling(B), (7)

where K and V are the value of the matrix Hs after linear transformation.

H-Attention. Given that different tokens in the common sense text may repre-
sent distinct meanings, they may not necessarily contribute equally to the overall
judgment of video sensitivity. Therefore, we first obtain the feature vector r of
common sense knowledge through the summation of the weighted hidden state
matrix A = [a1, a2, ..., am] conducted by the designed attention mechanism that
is inspired by [9].

ai = softmax(ωT f(W [hc
i ] + b)), (8)

r =
m∑

i=1

aih
c
i (9)

ai denotes the weight of i-th token in common sense text. f is the relu [1]
function.
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Classifier and Training Objective. Finally, we concatenate the three repre-
sentations r, q and t, then use a softmax to predict the probability distribution
P of classification after a linear layer:

P = softmax(Wp([r, q, t]) + bp), (10)

where Wp and bp denote the parameter of the classifier layer. The concate-
nation of r, q and t is represented as [r, q, t].

The final training objective is to minimize the cross-entropy loss for all video
frames:

L(θ) =
∑

(Pi, yi), (11)

where Pi refers to the probability distribution of the i-th frame and yi is the
ground-truth label of this frame. θ denotes all parameters.

4 Experiments

4.1 Evaluation Protocol

As a classification task, accuracy rate is the percentage of correctly classified
videos to all videos. However, it can’t measure the probability that the model
misclassifies sensitive videos as normal, which directly affect the number of sen-
sitive videos in the network. In this case, F2 is needed, which considers a com-
bination of precision and recall. Following existing methods, we adopt the F2 as
evaluation metrics on Pornography-2k [18] and only accuracy on NPDI-800.

The formula for calculating Fβ is as follows:

Fβ = (1 + β2) × precision × recall

β2 × precision + recall
(12)

where β is set to 2.

4.2 Datasets

We conduct experiments on three datasets, NPDI-800, Porngraphy-2k and our
private Porn-Bili.

NPDI-800. The NPDI-800 dataset is a widely used benchmark dataset con-
sisting of 400 normal videos and 400 sensitive videos with a total duration of
nearly 80 h. The normal video is divided into easy-to-distinguish video and hard-
to-distinguish video according to 1:1. In terms of content, the dataset contains
a wide range of genres and actors from distinct ethnicities (e.g., Asians, Blacks,
Caucasian).
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Pornography-2k. The Pornography-2k dataset is an extension of NPDI-800
and comprises approximately 140 h, spanning 2000 videos, 1000 pornographic
and 1000 non-pornographic, which has a greater number of videos and genres
than the previous edition, and no longer takes three categories, but only two
categories of sensitive and normal.

Porn-Bili. This dataset contains 5900 videos, of which sensitive videos are from
Pornhub and normal videos are from Bilibili. In the experiments, the training
set contains 4900 videos, including 1374 normal videos and 3526 sensitive videos.
Besides, the test set contains 1000 videos, and the ratio of sensitive videos to
normal videos is 1:1. The average length of a video is one minute.

4.3 Experimental Parameters

We choose Adam as the optimizer and the initial learning rate of 1e-4. During
training process, we set the batch to 16.

4.4 Baseline Methods

Late Fusion. [22] combines picture and motion information using optical flow
and MPEG motion vectors with GooglNet to evaluate video attributes.

AttM-CNN. [12] proposes a new model named AttM-CNN, which overall
structure is based on a deep CNN architecture with an efficient attention mech-
anism and metric learning. And for equality, we adopt the version that is not
fine-tuned on an unpublished private dataset.

TRoF. [18] introduced a space-temporal detector and descriptor called TRoF,
and aggregate the representation extracted by TRoF into higher dimensional
features.

Borg’s Model. [5] uses a CNN for automatic feature extraction, followed by
RNN to capture the temporal information. And then ranking the harmfulness
of the pornographic content according to video segments.

4.5 Evaluation on NPDI-800 Dataset

In order to bolster the credibility and persuasiveness of our approach, we
conducted experiments on the publicly available NPDI-800 dataset, utilizing a
rigorous five-fold cross-validation methodology as same as the initial work.

We organized the compared methods into three distinct categories, namely
BoVW-based, CNN-based, and Text-based methods, which are mostly strong
methods. As shown in Table 1, the neural network-based approach is better
than traditional machine learning overall, and in the domain of deep learning,
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Table 1. Evaluation on NPDI-800 dataset.

Model Extra test style data usage Accuracy

BoVW Avila et al. [3] NO 87.1

Souza et al. [4] NO 89.5

Caetano et al. [7] NO 90.9

Valle et al. [29] NO 91.9

Souza et al. [27] NO 91.0

Caetano et al. [8] NO 92.4

CNN Moustafa [19] NO 94.1

Ou et al. [21] NO 85.3

Jung et al. [14] NO 94.0

Wehrmann et al. [32] NO 95.6

Perez et al. [22] NO 97.9

shen et al. [26] NO 94.7

Borg et al. [5] NO 97.8

Text TED-CS NO 98.3

CNN TLMobDense [24] YES 99.1

our TED-CS achieved state-of-the-art With the help of text information. It is
important to note that we did not include a comparison with method [24], which
employed a large number of GAN-generated images similar to the NPDI test set
during training.

4.6 Evaluation on Pornography-2k Dataset

Table 2. Evaluation on Pornography-2k dataset.

Method Extra test set style data usage F2

STIP [15] NO 93.1

TRoF [18] NO 93.3

DTRoF [18] NO 95.3

Dense Trajectories [30] NO 95.6

Late Fusion [22] NO 96.7

AttM-CNN-Porn [12] NO 96.8

TED-CS NO 97.0

TLMobDense [24] YES 99.3

The Pornography-2k dataset is utilized by more and more works to verify
the effectiveness of their method, which set accuracy and F2 as effect evaluation
indicators.
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As shown in the Table 2, compared with third-party tools PornseerPro, our
method improves F2 by 21.4%. and also outperforms traditional manual feature
methods STIP 3.9%. Moreover, in the CNN-based approach, late fusion is still
weaker than our method. Besides, we performe better than Attm-CNN-porn
without training on the two million carefully collected sensitive image datasets
that is not open.

4.7 Evaluation on Porn-Bili Dataset

Table 3. Evaluation on Porn-Bili Dataset

Model Acc. Rec. F2 Pre.

Only Image 87.6 100.0 95.3 80.1

Only Caption 49.0 100.0 83.3 50.0

Image and Caption 91.0 99.8 96.4 84.8

TED-CS 94.4 99.4 97.4 90.3

The sensitive video detection task can be modeled as a binary classification
task. So we use accuracy, Recall, F2 and Precision to access the performance of
models. Table 3 shows the comparative results on the Porn-Bili dataset.

We choose BERT and ResNet as baselines and both of them are powerful
models in the NLP and CV domains separately. With the assistance of caption,
the F2 value of using image and caption is 1.1% higher than the method only
adopting image, and 13.1% higher than Only Caption, which proves the effec-
tiveness of the caption information. In addition, the model that utilizes common
sense knowledge improves 1 point, which confirms the necessity of the premium
information carried by COMET.

4.8 Different COMET Attributes Set

In Sect. 3, we introduce three strategies for selecting COMET attributes:WIW,
AINRW and ALL.

Table 4. Comparison between different common sense knowledge attributes on NPDI-
800 dataset.

COMET Acc. Rec. F2 Pre.

WIW 97.6 97.1 97.3 98.0

ALL 97.8 97.7 97.8 98.0

AINRW 98.3 98.7 98.6 98.0
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We can see from Table 4 that the strategy using all attributes is slightly better
than WIW, indicating it has the ability to provide denser premium information.
However, if only the oWant, xIntent, and xWant are used, the classification effect
of the model is optimal. The result demonstrated that AINRW can remove the
interference of some redundant information.

4.9 Different Image Caption Generator

Table 5. Comparison between different caption generation models on NPDI-800
dataset without pre-trained on ImageNet.

Caption Method Acc. Rec. F2 Pre.

GRIT ICaption 86.7 90.8 89.4 84.3

ICCommon Sense 89.2 92.1 91.1 87.3

CLIP ICaption 88.5 91.6 90.5 86.5

ICCommon Sense 90.5 95.4 93.6 87.1

OFA ICaption 86.5 92.1 90.6 85.0

ICCommon Sense 90.5 95.9 94.1 87.5

To demonstrate the robustness and generalizability of our proposed approach,
we conducted additional experiments using three distinct caption generation
models, and all of which resulted in improvements in performance. CLIP is a
multi-modal deep learning model proposed by openAI. And after joint learning
of text and images in the pre-training stage, it lays the foundation for image
description of downstream tasks. The OFA model was proposed by Alibaba. The
model adopts the encoder-decoder architecture of the transformer, and unifies
tasks of different modalities into a sequence-to-sequence form, which improves
learning efficiency. The GRIT [20] model is an image captioning transformer,
which enhances the ability to understand by making full use of the image features
of Grid and Region.

We conducted experiments on the Porn-Bili dataset for these three caption
generation models, using accuracy, recall, F1 and precision as evaluation indi-
cators. And the following two methods are used for comparison:

ICaption. The model only uses images and corresponding captions for video
classification.

ICCommon Sense. Common sense knowledge extracted based on different
captions is used to assist the model’s judgment.

Table 5 shows that after mining the commonsense information, all of them
have improved performance.
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Table 6. Ablation study on NPDI-800 dataset.

NPDI-800 NPDI-800, w/o ImageNet

Model Acc. Rec. F2 Pre. Acc. Rec. F2 Pre.

TED-CS w/o Text 97.5 97.7 97.7 97.5 86.0 89.0 88.4 85.9

TED-CS w/o Img 50.6 100.0 83.7 50.6 50.6 100.0 83.7 50.6

TED-CS w/o Comet 97.5 97.4 97.4 97.4 88.5 91.6 90.5 86.5

TED-CS w/o Atten 98.1 97.4 97.7. 98.7 91.3 94.9 93.6 88.7

TED-CS 98.3 98.7 98.6 98.0 90.5 95.4 93.6 87.1

4.10 Ablation Study

To understand the importance of commonsense knowledge and the effec-
tiveness of the designed attention mechanism, we conduct a series of ablation
experiments to investigate the effect of the key components in our model. The
following are several variant models:

Model w/o Atten. Remove the H-Atten and E-Atten.

Model w/o Comet. On the basis of the Model w/o Atten, remove common-
sense knowledge.

Model w/o Img. On the basis of the Model w/o COMET, remove the image
information. In other words, this model only uses the caption message.

Model w/o Text. On the basis of the Model w/o COMET, remove the image
caption. In other words, we only consider the information of the video frame
itself.

Table 6 shows the detailed results of the ablation experiments, which are
divided into two categories according to whether they were pre-trained on the
ImageNet dataset. We can find that almost every module removed will cause
a loss of effect. Interestingly, if only subtitle information is used, the model is
basically equivalent to random classification, which confirms the conjecture that
this type of information is highly objective.

5 Conclusion
In this paper, we propose a general text augmentation model with common
sense knowledge to deduce cryptic underlying information. And relying on the
high-density semantic knowledge of text, the model can achieve highly compet-
itive experiment results with a few number of frames, which greatly reduces
the dependence on the number of video images, and alleviates the problem of
a large amount of redundant information between adjacent frames. Moreover,
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exhaustive experiments on three datasets demonstrate that this is an effective
and general method for text processing. In future work, we will further explore
the combination of text modality, image modality, and speech modality to refine
the problem of sensitive video detection.
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